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ABSTRACT 

Nucleobindins are a class of secreted, multi-domain Ca2+ binding proteins that 

interact with nucleic acids. Two nucleobindins, nucleobindin-1 (NUCB1) and 

nucleobindin-2 (NUCB2) have been identified so far. In 2006, nesfatin-1, an 82 amino 

acid peptide encoded in NUCB2 was discovered. Nesfatin-1 is an anorexigenic and 

insulinotropic peptide found abundantly in hypothalamus, pancreas and stomach. Meal 

responsive insulin secretion is regulated by glucagon like peptide-1 (GLP-1), glucose 

dependent insulinotropic polypeptide (GIP), peptide YY (PYY) and cholecystokinin (CCK) 

secreted by intestinal mucosal cells. Since both nesfatin-1 and intestinal hormones 

modulate insulin secretion, nesfatin-1 could regulate intestinal hormones to elicit its 

insulinotropic action. Nucleobindin-1 primarily regulates Ca2+ homeostasis. Like NUCB2, 

NUCB1 is also present in the pancreas, stomach, intestine and pituitary. NUCB2 has a 

high similarity (62% in humans) to NUCB1. Both proteins also retain their prohormone 

convertase cleavage sites. However, no information exists on whether NUCB1 encodes 

bioactive peptides. The fact that NUCB1 is a secreted protein suggests an endocrine 

function for NUCB1 and/or its encoded peptide. This research hypothesizes that nesfatin-

1 is enterotropic, and NUCB1 encodes an insulinotropic nesfatin-1-like peptide (NLP). 

Nesfatin-1 protein expression was found in STC-1 cells and it co-localized GLP-1, GIP, 

CCK and PYY in mouse enteroendocrine cells. Treatment of STC-1 cells with nesfatin-1 

stimulated GLP-1, GIP, CCK mRNA expression and protein secretion, while opposite 

effects were found for PYY. In silico analysis of the NUCB1 amino acid sequence found 

a 77 amino acid NLP. Mouse pancreatic islets and MIN6 cells express NUCB1 mRNA 

and protein. NUCB1 was co-localized with insulin in mouse pancreatic islets. While 

treatment of cells with synthetic NLP increased preproinsulin mRNA expression and 

secretion, a scrambled peptide based on NLP was ineffective, indicating that the specific 

amino acid sequence is crucial for its insulinotropic action. Overall, the data presented 

supports the hypotheses. The studies reaffirm NUCB2 expression in intestine and provide 

the first set of evidence for nesfatin-1 regulation of enteric hormones. It also found a novel 

NUCB1 encoded insulinotropic NLP that could elicit other functions of nesfatin-1.  
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CHAPTER 1  

INTRODUCTION 

1.1. GENERAL INTRODUCTION 

The prevalence of metabolic diseases is reaching pandemic proportions 

worldwide, of which obesity and diabetes are the primary diseases of concern. In 2010, 

more than 285 million people worldwide had diabetes [1]. This estimate is 67% higher 

than those predicted in 2000 and with this trend, 439 million people worldwide will have 

diabetes by 2030. Since 2010, efforts are underway to combat the costs resulting from 

these debilitating metabolic complications. In the majority of cases of diabetes and 

obesity, the defects lie in glucose metabolism and energy homeostasis. Several lines of 

research are in progress, including the use of naturally occurring hormones to treat 

diabetes and obesity [2-4]. In this regard, the role of intestinal hormones in regulating 

glucose and energy homeostasis is well reported. Some examples of such hormones 

include the incretins glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic 

polypeptide (GIP), peptide YY (PYY), leptin, orexin, cholecystokinin (CCK), amylin and 

oxyntomodulin. All these hormones modulate insulin, which is secreted in a meal 

responsive manner [5-8]. In addition to these peptides, a recent addition to the growing 

list of pancreatic islet beta cell endocrine modulators is nesfatin-1 [9]. 

 Nesfatin-1 (NEFA/nucleobindin-2 Encoded Satiety and FAT Influencing proteIN-1) 

is a recently identified 82 amino acid anorexigenic (food intake inhibitory) peptide that is 

derived from the post-translational cleavage of its secreted precursor peptide 

nucleobindin-2 (NUCB2) at its N-terminal by prohormone convertases [9]. Plasma 

nesfatin-1 concentrations are inversely correlated with glucose levels in rats and diabetic 

(T1D and T2D) humans [10, 11]. Our research group for the first time showed that 

nesfatin-1 and insulin are co-localized in the β cells [12] of pancreatic islets and its 

stimulatory role in insulin secretion [5, 13], and glucose homeostasis [13]. Since its 

discovery in 2006, nesfatin-1 has emerged as a multifunctional peptide having a variety 

of tissue-specific functions. Besides hypothalamic feeding centers and endocrine 

pancreas, nesfatin-1 was reported in rat gastric oxyntic mucosa [14] and was found to be 
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co-secreted from distinct cytoplasmic vesicles in ghrelin producing X/A like cells. Our 

research recently determined that NUCB2 and nesfatin-1 are expressed in the small and 

large intestines of mice [15]. Previous research has shown that intestinal hormones GLP-

1, PYY, GIP and CCK modulate insulin secretion [6-8, 16]. Nesfatin-1, similar to these 

intestinal hormones, has a crucial role in modulating insulin secretion [5, 12, 13]. In 

addition to its insulinotropic actions, does nesfatin-1 also modulate intestinal hormones 

that regulate insulin release? The main focus of Chapter 2 of this thesis is to address this 

question. Maintenance of insulin secretion is crucial in vivo as insulin stimulates glucose 

uptake by cells, thereby regulating glucose homeostasis. Insulinotropic peptides i.e. 

peptides that increase insulin secretion are therefore much in focus for their therapeutic 

use in diabetes treatment. Nesfatin-1, as an insulinotropic peptide, is also pursued as a 

therapeutic target for diabetes.  

The third chapter of this thesis aims to investigate whether NUCB1 encodes a 

nesfatin-1-like peptide (NLP) and whether NLP has insulinotropic action similar to 

nesfatin-1. This is crucial, as no information exists regarding NUCB1 encoded 

insulinotropic peptide, although NUCB1 was identified more than a decade earlier to 

nesfatin-1. Is NUCB1 also a precursor of an insulinotropic peptide? NUCB1 is a 55 KDa 

multi-domain protein first discovered in cultured supernatant of a B lymphocyte cell line 

identified from mice prone to systemic lupus erythematosus, an autoimmune disorder 

[17]. It was identified as a golgi resident protein [18], secreted protein [19] and a nuclear 

protein [20]. Previous studies have shown that the secreted extracellular NUCB1 

contributes to matrix maturation in bones [21]. NUCB1 plays a crucial role in Ca2+ 

homeostasis [22] and was reported to interact with G proteins [22] and cyclooxygenases 

[23]. These studies indicate the important role of NUCB1 in multiple cellular processes. 

The nucleobindin genes (both NUCB1 and NUCB2) will be addressed in uppercase 

italicized letters, to distinguish from NUCB1 and NUCB2 proteins (uppercase non-

italicized), in rest of the thesis. Given the cytoplasmic location of NUCB1 and that it is 

secreted is indicative that it or its encoded peptides could have endocrine functions. 
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1.2. LITERATURE REVIEW 

1.2.1. Energy Metabolism and Type 2 Diabetes Mellitus 

Humans obtain energy from three classes of fuels: carbohydrates, lipids and 

proteins. Energy metabolism is the process of generating adenosine triphosphate (ATP) 

from these nutrients. It is comprised of linked pathways that function either in the presence 

or absence of oxygen. Typical aerobic metabolism will convert one molecule of glucose 

to 30-32 ATP molecules [24]. The three classes of energy rich fuels are acquired by food 

ingestion. Based on the nature of the ingested food, the percentage of energy fuels in 

them varies. The digestion of food in the alimentary tract and its subsequent absorption 

in blood stream makes it possible for cells and tissues to transform the chemical energy 

generated into useful work. Energy intake in the form of food, and energy expenditure in 

the form of cellular energy metabolism and exercise are precisely coupled over longer 

intervals. In healthy adults, this tight balance between intake and expenditure results in 

energy homeostasis and stable body fat reserves [25]. 

Amongst carbohydrate fuels, glucose is a major energy source for cells in the body. 

Glucose in cells is crucial for its proliferation, growth and survival. Therefore, maintenance 

of glucose levels in blood is an essential physiological process [26]. Insulin is a major 

peptide hormone secreted by β cells in the pancreas to regulate blood glucose levels. An 

elevation in blood glucose level during feeding stimulates insulin release, resulting in the 

uptake of glucose into skeletal muscles and adipose tissues. Diabetes or diabetes 

mellitus is a complex metabolic disease characterized by several metabolic abnormalities, 

especially elevated blood glucose levels over an extended period. The two major types 

of diabetes are type 1 diabetes (T1D) and type 2 diabetes (T2D). T1D primarily arises 

from the lack of insulin secretion from pancreatic islets. T2D is due to the loss of insulin 

sensitivity in glucose responsive cells, resulting in inhibition of glucose uptake in response 

to insulin [27]. The disruption of energy metabolism in T2D is well reported in literature 

with significant research focusing on the mechanism of insulin action and its receptor 

kinetics. 
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The onset of elevated blood glucose levels or hyperglycemia arises from three key 

defects: unregulated hepatic glucose production, diminished insulin secretion and 

impaired insulin action [28]. Insulin resistance is defined as the delayed response of cells 

to insulin. Human insulin receptor contains an two extracellular α subunit and two 

transmembrane β subunits [29]. The α subunits or the ligand-binding domain controls the 

activity of β subunits [30]. The gene coding for insulin receptor in mammals has 22 exons 

that generates two isoforms resulting from the alternative splicing of exon 11. The 

isoform-a called insulin receptor a (IRa) retains exon 11, whereas b-isoform (IRb) omits 

exon 11. In typical insulin responsive tissues including liver, adipose tissues and skeletal 

muscles the IRb expression is higher as it binds strongly to insulin. In contrast, the IRa 

binds with equal affinity to both insulin and insulin-like growth factor 2 (IGF2) and is 

expressed in the majority of fetal tissues and central nervous system (CNS) [31]. The 

insulin receptor resides in the plasma membrane and is activated by binding of insulin 

(ligand). Ligand binding increases the flexibility of the activation loop, which allows ATP 

to bind and autophosphorylate, thereby stabilizing the activation loop [32].  

In humans and other mammals, activated insulin receptor phosphorylates the 

tyrosine residues in intracellular insulin receptor substrates (IRS-1, IRS-2). Previous 

studies on transgenic mice suggests that the majority of insulin action is mediated through 

either IRS-1 or -2. Activation of the insulin receptor leads to the production of 

phosphatidylinositol triphosphate (PIP3) by phosphatidylinositol 3-kinase (PI3K). PIP3 

then recruits the phosphatidylinositol-dependent protein kinase 1 (PDK1) and protein 

kinase B (AKT) to the plasma membrane where AKT is activated by phosphorylation. AKT 

then phosphorylates a variety of proteins including glycogen synthase kinase 3β (GSK3β) 

in liver and AS160 protein which is involved in the translocation of the glucose transporter 

(GLUT4) [33]. The necessity of the IRS-PI3K-AKT-AS160 axis in insulin stimulated 

glucose uptake is well documented [34]. Depending on the tissue site, dysregulation of 

any of these signaling molecules, disrupts insulin signaling cascade resulting in sub-

optimal or lack of insulin responsiveness in cells. This progresses to hyperinsulinemia, 

glucose intolerance and insulin resistance seen in T2D. 

The pathophysiology of T2D is highly tissue specific. The skeletal muscles that 

contribute to 75% of glucose uptake is highly sensitive to blood glucose and plays a major 
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role in glucose homeostasis in patients with T2D [34]. As explained above IRS-1 and IRS-

2 are crucial in insulin responsive tissues like skeletal muscles. Studies have shown that 

IRS2 knockout mice progressively develop T2D with insulin resistance in skeletal muscles 

[35]. T2D subjects have impaired insulin stimulated tyrosine phosphorylation of IRS-1 in 

skeletal muscles. However, this was not due to a decreased protein expression of IRS-1. 

A similar impairment was observed at the level of PI3K in skeletal muscles of T2D 

subjects [34]. The dysregulation of the insulin receptor constitutes a common feature of 

insulin resistance in skeletal muscles of T2D patients. High levels of free fatty acids were 

known to contribute to insulin resistance by reducing the insulin stimulated glucose uptake 

via accumulation of lipids inside muscle cells [36]. T2D was also associated with impaired 

switching from fatty acid oxidation to glucose oxidation in response to insulin [37]. 

However, the cause of these derangements in skeletal muscles of T2D patients remains 

to be elucidated. 

In adipose tissues, the GLUT4 expression is downregulated in patients with T2D 

[38].  Owing to this, hyperglycemia associated with decreased glucose uptake cannot be 

explained in adipose tissues. The adipocyte-selective knockout of GLUT4 in mice resulted 

in insulin resistance similar to muscle selective knockout of GLUT4 [39]. Adipocyte 

GLUT4 deficiency results in the generation of circulating factors that are responsible for 

organ communication [40]. Of particular interest recently is the retinol-binding protein-4 

(RBP-4). Insulin resistant mice, obese and diabetic humans had increased RBP-4 protein 

levels. Also overexpression of RBP-4 gene or injection of RBP-4 recombinant protein 

caused insulin resistance in mice. Conversely RBP-4 knockout mice had enhanced 

insulin sensitivity [41]. Adipocytes secrete a wide array of factors that may alter insulin 

action in adipose tissue e.g. adiponectin, resistin, leptin and TNFα [42].  

T2D has been reported to have direct effects on the pancreatic β cells, contributing 

to apoptosis and reduction in mass and ability to compensate for insulin resistance [43]. 

A wide variety of mechanisms for these effects of T2D on pancreatic islets have been 

proposed in literature which includes endoplasmic reticulum stress [44], chronic 

hyperglycemia [45], chronic hyperlipidemia [46], oxidative stress [47] and inflammatory 

cytokines [48]. Reduced insulin sensitivity of β cells has been attributed to the early failure 

of insulin secretion in T2D pathogenesis [49]. However, many questions remain open on 
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the effect of T2D on β cells. What is the mechanism of β cell compensation in 

hyperinsulinemia? At which point in T2D pathogenesis this compensation fails? 

Nonetheless, the consensus in the literature is that the main adverse effects of T2D on β 

cells are its loss of insulin sensitivity and insulin secretion later in the disease as β cell 

mass decreases. 

An organ with the ability to absorb, store and produce glucose is liver. It maintains 

glucose and lipid homeostasis in the body. Owing to its role in maintaining glucose levels, 

it is a key target for insulin and its catabolic counterpart glucagon. Increased blood 

glucose causes release of insulin from β cells and this effect is amplified by the presence 

of FFA. Lack of insulin sensitivity and disrupted insulin action in liver has a significant 

contribution towards hyperglycemia and dyslipidemia [50]. Similar to skeletal muscles 

IRS-1 and -2 are complementary key players in liver, regulating insulin signaling, 

expression of genes in gluconeogenesis, glycogen synthesis and lipid metabolism [50]. 

Dysfunctional IRS in liver leads to postprandial hyperglycemia, increased hepatic glucose 

production both of which have a major contribution in the development of insulin 

resistance in T2D [51-53]. Liver specific IRS-2 knockout mice have T2D, increased 

adiposity, female infertility, insulin resistance in liver and skeletal muscles and lack of β 

cell compensation for peripheral insulin resistance [35, 54]. 

Above all these tissue specific contributions to T2D pathophysiology, it has a very 

strong genetic component to it. The lifetime risk of T2D is about 7% in people with a 

healthy medical history. However, the chances of T2D are as high as 40 and 70% for 

offspring of a single or double parent T2D respectively [55]. Twenty common genetic 

variants of T2D have been identified recently using linkage analysis, candidate gene 

approaches and by genome wide association studies (GWAS) [56]. The genetic mapping 

results showed that insulin sensitivity is related to eight candidate genes TCF7L2, 

KCNJ11, HHEX, SLC30A8, CDKAL1, CDKN2A/2B, IGF2BP2, and KCNQ; PPARG, 

glucose transport to CAPN10 gene and melanocortin receptor gene MC4R and FTO to 

obesity [56]. This explains the complex nature of T2D, due to multi-faceted genetic 

background and varied gene-environment interactions. These lead to defective insulin-

mediated glucose uptake, β cell dysfunction, dysregulation of adipocyte and liver. An 

overall state of dysregulated metabolism over time also causes extensive T2D related 
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complications in nearly all tissues and organs. Recent advances have led to many 

interesting animal models for studying T2D. This includes the ob/ob (spontaneous 

mutation in ob (obese) Lep (leptin) gene) [57] and db/db mouse (point mutation in db 

(diabetes) LEP-R (leptin receptor) gene) [58], Zucker fatty rats, Zucker diabetic fatty rat 

and obese rhesus monkey. Current research has focused on exploring the mechanism of 

pathogenesis of T2D using these animal models [59, 60]. 

1.2.2. Several Hormones Regulate Appetite and Energy Metabolism 

 As discussed in the previous section, energy homeostasis refers to two distinct 

processes in vivo: 1) the maintenance and regulation of readily available supply of energy 

metabolites in circulation; and 2) the regulation of adipose tissue mass that serves as a 

major energy store. Both these aspects are linked to eating, which eventually results in 

the entry of sufficient energy metabolites from the intestine into circulation. Meal size, to 

a large extent maintains the above two processes of energy homeostasis. Previous 

studies have shown that the total amount eaten correlates with the average meal size but 

not meal frequency [61]. Diluting the energy content of diet results in an immediate 

increase in meal size [62]. Diabetic rats that cannot metabolize glucose normally increase 

meal size rather than frequency [63]. The effect of meal size on two distinct parameters 

of energy homeostasis arises from two different classes of feedback signals. The first, 

described by Smith et al., [64] consists of negative feedback signals that are generated 

from the GI tract in response to nutrient stimuli. The primary effect of these signals is to 

produce satiation. Circulating energy metabolites and hormones that arise from organs 

such as liver, pancreas and adipose tissue and from nutrient absorption are the second 

class of feedback signals that act on “metabolic sensing neurons” in the CNS [65]. The 

current understanding is that the gastrointestinal nutrient signals and metabolic sensing 

neurons converge in the caudal brainstem that also regulates motor control of satiation. 

A variety of hormones have direct and/or indirect effects on feed intake and cellular 

energy metabolism. Leptin, the satiety hormone secreted from adipose cells, adiponectin 

secreted from adipose tissues that regulates glucose levels and fatty acid breakdown, 

amylin co-secreted with insulin from β cells that slows gastric emptying and promotes 
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satiety and oxyntomodulin secreted from the oxyntic cells in colon that suppresses 

appetite are few examples of such hormones.  

The GI tract over the years has evolved as a major endocrine organ in the body. 

Specialized enteroendocrine cells present here secrete a variety of peptides that act as 

short and long-term peripheral signals for regulation of feed intake and energy balance 

[66]. Upon release from the GI tract in response to an ingested meal, the enteric 

hormones modulate the brain orexigenic and/or anorexigenic neuropeptides either 

directly or through nervous signaling from periphery to brain, thereby regulating feed 

intake [67].  Since this thesis research focuses on four major peptides i.e. GLP-1, GIP, 

CCK and PYY primarily produced from the GI tract, literature review will be limited to 

these four intestinal hormones [68-70].  

During early 1900s, the concept of certain factors secreted from the intestinal 

mucosa in response to ingested nutrients that are capable of releasing substances from 

endocrine pancreas leading to a reduction in blood glucose levels was introduced [71]. 

The term “incretins” was then used to denote these glucose lowering factors derived from 

intestine [72]. With the advent of radioimmunoassay (RIA), it was shown that oral glucose 

administration is associated with a much greater increase in plasma insulin when 

compared to the same amount given intravenously [73]. This result further solidified the 

concept that intestinal insulinotropic factors exist. The phenomenon of intestinal factors 

enhancing insulin secretion is called the “incretin effect”, and it contributes to 

approximately 70% of insulin secretion in response to oral glucose. 

 The first described incretin hormone was isolated from the crude extracts of 

porcine small intestine and had the ability to inhibit gastric acid secretion in dogs. It was 

hence named gastric inhibitory polypeptide (GIP) [74]. However, studies using more 

purified extracts showed that GIP stimulates insulin secretion in animals and humans [75] 

even at a physiological dose, it was renamed as glucose dependent insulinotropic 

polypeptide (GIP). GIP is a 42 amino acid peptide secreted by the K-cells in the upper 

small intestine in response to carbohydrates and lipids. However, it was found that 

immunoneutralization of endogenous GIP activity attenuated but did not abolish the 

incretin effect in rodents and surgical resection of ileum in humans was associated with 
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diminished incretin activity, despite normal plasma GIP levels [76]. This observation led 

to the discovery of second incretin hormone, glucagon-like peptide-1 (GLP-1) after 

cloning and sequencing of the mammalian proglucagon cDNAs. Since, the proglucagon 

gene in addition to glucagon also encoded two other peptides that were 50% homologous 

to glucagon they were named glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-

2 (GLP-2). Of these, GLP-1 alone was insulinotropic. GLP-1 is a highly tissue-specific 

post-translational product of the proglucagon gene, secreted and released from the 

intestinal L cells in response to nutrients and glucose-stimulated insulin secretion (GSIS) 

[77]. GLP-1 and GIP are the only known incretin hormones and contribute in an additive 

manner towards the incretin effect.  

 The long arm of chromosome 2 encodes the proglucagon gene which has 6 exons 

and 5 introns, with the entire coding sequence of GLP-1 present within exon-4 [78]. The 

GLP-1 gene is predominantly expressed in pancreatic α cells, the L-cells of the intestine 

and neurons in the caudal brainstem and hypothalamus. The mRNA generated by the 

transcription of this gene is structurally identical in all of the above-mentioned three cells 

[77, 79]. There are similarities in proglucagon gene expression in α cells and the intestine. 

Similar to α cells, intracellular cAMP and activation of cAMP/PKA pathway is critical for 

intestinal proglucagon gene expression [80]. Increase in cAMP levels also upregulates 

proglucagon gene transcription by activation of PKA. Nutrient ingestion is a primary 

regulator of proglucagon expression in intestine [81]. Fasting decreases, whereas 

refeeding increases proglucagon expression in rat intestine [82]. Meals containing high 

levels of fibers and short chain fatty acids also increase its expression [83, 84]. Gastrin-

releasing peptide and GIP are also known to increases proglucagon mRNA expression 

in intestine. Overexpression of transcription factor Pax-6 via adenovirus in primary cells 

cultures of intestine, enhances the expression of proglucagon gene expression [85]. An 

opposite effect is seen in mice that express the dominant negative form of Pax-6, showing 

a reduction in proglucagon expression [86]. These studies show the importance of Pax-6 

in proglucagon expression in both pancreas and intestine. Transfection of rodent islets 

with human proglucagon promoter-reporter plasmids shows that the sequence within the 

first 6 kb of human proglucagon gene 5’-flanking region is required for its pancreas-

specific expression [87]. Subsequent cell transfection studies revealed a conserved 
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region within intron 1 named “ECR3” that is critical for its expression in pancreatic islet α 

cells and intestine. These studies reveal that the human proglucagon gene uses a distinct 

set of transcription factors to specify tissue-specific proglucagon gene transcription. The 

proglucagon mRNA is translated into a single protein (180 amino acids) which then 

undergoes tissue-specific posttranslational processing yielding specific peptides in α 

cells, intestine and brain (Figure 1.1). Of several prohormone convertases (PC), PC 1/3 

and 2 alone were shown to be important in processing proglucagon [88].  

 

Figure 1.1. A depiction of the proglucagon gene, transcribed proglucagon mRNA and the 

translated protein. The protein is then post-translationally processed to glucagon (Gluc), 

glicentin-related polypeptide (GRPP), intervening peptide-1 (IP-1) and major proglucagon 

fragment (MPGF) in pancreas. In intestinal L cells and central nervous system the protein 

is processed into glicentin, oxyntomodulin (OXM), intervening peptide-2 (IP-2), GLP-1 

and GLP-2. 

GLP-1 is synthesized within and secreted by the L cells in the distal ileum and 

colon. The L cells are open type intestinal epithelial enteroendocrine cells. That is, they 

are in direct contact with luminal nutrients on the apical side and neural and vascular 

tissues through their basolateral side. Meal rich in fats and carbohydrates are primary 

physiologic stimuli for GLP-1 secretion in rodents [89]. GLP-1 secretion occurs in a 
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biphasic pattern with an early 10-15 minute phase and a longer 30-60 minute second 

phase in rats [90]. Multiple forms of GLP-1 in secretion includes GLP-1(1-37) and GLP-

1(1-36)NH2 which are inactive, GLP-1(7-37) and GLP-1(7-36)NH2 that are bioactive. In 

humans majority of GLP-1 in circulation is GLP-1(7-36) NH2 [91]. The half-life of bioactive 

GLP-1 in circulation is less than 2 minutes as it is rapidly inactivated by proteolytic enzyme 

dipeptidyl peptidase-4 (DPP-4) that cleaves GLP-1 at the penultimate alanine residue 

[92]. The central and peripheral administration of GLP-1 strongly stimulates insulin 

release. Intracerebroventricular administration of GLP-1 reduces food intake in rodents 

and its peripheral administration inhibits appetite in humans [93]. 

The GLP-1 receptor (GLP-1R) is a 7-transmembrane-spanning heterotrimeric G-

protein coupled receptor (GPCR) which acts as receptor for glucagon, GLP-2 and GIP 

[94]. In rodents and humans, a single GLP-1R that is structurally identical has been 

characterized in a wide variety of tissues ranging from pancreatic islets (α, β and δ cells), 

liver, heart, kidney, stomach, intestine, pituitary, skin, brainstem, nodose ganglion 

neurons and vagus nerves. In humans secretion of GLP-1 throughout the day strongly 

correlates with the release of insulin. The effect of GLP-1 on insulin secretion is strictly 

glucose-dependent and no effects on insulin secretion for glucose concentration below a 

certain threshold level (4.5 mmol/L) was observed. GLP-1 has also been shown to 

stimulate insulin gene transcription and all steps of insulin biosynthesis in isolated β-cells 

[8]. It stimulates β-cell proliferation and neogenesis from rat and human pancreatic duct 

[95]. GLP-1 inhibits glucagon secretion (glucagonostatic) in pancreatic islets. 

Administration of GLP-1 in T1D patients inhibited glucagon secretion and decreased 

blood glucose level suggesting that it suppresses the hepatic production of glucose 

induced by glucagon [96]. The inhibitory effects of GLP-1 are also extended to the GI tract 

wherein it slows down gastric emptying and glucose absorption [97]. This inhibitory role 

is crucial in pathological conditions like diabetes because they potentially reduce 

postprandial glucose excursions. The secretion of GLP-1 is impaired in patients with T2D. 

However, the insulinotropic response of GLP-1 and its glucagonostatic activity is 

preserved as in normal subjects [98]. A study involving a lizard, the gila monster 

(Heloderma suspectum), resulted in the isolation of exendin-4, a peptide that is a potent 

DPP-IV degradation-resistant agonist of the mammalian GLP-1 receptor [99]. This 
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analogue of GLP-1, under the trade name Byetta™, is currently commercially available 

in the United States as a therapeutic agent for T2D [100]. 

In rat hepatocytes and skeletal muscles, GLP-1 increases glucose incorporation 

and enhances insulin-stimulated glucose metabolism in 3T3 L1 adipocytes and primary 

rat adipocytes. GLP-1 stimulates cAMP production in isolated rat primary hepatocytes 

and exendin-4 improves insulin sensitivity and aids in reversal of hepatic steatosis in 

ob/ob mice [101]. GLP-1 and exendin-4, increases glycogen synthase activity in rat 

soleus muscles and human skeletal muscles. In addition, GLP-1 also has lipolytic effects 

in rat adipocytes and has both lipolytic and lipogenic actions in human adipocytes [102, 

103]. Intravenous administration of GLP-1R agonist increases systolic, diastolic, mean 

arterial pressure and heart rate in rodents. GLP-1 also exhibits cardioprotective effects in 

models of cardiac injury and failure [104]. In humans, a 72 hour GLP-1 perfusion in 

angioplasty and myocardial infarction patients improved their left ventricular function 

[105]. Despite all these tissue-specific biological actions of GLP-1, an ongoing question 

is whether these are solely due to its endocrine action as a circulating hormone or whether 

recruitment of CNS GLP-1R mediates some of peripheral actions of endogenous GLP-1? 

Also whether native GLP-1 exerts its metabolic actions (weight loss and decreased feed 

intake) by communicating with brain or by ascending neural pathways or in part by direct 

access to brain GLP-1R remains unclear. Recent trials have shown remarkable results 

using high molecular weight GLP-1R agonists. Studies using 4 structurally unique GLP-

1R analogues CJC113, CJC114, albiglutide and CNTO736 showed successful entry into 

brain showing their full range of actions, despite their large size. This includes, activation 

of neuronal c-Fos expression, inhibition of gastric emptying, reduction of food intake and 

weight loss with chronic administration [106-109]. 

The GIP gene in humans consists of 6 exons with the majority of GIP encoding 

sequences found in exon 3, being localized to the long arm of chromosome 17. GIP is 

expressed predominantly in stomach and intestinal K cells in rodents and humans. There 

is little information about the regulation of GIP gene expression. Recent studies stress 

the importance of the transcription factor Pdx-1 and that it could mediate the cell-specific 

GIP gene expression. Pdx-1 was also detected in the nucleus of the mouse K cells 

secreting GIP, and the number of intestinal GIP secreting cells is drastically reduced in 
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Pdx-1 -/- mice [110]. Chromatin immunoprecipitation in the same study also revealed Pdx-

1 binding to GIP promoter region and its overexpression in transfection assays increased 

the activity of GIP promoter/reporter gene constructs [110]. GIP is derived from a larger 

ProGIP prohormone precursor that encodes N-terminal peptide, GIP and C-terminal 

peptide (Figure 1.2). PC knockout mice study and overexpression of PC enzymes in vitro 

showed that mature 42 amino acid GIP is released from 153 amino acid ProGIP precursor 

via PC 1/3 posttranslational cleavage [111].  

 

Figure 1.2. Processing of mature GIP from the ProGIP gene. The precursor protein is 

post-translationally cleaved by PC 1/3 at a single arginine residue flanking the GIP mature 

peptide region. 

 GIP is synthesized and released from K cells in the duodenum and proximal 

jejunum [112]. Rather than the presence of nutrients, it is the rate of nutrient absorption 

that primarily stimulates GIP secretion. Thus, GIP secretion is reduced in patients with 

intestinal malabsorption or after administration of exogenous agents that reduce nutrient 

absorption [113]. There is a species-specific difference to the nutritional regulation of GIP 

secretion, as fat stimulates it in humans and carbohydrates are most effective in 

stimulating them in rodents and pigs. The half-life of intact bioactive GIP is 2 minutes in 

rodents [92] and 7 to 5 minutes in healthy human subjects and T2D patients [114]. Similar 



 

14 
 

to GLP-1, since GIP has an alanine residue in position 2, it is a target for DPP-4 mediated 

inactivation, which cleaves it into an active GIP (1-42) and GIP (3-42) that are inactive. 

However, intravenous infusion of GIP in humans found 40% bioactive GIP remains intact 

when compared to 20% active GLP-1. This shows that it is less susceptible to DPP-4 

cleavage in vivo than GLP-1 [92]. 

 GIP receptor (GIPR) is a 7-transmembrane spanning heterotrimeric GPCR similar 

to GLP-1R [115]. The human GIP receptor (GIPR) contains 14 exons and is localized in 

chromosome 19. GIPR is expressed in pancreas, small intestine, stomach, adipose 

tissue, adrenal cortex, heart, pituitary, testis, bone, spleen, thymus, lung, kidney and in 

several regions of the CNS. Relatively little is known on the factors regulating GIPR 

expression. However, GIPR mRNA and protein levels are reduced in the islets of diabetic 

rats, consistent with defective GIP action in diabetic animals and humans [116]. GIP 

exerts glucose-dependent stimulatory effect on insulin secretion in isolated perfused rat 

pancreas and humans [6]. GIP also upregulates insulin gene transcription and 

biosynthesis in β cells [117]. Elimination of GIPR signaling via GIPR knockout mice results 

in impaired oral glucose tolerance and a defective glucose stimulated insulin secretion 

[118]. Infusion of exogenous GIP into diabetic rats for 2 weeks reduces β cell apoptosis, 

by decreasing the expression of the pro-apoptotic bax gene [119]. GIP also reduces the 

expression of biochemical markers responsible for endoplasmic reticulum (ER) stress in 

cells of the islets, after inducing ER stress in vitro [120]. 

 GIP in the CNS has been shown to play a crucial role in neural progenitor cell 

proliferation and behavior modification, as transgenic mice that overexpress GIPR have 

enhanced sensorimotor co-ordination and increased memory compared to wild types 

[121]. Besides cerebral cortex, hippocampus and olfactory bulb in the CNS, GIPR is also 

expressed in isolated rat adipocytes and 3T3 L1 cells [122]. GIP has been reported to 

have lipogenic and lipolytic actions in vivo. It stimulates fatty acid synthesis and re-

esterification, increases insulin-stimulated incorporation of fatty acids into triglycerides 

and upregulates lipoprotein lipase synthesis [123]. On the other hand, GIPR -/- mice are 

resistant to diet induced obesity and have less adipocyte mass even after high fat diet 

feeding [124]. Leptin deficient ob/ob mice with GIPR knockout gain less weight and have 

improved glucose tolerance, insulin sensitivity and expend more energy than wild type 
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mice thereby preventing fat accumulation in adipocytes [124]. GIP increases bone mineral 

density in a rodent model of post-menopausal osteoporosis [125]. Subsequently GIPR 

knockout mice have reduced bone mass and size, altered bone turnover and abnormal 

bone microarchitecture. On the contrary, mice over-expressing GIP have greater bone 

mass than wild-type controls [126]. In stomach, GIP increases gastric acid secretion and 

upregulates specifically intestinal hexose transport [127]. It also attenuates glucagon 

stimulated hepatic glucose production, although the presence of GIPR in liver was not 

convincingly shown. The abnormal expression of GIPR in adrenocortical adenomas could 

contribute to the development of food-dependent Cushing’s syndrome [128]. The GIPR 

is also present in endothelial cells and increases intracellular Ca2+ in these cells [129]. 

Depending on the type of vascular bed involved GIP infusion can stimulate either 

vasoconstriction or vasodilation in dogs. This opposing effect is believed to be due to 

differential activation of GIP’s signal transduction pathways in distinct endothelial cell 

types. Besides all tissues discussed here, GIPR mRNA is also expressed in heart, testis 

and lung. However, the function of GIP on these tissues remains to be elucidated. 

 Cholecystokinin (CCK) is a peptide hormone secreted from the I-cells in the 

intestine. The action of this hormone was first characterized in 1973 [130]. CCK was the 

first gastrointestinal hormone found to act as a hunger suppressant. Upon nutrient 

stimulus, CCK from intestine stimulates pancreatic hormone secretion, bile secretion 

[131] and inhibits gastric emptying [132]. CCK levels in blood increases approximately 15 

minutes after meal initiation, with a half-life of 1-2 minutes in circulation [131]. There are 

several bioactive forms of CCK such as CCK-8, -22, -33 and -58 that differ in the number 

of amino acids. All forms are derived from a 95 amino acid precursor peptide pro-CCK 

[133] The predominant form is CCK-33 which is found in plasma and intestine [134]. CCK 

is also expressed in central and enteric nervous system specifically in the dorsomedial 

nucleus (DMN) and median eminence of the hypothalamus [135, 136]. 

 Two types of CCK receptors have been characterized, CCKA and CCKB. The 

CCKA receptor subtype predominates in the GI system, but occurs also in highly localized 

areas of the rat CNS, where it modulates feeding and dopamine-induced behavior [137, 

138]. CCKB receptor predominates the CNS and are involved in the modulation of 

anxiety, neuroleptic activity and arousal [138]. CCK is reported to reduce appetite. In rats, 
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administration of CCK-8 reduces meal size and duration while leaving water intake 

unchanged. Similar findings were also reported in humans, with the infusion of CCK-8 

reducing meal intake and initiating meal termination [139]. Recent evidences also 

suggests that when the stomach is distended, the satiety-inducing effect of CCK-8 is 

significantly increased, possibly involving a synergistic action [132]. Rats lacking CCKA 

expression present with high food intake, obesity and hyperglycemia [132]. However, this 

is not reiterated by the studies on knockout mice, as the data is not suggestive of any 

long-term effects on body weight [140]. CCKA receptors are expressed in the pancreas, 

nucleus of the solitary tract (NTS), afferent and efferent neurons of the vagus nerve and 

DMN in hypothalamus which are crucial centers for regulating food intake [141]. 

 In vitro studies have demonstrated that CCK causes insulin exocytosis [16] and 

promotes growth of pancreatic β cells [139]. CCK exerts a protective effect on β cells and 

islets of ob/ob mice. The islets from these mice expressed higher amounts of CCK 

compared to lean mice and helps modulate insulin expression by preventing cell death 

from stress-mediated pathways [142]. The action of CCK on pancreatic exocrine 

secretion is either direct via the receptors expressed on the pancreatic acinar cells, or 

indirect via receptors expressed on the vagal afferents, which when depolarized relays 

the signal through the efferent nerves in the pancreas. Two paradigms have emerged 

regarding the action of CCK on pancreatic secretion. 1) CCK could act directly on the 

neurons located in the dorsal motor nucleus of the vagus (DMV) [143] or 2) CCK could 

act simultaneously on the pancreatic stellate cells stimulating pancreatic exocrine 

secretion [144]. 

 The influence of exogenous CCK on reduction of food intake is dose-dependent 

in both rats and humans [130, 145]. Gastric and abdominal vagatomy abolished the 

satiety induced by CCK-8 administration peripherally, indicating that the CCKA receptors 

in the vagus nerve plays a crucial role in its regulation of feed intake [146]. CCK 

administered centrally also decreases food intake and the effects are potentiated by 

concomitant administration of leptin, indicating that CCK along with leptin could play an 

important role in long-term weight regulation [147]. Studies have evaluated the use of 

CCK as a treatment for obesity. Infusion of CCK for 6 days reduces ingested meal size 

by 44%. However, meal frequency is increased by 162% with no effect on body weight 
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[148]. Furthermore, 2 week intraperitoneal infusion of CCK resulted in development of 

tolerance for the peptide, thus having a lack of effect on feed intake or body weight [149]. 

The increase in postprandial CCK levels was high and quicker in lean individuals, possibly 

leading to an early occurrence of satiety, while in obese individuals, postprandial CCK 

levels remained higher for longer periods [150]. Postprandial CCK levels was also 

demonstrated to be sex-specific with females showing higher CCK levels than males 

[151]. 

PYY, like neuropeptide Y (NPY) and pancreatic polypeptide (PP), belongs to the 

“PP-fold” family of proteins. Similar to all PP fold family proteins, intracellular post-

translational C-terminal amidation of PYY in L cells of large intestine increases its half-life 

in circulation and is crucial for its biological activity. Endogenously PYY exists in two 

forms: PYY1-36 and PYY3-36 [152]. Similar to GLP-1, PYY1-36 is cleaved at the amino 

terminal by cell surface enzyme DPP-4 giving rise to PYY3-36, the predominant circulating 

form [153]. PYY is detected in low levels in stomach and the levels increases distally 

along small and large intestine, reaching highest levels in the cells of colon and rectum 

[154]. PYY is secreted from the L cells in proportion to feed intake and the circulating level 

is lowest in the fasting state. Plasma levels raise within 30 minutes post-prandially and 

plateaus within 1-2 hours, remaining elevated for 6 hours [155]. Among different types of 

nutrients, protein rich meals cause the greatest increase in PYY levels [156]. 

Administration of PYY3-36 reduces feed intake and weight gain in rodents [157-159]. 

Demonstration of PYY’s anorectic actions is highly dependent on full acclimatization of 

animals to handling and injection procedures as even mild stressors affects baseline 

feeding, making it difficult for anorectic agents to further suppress appetite. Intravenous 

administration of PYY reduces food intake in humans and was shown to be equally 

effective in normal and obese subjects [155]. The anorectic actions of PYY3-36 are 

mediated via arcuate nucleus (ARC) in the hypothalamus as the early gene marker, c-fos 

expression increases in this nucleus in response to peripheral PYY administration. There 

are conflicting results on the effect of PYY3-36 on propiomelanocortin (POMC) and 

AgRP/NPY neurons in ARC. Peripheral administration of PYY has been shown to 

decreases expression and release of NPY whilst activating POMC neurons [160]. 

However, reports have shown that PYY3-36 inhibits POMC neurons via postsynaptic Y2R 
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(Y2 receptor; PYY receptor) [161]. This was clarified by studies in POMC knockout mice, 

which maintained their anorectic response to peripheral PYY3-36 administration showing 

that POMC neurons are not critical for the anorectic response of PYY [162]. 

Both PYY1-36 and PYY3-36 exert their effect via neuropeptide family of receptors 

[162]. PYY1-36 binds with equal affinity to all Y receptors. However, PYY3-36 selectively 

binds with high affinity to Y2R subtype and its effect on food intake is mediated via this 

receptor [160]. This was further confirmed by studies using antagonists of Y2R that 

attenuated the anorectic effects of PYY3-36 [163]. Besides, PYY is present in myenteric 

nervous plexus neurons that innervate the GI tract and the Y2R has been identified on the 

vagus nerve [164]. Furthermore, total vagotomy or transectoning of brainstem-

hypothalamic pathways abolished PYY3-36 effect on food intake and ARC activation in 

rodents, suggesting a crucial role for vagus in appetite regulation [165]. PYY has been 

shown to have an effect on intestinal motility. Intra-arterial PYY administration in cats 

causes jejunal and colonic motility [166]. PYY also delays gastric emptying, decreases 

pancreatic secretions, and increases absorption of fluids and electrolytes from human 

ileum [167, 168]. More recently, it was shown that the acute effects of gastrointestinal 

bypass surgery on weight loss is lost in PYY knockout mice and that wild-type mice losing 

weight after surgery exhibit increased colonic PYY expression and circulating fasting PYY 

levels [169], highlighting the crucial role of PYY in mediating early weight loss in GI bypass 

surgery. 

Apart from the intestinal cells, PYY has been demonstrated to be localized in the 

pancreatic α cells [7]. Electron microscopy and immunohistochemistry studies have 

revealed that PYY and glucagon are co-stored in the secretory granules of α cells, 

suggesting a possible role as an intraislet regulatory peptide. Major studies so far have 

focused on the role of PYY in T1D, which results from sub-optimal levels of insulin 

secretion from the pancreatic islets. PYY inhibits stimulated insulin secretion under In vivo 

conditions in rat, dogs and mouse [7, 170, 171]. The number of rectal PYY cells in patients 

with T1D was found to be significantly higher than in healthy volunteers [172]. Also, the 

number of colonic PYY cells was reduced in non-obese diabetic (NOD) mice. However, 

no significant decrease in the cell number was observed in pre-diabetic NOD mice. 

Surprisingly, radioimmunoassay of tissue extracts showed lower concentrations of 
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colonic PYY cells in both pre-diabetic and diabetic mice [173]. Thus, it can be inferred 

that the synthesis of PYY decreases prior to the onset of diabetes, though the number of 

PYY cells remain unaffected. After the onset of diabetes, even the number of PYY cells 

declines, paving the way for PYY secretion as a possible biomarker for diabetes 

diagnosis. PYY has also been studied in two animal models of T2D, namely ob/ob and 

db/db obese diabetic mice. In ob/ob mice the number of colonic PYY cells and tissue 

concentrations of PYY were found to be lower than those in controls [174]. By contrast, 

the number of colonic PYY cells in db/db mice was reported to be higher than in controls 

[175]. This contradiction between the studies could be attributed to the difference in the 

duration of the diabetes in the ob/ob mice. 

Bertrand et al., [176] have reported a direct inhibitory effect of PYY on insulin 

secretion in rats. PYY caused a dose-dependent and sustained reduction of insulin 

secretion in the presence of 8.3 mM glucose. At a concentration of 10-9 M, PYY inhibits 

both phases of insulin secretion. In contrast, higher concentration of 10-8 M elicited a 

decrease in insulin output rate only during the first phase and no inhibitory effect was 

noted thereafter. Further studies on isolated islets showed that PYY at a concentration of 

10-7 M inhibited stimulated insulin secretion by 27% at a glucose concentration of 15 mM. 

However, this same concentration of PYY was ineffective in the presence of 3 mM 

glucose. The inhibitory effect of PYY on insulin secretion is comparable to the results 

previously observed with the neuropeptide Y in perfused rat pancreas [176, 177] although 

in contrast to NPY, PYY at 10-8 M inhibited insulin secretion only during the first 2 minutes, 

after which the inhibitory action disappeared. This might be due to an indirect action of 

PYY via stimulation of glucagon secretion. However, this can also be ruled out, since 

glucagon secretion was not increased by PYY at 10-8 M in the same study. It has been 

proposed that the inhibition of insulin secretion by PYY could be mediated via decrease 

in the pancreatic flow rate [178]. As reviewed in this section, the list of major hormones 

regulating appetite and energy metabolism includes but are not limited to GLP-1, GIP, 

CCK and PYY. A recent addition to this list is nesfatin-1. 
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1.2.3. Nesfatin-1 – A Novel Metabolic Peptide 

It has been shown that a secretory protein NEFA (Nuclear EF-hand acidic, Ca2+ 

binding) or NUCB2, which has a calcium-binding domain (EF domain) and DNA-binding 

domain, is present in the hypothalamic appetite regulating nuclei [179]. In order to find 

new satiety substances, Oh-I and colleagues [9] surveyed genes that are activated by 

troglitazone, a peroxisome proliferator activated receptor γ (PPARγ) agonist. They found 

the NEFA/NUCB2 gene upregulated both in the brain and adipocytes. In silico analysis 

predicted the proteolytic processing of NUCB2 by prohormone convertases (PC), 

resulting in an N-terminal fragment of 82 amino acids. The expression of the N-terminal 

fragment of NUCB2 in the hypothalamic PVN and cerebrospinal fluid was decreased by 

fasting in rats. As the intracerebroventricular (I.C.V) injection of this fragment in rats 

suppressed food intake, they named this processed peptide nesfatin-1 

(NEFA/nucleobindin-2 Encoded Satiety and FAT influencing proteIN-1) [9]. The 396 

amino acid precursor NUCB2 is highly conserved among rodents, humans and non-

mammals, indicative of its physiological importance [180]. In addition, the processing also 

could result in two C-terminal peptides nesfatin-2 (85-163) and nesfatin-3 (166-396), 

which have no known biological function [9]. The active site of nesfatin-1 is located in the 

mid-segment of 30 amino acids (23-53 amino acid, Figure 1.3) as the injections of C-

terminal (1-23) and N-terminal regions (54-82) had no anorectic effect in mammals [9, 

181]. The mid segment is similar to the amino acid sequence of α-MSH and agouti-related 

peptide (AgRP) and this sequence is critical for its anorexigenic activity [182]. 
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Figure 1.3. A schematic of nesfatin-1 processing from its precursor NUCB2. The 

preprohormone is cleaved by signal peptidase, yielding the prohormone. This sequence 

is then post-translationally cleaved by PC 1/3 and PC 2 resulting in 3 distinct fragments 

including nesfatin-1 (82 amino acids). Nesfatin-2 and -3 have no known biological 

functions. The mid segment of nesfatin-1 (30 amino acids) is critical for its anorexigenic 

action. 

Oh I et al., found the presence of NUCB2 in hypothalamus by 

immunohistochemical analysis in rats using NUCB2 Ab-1 antibody. They also found the 

secreted nesfatin-1 protein in rat hypothalamic extracts and cerebrospinal fluid [9]. 

NUCB2 is expressed in various hypothalamic regions like supraoptic nucleus (SON), 

paraventricular nucleus (PVN), arcuate nucleus (ARC) lateral hypothalamic area (LHA) 

and in the nucleus tractus solitarius (NTS). In spinal cord, nesfatin-1 is expressed in both 

sympathetic and parasympathetic preganglionic nerve cells and dorsal vagus nerve. Its 

presence was also confirmed by RT-qPCR in nucleus accumbens, cerebellum and 

lumber spinal cord [183]. Nesfatin-1 was co-localized with PC 1/3 and PC 2 in these 

neurons, suggesting the processing of NUCB2 by these enzymes [184]. Besides PCs, 

nesfatin-1 expressing neurons often were found to express other bioactive substances. 

In the PVN and SON of hypothalamus, nesfatin-1 is co-expressed with oxytocin and 
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vasopressin. Nesfatin-1 positive neurons of PVN contained 24% oxytocin, 18% 

vasopressin, 13 and 18% of corticotrophin and thyroptrophin releasing hormones 

respectively (CRH and TRH). In SON, 35% of nesfatin-1 positive neurons contained 

oxytocin and 28% contained vasopressin [185]. In ARC, nesfatin-1 coexists with cocaine-

amphetamine regulated transcript (CART) and tyrosine hydroxylase, and in LH with 

CART and melanin-concentrating hormone (MCH) [186, 187]. Nesfatin-1 also co-

localizes with choline acetyl transferase in dorsal vagus nerve, and with tyrosine 

hydroxylase in NTS and with 5-hydroxytryptamine in caudal raphe [186]. It is worth noting 

that all brain-mapping studies have been performed with antibodies specific to nesfatin-1 

that also recognizes full length NUCB2. Therefore, the expression pattern cannot 

distinguish whether the distribution reflects the precursor and/or processed nesfatin-1. A 

consistent feature of NUCB2/nesfatin-1 immunostaining is its confinement to the cell-body 

cytoplasm and primary dendrites, whereas immunolabeling is completely absent in axons 

and nerve terminals. Such specific cellular localization of nesfatin-1 is at variance with 

other neuropeptides that it co-expresses, and points towards an intracellular rather than 

an extracellular mode of action for central NUCB2/nesfatin-1. Also, large set of evidence 

suggests that the neuronal effects of nesfatin-1 are mediated predominantly through the 

G-protein coupled receptors, especially GPCR12, GPCR3 and/or GPCR6 [188]. 

The presence of NUCB2/nesfatin-1 was recently characterized in non-mammalian 

vertebrates. The NUCB2 gene structure was found remarkably conserved among teleosts 

(ray-finned fishes). In zebrafish two paralogues of NUCB2 gene namely NUCB2A and 

NUCB2B exists due to teleost-specific whole genome duplication. The NUCB2 in goldfish 

and zebrafish were closely aligned and were highly similar. The nesfatin-1 region of 

goldfish NUCB2A had high percent similarity to nesfatin-1 region in zebrafish (94%), 

medaka (91%), stickleback (86%) and green pufferfish (84%). Phylogenetic analysis 

showed that the goldfish NUCB2A amino acid sequences is clustered with NUCB2A 

sequences of other teleost fishes while showing strong clustering with zebrafish NUCB2A. 

These data provided the first set of evidence for the expression and modulation of 

NUCB2/nesfatin-1 in non-mammalian models [180]. 

In peripheral tissues, nesfatin-1 is expressed in ghrelin producing X/A like cells in 

the stomach gastric oxyntic mucosa and to a smaller extent in enterochromaffin like cells 
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of gastric corpus oxyntic mucosa [14]. Subsequent studies have confirmed the presence 

of a circulating hormone [189]. Expression of NUCB2 mRNA is found to be 10 fold higher 

in gastric mucosa than in brain, suggesting stomach as the main source of circulating 

nesfatin-1 [14]. Confocal microscopy of single X/A like cell revealed that NUCB2/nesfatin-

1 immunoreactivity (IR) is localized in different pool of cytoplasmic vesicles from ghrelin. 

Nesfatin-1 has been reported to cross the blood-brain barrier via a non-saturable 

mechanism, providing the possibility that nesfatin-1 produced in stomach may act 

centrally [190]. The half-life of nesfatin-1 in circulation is 6-7 minutes [191]. Our lab, for 

the first time showed that nesfatin-1 and insulin are co-localized in the pancreatic islet β-

cells, suggesting its viable role in insulin secretion and glucose homeostasis in vitro [12]. 

Similar to X/A like cells, the sub-cellular distribution of NUCB2/nesfatin-1 and insulin are 

not identical [10]. These data along with the distinct responses of circulating 

NUCB2/nesfatin-1 to a meal compared with that of insulin or acyl ghrelin in healthy 

subjects [192] support a differential regulation and release of these hormones. Recent 

studies also have confirmed the presence of NUCB2/nesfatin-1 in intestine and colon via 

immunohistochemical staining and Western blot analysis [15, 193]. The prominent and 

consistent immunolabeling of nesfatin-1 in endocrine cells [193] and adipose tissue [9] 

strongly suggests a role as a circulating hormone involved in various homeostatic 

processes. This consensus is supported by studies in mice showing that circulating 

nesfatin-1 similar to other gut hormones influences food intake [189], can cross blood-

brain barrier bi-directionally and via a non-saturable mechanism [190]. A similar evidence 

was shown indirectly in a recent clinical study, where a significant linear relation between 

plasma NUCB2/nesfatin-1 and cerebrospinal fluid NUCB2/nesfatin-1 levels in both lean 

and to a lesser degree in fasted obese subjects [194]. Besides stomach, pancreas and 

intestine nesfatin-1 was also reported in other peripheral tissues like testis, and cardiac 

muscles [11, 195] of rodents and in goldfish [180]. All these studies collectively reiterate 

nesfatin-1 as a novel peptide expressed equally in CNS and periphery, which is involved 

in regulation of appetite and feed intake. 
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1.2.4. Nesfatin-1 Regulation of Appetite and Metabolism 

 The first biological action described for NUCB2/nesfatin-1 was reduction of dark 

phase (phase where nocturnal rats/mice ingest most of their diet) feed intake after 

injection into the third brain ventricle in rats and reduction in body weight gain and fat 

pads upon I.C.V administration [9]. Compelling evidences via functional tests showed that 

injection of nesfatin-1 into brain elicits an anorexigenic response in rodents [196-198] as 

well as in goldfish [180]. Microstructure analysis of meal patterns in mice documented 

that the anorexigenic action of nesfatin-1 is due to induction of satiation, involving both 

reduction in meal size and meal frequency when injected into the lateral brain ventricle, 

4 hours post-administration in dark phase [198]. Nesfatin-1 injected into the cisternae 

magna or the fourth ventricle also reduces dark-phase food intake within the first hour 

after injection, indicative of specific hindbrain sites of its action [199]. Since most 

hypothalamic peptides that influences food intake also affect digestive processes 

peripherally [200] a direct modulation of gastrointestinal propulsive function was proposed 

for nesfatin-1. Accordingly, it was demonstrated that injection of nesfatin-1 into lateral 

brain ventricle delayed gastric emptying in rats [200] as well as in mice [197] and affected 

gastroduodenal motility in mice [201]. These gut motility effects could contribute to the 

satiety actions. 

The mechanism of nesfatin-1 action in the brain has been established to be 

independent of leptin action in a variety of studies [9, 197, 202]. However, it involves 

several hypothalamic pathways regulating feed intake. In rats, lateral brain ventricle 

injection of nesfatin-1 caused a decrease in food intake in dark period by 87% and 45% 

at 2-3 hours and 3-5 hours after injection, respectively. This action of nesfatin-1 involved 

the activation of anorexigenic CRF receptor 2 (CRF2) signaling system, as the injection 

of corticotrophin releasing factor (CRF2) antagonist astressin2-B into lateral brain ventricle 

blocked the decrease in food intake by nesfatin-1 [199]. However, astessin2-B did not 

modify the effect of nesfatin-1 on food intake when nesfatin-1 was administered into the 

brain medulla at the level of the fourth ventricle, further supporting the notion that 

differential forebrain and hindbrain downstream signaling cascades exist for nesfatin-1. 

Also, intraperitoneal (I.P) injection of CCK induced c-fos expression in 43% of nesfatin-1 
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neurons in the PVN and 24% of nesfatin-1 neurons in NTS. This indicates that nesfatin-

1 acts centrally to reduce dark phase food intake through CRF2 receptor-dependent 

pathway after forebrain injection and its acts via CRF2-independent pathway after 

hindbrain injection. The activation of nesfatin-1 neurons in PVN by CCK suggested a 

possible role of gut-derived peptides in its satiation effect. In the PVN oxytocinergic 

neurons, nesfatin-1 stimulated oxytocin release. Oxytocin release from these neurons 

was suppressed when endogenous nesfatin-1 was neutralized immunochemically. Both 

melanocortin 3/4 antagonist SHU9119 as well as oxytocin antagonist blocked the 

forebrain nesfatin-1 induced reduction in food intake in rats [203, 204]. Whether nesfatin-

1 acts in series or parallel activates CRF2, melanocortin 3/4 and oxytocin pathways 

remains to be elucidated. In addition to the activation of anorexigenic pathways, nesfatin-

1 was also shown to suppress orexigenic pathways such as NPY signaling based on an 

in vitro study and whole cell clamp recordings from rat ARC. The study showed 

hyperpolarization of NPY neurons when nesfatin-1 was applied to the cell [205]. Besides, 

in non-mammalian vertebrates, nesfatin-1 had an appetite regulatory effect on goldfish 

[180]. NUCB2 mRNA was detected centrally in hypothalamus, olfactory bulbs, 

telencephalon, midbrain and hindbrain. A 2 to 3 fold increase in hypothalamic NUCB2 

mRNA expression was observed in fed goldfish when compared to fish deprived of food 

for 3 to 7 days. Consequently, the levels of circulating nesfatin-1 were also found to be 

lower in food-deprived goldfish compared to fed controls [180]. I.C.V injection of 25 ng/g 

synthetic goldfish nesfatin-1 reduces food intake by approximately 50%. 

Convergent sets of evidence support the physiological role of nesfatin-1 as a 

negative modulator of feed intake. First, the most abundant mRNA/protein expression of 

NUCB2/nesfatin-1 is detected in hypothalamic nuclei and brainstem areas that 

contributes to the regulation of feed intake [9]. Functional studies established that 

injection of nesfatin-1 into cerebrospinal fluid at picomolar doses induces an anorexigenic 

effect in rodents and goldfish [180, 199]. Second, other food intake suppressing signals 

such as α-MSH and CCK increases NUCB2 mRNA expression to activate 

NUCB2/nesfatin-1 immunopositive neurons in hypothalamus and brainstem. Third, 

injection of anti-NUCB2 antisense oligonucleotide or anti-nesfatin-1 antibody into third 

ventricle increases food intake in male rats [9]. However, a recent report showed that 
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knocking-down hypothalamic NUCB2 had no effect on feed intake and weight gain in 

female rats [206]. Whether the effects of nesfatin-1 are sex specific needs to be clarified. 

Also, the intracellular mechanism of nesfatin-1’s anorexigenic action remains to be 

elucidated owing to the lack of identification of its receptor. One recent reports suggests 

that the neuronal effects of nesfatin-1 are mediated predominantly through the G-protein 

coupled receptors, especially GPCR12, GPCR3 and/or GPCR6 [188]. 

A majority of studies have focused on its central effects. However, reports 

investigating its peripheral effects are limited and are less consistent. One group of 

investigators has shown that I.P injection of a large dose of nesfatin-1 in ad libitum fed 

mice reduces dark phase food intake through leptin-independent mechanisms [182]. 

Based on in vitro data that shows nesfatin-1 activating Ca2+ influx in primary cultured 

nodose (tightly grouped) ganglion neurons from mice, the above effects are likely 

mediated via the vagus nerve [207]. However, in separate studies, I.P injection of 

nesfatin-1 did not decrease the dark phase feed intake in mice as well as in rats [198, 

199]. In goldfish either no effect or an 18% decrease in food intake was observed at doses 

10 fold higher than those injected intracerebroventricularly, leading to a striking food 

intake reduction [180]. Therefore, data so far suggests that the satiety action of nesfatin-

1 is more readily inducible centrally than peripherally. This warrants further investigation 

in the context of high levels of gastric NUCB2 mRNA expression and the circulating levels 

being regulated according to nutritional status.  

A recent clinical study with healthy non-obese subjects showed negative 

correlation between BMI and fasting plasma levels of nesfatin-1 measured using nesfatin-

1 specific ELISA. However, healthy humans do not show a nutrient-related fluctuation in 

plasma nesfatin-1 levels under conditions of decreased acyl-ghrelin and increased insulin 

[11, 192]. Other studies in humans have reported a positive correlation between BMI and 

fasting plasma nesfatin-1 levels under conditions of anorexia nervosa [208] and higher 

levels in obese subjects, indicating that circulating nesfatin-1 levels are possibly regulated 

by sustained changes in adipose tissue mass. A recent report showing a lower ratio of 

CSF/plasma NUCB2/nesfatin-1 levels in obese compared to lean subjects, suggests a 

reduced uptake from circulation to brain and therefore a reduced central action from 

peripheral sources of nesfatin-1 [194]. Moreover, the reported difference in eight distinct 
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single nucleotide polymorphism in NUCB2 gene being associated with obesity in large 

cohort of male subjects provides strong evidence for the crucial role of NUCB2/nesfatin-

1 in susceptibility or protection against development of obesity [209]. Interestingly, 

NUCB2 is highly homologous to nucleobindin-1 (NUCB1), a homologous multi-domain 

calcium and DNA binding protein similar to NUCB2. 

1.2.5. Nesfatin-1 Regulation of Insulin Secretion in Mammals 

Normal insulin secretion contributes to glucose uptake and use in insulin-

responsive cells. The secreted monomer of insulin is 51 amino acids long with molecular 

weight of 5.8kDa. The insulin gene also encodes a 110 amino acid precursor for insulin 

called preproinsulin. Preproinsulin has a hydrophobic N-terminal signal peptide. This 

signal peptide interacts with the cytosolic signal recognition particles (SRP), which aids 

in the translocation of preproinsulin mRNA across the rER (rough endoplasmic reticulum) 

membrane into the lumen [210]. This process occurs via the peptide-conducting channel 

where the signal peptide at the N-terminal end of preproinsulin is cleaved by signal 

peptidase to yield proinsulin [211]. Proinsulin then undergoes folding and formation of 

three disulfide bonds. Subsequent to the maturation of the 3D confirmation, proinsulin is 

transported from ER to Golgi apparatus where it enters the secretory vesicles and is 

cleaved into insulin and C-peptide. Both the peptides are stored in these granules along 

with other endogenous peptides (e.g. amylin) until translocation and release in response 

to glucose stimulus. Insulin secretion from the β-cells of pancreatic islets is regulated by 

a variety of intracellular signals, enteroendocrine hormones as well as by hypothalamic 

centers in the brain. 

 Of many modulators of insulin secretion, nesfatin-1 was recently reported to have 

anti-hyperglycemic and insulinotropic effects besides its anorexigenic action [5, 212]. Our 

lab, for the first time showed that nesfatin-1 and insulin are co-localized in the pancreatic 

islet β-cells of rodents, suggesting its crucial role in insulin secretion and glucose 

homeostasis [12]. A four-fold increase in nesfatin-1 levels was observed, when MIN6 

(mouse insulinoma cells) were incubated at high glucose concentrations (16.7 mM). 

Nesfatin-1 stimulates glucose stimulated insulin secretion (GSIS) from rat pancreatic 

islets in a dose-dependent manner [13]. In db/db mice, nesfatin-1 had antihyperglycemic 
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effects by lowering blood glucose levels [212]. Nesfatin-1 increases glucose-stimulated 

insulin secretion (GSIS) from pancreatic β-cells by direct action involving Ca2+ influx 

through L-type calcium channels [5]. It was also shown to increase the preproinsulin 

mRNA expression in MIN6 cells. The circulating levels of nesfatin-1 are regulated by 

nutritional status as fasting decreases, and refeeding normalizes its level. Also, nesfatin-

1 in circulation increases in response to oral glucose ingestion when compared to saline 

treated groups [198]. In Goto-Kakizaki (GK) rats with T2D, the levels of NUCB2 

immunoreactivity in islet homogenate is reduced when compared to Wistar rats and 

plasma NUCB2 concentrations showed an inverse relationship with circulating glucose 

levels during glucose tolerance tests [10]. This negative association between blood 

glucose level and nesfatin-1 was also observed in human subjects with T2D [11]. 

Similarly, nesfatin-1 levels were lower in the breast milk of subjects with gestational 

diabetes [213]. These studies highlight the role of nesfatin-1 in regulating whole body 

glucose homeostasis. 

 Simultaneously, in studies involving rats with diet-induced obesity, ICV injection of 

nesfatin-1 regulated hepatic gluconeogenesis to inhibit hepatic glucose production. It was 

postulated that nesfatin-1 does this by either decreasing the synthesis of 

phosphoenolpyruvate carboxykinase enzyme, which is a rate limiting enzyme in 

gluconeogenesis in liver or by increasing the activity of insulin hormone that causes a 

decrease in hepatic glucose production [214]. In addition, peripheral insulin injection also 

increases the activation of ARC, PVN, LHA and NTS nesfatin-1 protein expression [215]. 

Nesfatin-1 administration to hyperglycemic rats reduces blood glucose levels. Therefore, 

the anti-hyperglycemic effects of nesfatin-1 results not only from its endocrine function 

increasing insulin secretion, but also from its inhibition of hepatic glucose production by 

way of regulating glycogen synthesis and gluconeogenesis. 

 An overall assessment of the available literature on nesfatin-1 shows that it plays 

a crucial role in energy metabolism via regulation of feed intake, metabolism and glucose 

homeostasis via anti-hyperglycemic and insulinotropic actions. The regulation of energy 

metabolism involves careful coordination between neurons in the hypothalamus and their 

regulation by peripheral signals including nesfatin-1. The regulation of two classes of 

neurons i.e. the orexigenic AgRP/NPY neurons and the anorexigenic POMC/CART/α-
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MSH neurons is the essence of energy metabolism. In vitro and in vivo studies have 

shown the effects of centrally arising nesfatin-1 and nesfatin-1 from adipocytes and GI 

tract on this distinct population of neurons. Nesfatin-1 activates the POMC neurons, while 

simultaneously inhibiting the AgRP/NPY to bring about a reduction in food intake by 

directly modulating energy balance.  

 

Figure 1.4. Some of the major effects of nesfatin-1 in regulating food intake and energy 

balance, by integrating its peripheral and central actions. 

1.2.6. Nucleobindin-1 – Expression and Function 

Nucleobindin-1 (NUCB1) is a 55 kDa multi-domain protein identified first in a 

culture supernatant of B lymphocyte cell line identified from mice prone to systemic lupus 

erythematosus, an autoimmune disorder. The first paper that reported this peptide 

indicated that it has a potential role in autoimmunity and apoptosis [17]. It is also called 

CALNUC owing to its Ca2+ and DNA-binding ability. The DNA binding domain of basic 

residues (172-218) lies in the N-terminus following the signal sequence. The Ca2+ domain 
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is at the core of the protein sequence consisting of two EF hand motifs with an intervening 

acidic region (residues 253-316). The Ca2+ domain is followed by a leucine zipper domain 

(residues 347-389) that has been proposed to induce its dimerization [19]. The C-terminal 

region that follows the leucine zipper region is intrinsically disordered and unstructured. 

NUCB1 sequence is strongly conserved across species from flies to humans [216] and is 

widely distributed among golgi, nucleus, endoplasmic reticulum and cytoplasm [17, 22, 

23, 217]. NUCB1 immunoreactivity has been reported in several primary cells and cell-

lines of rats, mice, monkeys and humans (HeLa cells). NUCB1 displayed partial co-

localization when co-labeled with α-Man II (a Golgi marker) and ERGIC-53 (cis-Golgi 

network marker) [18]. Immunogold labelling on ultrathin cryosections of ArT-20, normal 

rat kidney epithelial (NRK) cells and rat anterior pituitary, liver and kidney tissues 

demonstrated that NUCB1 was concentrated on the cisternae and vesicles present on 

the cis side of the golgi stack [20, 218].  

The endogenous expression profile of NUCB1 was evaluated extensively, showing 

that NUCB1 is present in pancreatic islets as well as in other endocrine tissues including 

stomach, intestine, adrenal gland, pituitary, ovary and testis [219]. Immunofluorescence 

staining performed on formalin fixed sections showed NUCB1 to be localized in the 

endocrine pancreas with no signals in the surrounding exocrine acinar cells or pancreatic 

ducts. NUCB1-IR was broadly distributed in pancreatic islets being detected along with 

glucagon, insulin, somatostatin, pancreatic polypeptide and ghrelin immunopositive cells. 

This cellular localization of NUCB1 is also suggestive of the proposed insulinotropic 

action. Subcellular localization of NUCB1 using organelle specific protein stains showed 

NUCB1 to be co-distributed with golgi apparatus protein giatin. NUCB1-IR was found all 

through the GI tract but not in all endocrine cell types. In stomach, the NUCB1 signal was 

concentrated in the fundus region of gastric glands, whereas neck and gastric pits 

displayed no immunoreactivity for NUCB1. NUCB1-IR was found in duodenum, jejunum 

and colon being primarily present in the duodenal enterocytes. Strong IR was observed 

in deep intestinal glands wherein cells immunopositive for somatostatin and ghrelin 

showed NUCB1-IR. NUCB1-IR was also observed in principal cells of parathyroid, thyroid 

follicles, adrenal medulla and zona glomerulosa of adrenal cortex, seminiferous tubules 

in testes and follicular cells of ovary. NUCB1-IR was detected in corticotropes, 
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somatotropes, thyrotropes, lactotropes and gonadotropes in the anterior pituitary. In 

addition, it has been shown that extracellular NUCB1 to be secreted into bone osteoid 

(unmineralized organic portion) possibly modulating matrix maturation via paracrine 

action [21]. These studies indicate the role of NUCB1 in multiple cellular processes. Given 

the cytoplasmic location of this protein and that it could be secreted, points towards a 

potential endocrine function for NUCB1 and/or encoded proteins. 

 NUCB1 has been reported to play an important role in the maintenance of Ca2+ 

homeostasis [22] and to interact with G proteins and cyclooxygenases [22, 23]. The C 

terminal of NUCB1 is highly acidic, giving it a low affinity and high capacity binding to 

Ca2+. Previous studies have reported that NUCB1 changes its conformation when Ca2+ 

binds to the EF hand domains with the intervening acidic domain, that represents a coiled-

coil region [220]. NUCB1 has been demonstrated with Gα subunit excluding Gαi, Gα12 and 

Gα13 [217]. NUCB1 specifically binds to α5 helix region of Gαi3 subunit and this interaction 

is dependent on Ca2+ and Mg2+ divalent cations. Studies have reported that high 

expression of NUCB1 results in redistribution of Gαi1 subunit to the plasma membrane 

and secreted granules [217]. Results from in vitro pull down assays shows that NUCB1 

interacts strongly with Gαi3 subunit only in the presence of both ions and that the 

interaction is weak with presence of either Ca2+ or Mg2+ [221]. A soluble form of NUCB1 

called sNUCB1 has also been identified that binds to Ca2+ and exists as a dimer in 

solution [221]. sNUCB1 in the unbound state (without Ca2+) interacts with inactive GDP 

bound state of Gαi1 subunit, thus inhibiting GDP release. This is reversed when sNUCB1 

is bound to Ca2+ [221]. Also, overexpression of sNUCB1 in HEK293 cell lines results in 

decreased receptor mediated Gαi1 inhibition of adenylyl cyclase, explaining the 

physiological relevance of sNUCB1 and GDI activity.  

NUCB1 was reported to be COX-2-associated (cyclooxygenase-2) protein that has 

an impact on prostanoid (cyclooxygenase metabolites of arachidonic acid including 

prostaglandins) biosynthesis. In golgi and ER of human neutrophils, NUCB1 is localized 

with COX-2. It interacts with COX-2 with high affinity resulting in an increase of 

prostaglandin E2 (PGE2) generation [23]. This was further reiterated by the study wherein 

the addition of human recombinant NUCB1 (hrNUC) to hrCOX-2 increased PGE2 

production up to 5-fold from the basal levels independent hrNUC of concentration [23]. 
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This modulation of COX-2 by NUCB1 is important because COX-2 activity is involved in 

the development of cancer by promoting cell division [222]. NUCB1 acts as a negative 

regulator of unfolded protein response (UPR) that is involved in inhibiting the site 1 

protease (S1P) mediated cleavage of activating transcription factor 6 (ATF6) in golgi 

apparatus during ER stress [223]. Results obtained so far reiterate the importance of 

NUCB1 as an intracellular regulatory protein. 

On comparing NUCB1 and NUCB2, both proteins are found encoded by two 

unlinked genes. However human NUCB1 and NUCB2 exhibit 62% amino acid sequence 

identity. Compared to NUCB1, NUCB2 is 40 residues shorter and is approximately a 

50kDa protein in humans and rodents [224]. While NUCB2 encodes nesfastin-1, no 

information exists regarding NUCB1 encoded peptides so far. Similar to the primary 

structure of NUCB2, NUCB1 also has 24 amino acid signal peptide sequence (Figure 

1.5, in italics) followed by a signal peptidase cleavage site between position 26 and 27. 

This is followed by a region that has high similarity to nesfatin-1 region of NUCB2 (shown 

in bold) containing a mid-segment of 30 amino acids (underlined) and a prohormone 

convertase cleavage site. In comparison to NUCB2 the proposed mid segment of 30 

amino acids in NUCB1 has less similarity to active sites of AgRP and α-MSH. 

E.g. Human NUCB1 precursor (NP_006175.2) 

 
 1 mppsgprgtl lllpllllll lravlavple rgapnkeetp atespdtgly yhrylqevid 
       61 vletdghfre klqaanaedi ksgklsreld fvshhvrtkl delkrqevsr lrmllkakmd 
      121 aeqdpnvqvd hlnllkqfeh ldpqnqhtfe ardlelliqt atrdlaqyda ahheefkrye 
      181 mlkeherrry leslgeeqrk eaerkleeqq rrhrehpkvn vpgsqaqlke vweeldgldp 
      241 nrfnpktffi lhdinsdgvl deqelealft kelekvydpk needdmreme eerlrmrehv 
      301 mknvdtnqdr lvtleeflas tqrkefgdtg egwetvemhp ayteeelrrf eeelaareae 
      361 lnakaqrlsq etealgrsqg rleaqkrelq qavlhmeqrk qqqqqqqghk apaahpegql 
      421 kfhpdtddvp vpapagdqke vdtsekklle rlpevevpqh l 
 
Figure 1.5. The amino acid sequence of human NUCB1 precursor. 

1.3. RATIONALE 

Recent studies using immunohistochemical staining in ad libitum fed rats showed 

no nesfatin-1 immunopositive cells in the intestine [14]. However, this view is challenged 

by our recent findings wherein we detected both NUCB2 mRNA and protein expression 
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in the intestine of ad libitum fed C57BL/6J mice [15]. Additional studies that showed 

NUCB2 mRNA expression and nesfatin-1 immunolocalization in the small intestine of rats 

are also supportive of this [193, 219]. Does nesfatin-1 has a direct role in modulating the 

secretion of enteric hormones that regulate insulin secretion and energy homeostasis? 

The cytoplasmic presence of NUCB1, and that it is a secreted protein (found in bones, 

cerebrospinal fluid and rat hypothalamic extracts) suggests a possible endocrine function 

for NUCB1 and a potential NUCB1-encoded peptide called nesfatin-1-like peptide (NLP). 

Interestingly, the nesfatin-1 region of NUCB1 and nesfatin-1 region in NUCB2 are highly 

conserved in humans, with 68% amino acid sequence identity. In addition, both NUCB1 

and NUCB2 sequences retain the prohormone convertase cleavage sites [225]. 

Therefore, the possibility of NUCB1 and/or NLP eliciting biological actions similar to that 

of NUCB2/nesfatin-1 could not be ruled out. Does NUCB1 encode a bioactive nesfatin-1-

like peptide (NLP)? Is NLP insulinotropic? 

1.4. HYPOTHESES  

Based on the information discussed above, the central hypothesis of this thesis 

research is that (1) nesfatin-1 has a direct role in modulating enteric hormone secretion, 

and (2) a nesfatin-1 like peptide is encoded in NUCB1 and this peptide has insulinotropic 

action. 

1.5. SPECIFIC OBJECTIVES  

The specific aims of this thesis research are to: 
 
(1) determine the presence and co-localization of endogenous NUCB2/nesfatin-1 with 
major enteric hormones in mouse intestine and in vitro in a mouse intestinal cell line (STC-
1). 
 
(2) test whether nesfatin-1 regulates enteric hormones in vitro in STC-1 cells, and in vivo 
in male mice. 
 
(3) identify the nature of NUCB1 encoded NLP in silico, and NUCB1 expression in various 
nutrient states. 
 
(4) elucidate the in vitro effects of NLP on insulin expression/secretion, and in vivo effects 
on dark and light phase food intake in male mice. 
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TRANSITION 

 

The following chapter focuses on objectives 1-2, to determine the nesfatin-1 regulation of 

enteric hormone secretion. As discussed earlier, we observed endogenous 

NUCB2/Nesfatin-1 mRNA in the intestine of C57BL/6J mice by RT-qPCR and gel 

electrophoresis. Subsequently, we also observed NUCB2 protein expression in intestine 

by Western blotting of total protein samples from intestinal sections of ad libitum fed male 

C57BL/6J mice. This chapter will elaborate the studies carried out, major techniques used 

for answering my specific research question mentioned above and the results obtained. 

This is followed by a discussion and conclusion of my findings pertaining to the research 

question. 
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CHAPTER 2 

NESFATIN-1 REGULATION OF ENTERIC HORMONE SECRETION 

2.1. INTRODUCTION 

 The GI tract is the primary center for nutrient absorption and assimilation. Besides, 

GI tract is also a major endocrine organ secreting a variety of enteroendocrine hormones. 

The vagus nerve is a main communication route between the central nervous system 

(CNS) and the enteric nervous system (ENS) that is responsible for proper GI functions 

including gastric motility, enzyme secretion and nutrient sensing [226]. The enteric 

hormones are secreted from specialized enteroendocrine cells in response to chemical 

and mechanical stimuli in the gut, resulting from food intake. Upon secretion they bind to 

their receptors in vagal afferent neurons communicating the peripheral nutritional status 

to CNS [227]. As discussed elaborately in chapter 1, GLP-1, GIP, CCK and PYY are major 

enteric hormones secreted from the GI tract. 

Nesfatin-1 is a recent addition to the list of anorexigenic peptides capable of 

inducing satiety [9]. NEFA/nucleobindin-2 Encoded Satiety and FAT influencing proteIN-

1, abbreviated as nesfatin-1 is an anorectic peptide cleaved from the N-terminal of 

nucelobindin-2 (NUCB2). The prohormone of NUCB2 is then post-translationally cleaved 

into three distinct fragments named nesfatin-1 (1-82 amino acids), nesfatin-2 (85-163 

amino acids) and nesfatin-3 (166-396 amino acids). The 82 amino acid nesfatin-1 has a 

23 amino acid N-terminal segment, 29 amino acid C-terminal segment and a 30 amino 

acid mid segment (Figure 1.3). Of the three segments, the mid segment is the bioactive 

core having anorectic activity [9]. Nesfatin-1 has been reported to be expressed in 

peripheral tissues ranging from stomach [14], pancreas [12], gut [193] and cardiac 

muscles [195]. I.C.V injection of nesfatin-1 reduces dark phase food intake and body 

weight gain in rats [9]. Opposing evidences exist regarding the expression of 

NUCB2/nesfatin-1 in the intestine. Although nesfatin-1 is expressed predominantly in 

gastric oxyntic mucosa in X/A like cells, the original study that reported this in ad libitum 

fed rats showed no nesfatin-1 immunopositive cells in intestine [14]. This view is 

challenged by our recent findings where both NUCB2 mRNA and protein expression was 
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confirmed in the intestine of ad libitum fed C57BL/6J mice [15]. This is supportive of 

previous observations by Zhang et al., [193] that showed NUCB2/nesfatin-1 

immunoreactivity and protein expression in various sections of intestine. Nesfatin-1, 

besides being a modulator of food intake, also stimulates GSIS from rat and mouse 

pancreatic islets in a dose-dependent manner [5]. Also, the role of intestinal hormones on 

insulin secretion and food intake has been studied extensively [89, 117, 141, 142, 160, 

176, 228].  

Taken together, the main hypothesis behind the research in this chapter is that 

NUCB2/nesfatin-1 is expressed in the intestinal enteroendocrine cells and that it regulates 

intestinal hormone secretion. This study determined that the enteroendocrine cell line 

STC-1 expresses NUCB2 mRNA and also show NUCB2/nesfatin-1 immunoreactivity 

when incubated with a highly specific NUCB2 antibody. Further, immunohistochemical 

analysis of intestinal sections from ad libitum fed mice showed NUCB2 immunoreactivity 

to be co-localized with GLP-1, GIP, CCK and PYY immunoreactive cells. Subsequently, 

treatment of STC-1 cells dose-dependently with nesfatin-1, upregulated GLP-1, GIP and 

CCK, while downregulating PYY expression and secretion. Osmotic mini-pump infusion 

of 100 µg/kg body weight nesfatin-1 into C57BL/6J mice showed no changes in glucose 

handling between controls and treatments. Whether or not nesfatin-1 infusion causes an 

increase in circulating levels of the respective hormones remains to be elucidated via 

immunoassays. 

2.2. MATERIALS AND METHODS 

2.2.1. Cell Culture 

 In this study, a mouse enteroendocrine cell line, STC-1 (Cells derived from tumors 

in transgenic mice carrying transgenes consisting of rat insulin promoter 2 (RIP2) linked 

to polyoma small T antigen [PyST], hence STC) was used. Studying the gene expression 

of gut peptides has a major limitation in that their distribution is diffuse in vivo. Hence 

primary cell isolation and culture are tedious. Ideally, therefore the studies on intestinal 

peptides are being undertaken in immortalized cells that express these peptides. Cell 

lines are regularly used by several laboratories to investigate basic questions related to 
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organization and function of intestinal cells. However, intestinal enteroendocrine tumors 

are very rare and consequently are not a ready source of permanent cell lines that secrete 

all the major gut peptides [229]. The STC-1 cell line was derived from intestinal endocrine 

tumors that developed in mice carrying transgenes containing the rat insulin promoter 

linked to the potent viral oncogene SV40 T antigen and to the polyoma virus small T 

antigen [230]. 

 STC-1 cells were previously used to study the release of CCK, secretin and GLP-

1 and it was then concluded that this cell line can serve as a model system to investigate 

the secretory mechanisms for these peptides [231-233]. In addition, in the presence of 

glucose, a concentration-dependent increase in GIP gene expression was observed in 

STC-1 cells, suggesting that these glucose responsive cells express GIP in a regulated 

fashion similar to those observed in rats [228, 234]. CCK secreted from STC-1 cells was 

shown to have the same HPLC retention time as naturally occurring peptide [232]. The 

HPLC retention time for the immunoreactive GIP secreted by these cell was also shown 

to be the same as GIP derived from intestine [234]. In addition, STC-1 cells were shown 

to secrete PYY [235]. Therefore, STC-1 cells are ideal models for studying the synthesis 

and/or secretion of GLP-1, GIP, CCK and PYY.  

 STC-1 cells used here were a generous gift from Dr. Timothy Kieffer (University of 

British Columbia, Vancouver, Canada). The cells were cultured in Dulbecco’s Modified 

Eagles Medium (DMEM, Invitrogen, Catalog #11995-040) supplemented with 10% fetal 

bovine serum (FBS, Invitrogen, Catalog #12484), penicillin (100 U/mL) and streptomycin 

(100 µg/mL) (Invitrogen, Catalog #15140-122). Cells were incubated at 37°C and 5% CO2 

culture conditions in a humidified incubator to promote growth. Cell culture media was 

changes every 48 hours after washing twice with Dulbecco’s Phosphate-Buffered Saline 

(DPBS, Life Technologies, Catalog #14190-250). The cells were sub-cultured once they 

reached 85-90% confluency using 0.25% trypsin-EDTA (Life Technologies, Catalog 

#25200-056). 
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2.2.2. Animals 

Age matched (5 weeks old, average body weight: 20 grams) male C57BL/6J mice 

(Charles River Laboratories, Quebec, Canada) were housed individually in a 12 hours 

light: 12 hours dark cycle (lights off at 7 PM and on at 7 AM), temperature and humidity 

controlled vivarium. Mice had ad libitum access to standard mouse chow and water. Male 

mice were preferred owing to the sexual dimorphisms observed in endogenous NUCB2 

expression and biological functions (previous lab observations) and also to maintain 

consistency. All protocols strictly adhered to the guidelines of the Canadian Council for 

Animal Care, and were approved by the University of Saskatchewan Animal Research 

Ethics Board (Protocol # 2012-0033). 

2.2.3. Detection of Endogenous NUCB2/Nesfatin-1 in Mice Intestinal Cell Line and 

in Mice Intestine 

2.2.3.1. Immunocytochemistry and Immunohistochemistry 

 STC-1 cells were cultured on LabTek™ chamber slides to look at the indirect 

immunofluorescence. The cells were fixed in 4% paraformaldehyde for 15 minutes at 4°C 

and then washed with Dulbecco’s Phosphate Buffered Saline (DPBS, Life Technologies, 

Catalog #14190-250). After fixation, the primary antibody was added with dilution ratio 

1:200 using DAKO antibody diluent (DAKO, Catalog# S0809) in room temperature. The 

primary antibody used was rabbit anti-NUCB2 (Custom antibody, Pacific Immunology, 

Catalog# 1312-PAC-01). The primary antibody pre-absorbed in 10 µg of nesfatin-1 (200 

µg stock, >95% purity) overnight was used for pre-absorption controls to confirm the 

specificity of antibody. After six hours, the slides were rewashed with DPBS. Following 

this secondary antibody was added with dilution ratio of 1:200. Goat anti-rabbit Texas-

Red IgG (Vector Laboratories, Catalog# TI-1000) diluted with DAKO antibody diluent was 

used as secondary antibody. The slides were maintained at 37°C in a humidified 

incubator for 1 hour. The chambers were then peeled off and were allowed to dry in room 

temperature. After drying, slides were mounted with Vectashield mounting medium 

containing 4’, 6-diamidino-2-phenylindole (DAPI) (Vector Laboratories, Catalog# H-

1200). 
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For confirming the presence of NUCB2/nesfatin-1 immunoreactivity in intestine 

and to assess its co-localization with intestinal hormones, ad libitum fed 3 months old 

male C57BL/6J mice were used. Animals were euthanized using cervical dislocation. 

Briefly both large and small intestines were collected for immunohistochemistry. The 

tissues collected were fixed in 4% paraformaldehyde for 24 hours at 4°C and were 

processed and sectioned at the center for modeling human disease (CMHD, Toronto, 

Canada). Paraffin sections of 4 µm thickness were prepared for immunostaining. These 

sections were deparaffinized with xylene (incubated twice in 100% xylene; 5 minutes at 

25°C) and rehydrated in graded ethanol series (incubated twice in 100% ethanol, once in 

each 95% ethanol, 70% and 50% ethanol, 2 minutes each at 25°C). The sections were 

then incubated with 3% hydrogen peroxide in distilled water to block endogenous 

peroxidase activity (30 minutes at room temperature). The sections were then blocked 

with serum-free protein block reagent (DAKO, Catalog# S0809) for 10 minutes before 

being incubated with primary antibodies. The primary antibodies were diluted using DAKO 

antibody diluent at different dilution ratios. The primary antibodies used are rabbit anti-

NUCB2 (Custom antibody, Pacific Immunology, Catalog# 1312-PAC-01, 1:500 dilution) 

and mouse monoclonal anti-GLP-1 (Abcam, Catalog# ab26278, 1:500 dilution) for GLP-

1 sections, Mouse polyclonal NUCB2/nesfatin-1 (ENZO Life Sciences, Catalog# ALX-

804-854-C100, 1:100 dilution) and  rabbit polyclonal anti-GIP (Abcam, Catalog# ab22624, 

1:500 dilution) for GIP sections, Goat anti-nesfatin-1 (SantaCruz, Catalog# SC65160, 

1:500 dilution) and Rabbit anti-PYY(3-36) (Phoenix pharmaceuticals, Catalog# H-59-04, 

1:200 dilution) for PYY sections, Goat anti-nesfatin-1 and rabbit anti-CCK (Abcam, 

Catalog# ab43842, 1:500 dilution) for CCK sections. After 24 hours all slides were 

washed three times with 1X PBS and incubated with secondary antibodies. The 

secondary antibodies were diluted using DAKO antibody diluent at different dilution ratios. 

The secondary antibodies used are goat polyclonal anti-mouse FITC (Abcam, Catalog# 

A-11034, 1:500 dilution) for GLP-1, goat polyclonal anti-rabbit Alexa Flour-488 

(Invitrogen, Catalog# A11037, 1:500 dilution) for GIP, goat polyclonal anti-mouse Alexa 

Flour-594 (Abcam, Catalog# ab150108, 1:500 dilution) for NUCB2/nesfatin-1 and goat 

anti-rabbit Texas-Red IgG (Vector Laboratories, Catalog# TI-1000, 1:100 dilution) for 

nesfatin-1, PYY and CCK. The slides were then washed three times with 1X PBS and 
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seven times with distilled water. Finally, the slides were mounted with Vectashield 

medium that contains the nuclear dye DAPI.  

2.2.3.2. Fluorescence Microscopy 

Once the cells and tissues were fixed and stained for NUCB2/nesfatin-1 and GLP-

1, PYY, CCK (tissues alone), the slides were viewed under a Nikon Eclipse-Ti inverted 

fluorescence microscope (Nikon, Canada) to detect indirect immunofluorescence. The 

slides were viewed in 40X magnification with blue, green and red filters specific for the 

stains used. DAPI stains the nuclei of the cells, and this was imaged under the presence 

of blue filter. Green and red filters were used for imaging cells and tissues stained with 

Texas Red and FITC green respectively. The images were captured using a Nikon DS-

Qi1 MC camera. Images were analyzed using NiS-Elements basic research software on 

a Lenovo ThinkPad workstation. 

2.2.4. Qualitative Analysis – Expression of NUCB2 mRNA in STC-1 Cells 

NUCB2 mRNA was detected in STC-1 cells using RT-qPCR followed by gel 

electrophoresis of the PCR product. The following sections will describe the procedure 

and materials used for carrying out these techniques. 

2.2.4.1. Total RNA Extraction 

 STC-1 cells were grown on 6 cm plates as described in section 2.2.1. Upon 

confluence, TRIzol® Reagent (Life Technologies, Catalog# 15596-026) was added to the 

plate kept over an ice bath. The reagent and lysed cells were collected in 1.5 mL tubes 

for total RNA extraction. Approximately 200 µL of chloroform was added to the tube 

followed by centrifugation at 13,000 rpm for 15 minutes. The supernatant containing the 

RNA was separated from DNA and protein layers. Isopropanol was added in order to 

precipitate RNA in solution. 70% ethanol was added to remove any phenol impurities from 

the pellet. Purified RNA was isolated using RNAse free water (35 µL). The quality and 

quantity of RNA extracted was determined using Nanodrop™ 2000C (Thermo Scientific, 

Canada). Total RNA was quantified by measuring the optical density (OD) and absorption 

ratio (A260 nm/A280 nm) of diluted RNA. Pure RNA will have a ratio of approximately 
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2.0. The ratio of the samples used for my study ranged from 1.9 - 2.0. All RNA samples 

used for cDNA synthesis and RT-qPCR had high quality. Isolated RNA was stored at -

80° C until further analysis. 

2.2.4.2. cDNA Synthesis 

Synthesis of cDNA was conducted using iScript™ Reverse Transcription Supermix 

(Bio-Rad, Catalog# 170-8840) for RT-qPCR as directed by the manufacturer. The 

reaction set up for cDNA synthesis is described in Table 2.1, and the conditions used in 

Thermo cycler (Bio-Rad, Canada) is described in Table 2.2. cDNA samples were stored 

at -20°C until required for PCR analysis. 

Table 2.1. Reaction setup for cDNA synthesis using iScript DNA synthesis kit (as 

provided by manufacturer; Bio-Rad). 

Components Volume Used 

Nuclease Free Water 14 µL – 1/Conc of RNA 

5X iScript reaction mixture 4 µL 

RNA Template 1/Conc 

iScript Reverse Transcriptase 1 µL 

Total Volume 20 µL 

 

Table 2.2. Reaction protocol optimized for cDNA synthesis using thermo cycler. 

 Step 1 Step 2 Step 3 Step 4 

Temperature 25°C 42°C 85°C 4°C 

Time 5 minutes 30 minutes 5 minutes Infinite Hold 
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2.2.4.3. Reverse-Transcription Polymerase Chain Reaction 

 The cDNA synthesized was used as template to determine the qualitative 

expression of NUCB2 in STC-1 cells. The primer sequences were obtained from National 

Center for Biotechnology Information Gene Bank (NCBI) and the primers were 

synthesized using Primer-BLAST™, primer designing tool from NCBI 

(www.ncbi.nlm.nih.gov/tools/primer-blast/). The GenBank accession number is given 

under each gene. The forward and reverse primers are provided in Table 2.3. 

Table 2.3. Primer Pairs for mouse NUCB2 and β-Actin with Respective Annealing 

Temperatures 

Gene Forward (5’ – 3’) Reverse (3’ – 5’) Amplicon 

Size (bp) 

Annealing 

Temperature 

Mouse NUCB2 
(NM_001130479.2) 

 

ccagtggaaaatgcaa

ggat  

gctcatccagtctcgt

cctc 

 

202 61°C 

Mouse β-Actin 
(NM_007393.3) 

 

ccactgccgcatcctctt

cc 

 

ctcgttgccaatagtg

atgac 

 

77 60°C 

 

 Primers were validated and optimized for high primer efficiency and annealing 

temperatures. The primers were then used for conducting qualitative PCR. The PCR 

samples were run on a thermo cycler (Bio-Rad, Canada) for 35 cycles. The samples were 

stored at -20°C until gel electrophoresis. The components of the mastermix are provided 

in Table 2.4. The components for the qualitative PCR are provided in Table 2.5. The 

reaction protocol used is described in Table 2.6. 

 

 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Table 2.4. Components of Reaction Mastermix for qualitative PCR 

Components Volume Required 

10X PCR buffer reaction mixture 100μL 

25nM MgCl2 60μL 

dATP 5μL 

dTTP 5μL 

dCTP 5μL 

dGTP 5μL 

Sterile water 820μL 

 

Table 2.5. Reaction Components for qualitative PCR 

Components Volume Required 

Mastermix 20μL 

Forward Primer 1μL 

Reverse Primer 1μL 

cDNA template 1μL 

Taq Polymerase 0.5μL 

Total Volume 23.5μL 
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Table 2.6. Optimized PCR conditions with respective annealing temperatures for 

NUCB2 and β-Actin. (Step 1: Initial Activation; Step 2: Denaturation; Step 3: 

Annealing; Step 4: Elongation; Step 5: Infinite Hold) 

 Step 1 Step 2 Step 3 Step 4 Step 5 

Temperature 95°C 95°C Annealing 

Temp 

73°C 4°C 

Time 5 minutes 30 seconds 30 seconds 30 seconds Infinite Hold 

 

2.2.4.4. Gel Electrophoresis 

 Following PCR, the samples were run on 1.5% agarose gel. 1.5 gram of agarose 

(Invitrogen, Catalog# 16500-500) was mixed with 1X TAE buffer (Fischer Scientific, 

Catalog# BP1332-1, 50 X). Approximately 5 μL of ethidium bromide (Invitrogen, Catalog# 

15585-011) was added and the mixture was allowed to set in the electrophoresis tray. 

Prior to setting, a comb was placed. Once set, the comb was taken out and the 

electrophoresis chamber was filled with 1 X TAE buffer. This was followed by the addition 

of 3 μL of 10 X gel loading buffer (Invitrogen, Catalog# 10816-015) to the PCR samples 

and approximately 20 μL of sample were loaded into each well. One Kb plus DNA ladder 

(5 μL) (Invitrogen, Catalog# 10787-018) was loaded alongside the samples to detect the 

amplicon gene. The gel was run from negative to positive, as DNA is negatively charged, 

for one and half hour at 120 V. The image was obtained using GelDoc™ EZ system (Bio-

Rad, Canada) and the expression of genes of interest was qualitatively analyzed. 

2.2.5. Dose Dependent Effects of Nesfatin-1 on the Expression of Proglucagon, 

GIP, CCK and PYY mRNAs in STC-1 Cells 

 This study was conducted to determine proglucagon (GLP-1), GIP, CCK and PYY 

mRNA expression in STC-1 cells after treatment with nesfatin-1. Cells were cultured as 

described in section 2.2.1. Twenty four hours prior to study, cells were seeded into 24-
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well plates at 2 X 105 cells/well in 1 mL DMEM (80% confluence). On the day of study, 

wells were washed twice with 1 X DPBS (1 mL/well). The cells were then incubated for 1 

hour with DMEM containing 10, 1, 0.1, 0.01 and 0.001 nM (n = 8 wells/treatment) rat full 

length nesfatin-1 (Abgent Technologies, USA, >95% purity). Controls were incubated with 

culture media without nesfatin-1 for the same period of time. The studies were repeated 

twice and data from these independent studies were pooled. Total RNA extraction and 

relative gene expression was determined as described below. 

2.2.5.1. Total RNA Extraction 

 Cells were collected from each study to assess the relative mRNA expression of 

enteric hormones. Extraction of RNA was carried out using the TRIzol reagent procedure 

as described in section 2.2.4.1. The purity of RNA was determined using Nanodrop 

2000C. The RNA is stored in -80°C until further required. 

2.2.5.2 cDNA Synthesis 

 cDNA was synthesized using iScript cDNA synthesis kit as described in section 

2.2.4.2. The samples were stored at -20°C until used as a template for quantitative PCR.  

2.2.5.3. Real Time Quantitative PCR 

The relative mRNA expression of enteric hormones (GLP-1, GIP, CCK and PYY) 

was conducted using iQ™ SYBR® green supermix (Bio-Rad, Catalog# 170-8880) for 35 

cycles. All reactions were performed with final volume of 20μL as per Table 2.7. The 

reaction protocol was set up with CFX connect real time PCR detection system (Bio-Rad, 

Canada) as per Table 2.8. Forward and reverse primers for proglucagon, GIP, CCK and 

PYY were synthesized as described in section 2.2.4.3 and are provided in Table 2.9 (for 

β-Actin primers refer Table 2.3). 
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Table 2.7. Components of PCR Reaction Set Up. 

Components Volume per reaction 

iQ™ SYBR® Green Supermix 10μL 

Forward Primer 0.5μL 

Reverse Primer 0.5μL 

cDNA template 1μL 

Sterile Water 8μL 

Total Volume 20μL 

 

Table 2.8. PCR Reaction Set Up in CFX Connect.  

 Step 1 Step 2 Step 3 Step 4 Step 5 

Temperature 95°C 95°C Annealing 

Temp 

72°C 4°C 

Time 2 minutes 10 seconds 30 seconds 30 seconds Infinite Hold 
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Table 2.9. Primer Pairs for preproglucagon, GIP, CCK and PYY with Respective 

Annealing Temperatures 

Gene Forward (5’ – 3’) Reverse (3’ – 5’) Amplicon 

Size (bp) 

Annealing 

Temperature 

Mouse 
Preproglucagon 
(AF276754.1) 

 

aatcttgccaccagggactt agtgactggcacga

gatgtt 

112 56.3°C 

Mouse GIP 
(NM_008119.2) 

 

acaaagaggcacaggaga

gc 

agccaagcaagcta

aggtca 

180 60°C 

Mouse CCK 
(NM_00128450

8) 

tttcctgcccgcatttgaac aatccatccagccc

atgtagtc 

153 60°C 

 

Mouse PYY 
(NM_145435.1) 

 

ttcaggccagaaggtttgga 

 

acaccgagatatga

agtgccc 

 

122 

 

59°C 

 

 A melting curve analysis was carried out at 65°C to 95°C, which is helpful in order 

to check for any dimer formation or artifacts. CT was obtained for both reference gene 

and gene of interest. Reference genes/housekeeping genes are important in order to help 

normalize the RT-qPCR data. It is important that housekeeping genes be validated 

separately for each gene of interest and for each test group and control group. A number 

of housekeeping genes are available, including β-Actin, GAPDH and Elongation Factor 

(EF). RT-qPCR data is generally analyzed using relative quantification method rather than 

the absolute quantification. In absolute quantification, the target gene is compared to a 

standard curve, whereas in relative quantification analysis, the target gene is compared 

to a reference/housekeeping (HK) genes. The CT values for both gene of interest and HK 

genes is determined for control group and the experimental group. The data is normalized 
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to HK genes (ΔCT = CT (exp) – CT(control)). The reference gene used for this research was β-

Actin. Relative mRNA expression of enteric hormones were normalized with β-Actin from 

the same samples according to Livak method [236]. 

2.2.6. Dose Dependent Effect of Nesfatin-1 on GLP-1, GIP, CCK and PYY Secretion 

 This study was conducted to determine the changes in GLP-1, GIP, CCK and PYY 

secretion from STC-1 cells into the media, after treatment with nesfatin-1. Cells were 

cultured as described in section 2.2.1. Twenty four hours prior to study, cells were seeded 

into 24-well plates at 2 X 105 cells/well in 1mL DMEM (80% confluence). On the day of 

study, wells were washed twice with 1X DPBS (1mL/well). The cells were then incubated 

with DMEM containing 10, 1, 0.1, 0.01 and 0.001 nM (n = 8 wells/treatment) rat full length 

nesfatin-1 (Abgent Technologies, USA, >95% purity). Controls were incubated with 

culture media only (without nesfatin-1) for the same period of time. After 1 hour, media 

were collected. In order to prevent cell debris, samples were centrifuged at 13,000 rpm 

for 10 minutes at 4°C and top 500 μL was stored at -20°C until measured. The studies 

were repeated twice and data from these independent studies were pooled. The relative 

secretion levels of enteric hormones into media were measured using immunoassays as 

described below. 

2.2.6.1. Immunoassays (ELISA and RIA) 

 GLP-1, GIP and CCK secretion levels into the media were measured using the 

multispecies GLP-1 total ELISA kit (Millipore Inc., Catalog# EZGLP1T-36K), Rat/mouse 

GIP (total) ELISA kit (Millipore Inc., Catalog# EZRMGIP-55K) and rat/mouse CCK ELISA 

kit (Abnova, Catalog# KA1862) respectively. PYY in media was measured using 

rat/mouse PYY radioimmunoassay kit (Millipore Inc., Catalog# RMPYY-68HK). All 

procedures were carried out according to the manufacturer’s instructions. The limit of 

assay sensitivity was 1.5 pM, 8.2 pg/mL, 17.74 pg/mL and 15.6 pg/mL for GLP-1, GIP, 

CCK and PYY respectively. The detectable range was from 4.1 – 1000 pM, 8.2 – 2000 

pg/mL, 0.1 – 1000 pg/mL and 5 – 500 pg/mL for GLP-1, GIP, CCK and PYY respectively. 

The plates were read using SoftMAX® 190 microplate reader equipped to read 

absorbance at 450nm (Molecular Devices, USA). The amount of immunoreactive material 
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was determined using non-linear regression curve-fit, which was used to quantify and 

compare the concentration of enteric hormone secretion in media samples. 

2.2.7. In Vivo Effects of Nesfatin-1 on Enteric Hormone Secretion in Male C57BL/6J 

Mice 

 This study was conducted to determine the changes in GLP-1, GIP, CCK and PYY 

circulation levels in the blood plasma in response to subcutaneous infusion of nesfatin-1 

using an osmotic pump. It was designed in such a way that the effect of nesfatin-1 on 

intestinal hormone release post-glucose oral ingestion can be compared with saline 

controls. Age matched (5 weeks old, average body weight: 20 grams) C57BL6J male 

mice (The Jackson Laboratory, USA) were housed as described in section 2.2.2. Mice 

were divided into two groups either infused with nesfatin-1 (n = 6) or infused with saline 

(n = 6). Mice had ad libitum access to standard mouse chow and water throughout the 

experiment. On the day of experiment, osmotic pumps (ALZET®, Catalog# 2001D) were 

filled either with saline or 100 μg/Kg body weight of nesfatin-1 dissolved in saline, as per 

the manufacturer’s instructions. The pumps were then primed over 10 cm plates 

containing 0.9% saline in an incubator at 37°C for 2 hours. This was followed by 

subcutaneous implantation of pumps into animals. The pumps were capable of delivering 

consistently 8 μL/hour of either saline or nesfatin-1 for 24 hours. During implantation, 

animals were anesthetized using isoflurane (4-5% + 0.8-1 L/min). Upon induction of 

anesthesia, the effect was maintained by isoflurane (1-3% + 0.8-1 L/min). Briefly incisions 

were made on the dorsal side of the animal’s skin between the scapulae. Using a 

hemostat, a small pouch was formed by spreading the subcutaneous connective tissues 

apart. The pumps were then inserted into the pocket with the flow moderator of the pump 

pointing away from incision. The incisions were then closed with wound clips. Animals 

were checked for normal activity and behavior upon recovery from anesthesia. 

Blood glucose levels were measured from the tail vein using glucometers 

(OneTouch™ UltraMini®) six and fifteen hours post-implantation. The animals were then 

given an oral load of 1 g/kg body weight D-glucose (Sigma-Aldrich, Catalog# G8270) 

using Popper™ animal feeding needles (Popper and Sons Inc., Catalog# 01-290-10A). 

The blood glucose levels were measured 15 minutes post oral load of D-glucose. The 
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animals were then euthanized by decapitation followed by collection of blood, pancreas, 

whole stomach, liver, large intestine and small intestine from each mice. To maintain 

consistency, the timing and duration of experiment, and sample collection were kept 

constant for all animals. 

 

 

 

Figure 2.1. A schematic of the animal studies to test the in vivo effects of nesfatin-1 on 

enteric hormone secretions. 

2.2.7.1. Immunoassays (ELISA and RIA) 

 Blood samples collected were allowed to clot on ice, and serum was separated by 

centrifugation (7000 rpm for 9 minutes at 4°C) and stored at -20° C until assays are 

conducted. GLP-1, GIP, CCK and PYY levels in circulation are yet to be measured using 

ELISA and RIA as described in section 2.2.4.1 owing to the low volumes of blood plasma 

samples obtained. 
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2.2.8. Statistical Analysis 

 Analysis of the quantified RT-qPCR and immunoassays data were conducted 

using One-way ANOVA followed by Tukey’s multiple comparison test. IBM SPSS™ 

version 21 (IBM., USA) as used for statistical analysis and GraphPad Prism version 5 

(GraphPad Inc., USA) was used for generation of graphs. Significance was assigned 

when p<0.05. All data are expressed as mean ± standard error of mean (SEM).  

2.3. RESULTS 

2.3.1. NUCB2 mRNA Expression in STC-1 Cells 

 A band of approximately 200 bp of NUCB2 mRNA was detected (Figure 2.2) in 

STC-1 cells. The no template negative control was also incorporated in the gel. 
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Figure 2.2. Gel electrophoresis image showing the presence of NUCB2 mRNA in STC-1 

cells. The amplicon size of the band was approximately 200 base pairs. The presence of 

a band provides evidence that NUCB2 mRNA is expressed in STC-1 cells and it is 

indicative that enteroendocrine cells could be a source of NUCB2/nesfatin-1 in vivo. 

2.3.2. Nesfatin-1 Immunoreactivity in the Cytoplasm of STC-1 Cells 

 Fluorescence microscopy imaging at a magnification of 40X, showed the existence 

of NUCB2/nesfatin-1 immunopositive cells. The figure below shows images of the cells 

cultured, fixed and stained in chamber slides. Nuclei were stained with DAPI and the 

immunopositive cells are stained red. NUCB2/nesfatin-1 immunoreactivity was observed 

in the cytoplasm of STC-1 cells (Figure 2.3 – (A – C)). The preabsorption control and no 

primary antibody control showed no presence of NUCB2/nesfatin-1 immunoreactivity 

(Figure 2.3 – (D – E)). 

 

Figure 2.3. Characterization of NUCB2/nesfatin-1 immunoreactivity in STC-1 cells. A 

shows staining of nucleus by DAPI. Immunocytochemical staining of STC-1 cells for 

nesfatin-1 IR is depicted in B. Red staining of the cytoplasm shows the presence of 

nesfatin-1 IR. Merged images of nesfatin-1 and DAPI staining are shown in C. Primary 

antibody pre-absorbed in 10 µg of nesfatin-1 and labeled with secondary antibody is 
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shown in D. No-primary antibody negative control, labeled only with secondary antibody 

is shown in E.  

2.3.3. Nesfatin-1 is Co-localized with GLP-1, GIP, CCK and PYY Immunoreactive 

Cells in the Intestine of Male C57BL/6J Mice 

 Fluorescence microscopy imaging at a magnification of 40X, showed the existence 

of NUCB2/nesfatin-1 (B, E, G, J) and the presence of GLP-1 (A), GIP (D), PYY (H) and 

CCK (K) immunopositive cells in duodenum. The figure below shows images of intestinal 

sections (small intestine – GLP-1, CCK and GIP; large intestine – PYY) collected from ad 

libitum fed male C57BL/6J mice. The tissues were incorporated in wax block, sectioned, 

fixed and stained over glass slides. Nuclei were stained blue with DAPI and 

immunopositive cells are stained in green and red, and co-localization is shown in yellow 

respectively (Figure 2.4). 
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Figure 2.4. Nesfatin-1 is co-localized with GLP-1, GIP, CCK and PYY immunopositive 

cells in the intestine of male C57BL/6J mice. Immunohistochemical staining of intestinal 

sections for nesfatin-1 IR is depicted in B, E, G and J. Red (B and E) and green staining 

(G and J) shows the presence of nesfatin-1 IR in the cytoplasm of enteroendocrine cells. 

Staining for PYY, CCK, GLP-1 and GIP IR is depicted in A, D, H and K. Green (A and D) 

and red staining (H and K) shows the presence of respective hormone IR in the cell 

cytoplasm as well. Merged images of nesfatin-1 with enteric hormones and DAPI are 
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shown in yellow in C, F, I and L. No-primary antibody negative control, treated only with 

secondary antibody was tested for all sections above (data not shown). 

2.3.4. Nesfatin-1 Upregulates Proglucagon mRNA and GLP-1 Secretion in STC-1 

Cells 

 Nesfatin-1 significantly upregulated proglucagon mRNA expression and GLP-1 

secretion into media in STC-1 cells (Figure 2.5). 

 

Figure 2.5. Treatment of STC-1 cells dose dependently with nesfatin-1 significantly 

upregulated proglucagon mRNA expression corresponding to 0.01, 0.1, 1 and 10 nM 

doses compared to control (A). Nesfatin-1 treatment also increased GLP-1 secretion into 

the media corresponding to 0.1, 1 and 10 nM doses in STC-1 cells (B). The mRNA 

expression data was normalized using β-Actin as the reference gene. Statistical analysis: 

One-way ANOVA with Tukey’s multiple comparison test (n = 8 wells/ treatment). Data 

pooled from two independent studies. 

2.3.5. Nesfatin-1 Upregulates GIP mRNA Expression and Secretion in STC-1 Cells 

 Nesfatin-1 significantly upregulated GIP mRNA expression and GIP secretion into 

media in STC-1 cells (Figure 2.6). 
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Figure 2.6. Treatment of STC-1 cells dose dependently with nesfatin-1 significantly 

upregulated GIP mRNA expression corresponding to 0.1, 1 and 10 nM doses compared 

to control (A). Subsequently, nesfatin-1 treatment increased GIP secretion into the media 

corresponding to 1 and 10 nM doses in STC-1 cells (B). The mRNA expression data was 

normalized using β-Actin as the reference gene. Statistical analysis: One-way ANOVA 

with Tukey’s multiple comparison test (n = 8 wells/ treatment). Data pooled from two 

independent studies. 

2.3.6. Nesfatin-1 Upregulates CCK mRNA Expression and Secretion in STC-1 Cells 

 Nesfatin-1 significantly upregulated CCK mRNA expression and CCK secretion 

into media in STC-1 cells (Figure 2.7). 
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Figure 2.7. Treatment of STC-1 cells dose dependently with nesfatin-1 significantly 

upregulated CCK mRNA expression corresponding to 1 and 10 nM doses compared to 

control (A). Subsequently, nesfatin-1 treatment increased CCK secretion into the media 

corresponding to 0.1, 1 and 10 nM doses in STC-1 cells (B). The mRNA expression data 

was normalized using β-Actin as the reference gene. Statistical analysis: One-way 

ANOVA with Tukey’s multiple comparison test (n = 8 wells/ treatment). Data pooled from 

two independent studies. 

2.3.7. Nesfatin-1 Downregulates PYY mRNA Expression and Secretion in STC-1 

Cells 

 Nesfatin-1 significantly downregulated PYY mRNA expression and PYY secretion 

into media in STC-1 cells (Figure 2.8). 
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Figure 2.8. Treatment of STC-1 cells dose dependently with nesfatin-1 significantly 

downregulated PYY mRNA expression corresponding to all doses tested, compared to 

control (A). Subsequently, nesfatin-1 treatment decreased PYY secretion into the media 

corresponding to 0.01 and 0.1 nM doses in STC-1 cells (B). The mRNA expression data 

was normalized using β-Actin as the reference gene. Statistical analysis: One-way 

ANOVA with Tukey’s multiple comparison test (n = 8 wells/ treatment). Data pooled from 

two independent studies. 

2.3.8. Subcutaneous Infusion of Nesfatin-1 Does Not Alter Glucose Handling in 

Male C57BL/6J Mice 

 

Figure 2.9. Administration of an oral load of 1 g/kg body weight D-glucose significantly 

increased blood glucose levels in both saline and in groups infused subcutaneously with 
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100 µg/kg body weight nesfatin-1. Statistical Analysis: Mann-Whitney U test (non-

parametric) (n = 6 animals/group). 

2.4. DISCUSSION 

 Nesfatin-1 is an anorexigenic peptide that was found in several tissues including 

the hypothalamic feeding centers, pancreas and stomach of mice [9, 12, 14]. Presence 

of NUCB2 mRNA expression is also detected in non-mammalian species including 

goldfish [180]. Nesfatin-1 suppresses gut ghrelin in goldfish [184], the first report on the 

effects of nesfatin-1 on a gastric hormone. More recently, the presence of 

NUCB2/nesfatin-1 in mice intestine was characterized by Zhang et al., [193]. They 

showed that NUCB2/nesfatin-1 IR cells are localized in the lower third and middle portion 

of the gastric mucosal gland and the submucous layer in the duodenum of Sprague 

Dawley (SD) rats and institute of cancer research (ICR) mice. Also, Western blot analysis 

showed higher NUCB2 protein expression in pancreas, stomach and duodenum. 

However, this was contradictory to what was reported earlier by Stengel et al., [14] 

wherein they did not find nesfatin-1 immunopositive cells in the intestine. The research 

characterizes nesfatin-1 expression in the gastric mucosa of stomach and found that 

NUCB2 mRNA expression is 10 fold higher in this region, compared to the total RNA 

extracts from rat brain. However, immunohistochemistry of intestinal sections showed 

absence of nesfatin-1 immunopositive cells in esophagus, colon and small intestine. 

Nonetheless, recent findings from our lab showed NUCB2 mRNA and protein expression 

in large and small intestine of male C57BL/6J mice, contradicting the earlier observation 

by Stengel et al., [15]. This is in line and supportive of previous observations by Zhang et 

al., showing presence of NUCB2/nesfatin-1 in the intestine of both mice and rats. The 

findings in this chapter reiterate and confirm the consensus that NUCB2/nesfatin-1 is 

present in the intestine and that nesfatin-1 modulates enteric hormone secretion in vitro. 

First, we showed that NUCB2 mRNA is expressed in STC-1 cells and found 

nesfatin-1 immunoreactivity in their cytoplasm. These results are highly indicative that 

intestinal enteroendocrine cells could be a source of endogenous nesfatin-1 in vivo. 

Secondly, immunohistochemical staining of intestinal sections from male C57BL/6J mice 

showed NUCB2/nesfatin-1 immunoreactivity. Nesfatin-1 immunopositive cells, 
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specifically were observed in the crypts of the intestinal villi and in the submucosa being 

mainly concentrated around the Brunner’s glands and in blood vessels surrounding the 

connective tissue. This is consistent with the observation by Zhang et al.,[193] wherein 

they found NUCB2/nesfatin-1 IR in the Brunner’s glands of duodenum. These glands are 

primarily confined to the duodenal bulb. The main function of these glands are to produce 

an alkaline secretion containing bicarbonate and mucus to protect duodenum from the 

acidic chime, maintain an alkaline environment for proper action of intestinal enzymes 

and, to lubricate the intestinal walls. The presence of nesfatin-1 IR here highlights its 

potential role in enzyme activation, nutrient absorption and preservation of intestinal walls 

which warrants further consideration [193]. Besides enzymes, intestine is a major 

endocrine tissue, giving rise to a spectrum of hormones that has important functions in 

feed intake and energy metabolism as discussed earlier in section 1.2.2. Since we found 

nesfatin-1 IR in intestinal sections (both small and large intestine) and since our previous 

findings clearly shows its protein and mRNA expression in the same region [15] we 

hypothesized that nesfatin-1 could modulate intestinal enteric hormone secretion. 

As a start point to address this hypothesis, immunohistochemical analysis of 

intestinal sections from ad libitum fed male C57BL/6J mice showed nesfatin-1 IR to be 

co-localized with GLP-1, GIP and CCK IR in small intestine and with PYY IR in large 

intestine. The co-localization was found distributed uniformly throughout the submucosa 

and in the crypts of villi. However, not all the cells observed under a given area of the 

section showed co-localization. There were some cells that were immunopositive for 

nesfatin-1 but not for the respective intestinal hormones. This is expected as 

enteroendocrine cells are capable of synthesizing and secreting all major enteric 

hormones tested in this chapter i.e. GLP-1, GIP, CCK and PYY depending on the 

nutritional status and nutrient availability of animal in vivo. Although, they are classified 

cytochemically as K, L and I cells, this classification is based on the major hormones they 

secrete and shouldn’t be inferred that the cells secrete that specific hormone alone. 

Nonetheless, in all sections nesfatin-1 immunopositive cells were found in the aforesaid 

region consistently. The colocalization of nesfatin-1 with intestinal hormones suggests 

possible local (autocrine/paracrine) or endocrine actions of nesfatin-1 on these peptides. 
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 Thirdly, in vitro studies involving treatment of STC-1 cells dose-dependently with 

nesfatin-1 showed increase in GLP-1, GIP and CCK mRNA expression and secretion into 

media. The study also showed that nesfatin-1 decreased PYY mRNA expression and 

secretion into media by RT-qPCR and immunoassays. From a food intake and appetite 

standpoint, previous research has classified GLP-1, GIP and CCK as anorexigenic 

peptides and PYY as orexigenic [93, 139, 147]. Our current findings show that nesfatin-1 

is directly modulating, in that it increases the expression and secretion of anorexigenic 

intestinal hormones (GLP-1, GIP and CCK) and it suppresses the expression and 

secretion of orexigenic hormone PYY. Also, with regard to insulin secretion, previous 

research have shown incretins and CCK to be insulinotropic and PYY to be insulinostatic 

[6-8, 16]. Results from in vitro studies shows that nesfatin-1 increases insulinotropic and 

suppresses insulinostatic intestinal hormones. These novel results reveal yet another 

extra-pancreatic function of NUCB2/nesfatin-1 in peripheral tissues, besides the reported 

insulinotropic action [5]. The results also highlight an indirect mechanism of nesfatin-1 

action on insulin secretion, by modulating the expression/secretion levels of 

insulinotropic/insulinostatic enteroendocrine hormones. 

Analyzing the data points for the results from in vitro studies, the nesfatin-1 effect 

on GLP-1 expression and secretion is highly dose-dependent, with the upregulation quite 

apparent between 0.1 and 10 nM when compared to controls. One common concern 

regarding the RT-qPCR data on the relative mRNA expression of proglucagon is the 

specificity of the primer used, as proglucagon gene besides GLP-1, also encodes GLP-

2, oxyntomodulin and glicentin in intestinal L cells in vivo. To negate this, the primer pairs 

used in the study is highly specific for the GLP-1 coding region of proglucagon gene and 

an upregulation in this region of the mRNA alone is the outcome of our dose-dependent 

nesfatin-1 treatment data. The dose-dependency on GIP expression and secretion is also 

clear, with nesfatin-1 having a stimulatory effect at higher doses of 1 and 10 nM tested. It 

will be interesting to see the extrapolation of this result in particular in vivo, as GIP 

secretion from K cells is modulated more by the rate of nutrient absorption in intestine 

rather than nutrient availability [113]. Therefore, nesfatin-1 modulation of GIP secretion in 

vivo is expected to be difficult to capture with studies on feed availability alone and might 

require a study testing various diets with differential rates of nutrient absorption.  
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Nesfatin-1 effect on CCK secretion also is dose-dependent with maximum 

expression and secretion being observed corresponding to the highest doses tested i.e. 

1 and 10 nM. Though this effect is on total CCK in media, its effect on CCK-33 which is 

the predominant circulating form [134] or CCK-8 [139] that induces satiety upon infusion 

remains to be elucidated. Interestingly, the suppressive effect of nesfatin-1 on PYY 

expression and secretion is not dose-dependent at least at the level of 

translation/secretion. PYY is predominantly expressed in the large intestine, and in cell 

studies nesfatin-1 suppressed PYY mRNA at all doses tested. However, the 

downregulation was significant corresponding only to two doses at the level of secretion 

i.e. 0.01 and 0.1 nM. Our immunohistochemistry data shows co-localization of nesfatin-1 

IR with PYY. On a comparative basis, the number of cells positive for co-localization is 

lesser than those compared to GLP-1 and CCK co-localization. As our in vitro data 

suggests opposite actions for nesfatin-1 and PYY, whether or not they are secreted in 

distinct cytoplasmic vesicles similar to nesfatin-1 and ghrelin in X/A like cells remains to 

be elucidated. Also considering the time food takes to reach large intestine in vivo and 

that intestinal PYY increases transit time of ingested food [237], the role of nesfatin-1 in 

these cells is likely to be paracrine wherein it stimulates other enteric hormone secretion 

upon secretion and autocrine wherein it inhibits PYY secretion at least immediately after 

an ingested meal. 

Nesfatin-1 at an effective dose of 0.1 and 1 nM was reported to upregulate 

preproinsulin mRNA expression and glucose-dependent insulin release from MIN6 cells. 

It also stimulated insulin release from isolated mouse islets corresponding to 0.01, 0.1 

and 1 nM doses [5]. These data are comparable with results from in vitro studies in STC-

1 cells, wherein nesfatin-1 at similar doses of 0.1, 1 and 10 nM doses was effective in 

stimulating GLP-1, GIP, CCK secretion and inhibiting PYY secretion. In in vivo studies, 

the circulating glucose levels were significantly elevated in both saline and nesfatin-1 

infused mice in response to an oral load of glucose, showing normal glucose handling in 

both groups. This result verifies that the glucose administration was effective, and there 

are no differences in glucose levels due to subcutaneous nesfatin-1 infusion alone. We 

originally planned and executed ELISAs for enteric hormones. However, due to low 

volumes of serum obtained and used, the ELISA results were not usable (most values 
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below low standard). Due to this setback in obtaining secreted levels of hormones, we 

are now planning intestinal hormone gene/protein expression in major peripheral tissues: 

stomach, pancreas, liver, and intestine, using the tissues collected at the end of the 

OGTT. This analysis is expected to partly provide the missing information on synthesis of 

intestinal hormones. Osmotic mini-pumps are reliable tools to infuse peptides of interest, 

and it was used previously for successfully administering and elevating nesfatin-1 levels 

in rats [13].  In order to ensure that circulating nesfatin-1 levels are indeed increased in 

response to continuous infusion using the mode selected, we will measure nesfatin-1 in 

vivo in control and peptide treated mice.  

2.5. CONCLUSIONS 

 This research provides strong evidence for NUCB2/nesfatin-1 expression in 

intestine thus strengthening previous observations [15, 193]. It also for the first time 

reports the co-localization of nesfatin-1 with CCK, PYY, GLP-1 and GIP immunopositive 

cells in mouse intestine. The studies carried out characterizes STC-1 cells as 

NUCB2/nesfatin-1 expressing cells and that nesfatin-1 dose-dependently modulates 

hormone secretions from this cell line. This highlights STC-1 cells as useful in vitro models 

for studying nesfatin-1 biology, besides the secretion kinetics of intestinal hormones. The 

in vivo studies pertaining to this objective is currently in progress and will be completed 

soon. Results from them will provide a more complete picture whether or not nesfatin-1 

modulates enteric hormone secretion in vivo via osmotic pump infusion in mice. Nesfatin-

1 has been researched for its role on insulin secretion and satiety. It is becoming 

increasingly apparent that both central and peripheral nesfatin-1 have functions beyond 

these two, and this chapter is a major contribution in line with this notion. The results that 

nesfatin-1 is co-expressed with major intestinal hormones and that it modulates their 

secretion opens up a lot of possibility for testing new biological actions of this peptide.  
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TRANSITION 

 

The following chapter focuses on objectives 3-4: Insulinotropic action of a NUCB1 

encoded Nesfatin-1-Like Peptide (NLP). Endogenous NUCB1 mRNA in pancreatic islets 

of C57BL/6J mice and in MIN6 cells by RT-qPCR and gel electrophoresis were detected. 

Subsequently, NUCB1 immunoreactivity was co-localized with insulin in islets and MIN6 

cells and was detected by immunocytochemistry. This chapter will elaborate the studies 

carried out, major techniques used for answering specific research question mentioned 

above and the results obtained. This is followed by a discussion and conclusion of major 

findings pertaining to the research question. At the time of writing this chapter, nothing is 

known about a nucleobindin-1 (NUCB1) encoded bioactive peptide. 
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CHAPTER 3 

 INSULINOTROPIC ACTION OF A NUCB1 ENCODED NESFATIN-1-LIKE PEPTIDE 

(NLP) 

3.1. INTRODUCTION 

 Nesfatin-1 (NEFA/nucleobindin-2-encoded satiety and fat-influencing protein-1) is 

an 82 amino acid peptide encoded in the N-terminal region of its precursor, nucleobindin-

2 (NUCB2) [9, 15]. It was predicted that NUCB2 is processed by prohormone convertases 

(PC) to form nesfatin-1 [9]. Administration of the full-length nesfatin-1 or its 30 amino acid 

mid-segment (M30), considered its bioactive core, reduces food intake and fat mass in 

rodents [9, 13, 182], and food intake in pigs [238] and fish [180, 184]. We, and others 

have identified nesfatin-1 immunoreactivity in the pancreatic islet beta cells of rats, mice 

[10, 12, 13] and humans [10] and found an insulinotropic effect for this peptide in vitro [5, 

10] and in vivo [13]. Nesfatin-1 increases glucose-stimulated insulin secretion from β cells 

by direct action involving Ca2+ influx through L-type calcium channels [239]. Nesfatin-1 is 

emerging as NUCB2-derived multifunctional peptide affecting major organ systems in 

vertebrates [240]. When originally discovered, nucleobindin-2 was given its name due to 

its very high sequence similarity with another secreted protein, nucleobindin-1 (NUCB1). 

Both NUCB1 and NUCB2 are homologous multi-domain Ca2+ and DNA binding proteins 

encoded in two unlinked genes. Human NUCB1 and NUCB2 exhibit 62% amino acid 

sequence identity and are remarkably conserved within the nesfatin-1 region between 

humans and zebrafish [19, 240, 241]. NUCB1 has been widely reported within the 

nucleus, endoplasmic reticulum and cytoplasm of stomach, intestine, adrenal glands, 

pituitary, ovary and testis [219].The N-terminal golgi retention domain allows NUCB1 to 

be targeted to various cellular components and its deletion renders the localization of 

NUCB1 to the cytoplasm [10, 230, 231]. The endogenous expression profile of NUCB1 

was characterized recently by immunofluorescence staining, showing NUCB1 localization 

in the endocrine pancreas along with insulin, glucagon, somatostatin, ghrelin and 

pancreatic polypeptide immunopositive cells [208]. NUCB1 has been shown to play a 

crucial role in the maintenance of Ca2+ homeostasis, and it interacts with G proteins and 
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cyclooxygenases [20, 217]. In addition, oh-I and colleagues [9] indicated that both NUCB1 

and NUCB2 are secreted proteins arising from two homologous genes arising from a 

single EF-hand ancestor. Therefore, whether NUCB1 encodes a biologically active 

nesfatin-1-like peptide remains unknown. 

 Is there a nesfatin-1-like peptide encoded in NUCB1? Does it possess PC 

cleavage sites? Is this peptide biologically active? In silico analysis found that a nesfatin-

1-like peptide (NLP) is indeed present in the NUCB1. This research, for the first time, 

reports an insulinotropic activity for synthetic NLP. The endogenous NUCB1 protein 

expression in major peripheral tissues in response to feed availability was also 

determined. These findings provide important information on a new, naturally occurring 

insulinotropic peptide. 

3.2. MATERIALS AND METHODS 

3.2.1. In Silico Analysis 

NUCB1 and NUCB2 sequences were obtained from the GenBank 

(http://www.ncbi.nlm.nih.gov/genbank/), and aligned using ClustalW 

(http://www.clustal.org/clustal2/) and eBioX (http://www.ebioinformatics.org/ebiox/) 

software. Percentage identity between sequences were ascertained using ClustalW2 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/). SignalP 4.1 Server 

(http://www.cbs.dtu.dk/services/SignalP/) was used for predicting the signal peptide 

region in NUCB1. PC cleavage sites and putative peptides encoded within NUCB1 were 

predicted by the Prop 1.0 Server (http://www.cbs.dtu.dk/services/ProP/) and 

NeuroPred™ (http://neuroproteomics.scs.illinois.edu/neuropred.html). 

3.2.2. Cell Culture 

 MIN6 cells used in the study were a kind gift from Dr. Robert Tsushima (York 

University, Toronto). MIN6 cells are derived from transgenic founder mice that developed 

pancreatic insulinoma [242]. These cells have the morphological characteristics of β cells 

and exhibit glucose-inducible insulin secretion, comparable to normal cultured mouse 

islets cells. MIN6 expresses high levels of liver type glucose transporter (GT) mRNA, 

http://www.clustal.org/clustal2/
http://www.ebioinformatics.org/ebiox/
http://www.ebi.ac.uk/Tools/msa/clustalw2/
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/ProP/
http://neuroproteomics.scs.illinois.edu/neuropred.html
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suggesting the importance of transporter in glucose-stimulated insulin secretion. 

Treatment of MIN6 with Interferon-γ induces high levels of major histocompatibility 

complex (MHC) class I antigen on the cellular surface, emphasizing that the cells retain 

the physiological characteristics of β cells [242]. MIN6 also have been reported to have 

the innate ability to form cell clusters [243]. Given the study that monolayer cultures of 

cells have less GSIS, and that cell to cell contact is highly important for GSIS, MIN6 are 

suitable immortalized cell lines to analyze the molecular mechanisms by which β cells 

regulate insulin secretion in response to varying concentrations of extracellular glucose. 

 Cells were cultured in Dulbecco’s Modified Eagles Medium (DMEM, Invitrogen, 

Catalog #11995-040) supplemented with 10% fetal bovine serum (FBS, Invitrogen, 

Catalog# 12484), penicillin (100 U/mL), streptomycin (100 µg/mL) (Invitrogen, Catalog# 

15140-122) and 2-Mercaptoethanol (Life Technologies, Catalog# 21985-023). Cells were 

incubated at 37°C and 5% CO2 culture conditions in a humidified incubator to promote 

growth. Cell culture media was changes every 48 hours after washing twice with 

Dulbecco’s Phosphate-Buffered Saline (DPBS, Life Technologies, and Catalog # 14190-

250). The cells were sub-cultured once they reached 85-90% confluency using 0.25% 

trypsin-EDTA (Life Technologies, Catalog# 25200-056) as described earlier [53]. 

3.2.3. Detection of Endogenous NUCB1 Protein Expression in MIN6 cells and in 

Mouse Pancreatic Islets 

 MIN6 cells were cultured in a LabtekTM Chamber Slide SystemTM (Nalge Nunc, 

New York). Cells were washed with 1X phosphate buffer saline (PBS), fixed in 4% 

paraformaldehyde, permeabilized using 0.3% Triton-X (Bioshop, Catalog# TRX777), and 

incubated in blocking buffer containing 10% goat serum. For immunohistochemical 

studies, pancreas was collected from male C57BL/6J mice (Charles River, Quebec, 

Canada) cared under the Canadian Council of Animal Care guidelines, as approved by 

the University of Saskatchewan Animal Care Committee. Mice were euthanized under 

deep carbon dioxide inhalation followed by cardiac puncture, pancreas collected and fixed 

in 4% formaldehyde overnight at 4o C, processed, embedded in paraffin sections of 4 µm 

thickness were prepared. Cells and slides were then incubated with primary antibody at 

4o C overnight, followed by secondary antibody incubation for 4 hours at room 
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temperature. Primary antibodies used were: rabbit anti-nesfatin-1 (Phoenix 

Pharmaceuticals, 1:500 dilution, Catalog# H-003-22), rabbit anti-nucleobindin 1 (Abcam, 

1:500 dilution, Catalog# ab23387), guinea pig anti-insulin (Abcam, 1:100 dilution, 

Catalog# ab 7842) or mouse anti-glucagon (Abcam, 1:200 dilution, Catalog# K79bB10). 

The respective secondary antibodies were goat anti-rabbit Texas Red® IgG (Vector 

Laboratories, Red-Nesfatin-1, 1:100 dilution, Catalog# TI-1000), goat anti-guinea pig 

FITC IgG (Abcam, Green-Insulin, 1:200 dilution, Catalog# ab6904) and goat anti-mouse 

FITC IgG (Abcam, Green-Glucagon, 1:200 dilution, Catalog# ab6785). The slides were 

washed in 1X PBS and mounted using Vectashield® mounting medium containing the 

nuclear dye DAPI (Blue; Vector Laboratories). Tissue and cells were analyzed under a 

BX51 microscope (Olympus, Ontario, Canada), images were captured using an Olympus 

DP70 camera and were assessed using the DP controller program. 

3.2.4 Qualitative Analysis – Expression of NUCB1 mRNA in MIN6 Cells and in 

Mouse Pancreas 

 Cells were grown as described in section 3.2.3.1. Upon confluence the total RNA 

was extracted as described in section 2.2.4.1. Pancreas was collected and processed 

from ad libitum fed male C57BL/6J mice by euthanizing the animals using cervical 

dislocation. The collected tissue was dissected and stored in RNALater™ (Life 

Technologies, Catalog# AM7020). The tissues were then thawed for 10 minutes at room 

temperature and transferred to new tubes containing TRIzol® regent. This was followed 

by total RNA extraction using TRIzol method as described in section 2.2.4.1. Synthesis 

of cDNA was conducted using iScript™ Reverse Transcription Supermix as described in 

section 2.2.4.2. The cDNA synthesized was used as template to determine the qualitative 

expression of NUCB1 in MIN6 cells and mouse pancreas. The primer sequences were 

obtained from National Center for Biotechnology Information Gene Bank (NCBI) and the 

primers were synthesized using Primer-BLAST™, primer designing tool from NCBI 

(www.ncbi.nlm.nih.gov/tools/primer-blast/). The GenBank accession number is given 

under each gene. The forward and reverse primers are provided in Table 3.1. 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Table 3.1. Primer Pairs for mouse NUCB1 and β-Actin with Respective Annealing 

Temperatures 

Gene Forward (5’ – 3’) Reverse (3’ – 5’) Amplico

n Size 

(bp) 

Annealing 

Temperature 

Mouse NUCB1 
(NM_001163662.1) 

 

ggacctcagctagggg

gtgta 

Agcctaccctaactccca

gg 

96 60°C 

Mouse β-Actin 
(NM_007393.3) 

 

ccactgccgcatcctctt
cc 

 

ctcgttgccaatagtgatg
ac 

 

77 60°C 

 

 Primers were validated and optimized for high primer efficiency and annealing 

temperatures. The primers were then used for conducting qualitative PCR. The PCR was 

conducted on a thermo cycler (Bio-Rad, Canada) for 35 cycles. The samples were stored 

at -20° C until gel electrophoresis. The components of the mastermix are provided in 

Table 2.4. The components for the qualitative PCR are provided in Table 2.5. The 

reaction protocol used is described in Table 3.2 below. 

Table 3.2. Optimized PCR conditions with respective annealing temperatures for 

NUCB1 and β-Actin. (Step 1: Initial Activation; Step 2: Denaturation; Step 3: 

Annealing; Step 4: Elongation; Step 5: Infinite Hold) 

 Step 1 Step 2 Step 3 Step 4 Step 5 

Temperature 95°C 95°C 60°C 73°C 4°C 

Time 5 minutes 30 seconds 30 seconds 30 seconds Infinite Hold 
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Following PCR, the samples were run on 1% agarose gel as described in section 

2.2.4.2. The images were captured using GelDoc™ EZ system (Bio-Rad, Canada). 

3.2.5. Nesfatin-1-Like Peptide Effects on Preproinsulin mRNA Expression and 

Insulin Secretion 

Static incubation study was conducted to determine the effects of dose-dependent 

synthetic NLP treatment on preproinsulin mRNA expression in MIN6 cells. Cells were 

cultured as described in section 3.2.2. Cells at 2 x 105 cells per well density were seeded 

with 1 mL DMEM (25 mM glucose) in 24-well plates. On the day of study, medium was 

removed and cells were washed twice with PBS. The cells were then treated with 1 mL 

of DMEM containing 0 (control), 0.001, 0.01, 0.1, 10, 100 or 1000 nM rat synthetic NLP 

(VPVDRAAPHQEDNQATETPDTGLYYHRYLQEVINVLETDGHFREKLQAANAEDIKSG

KLSQELDFVSHNVRTKLDEL; Abgent Technologies, California) based on a 77 amino 

acid predicted sequence within the rat nucleobindin 1 (GenBank # AAI00644.1). The 

peptide is >95% pure and the mass and purity were confirmed by LC-MS. The culture 

media was isolated to evaluate the insulin content by insulin ELISA. Total RNA extraction 

and preproinsulin relative mRNA expression was determined as described below. The 

studies were repeated twice and data from these independent studies were pooled. Cells 

were collected from the study to assess the relative mRNA expression of preproinsulin. 

Total RNA extraction using the TRIzol method was carried as described in section 2.2.4.1. 

The purity of RNA was determined using Nandrop™ 2000C. The RNA sample is stored 

in -80° C until further required. cDNA was synthesized using iScript cDNA synthesis kit 

as described in section 2.2.4.2. The samples were stored at -20°C until used as a 

template for RT-qPCR. The relative mRNA expression of preproinsulin was conducted 

using iQ™ SYBR® green supermix for 35 cycles as described in section 2.2.3.3. Forward 

and reverse primers for preproinsulin were synthesized as described in section 3.2.4.3 

and are provided in Table 3.3 below. β-Actin was used as internal control and the details 

are described in Table 3.1. 
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Table 3.3. Primer Pair of Mouse Preproinsulin with Respective Annealing 

Temperature 

Gene Forward (5’ – 3’) Reverse (3’ – 5’) Amplico

n Size 

(bp) 

Annealing 

Temperature 

 
Mouse 

Preproinsulin 
(NM_008386.3) 

 

 

ggcttcttctacacacc

ca 

 

cagtagttctccagctgg

ta 

 

182 

 

59°C 

 

The relative gene expression data were obtained after normalizing the data to β-

Actin using Pfaffl method [155]. 

 The insulin secretion into the media was measured using mouse ultrasensitive 

insulin ELISA kit (ALPCO, Catalog# 80-INSMS-E01) and Insulin-125I RIA kit (MP 

Biomedicals™, Catalog# 07RK547) according to the manufacturer’s instructions. The 

limit of assay sensitivity was 0.06 ng/mL (ELISA) and 1 ng/mL (RIA). The detectable range 

for the kits were from 0.188 – 6.9 ng/mL and 0.1 – 25 ng/mL respectively. The plates were 

read using SoftMAX® 190 microplate reader equipped to read absorbance at 450nm 

(Molecular Devices, USA). The amount of immunoreactive material was determined using 

non-linear regression curve-fit, which was used to quantify and compare the 

concentration of insulin secretion in media samples. 

3.2.6. Is a Specific Amino Acid Organization Critical for the Biological Activity of 

Nesfatin-1-Like Peptide? 

 There are two reasons for this study. The first objective was to determine whether 

the NLP sequence is critical for its insulinotropic action. The second aim was to test 

whether any peptide that shares the same amino acids and length, but highly dissimilar 

amino acid arrangement could also elicit the same response. In order to test these, we 

decided to use a scrambled peptide that has 77 amino acids that constitute the NLP, but 
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not in the order seen in NLP. A 79 amino acid (including the two amino acids constituting 

the cleavage site) scrambled peptide was designed using the Sequence Manipulation 

Suite™ (www.bioinformatics.org/sms2/) and PepControls™ 

(bioware.ucd.ie/~cyclops/.../PepControls.../1.3/.../control_peptides.html) (University of 

California, Davis) online tool. The peptide scramble 

(PDSRSDDGSPSVQLQDYALIADAEVTLTHIELFGSPQNATKLLNKTERLRFLKVVRGK

HRENVVATEHYQAQKYPEEDE) with the lowest similarity to the NLP amino acid 

sequence and with low synthesis issues was selected. The peptide synthesized (Pacific 

Immunology, California, USA) was >95% pure and the mass and purity was confirmed 

by LC-MS. 

For static incubation studies, MIN6 cells at 2 x 105 cells per well density were 

seeded in 1 mL DMEM (25 mM glucose) in 24-well plates. On the day of study, medium 

was removed and cells were washed twice with PBS. The cells were then treated with 1 

mL of DMEM containing 10 and 100 nM rat synthetic nesfatin-1-like peptide, 10 and 100 

nM of scrambled peptide and 1 nM synthetic rat nesfatin-1 as a positive control. After 1 

hour incubation, media samples were collected and insulin content was measured as 

described in section 3.2.5.4. The cells were collected and total RNA extracted, cDNA 

synthesis followed by RT-qPCR for preproinsulin mRNA expression was carried out as 

described under 3.2.5. The studies were repeated twice and data from these independent 

studies were pooled. 

3.2.7. Quantitative Analysis of Endogenous NUCB1 Protein Expression in ad 

libitum Fed and Food Deprived Mice 

3.2.7.1. Animals 

 Age matched 4 months old C57BL/6J mice (Charles River Laboratories, Quebec, 

Canada) were housed in a temperature-controlled vivarium with 12h/12h dark and light 

cycles. Animals had ad libitum access to standard mouse chow and water. All protocols 

strictly adhered to the guidelines of the Canadian Council for Animal Care, and were 

approved by the University of Saskatchewan Animal Research Ethics Board. 

http://www.bioinformatics.org/sms2/
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3.2.7.2. Western Blot Analysis 

 For characterizing the endogenous levels of nucleobindin-1 (NUCB1), 4 months 

old C57BL/6J male mice (Charles River Laboratories, Canada) were divided into two 

groups; fed (n = 6) and unfed (n = 6) group respectively. The unfed group were fasted for 

24 hours, while the fed group had ad libitum access to standard mouse chow and water 

during the same time. After 24 hour differential feed availability, all animals were 

euthanized by cervical dislocation. Dissected whole stomach, pancreas, liver, small and 

large intestine were homogenized in T-PER® tissue protein extraction reagent 

(Thermoscientific, Catalog# 78510) followed my measurement of protein concentration 

by Bradford assay. The samples were prepared in 1X laemmli buffer containing 0.2% 2-

mercaptoethanol (Bio-Rad, Catalog# 161-0737 and -0710) and subsequently were boiled 

at 95°C for 5min followed by vortexing. The whole sample volume (20 µL) each containing 

50 µg protein was loaded and run in a Mini-PROTEAN® TGX™ 8-16% gradient gel (Bio-

Rad, Catalog# 456-1104). After separation the proteins were transferred to a 0.2 µm 

BioTrace™ nitrocellulose membrane (PALL Life Sciences, Catalog# 27377-000) and then 

membrane was blocked in 1X RapidBlock™ solution (aMReSCO, Catalog# M325). 

NUCB1 protein detection was performed using rabbit antiserum directed against mouse 

NUCB1 (Custom Antibody, Pacific Immunology, Catalog# 1312-PAC-02) diluted 1:1000 

and β tubulin protein was detected by use of rabbit antiserum directed against mouse β 

tubulin (Cell Signaling Technology®, Catalog# 2146) diluted 1:2000. As secondary 

antibody, goat anti-rabbit IgG (H+L) HRP conjugate (Bio-Rad, Catalog# 170-6515) diluted 

1:3000 was used. For protein visualization the membrane was incubated for 5min in 

Clarity™ Western ECL substrate (Bio-Rad, Catalog# 170-5061) and imaged using 

ChemiDoc™ MP imaging system (Bio-Rad, Catalog# 170-8280) with chemiluminescence 

detection. Membrane stripping in between protein detection was conducted using 

Restore™ PLUS Western blot stripping buffer (Thermoscientific, Catalog# 46430). 

Precision plus protein™ Dual Xtra standards (Bio-Rad, Catalog# 161-0377) were used 

as molecular weight markers. 
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3.2.8. In Vivo Effects of NLP on Dark and Light Phase Feed Intake 

 Animals were housed as described in section 3.2.7.1. Twenty four hours prior to 

the study, animals were grouped into two: saline-treated groups (n = 6) and NLP-treated 

groups (n = 6). On the day of the experiment, osmotic pumps (ALZET®, Catalog# 2001D) 

were filled either with saline or 100 µg/kg body weight NLP dissolved in saline, as per 

manufacturer’s instruction. Subsequently, the pumps were implanted subcutaneously into 

animals as described in section 2.2.5 earlier. The feed intake was monitored by 

measuring the weight of food for all animals at four time point i.e. 1 AM (+6 hour dark 

phase), 7 AM (+12 hour dark phase), 1 PM (+6 hour light phase) and 7 PM (+12 hours 

light phase) respectively. To maintain consistency the timing and duration of experiment, 

and sample measurement were kept constant for all animals.  

3.2.9. Statistical Analysis 

 Analysis of the quantified RT-qPCR and immunoassays data were conducted 

using One-way ANOVA followed by Tukey’s multiple comparison test. IBM SPSS™ 

version 21 (IBM., USA) as used for statistical analysis and GraphPad Prism version 5 

(GraphPad Inc., USA) was used for generation of graphs. Significance was assigned 

when p<0.05. All data are expressed as mean ± standard error of mean (SEM). 

3.3. RESULTS 

3.3.1. In Silico Analysis of NUCB1 

 A nesfatin-1-like region is present within the NUCB1. The nesfatin-1-like peptide, 

especially its putative bioactive core (Figure 3.1 - A) exhibited very high similarity with 

nesfatin-1 encoded in NUCB2 (Figure 3.1 - B). The bioactive cores of 82 amino acid 

nesfatin-1 and 77 amino acid NLP have 76.6% amino acid sequence identity in mouse. 

The bioactive core region (M30) within the NUCB1 presented a greater degree of 

similarity. A signal peptide cleavage site is present at position 25 (Arginine) and 26 

(Valine) in the NUCB1 sequence. Analysis of NUCB1 using the ProP 1.0 Server and 

NeuroPred™ tools revealed potential proprotein convertase cleavage site at Lys-Arg 
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(KR), forming a 77 amino acid nesfatin-1-like peptide. Due to its high similarity to nesfatin-

1 from NUCB2, we named this protein nesfatin-1-like peptide (NLP). 

 

 

Figure 3.1. A. Scheme showing the signal peptide, nesfatin-1-like peptide region (1-77), 

and the putative processing sites (KR) in mouse NUCB1 sequence. NUCB1 encoded 

NLP sequences from various species. The putative bioactive core region is marked. B. 

Sequence comparison of NUCB2 encoded nesfatin-1 showing the bioactive core. 

GenBank Accession numbers of sequences used: Rattus norvegicus (NUCB1, 

AAI00644.1; NUCB2, AAH61778.1), Mus musculus (NUCB1, AAH72554.1; NUCB2, 
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AAH10459.1), Homo sapiens (NUCB1, NP_006175.2; NUCB2, NP_005004.1), Danio 

rerio (NUCB1, NP_001038928.1; NUCB2A, NP_958901.1; NUCB2B, NP_958887.1), and 

Xenopus tropicalis, (NUCB1, AAH67991.1; NUCB2, AAH90107.1). 

3.3.2. NUCB1 mRNA Expression in MIN6 cells and Mouse Pancreas 

 A band of approximately 96 bp of NUCB1 mRNA was detected (Figure 3.2) in 

MIN6 cells and mouse pancreas. The negative control reaction resulted in no bands. 

 

Figure 3.2. Gel electrophoresis image showing the presence of NUCB1 mRNA in MIN6 

cells and mouse pancreas. The amplicon size of the band was approximately 96 base 

pairs. 

3.3.3. NUCB1 and NUCB2 Immunoreactivity in Pancreatic Islets and MIN6 Cells 

NUCB1 immunoreactivity was detected in MIN6 cells (Figure 3.3 - C) and mouse 

pancreatic islet beta cells (Figure 3.4; C-D). Co-localization (Figures 3.3; E-F, 3.4 - E) 

of NUCB1 (Figures 3.3 C, 3.4; C-D) and insulin (Figures 3.3; A-B, 3.4 - E) was observed 

in MIN6 cells and pancreatic islets. No co-localization of NUCB1 and glucagon was found 

in alpha cells (Figure 3.4 - F). 

~96 bp 



 

77 
 

 

Figure 3.3. Photomicrographs showing insulin (A-B; green), NUCB1 (C; red), NUCB2 (D; 

red), and co-localization (yellow) of NUCB1 (E) or NUCB2 (F) with insulin in MIN6 cells. 

Scale bar = 50 µm. 
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Figure 3.4. Photomicrographs showing insulin (A; green), glucagon (B; green), NUCB1 

(C-D), co-localization of NUCB1 with insulin (E; yellow; cells pointed by arrows), and lack 

of co-localization of NUCB1 and glucagon (F) in the pancreatic islets of mice. No NUCB1 

staining was detected in secondary antibody alone controls (G).  Scale bar = 50 µm. 
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3.3.4. NLP Stimulates Insulin Release from MIN6 Cells 

NLP (10 and 100 nM) stimulated preproinsulin mRNA expression (Figure 3.5 - A) 

and insulin release (Figure 3.5 - B) from MIN6 cells at 1 hour post-incubation. No effects 

were detected for other doses of NLP tested (Figures 3.5; A-B). 

 

Figure 3.5. Nesfatin-1-like peptide (NLP) enhances preproinsulin mRNA expression (A), 

and stimulates insulin secretion (B) from MIN6 cells at 10 and 100 nM (significance 

denoted by *) compared to no treatment controls and other doses tested. Data are 

presented as mean + SEM. n = 8-12 wells pooled from three different studies. 

3.3.5. A Scrambled Peptide Based on the NLP Sequence had no Effect on 

Preproinsulin mRNA Expression and Insulin Secretion in MIN6 Cells 

 NLP (100 nM) stimulated preproinsulin mRNA expression (Figure 3.6 - A) and 

insulin release (10 and 100 nM) (Figure 3.6 - B) from MIN6 cells at 1 hour post incubation. 

No effects were detected for similar doses of scrambled peptide. Nesfatin-1 (1 nM) 

stimulated both preproinsulin mRNA expression and insulin secretion into media in MIN6 

cells. 
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Figure 3.6. Nesfatin-1-Like peptide (NLP) and nesfatin-1 enhances preproinsulin mRNA 

expression. However, a scrambled peptide to NLP did not elicit any effects on 

preproinsulin mRNA (A). NLP and nesfatin-1 stimulates insulin secretion (B) from MIN6 

cells at 10, 100 nM and 1 nM respectively (significance denoted by *) compared to no 

treatment control. Data are presented as mean + SEM. n = 8 wells/ pooled from two 

different studies. 

3.3.6. Fasting increases NUCB1 Protein Expression in Mouse Liver 

  Mice fasted for 24 hours had a significant increase in NUCB1 protein expression 

in liver when compared to controls (Figure 3.7 – A). However, no changes in expression 

were observed in pancreas (Figure 3.7 – B) and stomach (Figure 3.7 – C). 
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Figure 3.7. Food deprivation for 24 hours results in a significant increase in NUCB1 

protein expression in liver of C57BL/6J mice when compared to controls (A). No changes 

were observed in pancreas (B) and stomach (C). The band intensities were quantified 

using ImageJ™ software and were normalized to β-Tubulin. Data represented as mean 

+ SEM. n = 6 animals/group. 
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3.3.7. Osmotic Pump Infusion of NLP had no Effect on Dark and Light Phase Feed 

Intake in Mice 

 No changes in dark and light phase feed intake were observed in C57BL/6J mice 

when 100 µg/kg body weight NLP was infused using osmotic pumps (Figure 3.8). 

 

Figure 3.8. Subcutaneous infusion of 100 µg/kg body weight NLP using osmotic pump in 

male C57BL/6J mice had no effect on feed intake over a period of 24 hours, when 

compared to saline treated group. Data are represented as mean + SEM. n = 6 

mice/group. 

3.4. DISCUSSION 

In the original article that reported nesfatin-1, Oh-I and colleagues [9] indicated 

that both NUCB1 and NUCB2 are secreted proteins arising from two homologous genes 

arising from a single EF-hand ancestor. Whether NUCB1 encodes a biologically active 

nesfatin-1-like peptide remains unknown. Here, we report the first detailed sequence 

analysis showing the presence of a nesfatin-1-like peptide in NUCB1, its presence within 

the endocrine pancreas, and an insulinotropic role for NLP. Our analysis of the NUCB1 

sequence using the same tools that were employed by Oh-I and colleagues [2] found a 

signal peptide in the N-terminal, followed by the NLP region flanked by signature 

sequences representing proprotein convertase cleavage sites. The presence of these key 
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processing sites, which were used to discover nesfatin-1, suggests that there is a very 

strong possibility of NLP being processed from NUCB1. The mid-segment composed of 

30 amino acids is designated as the bioactive core of nesfatin-1 [176]. We found that the 

NLP is highly similar to nesfatin-1, and there is a greater degree of identity within the M30 

region of nesfatin-1 and NLP (76.6%). Twenty three amino acids in the M30 region are 

conserved (identical) between mouse nesfatin-1 and NLP. Only 7 dissimilar amino acids 

(Asp-Glu-Lys-Gln-Glu-Pro-Lys at positions 50, 51, 54, 55, 58, 64 and 72 of nesfatin-1 

replaced by His-Arg-Gln-Glu-Asn-Gly-Ala in the M30 region of NLP) were found. These 

similarities suggest that NLP, like nesfatin-1, is a biologically active peptide. 

Our in vitro studies using synthetic NLP is in agreement with this notion. Short-

term exposure of MIN6 cells cultured in 25 mM glucose to synthetic NLP at 10 and 100 

nM resulted in an increase in preproinsulin mRNA expression and insulin release into the 

media. These results indicate that NLP is insulinotropic. The stimulatory effect was absent 

at a higher concentration (1000 nM) of NLP. This could be due to the desensitization or 

downregulation of the receptor(s) through which nesfatin-1 and NLP elicits its effects. 

There are some suggestions that nesfatin-1 effects are mediated via one or more G-

protein coupled receptors (GPCRs) [180], but the identity of nesfatin-1 receptors remains 

unknown. Recently, GPCR12 family was proposed as nesfatin-1 receptors [182]. It is 

possible that NLP also mediates its insulinotropic effects through the same or related 

nesfatin-1 receptors. In a separate study, we did not find any insulinotropic effects for 

NLP on MIN6 cells cultured at 2 mM or 5.6 mM glucose media (data not shown). This 

result shows that NLP stimulates insulin only at high glucose concentrations, but not at 

hypo- or normoglycemic conditions. Also, in vitro studies using the scrambled peptide to 

NLP suggests that the specific sequence of 77 amino acid is critical for the insulinotropic 

action of NLP. The data clearly shows that both 10 and 100 nM of scrambled peptide to 

NLP could not elicit the same response in preproinsulin expression and insulin secretion 

when compared to similar doses of NLP. When comparing the data from the scrambled 

peptide and NLP, the basal insulin from controls in scrambled peptide study were lower 

(25-30 ng/mL) than in the initial NLP study. This can be attributed to the difference in the 

MIN6 confluency between both independent studies. 
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This research also indicates that the endocrine pancreas is an abundant source of 

NUCB1. The expression of NUCB1 mRNA was detected in both mice pancreas and MIN6 

cells. Specifically, NUCB1 was found to be co-localized with insulin immunopositive cells 

in pancreatic islets. This is in line with the previous immunohistochemical studies by 

Williams et al., [219] which shows NUCB1-IR to be distributed with insulin immunopositive 

cells. They also found NUCB1 to be co-localized with golgi apparatus protein, giatin, 

shedding light on its subcellular localization in pancreas. This indicates that the pancreas, 

especially the endocrine pancreas is a source of NUCB1 and NLP. As a confirmation to 

this at the protein level, immunocytochemical studies show clear co-localization of 

NUCB1 with insulin in cultured MIN6 cells and islet beta cells of mice. Preliminary results 

evaluating the endogenous NUCB1 protein expression in major peripheral tissues in 

response to feed availability shows a significant increase in liver NUCB1 expression 

under fasted state. Previous results have shown a similar 5 to 6 fold increase in liver 

NUCB2 mRNA expression in fasted goldfish [180]. Also, nesfatin-1 treatment in ad libitum 

fed rats increased phosphoenolpyruvate carboxykinase 1 (PEPCK1) and gluose-6-

phosphatase (G6P) mRNA expression in liver [13]. Both PEPCK1 and G6P plays crucial 

role in hepatic gluconeogenesis. The increase can be attributed to the inhibition of 

caspase mediated cleavage of NUCB1 [244]. The liver is actively involved in 

gluconeogenesis under fasted state compensating for the lack of glucose. 

Glyceraldehyde-3-phosphate (G3P) which is an important intermediate in the pathway is 

expected to be higher during gluconeogenesis. Previous studies have also established a 

direct inhibitory role of G3P on caspases [245]. This is physiologically relevant as 

cleavage site for caspases is highly conserved between both NUCB1 and NUCB2 [244]. 

Whether or not NUCB1 or NLP regulates the expression of enzymes involved in hepatic 

gluconeogenesis, be it G6P, PEPCK1 or G3P requires further assessment. Contrastingly, 

no changes in response to feed availability were observed in stomach and pancreas. 

Western blots were unable to capture the presence of a processed peptide i.e. NLP. This 

can be attributed to the specificity of the antibody used. Immunoprecipitation of protein 

antigen from media and plasma samples using a highly specific antibody targeting the 

NLP region in NUCB1 should provide a clearer picture on NLP secretion. Also, 
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assessment of the levels of NLP in conditioned culture media in vitro and its levels in 

circulation in vivo using a custom ELISA warrants consideration.  

Subcutaneous infusion of 100 µg/kg body weight NLP in mice had no effect on 

feed intake. This study needs repetition to test additional doses of NLP, and to determine 

whole body energy homeostasis using a metabolic cage system. The bioactive core of 

nesfatin-1 containing 30 amino acids was attributed to its anorexigenic action as neither 

the N-terminal segment nor the C-terminal segment increased central POMC and c-Fos 

expression upon peripheral or I.C.V administration in mice [9]. Interestingly, the mid 

segment of nesfatin-1 has high homology to the active site of AgRP and α-MSH. 

Subsequent studies on the activities of mutant molecules by replacing mid-segment sites 

with alanine clearly showed that the similarity to AgRP active site is critical for a peptide 

to be anorexigenic [182]. Considering that NUCB1 is a secreted protein, NLP presumably 

could elicit its biological functions in an endocrine manner. The presence of nesfatin-1 

and NUCB1 in pancreatic islet beta cells suggests possible local effects, in addition to the 

endocrine effects for NLP in islet hormone secretion. In conclusion, these results provide 

the first set of information on NLP as an endogenous insulinotropic peptide encoded in 

NUCB1. Future studies, examining NLP under normal and atypical physiological 

conditions in vivo, especially in diabetes and obesity, and mechanism of action of NLP 

warrant consideration. 

3.5. CONCLUSIONS 

 This research provides the first set of evidence for a NUCB1 encoded biologically 

active nesfatin-1-like peptide (NLP). We characterized the expression of NUCB1 mRNA 

and NUCB1 immunoreactivity in MIN6 cells and mouse pancreas. We found NUCB1 to 

be co-localized with insulin immunopositive cells in pancreas and MIN6 cells. In silico 

analysis of NUCB1 amino acid sequence detected a potential prohormone convertase 

cleavage site. Given the fact that both MIN6 cells and pancreatic islets have the 

appropriate enzyme machinery (prohormone convertases) indicates that NUCB1-

encoded NLP could be secreted. Since both nesfatin-1 and NLP were highly similar we 

tested insulinotropic action of NLP by treatment of MIN6 cells dose-dependently with 

exogenous NLP. NLP upregulated preproinsulin mRNA expression and insulin secretion. 
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Although, MIN6 cells are highly representative of pancreatic β cells, the consistency of 

the current results needs to be tested in the primary cells of pancreatic islets by islet 

isolation. By static incubation studies of cells with a peptide scramble of NLP, we showed 

that the predicted 77 amino acid sequence arrangement of NLP might be critical for its 

insulinotropic action in vitro. Also since nesfatin-1 was reported to be an anorexigenic 

peptide capable of inducing satiety and reducing dark phase feed intake and since NLP 

was highly similar to nesfatin-1, we tested the potential appetite regulatory function of 

NLP on C57BL/6J mice and found that subcutaneous infusion of 100 µg/Kg body weight 

NLP had no effect on both dark and light phase feed intake. A future study evaluating the 

effect of I.C.V and I.P injection of NLP on feed intake will provide a more complete picture. 

We also performed studies to evaluate the changes in the endogenous expression levels 

of NUCB1 with respect to feed availability. Preliminary results from Western blots show a 

significant increase in NUCB1 protein expression in liver under fasted state. However, no 

changes in the protein expression in stomach and pancreas were observed. The Western 

blot analysis for the current chapter is currently under progress and will be completed 

soon. Overall, findings in the current chapter shed light on a NUCB1 encoded bioactive 

NLP. The results in this chapter iterate the insulinotropic action of NLP, attributing its 

biological action to its specific 77 amino acid sequence. This project has also opened a 

variety of avenues to explore to reconfirm and evaluate the current hypothesis, and some 

future extensions are discussed in chapter 4. 
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CHAPTER 4 

INTEGRATION OF FINDINGS AND FUTURE DIRECTIONS 

4.1. INTEGRATION OF FINDINGS 

 This thesis research is novel and highly original, and was aimed to extend our 

current knowledge on nesfatin-1 biology. It resulted in two major discoveries: 1. nesatin-

1 presence in enteroendocrine cells, and its modulation of intestinal hormones, and 2. 

identification of an insulinotropic, nesfatin-1 like peptide encoded in NUCB1. This section 

of the thesis will address some of the implications of the results obtained, limitations of 

the research and future directions. 

The focus of chapter 2 in this thesis was to evaluate the presence of endogenous 

NUCB2/nesfatin-1 in mouse intestine and to study the effects of nesfatin-1 administration 

in vitro in mouse intestinal cell line, STC-1 and in vivo in mouse intestine. NUCB2 mRNA 

was present in STC-1 cells. The result was highly indicative that intestinal 

enteroendocrine cells could be a source of endogenous nesfatin-1 in vivo, possibly 

contributing to the post-meal increase reported previously [11]. This also highlights the 

utility of STC-1 cells for studying nesfatin-1 biology in addition to study the secretion 

kinetics of major enteric hormones GLP-1, GIP, PYY and CCK.  This research also 

considered the expression of NUCB2 in ad libitum fed mouse intestine. Supporting the 

previous evidences [15, 193, 246], NUCB2/nesfatin-1 immunoreactive cells were found 

in mouse intestine and were predominantly localized in the crypts of the intestinal villi, 

Brunner’s glands and in the blood vessels surrounding the connective tissue. Besides 

being a crucial site for nutrient absorption, intestine is a major endocrine organ secreting 

hormones that modulate energy metabolism and glucose homeostasis. Nesfatin-1 was 

found colocalized with a number of enteric hormones including GLP-1, GIP, PYY and 

CCK. The co-presence of these hormones in the same cells that secrete important 

metabolic hormones implies its significance in physiological roles, especially the 

regulation of whole body energy homeostasis and insulin secretion by nesfatin-1. It also 

raises the possibility that nesfatin-1 might have local autocrine or paracrine effects in 
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regulating the secretion of intestinal hormones. Whether nesfatin-1 is stored in the same 

secretory vesicles, and is secreted with other hormones remain unknown. 

The presence of nesfatin-1 immunoreactivity in intestine raised an important 

question: Does nesfatin-1 modulate intestinal hormone secretion? Immunohistochemical 

staining of C57BL/6J small and large intestinal sections showed NUCB2/nesfatin-1 to be 

co-localized with GLP-1, GIP, PYY and CCK immunopositive cells. Subsequent in vitro 

studies on STC-1 cells showed a significant dose-dependent upregulation of GLP-1, GIP, 

CCK, and downregulation of PYY mRNA expression and secretion. These results are 

highly suggestive that nesfatin-1 has the potential to activate insulinotropic intestinal 

hormones and suppresses insulinostatic hormones of intestinal origin, to modulate insulin 

secretion. A major limitation of this approach is that the studies were conducted only in 

vitro, and that again used immortalized cell lines. While the results obtained are 

conclusive, it is important to determine whether biological actions of nesfatin-1 found in 

vitro also exist in vivo. The in vivo studies evaluating the relative levels of intestinal 

hormones in circulation in response to subcutaneous osmotic pump infusion of 100 µg/kg 

body weight nesfatin-1 in mice was indeed conducted. However, some technical 

challenges prevented us from obtaining conclusive data on enteric hormone secretion in 

this study. The tissues collected will now be evaluated for relative mRNA and protein 

expression of enteric hormones using RT-qPCR and Western blotting. This work also 

requires further enquiries on the mechanistic aspects of nesfatin-1’s action in intestine 

including the nature of its receptors, chapter 2 details its presence in the intestine, 

establishing enteroendocrine cells as a source for endogenous nesfatin-1. It also affirmed 

that nesfatin-1 indeed modulates secretion of intestinal hormones in vitro, paving way for 

a thought that an indirect route of its insulinotropic action is possibly by stimulating other 

enteric insulinotropins and inhibiting enteric insulinostatins. Additional studies using 

enteric hormone knockout mice will be a great tool to determine whether nesfatin-1 action 

on other insulin regulatory hormones is critical for its insulinotropic actions. To the best of 

our knowledge, this remains the first report on direct actions of nesfatin-1 in modulating 

enteric hormones (Figure 4.1). This finding adds an additional function, intestinal 

hormone regulation, to the growing list of biological actions of nesfatin-1 (Figure 4.1). 
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Figure 4.1. A summary figure depicting the multi-functional stimulatory and inhibitory 

roles of nesfatin-1 reported. Chapter 2 extends this by the identification of a direct role for 

nesfatin-1 in regulating intestinal hormone secretion. 

The findings elaborated in chapter 2 are in line with our hypothesis. Further studies 

are required to reconfirm and clarify the role of nesfatin-1 in regulating intestinal hormone 

secretion. Specifically, the immunoassays took into account total GLP-1 and GIP content. 

Therefore, a separate assay evaluating the secretion of levels of active forms of both the 

peptides (GLP-1 (7-37) and GIP (1-42) is warranted along with the use of DDP-IV 

inhibitors. Similarly, whether or not nesfatin-1 modulates the secretion of CCK-8 and 

CCK-33, which are two bioactive forms of CCK in circulation also requires clarification. 

With respect to the mRNA expression data on GLP-1, the proglucagon gene besides 

GLP-1 also encodes GLP-2 and oxyntomodulin. Although the primer used for the study 

targets the GLP-1 encoding region of the proglucagon gene, yet a Western blot evaluating 

the changes in the GLP-1 protein expression in response to dose-dependent treatment 

of nesfatin-1 is necessary for research rigor. Results from the in vivo studies including the 

changes in circulating levels of intestinal hormones in response to subcutaneous, I.P or 

I.C.V administration of nesfatin-1 will provide a complete picture on the nature of nesfatin-

1 modulation of enteric hormones. Some of the possible future directions for this chapter 

are outlined later in this chapter. 
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At the time when we initiated research in chapter 3, no information existed about 

a NUCB1 encoded bioactive peptide. We detected both NUCB1 mRNA expression and 

immunoreactivity in pancreatic islets of C57BL/6J mice and in mouse insulinoma cells 

MIN6. This reaffirms that endocrine pancreas is an abundant source of endogenous 

NUCB1. Also, NUCB1 immunoreactivity was co-localized with insulin immunopositive 

cells in islets, suggesting that NUCB1 or an encoded peptide could modulate insulin 

secretion. Similar to the characterization of nesfatin-1 from NUCB2 [9], we hypothesized 

that NUCB1 encodes a bioactive nesfatin-1-like peptide (NLP) that could be secreted. In 

silico analysis of NUCB1 amino acid sequence convincingly showed the presence of a 77 

amino acid NLP. We have previously demonstrated that both islets and MIN6 cells 

express NUCB2/nesfatin-1 and that nesfatin-1 dose-dependently stimulates GSIS [5]. 

Owing to its high similarity to nesfatin-1, especially high identity (76.6%) in the 30 amino 

acid mid segment region (the bioactive core of nesfatin-1), we hypothesized that NLP 

could have an insulinotropic action similar to nesfatin-1. Testing this hypothesis via in vitro 

studies on MIN6 cells cultured under hyperglycemic conditions (25 mM glucose), we 

demonstrated that short-term exposure to exogenous NLP stimulates preproinsulin 

mRNA expression and insulin secretion at 10 and 100 nM doses. To confirm the specific 

77 amino acid sequence of NLP is critical for its bioactivity and to test whether any peptide 

that shares the same amino acid length but dissimilar amino acids could also elicit the 

same response as NLP, we treated MIN6 cells with a scrambled peptide to NLP at doses 

that were found effective with NLP (10 and 100 nM). The results from the scrambled 

peptide study clearly demonstrated that the specific sequence of 77 amino acids is 

required for NLP’s action on insulin secretion in vitro. We then quantified the endogenous 

levels of NUCB1 expression in response to feed availability in mice. We found a significant 

increase in NUCB1 expression in fasted mice liver and found no changes in pancreas 

and stomach. Further, we tested whether NLP modulates appetite similar to nesfatin-1, 

by subcutaneously infusing 100 µg/kg body weight NLP in C57BL/6J mice. Results from 

this study demonstrated that NLP, at the dose tested and mode of administration has no 

effect on both light and dark phase feed intake. 

The findings described in chapter 3 are supportive of our hypothesis. However, 

whether an endogenous NLP exists still remains inconclusive. Future efforts should focus 
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on addressing this critical question, and identify the processed endogenous peptide from 

NUCB1. NLP also requires rigorous set of studies designed to evaluate its insulinotropic 

action in vivo, especially under atypical physiological conditions like T2D, obesity and in 

islets isolated from perfused mice pancreas (primary cell line studies). This is necessary 

because when compared to nesfatin-1, NLP is insulinotropic at higher doses and the 

increase in insulin secretion is modest. Also, under both in vitro and in vivo conditions, 

the basal levels of NLP in culture media and in circulation remain to be elucidated by 

means of a dedicated immunoassay (ELISA or RIA). This will aid in better design for 

future studies evaluating the dose-dependency of NLP in any given biological system and 

also to affirm that NLP indeed is secreted in vivo.  Similar to nesfatin-1, the N-, C- and 

mid-segment of NLP could be fragmented by incubation of peptide with prohormone 

convertases and caspases, with each fragment being tested for insulinotropic action and 

satiety. A few possible future directions for this chapter are described in section 4.2 below. 

A preliminary conclusion is that both NUCB1 encoded NLP, and NUCB2 encoded 

nesfatin-1 modulate insulin secretion in mammals. This insulinotropic effect is direct. Our 

results, especially from chapter 2, trigger a new possibility where nesfatin-1 and/or NLP 

act directly on intestinal hormones, and this modulation of intestinal hormones indirectly 

mediates its insulinotropic action (Figure 4.2). 
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Figure 4.2. A schematic representation depicting the overall conclusion of chapter 2 and 

3. Nesfatin-1 encoded by NUCB2 is present in intestine and modulates major intestinal 

hormones (GLP-1, GIP, CCK and PYY). A nesfatin-1-like peptide encoded by NUCB1 

stimulates insulin secretion in vitro in MIN6 cells and the same response is absent upon 

administration of an amino acid scramble to NLP. This diagram concludes that two known 

nucleobindins (NUCB1 and NUCB2) modulate insulin secretion. While NUCB2 encoded 

nesfatin-1 stimulates insulin secretion via a direct action on pancreatic islets and indirectly 

via stimulation/inhibition of insulinotropic/insulinostatic intestinal hormones, NUCB1 

encoded NLP modulates insulin secretion by a direct action in vitro. 

4.2. FUTURE DIRECTIONS 

1. A time-dependent study of nesfatin-1 doses on enteric hormone secretion in 

STC-1 cells: One limitation of the current study is that it considered only a single time 

point i.e. 1 hour incubation. In a future study, a dose of nesfatin-1 effective in modulating 

enteric hormone secretion should be tested at 15, 30, 45 minutes and 1.5, 2 hours to 

determine whether the effects of exogenous nesfatin-1 reported in this chapter continues 

to exist for both longer and shorter durations. Also, new and previous data generated will 
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be normalized using two or more reference genes (β-Actin, GAPDH and α-tubulin) for 

consistency and rigor. 

2. Determine the serum levels of enteric hormones post intraperitoneal injection of 

nesfatin-1: While the changes in the serum levels of enteric hormones in response to 24 

hour osmotic pump infusion of nesfatin-1 are currently being tested, whether these effects 

are consistent in response to an I.P injection of nesfatin-1 remains to be seen. 

Immunoassays for circulating levels and Western blot for changes in the protein 

expression will be carried out in the tissues collected. 

3. Absence of endogenous nesfatin-1: The studies explored the effects of exogenous 

nesfatin-1 on mice enteric hormone secretion in vivo and the role of nesfatin-1 treatment 

in STC-1 cells in vitro. However, these studies do not help understanding whether 

endogenous nesfatin-1 is critical for this action. Intestine specific NUCB2 knockout and 

knockdown strategies should be used to delete or attenuate endogenous nesfatin-1, and 

determine how the secretion levels of intestinal hormones in the absence of this 

regulatory peptide are, with respect to feed availability. This will provide crucial insights 

and start points for studying the mechanism of nesfatin-1 action on intestinal hormones. 

4. Endogenous Expression of NLP – Changes based on Feed Availability: While we 

are currently focusing on the endogenous NUCB1 expression in peripheral tissues under 

feed availability, we so far have met with moderate success in capturing the band for the 

processed NLP peptide. To negate this, immunoprecipitation using a highly NLP specific 

antibody is helpful. The study will also ascertain whether or not endogenous NUCB1/NLP 

has variable tissue specific expression under feed deprivation. 

5. Determine the levels of NLP in circulation: While the current studies tested the 

changes in insulin secretion upon dose-dependent treatment of NLP in MIN6 cells, 

evaluating its level in circulation and particularly under atypical physiological conditions 

like diabetes and obesity is necessary. Also, these studies will iterate that NLP is indeed 

a secreted protein in vivo. 

6. Time-dependent Study of NLP Doses on Insulin Secretion: The current study 

design have considered only a single time point i.e. 1 hour. In a future study, an effective 
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dose of NLP capable of stimulating insulin secretion should be tested at different time 

points. This study is crucial when addressing a novel peptide like NLP, as it helps 

determining the efficacy of the peptide and its kinetics. 

7. Biological Actions of NLP: The studies in the thesis elucidated NLP to be an 

insulinotropic peptide similar to nesfatin-1. However, whether NLP and nesfatin-1 share 

their biological actions pertaining to energy balance remains to be studied. Studies 

evaluating IPGTT, ITT, OGTT and metabolic parameters (using CLAMS) of NLP infused 

mice will provide insights on its regulation of glucose and energy homeostasis similar to 

nesfatin-1. Also, assessing whether or not NLP modulates intestinal hormone secretion 

similar to nesfatin-1, opens up new possibilities for its unknown biological actions.  
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