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ABSTRACT 
   

Though the arrival directions of ultra-high-energy cosmic rays (UHECRs) are 

distributed in a relatively isotropic manner, there is evidence of small-scale 

anisotropy.  This, combined with the detection of cosmic rays with energies above 

the GZK cut-off, has motivated us to further investigate the idea that UHECRs are 

the result of a top-down mechanism involving the annihilation of superheavy dark 

matter particles in our galactic halo.  To more precisely characterize the nature of 

dark matter, we have endeavoured to apply two different models to the leading 

UHECR spectra, namely those from the AGASA, High Resolution Fly’s Eye, and 

Pierre Auger Collaborations.  First, we attempt a non-linear, least-squares fit of 

the particle physics fragmentation function to the spectra.  Second, we propose 

that the observed cosmic ray spectrum above 3.5 × 1018 eV is the superposition of 

flux from two different sources:  bottom-up acceleration via a simple power-law 

relation at lower energies and scattered particles from dark matter annihilation 

governed by fragmentation functions at higher energies.  We find that while the 

former model does not provide a satisfactory fit to observatory data, the latter 

yields reduced χ2 values between 1.14 and 2.6.  From the fragmentation function 

component of our second model, we are able to extract estimates of dark matter 

particle mass.  We find values of (1.2 ± 0.6) ×1021 eV, (5.0 ± 4.3) ×1020 eV, and 

(2.6 ± 1.5) ×1021 eV respectively for the AGASA, HiRes, and Pierre Auger data, 

which agree with earlier predictions based on a cosmological analysis of non-

thermal particle production in an inflationary universe.  Furthermore, we verify 

that the dark matter particle densities required by our two-source model are in line 

with current CDM theory. 
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Chapter 1 INTRODUCTION 
 

Currently, two of the most compelling puzzles in astroparticle physics are the 

characterization of dark matter and the explanation of the origin of ultra-high-

energy cosmic rays (UHECRs).  Some theories postulate that the two phenomena 

are linked—that UHECRs are the result of dark matter particle decay or 

annihilation.  In order for these scenarios to be feasible, dark matter must meet a 

number of constraints that are largely imposed by UHECR observations.  Firstly, 

a substantial fraction of dark matter must be composed of super-heavy, weakly-

interacting particles.  At the beginning of the universe, these exotic particles must 

have been created with adequately long lifetimes and in large enough quantities to 

be able to produce ultra-high-energy cosmic rays at the frequencies observed 

today.  Sufficient concentrations of dark matter must also be distributed within 

galaxy-containing regions of space to account for the nearly isotropic arrival 

directions of UHECRs.  Finally, dark matter particles must have a high enough 

rest mass such that the decay or annihilation products are capable of matching the 

very highest energy cosmic rays. 

 

Previous investigations of dark matter particle characteristics have tended to give 

a range of possible mass values that extend over several orders of magnitude 

(Griest and Kamionkowski, 1990; Kolb et al., 1999; Fodor and Katz, 2001; Hui, 

2001; Blasi et al., 2002; Sarkar and Toldrá, 2002; Dick et al., 2005).  The goal of 

this thesis is to make a more precise mass estimation for non-thermal dark matter 

particles using particle physics theory.  This alternate calculation of dark matter 

particle mass is undertaken to further refine or discount the proposal that 

UHECRs are the result of dark matter annihilation.  The topic is a timely one, 
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since within a few years the southern Pierre Auger Observatory in Argentina 

should accumulate enough data to address the validity of all prevalent theories on 

the origin of UHECRs (Dick et al., 2005). 

 

In order to acquaint the reader with the foundations of the topic, Chapter 2 

provides an overview of existing ideas about dark matter and UHECRs and 

examines some of the competing views that exist in areas affecting the project.  

Chapter 3 discusses the theory of dark matter annihilation as a source of UHECRs 

and motivates the particle physics approach to the calculation of particle mass.  

Chapter 4 provides the pertinent details of UHECR observation and methods used 

to calculate cosmic ray spectra from these observations.  The analysis methods 

that we applied to the spectra are explained in Chapter 5, while Chapter 6 gives 

the results of the analysis of data from the three most prominent UHECR 

observatories.  The final chapters provide discussion and conclusions for this 

work, as well as suggestions for future directions in the research. 

 



 

 3

Chapter 2 BACKGROUND 
 

2.1 Dark Matter 

2.1.1 What is Dark Matter? 

Dark matter is a theoretical construct for explaining observed anomalies in the 

behaviour of luminous celestial bodies.  In many ways, the current problem of 

dark matter resembles past puzzles arising from unseen planets.  Astronomers 

have observed unusual behaviour, on both galactic and cosmological scales, that 

can only be explained by the existence of a significant amount of unseen, “dark 

matter,” or by modifying the laws of gravity.   Dark matter is thought to comprise 

about 90% of the matter in the universe, but since it neither emits nor reflects 

radiation with the possible exception of fragmentation products, it can only be 

detected indirectly.   

 

2.1.2 Evidence of Existence 

The case for the existence of dark matter has been slowly building for many 

years.  As early as 1933, Fritz Zwicky measured the velocity dispersion of 

galaxies in the nearby Coma cluster.  He then used the virial theorem to determine 

that the density of the cluster should be 400 times greater than that calculated 

from luminous matter (van den Bergh, 1999).  Three years later, Sinclair Smith 

made similar observations on the Virgo cluster.  Smith found that some galaxies 

had velocities in excess of his calculated escape velocity for the cluster and yet 

these galaxies remained bound.  He postulated that there must be a vast amount of 

internebular material within the cluster. 
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Since these early beginnings, more sophisticated tests of dark matter have been 

performed.  It was expected that galaxies, like planets, would roughly follow 

Newton’s laws, which state that the circular velocity, v(r), of a body depends only 

on its radial distance from the orbital centre and on the total mass contained 

within the orbit, ∫= '')'(4)( 2 drrrrM ρπ , where ρ(r) is the density distribution 

function (G. Bertone et al., 2005).  The graph of the circular velocity of the stars 

in a galaxy versus their distance from the galactic centre is known as a rotation 

curve.  The expectation is that this velocity may be estimated by equating 

centrifugal and gravitational forces, 

( )
r

rGMrv =)(               (2.1) 

Rather than finding that the velocity of the outer portion of a galaxy decreases 

with r-½ as predicted by Equation 2.1, astronomers have observed that the velocity 

approximately levels off to a constant.  This implies the existence of a dark matter 

halo whose total mass varies with radius, and whose density varies with ~1/r2. 

 

Anomalies in strong gravitational lensing have also been held up as evidence for 

the existence of dark matter and a clue to its structure.  A study performed by 

Mao and Schneider (1998) examined quasars that were multiply imaged by 

intervening galaxies.  They found that modelling the gravitational potential for the 

lensing galaxy by a simple, smooth distribution could not reproduce the observed 

images for some quasars.  They suggested that the presence of dark matter 

substructure or clumps in the lensing galaxy could explain the anomalies.  Chiba 

(2002) later expanded this investigation and also determined that other known 

objects, such as globular clusters and luminous dwarf satellites, could not explain 

the lensing behaviour observed. 

 

There are indications that dark matter may not be composed of any type of 

particle that we are familiar with.  A baryon density large enough to account for 

all of the matter in the universe would lead to anisotropies in cosmic microwave 

background (CMB) radiation that are much larger than observed.  Data from the 
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Wilkinson Microwave Anisotropy Probe (WMAP) has been used to map CMB 

anisotropy to new levels of accuracy.  The preliminary findings of the WMAP 

team are that only 4.4% of the energy in the universe is composed of ordinary 

baryonic matter while dark matter accounts for 22% (C. L. Bennett et al., 2003).  

Since baryonic matter only comprises a small fraction of the matter in the 

universe, the question then becomes:  what makes up the rest? 

 

2.1.3 Candidates 

There is a wide range of hypotheses about the composition of dark matter.  Big 

Bang nucleosynthesis (BBN) makes predictions about the baryonic density of the 

universe which have been found to be in good agreement with observation.  The 

success of BBN therefore restricts the amount of baryonic dark matter to a 

fraction of what is required.  Despite evidence that baryonic density is 

constrained, some still speculate that dark matter is baryonic, as this would not 

require changes to the standard model.  Theories for baryonic dark matter 

candidates range from MAssive Compact Halo Objects (MACHOS) on a galactic 

scale, such as white dwarfs, dim infrared stars, brown dwarfs and planets, to 

objects such as low surface-brightness galaxies, neutron stars, black holes, gas, 

and dust clouds on a cosmologic scale.   

 

Cold dark matter (CDM) theory involving hypothetical, non-baryonic particles 

has emerged as a favourite in the past decade.  The proposals for non-baryonic 

dark matter candidates are also very diverse.  For a while, neutrinos were 

regarded as a very promising possibility, particularly because they “have the 

undisputed virtue of being known to exist” (Bergström, 2000).  However, recent 

constraints on the upper limit of neutrino mass suggest that neutrinos can only 

make up a small fraction of dark matter (Bertone et al., 2005).  Neutrinos would 

also be “hot” dark matter and thus could not have participated in the formation of 

structure in the universe. Numerous other hypotheses for exotic dark matter 

particles exist, some of which are:  axions, weakly interacting massive particles 

(WIMPS) such as neutralinos and other supersymmetric particles, superheavy 
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dark matter particles (WIMPZILLAs or SHDM), and Kaluza-Klein states 

resulting from extra dimensions.  WIMPZILLAs are of particular interest because 

they may not only solve the puzzle of dark matter composition, but WIMPZILLA 

decay or annihilation could also be the source of the highest energy cosmic rays 

that strike the Earth. 

 

WIMPZILLAs are thought to be relics of the early universe, produced at the end 

of inflation through a number of possible mechanisms.  They have an extremely 

high mass ≈ 1022 eV (Kolb et al., 1999), though literature values range from 1018 

to 1027 eV (Griest and Kamionkowski, 1990; Fodor and Katz, 2001; Hui, 2001; 

Blasi et al., 2002; Sarkar and Toldrá, 2002; Dick et al., 2005). 

   

2.1.4 Modelling the Universe - The ΛCDM Model 

Though different research teams use different computer programs and 

assumptions to create their view of the universe, current cosmological models, 

called “ΛCDM” models, are based on an inflationary universe with CDM 

particles and a cosmological constant, Λ.  In this model, the structure of the 

universe starts out as primordial density fluctuations that eventually form CDM 

clumps.  These clumps collapse and then undergo a series of mergers with other 

clumps, eventually forming large, massive, dark matter haloes.  The haloes then 

act as hosts to the visible structure in the universe, from galaxies to clusters 

(Hayashi et al., 2003). 

 

An inflationary universe has a flat geometry, i.e., a critical density of 1.  In 

ΛCDM models, matter is considered to make up about 0.3 of the critical density, 

with baryonic matter forming only a small fraction of this.  A cosmological 

constant of ~0.7 composes the remainder of the critical density.  Dark matter 

particles are modelled as being long-lived, cold, and collisionless:  “long-lived” 

because they have a lifetime greater than the present age of the universe; “cold,” 

as they were non-relativistic early in the formation of the universe and soon 

formed gravitational clusters; and “collisionless” since the interaction of dark 
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matter particles with themselves as well as with ordinary matter is considered 

negligible at the densities found in dark matter halos (Ostriker and Steinhardt, 

2003). 

 

The ΛCDM model has had many successes.  Predictions derived from N-body 

simulations of the model agree with many observations, including the 

characteristic fluctuations in the CMB, measurements of the brightness of distant 

supernovae, and the age of the universe as estimated from the oldest stars (Bahcall 

et al., 1999; Tasitsiomi, 2003).  One of the most impressive features of the ΛCDM 

model is that it predicts an abundance of substructure that agrees with the 

observed large-scale (≥ 1 Mpc) structure of galaxy clusters, as shown in Figure 

2.1. 

 
Figure 2.1.  High resolution simulation of the dark matter substructure in a galaxy cluster carried out by the 
Virgo Supercomputing Consortium using computers based at the Computing Centre of the Max-Planck 
Society in Garching and at the Edinburgh Parallel Computing Centre.  The brighter the region, the more 
concentrated the dark matter.  Data is publicly available at www.mpa-garching.mpg.de 
/galform/virgo/int_sims. 
 

Much work has been done to establish the characteristics of the dark matter haloes 

which host galaxies and clusters, but a consensus on how to describe their 

structure has not yet been reached.  Early works tended to represent the dark 
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matter density in haloes with an isothermal density distribution; that is ρ ∝ r-2 

where r is the radial distance from the centre of the host halo.  In the last decade, 

many numerical studies have been performed on the density profiles of CDM 

haloes.  Though results vary, the studies all tend to agree on three basic points. 

1) The large-scale density of dark matter is highest at the centre of the halo, 

and is likely even more dense than the isothermal profile, with ρ ∝ r-1.5 or 

higher.  

2) Density decreases with radial distance until it is less than isothermal near 

the edge of the halo (ρ ∝ r-3).   

3) The profile is not entirely smooth, but rather there are embedded clumps, 

or subclumps, of dark matter.  

   

The most often cited shortcoming (even called a “crisis”) of the ΛCDM model is 

that it appears to drastically over-predict the amount of substructure on smaller 

scales.  In early N-body simulations using the ΛCDM model, Klypin et al. (1999) 

noticed that their model of our “Local Group” of galaxies had 50 to 100 satellites 

while only 12 satellites have actually been observed.  Moore1 et al. (1999) found 

that substructure was over-predicted by a factor of 50.  Though Moore et al. used 

different modelling software, they also had much higher resolution (a greater 

number of particles representing a given mass) in their N-body simulation than 

Klypin et al. 

 

The over-prediction of substructure has lead to speculation about the existence of 

dark satellites, or subclumps, composed either entirely of dark matter or having 

very little luminous matter.  Hayashi et al. (2003) predicted that less than 1 in 10 

subclumps is inhabited by a luminous satellite.  Similarly, Dalal and Kockanek 

(2002) speculated that the number of visible satellites is only a lower bound for 

the possible number of satellites in the Local Group.  Since gravitational lensing 

provides information about mass distribution that does not depend upon the 

luminosity of the lensing galaxy, they developed a technique to estimate the 

satellite population of lens galaxies.  Their analysis of numerous lenses predicted 
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that 0.6 to 7% of the mass of a halo is in the form of substructure, significantly 

higher than the 0.01 to 0.1% mass in visible substructures.  CDM models have 

predicted that anywhere from 2 to 15% of the galactic mass is substructure 

(Springel et al., 2001; Stoehr et al., 2002; Hayashi et al., 2003). 

 

Recent N-body simulations have employed increasingly more powerful parallel-

computing facilities which have facilitated increased resolution.  These studies 

find still greater quantities of subclumps (several hundred times more than 

observed) and even evidence of substructure within the subclumps (Moore et al., 

2001).  The rate of increase of the number of subclumps has been shown to 

decrease with increasing resolution (Ghigna et al., 2000; V. Springel et al., 2001); 

thus there is some hope for convergence of subclump counts with high enough 

resolution.  It has been suggested that sufficient computing power to achieve the 

requisite resolution is still several years away. 

 

2.2 Ultra-High-Energy Cosmic Rays 

2.2.1 Overview 

Cosmic rays are particles that continually bombard the Earth, ranging in energy, 

E, from 109 eV to over 1020 eV.  Figure 2.2 illustrates that cosmic ray flux 

generally depends upon the energy of the incoming particles, varying with ~E-2.7 

for energies below the “knee” (~1015 eV), steepening to ~E-3 for energies between 

the knee and the “ankle” (~1018 eV), and slightly flattening again above the ankle 

(Dova et al., 2001).  Cosmic rays with an energy above 1018 eV are dubbed “ultra-

high-energy cosmic rays”.  The highest energy cosmic ray ever observed had an 

energy of (3.2 ± 0.9) × 1020 eV and was detected by the Fly’s Eye experiment, a 

precursor to High Resolution Fly’s Eye (HiRes) in Utah (Bird et al., 1991). 

 

2.2.2 Origins of Cosmic Rays and the GZK Cut-off 

The study of UHECRs is particularly important for two reasons.  Within the 

galaxy, there exists a magnetic field of a few micro Gauss, and it is estimated that 

intergalactic magnetic fields have a strength on the order of 10 nano Gauss 
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(Olinto, 2004).  Lower-energy cosmic rays can be deflected by galactic and 

intergalactic magnetic fields and thus their arrival direction does not provide any 

information about the location of their sources.  However, UHECRs have such 

high energies that their trajectories are not significantly bent by magnetic fields of 

this order.  Thus they may be able to provide information about the location of 

cosmic ray sources. 

 
Figure 2.2.  Flux of cosmic rays vs. energy.  The straight dashed line represents a flux which varies with E-3, 
as predicted by the Fermi theory of stochastic acceleration of charged particles in magnetic inhomogeneities 
(after S. Swordy, unpublished).   
 

UHECRs are also of great interest due to the work done by Greisen, Zatsepin, and 

Kuz’min (Greisen, 1966; Zatsepin and Kuz’min, 1966).  Considering protons, 

heavy nuclei, and photons as candidate particles  for cosmic  rays,  they  proposed  
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that there should be a significant change in the cosmic ray spectrum at ~4 × 1019 

eV.  The so-called GZK cut-off occurs because the universe is permeated with 

CMB radiation having a density of ~400 photons/cm3.  Low-energy particles are 

not appreciably affected when travelling through the CMB, but for particles 

having an energy above 4 × 1019 eV, the rate of reaction with the background 

radiation becomes significant, causing the particles to lose energy.  Unless we are 

considering some sort of exotic particle which does not interact with the CMB, 

there is an energy-dependent limit to how far a charged ultra-high-energy particle 

can travel, as shown in Figure 2.3.  Cosmic rays having an energy above 1020 eV 

must have originated not far from the Milky Way, i.e. within 60 Mpc.  This value 

falls to 20 Mpc for the highest energy cosmic ray recorded (3.2±0.9 × 1020 eV) if 

the primary particle was a proton, lower still if the primary was a heavy nucleus 

or a photon (Sarkar and Toldrà, 2002).   

 

Figure 2.3.  Mean energy loss length, ( )
dxdE

EExloss = , due to adiabatic expansion (upper dotted 

curve), pair production (dash-dotted curve), hadron production (triple-dot-dashed curve).  The hadron 
interaction length and neutron decay lengths are shown by the dashed and lower dotted curves respectively.  
Total mean loss length is given as a solid line (Stanev et al., 2000). 
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A controversy has arisen over whether UHECR data really exhibits a GZK cut-off 

or not.  Due to the infrequent arrival of UHECRs (~1 per 100 km2 per year), the 

number of recorded events to date is still quite small.  For over a decade, the 

Akeno Giant Air Shower Array (AGASA) Observatory in Japan employed a 111 

km2 array of surface scintillation detectors to monitor particle showers resulting 

from UHECR collisions with atmospheric particles.  Though their early work 

favoured the existence of a GZK cut-off (Yoshida et al., 1995), the AGASA 

Collaboration now reports that there is no cut-off in their UHECR spectrum, as 

shown in Figure 2.4 (Takeda et al., 1998, 2003).  As of their last published 

spectrum, they find 65 events having energies > 4 × 1019 eV.  The Yakutsk 

Extended Air Shower Array in Russia also reports a lack of GZK cut-off, having 

recorded a number of events above 4 × 1019 eV (Knurenko et al., 2005). 

 

Figure 2.4:  Most recently published spectrum from the AGASA observatory for events with zenith angles 
smaller than 45°.  Open circles represent “well-contained” events whose cores are located at least 1 km inside 
the boundary of the array, while closed circles represent all events inside the array boundary.  The numbers 
beside higher energy points represent the actual count of events in that energy bin.  The highest and third-
highest energy bins, depicted with error bars alone, are the 90% confidence level limits for that bin though no 
events were recorded by AGASA during the observation period.  The dashed line is the expected spectrum 
for uniformly distributed, extragalactic sources, illustrating where the GZK cut-off should be (Takeda et al., 
2003). 
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In contrast, the HiRes Collaboration reports a decrease in flux at ultra-high 

energies that is more consistent with the GZK cut-off (Westerhoff, 2004).  This is 

ironic, perhaps, since Fly’s Eye also lays claim to the highest energy cosmic ray 

event ever recorded.  Their spectrum from June 1997 to February 2003 included 

35 super-GZK events out of ~1600 UHECRs logged (Bergman2, 2005).  The 

HiRes experiment uses air fluorescence telescopes to observe scintillation tracks 

made by UHECR showers as they pass through the atmosphere on clear, 

moonless nights.  The Monocular Fly’s Eye, or HiRes-1, has been in operation 

since 1997 and has logged a quantity of cosmic ray events comparable to that of 

AGASA.  However, the data sets for both experiments are still quite small and 

much more data needs to be collected for a statement about the existence of a 

GZK cut-off to become statistically significant.  It is also necessary to develop an 

understanding of how the two different detection techniques affect the calculation 

of UHECR energies. 

 

The Pierre Auger Observatory, which is nearing completion and has already 

begun data collection, aims to resolve these disputes.   The Auger Observatory 

has both a grid of water Cherenkov surface detectors covering 27 times the area of 

AGASA as well as four sites containing fluorescence telescopes overlooking the 

grid.  When possible, both observation techniques will be used to measure the 

same event so that discrepancies in the calculation of primary particle energies 

may be rectified.  In addition, the much larger ground array will allow the 

collection of a data set having reliable statistics within just a few years.  It is 

estimated that Auger will collect 60 events above 1020 eV per year and 6000 

above 1019 eV, which should not only address the question of the presence of a 

GZK cut-off, but also resolve the question of whether there is anisotropy in 

UHECR arrival directions.   

 

2.2.3 Anisotropy in Arrival Directions? 

While the arrival directions of UHECRs appear to be distributed in a fairly 

uniform  manner  throughout the sky,  as  illustrated  in  Figure  2.6,  the  AGASA  
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Figure 2.6.  The arrival directions of cosmic rays with energies above 1019 eV, in equatorial coordinates.  
Dots, open circles, and open squares represent energies of 1 to 4 × 1019 eV, 4 to 10 × 1019 eV, and > 1020 eV, 
respectively (Takeda et al., 1999). 

 

Collaboration has reported some small-scale anisotropy in cosmic  rays  with  

energies  ≥  4 × 1019 eV  (Takeda  et  al, 1999).   AGASA has observed five 

instances where the arrival directions of two cosmic rays (doublets) are within 

2.5° and one instance of a triplet cluster, as shown in Figure 2.7.  There is a 

probability of less than 1% that these clusters would occur by chance in an 

isotropic distribution.  Uchihori et al. (2000) increased their sample set to 92 

UHECR events by examining the available data from four different surface array 

experiments in the northern hemisphere.  They found 12 doublets and 2 triplets in 

the set, and agreed with AGASA’s probability estimates.  In contrast, the HiRes 

Collaboration does not find any anisotropy in their dataset (Westerhoff et al., 

2004; Abbasi2 et al., 2005).  Farrar (2005) notes that one of the HiRes UHECR 

events (E = 3.76 × 1019 eV) is coincident with the AGASA triplet with a chance 

probability of only 10-3.  Farrar also examined HiRes observations in the 1 to 3 × 

1019 eV energy range and found a fifth event arriving from the same direction.  

Because of the much larger number of events in this lower-energy data set, 

however, the probability of this occurring by chance increases to 1 in 6.  Again, it 

is hoped that the Pierre Auger project will settle this dispute.   The southern Auger 

observatory will also be able to test whether there is any anisotropy toward the 
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galactic centre; AGASA could not view the centre of the galaxy from its vantage 

point. 

 

Figure 2.7.  AGASA Collaboration map of UHECR arrival directions in equatorial coordinates.  Open circles 
and squares are defined as in Figure 2.6.  Blue and purple-filled circles represent doublets and triplets 
respectively. 
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Chapter 3 THEORY 
 

3.1 UHECR Models 

There are two prevalent theories about the origin of UHECRs:  the bottom-up and 

top-down models.  In the bottom-up model, particles are accelerated by large, 

energetic, astrophysical objects where strong shocks are found, such as Active 

Galactic Nuclei or Supernovas.  Nagano and Watson (2000) consider the limit for 

bottom-up particle acceleration by an astrophysical object to be between 1020 and 

1021 eV, though proponents of the top-down model argue against the feasibility of 

such energetic acceleration (e.g. Hillas, 1984; Sakaki et al., 2001).  In the top-

down model, UHECRs result from the decay or annihilation of heavy particles 

that were created in the early stages of the formation of the universe.     

 

3.2 UHECRs as a Result of Dark Matter Annihilation 

3.2.1 Justification 

The bottom-up model for UHECR creation has the distinct benefit of not 

requiring that a new class of particles be accepted into the standard model.  

However, the bottom-up model is not without its own demands on the boundaries 

of known physics.  It is very difficult to devise sufficiently efficient astrophysical 

mechanisms to accelerate particles to super-GZK energies and at the same time 

overcome collisional and radiation losses.  Additionally, if one considers the GZK 

bound, then some of these accelerating objects must be less than 20 Mpc away 

from the Earth. 

 

Another strike against the bottom-up model is that the arrival directions of 

UHECRs have been nearly isotropic to date, as discussed in Section 2.2.3.  Large, 
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accelerating bodies would not only have to be nearby, but there would also have 

to be many of them, uniformly distributed around the Earth.  The highest energy 

cosmic rays, those least affected by magnetic fields, have not been found to point 

back to any known candidate body. 

 

On the merit of the AGASA spectrum, the restrictions imposed by the GZK cut-

off led to the idea that UHECRs may result from the decay of super-heavy dark 

matter particles (Berezinsky et al., 1997).  Decaying particles would be located in 

the galactic halo, well within the GZK cut-off distance.  As decay would directly 

convert the rest mass of WIMPZILLA particles into UHECR energy, there would 

be no requirement for an acceleration mechanism, though it would be necessary 

for particle mass to be ≥ 1021 eV in order to account for the highest energy events.  

The difficulty with this proposal lies in finding a decay mechanism for such 

massive particles that proceeds slowly enough to allow a significant particle 

population to still exist today.  If a suitable decay mechanism does exist, then the 

frequency of UHECR events should increase with dark matter density.  N-body 

models predict that at least 85% of the dark matter near a galaxy is contained in a 

parent halo which smoothly decreases in density with increasing radial distance 

(refer to Section 2.1.4). Thus, cosmic rays from WIMPZILLA decay should 

exhibit a relatively smooth increase in the number of events as one looks from the 

outer edges of the galaxy toward its centre. 

 

The AGASA Collaboration’s findings of anisotropy in UHECR arrival directions 

combined with decay scenario problems provided the incentive for the theory that 

UHECRs are produced by the collisional annihilation of WIMPZILLAs (Blasi et 

al., 2002).   Since reaction rate (i.e. change in number-density of the particles) 

depends upon annihilation cross section vnn AXX σ2−∝& , and the unitarity bound 

states that the cross section decreases with increasing mass, 2−∝ XA mσ , such 

annihilating WIMPZILLA particles could still feasibly exist today.  Only the 

highest-density subclumps in the galactic halo would have a sufficient 

concentration of dark matter to produce the observed UHECR flux due to the 
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small cross section.  The means that the signature of UHECRs from annihilation 

would be quite different than that from decay:  rather than a smoothly increasing 

distribution, ~1000 point-like sources should exist, increasing in density toward 

the galactic centre (Dick et al., 2005). 

 

3.2.2 Constraints on Particle Mass 

Dick et al. (2005) recently undertook a cosmological analysis of dark matter 

particle mass.  The evolution equations of weakly coupled scalar fields in the 

inflationary universe were used to study the limitations of non-thermal particle 

production.  This section summarizes the analysis performed. 

 

The Friedmann-Robertson-Walker (FRW) metric in co-moving Cartesian 

coordinates,  
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The action for a free scalar quantum field in curved space is 
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where L is the Lagrangian density, g is defined to be the determinant of gµν, and 

the four volume element, gxddv −= 4 .  Substituting the FRW values for g and 

gµν, and using the convention that 
hh

XX Mcmm ≡≡
2

, we find L to be 
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We may then solve the Euler-Lagrange equation of motion for a field, 
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to arrive at the equation of motion for a massive scalar field in an FRW 

background, 
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Since we are interested in studying particle creation, we must determine whether 

there is a violation of the energy conservation law, 
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where Tµν is the energy-momentum tensor, with 
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Expanding the LHS of Equation 3.8 we have 
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The first term is the time derivative of the energy density of a co-moving volume 

element, which is given by 
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while the second term in Equation 3.10 represents the spatial flow of particles 

through the volume element.  Substituting for g, Tµν, and using the equation of 

motion (3.7) to remove the φ&&  term, we find a violation of energy conservation, 
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We are currently examining an inflationary stage of the expanding universe where 

the Hubble parameter, ( )
( )ta

taH &= , is approximately constant.  The scale factor 

grows rapidly during inflation, a(t) ∝ exp(Ht), and thus the spatial fluctuation 

terms in the equations of motion and co-moving energy density become 

negligible.  Equations 3.7 and 3.11 may then be approximated by 

( ) ( ) ( ) 0,,3, 2 ≈++ tmtHt xxx φφφ &&&        (3.13) 

( ) ( ) ( ) ( )( )tmttat ,,
2
1, 2223 xxx φφρ +≈ & .         (3.14) 

Solving Equation 3.13 for φ and substituting into (3.14), we get 

( ) ( ) ( ) CmHtBmHtAt +−−+−≈ 2222 49exp49exp,xρ       (3.15) 

 

The inflationary stage is thought to have started very shortly after the big bang at 

tstart ≈ 10-38s, and to have lasted for a very brief time, until tend ≈ 10-36s.  A period of 

inflation explains several things, such as why the horizon lies beyond the visible 

universe, why the universe exhibits isotropy and homogeneity on a large scale, 

and why the CMB contains slight fluctuations.  However, inflation must not have 

been too pronounced, else matter would have been too thinly distributed for 

structure formation to occur.  To satisfy these requirements, H∆t ≈ 100, and thus, 

during inflation, the Hubble parameter is 

13810100 −≈
∆

≈ s
t

H .          (3.16) 

This results in a co-moving energy density for weakly coupled states with MX < 

1.5Hħ ≈ 1023eV that is growing exponentially at the end of inflation. 

 

The FRW model assumes that cosmological fluid is composed of three non-

interacting components:  pressureless gas or “dust,” radiation, and vacuum.  After 
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inflation, the scale factor evolves as ( ) ltta
2

∝ , where l = 3 for a dust dominated 

universe, and l = 4 if radiation dominates.  The Hubble parameter is no longer 

constant, but becomes 
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and consequently, the equation of motion  
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must be solved using Bessel functions.  The general solution is given by 
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where A and B are constants (Kamke, 1944). 

The asymptotic behaviour of the Bessel functions (mt >> 1) is  
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for radiation, and 

( ) ( )ϕφ +∝ − mttt cos1          (3.21) 

for dust.  Using the appropriate values for φ and a in Equation 3.14 we get 

( ) ( ) ( ) ( )( ) 02223 ttmttat ∝+∝ φφρ & .       (3.22) 

From this, we can see that for both radiation and dust, the co-moving energy 

density of massive particles freezes out at the end of inflation (tend ≈ 10-36 s) if, at 

the lower limit,  

eV1021≈>
end

X t
M h .         (3.23) 

Thus, a cosmological analysis of particle creation during the inflationary 

expansion of the early universe results in a mass window on the order 1021 to 1023 

eV for super-heavy relic particles. 

 

 

 



 

 22

3.3 Fragmentation Functions 

3.3.1 Motivation for the Use of Fragmentation Functions 

The interaction considered for the present analysis is the scenario proposed by 

Blasi et al. (2002) where the annihilation of dark matter particles produces two 

jets, each having energy Mx as shown in Figure 3.1.  The jets then fragment into 

multiple particles, which can have energies that are a substantial fraction of Mx.  It 

is postulated that UHECRs are made of these particles, some of which reach the 

Earth and collide with a particle in the atmosphere, creating a secondary shower 

of colliding particles.  The energy of the primary UHECR particle can be 

estimated from the size and density of the secondary shower, as discussed in 

Section 4.3. 

 

Figure 3.1:  Annihilation of two WIMPZILLA particles, resulting initially in two jets of energy Mx which 
later fragment further. 

 

Over time, the flux of UHECRs at various energies has been measured, providing 

information about the probability that the fragmenting particles from 

WIMPZILLA annihilation will have a given energy.  Fragmentation functions 

make predictions about such probabilities based on the centre-of-mass energy of 

the annihilation event.  Though fragmentation functions have only been applied to 

scattering at much lower energies, they have so far been found to have a universal 
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form.  This leads us to the idea of obtaining information about the annihilation of 

WIMPZILLAs by fitting the fragmentation function to UHECR spectra. 

 

3.3.2 Definition and Form of the Fragmentation Function 

Fragmentation functions, ( )sx
dx
dN , , are dimensionless functions of the QCD-

improved parton model which describe the distribution of particle energies 

resulting from hard scattering processes.  ( )sx
dx
dN ,  is the probability that a parton 

jet produced at an energy scale s will form a hadron jet that includes a hadron 

carrying the fraction x of the parton jet energy (Biebel et al., 2001; Kniehl et al., 

2001).  A much earlier proposal for the general form of fragmentation functions 

was made by Baier et al. (1979) and has since been updated with the addition of a 

γ term to take the form (Kniehl et al., 2001) 
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The normalization constant cn and the parameters α, β, and γ depend on the energy 

scale, as well as on the type of partons and hadrons involved, and are acquired by 

fitting Equation 3.24 to a set of data.  Frequently, the γ term is omitted, as it is << 

1 (e.g. Binnewies et al., 1995; Kniehl et al., 2000; Bourhis et al., 2001), and we 

too have employed this practice in our analysis. 

 

Assuming two parton jets emerge from a dark matter particle annihilation event 

with centre-of-mass energy s , the maximum amount of energy that a jet could 

contain would be 2s .  Therefore the fraction of energy of the outgoing hadron 

would be given by 

1
2
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s
Ex .                (3.25) 

Since we are considering the annihilation of very massive particles with rest mass 

MX, the centre-of-mass energy is  

XMEEs 221 =+=          (3.26) 
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so the energy fraction is just 

XM
Ex = .                (3.27) 

As UHECR observatories tend to publish their data as a count of cosmic rays per 

energy bin, it would be preferable to alter Equation 3.24 to a more useful form.  

From Equation 3.27, we know 
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The fragmentation spectrum, or differential number of jet components per energy 

interval, from a jet of energy MX then becomes 
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The integral of 
dE
dNE must recover the total energy for the jet.  Thus, the 

normalization constant cn arises from the necessity that the following energy sum 

rule be met: 

∫ =
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s s

dE
dNEdE .               (3.31) 

In order for the sum rule equation to converge, we must impose the constraint that 

α > -2 and β > -1. 

 

3.3.3 Universality and Extension to UHECR Regime  

Fragmentation functions cannot yet be derived from first principles, but QCD 

makes two notable predictions about their behaviour (Binnewies, 1997; Kniehl et 

al., 2001; Biebel et al., 2001).  The first is that a fragmentation function can be 

evolved to different energy scales using the Altarelli-Parisi equations.  The second 

prediction, coming from the factorization theorem, is that fragmentation functions 

only depend on the outgoing parton jets and on the hadrons produced, not on the 
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process that produced them.  Once a fragmentation function has been fitted to the 

data from a specific process at a particular centre-of-mass energy, the function 

can be applied to any process at the same energy due to the universality of 

factorization.  These predictions were tested most recently by Kniehl et al. (2001) 

by first finding the fragmentation functions for charged pions, kaons, protons and 

antiprotons from the annihilation of positrons and electrons at 29=s GeV.  The 

analysis was performed on experimental data collected at the Large Electron 

Positron (LEP1) collider, the Stanford Linear Collider (SLC), and the Positron 

Electron Project (PEP).  They then tested the first prediction by evolving the 

fragmentation functions to energies ranging from 133 GeV to 189 GeV and 

comparing their findings to LEP2 e+e- annihilation data in this range.  An 

excellent agreement was found between the evolved fragmentation function and 

experimental data( 12 ≈νχ ).  Next, Kniehl et al. tested the second prediction by 

performing an evaluation of the majority of high-statistics data sets where charged 

hadrons are produced by colliding beam experiments such as γγ, γp, pp scattering 

with centre-of-mass energies ranging from 10 to 1800 GeV.  Once again, the 

notion of process independence was strongly upheld by the data. 

 

Fragmentation function universality has so far held for the highest energy events 

we can produce on Earth.  Though this is some eight orders of magnitude lower 

than the highest energy cosmic rays, we believe that their reliability makes 

fragmentation functions a reasonable tool to use at UHECR energy regimes. 

 

3.4 Calculation of UHECR Flux 

In order to further evaluate the feasibility of the theory that UHECR flux is the 

result of superheavy dark matter annihilation, it is useful to be able to make a 

prediction of flux in our region of the galaxy.  While comparing annihilation flux 

from the parent halo with that from subclumps for various halo profiles, Blasi et 

al. (2002) found that the flux from the subclumps is far greater than that from the 

halo.  We will therefore simplify the flux equation to consider only collisional 
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annihilation originating in the dense cores of the subclumps.  The spectral flux per 

steradian at the Earth from a compact source of volume V is (Dick et al., 2005) 
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where ( )
dE

MEdN x,  is the number of jet components per energy interval, as in 

Section 3.3.2.  The number of annihilation events per volume per second will 

depend upon the number-density of particles, the number-density of antiparticles, 

and the thermally averaged cross-section:  vnn Axx σ .  Since we previously 

adopted the convention that xn is the total dark matter particle number-density, we 

must use vnn
A

xx σ
22

, unless the particles were their own antiparticles (i.e. 

Majorana particles).  We have included a parameter ν, which is 4 for Majorana 

particles and 1 otherwise, to allow for this difference.  As the jet particles are 

taken to be distributed roughly in a spherical shell expanding out from the event, 

the number of annihilation events is divided by the area of a sphere with a radius 

equal to the distance from the subclump to the Earth, 24 rr −π .  To further 

simplify Equation 3.32, we assume that the average distance from the Earth to the 

subclumps is d = 7.3 kpc, based on the mean of the distance-squared to visible 

galactic substructure, i.e. globular clusters (Dick et al., 2005). We also assume 

that these substructures have dense cores with a mass density of nXmX.  We then 

find 

( ) ( ) vn
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MEdN
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x σ

π
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22

,
64

= .       (3.33) 

The total source volume, V, will be given by the number of subclumps in the 

galaxy multiplied by their average core volume, coreclVN .  N-body models and 

gravitational lensing indicate that the core accounts for approximately 10% of the 

average subclump mass, and that a fraction, fcl = 2 to 15%, of the galactic mass 

lies in substructure (Springel et al, 2001; Chiba, 2002; Stoehr et al, 2002; Hayashi 

et al, 2003).  Thus we have 
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We will further parameterize the core density, nX, of the subclumps in terms of the 

solar density: 
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One last simplification of the flux equation may be made by taking the low 

velocity bounds for the cross section.  This is a reasonable approximation since 

typical velocity dispersions in dark matter halo models are found to be in the 

range of 10 to 1000 km/s << c.  The limit for the cross section then becomes (Hui, 

2001) 
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The simplified equation for flux from dark matter annihilation finally becomes 
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or, to facilitate the curve fitting process,  
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We would expect νηξ < 1, since ξ must be one or less due to unitarity bound 

constraints, and η, the ratio of subclump mass density to solar mass density, must 

be low in order to be consistent with N-body models (e.g. Ghigna et al., 2000; 

Dalal and Kockanek, 2002; Hayashi et al., 2003).  This prediction will be later 

used as a test of the parameters determined by non-linear curve fits of our model 

to the UHECR spectra. 

 

3.5 Previous Work Related to UHECRs 

Though the UHECR spectrum has not previously been analyzed using 

fragmentation functions in the context of WIMPZILLA annihilation, there has 

been some work done on the decay scenario (Fodor and Katz, 2001; Sarkar and 
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Toldrà, 2002).  These works simply make the assumption that the lifetime of 

decaying particles is greater than the age of the universe.  Though the authors cite 

the creation of sufficiently large quantities of long-lived SHDM particles at the 

end of inflation, they do not investigate the likelihood of such particles decaying.  

They also approach the fitting problem quite differently.  It is first assumed that 

UHECRs are protons.  They take an existing parameterization of the proton 

fragmentation function at present accelerator energies (~1010 eV) as found by 

Kniehl et al. (2000) and evolve it up to the UHECR energy regime, using the 

Altarelli-Parisi equations.  On the recommendations of the AGASA Collaboration 

(e.g. Yoshida et al., 1995), Sarkar and Toldrá assume that the UHECR flux below 

GZK cut-off is predominantly galactic in origin.  It is thought that this component 

of the spectrum comes from conventional, bottom-up, astrophysical acceleration 

of particles.  In such models, flux is typically found to have a simple power-law 

relation to energy (i.e. J ∝ Eα where α = -3.2 ± 0.1).  The power-law formula 

recommended by AGASA is largely based on a perceived “ankle” or change in 

slope at ~6.3 × 1018 eV.  UHECR observatories traditionally report a spectral 

energy range which simply corresponds to a roughly constant exposure value that 

is instrumentation-dependent and is not a reflection of UHECR physics.  

Therefore, a best fit of the spectrum is found by superimposing the power-law 

relation with the evolved fragmentation function, which is expected to dominate 

the highest-energy region of the spectrum.  As recommended by Nagano and 

Watson (2000), the power-law equation used by Sarkar and Toldá is 
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Sarkar and Toldrà estimate SHDM particle mass to be on the order of 1021 eV, 

observing that the decay mass could not be much less than this value and still 

generate the upper end of the spectrum.  Fodor and Katz find a mass range of 

8×1021 eV to 2×1025 eV. 

 



 

 29

Inspired by Sarkar and Toldrà, our analysis also includes an attempt to fit a 

combined spectrum as a comparison to a pure fragmentation function fit, using a 

power-law relation for the lower-energy portion of the spectrum:   
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However, rather than assuming that the fragmentation function should be evolved 

up from known parameters, we allow all parameters, including those for the 

power-law term, to be determined by the best fit. 
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Chapter 4 COLLECTION OF UHECR DATA 
 

4.1 Extensive Air Showers (EAS) 

At energies below 1012 eV, cosmic rays have a flux of 1 particle per square meter 

per second or greater (Gaisser, 1990).  This flux is high enough to allow direct 

detection of the primary cosmic ray particles by instruments on board high-

altitude balloons or satellites.  However, at energies of 1018 eV, cosmic ray flux 

falls to ~1 particle per square km per year, which can no longer feasibly be 

detected by flying instruments.  Instead, information about UHECRs must come 

from a measurement of the secondary air showers they produce.  A primary 

cosmic ray interacts with a particle high in the atmosphere to generate a shower of 

particles, with the shower front consisting of a thin disk of relativistic particles.  

The number of cascading particles initially increases, reaches a maximum, and 

then decreases as fewer particles have sufficient energy to cause further particle 

production.  This indirect method of UHECR observation introduces many 

uncertainties, particularly in the estimation of primary particle composition and 

energy. 

 

As summed up by Malcolm Longair (1992), “…the determination of the chemical 

composition of cosmic rays with energies greater than E = 1014 eV is fraught with 

problems.”  The favoured candidates for UHECR primaries are photons, protons, 

and heavier nuclei.  Although theory indicates that air showers caused by these 

different primary particles should have different characteristics, there is still much 

dispute over the interpretation of observed air showers.   
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When a photon primary interacts with an atmospheric particle, it is predicted to be 

converted into an electron-positron pair (Gaisser, 1990; Longair, 1992).  If the 

energy of the pair is sufficiently high, the particles will produce a secondary 

photon through Bremsstrahlung radiation when deflected by the field of a nucleus.  

This secondary photon can potentially produce another electron pair which 

undergoes further Bremsstrahlung radiation, resulting in an electromagnetic 

cascade of photons, electrons, and positrons (Figure 4.1).  The axis of this shower 

continues to travel in the direction of the initial photon.  Although a high-energy 

photon could cause the fragmentation of an atmospheric nucleus, this is predicted 

to be a rare occurrence (Friedlander, 2000).  As a result, a photon initiated shower 

should contain very few muons, pions, and nucleons. 

Figure 4.1:  The electromagnetic component 
present in all particle showers.  (Adapted 
from www.gae.ucm.es) 

Figure 4.2:  Shower produced by proton or heavier nuclei 
primaries, containing both hadronic and electromagnetic 
components.  (Adapted from www.gae.ucm.es) 

 

In contrast, if a cosmic ray primary is a proton or heavier nucleus, it is thought 

that the primary will disintegrate when it interacts with an atmospheric nucleus 
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and these fragments will then have further interactions with other atmospheric 

particles.  If the primary particle energy is high enough, some of the particle 

fragments may reach the ground.  The products of these nuclear disintegrations 

include pions.  The π± further decay into muons and neutrinos, while the π0 

produces two photons, which initiate electromagnetic showers as described 

previously.  Thus air showers generated by nuclei have both an electromagnetic 

and a hadronic component (Figure 4.2). 

 

If the primary particle were heavier, such as an iron nucleus, it would have a 

lower Lorentz factor, 
( )21

1

c
u−

, than a proton with the same initial energy.  The 

ensuing generations of particle fragments and decay products would also have 

lower Lorentz factors, so that the point of maximum shower development should 

occur higher in the atmosphere than that of a proton primary (Longair, 1992). 

 

Some researchers find an upper limit for photon induced showers with energies 

around the GZK cut-off to be 50 to 67% (Stecker, 2004).  However, protons are 

generally thought to be responsible for the bulk of secondary air showers having 

energies over 1015 eV, with heavier nuclei causing a smaller percentage and 

photons potentially producing as few as 1 in 1000 shower events (Nagano and 

Watson, 2000).  As a result, UHECR spectra, including the preliminary Pierre 

Auger Observatory data, are derived from energy calculations that assume the 

primary particle is hadronic (E.g. Takeda et al., 2003; Abbasi et al., 2004; 

Sommers, 2005).  However, due to differences in development between photon- 

and hadron-induced showers, the energy estimates will be too low if the primary 

particle is actually a photon (Busca et al., 2006).  Photon primaries are of 

particular relevance to this thesis since top-down UHECR source models predict 

an increase in the photon component above energies of 1019.7 eV (Berezinksky et 

al., 1997; Blasi et al., 2002).  This region of the UHECR spectrum is particularly 

susceptible to error due to the very low number of events that have been recorded 

to date. 
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4.2 Overview of Ground Detector Array Observatories 

The AGASA Observatory recorded observations for over a decade using an array 

of 111 surface detectors, covering ~100 km2 about 130 km west of Tokyo 

(Yoshida et al., 1995).  Each detector contained a plastic scintillator, which 

functioned by absorbing high-energy electromagnetic or charged particle radiation 

and then releasing the absorbed energy by emitting photons at a characteristic 

wavelength.  The Pierre Auger Observatory significantly increases the rate of 

events observed on the ground by employing a much larger array of 1600 surface 

detectors covering 3000 km2.  The Auger detectors consist of 3000-gallon water-

Cherenkov tanks.  When energetic particles from an EAS pass through the tanks, 

they travel faster than the speed of light in water, creating an electromagnetic 

shock wave which displaces electrons in the water medium.  The displaced 

electrons are then restored to equilibrium by the emission of photons, a 

phenomenon known as Cherenkov radiation.  The scintillation light (AGASA) or 

the Cherenkov radiation (Auger) is then measured by the detector’s 

photomultiplier tube (PMT).  Despite the physical differences in the detectors 

used by the two observatories, the methods used to calculate shower energy are 

essentially the same. 

 

By the time a secondary shower reaches an observatory, the shower front 

typically extends over hundreds of meters and will strike several detectors (Figure 

4.3).  The surface detectors measure the times, locations, and quantities of 

incoming particles, giving a map of the local particle densities (Figure 4.4).  

Using differences in timing and variations in particle density, the shower axis is 

located and the arrival direction is determined to within 1.8° for super-GZK 

events (Takeda et al., 2003).  Based on the work of Hillas et al. (1971), it is 

assumed that local particle density at a distance of 600 m from the axis of the 

shower, S(600), is proportional to the energy of the primary particle (Yoshida et 

al., 1995).  The S(600) particle density was chosen as a benchmark because it 

showed the least amount of variation between the differing shower models. 
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Figure 4.3:  Representation of an inclined shower, 
showing the shower front reaching the detectors at 
different times (www.auger.org/admin/ 
powerpoint.html). 

Figure 4.4:  Scintillation detectors are denoted by 
dots, while the radius of the surrounding circle is 
proportional to the detected particle density.  The 
computed shower axis is indicated by the cross and 
the shower direction by the arrow (Sakaki et al., 
2001). 

 
 S(600) is adjusted for shower zenith angle, which effects atmospheric 

attenuation, giving S0(600), the S(600) value for a vertically incident shower.  

Thousands of Monte Carlo simulations were carried out for particle showers 

resulting from proton and iron primaries, taking into consideration the 

atmospheric depth of the observatory, shower development theory, and detector 

response characteristics.  These simulations give a range of expected particle 

densities and shower front patterns for the specified particle type at a given 

energy.  Based on these simulations, the AGASA Collaboration uses the 

following empirical formula to evaluate UHECR energy (Takeda et al., 2003): 

eV)600(1021.2 03.1
0

17 SE ×=            (4.1) 

Unfortunately, a fairly high degree of uncertainty is associated with the estimation 

of S0(600).  The most significant contributing factors are fluctuations in shower 

development in the atmosphere, scintillation detector resolution, and statistical 

fluctuations in observed shower particles at individual detectors.  Because the 

effect of shower fluctuations grows more pronounced with the zenith angle, 

showers striking at angles above 45° are discarded.  AGASA estimates that the 

uncertainty in cosmic ray energy is about ±30% for events at 3 × 1019 eV and 
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±25% for those at 1020eV (Takeda et al., 2003).  Largely due to low event 

statistics, the Pierre Auger Collaboration estimates uncertainties of 30% at 3 × 

1018 eV and 50% at 1020 eV (Sommers, 2005). 

 

4.3 Overview of Air Fluorescence Observatories 

Although this class of observatories is said to measure “air fluorescence,” the 

term is a bit of a misnomer:  it is really “scintillation” that is observed.  As the 

energetic charged particles of an EAS travel through the sky, they excite 

molecules of atmospheric gas, particularly nitrogen.  Some of this energy is then 

emitted as visible and UV light (scintillation) which is collected by the spherical 

mirrors of the fluorescence telescope and focused on an array of PMTs.   

 

Fluorescence detectors monitor the progress of an air shower front over a portion 

of its track through the sky and thus can give more information about the shower 

geometry than ground arrays.  However, fluorescence observatories can only 

operate on clear, moonless nights.  The longest-running air fluorescence 

observatory, HiRes, is located at an altitude of ~4500 ft on a military compound 

in the Utah desert.  Due to low humidity, low average wind speed, and relative 

isolation from the light pollution generated by urban centres, the location is about 

as close to ideal as can be found.  Even so, the duty cycle is less than 10% 

(Westerhoff, 2004).  In contrast, ground arrays only sample the shower at one 

depth and must extrapolate primary direction and energy from this.  However, 

ground arrays can operate continuously, monitoring any particle showers that are 

energetic enough to penetrate through the atmosphere to the observatory location 

on the ground. 

 

Though the HiRes observatory consists of two air fluorescence telescopes which 

can potentially observe a given UHECR shower event “in stereo” and thus make a 

more accurate assessment of shower geometry, the number of events that have 

actually been observed in stereo is quite low.  As a result, the HiRes data set used 

in this thesis was that collected by a single telescope, HiRes Monocular I, and the 
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following explanation of shower analysis is based on monocular observations.  To 

combat the problems with stereo measurement, the Pierre Auger Observatory has 

four air fluorescence measurement stations each consisting of six telescopes 

(Argirò et al., 2003).  The stations are strategically placed throughout the ground 

detector array to allow for the greatest possible ability to observe an air shower 

event with both the fluorescence detectors and the ground array (Figure 4.5). 

 

 

Figure 4.5:  Representation of the dual EAS detecting systems at the Pierre Auger Observatory. 

 

For each shower, the fluorescence telescope records the pattern of PMTs fired, 

and the timing and the intensity of light received (Figure 4.6).  The pattern of 

tubes fired, as well as the angle with which each PMT views the shower, is used 

to constrain the event to a “shower plane” containing the shower and the detector, 

as shown in Figure 4.7.   The actual trajectory of the shower can then be described 

by two additional parameters:  Rp, the perpendicular distance from the shower axis 

to the detector, and ψ, the angle of the shower in the shower plane.  These 
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parameters are found by finding a best fit of the measured track to the family of 

all possible tracks in the plane, considering uncertainties in the instrumentation.  

As the observed portion of the shower track is relatively short, this step in the 

shower analysis is the greatest source of error (Bird, et al., 1994; Abu-Zayyad et 

al., 2001). 

Figure 4.6:  Azimuth vs elevation of 
triggered photomultiplier tubes with a fit of 
shower-detector plane (Abbasi1 et al., 
2005). 

Figure 4.7:  Example of shower geometry relative to the 
HiRes detector (Abbasi1 et al., 2005). 

 

Once the shower geometry is determined, the recorded light intensity is corrected 

for 1/r2 losses due to the distance between detector and shower, and for 

attenuation due to interaction with atmospheric particles, which is measured 

hourly using a calibrated laser signal (Abbasi, et al., 2005).   After these 

adjustments to the recorded shower data, an attempt is made to estimate the 

energy and composition of the UHECR primary.  The Gaisser-Hillas formula 
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(Gaisser, 1990; Abbasi et al., 2004) predicts the number of electrons in a shower 

front as a function of primary particle type and atmospheric depth along the 

shower axis.  This formula is incorporated into a Monte Carlo program that also 

includes a model of detector response to various shower geometries and energies.  

The shower energy is then determined from the best fit of the Monte Carlo 

simulations for proton and iron primaries of varying energies to the adjusted 

observational data.  The net result of instrumental, computational, and theoretical 

uncertainties involved in this indirect method of measurement is that UHECR 

energy can only be estimated to within 20% at best. 

 

As mentioned in Section 4.1, the primary cosmic ray particle composition may be 

determined, in theory, from the position of maximum shower development.  In 

practice, there may be substantial fluctuations in shower development, and thus 

the primary particle type cannot be evaluated for an individual event.  Rather, the 

HiRes team uses slight differences in the average behaviour of particles at 

different energies to draw conclusions about primary particle composition (Abu-

Zayyad, 2001). 

 

4.4 Calculation of UHECR Spectrum from Air Shower 

Observations 

The UHECR spectrum is defined to be the differential flux, J(E), vs. energy, E.  

The differential flux is the number of cosmic rays observed per area per solid 

angle per time per energy interval and has units of [m-2 sr-1 s-1 eV-1].  In order to 

calculate the flux, the aperture, AΩ, (area × solid angle) and observation time for 

the observatory must be evaluated as a function of primary energy.  This is 

facilitated by the same Monte Carlo simulation program that is used to estimate 

shower energy (Takeda et al., 2003; Abbasi1 et al., 2005).  Artificial shower 

events are generated at various energies for an aperture greater than that covered 

by the observatory, A0Ω0(E).  The ratio of the number of events that successfully 

trigger the modelled detector(s) to the number actually generated is then used to 

determine the observatory aperture for that energy: 
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events generated ofnumber 
events  triggeredofnumber )( 00 ×Ω=Ω AEA        (4.2) 

The AGASA and Pierre Auger Observatories find an exposure, which is just 

aperture × observation time, that is relatively constant for events above 3 × 1018 

eV for their ground detection arrays.  The exposure for HiRes monocular data 

changes with energy (see Appendices). 

 

Shower events are divided into energy bins of width ∆E, centred at Ei.  If an 

observatory monitors events for a length of time, T, then the number of events in a 

given energy bin would be 
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The energy bins are taken to be sufficiently small relative to the overall energy 

range measured and thus Equation 4.3 can be approximated by 

EEAEJTN iii ∆Ω≈∆ )()(           (4.4) 

which may be manipulated to give a formula for flux (Gaisser, 1990; Abbasi1 et 

al., 2005): 
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The UHECR spectrum may then be determined by counting the number of events 

with estimated energies that fall into each energy bin.  For comparison, Figure 4.7 

shows a plot of the most up-to-date spectra from the three observatories. 

 

4.5 Published Errors in UHECR Spectra 

Despite the systematic errors in energy estimation caused by things like shower 

development theory, detector response, and aperture calculation as mentioned 

earlier in this chapter, the error bars on published spectra represent only the 

statistical errors in UHECR measurement.  Because cosmic ray flux in the ultra-

high-energy regime is so low,  the uncertainty due to statistical fluctuations in  the  
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Figure 4.7:  UHECR spectra from the AGASA Collaboration in diamonds (Takeda et al., 2003), the High 
Resolution Fly’s Eye Collaboration in triangles (Bergman2, 2005), and the Pierre Auger Collaboration in 
squares (Sommers, 2005). 

 

number of observed events heavily outweighs the uncertainty arising from lack of 

theoretical or instrumental precision.  Measurements subject to statistical 

fluctuations have a Poisson distribution which have the property that the variance 

of the parent population is equal to the mean, σ2 = µ.  For large sample sets, the 

sample count is sufficiently close to the mean of the parent population that the 

standard deviation is taken to be the square root of the count (Bevington and 

Robinson, 2003) 

N=σ             (4.6) 

To report a “standard error,” one would simply use N N± . 
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Propagating the counting error through Equation 4.5, the uncertainty in flux is 

then represented by 

i
i

i N
EEAT

EJ ×
∆Ω

=
)(

1)(δ          (4.7) 

It must be emphasized that the above equation assumes that there is a sufficiently 

high number of events per energy bin such that the approximation µ ≈ N holds.  

Recall, however, that the reason for considering only statistical fluctuations in the 

calculation of errors for UHECR spectra is that event counts are so low!  This 

conundrum is addressed, at least in part, by the work of Feldman and Cousins 

(1998) who developed a more reliable set of confidence intervals for low-count 

data (Table 4.1).   

 
Table 4.1:  A comparison between the 68.27% confidence level intervals proposed by Feldman and Cousins 
(1998) and those predicted by a naïve use of Poisson statistics. 
 

 Feldman and Cousins, 1998 “Poisson” 
N Minimum count Maximum count NN − NN +
0 0.00 1.29 0.00 0.00
1 0.37 2.75 0.00 2.00
2 0.74 4.25 0.59 3.41
3 1.10 5.30 1.27 4.73
4 2.34 6.78 2.00 6.00
5 2.75 7.81 2.76 7.24
10 6.78 13.81 6.84 13.16
15 11.32 19.32 11.13 18.87
20 15.83 25.30 15.53 24.47

 

Published UHECR spectra tend to employ the Feldman and Cousins adjustment to 

error bars for energy bins with event counts of around five or less. 
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Chapter 5 ANALYSIS 
 

5.1 Curve Fitting 

The approach used in curve-fitting is fairly generic.  First, an equation believed to 

model the phenomenon of interest is chosen.  This equation will likely have a 

number of adjustable parameters, so the next step is to select a merit function that 

provides a quantitative measure of how closely the model output, with a given set 

of parameters, represents the data collected by observation.  It is customary to 

choose a merit function such that its minimization will yield “best-fit” parameters.  

Different parameter values are thus evaluated until the merit function reaches a 

minimum.  The goodness of this best fit must then be scrutinized to determine 

whether the model is a reasonable one.   

 

Observations, however, are imperfect.  There is only one correct model that 

describes a phenomenon, but there are an infinite number of data sets, subject to a 

variety of measurement and statistical errors, that may arise from observing the 

phenomenon.  The goal is then to maximize the probability of coming up with the 

observed data set by adjusting model parameters.  This is called a maximum 

likelihood estimation and often takes the form of a least-squares or χ2-square fit.  

Of course, if no set of parameters can be found to reasonably duplicate the 

observed data, then the choice of model must be re-evaluated.   

 

5.2 χ2-Square Fitting of UHECR Flux Data 

We have a set of N measured data points, (Ei, Ji), where Ei is the independent 

variable, energy, and Ji is the dependent variable, flux.  In addition to E-

dependence, the model of UHECR flux which is based solely on the 



 

 43

fragmentation function, Equation 3.38, depends non-linearly on four adjustable 

parameters, a = (α, β, n, MX); thus J(E) = J(E; a).  The combined-spectrum model 

given by Equation 3.40 includes three additional parameters:  a = (α, β, n, MX, αpl, 

npl, Eankle).  In both cases, α and β must be constrained such that α > -2 and β > -1. 

 

We may assume that the error on each observed data point is random and has a 

Gaussian distribution around the true value, with the standard deviation at each 

point being given by σi.   In this case, the probability that the data set, plus or 

minus some fixed ∆J, was generated by the model is the product of the 

probabilities for each individual point (Press et al., 1992),   
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This probability is maximized when its logarithm is maximized, i.e. when the 

negative of its logarithm,  
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is minimized.  Ignoring constants, we find that the most probable parameter set 

for our model is obtained by minimizing the value of χ2, 
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Such a minimization is called a least-squares or chi-squared fit of the data. 

 

χ2 is a valuable tool as it gives a quantitative measurement of the goodness of fit 

of a model to the observed data.  A model has ν degrees of freedom, given by ν = 

(number of data points) – (number of equation parameters).  The χ2 statistic has a 

mean value of ν and a standard deviation of v2 , therefore a χ2 value of ~ ν 

represents a good fit.  This measure of goodness of fit is usually reported in terms 

of “reduced χ2” or 
vv

2
2 χχ = .  The goal is then to find a fit where 12 ≈vχ . 
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5.3 The Levenberg-Marquardt Method  

Finding the set of parameters that minimizes the merit function can be 

computationally onerous for models that depend non-linearly on their parameters.  

An initial estimate of the parameters is input to a procedure which tries to 

improve the minimization iteratively until χ2 decreases by less than a specified 

tolerance.  Many different procedures have been developed, but most tend to work 

well either in the range where the iterative trial parameters are near to or far from 

the minimum, not in both scenarios.  The Levenberg-Marquardt method addresses 

this issue by switching between the steepest decent method, which excels far from 

the minimum, and the inverse-Hessian method as the minimum is approached. 

 

If we take t to be the current set of P trial parameters (P is either 4 or 7 in our 

case), the merit function (5.3) can be represented by a Taylor series, 
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In the inverse-Hessian method, it is assumed that χ2 is sufficiently close to its 

minimum that it can be approximated by the quadratic form, 

 ( ) ( ) ( ) ( ) ( ) ( )taHtattata −⋅⋅−+∇⋅−+≈
2
1222 χχχ       (5.5) 

where H is a P × P Hessian matrix, the second derivative of χ2.  Equation 5.5 may 

be rewritten as 

 ( ) ( ) ( )taHta −⋅+∇=∇ 22 χχ .          (5.6) 

The gradient of χ2 will be 0 at the minimum, so if the assumption of nearness is 

reasonable, then the set of parameters that will produce a minimum χ2, or at least 

the next best guess, will be given by 

 ( )tHta 21
min χ∇⋅−= − .          (5.7) 

 

However, if we aren’t near to the minimum and χ2 is not well approximated by 

Equation 5.5, then the steepest decent method advocates that the quickest way to 

get closer to the minimum is to take a step down the gradient, 
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 ( )( )tta 2constant χ∇−=next           (5.8) 

ensuring that the constant is small enough that we do not exceed the minimum. 

 

The vector elements of the gradient of χ2 with respect to the parameters a, and the 

elements of the Hessian matrix, are often rewritten as 
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where α is called the curvature matrix. 

 

Equation 5.7 from the inverse-Hessian method can then be written in terms of a 

set of linear equations, 

 ∑
=

=
P

l
klkl a

1
βδα          (5.11) 

and the steepest descent Equation 5.8 can also be rewritten 

 lla βδ ×= constant .         (5.12) 

 

The Levenberg-Marquardt method capitalizes on the fact that information about 

the scale of the constant in Equation 5.12 may be obtained from the diagonal 

elements of the curvature matrix α.  Employing this idea, Equation 5.12 becomes 

 l
ll

la β
λα

δ 1
=         or        llll a βδλα =       (5.13) 

where λ is a non-dimensional adjustment factor, used to ensure that the scale 

factor 
llα

1  is not so large so as to overshoot the minimum.  The Levenberg-

Marquardt method then smoothly combines the steepest descent and inverse-

Hessian methods by defining a new curvature matrix, α' 
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and then replacing Equations 5.11 and 5.13 with 
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When λ is large, the diagonal terms dominate the new curvature matrix and 

Equation 5.15 behaves more like the steepest descent method, but as λ approaches 

zero, it behaves more like the inverse-Hessian method.  Based on an initial guess 

at the parameters, a, the best χ2 is arrived at iteratively as follows: 

1. Calculate χ2(a). 

2. Pick a value for λ. 

3. Solve the set of equations (5.14) to find δa and calculate χ2(a + δa). 

4. If χ2(a + δa) ≥ χ2(a), increase λ and repeat step 3. 

5. If χ2(a + δa) < χ2(a), decrease λ, take a + δa to be the new trial parameters, 

and return to step 3. 

The algorithm is stopped when χ2 fails to be reduced by a specified tolerance, 10-6 

in our case.  This tolerance value was established by noting that lower values did 

not substantially refine the parameter set, while taking more computing time. 

 

The curve fitting was performed using two software packages, OriginPro 7.5 

(Copyright © 1991-2006 OriginLab Corporation) and IDL Student Edition 6.0.3 

(Copyright © 2004, Research Systems Inc.), both of which use the Levenberg-

Marquart algorithm as prescribed by Press et al. (1992). 

 

5.4 Error Estimation and Sensitivity Analysis 

χ2 analysis assumes that errors follow a normal or Gaussian distribution, but this 

is not strictly correct in the measurement of UHECR flux.  Flux is a calculated 

value that contains propagated Poisson-type errors from uncertainties in the count 

of events occurring in a given energy bin.  However, significantly non-normal 

errors will create an overabundance of outlier data points and will therefore raise 
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the value of χ2.  Thus, if a reasonable value of χ2 is achieved in the fitting process, 

it is a good assumption that the errors essentially follow a normal distribution. 

 

Standard error values for each of the fitted parameters are given by the square root 

of the diagonal elements of the inverse of the curvature matrix, α, as given by 

Equation 5.10.  However, Press et al. (1992) choose to simplify the error 

calculation for their Levenberg-Marquart algorithm by ignoring the term 

containing the second derivative of χ2, thereby deriving the error values from the 

inverse of 
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It is argued that the term multiplying the second derivative, ( )[ ]a;ii EJJ − , can be 

positive or negative and should thus largely cancel out when summed over i.  In 

our case, however, it was found that this simplification produced unacceptably 

high error values and so 1-σ errors were calculated in Maple 8.00 (Copyright © 

1981-2002 Waterloo Maple Inc.), using the inverse of matrix produced by 

Equation 5.10. 

 

A brief sensitivity analysis was performed on the curve fitting algorithm.  

OriginPro and IDL both require the user to guess at initial values for the 

parameters that are to be fit.  If the first guess is too far away from a reasonable 

fit, the algorithm fails without producing a fit.  Once a workable set of initial 

values was determined, tests were performed to see whether making small 

changes to these initial values would affect the final results.  We found that the 

parameters always converged to within a few per cent of the same final solution, 

and that this variability was less than the error.  The results presented in Chapter 6 

are those with the lowest 2
vχ . 
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Chapter 6 RESULTS 
 

6.1 Comparison of Models 

For each of the UHECR spectra published by the AGASA, HiRes, and Pierre 

Auger Observatories, fits of the two models described in Chapter 3 were 

attempted.  The first model assumes that the spectrum is completely dominated by 

annihilating dark matter particles and thus is governed by the fragmentation 

function alone (Equation 3.38).  The second model postulates that the lower end 

of UHECR spectra is dominated by particles that are accelerated by powerful 

astrophysical objects which are predicted to produce a flux that has a simple 

power-law relation to energy, while the upper end of the spectrum is dominated 

by dark matter annihilation (Equation 3.40). 

 

It was not possible to achieve a reasonable fit (i.e. one with a low 2
vχ  value) for 

any of the spectra using the pure fragmentation function model.  The results 

reported in this chapter thus reflect fits of the combined spectrum model only. 

 

6.2 Analysis of the AGASA Spectrum 

The most recent AGASA spectrum was published in 2003 (Takeda et al.), a plot 

of which is shown in Figure 2.4.  The numerical data used in the plot is 

reproduced in Appendix A.  UHECR spectra are conventionally shown as 

log(J(E) × E3) vs. log(E) in order to flatten the curve and magnify the details of 

the spectrum at the highest energies.  Before a fit of the fragmentation function 

could be performed, simple calculations were made to adjust the spectrum to J(E) 

vs. E.  The highest and third highest AGASA energy bins, having no observed 

events, were not included in the analysis.  
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A χ2 fit of the AGASA spectrum was then performed, taking the more restrictive 

error value for σi in the case where the positive and negative error values differed.  

As depicted in Figure 6.1, the fit yielded the following fragmentation function 

with 14.12 =νχ : 
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                 (6.1) 

Figure 6.1:  Combined power-law and fragmentation function fit, given by smooth red line, to the most 
recently published AGASA UHECR spectrum, shown as a black segmented line with error bars. 

 

High-energy cosmic ray researchers often refer to a “break” at around 1018 where 

the slope of the spectrum appears to change (e.g. Yoshida et al., 1995).  As 

discussed in Section 3.5, Sarkar and Toldrà (2002) interpreted this change in slope 
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as a superposition of the spectra of cosmic rays from two different sources.  

Figure 6.2 shows the contribution to the overall UHECR flux made by each of 

these components, with the power-law curve computed using the first term in 

Equation 6.1 and the fragmentation function from the second. 

Figure 6.2:  Contribution of the two different spectral components to the overall UHECR spectrum reported 
by AGASA. 

 

Our model proposes that the high-energy end of the UHECR spectrum results 

from energetic particles coming from dark matter annihilation in galactic halo 

subclumps.  As discussed in Section 2.1.4, much work has been done to 

characterize dark matter haloes using N-body computer modelling.  These studies 
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provide us with guidelines for the size, quantity, and distribution of galactic 

subclumps within the context of ΛCDM theory.  Using the parameters found by 

the curve fitting procedure, we may use the flux calculation discussed in Section 

3.4 to test whether dark matter subclumps could feasibly produce the UHECR 

flux observed at Earth.  From Equations 3.37 and 3.40, we may compute νηξ by 

considering only the component of flux which is attributed to annihilation: 
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Extracting average values from N-body models, we take fcl = 0.1, d = 7.3 kpc, v = 

100 km/s, and Mhalo = 2 × 1012 M .  The normalization constant cn is found by 

solving the energy sum rule (Equation 3.31).  At an energy of 1019.95 eV,  

 ( ) 003.0=AGASAνηξ .           (6.3) 

 

6.3 Analysis of the HiRes Spectrum 

The most recent discussions of the High Resolution Fly’s Eye Collaboration 

spectra were published in 2005 (Abbasi1 et al., 2005; Bergman1).  Though these 

publications included plots of the Hi-Res Monocular I spectrum, they did not 

contain the data used to create the figures, which instead is located on a web page 

(Bergman2, 2005) and reproduced in Appendix B with some modification.  The χ2 

fit of the combined spectrum to HiRes data is shown in Figure 6.3 while Figure 

6.4 compares the HiRes spectrum with the individual constituents of our model.   

With a 78.12 =νχ , the function was found to be: 
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Figure 6.3:  The smooth red line shows the superimposed power-law and fragmentation function fit to the 
HiRes Monocular I data collected from June 1997 to February 2003, shown as a segmented black line with 
error bars. 

 

Using the parameters found by the curve fitting procedure, we may determine νηξ 

at an energy of 1019.95 eV to be 

 ( ) 006.0=HiResνηξ .           (6.5) 
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Figure 6.4:  Contribution of the two spectral components included in our model to the overall UHECR 
spectrum published by HiRes. 

 

6.4 Analysis of the Preliminary Auger Spectrum 

Preliminary results from the long-awaited Pierre Auger Observatory were 

released in 2005 by Sommers (see Appendix C).  Once again, actual data points 

were not published, but were extracted from the Pierre Auger web site (Pierre 

Auger Collaboration, 2005).  As shown in Figure 6.5, our fit yielded the following 

function with 60.22 =νχ : 
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Figure 6.5:  Combined spectrum fit, given by smooth red line, to the preliminary Pierre Auger UHECR 
spectrum, shown as a black segmented line with error bars. 

 

Figure 6.6 compares the power-law and fragmentation function portions of the 

model spectrum with that reported by the Pierre Auger Observatory.  Given the 

apparent flatness of the Auger spectrum when J(E) × E3 is plotted against E, a fit 

of the power-law alone was attempted.  This resulted in the function  
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However, the quality of this fit was poorer than that for the combined spectrum, 

with 80.22 =νχ .  Another model with a two-stage power-law injection spectrum, 

one for lower energies and one for higher, was also evaluated.  It was not possible 

to obtain a reasonable fit with this model. 
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Figure 6.6:  Individual components of the model spectrum compared to the Pierre Auger data. 

 

Once again, the parameters found in the curve fit were used to determine νηξ at an 

energy of 1019.95 eV,  

 ( ) 9.0=Augerνηξ .           (6.8) 
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6.5 Summary of Results 

For ease of comparison, Table 6.1 summarizes the parameters found in the non-

linear curve fits and calculations described in this chapter. 

 
Table 6.1:  Summary of parameters derived from fitting a combined low-energy power-law relation 
superimposed with a fragmentation function (Equation 3.40) to three independent UHECR spectra.   
 

 AGASA HiRes Auger 

Mx [eV] (1.2 ± 0.6) ×1021 (5.0 ± 4.3) ×1020 (2.6 ± 1.5) ×1021 

α -1.97 ± 0.08 -1.99 ± 0.36 -1.48 ± 0.03 

β 4.6 ± 4.3 13 ± 14 210 ± 160 

n [m-2s-1sr-1] (7.0 ± 5.7) ×10-17 (3.0 ± 0.5) ×10-17 (9.3 ± 3.1) ×10-16 

npl [m-2s-1sr-1eV-1] (9.9 ± 1.1) ×10-33 (1.3 ± 1.9) ×10-32 (2.9 ± 0.5) ×10-32 

Eankle [eV] (6.4 ± 0.2) ×1018 (4.2 ± 1.7) ×1018 (3.2 ± 0.2) ×1018 

αpl -3.3 ± 0.1 -3.6 ± 0.8 -3.1 ± 0.1 

χν2 1.14 1.78 2.60 

νηξ 0.003 0.006 0.9 
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Chapter 7 DISCUSSION 
 

It is perhaps not surprising that we were unable to achieve a good fit of the 

constrained fragmentation function alone (Equation 3.38) to the published ultra-

high-energy cosmic ray spectra.  The convention among UHECR observatories is 

to include cosmic rays with energies above 3.5×1018eV in their reported spectra.  

This energy range does not reflect any particular theory about UHECR physics; 

the AGASA Observatory pioneered this convention simply because it is the 

energy above which their exposure curve becomes fairly constant.  However, 

most researchers believe that cosmic rays come from many different sources, 

ranging from the sun to unknown galactic and extra-galactic sources (e.g. Hill and 

Schramm, 1984; Gaisser, 1990; Dova et al., 2001).  “Features” in the cosmic ray 

spectrum, such as dips, bumps, and changes in slope have been pointed to as 

evidence that the full spectrum as depicted in Figure 2.2 is really composed of 

overlapping spectra from various sources.  Since there appears to be a break in the 

spectrum at 1018.1 ± 0.6eV, it is reasonable to find that a UHECR flux model based 

on a single source does not fit well. 

 

The power-law portion of the AGASA fit was found to be the same, within error, 

as Equation 3.39 used by Sarkar and Toldrá, (2002).  Unfortunately, their work on 

the dark matter decay scenario only involved an analysis of the AGASA 

spectrum.  However, the HiRes Collaboration reports a break in the spectrum at 

1018.65 ± 0.05 eV with a slope of -3.17 ± 0.03 below this value (Abbasi1 et al., 2005).  

We find the HiRes injection spectrum at the low end to be in agreement with 

these values.  Due to the newness of the data, no published power-law relations 

were found for the Pierre Auger spectrum. 
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Although finding agreement between our power-law relations and those 

determined by other authors helps to validate our fitting methodology, the main 

goal of this work is to extract information from the fragmentation function portion 

of the fit in order to test the hypothesis that UHECRs result from dark matter 

annihilation in the galaxy.  In order for the annihilation theory to hold up to this 

test, it is first necessary to be able to achieve a good fit for our model while 

constraining the values of α and β.  The theory requires that the integral of the 

energy times the differential number of jet components per energy interval, 

dE
dNE , must recover the total energy for the jet (Equation 3.31).  We must 

constrain α > -2 and β > -1 so that the integral for the energy sum rule may 

converge.  For all three spectra, we were able to obtain a reasonable fit using 

these constraints. 

 

Another test of our theory is found in whether or not the fit of the fragmentation 

function produces a reasonable mass value for non-thermal, superheavy dark 

matter  particles.  In Section 3.2.2, we outlined a cosmological analysis of dark 

matter particle production during the inflationary expansion of the early universe 

performed by Dick et al. (2005).  This study found that in order for weakly-

interacting, super-heavy particles to still exist in large quantities today, their mass 

must be on the order of 1021 to 1023 eV.  The fragmentation function fits of the 

AGASA and Pierre Auger spectra give a mass value within this range, while the 

HiRes value falls slightly below.  Considering that the cosmological analysis is 

meant to provide only an estimate of mass window, one could argue that the 

HiRes mass is also in agreement, as the upper end of the 1-σ error range is 

9.3×1020 eV.   

 

It is also not surprising that we find the HiRes particle mass to be lower than that 

for the AGASA Collaboration.  There has long been a dispute between these two 

influential observatories over the energy values reported for UHECR events, with 
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the AGASA Collaboration arguing that the HiRes team’s values are too low, and 

vice versa (see Section 2.2.2).  It is perhaps reassuring that the fragmentation 

function mass for the Auger Observatory data supports the possibility of 

collisional annihilation, as this observatory purports to settle the disagreement 

between HiRes and AGASA.  What is not so reassuring is the quality of our fit to 

the Auger spectrum, which gives a reduced χ2 value that, while acceptable, was 

higher than that for the other two observatories.  One can visualize the difficulties 

with the Auger fit by comparing the plots of the individual power-law and 

fragmentation function components of our model to the published spectra (Figures 

6.2, 6.4, and 6.6).  In the AGASA and HiRes plots, the contribution of the power-

law component decreases rapidly with increasing energy, as predicted.  However, 

the Auger spectrum is much flatter when plotted as J(E) × E3 vs. E, and has an ill-

defined ankle.  As a result, the power-law component of our model has a greater 

overall contribution at high energies, which was not expected.  However, the 

combined power-law/fragmentation function spectrum still provides a superior fit 

to that for simple power-law relations, indicating that bottom-up acceleration is 

unlikely to provide a full explanation for the entire UHECR spectrum.  The Pierre 

Auger data set used in our analysis is still quite small and the methodology used 

in their energy calculations is still being refined.  The shape of the spectrum may 

change significantly once more UHECR events have been processed.  However, if 

the Auger spectrum does not eventually evolve to have similar characteristics to 

the AGASA and HiRes spectra, it would be wise to devise a new model. 

 

Annihilation involves an interaction between two particles of energy MX and we 

model the annihilation event as initially producing two jets, also having energy 

MX, which then fragment further.  As a result, we may directly compare the 

masses that we calculate with those found in past work on dark matter particle 

decay as a source of UHECRs.  As discussed in Section 3.5, Sarkar and Toldrà 

(2002) analysed the AGASA spectrum, while Fodor and Katz (2001) studied a 

composite spectrum of “normalized” data from AGASA, HiRes, Fly’s Eye, and 

Haverah Park, though what “normalized” means in this case is not discussed.   



 

 60

Both groups assume that UHECR primaries are protons and use the Altarelli-

Parisi equations to evolve existing parameterizations of the fragmentation 

function up to UHECR energies.  With this method, Sarkar and Toldrá find a 

mass ~1021eV while Fodor and Katz give a mass window of 8×1021 to 2×1025eV.  

While we agree with the former estimate, our mass values fall below the latter.  

One potential explanation for this discrepancy is that the Fly’s Eye data would 

have included the highest-energy UHECR ever recorded at 3.2×1020eV, while the 

highest energy bin for the data that we analysed was 2.2×1020eV.  A spectrum 

with a higher maximum energy might increase the mass value predicted by the 

fragmentation function.   

 

Our final test of the annihilation theory involves estimating dark matter subclump 

particle density that would be required to produce the observed UHECR flux.  By 

using the combined-spectrum parameters found by in the curve fits, information 

from N-body models of a CDM universe, and UHECR observatory data, we may 

reduce the equation for predicted flux discussed in Section 3.4 down to three 

unknown parameters, νηξ (Equation 6.2).  While we cannot yet solve for the 

individual variables, we know that their product must be << 1.  Depending on 

whether WIMPZILLAs are Majorana particles or not, ν is either 4 or 1 

respectively.  ξ must be less than one due to unitarity bounds, and η, the ratio of 

the core mass density of dark matter subclumps to the density of the sun, must be 

less than one to be consistent with ΛCDM models.  We find that AGASA and 

HiRes values for νηξ are well within this limit and therefore provide further 

support for the annihilation theory.  The Pierre Auger data yields νηξ = 0.9, which 

is a little too close to one for comfort.  Upon further analysis of Equation 6.2, we 

realize that varying β may greatly influence the value calculated for νηξ.  For the 

Auger spectrum, β has a large uncertainty, ranging from 50 to 370.  This β range 

yields values for νηξ as low as 0.007, which supports the annihilation proposal, to 

150, which refutes the theory.  Once again, the preliminary nature of the Auger 

data and the ensuing uncertainty in the fit of our model prevent us from drawing 

conclusions about annihilation based on the Auger spectrum. 
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Chapter 8 CONCLUSIONS 
 

We have obtained reasonably good fits of our combined-spectrum model to data 

from the three most important UHECR observatories:  the Akeno Giant Air 

Shower Array, the High Resolution Fly’s Eye, and the Pierre Auger 

Observatories.  This leads us to suggest that cosmic rays in the “ultra-high” 

energy regime come from at least two different sources.  The lower end of the 

spectrum is dominated by sources producing a flux that decreases with energy in a 

simple power law relation.  This type of behaviour is more consistent with 

theories in which primary UHECR particles derive their energy from being 

accelerated by powerful astrophysical forces.  The high end of the UHECR 

spectrum exhibits the characteristics one would expect to see from the 

fragmentation of extremely massive particles.  Given that UHECR arrival 

directions are relatively isotropic and that ΛCDM models of the universe show an 

abundance of substructure in the dark matter halo, we predict that the highest 

energy UHECRs come from the annihilation of exotic, superheavy dark matter 

particles residing in the dense cores of halo subclumps. 

 

The fragmentation function model allows us to obtain a relatively precise estimate 

of dark matter particle mass.  Taking the outer limits of the ranges of mass values 

obtained from non-linear curve fits of the combined-spectrum model to data from 

the three observatories, we find 1×1020eV < MX < 4×1021eV.  We are encouraged 

that this range overlaps with previous estimates, both from similar work on the 

dark matter decay scenario and from a cosmological analysis.  We are also 

heartened by the fact that the fitted fragmentation function parameters yield 

credible subclump particle densities.  Conversely, the slightly poorer fit of our 
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combined-spectrum model to the Pierre Auger data indicates that more work 

needs to be done in evaluating this paradigm.  Certainly, we look to future reports 

from the Auger Observatory to resolve the discrepancies between the various 

spectra though preliminary indications are promising for collisional annihilation 

as a source of UHECRs. 
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Chapter 9 RECOMMENDATIONS FOR FUTURE 

WORK 
 

First and foremost, future releases of Pierre Auger data must be scrutinized as 

they become available.  As the Auger Collaboration refines techniques for 

UHECR primary energy estimation and as the event counts become more 

statistically significant, two criteria must be met in order for the collisional 

annihilation source model to survive.  Perhaps the most immediately telling test is 

that one must begin to see small scale anisotropy in UHECR arrival directions, as 

only the cores of dark matter subclumps achieve particle densities conducive to 

annihilation.  The other criterion is that there should be an improved fit for a flux 

model, of which the fragmentation function is a component, to the Auger 

spectrum.  As more and more events are recorded, it would perhaps be a useful 

exercise to reduce the size of spectral energy bins, which are currently as high as 

5×1019eV, to search for previously undetectable features and to once again test the 

quality of a fragmentation function fit. 

 

While waiting for the accumulation and processing of data by the Auger 

Observatory, further work to test our model could be performed.  Other 

researchers have evaluated the possible link between dark matter particle 

fragmentation and UHECRs by making assumptions about the composition of 

UHECR primaries and evolving existing, particle-specific parameterizations of 

the fragmentation function up to UHECR energies using the Alterelli-Parisi 

equations.  It is thought that dark matter particle annihilation should 

predominantly produce photon primaries.  Therefore, it would be interesting to 

take the fragmentation functions that we have obtained from our non-linear curve 
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fits and evolve them down to current particle collider energies.  By comparing 

these evolved functions to those determined experimentally, we may discover 

something about the composition of primary particles. 

 

Another idea for further work may be obtained from methods used by UHECR 

observatories to estimate cosmic ray energy.  There exists a model for the 

development and characteristics of extended air showers caused by primary 

particles of various compositions.  UHECR researchers run thousands of Monte 

Carlo simulations of these air showers for cosmic rays having various energies 

and arrival directions.  They then search for the most significant match between 

predicted and actual measurements in order to characterize the cosmic ray.  Since 

errors in UHECR flux are statistical in nature, perhaps we should attempt a more 

statistical approach to curve fitting.  A large number of Monte Carlo simulations 

of the UHECR spectrum could be generated for different parameterizations of the 

fragmentation function, using the results presented in Chapter 6 as a starting 

point.  One could then search for the most likely match of a particular 

parameterization to the published spectra.  The curve-fitting method employed in 

this thesis assumes a Gaussian error distribution, which, while a reasonable 

assumption, is not strictly correct.  A statistical analysis method may produce 

more accurate results. 
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APPENDIX A:  AGASA COLLABORATION SPECTRUM 
Takeda et al., 2003 

Published:     Calculated:       
Energy, 
log(E) 

Adjusted Flux, 
log(J(E)×E3) 

Adjusted Flux 
Error ( - ) 

Adjusted Flux. 
Error ( + ) Energy, E 

Energy 
Bin Width Flux, J Flux Error ( - ) Flux Error ( + ) 

log([eV]) [m-2 s-1 sr-1 eV2] [m-2 s-1 sr-1 eV2] [m-2 s-1 sr-1 eV2] [eV] [eV] [m-2 s-1 sr-1 eV-1] [m-2 s-1 sr-1 eV-1] [m-2 s-1 sr-1 eV-1] 
18.55 24.528 0.009 0.009 3.55E+18 8.19E+17 7.55E-32 1.55E-33 1.58E-33
18.65 24.519 0.011 0.010 4.47E+18 1.03E+18 3.71E-32 9.27E-34 8.63E-34
18.75 24.497 0.013 0.013 5.62E+18 1.30E+18 1.77E-32 5.21E-34 5.37E-34
18.85 24.473 0.017 0.016 7.08E+18 1.63E+18 8.38E-33 3.22E-34 3.14E-34
18.95 24.449 0.022 0.021 8.91E+18 2.06E+18 3.97E-33 1.96E-34 1.97E-34
19.05 24.492 0.026 0.025 1.12E+19 2.59E+18 2.20E-33 1.28E-34 1.30E-34
19.15 24.460 0.034 0.032 1.41E+19 3.26E+18 1.02E-33 7.71E-35 7.82E-35
19.25 24.530 0.041 0.038 1.78E+19 4.10E+18 6.03E-34 5.43E-35 5.51E-35
19.35 24.496 0.054 0.048 2.24E+19 5.17E+18 2.79E-34 3.27E-35 3.26E-35
19.45 24.568 0.064 0.056 2.82E+19 6.50E+18 1.65E-34 2.26E-35 2.27E-35
19.55 24.664 0.073 0.062 3.55E+19 8.19E+18 1.03E-34 1.60E-35 1.58E-35
19.65 24.702 0.089 0.074 4.47E+19 1.03E+19 5.65E-35 1.05E-35 1.05E-35
19.75 24.484 0.153 0.146 5.62E+19 1.30E+19 1.71E-35 5.09E-36 6.85E-36
19.85 24.633 0.161 0.154 7.08E+19 1.63E+19 1.21E-35 3.75E-36 5.15E-36
19.95 24.304 0.340 0.294 8.91E+19 2.06E+19 2.84E-36 1.54E-36 2.75E-36
20.05 24.814 0.219 0.203 1.12E+20 2.59E+19 4.61E-36 1.83E-36 2.75E-36
20.15 24.711 0.340 0.294 1.41E+20 3.26E+19 1.82E-36 9.90E-37 1.77E-36
20.25 *24.779     1.78E+20 4.10E+19       
20.35 24.924 0.449 0.364 2.24E+20 5.17E+19 7.48E-37 4.82E-37 9.82E-37
20.45 *25.177     2.82E+20 6.50E+19       

* Estimate of adjusted flux.  No cosmic ray events were observed in this energy bin. 
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AGASA exposure, AΩT, for energy bins: log(E[eV]) = 18.55 to 18.65 (estimated): 4.7×1016 [m2 s sr] 

      log(E[eV]) = 18.75 to 18.95 (estimated):  5.0×1016 [m2 s sr] 

      above log(E[eV]) = 19 (published):  5.1×1016 [m2 s sr]  
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APPENDIX B:  HIGH RESOLUTION FLY’S EYE COLLABORATION  

MONOCULAR I SPECTRUM (June 1997 – February 2003) 
D. Bergman,2  2005 

Published:         Calculated:     

Energy, 
log(E) 

Number 
of 
Events Exposure × dE Flux, J 

Flux, Lower 
Limit  

Flux, Upper 
Limit Energy, E 

Energy 
Bin Width Flux Error ( - ) Flux Error ( + ) 

log([eV])   
[m2 s sr eV]     
× 10-30 

[m-2 s-1 sr-1 eV-1]    
× 1030 

[m-2 s-1 sr-1 eV-1]    
× 1030 

[m-2 s-1 sr-1 eV-1]    
× 1030 [eV] [eV] [m-2 s-1 sr-1 eV-1] [m-2 s-1 sr-1 eV-1] 

18.55 390 9894 0.03940000 0.03741000 0.04150000 3.55E+18 8.19E+17 1.99E-33 2.10E-33
18.65 272 15900 0.01705000 0.01602000 0.01815000 4.47E+18 1.03E+18 1.03E-33 1.10E-33
18.75 211 24920 0.00849100 0.00790700 0.00911500 5.62E+18 1.30E+18 5.84E-34 6.24E-34
18.85 203 38150 0.00532700 0.00495400 0.00572800 7.08E+18 1.63E+18 3.73E-34 4.01E-34
18.95 137 57220 0.00238700 0.00218300 0.00260800 8.91E+18 2.06E+18 2.04E-34 2.21E-34
19.05 107 84270 0.00126700 0.00114500 0.00140200 1.12E+19 2.59E+18 1.22E-34 1.35E-34
19.15 83 122100 0.00068120 0.00060650 0.00076410 1.41E+19 3.26E+18 7.47E-35 8.29E-35
19.25 78 174400 0.00044630 0.00039600 0.00050300 1.78E+19 4.10E+18 5.03E-35 5.67E-35
19.35 47 245700 0.00019160 0.00016390 0.00022380 2.24E+19 5.17E+18 2.77E-35 3.22E-35
19.45 25 342200 0.00007326 0.00005861 0.00009114 2.82E+19 6.50E+18 1.47E-35 1.79E-35
19.55 28 471600 0.00005933 0.00004810 0.00007289 3.55E+19 8.19E+18 1.12E-35 1.36E-35
19.65 12 643800 0.00001863 0.00001335 0.00002577 4.47E+19 1.03E+19 5.28E-36 7.14E-36
19.75 13 871500 0.00001490 0.00001077 0.00002029 5.62E+19 1.30E+19 4.13E-36 5.39E-36
19.85 6 1171000 0.00000513 0.00000308 0.00000821 7.08E+19 1.63E+19 2.05E-36 3.08E-36
19.95 2 1562000 0.00000129 0.00000045 0.00000296 8.91E+19 2.06E+19 8.40E-37 1.67E-36
20.10 2 4791000 0.00000044 0.00000015 0.00000100 1.26E+20 1.00E+20 2.90E-37 5.60E-37
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APPENDIX C:  PIERRE AUGER COLLABORATION SPECTRUM 
Sommers, 2005 

Published:   Calculated:         

Energy, 
log(E) 

Number 
of 
Events E×J  Energy, E 

Energy 
Bin Width Flux, J Flux Error ( - ) Flux Error ( + ) Exposure 

log([eV])   [km-2 sr-1 yr-1] [eV] [eV] [m-2 s-1 sr-1 eV-1] [m-2 s-1 sr-1 eV-1] [m-2 s-1 sr-1 eV-1] [m2 s sr]  
18.55 1216 3.01 3.55E+18 8.19E+17 2.70E-32 7.75E-34 7.75E-34 4.89916E+16
18.65 766 1.89 4.47E+18 1.03E+18 1.35E-32 4.87E-34 4.87E-34 4.91498E+16
18.75 478 1.18 5.62E+18 1.30E+18 6.68E-33 3.06E-34 3.06E-34 4.91248E+16
18.85 388 0.96 7.08E+18 1.63E+18 4.32E-33 2.19E-34 2.19E-34 4.90135E+16
18.95 233 0.57 8.91E+18 2.06E+18 2.04E-33 1.33E-34 1.33E-34 4.9572E+16
19.05 178 0.44 1.12E+19 2.59E+18 1.25E-33 9.36E-35 9.36E-35 4.90594E+16
19.15 92 0.22 1.41E+19 3.26E+18 4.96E-34 5.17E-35 5.17E-35 5.07131E+16
19.25 71 0.17 1.78E+19 4.10E+18 3.04E-34 3.61E-35 3.61E-35 5.06482E+16
19.35 53 0.13 2.24E+19 5.17E+18 1.85E-34 2.54E-35 2.54E-35 4.9441E+16
19.45 18 0.044 2.82E+19 6.50E+18 4.97E-35 1.17E-35 1.17E-35 4.96106E+16
19.55 15 0.037 3.55E+19 8.19E+18 3.32E-35 8.57E-36 8.57E-36 4.91637E+16
19.65 7 0.017 4.47E+19 1.03E+19 1.21E-35 4.58E-36 4.58E-36 4.99349E+16
19.75 4 0.0099 5.62E+19 1.30E+19 5.61E-36 2.33E-36 3.90E-36 4.89982E+16
19.85 3 0.0074 7.08E+19 1.63E+19 3.33E-36 2.11E-36 2.55E-36 4.91637E+16
19.95 3 0.0074 8.91E+19 2.06E+19 2.64E-36 1.67E-36 2.03E-36 4.91637E+16
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