

Investigation in the Application of Complex Algorithms

to Recurrent Generalized Neural Networks for

Modeling Dynamic Systems

A Thesis Submitted to the College of Graduate Studies and Research

In Partial Fulfillment of the Requirements

For the Degree of Master of Science

In the Department of Mechanical Engineering

University of Saskatchewan

Saskatoon

By

R. Matthew Yackulic

Copyright R. Matthew Yackulic, February 2011. All rights reserved

i

PERMISSION TO USE

 In presenting this thesis/dissertation in partial fulfillment of the requirements for a

Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of

this University may make it freely available for inspection. I further agree that permission

for copying of this thesis/dissertation in any manner, in whole or in part, for scholarly

purposes may be granted by the professor or professors who supervised my

thesis/dissertation work or, in their absence, by the Head of the Department or the Dean

of the College in which my thesis work was done. It is understood that any copying or

publication or use of this thesis/dissertation or parts thereof for financial gain shall not be

allowed without my written permission. It is also understood that due recognition shall be

given to me and to the University of Saskatchewan in any scholarly use which may be

made of any material in my thesis/dissertation.

 Requests for permission to copy or to make other uses of materials in this

thesis/dissertation in whole or part should be addressed to:

Head of the Department of Mechanical Engineering

University of Saskatchewan

57 Campus Drive

Saskatoon, Saskatchewan

S7N 5A9

Canada

ii

ABSTRACT

 Neural networks are mathematical formulations that can be “trained” to perform

certain functions. One particular application of these networks of interest in this thesis is

to “model” a physical system using only input-output information. The physical system

and the neural network are subjected to the same inputs. The neural network is then

trained to produce an output which is the same as the physical system for any input. This

neural network model so created is essentially a “blackbox” representation of the physical

system. This approach has been used at the University of Saskatchewan to model a load

sensing pump (a component which is used to create a constant flow rate independent of

variations in pressure downstream of the pump). These studies have shown the versatility

of neural networks for modeling dynamic and non-linear systems; however, these studies

also indicated challenges associated with the morphology of neural networks and the

algorithms to train them. These challenges were the motivation for this particular

research.

 Within the Fluid Power Research group at the University of Saskatchewan, a

“global” objective of research in the area of load sensing pumps has been to apply

dynamic neural networks (DNN) in the modeling of loads sensing systems.. To fulfill the

global objective, recurrent generalized neural network (RGNN) morphology along with a

non-gradient based training approach called the complex algorithm (CA) were chosen to

train a load sensing pump neural network model. However, preliminary studies indicated

that the combination of recurrent generalized neural networks and complex training

proved ineffective for even second order single-input single-output (SISO) systems when

the initial synaptic weights of the neural network were chosen at random.

 Because of initial findings the focus of this research and its objectives shifted

towards understanding the capabilities and limitations of recurrent generalized neural

networks and non-gradient training (specifically the complex algorithm). To do so a

second-order transfer function was considered from which an approximate recurrent

generalized neural network representation was obtained. The network was tested under a

iii

variety of initial weight intervals and the number of weights being optimized. A definite

trend was noted in that as the initial values of the synaptic weights were set closer to the

“exact” values calculated for the system, the robustness of the network and the chance of

finding an acceptable solution increased. Two types of training signals were used in the

study; step response and frequency based training. It was found that when step response

and frequency based training were compared, step response training was shown to

produce a more generalized network.

 Another objective of this study was to compare the use of the CA to a proven non-

gradient training method; the method chosen was genetic algorithm (GA) training. For

the purposes of the studies conducted two modifications were done to the GA found in

the literature. The most significant change was the assurance that the error would never

increase during the training of RGNNs using the GA. This led to a collapse of the

population around a specific point and limited its ability to obtain an accurate RGNN.

 The results of the research performed produced four conclusions. First, the

robustness of training RGNNs using the CA is dependent upon the initial population of

weights. Second, when using GAs a specific algorithm must be chosen which will allow

the calculation of new population weights to move freely but at the same time ensure a

stable output from the RGNN. Third, when the GA used was compared to the CA, the

CA produced more generalized RGNNs. And the fourth is based upon the results of

training RGNNs using the CA and GA when step response and frequency based training

data sets were used, networks trained using step response are more generalized in the

majority of cases.

iv

ACKNOWLEDGEMENTS

 The author wishes to express his gratitude for the encouragement, guidance and

financial support to his supervisors, Dr. Richard Burton and Dr. Greg Schoenau, during

the course of preparing this thesis. Appreciation is also sincerely expressed to Mr. Doug

Bitner for his guidance and assistance during the course of the conducted studies.

 The author acknowledges the financial assistance in the form of a Graduate

Teaching Fellowship Award, provided by the Department of Mechanical Engineering at

the University of Saskatchewan.

 The author would also like to give a heartfelt thank you to his mother, Dorothy

Yackulic, and to his brother, Andrew Yackulic, for their encouragement and support

during the preparation of this thesis. The author would also like to thank his father, Alan

Yackulic, for inspiring him towards his chosen path. You will always be missed ROM.

v

TABLE OF CONTENTS

PERMISSION TO USE ... i

ABSTRACT .. ii

ACKNOWLEDGEMENTS ... iv

TABLE OF CONTENTS .. v

LIST OF TABLES .. vii

LIST OF FIGURES ... ix

NOMENCLATURE .. xiii

ABBREVIATIONS .. xv

Chapter 1: Introduction and Objectives .. 1

1.1 Project Background and Motivation ... 1
1.2 Previous Research of Load Sensing Pumps at the University of Saskatchewan 4
1.3 Thesis Objectives .. 7
1.4 Outline and Structure of Thesis .. 7

Chapter 2: Dynamic Neural Networks and Applications to Fluid Power Systems 9

2.1 Introduction ... 9
2.2 Static Neural Networks ... 9
2.3 Types of Dynamic Networks .. 11
2.4 Recurrent Generalized Neural Networks .. 15
2.5 Applications of Neural Networks to Fluid Power... 20

2.5.1 Neural Network Control Applications to Fluid Power 20
2.5.2 Condition Monitoring of Fluid Power Systems Using Neural Networks 24
2.5.3 Modeling of Fluid Power Systems Using Neural Networks 28

2.6 Summary ... 30
Chapter 3: Training of Dynamic Neural Networks ... 31

3.1 Introduction ... 31
3.2 Gradient Training Methods ... 32
3.3 Non-Gradient Training Methods... 38

3.3.1 Genetic Algorithm for Neural Network Training .. 38
3.2.2. Complex Algorithm for Neural Network Training ... 47

Chapter 4: Application of Complex Training Method to Recurrent Generalized Neural

Network... 51

4.1 Introduction ... 51
4.2 Selection of System for Creating Training Data ... 52
4.3 Step Response Training of a RGNN Using CA .. 54

4.3.1 Training a RGNN Using Step Response with a Random Initial Population ... 56
4.3.2 Training a RGNN Using Step Response with a Limited Initial Population 63

vi

4.4 Frequency Based Response Training Using CA ... 67
4.5 CA Training Using a Combination of Step and Frequency Training Data............. 72
4.6 Summary of CA Training ... 76

Chapter 5: Comparison of Complex Algorithm and Genetic Algorithm 78

5.1 Introduction ... 78
5.2 Step Response Training of a RGNN Using GA .. 79
5.3 Frequency Based Training of a RGNN Using GAs .. 87
5.4 Discussion of GA Results ... 90

Chapter 6: Conclusions and Recommendations ... 92

6.1 Summary of Results .. 92
6.2 Conclusions ... 94
6.3 Recommended Future works .. 95

References ... 98

Appendix A: Derivation of Exact Representation for Recurrent Generalized Neural

Network (RGNN).. 102

Appendix B: Calculation of Updated Neural Network Weights Using Non-Gradient

Methods... 106

B.1: Introduction ... 106
B.2: Calculations for Complex Algorithm (CA)... 107
B.3: Calculations for Genetic Algorithm (GA)... 109

Appendix C: Simulation Code .. 114

C.1 RGNN Code (dynamic_rgnn.m) .. 114
C.1.1 Changing Population Row Vector to a Square Matrix (string2square.m)
... 116

C.2 Complex Algorithm (complex_rgnn_august26_2010.m) 117
C.2.1 Weight Matrix Transformation (square2string.m) 122
C.2.2 Obtaining Maximum and Minimum Error (max_min.m) 123

C.3 Genetic Algorithm (genetic_rgnn_oct6_2010.m) 124
C.3.1 Crossover and Mutation Algorithm
(genetic_floating_dynamic_newmut.m) ... 129
C.3.2 Genetic Fitness (genetic_fitness.m) .. 133
C.3.3 Genetic Crossover (genetic_crossover.m) .. 135

vii

LIST OF TABLES

Table 2.1: Parameter fault levels for simulation study ... 27

Table 3.1: Initial population with corresponding error for FFNN. Note: individual 2 has

the lowest error. .. 40

Table 3.2: Values for individual fitness factors and total fitness of initial population.

Note: individual 2 has the best fitness. ... 41

Table 3.3: Values for individual fitness factors and total fitness of initial population.

Note: as would be expected, individual 2 has the highest fitness factor. 42

Table 3.4: Fitness range of each individual in initial population. 42

Table 3.5: Initial population and error values for FFNN using CA. 48

Table 3.6: Results for calculation of centroid and reflection points using CA. 49

Table 4.1: Error results for RGNNs trained using one and two weight optimization with a

random initial population. ... 62

Table 4.2: Summary of average error results for networks created with an initial [-5, 5]

distribution. ... 62

Table 4.3: Comparison of average error results for [-5, 5], [-1, 1] and [-0.5, 0.5] for all

connections initialized. ... 65

Table 4.4: Comparison of average error results for [-5, 5], [-1, 1] and [-0.5, 0.5] for only

required connections initialized. ... 65

Table 4.5: Trend comparison of step and frequency based training for w46 and w64. 69

Table 4.6: Trends comparison results of step and frequency based training when two

connections were trained in tandem. ... 70

Table 4.7: Error comparison between the outputs of RGNNs trained using step response

and frequency based training. ... 72

Table 5.1: Comparison of results for training the training of one weight with [-5, 5]

interval. ... 80

Table 5.2: Comparison of results for the training of RGNNs with GAs using step

response and frequency based training for [-1, 1] initial population interval. 88

Table B.1: Initial population of weights and corresponding error. 107

Table B.2: Values for individual fitness factors in initial population. 109

viii

Table B.3: Fitness ratios along with fitness ranges for population. 110

Table B.4: Tentative new population with individuals corresponding mates. 111

Table B.5: New population using heuristic crossover and non-uniform mutation. 113

ix

LIST OF FIGURES

Figure 1.1: Schematic of a Load Sensing Pump [Li, 2007]. ... 2

Figure 2.1: Schematic of example static network consisting of two inputs and one output.

... 10

Figure 2.2: Schematic of a static neuron [Haykin, 1999]. .. 10

Figure 2.3: Schematic of feedback dynamic neural network (FBDNN) archetype [Haykin,

1999]. .. 12

Figure 2.4: Schematic of feed-forward dynamic neural network (FFDNN) archetype

[Lamontagne, 2001]. ... 13

Figure 2.5: Schematic of a dynamic neural unit (DNU) architecture [Srivastava, 1998]. 14

Figure 2.6: Structure of a three stage dynamic neural network (DNN) using six DNUs

[Li, 2007] .. 15

Figure 2.7: Recurrent dynamic generalized neural network (RDGNN) archetype [Wiens,

2008b]. .. 16

Figure 2.8: FBDNN in RGNN form. .. 17

Figure 2.9: RGNN representation of transfer function given in Equation 2.4. 18

Figure 2.10: Output for a continuous transfer function compared to RGNN outputs at

varying Δt. ... 20

Figure 2.11: Training of a neural network to mimic the performance of a multi-gain PID

controller [Burton, 1999][Qian, 1998]. ... 22

Figure 2.12: Neural controller mimicking multi-gain PID with external “kicker” [Burton

1999][Qian, 1998]. .. 22

Figure 2.13: Neural network training schematic for coupled MIMO hydraulic system

[Burton 1999][Zhang, 1996]. .. 23

Figure 2.14: Output profiles for MIMO hydraulic system using a neural controller (a, b)

and PID controller (c, d) [Burton 1999][Zhang, 1996]. .. 24

Figure 2.15: Schematic diagram of the non-intrusive pressure measurement [Yu, 2005].

... 25

Figure 2.16: Results of FLNN validation for non-intrusive pressure measurement [Yu,

2005]. .. 26

x

Figure 2.17: Schematic of the servo-valve controlled linear actuator system [Pollmeier,

2004]. .. 26

Figure 2.18: Swash-plate piston pump configuration [McNamara, 1997]. 29

Figure 2.19: Mean operating moment calculated using neural network validation data

[McNamara, 1997]. ... 29

Figure 2.20: Hybrid model simulation results for a step up-step down demand cycle

[McNamara, 1997]. ... 29

Figure 3.1: Schematic representation of BP for a single neuron. 33

Figure 3.2: A one-dimensional example of a global minimum and local minimum error

search. ... 37

Figure 3.3: Schematic of example static network consisting of two inputs and one output.

... 39

Figure 3.4: Physical representation of reproduction probability for GA training

[Goldberg, 1989]. .. 41

Figure 3.6: Flow diagram of the complex algorithm including modified algorithm. 50

Figure 4.1: Approximate RGNN representation of transfer function to be modeled (found

in Equation 4.1). .. 53

Figure 4.2: Output comparison of the desired response using step inputs to the output of a

typical RGNN trained using a [-5, 5] initial distribution interval where all weights are

trained. .. 56

Figure 4.3: Error comparison of output shown in Figure 4.2 for [-5, 5] initial weight

interval for “all possible” weights trained. ... 57

Figure 4.4: Comparison of outputs for desired system, RGNN with all weights trained,

and a RGNN with only necessary neurons trained. .. 58

Figure 4.5: Error comparison between the RGNN trained for w31 and the desired output

using the CA for a step input. ... 59

Figure 4.6: Comparison of error results for networks trained by optimizing w31 and w23

(one weight at a time). .. 60

Figure 4.7: Comparison of error results for networks trained by optimizing w46 and w64

(one weight at a time). .. 60

xi

Figure 4.8: Comparison of outputs for all conducted test cases using a [-5, 5] initial

weight interval .. 63

Figure 4.9: Output results of RGNNs trained for [-5, 5] with all weight connections

optimized... 66

Figure 4.10: Output results of RGNNs trained for [-1, 1] with all weight connections

optimized... 66

Figure 4.11: Output results of RGNNs trained for [-0.5, 0.5] with all weight connections

optimized... 67

Figure 4.12: Frequency based training data input and output data. 68

Figure 4.13: Error comparison for step and frequency based response trained networks

using all connections for step input data. .. 71

Figure 4.14: Error comparison for multi-step input between frequency based and step-

frequency based trained RGNNs. ... 74

Figure 4.15: Error comparison for frequency based input between step response and step-

frequency based trained RGNNs. ... 74

Figure 4.16: Step response for one stage, two stage and frequency based training. 76

Figure 5.1: Typical error signal for step input trained RGNN using GAs when only w31

was optimized. .. 81

Figure 5.2: Error signal for step input trained RGNN using GAs when w46 and w23 were

trained in tandem... 82

Figure 5.3: Error comparison for networks trained using one weight, two weights,

required weights and all weights... 83

Figure 5.4: Output comparison for networks trained using two weights, required weights

and all weights. ... 84

Figure 5.5: Error comparison for CAs and GAs when training all possible weights with

an initial population interval of [-5, 5]. ... 85

Figure 5.6: Error comparison for initial population intervals [-5, 5], [-1, 1] and [-0.5, 0.5]

for RGNNs where only the required weights were trained using the GA. 86

Figure 5.7: Comparison of error between the GA and CA for frequency based training

using [-1, 1] initial population interval. .. 88

xii

Figure 5.8: Error comparison of frequency based and step response trained RGNNs for a

frequency based input signal; only required weights were trained. 89

Figure A.1: Schematic of exact representation of Equation A.7 using a RGNN. 103

Figure A.2: Output comparison of RGNN at 0.02s and 0.005s compared to the continuous

output of the transfer function in Equation A.1. ... 105

Figure B.1: Schematic of FFNN considered for outline of training algorithms. 106

xiii

NOMENCLATURE

α Reflection coefficient

δ(k) Partial derivatives for error used in BP

σ Activation function

μ Learning rate

a upper boundary of weight range

b lower boundary of weight range

c Non-uniformity parameter

e Error at a specific time or time step

E Summation of least squared errors for batch training

E(i) Batch training error of individual i

E(k) Least squared error

Emax Maximum error

f(i) Fitness factor of individual i

fp Fitness of population

fratio
(i) Fitness ratio of individual i

G Number of times a new population has been calculated

Gmax Maximum number of generations during GA training

IA Individual with the highest fitness factor in mating pair

IB Individual with the lowest fitness factor in mating pair

Index Index matrix for mating using the GA

k Time instant

m number of variables being solved for or optimized

M Number of layers in a neural network

n number of individuals in the population

N Number of time steps in a training set
Λ

∆ p
Estimate of Δp [kPa]

Δp Change in pressure [kPa]

PL load pressure [kPa]

xiv

PS supply pressure or upstream pressure in a load sensing pump [kPa]

Q flow rate [gal/min]

Rand Random population matrix

s(k) Neuron output

t Time [sec]

Δt length of time step (noted as dt in some figures) [sec]

W Weight connection matrix for RGNN

W Centroid of the complex

WD Dynamic weight connection matrices for RGNN

Wexact Matrix containing exact values of neural weights

Wh Individual with the highest error

wij Weight connection between output of neuron j to input of neuron i

wi(mutation) Weight after mutation

ΔWk Perturbation matrix

Wl Individual with the lower error

ωn Natural frequency [rad/sec]

Wr Reflection individual

WS Static weight connection matrices for RGNN

Wtent Tentative population matrix

x Output of system

X Input of system as a vector matrix

xk Input at time instant k

y Output of system

Y Output of system as a vector matrix

yd Desired output of network

yk Output at time instant k

z-1 Time step delay

xv

ABBREVIATIONS

NN Neural networks

SNN Static neural networks

DNN Dynamic neural networks

DNU Dynamic neural unit

RGNN Recurrent generalized neural network

CA Complex algorithm

FFNN Feed-forward neural network

FBDNN Feedback dynamic neural network

FFDNN Feed-forward dynamic neural network

PI Proportional-integral

PID Proportional-integral-derivative

MIMO Multi-input multi-output

HON Higher order network

FLNN Functional link neural network

MFFNN Multilayer feed-forward neural network

BP Backpropagation

GA Genetic Algorithm

SISO Single-input single-output

1

Chapter 1: Introduction and Objectives

1.1 Project Background and Motivation

 The study of fluid power systems is important as they are used in a variety of

aeronautical, mining, oil and gas, and other heavy duty applications [Lamontagne,

2001][Wu, 2003][Li, 2007]. However, complications have arisen in creating working

models for fluid power components due to their nonlinear and dynamic nature throughout

a large operating range. In order to properly design a complete system, each component

must have an analytical model which accurately characterizes its actions over the

complete system operating range.

 If the operating range of the hydraulic system is small, then an all encompassing

model is relatively simple involving a few coefficients and characteristics describing such

things as the orifice size and shape. However, if the operating range is large then creating

an accurate model becomes more complicated. An example of a system designed to

work over a large operating range is a load sensing pump. This system has received

considerable attention by researchers at the University of Saskatchewan [Bitner, 1986] [

Xu, 1997] [Lamontagne, 2001] [Li, 2007] [Wiens, 2008a][Wiens, 2008b] [Wu, 2003] and

was the original system that was the underlying focus of this study.

 A load sensing pump works on a basic principle; no matter what the change of

pressure is at the dominant load, the flow rate to the dominant load delivered by the pump

is controlled to be constant [Bitner, 1986]. This is done so by creating a constant

pressure drop across a controlling orifice. A constant pressure drop will create a constant

flow rate assuming that the properties of the fluid do not change [Merritt, 1967].

 The load sensing pump is comprised of three main components; a pressure

compensated pump, a controlling orifice, and a compensator spool. A diagram of a load

sensing pump is shown in Figure 1.1. With reference to Figure 1.1, the differential

2

pressure across the controlling orifice is fed back to the compensator spool. If the load

pressure PL increases, the compensator spool moves to the right, porting fluid from the

controlling spool to tank. This reduces controlling pressure which in turn increases the

swash plate angle increasing the pump flow. As a result, the upstream pressure (Ps)

increases until the desired pressure differential is accomplished. Thus the flow rate

through the orifice is reestablished.

 Because the upstream pressure, Ps, is set marginally higher than the load pressure

(typically 10 kPa), the pressure drop across the load control valve is fairly small, hence

energy losses can be minimized. In circuits in which a load sensing pump delivers flow to

several loads, a series of “shuttle” valves sense the dominant load pressure and this

pressure is fed back to the compensator. As such the pressure drop across the dominant

loading control valve is minimized, but the same cannot be said for pressure drops across

the other load valves.

 Each component of the load sensing pump contains non-linear and dynamic

behavior on their own. When the three components in Figure 1.1 are combined, these

dynamic components and non-linearities become even more difficult to properly describe

using one model.

LP

LP

SP

SP
PQ

CP

Compensator
Compensator Spool

Controlling
Orifice

Pump

Load

Controlling Spool

Figure 1.1: Schematic of a Load Sensing Pump [Li, 2007].

 Linearized models based on fundamental fluid and component motion equations

may be created for load sensing pumps; two such models were created by Bitner [1986]

3

and Krus [1988]. However an inherent disadvantage of linearized models is that they are

only capable of working in a small operating range. For a load sensing pump to maintain

a specific operating point, a variety of components may be arrayed in a variety of

combinations to compensate for fluctuations downstream. These moving components

will create multiple dynamic responses depending on not only the operating point of the

pump, but also the internal operating points between the three components previously

listed.

 If the internal operating point is used as an input, then a model may be created

which compensates for internal dynamics over a large internal and external operating

range. This is a very difficult task to do analytically but the use of “black box”

approaches, in which only input-output relationships are of interest, avoids these

problems. One such method which has been considered to create this black box is the use

of static and dynamic neural networks.

 Neural networks (NN) are of two main types; static (SNN) and dynamic (DNN).

Both types of networks are comprised of neurons connected by “synapses” which contain

a weighting factor. The value of the weighting factor dictates the output of the NN. For

modeling purposes a NN is trained using input and output data sets under which

conditions the model is expected to operate. This data set of values is referred to as the

training data. Details of how these NNs and their training algorithms work are discussed

in Chapters 2 and 3 respectively.

 NNs may be used to do a variety of processes including system control, parameter

estimation and system modeling [Burton, 1999][Yu, 2005][Pollmeier, 2004][McNamara,

1997]. For the purposes of the following research NNs will be used for system modeling.

Once training has been completed the model will be considered to be self sufficient and

the neural weights may not be modified; this is referred to as simulation modeling.

4

1.2 Previous Research of Load Sensing Pumps at the University
of Saskatchewan

 As mentioned, there has been a variety of studies completed at the University of

Saskatchewan which considered the modeling of load sensing pumps. The task was

initially investigated by Bitner [1986], who considered the methodology of creating a

linearized model for a load sensing pump. Bitner found the model degraded as the actual

pump operating point diverged from the model designed operating point. To overcome

this drawback a variety of operating points may be considered and the parameter

estimation could be created for each operating point. This would create a set of

linearized equations for each operating point being considered. Although achievable, this

process would be very labour intensive and time consuming due to the large operating

range of a load sensing pump.

 One option to negate the disadvantages of linearized models is to use the concepts

of “black box” and “gray box” designs. A black box model works on the principle that

the user does not concern themselves with system or component properties, but rather

cares solely about the input-output relationship [Li, 2007]. When creating a black box

model, there is no intent to create a model which fits specific parameters of a component.

A variation on a black box model is a gray box model; a gray box model takes into

consideration the system parameters. One such example would be taking a mathematical

model which is known to describe one step in a large component, and combining it with a

black box model which describes the remainder of the component [McNamara, 1997].

 To overcome the drawbacks of the linearized model, Xu [1997] used the concept

of NNs to create an experimental model of a load sensing system. The architecture

chosen by Xu was a partially recurrent neural network with delayed inputs which were

used as the inputs to a multilayer feed-forward network with a hyperbolic tangent

function as the hidden layer output function. The network also used the conjugate

gradient algorithm for training.

5

 Xu found that although the method worked well to create a “universal

approximator” [Xu, 1997] there were still some drawbacks. The main drawback was the

error accumulation which occurred as the simulation time increased once the model was

created. The error was attributed to the quality of the experimental data used for training.

It was recommended that the richness of data, with respect to frequency and magnitude,

should be considered and improved upon.

 Xu’s research in the area of modeling load sensing pumps was extended by

Lamontagne [2001]. A major consideration that Lamontagne made was which input-

output data relationship would work the best. He considered two different morphologies;

a separate pump and valve combination, and a stand-alone pump model. He found that a

separate pump model using NNs may be created; however a known valve model must be

obtained which can be very difficult using the experimental relationship between supply

pressure (PS) and the flow (Q).

 The morphology of the NN was also changed to try and decrease the error

accumulation. In order to do this a feed-forward network with input time delays was

used. The delaying of the input created the dynamic effects needed to properly model the

system; however it negated the dependence on the output of the system which created the

error accumulation. Lamontagne showed that Xu’s theory of a richer training set was

correct. It was found that higher quality data in both frequency and magnitude produced

more accurate results, especially in the high magnitude ranges of non-linear systems.

 The next research conducted used the concepts of dynamic neural units (DNUs),

this was done by Li [2007]. DNUs use time delayed feed-forward and recurrent

connections to create the dynamic effects. However unlike other NN morphologies all of

the connections are summed up at the end of the neuron instead of at the end of the

network. This helps to minimize the error accumulation caused by the network as long as

an appropriate neural pattern is picked such as a second order system which does not rely

on the gradient of the function.

6

 Li also studied the different types of models being used; a

pump/compensator/valve model, a pump/compensator model, and a pump only model. It

was found that the pump only model avoided problems such as data quality and input

independence better than the other two models. However a significant steady state error

arose when the pump only model was created using the chosen DNU/DNN structure.

Because the steady state error is not a dynamic error, a simple SNN was put in series with

the DNU/DNN structure in order to compensate. Although effective this addition created

the need for two separate training sequences for both dynamic and static response, which

resulted in an increase in training time.

 Most recently while working on a neural fuel control system, Wiens [2008a] used

a network structure called a recurrent generalized neural network (RGNN) along with a

complex training algorithm (CA). The morphology of RGNNs and the concepts of the

complex training algorithm will be explained in more detail later in this thesis. Using the

training data created by Lamontagne and also used by Li, Wiens trained a DNN to model

a load sensing pump. When compared to earlier research it was found that the output

data created by the model after training was significantly better than that of Xu,

Lamontagne and Li while only using the single network. However, in order for the

RGNN to be trained, extensive “tuning” of the network was necessary before a

satisfactory result could be accomplished.

 Initial studies were completed during the creation of a CA program similar to that

used by Wiens. It was apparent that using the RGNN as a true black box – no

preconceived knowledge of the system being modeled – would not produce satisfactory

results. The basis to justify the achievement of satisfactory results will be discussed in

Chapter 4. It became clear that a better understanding of the limitations of the RGNN

trained by the CA was necessary, and hence was the motivation of this thesis.

7

1.3 Thesis Objectives

 The “global” objective of research in the area of load sensing pumps using neural

networks is to create a DNN based computer model. However, because of difficulties in

training of a special form of a DNN (the recurrent generalized neural network (RGNN)),

the research focus shifted towards an objective of providing a better understanding of the

limitations of the DNN and the training method used, in particular, by Wiens in his

preliminary studies. It is expected that the RGNN model should be able to take

appropriate pressure inputs and create a flow rate output which agrees with experimental

values obtained. This computer model should be able to link to other fluid power

components using a single software platform such as MATLAB.

 The prime objective was to study the competency of using RGNNs along with the

complex training method which was used by Wiens [2008b]; the complex training

method is a non-gradient which will discussed further in Chapter 3. The second objective

was to complete a comparative study of the complex training method to a heuristic

genetic algorithm, which is also a non-gradient training method, using RGNNs. In using

the genetic training method which has been shown to work in many other applications,

studies can be done to discover whether any issues that arose with using the complex

method were the consequence of an inadequate training algorithm or network topology.

1.4 Outline and Structure of Thesis

 In Chapter 2 NNs will be explained more in depth with the main focus being on

dynamic neural networks and the advantages and shortcomings of different types of

networks.

 Chapter 3 will discuss the two main training method types; gradient and non-

gradient, and will give examples for each. Non-gradient training methods will be

introduced and their main advantages will be outlined for creating DNNs.

8

 Chapter 4 will study the results of applying the complex method to a RGNN using

a variety of inputs and weight initialization methods. The effects of small-perturbations

from an exact representation of a system discussed earlier will be studied to observe the

effectiveness of the complex method.

 Chapter 5 will incorporate the use of another non-gradient training method in

order to create a benchmark for the complex method to be compared to. The training

method considered was a heuristic genetic algorithm; a RGNN will be trained under the

same conditions as the complex method used in Chapter 4.

 The final chapter, Chapter 6, will be used to summarize the findings, give

conclusions based on those findings, and to discuss recommended future research

involving the project.

9

Chapter 2: Dynamic Neural Networks and Applications
to Fluid Power Systems

2.1 Introduction

 The objective of this Chapter is to present basic information on neural networks.

In addition, because the overall goal of research in this area was focused on fluid power

systems, several examples to demonstrate how static and dynamic neural networks have

been used are considered.

 As discussed in Chapter 1, neural networks are a very useful tool for both static

and dynamic applications. Before a network can be constructed first the type of system

being analyzed must be studied. The main consideration is to distinguish between what

type of output is being provided by the system; static or dynamic. The following section

will give a brief explanation of static neural networks, but mainly deal with

considerations which must be made for dynamic systems.

2.2 Static Neural Networks

 Static neural networks (SNNs) are used for input-output relationships which have

no derivative or integral functions, and therefore contain no dynamics. Although SNNs

are not useful for dynamic operations – which limit their application for the modeling of

fluid power systems – they are highly useful for non-linear systems static systems [Gupta,

2003][Haykin, 1999]. Figure 2.1 shows a feed-forward neural network (FFNN) which is

a common static neural network type.

10

w 011

w 111

w 112

w 221

w 121

w 021

w 012

X 1

X 2

Y

N euron 1,1

N euron 1,2

N euron 2,1

Figure 2.1: Schematic of example static network consisting of two inputs and one output.

 All neural networks are formed with the use of neurons in series or parallel with a

variety of connection types. SNNs contain no time-delayed connections in either the

interior of the neuron or in any of the exterior connections. Figure 2.2 shows a labeled

static neuron schematic of which typical SNNs are comprised. Static neurons are

comprised of three main components; (a) synaptic weights (essentially gains), (b) a

summation junction, and (c) an activation function, denoted by σ in Figure 2.2. As will

be discussed in Chapter 3, the training of a neural network is completed by optimizing the

value of the synaptic weights such that the output from the network approaches some

desired output. As many inputs as necessary are sent into the neuron and each input

along with a bias, passes through a synaptic weight. The purpose of the bias is to help the

neural network maintain stability [Gupta, 2003].

w 1

w 2

w m

x1

x2

xm

.

.

.

.

.

.

b

s (s) y

(a)

(b)
(c)

Figure 2.2: Schematic of a static neuron [Haykin, 1999].

11

 The summation junction receives the outputs from the synaptic weights and adds

all the incoming signals to the neuron. Once the signals are added, the summation signal

is sent through an activation function; the activation function is the main component

which allows the use of neural networks for nonlinear applications. A number of types of

activation functions can be used, but for hidden layers the most common type is the

hyperbolic tangent function. This nonlinear function places a limit of negative one to

plus one; however in-between these values, the function is nonlinear. If the output ranges

between negative one and plus one then a hyperbolic tangent function may be used.

However, because the hyperbolic tangent function has a limit it is not well suited as the

activation function of the output neuron. FFNN can be comprised of any number of

connections as long as no time delays are present, and can be used to model both linear

and nonlinear systems.

2.3 Types of Dynamic Networks

 Neural networks have many different types of networks, and each type of network

can branch off into a large number of subtypes. Each type of network has its advantages

and disadvantages which must be considered when choosing an archetype. The most

common dynamic neural network form are feedback dynamic neural networks

(FBDNNs) [Haykin, 1999][Gupta, 2003][Xu,1997]. A FBDNN uses multiple delayed

feedbacks to create a dynamic output for the system being considered.

 As mentioned each archetype of network can have a large variation of their

application. Figure 2.3 shows the most simple of applications where the output of the

system is delayed by one time step and is then fed back to the system as an input.

Similarly the outputs may be fed back to intermediate layers instead of being used as an

input, or intermediate layer outputs can be fed back instead of the system output [Gupta,

2003].

 One of the main drawbacks to the FBDNN is the propagation of system error once

a system is disengaged from the training process [Xu, 1997]. This is because the system

12

output is fed back repeatedly, and subsequently if the training process has any error then

the error is fed back repeatedly. The longer a system runs without resetting itself the

larger the error propagation will become.

Z
-1

X 1

YX 2

Figure 2.3: Schematic of feedback dynamic neural network (FBDNN) archetype [Haykin,
1999].

 Because of issues such as error accumulation [Xu, 1997] other neural network

patterns and system methodologies have been created to overcome these setbacks. For

example, by limiting the dynamics of the system to a single layer rather than to the entire

network output, the dependence of the dynamic output of the system on error

accumulation becomes less apparent.

 Another type of neural network archetype is a feed-forward dynamic neural

network (FFDNN) shown in Figure 2.4. Unlike the FBDNN, the FFDNN uses time

delays in a feed-forward orientation to create system dynamics. Figure 2.4 shows a

FFDNN which uses delayed inputs to the system at multiple layers.

13

Z -1

Z -1Z -1

Z -1X 1

Y

X 2

Figure 2.4: Schematic of feed-forward dynamic neural network (FFDNN) archetype
[Lamontagne, 2001].

 In a regular feed-forward neural network there are no delayed paths; this type of

network is used for static cases. However, in a dynamic case if the input has been

delayed at multiple time steps then the effect of the input does not become apparent

initially, but manifest itself in a delayed fashion. Because the output is not being fed

back to create the dynamic aspects of the system, the error is not continually fed back to

either the input of the system or the inner layers. This omission of error propagation

alleviates the problem of the error becoming time dependent.

 Although in FFDNNs the error propagation problem is alleviated, the concern

with error and system performance is still present. In classical control systems with a

negative feedback the steady state error will be reduced using the feedback line and

continue to do so until an acceptable error is present. Once disconnected from the

training mechanism FFDNNs do not have any sense of what is occurring at the output.

So, although a steady state error may be present the network assumes that delayed inputs

should be sufficient to minimize the steady state error. However, this is not always the

case, since the lack of output feedback can lead to errors when the network is

disconnected from the training process.

 In order to apply a FFDNN properly, either a very large number of feed-forward

paths must be present, which can have large costs in terms of computing power, or more

14

properties must be known about the system. If characteristics such as the maximum

settling time in the system can be obtained then the correct number of delayed paths can

be obtained. However finding such properties can be very difficult to obtain and this

would involve knowing more about the system, changing the black box approach of

neural networks to a grey box approach.

 Newer approaches to neural network archetype design implement the concepts of

both feed-forward and feedback system delays. One such archetype involves the use of

Dynamic Neural Units (DNUs). Although a DNU network can contain state feedback

signals from the output or other neurons, DNUs can contain all of the dynamic aspects of

the network inside of one neuron. An example of a DNU is shown in Figure 2.5 and its

application to a network Figure 2.6.

Figure 2.5: Schematic of a dynamic neural unit (DNU) architecture [Srivastava, 1998].

15

Figure 2.6: Structure of a three stage dynamic neural network (DNN) using six DNUs
[Li, 2007]

 The main advantage of using DNUs is the same as FFDNN; they do not require

output feedback to create a dynamic response. DNUs only require the state feedback

signals from the neuron and the other neurons around it. Because of this, there is no

dependence on the overall output of the system. Also, unlike both the FFDNN and

FBDNN, the dynamic contributions happen at each stage of the network rather than

simply creating a delayed input or feeding back the output.

2.4 Recurrent Generalized Neural Networks

 Another newer approach to neural networks configuration is the combination of

feed-forward and feedback neural networks. Recurrent generalized neural networks

(RGNNs) use connections between each neuron, both in the forward and backward

directions, and each connection can have time delays depending on what the user

specifies. The general form of a RGNN using delayed negative feedback lines is shown

in Figure 2.7. It should be noted that any lines, including feed-forward lines, may contain

time delays depending on how the user wishes to setup the network. The RGNN is a sub

form of generalized neural networks where all neurons are connected to each other

[Werbos, 1990]; but in the case of RGNNs, the recurrent connections are time delayed.

16

N egative Feedback W ith
T im e D elays (Z -1)X 1

Y

X 2

Figure 2.7: Recurrent dynamic generalized neural network (RDGNN) archetype [Wiens,
2008b].

 Given the network shown in Figure 2.7 the output equation can be written as

follows,

 1−−= k
D

k
S

k YWXWY , (2.1)

where k refers to the time instant being considered, WS is the weighting matrix for the

feed-forward static connections, WD is the weighting matrices for the feedback dynamic

connections, X1 and X2 are the inputs to the network, and Y is the output of the network.

The static weight matrix is given by the lower triangular matrix,



























=

0
00
000
0000
00000
000000

6564636261

54535251

434241

3231

21

S

wwwww
wwww

www
ww

w

W , (2.2)

where the subscripts in the weight, w21 refers to the weight connection from the input

neuron denoted by 1 to the first hidden neuron denoted by 2. The dynamic weight matrix

is given by the upper triangular matrix,

17



























=

000000
0000

000
00

0
000000

5655

464544

36353433

2625242322

D

ww
www
wwww
wwwww

W . (2.3)

 Note that in Equation 2.3 the first row and the bottom right cell are all zero. This

occurs because these connections do not exist. For the first row, all of the values are

weights in the feedback lines to neuron one; the first neuron is the input neuron, therefore

none of the outputs of any neurons will be fed to the input resulting in zeroes for this row.

The bottom right cell is the output neuron; it is zero because, unlike the hidden layers, the

output neuron only feeds back to other neurons; it does not feedback a delayed signal to

itself.

 Any one of the neural network archetypes mentioned above can be represented by

a generalized neural network topology; an example is given in Figure 2.8. Figure 2.8

shows the FBDNN that was shown in Figure 2.3 using a generalized archetype. In a

FBDNN each layer can contain a varying number of neurons and feed into either

previous layers or subsequent layers. However, in a RGNN each layer has only a single

neuron but those layers can connect to any other layer. This means that unlike a regular

multilayer dynamic network the dynamic capabilities can come from within the layer.

X 1

Y

X 2

Z -1

-

Figure 2.8: FBDNN in RGNN form.

18

 Not only can RGNNs be used to represent other neural network archetypes, but

they can also be used to represent mathematical equations directly. One such example is

the representation of transfer functions in control systems. To illustrate RGNN

capability, consider the stable linear dynamic transfer function,

()
() 92

4
2 ++

+
=

ss
s

sX
sY . (2.4)

Taking the inverse Laplace transform of Equation 2.4 while assuming zero initial

conditions gives,

 x
dt
dxy

dt
dy

dt
yd 4922

2

+=++ . (2.5)

If it is assumed that Δt→0, then Equation 2.5 can be discretized into the following,

 k
kk

k
kkkkk

x
t
xxy

t
yy

t
yyy 49222 11

2

21

+
∆
−

=+
∆
−

+
∆

+− −−−−

. (2.6)

After combining like terms and noticing that the input needs a one-step time delay while

the output needs a two-step time delay, Equation 2.6 may be represented using Figure

2.9.

-- -
X 1 Y

w 31 w 42

w 23

w 64

w 56w 45

w 46

w 41

Figure 2.9: RGNN representation of transfer function given in Equation 2.4.

 Unlike Equation 2.1, which calculates the output for a neural network with two

inputs, the transfer function given in Equation 2.4 only uses one input. For a single-input

single-output (SISO) RGNN,

 1−−= k
D

k
S

k YWXWY . (2.7)

19

Because there is only one static and one dynamic weighting matrix which are represented

by lower and upper matrices respectively, the weighting matrix for Figure 2.9 is,



























=

+=

00000
00000

00
00000
00000
000000

64

56

46454241

31

23

DS

w
w
wwww

w
w

W

WWW

. (2.8)

 The accuracy of the RGNN output of Equation 2.4 is dependent on the Δt chosen

for the system. If a large Δt is chosen then the error of the system becomes very large;

conversely as Δt approaches zero the error between the continuous system output and the

RGNN output approaches zero. Although the error between the actual system and the

RGNN approaches zero, a very small Δt is not computationally efficient for training a

neural network.

 Figure 2.10 shows the RGNN output for Δt’s of 0.005 seconds and 0.02 seconds

for a step input. It should be noted that in Figure 2.10, the time step (Δt) is represented

by dt due to the capabilities of the program used for the creation of the figure. Although

the 0.02 seconds time step shows a larger error, it is still useful for testing the capabilities

of a neural network; the concept of using time steps which are not sufficiently small will

be discussed further in Chapter 4.

20

Figure 2.10: Output for a continuous transfer function compared to RGNN outputs at

varying Δt.

2.5 Applications of Neural Networks to Fluid Power

 As discussed in Chapter 1, fluid power systems are governed by nonlinearities

and dynamics. Because of this the use of neural networks as a tool for studying fluid

power systems has increased for a variety of purposes. The applications of neural

networks can be broken down into three main categories; controlling, condition

monitoring and simulating fluid power systems. The following section will outline

research completed in the field of neural networks and fluid power for each of the three

categories.

2.5.1 Neural Network Control Applications to Fluid Power

 A main contributor to the field of neural network applications to fluid power

systems has been the Fluid Power and Research Group at the University of

Saskatchewan. Burton et al [1999] summarized three separate studies that were

completed using neural network control for different types of systems. The first system

21

studied was a velocity-controlled rotary servo-system; the main objective was to

reproduce a low-frequency sinusoidal angular velocity pattern [Burton, 1993]. Two

classical controllers were used to create a benchmark; a proportional controller and a

proportional-integral (PI) controller.

 In order to improve on the performance of the classical controllers a neural

network controller was created and trained using seventy-five training pairs. Once the

training was completed (in this case the training compliance was based upon the

achievement of a specific error), the neural network controller showed a deterioration in

accuracy as the frequency increased. However, using the same testing sets the neural

controller showed a higher degree of accuracy than both classical controllers.

 For the second test a multi-gain proportional-integral-derivative (PID) controller

was created to control a hydraulic servo-valve and linear actuator with non-linear friction

[Qian, 1998]. Classical PID controllers can experience difficulty when being adapted to

non-linear systems. Because of this draw back, PID controllers were created for seven

different variations of the system which ranged across the different operating conditions.

In essence, the PID controller would operate on the basis of a look up table with the

ability to interpolate linearly between operating conditions.

 To study the possible improvements over the multi-gain PID controller a recurrent

multilayer feed-forward network was created using six different inputs (∫ dte ,e(k-1), e(k-

2), e(k-3), x(k), x(k-1)) and the velocity control signal as the output. The neural controller

was trained to mimic the performance of the PID controller as shown in Figure 2.11. The

training data used was created for the operating conditions for which the PID look up

table was designed. Thus any incapability shown by the PID controller outside of the

design range would not transfer to the neural network during the training process.

22

Figure 2.11: Training of a neural network to mimic the performance of a multi-gain PID
controller [Burton, 1999][Qian, 1998].

 Both the PID and neural controllers showed excellent accuracy when tested at the

design points using a simulation model. However, when the input signal strayed from the

design data, the PID controller accuracy decreased. This was most noticeable at low

frequency inputs for which the controller was not designed. The neural network did not

have the same problems at low frequencies, but it did show a small disturbance at the

zero velocity condition.

 To improve the performance of the neural controller a “kicker” was implemented

externally to the controller as shown in Figure 2.12. The purpose of the “kicker” was to

engage a pulse when the zero velocity condition was reached and was turned off when

the output signal moved away from zero velocity. Although this proved to be effective

the addition of the “kicker” compromised the concept of a black box. Because it was

necessary to know that the system required the “kicker” to alleviate the zero velocity

error, the neural network becomes a grey box by adding a second stage to the controller.

Figure 2.12: Neural controller mimicking multi-gain PID with external “kicker” [Burton
1999][Qian, 1998].

23

 For the final test a neural controller was created to control a system which

contained a position controller servo-system coupled to a force controlled servo-system

[Zhang, 1996]. This created the necessity for a multi-input multi-output (MIMO)

controller which took into account not only the input signal but also the movement of the

coupled system. A desired output reference model was created using the Jacobian for the

plant in order to obtain an output error which could be used to train the neural controller.

A schematic of the neural network training scheme is shown in Figure 2.13.

Figure 2.13: Neural network training schematic for coupled MIMO hydraulic system
[Burton 1999][Zhang, 1996].

 A three layer dynamic neural network was chosen which consisted of eight input

neurons with both the servo inputs for force and position being delayed three time steps.

The hidden layer consisted of eight neurons and the output layer had two neurons; one

neuron for position output and one for force. Once the training process had taken place

the neural controller was tested using a 1Hz sinusoidal input. In addition to the neural

controller, a PID controller was designed for the system. Figure 2.14 shows the output

signals for tests done at 1Hz for both the neural and PID controller. It can be seen that

the neural controller performs superior to the PID controller although it should be noted

that the force output does not track the reference model with the same accuracy as the

position output.

24

 As the frequency increased, both the neural and PID controllers began to

deteriorate but the neural controller was consistently more robust then its PID

counterpart. For all three tests where a neural controller was compared to a classical

controller, the neural controller proved to be superior in performance.

(a) Position output for neural controller (b) Force output for neural controller

(c) Position output for PID controller (d) Force output for PID controller

Figure 2.14: Output profiles for MIMO hydraulic system using a neural controller (a, b)

and PID controller (c, d) [Burton 1999][Zhang, 1996].

2.5.2 Condition Monitoring of Fluid Power Systems Using Neural
Networks

 There are a variety of ways to monitor the performance of fluid power systems

such as using flow and pressure measurement devices. But as mentioned in Chapter 1,

using a device such as an orifice results in unwanted pressure drops unrelated to the

25

systems performance. Researchers at Napier University [Yu, 2005] have studied a non-

intrusive pressure measurement technique to overcome the drawbacks of pressure loss.

 To measure pressure in hydraulic lines sound waves were used as fluctuations in

pressure are proportional to the speed of sound in a fluid. Using a probe, a sound pulse

was sent through a hydraulic line which reflected off the hose-wall on the opposite side

and returned to the probe as shown in Figure 2.15. The pulse also penetrated the wall on

the other side; both measurements were taken and used to calculate the speed of sound

through the fluid.

Image has been removed temporarily due to Copyright

Figure 2.15: Schematic diagram of the non-intrusive pressure measurement [Yu, 2005].

 A neural network was implemented to obtain the pressure using the relationship

between the speed of sound and the fluid pressure. The network used was a functional

link neural network (FLNN) which belongs to the higher order network (HON) family.

HONs do not only use simple gain connections and summation junctions in their neurons,

each neuron can be a higher order function. Therefore, an input could be squared or

cubed before heading to a summation junction. In order to apply a FLNN some

analytical knowledge of the network is necessary. For the non-intrusive pressure

measurement, this is the relation between the pressure and speed of sound given by,

 ()∑
=

Λ

∆=∆
3

1j

j
j cwp , (2.9)

where
Λ

∆ p is an estimate of Δp, and wj (j = 1, 2, 3) are the coefficients to be determined

using the neural network.

 After the training of the network was completed, the measurement device was

tested over a range of 0-20MPa; the results of the testing are shown in Figure 2.16. The

preliminary results of the tests completed showed that the non-intrusive method was

26

accurate within one percent and decreased the time and effort compared to using direct

pressure measurement devices.

Image has been removed temporarily due to Copyright

Figure 2.16: Results of FLNN validation for non-intrusive pressure measurement [Yu,
2005].

 The work done by Yu showed that non-intrusive methods for measurement can be

achieved using neural networks. Pollmeier et al [2004] conducted experiments at the

University of Bath in the United Kingdom which used intrusive measurement devices

along with neural networks to identify faults in fluid power systems. Tests were

completed for both simulated and experimental systems; however, only the simulation

results will be outlined in the following section because both simulation and experimental

results were similar.

Figure 2.17: Schematic of the servo-valve controlled linear actuator system [Pollmeier,
2004].

 The system being considered was a servo-valve controlled linear actuator system

shown in Figure 2.17. Five types of faults were considered in the system; (i) increased

leakage across the actuator piston, (ii) a change in load, (iii) a change in the mass moved

by the actuator, (iv) a reduction in system supply pressure, (v) and an increase in friction

27

between the mass and the ground. Each of the five faults was given a fault range, and

five fault levels were created which are outlined in Table 2.1.

Table 2.1: Parameter fault levels for simulation study

Fault
Parameter

Fault
Level 1

Fault
Level 2

Fault
Level 3

Fault
Level 4

Fault
Level 5

Parameter
Unit

Leakage 0.0 0.1 0.2 0.3 0.4 L/min/bar
Load 0 500 1000 1500 2000 N
Mass 50 100 150 200 250 kg

Pressure 100 80 60 40 20 bar
Friction 1000 8000 15000 22000 29000 N/m/s

 The first type of diagnostic system implemented was the use of five networks, one

for each fault type, with each network containing thirty-five input neurons, one hidden

layer containing fifteen neurons, and a single neuron representing the fault considered.

For the input neurons all five fault parameters were used as inputs with each input

receiving six additional delayed time steps. Their results showed that the classification

using five separate networks with each diagnosing a specific fault was accurate except for

the mass which showed significant scatter. It was concluded by the authors that the

scatter was caused by an insufficient excitation of the mass in the duty cycle.

 The results of diagnosing the faults using five separate networks were accurate

but it was necessary to run each of the networks separately to obtain a proper fault. To

overcome this, a secondary network was created which would allow the five single fault

networks to run in parallel and feed into another network placed in series which could

differentiate between the signals to obtain the appropriate fault. The second network was

a 25:10:5 feed-forward network; each of the single networks input five time steps of data

and each output corresponds to a specific fault. The results of the fault detection network

trained with a secondary network showed little scatter in comparison to the single

network results because in an effort to simplify the inputs to the secondary network, the

outputs of the primary networks were given a specific value depending on what range the

output lied in.

28

 Although the results show that the trained network worked well at identifying a

single fault, there were still discrepancies on the proper fault levels for certain cases.

Each fault type was trained with five-hundred data points with each fault level receiving

one-hundred points; this means that the first fault level, which was the no fault situation,

received five times more training points than any other level. To alleviate the

dependence of training on one case, two methods may be undertaken; decrease the

number of first fault level training sets so the case is not as dominant. Another possibility

is increasing the learning rate (which will be discussed in Chapter 3), enabling the other

fault levels to increase their dominance.

2.5.3 Modeling of Fluid Power Systems Using Neural Networks

 As mentioned previously, fluid power systems are highly non-linear and operate

over a large range. Similarly to controlling fluid power systems, modeling such systems

can become difficult using traditional methods. The difficulty encountered lies in the

dependence on linear equations to describe fluid power systems; these equations can be

made by linearizing the system at specific operating conditions but as the operating

conditions change the ability to accurately describe the system deteriorates.

 One solution to overcome this issue is using neural networks to model hydraulic

systems. The Fluid Power Centre at the University of Bath has conducted extensive

research in the use neural networks for modeling fluid power systems. In a study

conducted by McNamara et al [1997] the use of a hybrid model composed of both

analytical and neural network components was considered for a variable displacement

piston pump shown in Figure 2.18. The neural network component of the hybrid model

was used to model the pump dynamics, and the servomechanism was modeled using

Bathfp; a program created at the University of Bath specifically for fluid power

applications.

29

Image has been removed temporarily due to Copyright

Figure 2.18: Swash-plate piston pump configuration [McNamara, 1997].

 To model the pump dynamics, a neural network was created using delivery

pressure, swash-plate angle and velocity as inputs, and the swash-plate operating moment

as the output. The network chosen was a feed-forward using backpropogation to train the

network. Three input neurons were used which corresponded to the inputs listed above.

Twelve neurons were used in the hidden layer, and one neuron was used in the output

layer for the swash-plate operating moment. The network was trained using data which

covered the entire operating range of the pump and a mean square error of 0.03 was

achieved. A comparison of the actual operating moment and the neural network

operating moment is given in Figure 2.19.

Image has been removed temporarily due to Copyright

Figure 2.19: Mean operating moment calculated using neural network validation data
[McNamara, 1997].

 Once the neural network was trained to model the torque characteristics properly,

a hybrid model was created. The hybrid model was tested using a variety of pressures at

varying demand scenarios. The results for a step increase followed by a step decrease at

200bar and 50bar are shown in Figure 2.20. It can be seen that for lower pressures the

negligence of velocity dependence which is a component of linearized models is

acceptable; but as the pressure increases this dependency leads to a substantial error.

Image has been removed temporarily due to Copyright

Figure 2.20: Hybrid model simulation results for a step up-step down demand cycle
[McNamara, 1997].

30

2.6 Summary

 Neural networks have been shown to be a viable solution to overcome the

dynamic and non-linear characteristics for controlling, monitoring and modeling of fluid

power systems. The networks have been both static and dynamic in form. The following

chapters will discuss the training of the neural networks with a focus on modeling

dynamic systems.

31

Chapter 3: Training of Dynamic Neural Networks

3.1 Introduction

 A variety of neural network structure types were previously discussed in Chapter

2, and although the type of network chosen for a specific task is important, an equally

important consideration is the type of training algorithm used. Training a neural network

is done to minimize the error of a neural network output for the training data entered as

described in equations 3.1 and 3.2. The training of the network will progress until criteria

are met which are set by the user; examples of these criteria are error minimization or the

number of times an update of the neural weights has occurred.

 The error of a neural network is the difference between the desired output and the

actual output produced by the network,

)()()(kykyke d −= . (3.1)

In the above equation the error (e), desired output (yd) and network output (y) are all

given at the kth time step. Although there are a variety of error criteria which can be used

[Gupta, 2003][Haykin, 1999][Goulermas, 2007], the most common error criteria is the

minimization of the mean squared error; the mean squared error will be the basis for error

criterion in the following discussions.

 For a given time step k the least squared error is given by,

 ()2

2
1)(kekE = . (3.2)

Once the error criterion is been established consideration must be paid to when the

training procedure will occur. Training adaptations for neural networks can occur in two

main forms; continuous training, commonly referred to as instantaneous training, or

epochwise training, also known as batch training. For instantaneous training the weights

are updated as the training set is run through the network; after each time step the error is

32

calculated using Equation (3.2) and weights are changed based on the algorithm chosen

which will be discussed in detail later.

 Batch training does not adjust the weights after each time step, but the error is

calculated at each time step and then the average error is calculated for an entire training

set. The mean squared error for batch training is,

 ()∑
=

=
N

m
me

N
E

1

21
2
1 , (3.3)

where m is the time step being considered and N is the number of time steps in a training

set. This means that for a network which describes a dynamic system (for example, if a

small steady state error is found but a large dynamic error occurs), then the network is

trained not just using information from one state, but from both states.

 This chapter will explore a variety of types of training algorithms used in the

training of neural networks. Neural network training methods are broken down into two

main categories; gradient and non-gradient training methods. This chapter is used to

explore the fundamentals involved for both categories of training.

3.2 Gradient Training Methods

 In this section, the background behind gradient training methods is described.

Although only non-gradient methods are used for training networks in the research

performed, to show the intricate nature of gradient training and their pitfalls, gradient

networks will be explained thoroughly. Please refer to the references cited for greater

detail. The use of gradient training methods is very common in neural networks due to

their ability to find answers for even the most complicated of systems [Gupta,

2003][Haykin, 1999]. The gradient training method works on the concept of gradient

descent; the gradient of the error is calculated and weights are changed based on the slope

of the error gradient.

33

 The most common form of the gradient based training method is backpropagation

(BP). BP uses the gradient of the error to create a signal which is sent back through the

neuron to correct the synaptic weights. The gradient estimate of the weighting vector

using mean squared error is given by,

 ()() ()
() () ()

()kW
keke

kW
kekeW

∂
∂

=
∂
∂

=∇ 2
2

2 . (3.4)

Consider a schematic representation of BP for a single neuron shown in Figure 3.1.

Given that for the sigmoid element shown which contains the neuron output s(k), and the

activation function σ(s(k)),

() () ()
() ()()

() () ()()kXWkyke

kskyke

kykyke

T
d

d

d

σ

σ

−=

−=

−=

)(. (3.5)

If the partial differential is taken of Equation (3.4) with respect to the indicated synaptic

weight, it can be shown that,

 ()() () ()() ()kXkskekeW '22 σµ−=∇ . (3.6)

Figure 3.1: Schematic representation of BP for a single neuron.

34

 Figure 3.1 shows schematically the BP process for a single neuron. In the above

equation μ is the learning rate; the learning rate affects the speed of the minimization

procedure as well as the algorithms stability. If μ is large then the step size of the

gradient is large and the optimum point will be reached quickly. However if μ is too

large then the step to the next point will overshoot the minimum error; this process will

repeat itself and oscillate over the minimum error point causing the training process to

become unstable. At the same time if μ is chosen to be too small then very small steps

are taken which can cause a very slow training process.

 Because a μ chosen to be too large or too small can cause deterioration in BP

abilities, an appropriate μ must be chosen which causes a problem because the optimum μ

is system dependent. This can be solved through trial and error, however a good range

for μ is from 0.1 to 1 [Gupta, 2003]. Given Equation (3.6) the updating algorithm for the

augmented weight vector for a single neuron is given by,

() () ()
() () () ()() ()kXkskekWkW

kWkWkW

'21

1

σµ+=+

∇−=+
. (3.7)

 The above updating mechanism works well for a single neuron or a system with

only one input layer and one output layer, but when a multilayer feed-forward neural

network (MFFNN) is used BP becomes more complicated. The main complication is

derived from the calculation of error for the neuron. In Equations (3.1) and (3.2) the

error is calculated using the desired output, yd, as a comparison. For MFFNNs the output

comparison for each neuron becomes a problem as only the final desired output is known.

 To overcome the shortcomings of BP the partial derivatives for error, δ(k), are

considered. For a given neuron i located in the jth layer the partial derivative for error

with respect to the neuron output is,

 () () ()
() ()ks

kek j
i

j
i ∂

∂
−=

∆ 2

2
1δ . (3.8)

If the network contains one output neuron with M layers, and j = M, then,

35

() () () () () ()()
() () () () ()()kskek

kskek
MM

MMM

11

111

'

'

σδ

σδ

=

=
. (3.9)

If j ≠ M then the chain rule must be applied,

() () ()
() ()

()
() ()

() ()
() ()

() () () ()
() ()
() ()ks

kskk

ks
ks

ks
ke

ks
kek

j
i

M
Mj

i

j
i

M

Mj
i

j
i

∂
∂

=

∂
∂

∂
∂

−=
∂
∂

−=

1
1

1

1

22

2
1

2
1

δδ

δ

.
(3.10)

Using Equation 2.1, the linear combiner component of the synaptic operation may be

used to solve the partial derivative in Equation (3.10). For layer j, where j = M – 1,

.

() ()
() ()

() () ()()
()

() () ()()()
()

() ()
() ()

() () () ()()kskw
ks
ks

s
kskW

s
kykW

ks
ks

j
i

M
ij

i

M

j
i

jTM

j
i

jTM

j
i

M

'1
1

111

σ

σ

=
∂
∂

∂
∂

=
∂

∂
=

∂
∂

.
(3.11)

Substituting Equation (3.11) into (3.10) yields,

.

() () () () () () () ()()kskwkk j
i

M
i

Mj
i '11 σδδ = .

(3.12)

 In the above equation all of the information may be calculated based on either

information from the neuron being changed or the output of the network. If the layer

being considered is not the layer before the output layer the methodology remains the

same; the chain rule can be used to expand the layer under consideration back to the

output layer using the intermediate layers. Using a linearized approximation, it is

possible to obtain the error gradient for a specific neuron in any layer based on the output

information.

 To update the weights the methodology remains similar to Equation (3.7),

however now the gradient of the weighting matrix changes as,

36

() ()() ()
() ()

()
()

()
() ()

()
()

()
() ()

() ()() ()
() ()kW

ks
keW

kW
ks

ks
ke

kW
ks

ks
ke

kW
kekeW

j
i

j
ij

i
j

i

j
i

j
i

j
i

j
i

j
i

j
i

j
i

j
i

∂
∂

−=∇

∂
∂









∂
∂

−=
∂
∂

∂
∂

=
∂
∂

=∇

δ2

2
12

2

222
2

. (3.13)

From the synaptic output of the linear combiner,

() ()() ()

()
() ()

()1

1

−

−

=
∂
∂

=

j

j
i

j
i

jTj
i

j
i

y
kW

ks

ykWks
. (3.14)

Therefore equation (3.13) becomes,

 () ()() () ()12 2
−

−=∇
jj

i
j

i ykeW δ . (3.15)

Substituting Equations (3.9), (3.12) and (3.15) into Equation (3.7) yields the weight

adaptation criteria for any neuron in any layer of a MFFNN,

() () ()

() () () () () ()() ()1
'21

1
−

+=+

∇−=+
jj

i
j

i ykskekWkW

kWkWkW

σµ
. (3.16)

 For a MFFNN the algorithm for BP can be derived even for complicated

morphologies; however, it should be noted that MFFNNs are static networks. Applying

BP to a dynamic network requires more consideration. One possibility is to treat the

dynamic connections as static connections and change the weights as previously

elaborated upon [Werbos, 1990][Gupta, 2003][Li, 2007]. Another method to use BP for

dynamic networks is to “unfold” the dynamic components of a network and train the

network as a static network whose morphology changes at each time step [Haykin, 2003].

However when δ must be found for time delayed errors the training structure can become

very difficult to solve.

 BP training methods have been shown to be very useful and have a wide variety

of adaptations for both static and dynamic networks [Haykin, 1999][Gupta, 2003]. As

mentioned above when BP is applied to dynamic networks there is one drawback to the

dynamic component; the algorithms ability to properly handle the dynamic structure.

37

The homogeneous treatment of the network can be overcome but this can still

dramatically affect the robustness of the training.

 Another major flaw when using BP is the inability to move from a local minima

to a global minima [Gupta, 2003][Andersson, 2001][Goldberg,1989]. Figure 3.2 shows a

simple example of global minimum training issues with BP. In order to properly train a

BP network not only must a proper learning rate be picked, but the initial setting of

weighting parameters must be within the global minimum slope. As seen in Figure 3.2 if

the initial weights are picked on interval b then the global minimum will be obtained.

However if weights are picked on interval a, one of the local minima will be found with

gradient training. To obtain an appropriate initial weight set either the user must have

prior information of the system being considered, or many attempts must be made to

ensure the minimum has been reached. The former eliminates the black box concept

often desired in neural networks and the latter can increase training time while at the

same time not guaranteeing a minimum error.

Figure 3.2: A one-dimensional example of a global minimum and local minimum error

search.

38

3.3 Non-Gradient Training Methods

 As the application of neural networks have become increasingly complicated and

the need for more robust training methods have become more desirable, the types of

optimization algorithms being applied to neural network training has also changed. The

use of BP has been explored, but because of the drawbacks stated above the use of non-

gradient optimization methods has increased. In the following section the use of non-

gradient methods will be discussed, with an emphasis being placed on evolutionary based

algorithms. Although the main focus of training of this thesis is the training of RGNNs

using the complex algorithm, the genetic algorithm is presented first because it is a more

traditional non-gradient training method.

3.3.1 Genetic Algorithm for Neural Network Training

 Like many evolutionary optimization methods, genetic algorithms (GA) are

derived from biological systems in nature much like neural networks [Haykin, 2003].

The concept of the GA is simple; in a population there are certain “individuals” (a set of

neural weights) who are better fit for a specific task than other individuals, much like the

infamous Darwinian theory regarding “survival of the fittest” and “natural selection”

[Darwin, 1859]. Once the proper individuals have been obtained they spawn new

individuals which are similar but provide a better fit to the problem at hand (a set of

optimal weight values that minimize the error, for example).

 Two major advantages of genetic algorithms are that they are relatively

unconstrained by limitations such as continuity and the existence of the training function

derivative [Goldberg, 1989]. The second advantage is particularly important in neural

networks. As stated in the previous section, BP is dependent on the derivative to acquire

the gradient which is used to minimize the output error of the network. In alleviating the

need for a gradient, using GA also eliminates the need to find the derivative of the

activation function.

39

 GAs are composed of three main operators; reproduction, crossover and mutation

all of which will be defined in the next section. As stated above, genetic algorithms are

based on the concept of survival of the fittest. To facilitate discussion, the neural

network shown in Figure 3.3 will be used to assist in defining the steps involved in GA

training.

w 011

w 111

w 112

w 221

w 121

w 021

w 012

X 1

X 2

Y

N euron 1 ,1

N euron 1 ,2

N euron 2 ,1

Figure 3.3: Schematic of example static network consisting of two inputs and one output.

 The neural network in Figure 3.3 contains four synaptic weight connections (w111,

w112, w121, w221), and three bias weights (w011, w012, w021). The weight matrix is written

as,

 []221121021112012111011 wwwwwwwW = . (3.17)

The function that the neural network will be trained to “mimic” is a SISO system

described by the mathematical function,

 22/1 ++= xxy . (3.18)

 The first step in training a network using GAs is to create an “initial population”;

the initial population can have a variety of initiation conditions set by the user, but one

property which must be adhered to is a population whose size is an even numbered. The

importance of this property will be discussed later. A population is comprised of a

number of “individuals”, with each individual corresponding to a set of weights for the

40

neural network (the weights shown in Equation 3.17). The minimum number of

individuals in a population is the number of weights being solved for plus one. For the

example given in Figure 3.3, there are seven weights present, this means that the

minimum number of individuals needed is eight. For the example considered, an initial

population range of [0, 1] was considered. Table 3.1 shows the initial population for the

network considered (weights are randomly chosen). Once an initial population has been

formed, the next step is to calculate the output error for each individual, E(i), using

Equation 3.3. Repeated for clarity, ()∑
=

=
N

m
me

N
E

1

21
2
1 .

 The procedure is to assign individual 1 with 7 random weights as illustrated in

Table 3.1. The individual is then given an input with a size N; the same signal is input

into equation 3.18. The outputs of the NN and the equations are compared and the error

calculated and using Equation 3.3, the output error for each individual, E(i), is determined.

This procedure is repeated for each individual.

Table 3.1: Initial population with corresponding error for FFNN. Note: individual 2 has

the lowest error.

Individual w011 w111 w012 w112 w021 w121 w221 E(i)
1 0.8382 0.8292 0.7142 0.7912 0.4799 0.0934 0.9917 45440.20
2 0.3902 0.4406 0.0066 0.7777 0.9006 0.7098 0.5805 42185.88
3 0.9181 0.7549 0.5861 0.8833 0.0265 0.4554 0.9461 46186.07
4 0.1559 0.9671 0.5759 0.4114 0.1029 0.7538 0.2423 48011.48
5 0.1680 0.7507 0.9734 0.2773 0.3415 0.4124 0.7218 45950.36
6 0.4612 0.4823 0.9062 0.0180 0.9137 0.8917 0.0713 43871.46
7 0.1093 0.0980 0.7658 0.9466 0.5638 0.4087 0.5459 46070.98
8 0.7010 0.2208 0.0387 0.8139 0.7986 0.4011 0.4596 44972.19
 Ep 362688.6

 Before any updates can be done to the population, an intermediate (or tentative)

population must be formed using the “survival of the fittest” criteria. The tentative

population is not a new population (each individual’s weights are the same but the

placement of their numerical value in the matrix shown in Table 3.1 re-arranged); it is

41

just one step towards obtaining a new population. To choose a tentative population the

error of each individual is used to evaluate the individuals “fitness factor”. The fitness

factor helps described how robust each individual is for the input data; the fitness factor,

f(i), is calculated by,

p

i
pi

E
EE

f
)(

)(−
= . (3.19)

Equation 3.19 shows that the lower the individual error E(i), the more fit the individual

will be [Song, 1998]. The fitness factor for each individual and the population’s total

fitness is given in Table 3.2.

Table 3.2: Values for individual fitness factors and total fitness of initial population.

Note: individual 2 has the best fitness.

Individual 1 2 3 4 5 6 7 8 total

f(i) 0.8747 0.8837 0.8727 0.8676 0.8733 0.8790 0.8730 0.8760 7.0000

 The next step in creating a tentative population is creating a probability wheel

[Goldberg, 1989]. Figure 3.4 shows a probability wheel example. The basis of a

probability wheel function is as follows, the more fit an individual is, the more space that

individual takes up on the wheel. When the wheel is “spun” the chance of the wheel

landing on a specific individual increases as the fitness of that individual increases. As

there is no wheel function in computer coding, the probability wheel was altered to create

a probability matrix.

Figure 3.4: Physical representation of reproduction probability for GA training

[Goldberg, 1989].

42

 The fitness factor of each individual was used to create a fitness ratio,

p

i
ratio f

ff
)1(

)(= . (3.20)

where fp is the fitness of the population found by summing the fitness for all the

individuals in the population. Table 3.3 shows the fitness ratios for each individual for

the initial weights. When all of the fitness ratios for a population are added together, the

summation is equal to one. Therefore the fitness ration corresponds to how much of the

probability circle each individual occupies if the circumference of the circle is one.

However, as stated before, computer programming methods do not contain a spinning

wheel. The approach used here was to create a fitness range for each individual instead

of an actual wheel.

Table 3.3: Values for individual fitness factors and total fitness of initial population.

Note: as would be expected, individual 2 has the highest fitness factor.

Individual 1 2 3 4 5 6 7 8 total

fratio
(i) 0.1250 0.1262 0.1247 0.1239 0.1248 0.1256 0.1247 0.1251 1.0000

 The fitness ratios are used to create a “fitness range” table as shown in Table 3.4.

The first individual has a range of zero to its fitness ratio. The second and subsequent

individuals have a fitness range of,

 ()i
ratio

i
range

i
range

i
range

i
range

fff

ff

+=

= −

)(
min,

)(
max,

)1(
max,

)(
min, . (3.21)

Table 3.4: Fitness range of each individual in initial population.

Individual 1 2 3 4 5 6 7 8
frange,min

(i) 0.0000 0.1250 0.2512 0.3759 0.4998 0.6246 0.7501 0.8749
frange,max

(i) 0.1250 0.2512 0.3759 0.4998 0.6246 0.7501 0.8749 1.0000

 The next step is to create a matrix which is the same size as the initial population.

The numbers in the matrix are comprised of random numbers between zero and one

43

(defined as Rand in this work). The purpose of the matrix is to pick a tentative new

population based on the random values and the fitness range. Take for example the

partial random population matrix,



















=

...
...

...
...7861.01145.0

Rand .

Rand’s column size is equal to the number of weights in the network, and Rand’s row

size is the number of individuals in the population. It can be seen using Table 3.4 that the

value in the first row and column of the random matrix falls in the fitness range of

individual 1, and the second column first row random value falls into the range of

individual 7. The same analysis is done for each cell of the random matrix, and this is

used to form an index matrix,



















=

...
...

...
...71

Index ,

where each cell in the matrix corresponds to the individual whose weight will fill the

tentative new matrix. It is important to note that the “1” corresponds to the first weight in

individual 1, (because its location is now the first row and first column of this new

matrix) the 7 corresponds to the second weight in the individual seven (because its

location is the first row and second column of the new matrix). The same methodology is

performed for the entire index matrix. So for instance, using Table 3.1 as a reference, the

tentative new matrix represented by Wtent is,



















=

...
...

...
...0980.08382.0

tentW .

Again, it must be emphasized that only the placement of the weights in the new matrix

has been changed with this step. Thus, the tentative individual 1 now has weights

[0.8382 0.0980 etc.].

44

 Once a tentative population is formed, the calculation of a new population can

begin. The first step in the calculation of the new population is taking each individual in

the tentative population and matching it with another individual to “mate” with. The

process of mating (to be discussed below) is what creates the new population based on

the characteristics of the tentative population (some of the weights are now actually

changed). Mates are randomly chosen for each individual; because each individual needs

a mate it is imperative that an even number of individuals are chosen for the initial

population. For the example being considered, suppose individuals one and five were

randomly chosen to be paired together. Before mating, the weights of the tentative

individuals are,



























=

.

.
...1559.0

.

.
...8382.0

tentW .

 The process of coming up with new individuals from mating is achieved by

picking a mate for each individual. The next step of mating is to perform “crossover”;

crossover involves creating new individuals based on the tentative individuals. Standard

GAs use binary values only for the weights [Goldberg, 1989], so crossover becomes

simple by just splitting the binary segment and crossing values (switching some of the

binary numbers) between individuals. However, for floating point weight systems this

method cannot be used. The method considered is subsequent sections is defined as a

“floating-point” crossover method [Mahanti, 2005]. Unlike standard GAs which creates

two new individuals, or “children”, which are not identical to the tentative individuals, or

“parents”, heuristic crossover will create one child which is comprised of both parents

genetic material (weights defined by Equation 3.22, and another child which is a “clone”

of the parent with the best fitness (all the weights are the same as shown in Equation

3.23). The new individuals (children) using heuristic crossover are calculated by,

45

()

AnewA

BAAnewB

II

IIrII

=

−+=
)(

)(

,
(3.22)

(3.23)

where IA is the tentative individual with the smallest error, IB is the tentative individual

with the largest error, and r is a random value between zero and one.

 For the tentative individuals who were mated (1 and 5), the error for tentative

individual 1 is 44002 and tentative individual five has an error of 44010 (an intermediate

step not shown in Table 3.2). Therefore, for w011 with r = 0.5,

() ()
,1794.1

1559.08382.05.08382.0)(5

=

−+=−+=
5(new)

011

5
011

1
011

1
011

new
011

w

wwrww

for one of the new individuals and,

8382.0== 1
011

1(new)
011 ww

for the second individual (clone). This process is repeated for all mating pairs in the

population. A new matrix of individuals now exists in which half of the individuals are

unchanged (clones) and the rest are changed using the aforementioned steps.

 The final step in the mating process is “mutation”. Mutation is the process of

randomly adjusting weights away from the genetic trend; this can occur in a wide variety

of patterns ranging from one weight in every individual being changed at every

generation to one weight in the entire population being changed at each generation. The

purpose of mutation is to create individuals which stray away from the genetic path and

attempt to find other optimization points. Therefore, if a population is being saturated

with poor genetics, then mutation will attempt to set the population on another path.

 The type of mutation being considered for the following research is non-uniform

mutation. Non-uniform mutation is governed by,

 () ()Gfwbww iimutatei −+=)(If r1 < 0.5 (3.24)

 () ()Gfwaww iimutatei +−=)(If r1 ≥ 0.5 (3.25)

where,

46

 ()
c

2 G
GrGf 


















−=

max

1 . (3.26)

In Equations 3.24 and 3.25, r1 and r2 are random numbers between zero and one, b and a

are the upper and lower boundaries respectively of the possible weight range given by the

user. G is the number of times a new population has been calculated (this is also referred

to as the number of generations). Gmax is the maximum number of generations, and c is a

system parameter determining the degree of non-uniformity.

 To illustrate mutation consider w011 in the new population with a boundary of [-5,

5], a non-uniformity parameter of c = 3, and r1 and r2 equal 0.3 and 0.6 respectively. If

the maximum number of generations is Gmax = 50 and the current generation is G = 10

then,

() 1106.0
50
1016.0

3

=













 −=Gf ,

and since r1 < 0.5,

()()
.2985.1

1106.08382.058382.0

=

−+=
(mutate)
011

(mutate)
011

w

w

 Once a new population is created the criteria are tested for and the process repeats

itself until the training criteria are met as shown in Figure 3.5. Although large

populations may be needed to create an independent set of individuals, the genetic

algorithm can prove very useful in networks with multiple optimization points. Because

of the reproduction and crossover components of GAs the chances of becoming caught in

a local minimum are much smaller than BP, which is a major advantage.

47

Initialize
Population

Select Parents
for Mating

Create Offspring,
Crossover and

Mutation

Fitness
Evaluation

Insert Offspring
into Population

Stop Criteria
Met?

Finished

Yes

No

Figure 3.5: Flow diagram of genetic algorithm [Andersson, 2001].

 In addition to an increased chance of finding the global minimum, GAs also

contain a failsafe to ensure that once an optimization point is found it is in fact the global

optimization point. This is done with the mutation operation which allows weights to be

changed randomly and be set off the general course chosen by the rest of the population.

If a mutation obtains an individual which is fit then the entire population will begin to

drift towards the individual in subsequent generations.

3.2.2. Complex Algorithm for Neural Network Training

 As mentioned previously, the use of non-gradient network training has become

more viable as the complexity of neural networks has increased to include such things as

dynamics. The complex algorithm (CA) optimization method is an evolutionary

algorithm which works similar in nature to GA. Just like GA, CA uses a population of

points referred to as individuals which for neural networks are synaptic weights. Unlike

GA, CA does not modify the entire population in the creation of a new generation;

instead at every generation one new point is made to replace the worst point in the

previous generation [Andersson, 2001][Wiens, 2008a][Wiens, 2008b].

 Just like when using GAs, to initiate the process for CAs first a population of

individuals containing network weights must be produced that meet the criteria of the

user. The minimum size of the population is 1+≥ mn [Andersson, 2001] where m is the

number of variables being solved (for which for a neural network is the number of

weights in an individual); in practice mn 2≥ . Next the fitness of each individual is

obtained based on user criteria. The fitness factor considered for CA is minimization of

48

error which was also used for GA. Once the fitness of each individual is found, the

individual with the worst fitness must be found in order for it to be replaced.

 To illustrate the methodology behind the CA, the FFNN used for the GA example

in the previous section will now be used to illustrate how the population is updated using

the CA. The initial population under consideration is the same as Table 3.1; unlike GAs,

CAs do not use a probability wheel based on a fitness function, instead they use the

comparison of error directly. The initial population along with the corresponding error

for each population is shown in Table 3.5.

Table 3.5: Initial population and error values for FFNN using CA.

Individual w011 w111 w012 w112 w021 w121 w221 Ei
1 0.8382 0.8292 0.7142 0.7912 0.4799 0.0934 0.9917 45440.20
2 0.3902 0.4406 0.0066 0.7777 0.9006 0.7098 0.5805 42185.88
3 0.9181 0.7549 0.5861 0.8833 0.0265 0.4554 0.9461 46186.07
4* 0.1559 0.9671 0.5759 0.4114 0.1029 0.7538 0.2423 48011.48
5 0.1680 0.7507 0.9734 0.2773 0.3415 0.4124 0.7218 45950.36
6 0.4612 0.4823 0.9062 0.0180 0.9137 0.8917 0.0713 43871.46
7 0.1093 0.0980 0.7658 0.9466 0.5638 0.4087 0.5459 46070.98
8 0.7010 0.2208 0.0387 0.8139 0.7986 0.4011 0.4596 44972.19

*denotes individual with highest error to be replaced.

 A summary of data for the following calculations is found in Table 3.6. The first

step in CAs is to obtain a neural weight centroid, W , which is found by calculating the

average of all individuals excluding the individual with the highest error for each weight

in the network,

 hi
n

i

i WWwhereW
n

W ≠
−

= ∑
=

,
1

1
1

. (3.27)

The number of individuals in the population is n and Wh is the individual weighting

matrix with the lowest fitness. A reflection individual must be created which is based on

the placement of the centroid. The reflection individual, Wr, is,

 ()hr WWWW −+= α . (3.28)

49

The reflection coefficient, α, is used to give a reflection length about the centroid, W .

Andersson [2001] recommends a value of α = 1.3.

 One issue which can arise is the calculation of a reflection point having a lower

fitness than its predecessor. The intent of CA is to manipulate the population one

individual at a time while at the same time increasing the fitness of the worst individual.

To overcome the conundrum of a lower fitness reflection point, a modified algorithm is

suggested by Andersson [2001],

 ()[] ()()()1212/1)()(−−−+−++= RWWWWWW lloldrnewr εεε , (3.29)

where,

r
rr

n
kn

rr

r

kn
n

1

1

−+









−+

=ε . (3.30)

In Equations (3.22) and (3.23) R is a random number in the interval [0, 1], nr is a constant

which Andersson [2001] had chosen to be nr = 4 (however it can be any integer), and kr is

the number of times the reflection individual has been repeated. A value for Wr(new) is

presented in Table 3.4; however, it should be noted that Equation 3.29 is only used if Wr

produces a higher error than Wh. This process is repeated until the user criteria are met; a

flow diagram of CA is given in Figure 3.6.

Table 3.6: Results for calculation of centroid and reflection points using CA.

 W Wr Wr(new)
w011 0.5123 0.9755 0.7439
w111 0.5110 -0.0820 0.2145
w012 0.5701 0.5627 0.5664
w112 0.6440 0.9463 0.7952
w021 0.5750 1.1886 0.8818
w121 0.4818 0.1282 0.3050
w221 0.6167 1.1034 0.8601
Ei 41693.37 42915.45

50

In itia te
Popula tion

Search For
Best and W orst

C alcu la te
C entro id

C alcu la te
R eflection Im proved?

F in ished

M odified
R eflection

C riteria M et?

Yes

Yes
N o

N o

Figure 3.6: Flow diagram of the complex algorithm including modified algorithm.

 As described for GA, one of the important applications of the mutation operator is

maintaining the genetic material of the population. The modified reflection point

attempts to accomplish the same feat but instead of random mutations, the mutation is

based upon where it is and the number of times a new individual has been attempted for

that centroid. The goal of the CA is to find the global minimum for error by changing the

values of a specific synaptic weight connection in a population so the weight in each

individual converges on a value which produces the global minimum; this is referred to

as the “complex collapsing”, or the population collapsing. With the addition of the

modified reflection point the probability of the complex collapsing on the wrong point is

reduced.

 As mentioned in Chapter 2, CAs were used in tandem with RGNN to create a

network which was used to train a simulation model for a load sensing pump by Wiens

[2008b]. The combination of this network type and training method was shown to be

effective and consideration of further studies using the pairing of RGNNS and CAs was

suggested. In the following chapters the use of RGNN being trained with CA to create

simulation models will be studied further in both the time and frequency domains. A

comparison of results will be made with the application of GA to RGNN as a benchmark.

51

Chapter 4: Application of Complex Training Method to
Recurrent Generalized Neural Network

4.1 Introduction

 As discussed in Chapters 1 and 2, previous research had been completed at the U

of S by Wiens [2008b] which used RGNNs in combination with CAs to create a model

for a load sensing pump. The model was created by fine-tuning weights in the initial

population until a set of weights was found which produced the desired results. As

previously stated, the global objective of this thesis – and other past works – was to

create a black box model for a load sensing pump using neural networks. Because

Wiens’ model was only achieved by fine tuning the weights, the model does not meet the

global objective due to the fact that when the fine tuning of weights is conducted, the

weight range used for training the system is known. When a neural network is found by

using known information about the system – in this case, convergence criteria – it

becomes a grey box model rather than a black box model.

 However, because it was found that the RGNN and CA combination used by

Wiens proved successful as a grey box model, the use of the pairing needed to be studied

further. Initial studies by the author indicated that testing RGNNs using the CA even for

simple systems could not produce an acceptable black box model. As a result, it was

decided that the RGNN and CA combination needed further studies in order to explore

their training capabilities. To do this the concept of applying a RGNN directly to load

sensing pumps using experimental data was discarded in favour of using bench mark

models from which definitive comparisons could be drawn. The bench mark so chosen

was a basic linear-dynamic system.

 The basic premise behind this approach was that if the RGNN could not be

trained to a linear (known) simple model, then it would not be suitable for more complex

nonlinear phenomena which exist in load sensing pumps. To test the “robustness” of

52

RGNNs when trained using the CA a “sensitivity” study was conducted. For the

remainder of the literature, robustness refers to a networks ability to minimize training

error, and sensitivity study refers to studying how sensitive the output response of a

network was for the tests performed.

4.2 Selection of System for Creating Training Data

 The following chapter will discuss the training of an RGNN using CAs to model a

single input-single output (SISO) transfer function. The process was first to input a

specified signal to both a SISO model and to the RGNN; then the output of both was

compared and the error determined using the mean squared method error discussed in

Chapter 3. Chapter 3 also discussed the use of batch training; batch training was

employed for all studies to train RGNNs using the prescribed training method being

tested. To ensure that the training algorithm for all cases did not become trapped in an

infinite loop, three criteria were used to stop training; reaching a set number of iterations

for the training mechanism, achieving an allowable maximum error, or reaching a set

time limit. Although the maximum tolerable error was the same for all trained networks,

the number of iterations and time allowed for training were set based on trial and error

during initial training studies. It was found that if the number of iterations or time

allowed were set to very large values, the probability of reaching an acceptable error did

not increase.

 An RGNN was trained with the use of two different input types; a three step input

signal and a multiple sine wave input with three different frequencies, 0.5 Hz, 1 Hz and 5

Hz. Please note that here within; this sine based input will be referred to as a “frequency

based input”. The bench mark transfer function used as the basis for creating the

necessary training data set was,

()
() 92

4
2 ++

+
=

ss
s

sX
sY . (4.1)

As discussed in Chapter 2, using discretization methods any transfer function can be

represented using RGNNs. As shown in Appendix A, Equation 4.1 can be discretized by

53

linearizing the resulting derivatives obtained by taking the inverse Laplace transform

which results in,

 k
kk

k
kkkkk

x
t
xxy

t
yy

t
yyy 49222 11

2

21

+
∆
−

=+
∆
−

+
∆

+− −−−−

. (4.2)

 Because the transfer function in known, an approximate RGNN equivalent output

representation for Equation 4.2 is possible and is given in Figure 4.1. An in depth

derivation for the connection weights is found in Appendix A. It must be again

emphasized that if the training process cannot accommodate an exact form, then training

a more generalized RGNN would be very difficult.

-- -
X 1 Y

w 31 w 42

w 23

w 64

w 56w 45

w 46

w 41

Figure 4.1: Approximate RGNN representation of transfer function to be modeled (found
in Equation 4.1).

 The first step in creating training data for both step response and frequency based

inputs was to choose an appropriate time step. As stated in Chen [1994], for discrete

(digital) control systems the sample rate must be at least ten times faster than the natural

frequency of the system, or if frequency data is used, the fastest input frequency in order

for the system to remain stable when the system is transformed from the continuous (s)

domain to the discrete (z) domain. Since the RGNN is a discrete version of the system

being studied, the natural frequency of the system in Equation 4.1 is,

HzHzradradn 1955.0sec/3sec/9 22 ≈===ϖ .

Therefore, according to Chen, for step response the minimum sampled rate is 0.1

seconds. For the training of the RGNN using frequency information the smallest

54

frequency considered is 0.5 Hz; at a frequency of 0.5 Hz the minimum sample rate is 0.05

seconds. To help ensure stability based on the criteria established by Chen, a sample rate

of 0.02 seconds was chosen for training the RGNN which meets the stability criteria for

both step and frequency inputs.

 It must be noted that even if the approximate weights for a RGNN are known, the

discrete model does have error when compared to the output of the continuous model

even at an acceptable sample rate. This error can create problems in the training of the

RGNN and as such, the concept of establishing a bench mark to compare results was

compromised. As a result, the output of the discretized model form of Equation 4.1 was

used for training the RGNN instead of the output from Equation 4.1. Because the RGNN

output was being compared to the discretized output, this problem was eliminated.

 Using the output of the discretized model will create a new output which adheres

to the stability criteria for digital systems posed by Chen. Using Equation 4.2, the output,

yk, and input, xk, training data can be obtained for both step inputs and frequency based

inputs. Then using the discretized transfer function in Equation 4.2 and the derivation

found in Appendix A, an exact weight representation of the system under consideration

using RGNNs with a sample time of 0.02 seconds is,



























−
−−

−

=

001000
100000

9547.19582.0000192.00207.0
000001
000100
000000

W . (4.3)

The above weight matrix is now used in the following sensitivity study.

4.3 Step Response Training of a RGNN Using CA

 All networks which will be presented were trained with intent of achieving a

maximum error in the population of less than 0.02, and this value is referred to as the

55

“maximum allowable error”. It was found that while initially creating, training and

testing RGNNS, a maximum allowable error value of 0.02 produced a network which did

not contain any of the typical errors observed which will be discussed later. The value

chosen for maximum allowable error was chosen arbitrarily based upon initial testing.

When a weight or set of weights are said to be “optimized” then the set of weight – or

weights – produce an output error which meets the maximum allowable error. One

method used for the testing of RGNNs was to change the number of weights being

optimized during the training process; the results of this method of testing will be

discussed later in the thesis.

 Four different weight formats were used to test the limitations of the number of

weights being optimized; one weight, two weights, “only the required” weights and “all

possible” weights. The training of two weights at a time is also referred to as weights

being trained in “tandem”; this refers to weights trained simultaneously rather than one at

a time. When a network is trained for only the required weights, it refers to all the non-

zero weights from Equation 4.3 being optimized simultaneously. For the case where all

possible weights are being trained, all possible weight connections and bias’ described in

Chapter 2 are being optimized (a truer “black box” situation).

 The first type of training data considered was step response data. Step response

data is commonly used as training data for neural networks because it contains both

frequency data (at the changes in step), and magnitude information (the steady state

information) which can be linear or non-linear depending on the system under

consideration. As described in Chapter 1, a main advantage of neural networks is the

implementation of black box theory. The size of the network was chosen to obtain the

connections necessary to create an approximate representation of the transfer function

being modeled. Although the size of the network chosen was considered to be sufficient

for modeling the dynamics of the system under consideration, the first test was to view

the ability of the network to obtain a RGNN model with no restrictions placed on which

weight values were trained. Later on restrictions will be discussed which include the

forming of initial populations and choosing to change only specific weights.

56

4.3.1 Training a RGNN Using Step Response with a Random Initial
Population

 After evaluating the values of the approximate weighting matrix in Equation 4.3 it

was observed that the maximum weight value is the delayed feedback connection w46,

which is a value of approximately negative two. The weighting matrix also contains both

positive and negative values, therefore as an initial test a RGNN was trained with an

initial weight distribution of [-5, 5]. Figure 4.2 shows a typical response after training

using random initial values for all weights including bias’.

Figure 4.2: Output comparison of the desired response using step inputs to the output of a
typical RGNN trained using a [-5, 5] initial distribution interval where all weights are

trained.

 There are three common error types which often occurred in the RGNN outputs

considered; spikes in the output at sharp changes for input, steady state error after the

settling of step oscillations, and error in the oscillations during the transient period. All

three of these errors occur in Figure 4.2; however, it can be difficult to see these errors

for certain plots, or in contrast these errors can be so large it becomes difficult to analyze

the output. Therefore for the majority of comparisons analyzed, the absolute values of

the output error are plotted. For the remaining Chapters, the term error implies the

57

absolute value. Figure 4.3 shows the error plot for the outputs of Figure 4.2; the overall

error of Figure 4.3 is approximately 5, which is the summation of the error for all time

steps in Figure 4.3.

Figure 4.3: Error comparison of output shown in Figure 4.2 for [-5, 5] initial weight

interval for “all possible” weights trained.

 The robustness of training a RGNN using CAs was tested by limiting the number

of synaptic weights being optimized during the training process. Figure 4.1 showed that

only eight weights in the matrix were not equal to zero; if a synaptic weight value is zero,

mathematically that means there is no connection. Because only eight non-zero weights

are present, only the “required” weights are needed to properly represent the test model.

 The first step test conducted to evaluate the robustness of an RGNN trained using

the CA was to set all unnecessary connections to zero and distribute the weights needed

between [-5, 5]. After training multiple networks using these criteria it was found that

the resulting network error improved; the error of each network trained for a specific case

was averaged; the error was found to decrease as the number of random connections

decreased. But even with the decrease in the weights being optimized, no acceptable

58

networks were achievable. Figure 4.4 shows the error of a network trained using all

possible weights and the required weights compared to the desired output.

Figure 4.4: Comparison of outputs for desired system, RGNN with all weights trained,

and a RGNN with only necessary neurons trained.

 The decrease in the number of weights being optimized in the network led to the

decrease in error, as seen in Figure 4.4. However, this decrease was found to be

insufficient to be classed as a properly trained network as the error did not achieve the

acceptable maximum error. Since randomly initializing only connections necessary was

found to be ineffective for finding a valid network, the “approximate” network shown in

Equation 4.3 was changed one weight at a time to study the effectiveness of the CA.

Figure 4.5 shows the error for a network trained with the connection between the input

neuron and the third neuron, w31, being optimized.

59

Figure 4.5: Error comparison between the RGNN trained for w31

 and the desired output
using the CA for a step input.

 For almost all neurons with a non-zero weight connection, a RGNN was trained

using CAs which met the maximum error requirements; it was found that almost all

networks produced a similar result to Figure 4.5 by creating an error of less than 0.02

which as mentioned earlier was the maximum allowable error. It was found that for

varying the feed-forward and delayed feedback connections between the fourth neuron

and the output neuron, w46 and w64, the network was not able to reach the maximum

allowable error. Figure 4.6 shows the error comparison results when w23 and w31 were

optimized individually and Figure 4.7 shows the error comparison when w46 and w64 were

optimized individually. The error results were separated into two different figures due to

the drastically different error results.

60

Figure 4.6: Comparison of error results for networks trained by optimizing w31 and w23

(one weight at a time).

Figure 4.7: Comparison of error results for networks trained by optimizing w46 and w64

(one weight at a time).

 As stated above and shown in Figures 4.6 and 4.7 for optimizing only one weight,

for the majority of weights an acceptable solution was obtained when only one weight

was being optimized. However, when w64 or w46 were trained on their own, large training

61

errors were obtained. The next test was to increase the number of weights being

optimized at the same time from one neuron to two neurons. The neurons were

optimized for six different weight pairings; w31 and w64, w31 and w46, w46 and w23, w56 and

w42, w46 and w64, w45 and w31. These connections were chosen because they cover a

broad range of combinations which include both static and dynamic connections.

 As was done for optimizing only one weight at a time, an interval of [-5, 5] was

used to select the two initial weights of the system to be optimized. It was found that

when a weight – which trained properly on its own – was trained in tandem with either

w46 or w64 – both of which did not train properly using step inputs – the error increased

drastically. However, for pairs which did not contain w46 or w64 as a training variable, the

results were very similar to those obtained by optimizing only one weight at a time.

Table 4.1 also shows that for pairings including w46 and w64 – even when paired up

together – the error was lower than w46 or w64 on their own. These results show that the

resulting error is dependent not only on the number of neurons being trained, but also

which specific neurons are being trained. It should be noted that the average time column

located in Table 4.1 is used solely for comparison reasons. Also, the average minimum

error shown in Table 4.1 is the average error of the networks trained for the specific case

listed. The training time is dependent on a variety of things included the processor in the

computer used for training and the coding of the algorithm. Computers with identical

hardware were used for the training of all networks presented.

62

Table 4.1: Error results for RGNNs trained using one and two weight optimization with a

random initial population.

Weights
Average Average Time Average Minimum
Count (minutes) Error

w23 1804 1.695 0.00647
w64 34011 26.580 243.67964
w46 3131 16.313 391.52019
w31 1846 1.676 0.00539
w56 1751 2.198 0.00493
w42 2264 2.641 0.00594

w31 w46 3616 17.436 92.94014
w31 w64 11573 23.483 45.89813
w46 w23 3719 16.021 95.88282
w56 w42 3216 7.193 48.47830
w46 w64 36017 36.669 209.79797
w45 w31 2473 2.850 0.00576

 Table 4.2 contains a summary of average errors obtained for the different types of

testing conducted for the initial weight distribution between [-5, 5]. Additionally, Figure

4.8 shows an output comparison for all types of trained test cases on the [-5, 5] interval.

Figure 4.8 only shows the first step in the multi-step input; this is done to show the

dynamic effects of the step change in greater detail.

Table 4.2: Summary of average error results for networks created with an initial [-5, 5]

distribution.

Weights
Average Average Time Average Minimum
Count (minutes) Error

Single 7468 8.517 105.87043
Double 10102 17.275 82.16719

Required 36150 38.183 8.11866
All 43623 34.573 17.49052

63

Figure 4.8: Comparison of outputs for all conducted test cases using a [-5, 5] initial

weight interval (note that the single weight and required weight cases lie on top of the
desired output).

 As shown in Table 4.2 and Figure 4.8, the reduction in the number of weights

being optimized does not necessarily guarantee that the resulting error will decrease.

These results are counter intuitive as it is expected that for any optimization process –

neural networks or other types of systems – as the number of variables decreases, the

achievable accuracy decreases. The results do show that the ability for a RGNN to

optimize a specific weight is dependent on both the number of weights being optimized,

and which specific connections are being solved for. Due to the findings that a decrease

in the number of weights being optimized during training does not necessitate a decrease

in error, the next testing conducted was to decrease the interval size from which the initial

population was created.

4.3.2 Training a RGNN Using Step Response with a Limited Initial
Population

 To test the robustness of training RGNNs using CAs the next step was to decrease

the initial population interval to increase the chances of error reaching the prescribed

64

maximum allowable value. The chances of reaching the global error minimum is

assumed to increase as the initial population interval decreases because the number of

local minimums should decrease and probability of more initial population points landing

on the global minimum upon the initialization of the population increases due to the

smaller sample space. For the random initialization of weights discussed in the above

section a reference to the exact solution was not necessary; the test range of [-5, 5]

encompassed the maximum and minimum values for the exact weight solution. When

the perturbation from the initial population becomes limited, attention must be paid to

ensure the exact values still fall within the initialization range. Two perturbation ranges

were considered for testing the ability of CAs to train RGNNs as the population interval

decreases; [-1, 1] and [-0.5, 0.5]. These ranges do not refer to the range in which the

weights lie, but the range from the exact solution shown in Equation 4.3 which the

weights may deviate from.

 Equation 4.3 shows that for an initial population of simply [-1, 1]; w23, w46, w56

and w64 are all either outside of this range or at the very limits. To ensure a correct initial

population was created, the weights were initialized in the following manner,

 k
exact

k
init

k WWW ∆+= . (4.4)

In the above equation k refers to the individual being changed, Wexact is the exact value

for the weight matrix given in Equation 4.3 and ΔWk is a random value matrix where

each cell is between the perturbation limits specified by which the weights were changed.

 Tables 4.3 and 4.4 show the results for all test intervals with all connections

initialized and only the required connections initialized respectively. The “File Number”

(or “trials”) in both tables refers to the training attempt. As mentioned earlier, each

RGNN type was trained multiple times; for the cases listed below training was completed

using three different initial populations. Figures 4.9, 4.10 and 4.11 show the output

results for all networks trained at intervals of [-5, 5], [-1, 1] and [-0.5, 0.5] respectively;

output response as opposed to error response was used because error difference between

trials was very large and become difficult to observe differences on the same plot.

65

Table 4.3: Comparison of average error results for [-5, 5], [-1, 1] and [-0.5, 0.5] for all

connections initialized.

Interval File Number Count
Time Minimum Average Average Time Average

(minutes) Error Count (minutes) Minimum Error

[-5, 5]
1 30870 31.845 34.87055

43623 34.573 17.49052 2 50000 36.344 12.72642
3 50000 35.530 4.87458

[-1, 1]
1 49145 51.252 21.75547

43349 43.175 7.76833 2 32237 32.632 0.51390
3 48666 45.642 1.03563

[-0.5,
0.5]

1 50000 36.044 0.08004
41516 40.891 1.22857 2 49629 53.324 0.02616

3 24918 33.305 3.57952

Table 4.4: Comparison of average error results for [-5, 5], [-1, 1] and [-0.5, 0.5] for only

required connections initialized.

Interval File Number Count
Time Minimum Average Average Time Average

(minutes) Error Count (minutes) Minimum Error

[-5, 5]
1 25375 27.533 0.00832

36150 38.183 8.11866 2 33076 34.807 0.00500
3 50000 52.209 24.34266

[-1, 1]
1 30869 51.420 23.47027

20178 27.335 7.82535 2 6781 7.381 0.00295
3 22884 23.204 0.00282

[-0.5,
0.5]

1 4298 3.477 0.00410
10035 7.617 0.00473 2 5937 4.602 0.00601

3 19870 14.771 0.00406

66

Figure 4.9: Output results of RGNNs trained for [-5, 5] with all weight connections

optimized.

Figure 4.10: Output results of RGNNs trained for [-1, 1] with all weight connections

optimized.

67

Figure 4.11: Output results of RGNNs trained for [-0.5, 0.5] with all weight connections

optimized.

 As seen in Tables 4.3 and 4.4, when the perturbation interval decreases the

average error also decreases. Figures 4.9, 4.10 and 4.11 show that although one trained

network may bring up the average error, as the interval decreases the superior networks

for each interval also improve. Although the steady state values are all identical, the

most discernable features between the three figures are the improvements of the dynamic

features of the step response; these features are seen as the step occurs and ends when the

steady state is reached. As the interval was decreased, the dynamic features become

similar to the desired output as the oscillations begin to overlap.

4.4 Frequency Based Response Training Using CA

 One input type not often considered in training and testing neural networks is the

use of frequency based response approaches. But as stated by Lamontagne [2001], one of

his conclusions explaining the lack of accuracy in his neural network was an incomplete

training set. Although Lamontagne did not attribute his incomplete data set to a lack of

frequency based data – in fact he stressed the importance of both magnitude and

frequency data – for most neural network research applications frequency based response

68

data approaches are often overlooked. Most often only step response or random inputs

are considered for the training of neural network systems. The following section will

focus on using frequency based response data to train a RGNN using the CA for the

system previously considered for step response. For clarity purposes, the frequency

based response is the output response of the discrete model to a series of input sinusoids

(shown in Figure 4.12). The frequency based training data (which contains both input

and output data) contains three different frequencies; the frequencies are 0.2 Hz, 1 Hz and

5 Hz. It must be noted that the frequency based response can be considered a limited

version of the classical frequency response which contains a large bandwidth of

frequencies. However, a full range frequency response was not used as initial feasibility

studies with swept sinusoids resulted in unstable training results and hence a swept signal

was not further pursued.

Figure 4.12: Frequency based training data input and output data.

 As was done in the previous section a variety of connection morphologies were

tested for frequency based inputs. Unlike the use of step response training previously

discussed, RGNNs for the most part were only trained using the [-1, 1] initial population

interval rather than random initial values or the smaller [-0.5, 0.5] population interval.

The narrow focus towards one interval was done because the basis of frequency based

69

response is to study the difference between the step and frequency based responses,

inconsequential of the interval. The [-1, 1] interval was chosen because for step

responses the interval showed an improvement in the dynamic capabilities of all test

cases conducted. However, in turn it also afforded room to improve over the step

response results; the same cannot be said for the [-0.5, 0.5] interval.

 As mentioned above, the [-1, 1] interval was used for the most part for the

training of network using frequency based response. The [-5, 5] interval was used to test

the differences between step and frequency based response for the training of w46 and w64

individually. This is due to the inabilities for step response training to work at the [-5, 5]

interval for these weights; that is, it was of interest to see if the frequency based inputs

could produce acceptable results. The [-1, 1] interval was used to train networks for the

following weight connection types; two connections, only required connections and all

connections.

 The first test conducted was to observe possible improvements to the optimization

when training either w46 or w64. Table 4.5 shows the comparison of training either w46 or

w64 individually using step and frequency based response training. Table 4.6 shows the

comparison of training two weights at a time using frequency based training and step

response training. It should be noted that the actual value of the average error cannot be

compared because different inputs were used. In general, it was observed that the trends

of results for frequency based responses show a vast improvement over the trends of the

step response training.

Table 4.5: Trend comparison of step and frequency based training for w46 and w64

Weight

.

Training
Method

Average Average Time Average
Count (minutes) Minimum Error

w46 Step 3131 16.313 391.52019
w46 Freq. Based 2166 5.252 0.00565
w64 Step 34011 26.580 243.67964
w64 Freq. Based 3028 7.266 0.00387

70

Table 4.6: Trends comparison results of step and frequency based training when two

connections were trained in tandem.

Training
Weights

Average Average Time Average
Method Count (minutes) Minimum Error

Freq.

w31 w46 4270 40.687 24.50049
w31 w64 32877 90.537 22.95698
w46 w23 5154 36.174 24.50049
w56 w42 4570 41.679 33.20162
w46 w64 8618 30.312 8.17109
w45 w31 4112 46.877 37.55219

Step

w31 w46 3428 17.147 88.48946
w31 w64 42349 35.400 61.25802
w46 w23 3567 15.330 89.84444
w56 w42 2958 5.770 48.47782
w46 w64 21985 18.984 132.98764
w45 w31 1751 1.573 0.00557

 For networks which were trained using different data types, a smaller training

error does not necessitate a more generalized neural network. Similar to Tables 4.5 and

4.6 the use of frequency based training produced a smaller training error for almost all

cases. For the purpose of the following analysis the “generalization” of network refers to

the ability of a trained network to produce a small error (when compared to the input the

network was trained for) for an input signal it was not trained for. In the sections above,

the networks were trained for a multi-step input and a multi-frequency based sinusoid

input separately. It was now of interest to examine how well these trained networks

generalized for an input they were not trained for. If the same input was used for both

trained networks, then the average error can be used for comparison.

 Figure 4.13 shows the error comparison between step and frequency based

response for the best trained networks when all connections were trained for a step. As

seen in Figure 4.13, the frequency based response trained network produced spikes which

go above the acceptable minimum error line located at 0.02. Even with the spikes

overshooting the maximum acceptable error, the majority of the frequency based trained

network remains under this value and creates a total error or 1.2241. When the same plot

71

was produced but for a frequency based input the results were the same; the network for

which the test input was trained produced good results, while the other network produced

relatively good results but with those results not reaching the maximum acceptable error.

Figure 4.13: Error comparison for step and frequency based response trained networks

using all connections for step input data.

 Table 4.7 shows the error results for a network trained using frequency based data

using a step input and a network trained using step response data using a frequency based

input. The last column in the table (Ratio Test/Trained) refers to the ratio of the error

produced by a network using the opposite input signal from the input used to the train the

network, over the training error for a specific input signal. For example, if a network

used a step input signal and had a training error of 40, and if the network was then given

a frequency based input which produced an error of 80, then the Test/Trained Ratio

would be 2. Conversely, if a frequency based input produced a training error of 200, and

a step input produced an error of 100, then the Test/Trained Ratio would be 0.5. If the

Test/Trained ratios are compared for the two above examples – based upon the definition

for generalization given earlier – the frequency based trained network would be

72

considered to be more generalized even though the step response trained networks

produced lower errors.

Table 4.7: Error comparison between the outputs of RGNNs trained using step response

and frequency based training. (Note that the “Opposite Data Output Error” refers to the

case where the network was trained with a frequency based input and tested with a step

input etc.)

Weights Training Average Opposite Data Ratio
Trained Data Minimum Error Output Error Test/Trained

Require
Frequency 0.00461 0.01474 3.1974

Step 8.11866 2.96597 0.3653

All
Frequency 37.69136 569.95981 15.1218

Step 17.49052 190.63298 10.8992

 The method shown in Table 4.7 was used because obtaining a properly trained

network proved difficult. Using this method allows the comparison of networks, even for

cases where poorly trained networks were obtained. The trend of step response based

trained networks producing more generalized networks holds true in general for all the

networks tested except when w46 and w64 were trained one at a time as shown in Table

4.5. Both step response and frequency based training produced generalized networks.

However, the generalization for networks was not consistent enough to conclude that

generalized networks were achievable for all conditions.

4.5 CA Training Using a Combination of Step and Frequency
Training Data

 Frequency based response training was shown to increase the robustness of

training RGNNs using CAs for networks where w46 and w64 are trained. One drawback to

frequency based response training is the lack of direct steady state magnitude variance

included in the training data. For linear systems this aspect becomes negligible, but for

nonlinear systems the lack of steady state magnitude training data can prove costly. In

addition, the sharp edges of step inputs do contain frequency information perhaps not as

73

distinct as direct frequency (sinusoidal) data. As the global objective of this research was

to obtain an accurate neural network model for load sensing pumps, the lack of direct

steady state magnitude data could be problematic because load sensing pumps are

nonlinear. This is also one of the reasons why multi-step response is common for the

training of neural networks.

 As a first step, it was of interest to see if a network trained with one type of input

could be further trained using a second type of input. The final population of weights

were taken after frequency based training was finished and were used as the initial

population for training an RGNN using the CA with a step response training data set (as

discussed below, this is defined as “two stage” training). Figure 4.14 shows the

improvements made using the two stage training strategy. Although there are spikes at

the beginning of the training set and at step changes, the spikes are significantly narrower

and the total error is now 0.0251; which is 4.3% of the original error, 1.2241. Figure 4.15

shows the error response for a network trained using two stage training when a frequency

based input is used. The error of the step response trained network was 0.0396 while the

error of the two stage trained network was 0.0327; the two stage trained network shows a

17.2% decrease in error when compared to the step response trained network.

74

Figure 4.14: Error comparison for multi-step input between frequency based and step-

frequency based trained RGNNs.

Figure 4.15: Error comparison for frequency based input between step response and step-

frequency based trained RGNNs.

 Based on the improvements made by combining both step and frequency based

training data, two different modified training sets were proposed. The first was a training

75

set which consisted of the frequency based data directly followed by the step response

data all in the same training set; this will be referred to as “single stage” or “one stage”

training. The second proposed training set consisted of training the network as two

separate training files (the approach used to generate the results shown in Figure 4.14).

First the network was trained using frequency based response. When either the allowable

time ran out or the maximum allowable error was achieved the training was stopped and

the final population of weights was saved. This population was used as the initial

population for the training of an RGNN using step response based training; this will be

referred to as “two stage” training. The same initial weights were used for both training

methods.

 Figure 4.15 shows the error comparison for the case where all possible weights

were trained using frequency based, one stage and two stage training. It shows the step

response error for the most robust one and two stage sine-step trained networks in

addition to the best frequency based trained network. It can be seen that the addition of

step response training to the frequency based training data set increased the error.

Although there was no improvement by expanding the type of training data used to

include two different data types, the two stage training proved to have a smaller error

when compared to the one stage training method but inferior to frequency based data or

step response data alone.

76

Figure 4.16: Step response for one stage, two stage and frequency based training.

4.6 Summary of CA Training

 The concept of applying non-gradient training algorithms has been discussed and

shown to have distinct theoretical advantages; however, the application of CAs to

RGNNs has unexpected drawbacks. The most common training data used for training

neural networks is step response; however, it was shown that step response training could

not achieve an acceptable training error for many of the weight combination and interval

tests conducted. The most notable finding from step response training using CAs was

that the robustness of the network was dependent not only on the interval by which the

initial population was made and the number of weights being optimized, but was also

dependent on which weights were being trained. There was significant error for all

RGNNs trained using the CA with a step input.

 To improve on the results obtained using step response training, a frequency

based input was used for training RGNNs using the CA. It was shown that frequency

based training showed produced a smaller training error when compared to step response

for almost all weight combinations used. It should be noted that these errors were found

77

using different input signals, so they are not directly comparable. These results were

most notable when weights w46 and w64 were involved, as they proved troublesome for

step response training. When the networks were tested to see which training method

produced a more generalized network it was found that step response training for most

cases produced a more generalized network for most cases, but there was not a strong

enough trend to conclude that step response training produced a more generalized

network overall.

 As suggested by Lamontagne [2001], a key aspect to the training of neural

networks is the training data used. As it was shown, the inclusion of frequency based

training improved the error response when compared to RGNNs trained using step

response. Therefore to create a more complete data set, step and frequency based inputs

were used in two different methods. First the two were combined into one training set

and RGNNs were trained with all weights being optimized. Second, the training process

was broken up into two processes; training using frequency based response and then

using the final population to begin training using step response training. It was shown

that although the two stage training process had a lower output error compared to the

single stage training process, both methods proved to be less generalized when compared

to step response only training or frequency based only training.

 Now that the use of CAs to the training of RGNNs has been explored for a variety

of conditions, the next section will consider the same conditions but using a different

training algorithm. Chapter 3 described the use of the GA which – like the CA – is a

non-gradient based algorithm; the GA will be used next to study the robustness of CAs

when compared to the GA which is a more traditional non-gradient training method.

78

Chapter 5: Comparison of Complex Algorithm and
Genetic Algorithm

5.1 Introduction

 In Chapter 4 a sensitivity study was completed which considered the use of CAs

for training RGNNs. The training of multiple connection methodologies showed that for

the many cases, CAs were effective for training RGNNs to model a second order transfer

function. The second objective of this thesis was to conduct a comparative study of CAs

to a commonly used non-gradient training method known as the genetic algorithm (GA).

The following chapter will be used to show the advantages and disadvantages of this

training method compared to the CA. To do so a comparison will be made to CAs using

the same morphologies and initial population intervals studied in Chapter 4, but instead

trained using the GA.

 Chapter 3 discussed the GA and gave an algorithm, along with corresponding

equations needed to train a neural network. For the following discussions two changes

have been made to the algorithm for the purposes of this thesis. The first change involves

an altering to the mutation algorithm which in Chapter 3 was given by,

 () ()Gfwbww iimutatei −+=)(, If r1 < 0.5 (5.1)

and () ()Gfwaww iimutatei +−=)(, If r1 ≥ 0.5. (5.2)

In the equations above the mutated weight is limited to the high and low limits of the

training interval. This is intended for systems where the weight is known to lie in a

specific interval or is forced to lie in a certain interval.

 For the system being modeled the weights are known as previously discussed in

Chapter 3; however, for a neural network to train properly, the training algorithm must be

allowed to change the weights as desired without restriction. Although in Chapter 4 the

initial population was created around a certain interval, the weights were free to move

79

outside of this interval in order to reach a maximum allowable error. Therefore, to allow

the weights to mutate freely the mutation process was altered to,

 () ()Gfwrww riimutatei 211
)(−+= , (5.3)

where r1 is a random value between [0, 1] and r2 is either 0 or 1. By doing this the value

of the new weight is not limited to a specific interval.

 The second change is based upon some initial findings from the training of

RGNNs using the GA. The initial findings showed that using the GA, RGNNs had

difficulties producing stable inputs due to unstable dynamic weights. The GA is designed

to change the weights of the network based upon the genetic information of the parents as

discussed in Chapter 3. A restriction placed on the algorithm was to conduct the

crossover sub-loop ten times if the previous iteration produced children who were worse

than their parents. It was observed that even when such a restriction was placed no

suitable children could be found. Furthermore, based on the algorithm the children were

simply placed into the next population once the maximum sub-loop iteration was reached

even when the children produced a higher error than their parents. This meant that the

new population had the potential to be worse than the old population.

 To alleviate this occurrence a restriction was placed on the algorithm which stated

that the new population cannot be worse then the old population. This means that if one

of the children has a higher error than either parent, then the child is not placed back into

the population; instead the parent is. Although this means the population can become

oversaturated with the same genetic information, this also means the RGNN can never

get worse.

5.2 Step Response Training of a RGNN Using GA

 As mentioned in Chapter 4, multi-step response training is very common for the

training of neural networks due to the inclusion of both frequency and magnitude data.

Using GAs, RGNNs were trained with step response data for the same morphologies as

80

CAs. Chapter 4 showed that the initial population contributed to the training ability using

the CA; for some cases an acceptable error was obtained, but even when the same

weights were changed and same initial population interval was used, another training

attempt did not achieve the same error. Therefore, for the application of GAs the same

initial population data (the initial weights) were used to train RGNNs using GAs so an

accurate comparison of training capabilities could be completed.

 The first connection morphology considered was the exact weight matrix required

(see Equation 4.1) with only one synaptic weight being trained for. Table 5.1 shows the

results for the number of training cycles (iterations) used, the average minimum error and

the training time needed for weights w23, w64, w46, w31 when trained individually; both the

CA and GA results are presented. The weights shown were chosen because they

represent connections in the input and output paths in addition to delay and no delayed

paths. Note that because the same multi-step input was used for both cases, the average

error can be compared

Table 5.1: Comparison of results for training the training of one weight with [-5, 5]

interval.

Weight Training Average Average Time Average
Trained Algorithm Count (minutes) Minimum Error

23
GA 168.3 60.211 8443.35719
CA 1804.0 1.695 0.00647

64
GA 166.7 60.152 367.00920
CA 34011.0 26.580 243.67964

46 GA 166.3 60.134 393.97909
CA 3131.0 16.313 391.52019

31 GA 167.7 60.188 3979.75479
CA 1846.3 1.676 0.00539

56 GA 167.7 60.221 680.99781
CA 1751.0 2.198 0.00493

42
GA 397.7 60.134 4721122.94769
CA 2264.3 2.641 0.00594

 Comparing the results for GAs and CAs in Table 5.1, it is seen that the GA has a

considerably larger error for all single weight trained networks; this trend will be

81

discussed later. Figure 5.1 shows a typical error signal for a single weight trained

network using the GA. As mentioned in Chapter 4, the maximum allowable error for a

RGNN to be considered properly trained is 0.02; this line is shown at the bottom of

Figure 5.1. It can clearly be seen that the error for a RGNN trained using GAs for the

optimization of w31 is typically larger than the allowable maximum error for the training

data set; the total output error for Figure 5.1 is 822; this was obtained using the error

calculation methods shown in Chapter 3.

Figure 5.1: Typical error signal for step input trained RGNN using GAs when only w31

was optimized.

 As done for testing CAs in Chapter 4, the next step was to train RGNNs by

changing two weights in tandem. Figure 5.2 shows the error signal for w42 and w23

trained in tandem using the GA; it should be noted that this pairing produced the smallest

output error of all trained pairings with an error of 108. Unlike Figure 5.1 which shows

curved lines with small oscillation frequency, the error of the trained network shown in

Figure 5.2 has large high frequency spikes. The trained network with output error shown

in Figure 5.1 has a similar natural frequency to the system being modeled. This is not the

case for the natural frequency of the trained model whose response is shown in Figure

82

5.2. However, the error of the single weight trained network is almost eight times higher

than the two weight trained network.

Figure 5.2: Error signal for step input trained RGNN using GAs when w46 and w23

 were
trained in tandem.

 This is the opposite of what occurred when training RGNNs using CAs; as the

number of weights being trained increased from one to two, the error increased

significantly. For GA trained networks as the number of weights increased the error

decreased. To test whether there is a link between the increase in neurons being trained

and a decrease in output error when using GAs, networks were trained using only the

number of required neurons and the training of all possible neurons as conducted in

Chapter 4 when examining CAs. Figure 5.3 shows the error comparison between training

cases containing two weights, only required weights and all weights for the first step of

the training signal.

83

Figure 5.3: Error comparison for networks trained using one weight, two weights,

required weights and all weights.

 Figure 5.3 shows a smaller error signal when only the required weights and all

possible weights are used when training a network compared to when only two weights

are trained. Figure 5.4 shows the output response for networks trained for two weights,

only the required weights, and all weights; it should be noted that Figure 5.4 only shows

the first step in the multi-step input. The natural frequency of the RGNNs did not

improve when the number of neurons increased. When the number of neurons increased

the oscillations disappeared at the step points creating no oscillations at sharp changes to

the input.

84

Figure 5.4: Output comparison for networks trained using two weights, required weights

and all weights.

 Figures 5.1, 5.2 and 5.3 show a distinctive trend when using the GA to train

RGNNs; as the number of weights being trained increases the error of the network

decreases. This is the opposite what occurred when CAs were used to train RGNNs, and

it is also counterintuitive to what is expected to occur. As with CAs, it is expected that as

the number of variables – in the case of neural networks, the variables are the weights –

decreases, the accuracy of the algorithm should increase.

 One possible rationale for this not occurring with GAs is a restriction placed on

the training algorithm mentioned at the beginning of this chapter. Because the GA

proved ineffective for the training of networks when no restrictions were placed on the

creation of a new population, the GA was modified so that the new population would at

the very least never have a higher error than the previous population. This stipulation

decreased the flexibility of the GA – which is one of the powerful tools of GAs – but was

necessary to create stable outputs. The limitation of the new population caused the

population to rapidly collapse.

85

 The CA has a modified component to allow the complex to move away from a

local minimum; the only comparable mechanism for the GA is mutation. Because the

mutation mechanism for GAs is very random, the limitations of the algorithm led to the

inability for the GA to find the global minimum. When using GAs, as the number of

weights increased, the ability for the population to drift towards a lower error minimum

also increased. This is because the increase in the number of weights (variables)

increased the amount of genetic information, and as the algorithm has more genetic

information to choose from the robustness also increases.

 Figure 5.5 shows the error comparison between the CA and the GA when all

possible weights of a RGNN are being trained for with an initial population interval of [-

5, 5] for the first step in the multi-step training input. For all intervals, the results where

similar to Figure 5.5 which compares the GA to the CA using the initial population

interval of [-5, 5]. Figure 5.5 shows that the CA has a significantly smaller error

compared to the GA for the dynamic portion of the step response, 0-2 second portion of

Figure 5.5; the steady state output for both CAs and GAs are similar and both are

underneath the acceptable maximum error line.

Figure 5.5: Error comparison for CAs and GAs when training all possible weights with

an initial population interval of [-5, 5].

86

 It was shown in Chapter 4 that the robustness of training using CAs was

dependent on the initial interval size. The same tests were performed using GAs to

discover if the dependence on initial population interval was a trend for other training

algorithms besides CAs. Figure 5.6 shows the error comparison of all three test intervals

for the first step in the multi-step training input. The secondary error peak (at

approximately 1.5 seconds) in Figure 5.6 shows that the error of the smallest interval, [-

0.5, 0.5], is the largest of the three intervals at that point. This is the only peak where the

smallest interval has the largest error contribution. For all other peaks in the error

comparison, the [-0.5, 0.5] interval has the smallest error with a value of 24. The largest

overall error found for the comparison done in Figure 5.6 is for the [-5, 5] interval with

an error of 33, while the [-1, 1] interval has an error of 30. The CA test results found in

Chapter 4 show the same trend; therefore it can be stated that as the initial population

interval decreases, the error of the trained RGNN will also decrease.

Figure 5.6: Error comparison for initial population intervals [-5, 5], [-1, 1] and [-0.5, 0.5]

for RGNNs where only the required weights were trained using the GA.

87

5.3 Frequency Based Training of a RGNN Using GAs

 In Chapter 4 a comparison was done for frequency based training and step

response training; it was shown that networks which trained to the acceptable minimum

error did not necessarily ensure the trained network was properly generalized for all the

cases studied. The use of step response training did in general create a more generalized

network than frequency based training, but many of the results were not satisfactory and

were not consistent. The following section will discuss the findings for frequency based

training of RGNNs using the GA compared to the CA, and will also discuss the

difference between the training of networks using frequency based training and step

response training. As stated in the previous section, it was found that the GA proved very

ineffective for training RGNNs where one weight and two weights were optimized.

Because of the inadequacies of these types of networks, only networks where all weights

and only the required weights were optimized will be used to discuss the frequency based

training of RGNNs using the GA.

 Training RGNNs using the GA with step response training data showed a much

larger error as was observed in Figure 5.5. Figure 5.7 shows the frequency based error

comparison between the GA and CA for frequency based training using the [-1, 1] initial

population interval. It shows that during the low and mid frequency inputs the genetic

algorithm works well – except for a short initial error spike at the beginning of the input.

However, as the frequency increases, the error also begins to increase rapidly; this effect

was not observed for the CA. The CA produced error value less than the maximum

allowable error for the entire training set as can be seen in Figure 5.7. These results were

typical for all networks trained when the training error for CAs and GAs were compared.

88

Figure 5.7: Comparison of error between the GA and CA for frequency based training

using [-1, 1] initial population interval.

 As previously mentioned, Chapter 4 showed the training of RGNNs with the CA

using step response data to produce more generalized results when compared to networks

using frequency based response training data. Table 5.2 shows a comparison of

frequency based and step response training for RGNNs trained using the GA for the same

type of inputs. When considering the case where all possible neurons are optimized there

is a negligible improvement between the percentage differences when step response

training is used; the ratio difference for frequency based training was 3.1 and 3.6 for step

response training, this difference is not large enough to make valid conclusions based on

GA data alone.

Table 5.2: Comparison of results for the training of RGNNs with GAs using step

response and frequency based training for [-1, 1] initial population interval.

Weights Training Average Opposite Data Ratio
Trained Data Minimum Error Output Error Test/Trained

Required
Frequency 19.35809 64.59246 3.3367

Step 34.5499 17.15014 0.4964

All
Frequency 20.78344 64.87912 3.1217

Step 48.79635 175.25802 3.5916

89

 Similar to using step response training for CAs, when only the required weights

were considered, step response training showed greater generalization. In fact as shown

in Figure 5.8, when a frequency based signal was used as the input signal to a step

response trained RGNN, the error of the system was lower than the error of a frequency

based trained network for the same input. It should be noted that only the last two test

frequencies of the training set is shown in Figure 5.8. This is because at lower

frequencies the error is very small. The oscillations in error only occur at the end of the

data set, therefore the first frequency was omitted to show greater detail for the segments

which produced larger errors. The use of GAs has shown that the observations discussed

in Chapter 4 regarding different training input signals hold true; step response training

has been shown to be more effective then frequency based training.

Figure 5.8: Error comparison of frequency based and step response trained RGNNs for a

frequency based input signal; only required weights were trained.

90

5.4 Discussion of GA Results

 Testing was conducted using the GA to train RGNNs for the same weight

optimization cases and initial population intervals as was done in Chapter 4 using CAs.

Because it was discovered when training RGNNs using the CA that the robustness of

training a network is dependent upon the initial population, for the networks trained using

the GA the initial populations used where identical to those used for the training of

RGNNs using the CA in Chapter 4.

 Certain modifications were made to the GA after preliminary testing was

conducted; these modifications were performed on the mutation algorithm and the

crossover portion of the GA. The modifications were done to ensure the mutation weight

values could vary outside of the population intervals provided, and also to ensure that the

new population of the network was never worse than the old population. It was found

that the limitation of ensuring the new population was never worse than the old

population created difficulties for the training of RGNNs; this was especially evident for

networks where only one weight was trained at a time.

 The assurance that the new network never increased in error had an adverse

effect; as limits are placed on how the population can mate, the amount of available

genetic information decreases. This is why as the number of weights being optimized

increased the error decreased; indeed, as the number of weights being optimized

increased the genetic information increases. However, adversely, as the number of

weights being optimized becomes too high there is too much information and finding the

appropriate optimization point becomes difficult. This is the same trend as was found

with the CA.

 When comparing the results for both step response and frequency response for

CAs and GAs it was found that the CA minimized the output error better than the GA.

This trend held true for all trained networks tested. One trend which was noticed during

the testing of CAs was the increase in robustness of step response training when

91

compared to frequency based training. This trend held true when step response training

and frequency response training was compared for training RGNNs using GAs.

92

Chapter 6: Conclusions and Recommendations

6.1 Summary of Results

 Chapter 4 explored the use of training RGNNs using CAs; the methodology for

using CAs was described in Chapter 3. Some of the results showed that as the initial

population interval size increased, the ability of the network to obtain an acceptable error

diminished. It was also found that the ability for a RGNN to train to an acceptable error

using CAs was dependent upon the specific weights being trained.

 The training of RGNNs was also used to test the robustness of CAs as the number

of weights being optimized was varied. It was found that when only one weight was

being optimized – with the other weights were set to their exact values – the majority of

networks fell below the maximum acceptable error. However, two connections (w64 and

w46) proved problematic for the training of RGNNs when using a step input training data

set. The hindrance of training capabilities caused by weights w64 and w46 was also

observed during the training of two weights in tandem. As the number of weights being

trained increased from two weights to only the required weights needed to model the test

system, the robustness of the CA increased. When the number of weights being trained

was further increased so all weights were being trained, the error increased; it should be

noted the error still remained lower on average than when two weights were trained

alone.

 The use of frequency based training was also studied in Chapter 4; training of

networks was conducted for the same weight connection types used for step response

training. It was found that for weights w64 and w46 – which were troublesome for step

response training – the use of frequency based inputs greatly improved the generalization

of the network. When a step input was modeled using the frequency based trained

RGNNs, the error results for networks where w64 and w46 were trained fell below the

maximum acceptable error. This trend did not continue for the remainder of weight

93

connection types and initial population intervals; the use of frequency based training in

general created less generalized networks than using step response to train RGNNs with

CAs.

 Chapter 5 studied the use of a common non-gradient training algorithm, the GA.

Based upon the findings during initial testing, the GA presented in Chapter 3 was

modified to suit the needs of training a black box neural network model. To create a

black box model the mutation algorithm was altered to ensure that any mutated weights

were not limited to a certain interval. Also, initial training results showed that the GA

had difficulties overcoming the accumulative error. It was found that if the GA was

allowed to calculate new populations with no restrictions, the error of newly created

populations would oscillate around a large error and would never improve. To eliminate

this from occurring, a limitation was placed on the new population to ensure that the error

of the new population was never worse than the error of the old population. If the error

was larger, an individual from the old population would replace the newly calculated

individual.

 Unlike the training results using CA when one weight was trained at a time, for

both step and frequency based training the GA proved completely ineffective as none of

the trained networks fell below the maximum allowable error. Also unlike training

results for the CA, when the number of weights trained increased from one to two the

error of the trained networks decreased. This trend continued when the number of trained

weights increased to include all required connections. When all possible weights in the

network were trained using GAs the average minimum error was more than when only

required weights were trained, but the error was still less than when one or two weights

were trained at a time.

 It was also found that like the CA, as the initial population size decreased, the

average minimum error of networks trained using GAs also decreased. The training of

RGNNs using GAs showed that step response training provided more generalized results

when compared to frequency based training; this is not to say that the results themselves

94

were acceptable, just more generalized than frequency based training results. This was

the same trend noticed during the training of RGNNs using CAs.

6.2 Conclusions

 The prime objective of this particular study was to investigate the competency of

using RGNNs along with the CA training method; to do so a simple stable linear system

was used. This study was conducted by training networks using step response and

frequency based training with a variety of initial population intervals and by varying the

number of weights being trained in the RGNN. The prime objective was met and based

upon the results; the first conclusion is as follows: the robustness of training RGNNs

using the CA is dependent upon the initial population of weights. The characteristics

which were noticed to affect the initial population’s robustness included the population

interval size and the number of weights being optimized as mentioned during the

discussion of results.

 A second objective was to complete a comparative study of CAs to the GA, which

is also a non-gradient training method. Two modifications were made to the GA;

however, only one showed a noticeable affect on the training of RGNNs using GAs. This

modification was the assurance that the error of the new population never increased when

compared to the previous population. If mating occurred and either child from the new

population had a higher error than either of its parent from the old population, then the

parent replaced the child in the new population. The limitation of the new population led

to populations converging on an incorrect set of weights quickly and not moving towards

an acceptable set after doing so. This phenomenon was not as noticeable with the CA

because it has a mechanism to allow the weights to shift in a specific direction rather then

randomly, increasing the chances of reaching the global minimum error if the collapsing

of the population occurs at the incorrect points.

 Based on this observation, the following conclusion is as forwarded: when using

GAs, a specific algorithm must be chosen which will allow the calculation of new

95

population weights to move freely but at the same time ensure a stable output from the

RGNN. Comparing the outputs for the GA and the CA, it was found that the CA

consistently created networks for both step response and frequency based training with a

significantly lower error for the same type of inputs. It was also concluded that the CA

will produce more generalized RGNNs than the GA.

 It is concluded that based upon the results of training RGNNs using the CA and

GA when step response and frequency based training data sets were used, networks

trained using step response will tend to be more generalized in the majority of cases. One

observation which should be noted was that for step response training using CAs, weights

w46 and w64 could not achieve the maximum allowable error when only one weight was

optimized. However, when frequency based training data was used a significantly more

generalized RGNN was obtained when only w46 and w64 were optimized. Further studies

as to why these specific weights proved to be troublesome must be further explored in

order to create a valid RGNN using the CA and achieve the global objective.

 As stated in Chapter 1 and expanded upon in Chapter 4, the network studied was

set to a predetermined number of neurons based upon the order and characteristics of the

test model. The focus of the studies performed was to complete a sensitivity study of

RGNNs trained using the CA. The sensitivity study performed did not include effects

based on changing the number of neurons. The limitation upon the number of neurons

(because the number of neurons used created an exact representation) creates a “grey

box”. Therefore, it is also concluded that the results obtained do not negate or validate

the use of RGNNs using the CA for modeling load sensing pumps. To validate the

results a true “black box” model must be created, and this was not completed during this

investigation.

6.3 Recommended Future works

 The intent of using two different non-gradient training algorithms was to study

their use with RGNNs. As it was found that both training algorithms proved ineffective

96

for training RGNNs at large initial population intervals, a study of RGNNs should be

conducted which considers other training algorithms. One such algorithm which should

be considered is the use of Back Propagation (BP). As stated earlier, BP was not

considered because the focus of the thesis was the use of non-gradient training methods

as they are predisposed to the training of recurrent type networks. However, BP has been

shown to be useful in the training of many network types. One disadvantage of non-

gradient networks is the training of networks by comparing only the output error of each

individual rather then the comparison of each neurons output. BP considers the output of

each neuron in considering whether to increase or decrease the value of neural weight.

This would increase the chance of a weight finding a global optima rather than an

individual’s local minimum. And in turn, this may help find the entire networks global

optima.

 The use of non-gradient methods should not be ignored in further studies based on

the findings discussed in this thesis. Chapter 2 described the fundamental improvements

of non-gradient methods in comparison to gradient methods such as BP. Each training

algorithm can be modified in a number of methods; one such modification was

considered for the use of CAs. A modified reflection point method was used to alleviate

collapsing of the complex in a local rather than global minimum. Therefore it is

suggested that the CA should be modified to incorporate the superior nuances of the GA.

 It was found that the GA did not produce the same results as the CA. However,

the GA uses one mechanism during mating which could prove advantageous to the CA,

and may in the process decrease the training time. The GA uses the fitness factor of an

individual to calculate the probability that one of its weights will be chosen for mating.

A similar mechanism should be incorporated into the CA. When the calculation of the

centroid is conducted, rather than each individual contributing equally the error of each

individual should be used to evaluate how much it will contribute to the centroid. The

lower the error an individual has, the closer the centroid will be to that individual.

97

 Another possible improvement which can be made is the incorporation of BP

tactics. BP modifies the weights of each neuron individually rather then as a group.

Similarly, if the desired output of each neuron is known then rather than producing

rankings based on the output of the individual, the rankings can be made based upon

weight output. Two methods could be used for finding the output of each neuron. If the

structure of the model is known then the output of each neuron can be discovered; this is

similar to the exact model produced for the transfer function considered in the previous

studies. However, this would create a grey box model rather then a black box model; this

would be contrary to the desired creation of a black box model. Another method would

be to use BP to predict the output of each neuron. Chapter 3 showed the difficulty in

creating the gradients needed for such predictions; however, it is feasible to create such

predictions. In doing so, a training algorithm would be made which would apply either

CAs or GAs along with the BP neuron output prediction.

 For the investigation conducted the number of neurons used for creating models

using RGNNs was held constant. Therefore, it is recommended that further studies be

conducted which investigate how the number of neurons used in an RGNN can affect the

robustness of the network when trained using CAs. Once the number of neurons used for

an RGNN is tested, it is recommended that the study of RGNNs trained using the CA be

considered further to meet the global objective of creating a non-linear dynamic model

for a load sensing pump using neural networks.

98

References

Andersson, J. (2001). Multiobjective Optimization in Engineering Design – Applications

 to Fluid Power Systems. Ph. D. Thesis, Division of Fluid and Mechanical

 Engineering Systems, Department of Mechanical Engineering, Linkoping

 University, Linkoping, Sweden.

Bitner, D. (1986). Analytical and Experimental Analysis of a Load Sensing Pump. M. Sc.

 Thesis, Department of Mechanical Engineering, University of Saskatchewan,

 Saskatoon, Saskatchewan.

Burton, R.T., Sargent, C.M., Schoenau, G.J., Anderson, D. (1993). The use of multiple

 independent gains for a repetitive low frequency duty cycle in a hydraulic system.

 Proceedings of the Second Japan Hydraulic and Pneumatic Society International

 Symposium on Fluid Power.

Burton, R.T., Ukrainetz, P.R., Nikiforuk, P. N., G.J.Schoenau. (1999). Neural Networks

 and Hydraulic Control – From Simple to Complex Applications. Proceedings of

 the Institute of Mechanical Engineers, Vol. 213, Part 1, Pp. 349-358.

Darwin, C. (1859). On the Origin of Species. New York Universal Press, Washington

 Square, NY.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine

 Learning. Addison-Wesley Publishing Company, Reading, MA.

Goulermas, J.Y., Liatsis, P., Zeng, X.J., Cook, P. (2007). Density-Driven Generalized

 Regression Neural Networks (DD-GRNN) for Function Approximation. IEEE

 Transactions on Neural Networks, Vol. 18, No. 6, Pp. 1683-1696.

99

Gupta, M., Jin, L., Homma, N. (2003). Static and Dynamic Neural Networks – From

 Fundamentals to Advanged Theory. John Wiley & Sons Inc., Hoboken, NJ.

Haykin, S. (1999). Neural Networks – A Comprehensive Foundation. Prentice Hall,

 Upper Saddle River, NJ.

Krus, P. (1988). On Load Sensing Fluid Power Systems. Ph. D. Thesis, Division of Fluid

 and Mechanical Engineering Systems, Department of Mechanical Engineering,

 Linkoping University, Linkoping, Sweden.

Lamontagne, D. (2001). Investigations in Modeling a Load Sensing Pump Using Neural

 Networks. M. Sc. Thesis, Department of Mechanical Engineering, University of

 Saskatchewan, Saskatoon, Saskatchewan.

Li, Y. (2007). Investigation in Modeling a Load-Sensing Pump Using Dynamic Neural

 Unit Based Dynamic Neural Networks. M. Sc. Thesis, Department of Mechanical

 Engineering, University of Saskatchewan, Saskatoon, Saskatchewan.

Mahanti, G.K., Chakraborty, A., Das, S. (2005). Floating-point Genetic Algorithm for

 design of a Reconfigurable Antenna Arrays by phase-only control. Asia-Pacific

 Microwave Conference Proceedings, Vol. 5, (4 pages).

McNamara, J.M., Edge, K.A., Vaughan, N.D. (1997). Hybrid Analytical/Neural Network

 Model of Variable Displacement Pump Dynamics. Fluid Power Systems and

 Technology: Collected Papers, FPST-Vol. 4/DSC-Vol. 63, Pp. 71-76.

Merritt, H. (1967). Hydraulic Control Systems. John Wiley & Sons, New York, NY.

Pollmeier, K., Burrows, C.R., Edge, K.A. (2004). Condition Monitoring of an

 Electrohydraulic Position Control System Using Artificial Neural Networks.

100

 ASME International Mechanical Engineering Congress and Exposition,

 November 13-20 2004, Pp. 137-146.

Qian, W. (1998). Neural network control of non-linear hydraulic system. M. Sc. Thesis,

 Department of Mechanical Engineering, University of Saskatchewan, Saskatoon,

 Saskatchewan.

Song, Y.H., Johns, A.T. (1998). Application of Fuzzy Logic in Power Systems: Part 2

 Comparison and integration with expert systems, neural networks and genetic

 algorithms. Power Engineering Journal, August 1998, Pp. 185-190.

Srivastava, V (1998). Neural-Control of Unknown Dynamic Systems. M. Sc. Thesis,

 Department of Mechanical Engineering, University of Saskatchewan, Saskatoon,

 Saskatchewan.

Werbos, P.J. (1990). Backpropagation Through Time: What It Does and How to Do It.

 Proceedings of the IEEE, No. 10, Vol. 78, Pp. 1550-1560.

Wiens, T. (2008a). Online Learning of a Neural Fuel Control System for Gaseous

 Fueled SI Engines. Ph. D. Thesis, Department of Mechanical Engineering,

 University of Saskatchewan, Saskatoon, Saskatchewan.

Weins, T., Burton, R.T., Schoenau, G.J. and Bitner, D. (2008). Recursive Generalized

 Neural Networks (EGNN) for the Modeling of a Load Sensing Pump., Bath-

 ASME Joint Conference on Fluid Power, Transmission and Control, Bath,

 England, Sept 4-7, (8 pages) (CD Rom).

Wu, D. (2003). Modeling and Experimental Evaluation of a Load-Sensing and Pressure

 Compensated Hydraulic System. Ph. D. Thesis, Department of Mechanical

 Engineering, University of Saskatchewan, Saskatoon, Saskatchewan.

101

Xu, X.P. (1997). Experimental Modeling of a Hydraulic Load Sensing Pump Using

 Neural Networks. Ph. D. Thesis, Department of Mechanical Engineering,

 University of Saskatchewan, Saskatoon, Saskatchewan.

Yu, F., Gupta, N., Hoy, J. (2005). Non-Intrusive Pressure Measurement Based on

 Ultrasonic Waves. Insight May 2005, No. 5, Vol. 47, Pp. 285-288.

Zhang, H., Ukrainetz, P.R., Nikiforuk, P.N., Burton, R.T. (1996). Implementation of

 Neural Network Approach in MIMO Electrohydraulic Servosystems Control.

 Proceedings of the International Conference on Control, University of Exeter,

 September 1996, Pp. 1468-1473.

102

Appendix A: Derivation of Exact Representation for
Recurrent Generalized Neural Network (RGNN)

The following discussion is an expansion of the exact representation of a RGNN for a

transfer function given in Chapter 2. The transfer function considered is,

()
() 92

4
2 ++

+
=

ss
s

sX
sY . (A.1)

Equation A.1 describes a single-input single-output (SISO) system which contains a zero

at,

4−=s

and two poles at,

221 is ±−= .

Because both poles lie on the left hand plane, for a step input a stable output is

achievable. Taking the inverse Laplace transform of Equation 2.4 gives,

 x
dt
dxy

dt
dy

dt
yd 4922

2

+=++ . (A.2)

If it is assumed that Δt→0, then the differential components in A.2 can be written as,

t
yy

dt
dy kk

∆
−

=
−1

, (A.3)

2

11

2

2 2
t

yyy
dt

yd kkk

∆
+−

=
−−

. (A.4)

Therefore using past time step information from both input and output, A.2 can be

simplified to,

 k
kk

k
kkkkk

x
t
xxy

t
yy

t
yyy 49222 11

2

21

+
∆
−

=+
∆
−

+
∆

+− −−−−

. (A.5)

Collecting like terms for yk and xk yields,

 





∆
−+



 +
∆

=




∆

+





∆
−

∆
−+



 +

∆
+

∆
−−−

t
x

t
x

t
y

tt
y

tt
y kkkkk 141122921 1

2
2

2
1

2 . (A.6)

103

121

121

−−−

−−−

++−−=

+=++

kkkkk

kkkkk

x
A
Ex

A
Dy

A
Cy

A
By

ExDxCyByAy
. (A.7)

In order to find the coefficients for Equation A.7 the RGNN must be formed and

examined. Equation A.7 shows a two step time delay for the output and a single delay

for the input. Based on the number of delay paths needed, equation A.7 can be

represented using the RGNN schematic in Figure A.1 where all return paths have a one

time step delay.

-- -
X 1 Y

w 31 w 42

w 23

w 64

w 56w 45

w 46

w 41

Figure A.1: Schematic of exact representation of Equation A.7 using a RGNN.

Comparing Figure A.1 to Equation A.7 the values for the RGNN weights can be

determined using values for the coefficients found above,

()
A
Bww

A
B

=→−=− 4646

()() 1, 56455645 −==→−−=− w
A
Cwww

A
C

A
Dww

A
D

=→= 4141

()
A
Ewwwwww

A
E

=−==→−= 422331422331 ,1,1

For a SISO system, RGNNs are described by,

104

 1−−= k
D

k
S

k YWXWY , (A.8)

where WS and WD are the weight matrices for static and dynamic connections which are

upper and lower triangular matrices respectively. The overall weight matrix is given by,

 DS WWW += . (A.9)

And for the RGNN exact representation being considered,



























=

00000
00000

00
00000
00000
000000

64

56

46454241

31

23

w
w
wwww

w
w

W . (A.10)

If a time step of Δt = 0.02 seconds is considered the values for the coefficients in A.7 are,

()
26099

02.0
2

02.0
1921

22 =++=+
∆

+
∆

=
tt

A

()
5100

02.0
2

02.0
222

22 −=−−=
∆

−
∆

−=
tt

B

()
2500

02.0
11

22 ==
∆

=
t

C

544
02.0
141

=+=+
∆

=
t

D

50
02.0
11

−=−=
∆

−=
t

E

Using the values for the coefficients the values for the neural network weight matrix, W,

in equation A.10 becomes,



























−
−−

−

=

001000
100000

9547.19582.0000192.00207.0
000001
000100
000000

W .

105

Figure A.2 shows the output of the RGNN in comparison to the continuous output for the

transfer function in Equation A.1. The RGNN was created using two sample times, 0.005

seconds and 0.02 seconds. It can be seen in Figure A.2 that as the sample time increases,

the accuracy of the RGNN decreases.

Figure A.2: Output comparison of RGNN at 0.02s and 0.005s compared to the continuous

output of the transfer function in Equation A.1.

106

Appendix B: Calculation of Updated Neural Network
Weights Using Non-Gradient Methods.

B.1: Introduction

The following appendix will outline the sample calculations necessary to complete an

iteration of the training process for both the complex algorithm (CA) and genetic

algorithm (GA). The calculations will be completed for a static feed-forward neural

network (FFNN) which was considered in Chapter 3; a schematic for the network is

shown in Figure B.1.

w 011

w 111

w 112

w 221

w 121

w 021

w 012

X 1

X 2

Y

N euron 1,1

N euron 1,2

N euron 2,1

Figure B.1: Schematic of FFNN considered for outline of training algorithms.

The weighting matrix for Figure B.1 is written as,

 []221121021112012111011 wwwwwwwW = , (B.1)

The FFNN will be trained to model the mathematical equation,

 22/1 ++= xxy , (B.2)

where y is the output of the neural network and x is the input. Batch training will be

used; for batch training the error considered is the least squared error given by,

107

 ()∑
=

=
N

k
ke

N
kE

1

21
2
1)(, (B.3)

where k is the time step being considered, N is the total number of time steps in the batch

and e(k) is the difference between the output of the neural network and the desired output

of the neural network. For both CA and GA the initial population is given in Table B.1

along with each individuals corresponding error.

Table B.1: Initial population of weights and corresponding error.

Individual w011 w111 w012 w112 w021 w121 w221 Ei

1 0.8382 0.8292 0.7142 0.7912 0.4799 0.0934 0.9917 45440.20

2 0.3902 0.4406 0.0066 0.7777 0.9006 0.7098 0.5805 42185.88

3 0.9181 0.7549 0.5861 0.8833 0.0265 0.4554 0.9461 46186.07

4 0.1559 0.9671 0.5759 0.4114 0.1029 0.7538 0.2423 48011.48

5 0.1680 0.7507 0.9734 0.2773 0.3415 0.4124 0.7218 45950.36

6 0.4612 0.4823 0.9062 0.0180 0.9137 0.8917 0.0713 43871.46

7 0.1093 0.0980 0.7658 0.9466 0.5638 0.4087 0.5459 46070.98

8 0.7010 0.2208 0.0387 0.8139 0.7986 0.4011 0.4596 44972.19

B.2: Calculations for Complex Algorithm (CA)

The first step in calculating an updated set of weights using CA is to identify the

individual with the highest error. By inspecting the error for each individual in Table B.1

it can be seen that individual 4 has the highest error (Wh); the following calculations will

outline how to create a new individual to replace Wh.

The second step is to calculate a centroid which consists of the average value of each

individual for a specific weight except Wh; the weight to be considered for the following

calculations is w011. The centroid is given by,

 hi
n

i

i WWwhereW
n

W ≠
−

= ∑
=

,
1

1
1

, (B.4)

108

therefore,

() ()

.5123.0

5614.2
5
17010.01093.04612.01680.09181.03902.08382.0

16
1

=

=++++++
−

=

W

W

The third step is the calculation of the new reflection point given by,

 ()hr WWWW −+= α , (B.5)

where α is the reflection coefficient. For our purposes the value for α will be 1.3 as

suggested by Andersson [2001]. Therefore,

()
.9755.0

1559.05123.03.15123.0

=

−+=
r

r

W

W

The new error for the output produced by the FFNN with Wr is 41693.4; which is less

then the error for Wh.

If for instance the error produced by Wr was greater then Wh then a modified reflection

algorithm [Andersson, 2001] is given by,

 ()[] ()()()1212/1)()(−−−+−++= RWWWWWW lloldrnewr εεε , (B.6)

where,

r
rr

n
kn

rr

r

kn
n

1

1

−+









−+

=ε . (B.7)

In Equations B.6 and B.7 Wl is the individual with the lower error, R is a random value on

the interval [0, 1], nr is a constant chosen to be nr = 4, and kr is the number of times the

modified reflection algorithm has been attempted at a given generation. For w011 the

modified reflection algorithm would produce,

1
114

4 4
114

=







−+
=

−+

ε .

Therefore if R = 0.9501,

109

()() ()[] ()() ()()

.5.42915

7439.0

19501.02113902.05123.02/3902.0115123.019755.0

)(

)(

)(

=

=

−−−+−++=

newr

newr

newr

E

W

W

B.3: Calculations for Genetic Algorithm (GA)

The first step in training a neural network using GA is to find the total error of the

population,

 ()∑
=

=
n

i

i
P EE

1

, (B.8)

.362688.62

2.449729.460705.438734459505.480111.461869.421852.45440

=

++++++++=

P

P

E

E

Once the total error is found the fitness factor for each individual must be calculated.

The fitness factor being considered behaves similar to a probability wheel; the chances of

a specific weight being found is dependent on how good the individual is, or is our case

how low the error is. The fitness for an individual is given by,

p

i
pi

E
EE

f
)(

)(−
= . (B.9)

The fitness factor for individual 1 is,

,0.8747

6.362688
2.454406.362688

)1(

)1(
)1(

=

−
=

−
=

f

E
EE

f
p

p

with the fitness for all individuals given in Table B.2.

Table B.2: Values for individual fitness factors in initial population.

Individual 1 2 3 4 5 6 7 8 total

f(i) 0.8747 0.8837 0.8727 0.8676 0.8733 0.8790 0.8730 0.8760 7.0000

110

The next step is to create a tentative population of weights which is based on the

probability of a specific individual being chosen based on fitness factor. The

methodology used to choose a new population stems from a function which is contained

in MATLAB coding called rand; this function produces a random number on the interval

[0, 1]. Because the total fitness of the population is 7.0000, a ratio of an individual’s

fitness factor compared to overall fitness of a population was considered. For instance, if

individual 1 is considered,

p

i
ratio f

ff
)1(

)(= (B.10)

1250.0
0000.7
8747.0)(==i

ratiof .

Because rand will create a number of interval [0, 1] the fitness ratios for each individual

must be placed in subsequent order to create interval ranges as shown in Table B.3.

Consider a new population which is being formed; the first individual is obtaining its

w011
(new). The rand function outputs a value 0.0798; this value corresponds to the fitness

range of individual 1. Therefore for the new population, the first new individual at

w011
(new) will be w011

(old) = 0.8382.

Table B.3: Fitness ratios along with fitness ranges for population.

Individual 1 2 3 4 5 6 7 8

fratio
(i) 0.1250 0.1262 0.1247 0.1239 0.1248 0.1256 0.1247 0.1251

low 0.0000 0.1250 0.2512 0.3759 0.4998 0.6246 0.7501 0.8749

high 0.1250 0.2512 0.3759 0.4998 0.6246 0.7501 0.8749 1.0000

Once a tentative new population has been chosen, each individual must chose a mate to

create offspring; the mates for each individual are chosen randomly. The tentative new

population along with the chosen mates is shown in Table B.4.

111

Table B.4: Tentative new population with individuals corresponding mates.

Individual w011 w111 w012 w112 w021 w121 w221 Mate

1 0.8382 0.8292 0.5759 0.9466 0.7986 0.4554 0.5805 5

2 0.1093 0.4406 0.9062 0.8139 0.9137 0.4087 0.9917 6

3 0.3902 0.0980 0.5759 0.8139 0.9137 0.8917 0.9461 8

4 0.3902 0.4406 0.0066 0.4114 0.5638 0.7538 0.5459 7

5 0.1559 0.9671 0.5759 0.4114 0.7986 0.0934 0.9461 1

6 0.8382 0.4823 0.9062 0.8139 0.3415 0.7538 0.5805 2

7 0.4612 0.4823 0.5759 0.7912 0.1029 0.4087 0.5459 4

8 0.7010 0.0980 0.5861 0.2773 0.9137 0.7098 0.4596 3

Now that each of the individuals has found a mate the error of each individual must be

found using Equation B.3. Mating involves two steps, heuristic crossover and non-

uniform mutation. To complete the heuristic crossover process the error of each mate

must be compared. Once mating occurs, the parent with the lowest error, IA, and the

highest error, IB, are used to find two new offspring,

()

AnewA

BAAnewB

II

IIrII

=

−+=
)(

)(

, (B.11)

where r is a random value between zero and one. The mate for individual 1 is 5 who

have errors of 44002 and 44010 respectively, therefore for w011 with r = 0.5,

() ()
,1794.1

1559.08382.05.08382.0
)(5

011

5
011

1
011

1
011

)(5
011

=

−+=−+=
new

new

w

wwrww

and,

8382.01
011

)(1
011 == ww new .

The final step in the mating process is non-uniform mutation; this can occur in a wide

variety patterns ranging from one weight in every individual being changed at every

generation to one weight in the entire population being changed at each generation.

Non-uniform mutation is governed by,

112

 () ()Gfwbww iimutatei −+=)(If r1 < 0.5 (B.12)

 () ()Gfwaww iimutatei +−=)(If r1 ≥ 0.5 (B.13)

where,

 ()
c

G
GrGf 


















−=

max
2 1 (B.14)

where r1 and r2 are random numbers between zero and one, b and a are the upper and

lower boundaries respectively of the possibly weight range given by the user. G is the

number of times a new population has been calculated. This is also referred to as the

number of generations; Gmax is the maximum number of generations, and c is system

parameter determining the degree of non-uniformity.

To illustrate mutation let us consider w011 in the new population with a boundary of [-5,

5], a non-uniformity parameter of c = 3, and r1 and r2 are 0.3 and 0.6 respectively. If the

maximum number of generations is Gmax = 50 and the current generation is G = 10 then,

() 1106.0
50
1016.0

3

=













 −=Gf ,

and since r1 < 0.5,

()()
.2985.1

1106.08382.058382.0
)(

011

)(
011

=

−+=
mutate

mutate

w

w

Given a mutation process which only affects w011 in the first individual, the new

population of individuals for the GA is given in Table B.5.

113

Table B.5: New population using heuristic crossover and non-uniform mutation.

Ind. w011 w111 w012 w112 w021 w121 w221

1 0.8382 0.8292 0.5759 0.9466 0.7986 0.4554 0.5805

2 0.1093 0.4406 0.9062 0.8139 0.9137 0.4087 0.9917

3 0.3902 0.0980 0.5759 0.8139 0.9137 0.8917 0.9461

4 0.3902 0.4406 0.0066 0.4114 0.5638 0.7538 0.5459

5 1.1794 0.7603 0.5759 1.2142 0.7986 0.6364 0.3978

6 -0.2552 0.4198 0.9062 0.8139 1.1998 0.2362 1.1973

7 0.3547 0.4198 -0.2780 0.2215 0.7943 0.9263 0.5459

8 0.2348 0.0980 0.5708 1.0823 0.9137 0.9826 1.1893

114

Appendix C: Simulation Code

The following code contains the MATLAB based code used to train RGNNs using both

the CA and GA.

C.1 RGNN Code (dynamic_rgnn.m)

The purpose of the following program is to create the output of a recurrent generalized

neural network of a SISO based RGNN.

Input(s):

• Individual’s weight matrix in string formation (W_string)

• Number of neurons in network (neurons)

• Input to the network and desired output (x, yd)

Output(s):

• Output of RGNN (y)

• Error of RGNN (E)

function [y,E]=dynamic_rgnn(x,yd,neurons,W_string)

[W,B]=string2square(neurons,W_string);
Ws=tril(W,-1); %static matrix
Wd=triu(W); %dynamic matrix
time_step=size(x,2);
Y=zeros(neurons,time_step);
Y(1,:)=x;
%calculate outputs
for k=1 %static component, ie. input to input neuron
 for i=2:(neurons-1)
 Y(i,k)=Ws(i,:)*Y(:,k)+B(i); %for non-linear

tanh(Ws(i,:)*Y(:,k)+B(i));
 end
 for i=neurons

115

 Y(i,k)=Ws(i,:)*Y(:,k)+B(i); %use linear output for output

neuron
 end
end
for k=2:time_step %at the moment this is static
 for i=2:(neurons-1)
 Y(i,k)=Ws(i,:)*Y(:,k)-Wd(i,:)*Y(:,k-1)+B(i);
 %for non-linear =tanh(Ws(i,:)*Y(:,k)+B(i));
 end
 for i=neurons
 Y(i,k)=Ws(i,:)*Y(:,k)+B(i);
 %use linear output for output neuron, also there is no dynamic

to output neuron Wd=0
 end
end
y=Y(neurons,:); %output of network

%% Calculate the error
e2=zeros(1,size(x,2));
for i=1:size(x,2)
 e2(i)=(y(1,i)-yd(1,i))^2;
end
E=[sum(0.5*e2) 0]; %second entry is to define when infinit error is

reached
if isnan(E(1,1))==1
 i=1;
 while i<=time_step&&E(1,2)==0
 if y(i)==inf||isnan(y(i))==1
 E(1,2)=i;
 end
 i=i+1;
 end
elseif E(1,1)==inf
 E(1,2)=time_step+1;
end
if isnan(E(1,1))==1
 E(1,1)=inf;
end

116

if isinf(E(1,1))~=1
 E(1,2)=time_step+2;
end

C.1.1 Changing Population Row Vector to a Square Matrix
(string2square.m)

The purpose of the following code is to create a square matrix which is used for linear

algebra calculation of dynamic_rgnn.m. The matrix is produced as a row vector to

simplify the calculation of the new population during training.

Input(s):

Number of neurons

• Individual represented as a row vector (W_string)

• Number of neurons in the network (neurons)

Output(s):

• Individual represented as a square matrix (W_square, B)

function [W_square,B]=string2square(neurons,W_string)

W_square(1,1:neurons)=W_string(1,1:neurons);
for j=1:(neurons-1)

W_square(j+1,1:neurons)=W_string(1,(j*neurons+1):(j*neurons+neurons));
end

B=W_string((neurons*neurons+1):(neurons*neurons+neurons));

117

C.2 Complex Algorithm (complex_rgnn_august26_2010.m)

The purpose of the following code is to complete training of an RGNN using the CA.

clear all
tic
% specify network parameters
neurons=6;
pop=neurons*neurons+10;%should be an even number to correspond with

genetic
max_count=50000; %number of times a new point can be calculated
max_kr=1500; %number of times a single point loop can be calculated
max_time=9000; %maximum time allowed for training in seconds
data_out=zeros(7,max_count); %preset output data set
%% set training parameters
high=5;
low=-5;
% load training data
load('dynamic_3step'); % Load initial data

% initiate intervals for weights
W_small=zeros(neurons,neurons,pop);
B_small=zeros(1,neurons,pop);
if rem(high,1)==0
 for i=1:pop
 W_big(:,:,i)=randint(neurons,neurons,[low,high]);
 B_big(:,:,i)=randint(1,neurons,[low,high]);
 for j=1:neurons
 for k=1:neurons
 W_small(j,k,i)=rand(1)*(-1)^randint;
 B_small(1,k,i)=rand(1)*(-1)^randint;
 end
 end
 end
else
 W_big=zeros(neurons,neurons,pop);

118

 B_big=zeros(1,neurons,pop);
 for i=1:pop
 for j=1:neurons
 for k=1:neurons
 W_small(j,k,i)=0.5*rand(1)*(-1)^randint;
 B_small(1,k,i)=0.5*rand(1)*(-1)^randint;
 end
 end
 end
end
W_interval=W_small+W_big;
W_interval(1,:,:)=0;
W_interval(neurons,neurons,:)=0;
% initial intervals for bias
B_init=B_small+B_big; %B_init=zeros(1,neurons,pop) if not ALL weights

are calc.
B=B_init; %save initial information

% create initial weight matrix
W_exact=[0,0,0,0,0,0;
 0,0,-1,0,0,0;
 1,0,0,0,0,0;
 0.020697585281717,-0.019164430816405,0,0,0.958221540820238,-

1.954771943273285;
 0,0,0,0,0,-1;
 0,0,0,1,0,0;];
for i=1:pop
 W_square(:,:,i)=W_exact+W_interval(:,:,i);
end

for i=1:pop
 [W(i,:)]=square2string(neurons,W_square(:,:,i),B(:,:,i));
end
W_init=W; %save initial information
%% save('Winit_complex_step_5to5_1','W_init')
% calculate output and weights for initial weight matrices
for i=1:pop
 [y(i,:),E(i,:)]=dynamic_rgnn(x,yd,neurons,W(i,:));

119

end
y_init=y; %save initial information
E_init=E; %save initial information

% find best and worst individuals
[ind,ind_h,ind_l]=max_min(E,pop);
w_h=W(ind_h(1,1),:);
w_l=W(ind_l(1,1),:);
count=1;
kr=1;
%% Calculate Complex
while

(mean(E(:,1)>0.02)||isnan(ind_h(1,2))==1)&&count<max_count&&kr<max_kr&&

toc<max_time
 %% creating centroid
 ind_cen=zeros(pop,1);
 for i=1:size(W,2)
 for j=1:pop
 if ind_h(1,1)~=ind(j,1)
 ind_cen(j,i)=W(j,i);
 end
 end
 end
 w_cen=zeros(1,size(W,2));
 for i=1:size(W,2)
 w_cen(i)=sum(ind_cen(:,i))/(pop-1);
 end
 %% reflection point
 w_ref=zeros(1,size(W,2));
 for i=1:size(w_ref,2)
 w_ref(i)=w_cen(i)+1.3*(w_cen(i)-w_h(i));
 end
 [y_ref,E_ref]=dynamic_rgnn(x,yd,neurons,w_ref);
 kr=1;
 if

(E_ref(1,1)<inf&&isnan(E_ref(1,1))==0)&&(ind_h(1,2)<inf&&isnan(ind_h(1,

2))==0)
 while E_ref(1,1)>ind_h(1,2)&&kr<max_kr

120

 nr=4;
 eps=(nr/(nr+kr-1))^((nr+kr-1)/nr);
 R=rand(1);
 w_ref2=zeros(1,size(W,2));
 for i=1:size(W,2)
 w_ref2(i)=(w_ref(i)+eps*w_cen(i)+(1-

eps)*w_l(i))/2+(w_cen(i)-w_l(i))*(1-eps)*(2*R-1);
 end
 [y_ref2,E_ref2]=dynamic_rgnn(x,yd,neurons,w_ref2);
 w_ref=w_ref2;
 y_ref=y_ref2;
 E_ref=E_ref2;
 kr=kr+1;
 end
 elseif

(E_ref(1,1)==inf||isnan(E_ref(1,1))==1)&&(ind_h(1,2)==inf||isnan(ind_h(

1,2))==1)
 while E_ref(1,2)<=ind_h(1,3)&&E_ref(1,2)~=0&&kr<max_kr
 nr=4;
 eps=(nr/(nr+kr-1))^((nr+kr-1)/nr);
 R=rand(1);
 w_ref2=zeros(1,size(W,2));
 for i=1:size(W,2)
 w_ref2(i)=(w_ref(i)+eps*w_cen(i)+(1-

eps)*w_l(i))/2+(w_cen(i)-w_l(i))*(1-eps)*(2*R-1);
 end
 [y_ref2,E_ref2]=dynamic_rgnn(x,yd,neurons,w_ref2);
 w_ref=w_ref2;
 y_ref=y_ref2;
 E_ref=E_ref2;
 kr=kr+1;
 if rem(kr,10)==0
 count
 kr
 min(E)
 max(E)
 end
 end

121

 elseif

(E_ref(1,1)==inf||isnan(E_ref(1,1))==1)&&(ind_h(1,2)~=inf||isnan(ind_h(

1,2))==0)
 while

(E_ref(1,1)>ind_h(1,2)||(E_ref(1,1)==inf||isnan(E_ref(1,1))==1))&&kr<ma

x_kr
 nr=4;
 eps=(nr/(nr+kr-1))^((nr+kr-1)/nr);
 R=rand(1);
 w_ref2=zeros(1,size(W,2));
 for i=1:size(W,2)
 w_ref2(i)=(w_ref(i)+eps*w_cen(i)+(1-

eps)*w_l(i))/2+(w_cen(i)-w_l(i))*(1-eps)*(2*R-1);
 end
 [y_ref2,E_ref2]=dynamic_rgnn(x,yd,neurons,w_ref2);
 w_ref=w_ref2;
 y_ref=y_ref2;
 E_ref=E_ref2;
 kr=kr+1;
 end
 end
 %% return to population
 y(ind_h(1,1),:)=y_ref;
 W(ind_h(1,1),:)=w_ref;
 E(ind_h(1,1),:)=E_ref;
 %perform new search for best and worst
 [ind,ind_h,ind_l]=max_min(E,pop);
 w_h=W(ind_h(1,1),:);
 w_l=W(ind_l(1,1),:);

data_out(:,count)=[count;ind_h(1,2);ind_h(1,3);ind_l(1,2);ind_l(1,3);kr

;toc];
 count=count+1;
 if rem(count,500)==0
 count
 ind_l
 ind_h
 end

122

end
ind=[[1:pop]' E];
ind_min=ind(1,:);
for i=2:pop
 if ind(i,2)<ind_min(1,2)
 ind_min(1,:)=ind(i,:);
 end
end
W_min=W(ind_min(1,1),:);
y_min=y(ind_min(1,1),:);
training_time=toc;
min(E),count,kr
save('complex_step_all_5to5_1')

C.2.1 Weight Matrix Transformation (square2string.m)

The purpose of the following program is to turn a square matrix representing an

individual into a row vector representing the same individual.

Input(s):

• Number of neurons (neurons)

• Individual represented as a square matrix (W_square)

• Neuron Bias’ (B)

Output(s):

• Individual represented as a row vector (W_string)

function [W_string]=square2string(neurons,W_square,B)

%Matrix Weights
for j=1:neurons
 W_string(1,((j-1)*neurons+1):((j-

1)*neurons)+neurons)=W_square(j,1:neurons);
end
%Neuron Bias'
W_string(1,(neurons*neurons+1):(neurons*neurons+neurons))=B;

123

C.2.2 Obtaining Maximum and Minimum Error (max_min.m)
The purpose of the following code is to assign each individual an index number, and then

search for the maximum and minimum error values. Also, the corresponding individuals’

locations are saved.

Input(s):

• Error Matrix (E)

• Number of individuals in the population (pop)

Output(s):

• Individual Matrix (which includes all indexed individuals, even if they are not the

max or min values) (ind)

• Individual with the highest error (ind_h)

• Individual with the lowest error (ind_l)

function [ind,ind_h,ind_l]=max_min(E,pop)

ind=[[1:pop]' E];
ind_h=ind(1,:);

for i=2:pop
 if

(ind_h(1,2)==inf||isnan(ind_h(1,2))==1)&&(ind(i,2)==inf||isnan(ind(i,2)

)==1)
 if ind_h(1,3)>ind(i,3)
 ind_h=ind(i,:);
 end
 elseif

(ind_h(1,2)~=inf&&isnan(ind_h(1,2)==0))&&(ind(i,2)==inf||isnan(ind(i,2)

)==1)
 ind_h=ind(i,:);
 elseif ind_h(1,2)<inf&&ind(i,2)<inf
 if ind_h(1,2)<ind(i,2)
 ind_h=ind(i,:);
 end
 elseif ind_h(1,2)<inf&&(ind(i,2)==inf||isnan(ind(i,2))==1)

124

 ind_h=ind(i,:);
 end
end

ind_l=ind(1,:);
for i=2:pop
 if

(ind_l(1,2)==inf||isnan(ind_l(1,2))==1)&&(ind(i,2)==inf||isnan(ind(i,2)

)==1)
 if ind_l(1,3)<ind(i,3)
 ind_l=ind(i,:);
 end
 elseif

(ind_l(1,2)==inf||isnan(ind_l(1,2))==1)&&(ind(i,2)~=inf||isnan(ind(i,2)

)==0)
 ind_l=ind(i,:);
 elseif ind_l(1,2)<inf&&ind(i,2)<inf
 if ind_l(1,2)>ind(i,2)
 ind_l=ind(i,:);
 end
 elseif (ind_l(1,2)==inf||isnan(ind_l(1,2))==1)&&ind(i,2)<inf
 ind_l=ind(i,:);
 end
end

C.3 Genetic Algorithm (genetic_rgnn_oct6_2010.m)

The purpose of the following algorithm is to train a RGNN using the GA.

clear all
tic
% network data
neurons=6;
pop=neurons*neurons+10;
if rem(pop,2)==1
 pop=pop+1;

125

end
max_count=5000;
max_time=2.5*3600;
data_out=zeros(6,max_count);
data_E=zeros(pop,2*max_count);
load('dynamic_3step');
upper=5;
lower=-5;
%% Mutation Criteria
change_weight=(neurons+1):1:(neurons*neurons-1); %for all
%change_weight=[9 13 19 20 23 24 30 34]; % for exact
%change_weight=[9 13]; % for two weights
%change_weight=19; %for single weight
w_change=fix(pop*size(change_weight,2)/(neurons*neurons-neurons-

1));%number of weights to be changed

%% Create Matrix
W_small=rand(neurons,neurons,pop);
for i=1:pop
 W_big(:,:,i)=randint(neurons,neurons,[lower,upper]);
end
W_square=W_small+W_big;
W_square(1,:,:)=0; W_square(neurons,neurons,:)=0;
W_init=W_square;
B_small=rand(1,neurons,pop);
for i=1:pop
 B_big(:,:,i)=randint(1,neurons,[lower,upper]);
end
B_init=B_small+B_big;
B=B_init;
% create exact matrix
W_small=zeros(neurons,neurons,pop);
B_small=zeros(1,neurons,pop);
if rem(upper,1)==0
 for i=1:pop
 W_big(:,:,i)=randint(neurons,neurons,[lower,upper]);
 B_big(:,:,i)=randint(1,neurons,[lower,upper]);

126

 for j=1:neurons
 for k=1:neurons
 W_small(j,k,i)=rand(1)*(-1)^randint;
 B_small(1,k,i)=rand(1)*(-1)^randint;
 end
 end
 end
else
 W_big=zeros(neurons,neurons,pop);
 B_big=zeros(1,neurons,pop);
 for i=1:pop
 for j=1:neurons
 for k=1:neurons
 W_small(j,k,i)=0.5*rand(1)*(-1)^randint;
 B_small(1,k,i)=0.5*rand(1)*(-1)^randint;
 end
 end
 end
end
W_interval=W_small+W_big;
W_interval(1,:,:)=0;
W_interval(neurons,neurons,:)=0;
% initial intervals for bias
B_init=B_small+B_big; % for ~all case, B_init=zeros(1,neurons,pop)
B=B_init;

%% create initial weight matrix
W_exact=[0,0,0,0,0,0;
 0,0,-1,0,0,0;
 1,0,0,0,0,0;
 0.020697585281717,-0.019164430816405,0,0,0.958221540820238,-

1.954771943273285;
 0,0,0,0,0,-1;
 0,0,0,1,0,0;];
for i=1:pop
 W_square(:,:,i)=W_exact+W_interval(:,:,i);
end
for i=1:pop

127

 [W(i,:)]=square2string(neurons,W_square(:,:,i),B(:,:,i));
end
W_init=W;

% calculate output and weights for initial weight matrices
for i=1:pop
 [y(i,:),E(i,:)]=dynamic_rgnn(x,yd,neurons,W(i,:));
end
y_init=y;
E_init=E;
% initiate genetic algorithm optimization
count=1;

%% Genetic Training

% Note: next if loop is to ensure that network never gets worse.

while

count<max_count&&(min(E(:,1))>0.02||isnan(sum(E(:,1)))==1)&&toc<max_tim

e
 if size(change_weight,2)==neurons*neurons-neurons-1
 change_pop=[1:pop]';
 else
 change_pop=zeros(w_change,1);
 change_pop(1)=randint(1,1,[1,pop]);
 for i=2:w_change
 change_pop(i)=randint(1,1,[1,pop]);
 for j=1:i-1
 while change_pop(i)==change_pop(j)
 change_pop(i)=randint(1,1,[1,pop]);
 end
 end
 end
 end

[W_cross,y_cross,E_cross]=genetic_floating_dynamic_newmut(E,W,pop,x,yd,

neurons,count,max_count,upper,lower,change_pop,change_weight);
 for i=1:pop
 if E_cross(i,1)==inf&&E(i,1)==inf
 if E_cross(i,2)<E(i,2)

128

 E_cross(i,:)=E(i,:);
 W_cross(i,:)=W(i,:);
 y_cross(i,:)=y(i,:);
 end
 elseif E_cross(i,1)<inf&&E(i,1)<inf
 if E_cross(i,1)>E(i,1)
 E_cross(i,:)=E(i,:);
 W_cross(i,:)=W(i,:);
 y_cross(i,:)=y(i,:);
 end
 elseif E_cross(i,1)==inf&&E(i,1)<inf
 E_cross(i,:)=E(i,:);
 W_cross(i,:)=W(i,:);
 y_cross(i,:)=y(i,:);
 end
 end
 W=W_cross;
 y=y_cross;
 E=E_cross;
 [ind,ind_h,ind_l]=max_min(E,pop);
 if rem(count,1)==0
 count
 ind_l
 ind_h
 end

data_out(:,count)=[count;ind_h(1,2);ind_h(1,3);ind_l(1,2);ind_l(1,3);to

c];
 data_E(:,((count-1)*2+1):((count-1)*2+2))=E;
 count=count+1;
end
ind=[[1:pop]' E];
ind_min=ind(1,:);
for i=2:pop
 if ind(i,2)<ind_min(1,2)
 ind_min(1,:)=ind(i,:);
 end
end

129

W_min=W(ind_min(1,1),:);
y_min=y(ind_min(1,1),:);
training_time=toc;
count
min(E(:,1))
save('genetic_step_W_1_july18')

C.3.1 Crossover and Mutation Algorithm
(genetic_floating_dynamic_newmut.m)

The following function calculates a new set of individuals based upon the pervious

population.

Input(s):

• Previous population characteristics (E, W)

• RGNN population characteristics (pop, neurons)

• Training data (x, yd)

• Number of times crossover and mutation have occurred (count)

• The maximum number of times crossover and mutation can occur (max_count)

• Mutation Characteristics (upper, lower, change_pop,

change_weight)

Output(s):

• Weights after crossover and mutation (W_cross)

• Output of RGNNs after crossover and mutation (y_cross)

• Error or RGNNs after crossover and mutation (E_cross)

function

[W_cross,y_cross,E_cross]=genetic_floating_dynamic_newmut(E,W,pop,x,yd,

neurons,count,max_count,upper,lower,change_pop,change_weight)

% Calculate fitness of each individual

[fit_ind]=genetic_fitness(E,pop);

130

% Find Most Fit Individual
max_fit=[0 0];
for i=1:pop
 if fit_ind(i)>max_fit(1,2)
 max_fit=[i fit_ind(i)];
 end
end

%Create probability matrix
ind_range=zeros(pop,1);
ind_range(1)=fit_ind(1);
for i=2:pop
 ind_range(i)=ind_range(i-1)+fit_ind(i);
end
ind_rand=zeros(pop,size(W,2));
for i=1:pop
 for j=1:size(W,2)
 ind_rand(i,j)=rand(1);
 end
end

%Create weight index matrix to reference population Weights
w_index=zeros(pop,size(W,2));
for i=1:pop
 for j=1:size(W,2)
 for k=1:pop
 if k==1
 if ind_rand(i,j)<ind_range(k)
 w_index(i,j)=k;
 end
 end
 if k>1
 if ind_rand(i,j)>=ind_range(k-

1)&&ind_rand(i,j)<ind_range(k)
 w_index(i,j)=k;
 end
 end

131

 end
 if w_index(i,j)==0
 w_index(i,j)=max_fit(1,1);
 end
 end
end

%create new weight matrix
W_update=zeros(pop,size(W,2));
for i=1:pop
 for j=1:size(W,2)
 W_update(i,j)=W(w_index(i,j),j);
 end
end
W_2cross=W_update;

%mating
ind_mate=zeros(pop,3);
ind_mate(:,1)=[1:pop]';
for i=1:pop
 if ind_mate(i,2)==0
 ind_mate(i,2)=randint(1,1,[1,pop]);
 while

ind_mate(i,2)==ind_mate(i,1)||ind_mate(ind_mate(i,2),2)~=0
 ind_mate(i,2)=randint(1,1,[1,pop]);
 end
 ind_mate(ind_mate(i,2),2)=ind_mate(i,1);
 end
end

%floating-point crossover [Mahanti,2005]
for i=1:pop

[y_2cross(i,:),E_2cross(i,:)]=dynamic_rgnn(x,yd,neurons,W_2cross(i,:));
end
[W_cross,ind_mate]=genetic_crossover(W_2cross,E_2cross,ind_mate);

132

for i=1:pop
 [y_cross(i,:),E_cross(i,:)]=dynamic_rgnn(x,yd,neurons,W_cross(i,:));
end

for i=1:pop
 if isinf(E_cross(i,1))==1&&isinf(E_2cross(i,1))==0
 ind_mate(i,3)=0;
 ind_mate(ind_mate(i,2),3)=0;
 elseif isinf(E_cross(i,1))==1&&isinf(E_2cross(i,1))==1
 if E_cross(i,2)<E_2cross(i,2)
 ind_mate(i,3)=0;
 ind_mate(ind_mate(i,2),3)=0;
 end
 elseif isinf(E_cross(i,1))==0&&isinf(E_2cross(i,1))==0
 if E_cross(i,1)>E_2cross(i,1)
 ind_mate(i,3)=0;
 ind_mate(ind_mate(i,2),3)=0;
 end
 end
end

count_parent=1;
while count_parent<10&&min(ind_mate(:,3))==0
 [W_cross,ind_mate]=genetic_crossover(W_2cross,E_2cross,ind_mate);
 for i=1:pop

[y_cross(i,:),E_cross(i,:)]=dynamic_rgnn(x,yd,neurons,W_cross(i,:));
 end
 for i=1:pop
 if isinf(E_cross(i,1))==1&&isinf(E_2cross(i,1))==0
 ind_mate(i,3)=0;
 ind_mate(ind_mate(i,2),3)=0;
 elseif isinf(E_cross(i,1))==1&&isinf(E_2cross(i,1))==1
 if E_cross(i,2)<E_2cross(i,2)
 ind_mate(i,3)=0;
 ind_mate(ind_mate(i,2),3)=0;
 end
 elseif isinf(E_cross(i,1))==0&&isinf(E_2cross(i,1))==0

133

 if E_cross(i,1)>E_2cross(i,1)
 ind_mate(i,3)=0;
 ind_mate(ind_mate(i,2),3)=0;
 end
 end
 end
 count_parent=count_parent+1;
end

%% Mutation (modified from Mahanti [2005])
for i=1:size(change_pop,1)
 r1=rand;
 r2=rand;
 r3=rand;
 r4=change_weight(1,randint(1,1,[1,size(change_weight,2)]));
 b=1;
 f=(r2*(1-(count/max_count)))^b;
 if r1<0.5
 W_cross(change_pop(i),r4)=W_cross(change_pop(i),r4)+r3*upper*f;
 else
 W_cross(change_pop(i),r4)=W_cross(change_pop(i),r4)-r3*lower*f;
 end
end

%recalculate output and error
for i=1:pop

[y_cross(i,:),E_cross(i,:)]=dynamic_rgnn(x,yd,neurons,W_cross(i,:));
end

C.3.2 Genetic Fitness (genetic_fitness.m)

The purpose of the following function is to calculate the fitness of each individual in the

population.

Input(s):

134

• Error matrix containing the error of each individual in the population (E)

• The number of individuals in the population (pop)

Output(s):

• The fitness range of each individual in the population (fit_ind)

function [fit_ind]=genetic_fitness(E,pop)

E_inf=zeros(size(E));
E_real=zeros(size(E));
for i=1:pop
 if E(i,1)==inf||isnan(E(i,1))==1
 E_inf(i,:)=E(i,:);
 else
 E_real(i,:)=E(i,:);
 end
end
E_r_total=sum(E_real(:,1));
E_i_total=sum(E_inf(:,2));

fit_real=zeros(pop,1);
fit_inf=zeros(pop,1);
for i=1:pop
 if isinf(E(i,1))==0&&isnan(E(i,1))==0
 fit_real(i)=(E_r_total-E_real(i,1))/E_r_total;
 else
 fit_inf(i)=E_inf(i,2)/E_i_total;
 end
end

fit_real_temp=fit_real;
for i=1:pop
 if fit_real(i)==0
 fit_real_temp(i)=inf;
 end
end
if min(fit_real_temp)~=inf&&max(E(:,1))==inf

135

 min_fit_real=min(fit_real_temp);
 max_fit_inf=max(fit_inf);
 adjust=(min_fit_real/max_fit_inf)/5;
 fit_inf=fit_inf*adjust;
end

fit=fit_real+fit_inf;
fit_total=sum(fit);

fit_ind=fit/fit_total;

C.3.3 Genetic Crossover (genetic_crossover.m)

The purpose of the following is to take in a set of weights - along with their error, and

mating pairings - then output a crossed over set of weights.

Input(s):

Weights of every individual in the population (W)

Error of the individuals in the population (E)

The fitness range of each individual in the population (fit_ind)

Output(s):

Weights of population after crossover (W_c)

Index of weights which were mated (ind_mate)

function [W_c,ind_mate]=genetic_crossover(W,E,ind_mate)

%% The program starts here
pop=size(E,1);
W_c=W;
for i=1:pop
 if ind_mate(i,3)==0
 if isinf(E(i,1))==0&&isinf(E(ind_mate(i,2),1))==1

136

 W_c(ind_mate(i,2),:)=W_c(i,:)+rand(1)*(W_c(i,:)-

W_c(ind_mate(i,2),:));
 ind_mate(i,3)=1;
 ind_mate(ind_mate(i,2),3)=1;
 elseif isinf(E(i,1))==1&&isinf(E(ind_mate(i,2),1))==0

W_c(i,:)=W_c(ind_mate(i,2),:)+rand(1)*(W_c(ind_mate(i,2),:)-W_c(i,:));
 ind_mate(i,3)=1;
 ind_mate(ind_mate(i,2),3)=1;
 elseif isinf(E(i,1))==1&&isinf(E(ind_mate(i,2),1))==1
 if E(i,2)>E(ind_mate(i,2),2)
 W_c(ind_mate(i,2),:)=W_c(i,:)+rand(1)*(W_c(i,:)-

W_c(ind_mate(i,2),:));
 ind_mate(i,3)=1;
 ind_mate(ind_mate(i,2),3)=1;
 else

W_c(i,:)=W_c(ind_mate(i,2),:)+rand(1)*(W_c(ind_mate(i,2),:)-W_c(i,:));
 ind_mate(i,3)=1;
 ind_mate(ind_mate(i,2),3)=1;
 end
 elseif isinf(E(i,1))==0&&isinf(E(ind_mate(i,2),1))==0
 if E(i,1)<E(ind_mate(i,2),1)
 W_c(ind_mate(i,2),:)=W_c(i,:)+rand(1)*(W_c(i,:)-

W_c(ind_mate(i,2),:));
 ind_mate(i,3)=1;
 ind_mate(ind_mate(i,2),3)=1;
 else

W_c(i,:)=W_c(ind_mate(i,2),:)+rand(1)*(W_c(ind_mate(i,2),:)-W_c(i,:));
 ind_mate(i,3)=1;
 ind_mate(ind_mate(i,2),3)=1;
 end
 end
 end
end

	PERMISSION TO USE
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	NOMENCLATURE
	ABBREVIATIONS
	Chapter 1: Introduction and Objectives
	1.1 Project Background and Motivation
	1.2 Previous Research of Load Sensing Pumps at the University of Saskatchewan
	1.3 Thesis Objectives
	1.4 Outline and Structure of Thesis

	Chapter 2: Dynamic Neural Networks and Applications to Fluid Power Systems
	2.1 Introduction
	2.2 Static Neural Networks
	2.3 Types of Dynamic Networks
	2.4 Recurrent Generalized Neural Networks
	2.5 Applications of Neural Networks to Fluid Power
	2.5.1 Neural Network Control Applications to Fluid Power
	2.5.2 Condition Monitoring of Fluid Power Systems Using Neural Networks
	2.5.3 Modeling of Fluid Power Systems Using Neural Networks

	2.6 Summary

	Chapter 3: Training of Dynamic Neural Networks
	3.1 Introduction
	3.2 Gradient Training Methods
	3.3 Non-Gradient Training Methods
	3.3.1 Genetic Algorithm for Neural Network Training
	3.2.2. Complex Algorithm for Neural Network Training

	Chapter 4: Application of Complex Training Method to Recurrent Generalized Neural Network
	4.1 Introduction
	4.2 Selection of System for Creating Training Data
	4.3 Step Response Training of a RGNN Using CA
	4.3.1 Training a RGNN Using Step Response with a Random Initial Population
	4.3.2 Training a RGNN Using Step Response with a Limited Initial Population

	4.4 Frequency Based Response Training Using CA
	4.5 CA Training Using a Combination of Step and Frequency Training Data
	4.6 Summary of CA Training

	Chapter 5: Comparison of Complex Algorithm and Genetic Algorithm
	5.1 Introduction
	5.2 Step Response Training of a RGNN Using GA
	5.3 Frequency Based Training of a RGNN Using GAs
	5.4 Discussion of GA Results

	Chapter 6: Conclusions and Recommendations
	6.1 Summary of Results
	6.2 Conclusions
	6.3 Recommended Future works

	References
	Appendix A: Derivation of Exact Representation for Recurrent Generalized Neural Network (RGNN)
	Appendix B: Calculation of Updated Neural Network Weights Using Non-Gradient Methods.
	B.1: Introduction
	B.2: Calculations for Complex Algorithm (CA)
	B.3: Calculations for Genetic Algorithm (GA)

	Appendix C: Simulation Code
	C.1 RGNN Code (dynamic_rgnn.m)
	C.1.1 Changing Population Row Vector to a Square Matrix (string2square.m)

	C.2 Complex Algorithm (complex_rgnn_august26_2010.m)
	C.2.1 Weight Matrix Transformation (square2string.m)
	C.2.2 Obtaining Maximum and Minimum Error (max_min.m)

	C.3 Genetic Algorithm (genetic_rgnn_oct6_2010.m)
	C.3.1 Crossover and Mutation Algorithm (genetic_floating_dynamic_newmut.m)
	C.3.2 Genetic Fitness (genetic_fitness.m)
	C.3.3 Genetic Crossover (genetic_crossover.m)

