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ABSTRACT 

Three residues, Phe190, Leu193 and Val302, which have been proposed to define the S1 site 

of prolidase of Lactococcus lactis NRRL B-1821 (L. lactis prolidase), may limit the size and 

polarity of specific substrates accepted by this enzyme (Yang, S. I., and Tanaka, T. 2008. 

Characterization of recombinant prolidase from L. lactis changes in substrate specificity by metal 

cations, and allosteric behavior of the peptidase. FEBS J. 275, 271-280).  These residues form a 

hydrophobic pocket to determine the substrate specificity of L. lactis prolidase towards 

hydrophobic peptides, such as Leu-Pro and Phe-Pro, while little activity was observed for anionic 

Asp-Pro and Glu-Pro.  It is hypothesized that the substrate specificity of L. lactis prolidase 

would be changed if these residues are substituted with hydrophilic amino acid residues 

individually or in combinations by site-directed mutagenesis (SDM).  In addition to the changes 

in substrate specificity, other characteristics of wild type prolidase, such as allosteric behaviour 

and substrate inhibition may receive influences by the mutations (Yang & Tanaka, 2008).  To 

test this hypothesis, mutations were conducted on these three residues at the S1 site.  Mutated L. 

lactis prolidases were subsequently analyzed in order to examine the roles of these residues in the 

substrate specificity, allosteric behaviour, pH dependency, thermal dependency and metal 

dependency of prolidase. The results showed the significant changes in these kinetic 

characteristics of single mutants, such as L193E, L193R, V302D and V302K and double mutants, 

L193E/V302D and L193R/V302D.  Leu193 was suggested to be a key residue for substrate 

binding.  The mutants L193R, V302D, L193R/V302D and L193E/V302D lost their allosteric 

behaviour, and the substrate inhibition of the wild type was no longer observed in V302D and 

L193E/V302D.  The results indicated Val302 to be more important for these properties than 

other S1 site residues.  Moreover, together with the observations in molecular modelling of the 

mutants, it was proposed that interactions of Asp302 with Arg293 and His296 caused the loss of 
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allosteric behaviour and substrate inhibition in the V302D mutant.  The investigations on the pH 

dependency suggested that His296 acted as proton acceptor in L. lactis prolidase's catalysis.  It 

was expected that the electrostatic microenvironment surrounding His296 was influenced by the 

charged mutated residues and side chains of dipeptide substrates, thus the protonation of His296 

was affected.  It was suggested that the introduced positive charge would stabilize the 

deprotonated form of His296 thus to maintain the activities of the mutants in more acidic 

condition compared to wild type prolidase.  The study of thermal dependency revealed that all 

non-allosteric prolidases had higher optimum temperatures, suggesting that the loss of allosteric 

behaviour resulted in more rigid structures in these prolidases.   
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1 INTRODUCTION 

In fermented foods, the hydrolysis of proteins releases peptides and amino acids, which are 

taste determinants, and some of them exhibit bitterness that is unpleasant to consume.  

Generally speaking, hydrophobic amino acids (e.g., phenylalanine, leucine, trptophan, isoleucine, 

tyrosine, valine and proline) and their peptide forms are bitter, and bitterness is more intense in 

the peptides than in the amino acids.  Among the bitter peptides, proline-containing peptides 

withstand the hydrolysis by general peptidases. Fermented foods generally contain large amounts 

of these proline-containing peptides that are untouched by general hydrolysis.  Therefore, 

bitterness of proline-containing peptides can be prominent in fermented foods.  It implies that 

proline-specific peptidases can assist the reduction of bitterness through hydrolysis of the bitter 

proline-containing peptides.  Prolidase (EC 3.4.13.9) is one of the proline-specific peptidases, 

and the only peptidase that can hydrolyze Xaa-Pro dipeptide, the end products left by the general 

hydrolysis of proteins in fermentations.  To date, prolidase from Lactococcus lactis (L. lactis) 

has not been fully understood.  In the previous studies in Dr. Tanaka's lab (Yang and Tanaka, 

2008; Zhang et al., 2009), L. lactis prolidase was clarified to be specific to Xaa-Pro where Xaa is 

a hydrophobic dipeptide, whereas Xaa-Pro with hydrophilic Xaa could not be the substrate of this 

enzyme.  This project aimed to engineer prolidase to have a broader substrate specificity 

including substrates with hydrophilic Xaa.  With application of the modified prolidase, protein 

hydrolysis could be more efficient, and the bitterness arisen by proline-containing peptides could 

be diminished in fermented foods.   
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2 LITERATURE SURVEY 

2.1 The Contributions of Prolidase in Foods 

2.1.1 Proline-Containing Peptides Exhibit Bitterness 

Bitter taste is normally perceived as an undesirable attribute in fermented products such as 

cheese.  Before fermentation, the raw material contains large protein molecules that rarely 

exhibit taste because their hydrophobic amino acids are concealed in the interior and have no 

access to the taste receptor cells.  When proteins are hydrolyzed in fermentation, hydrophobic 

amino acid residues are exposed to the solvent and interact with the taste receptor cells.  The 

varieties of interactions of peptides with the taste receptors result in many different tastes.  

Bitter peptides are generally those containing hydrophobic amino acids, such as phenylalanine, 

leucine, trptophan, isoleucine, tyrosine, valine and proline.  Ishibashi et al. showed that 

proline-containing peptides are generally bitter (Ishibashi et al., 1988b).  They further 

investigated the tastes of proline-containing peptides and proposed how the proline-containing 

tetrapeptides, tripeptides and dipeptides exhibited various degrees of bitterness.  They proposed 

that two bitter taste determinant factors could be defined within a bitter peptide molecule.  

These factors were called „binding unit' (BU) and „stimulating unit' (SU).  When a peptide had 

both BU and SU within the molecule, it would show more bitterness.  In a proline-containing 

peptide, the proline residue acted as BU while the rest of the peptide acted as SU (Ishibashi et al., 

1988a).  As a result, proline- containing peptides exhibit the bitterness.  Since free amino acids 

cannot have BU and SU within the molecule, bitterness of the amino acids is less intense than 

that of the peptides.  In fact, proline and some other hydrophobic amino acids even show some 

sweetness.  This implies that bitterness of fermented foods could be diminished by degrading 

the bitter peptides into free amino acids. 

Milk has a high content of proline, although most proline is found in proteins rather than as 



 3 

free proline.  For example, cow milk contains 280 mg of total proline per 100 g dry matter 

(Casey MG, 1985) among which free proline concentration was only 0.19 mg (Ghadimi & Pecora, 

1963).  Whereas the taste of fresh milk is less affected by peptides and amino acids, fermented 

milk products have distinctive tastes through protein hydrolysates.  Some fermented dairy 

products exhibit bitter tastes, especially when the fermentation processes are shortened to result 

in partial hydrolysis of bitter peptides.  This bitterness is partially from the proline-containing 

peptides, which are released from the milk proteins in the process of fermentation.  If the 

proline-containing peptides are further degraded to free proline, the bitterness of the fermented 

dairy products would be reduced.   

2.1.2 Degradation of Proline-Containing Peptides 

Fermentation of milk usually results in a higher concentration of free proline because of the 

proteolysis through microbial activity.  Free proline concentration reached 51.7 mg per 100g dry 

matter of cheese after 60 days ripening (Buffa et al., 2005).  Milk is often fermented by the 

application of lactic acid bacteria (LAB), which are defined as Gram-positive, non-sporulating, 

catalase-negative, aero-tolerant, acid-tolerant, nutritionally fastidious, strictly fermentative 

microorganisms that lack cytochromes and produce lactic acids as the major end-product of 

carbohydrate metabolisms (Christensen et al., 1999).  LABs lack the ability to synthesize some 

amino acids, thus require exogenous sources of amino acids.  In dairy fermentation, little free 

amino acids exist while large proteins are abundant.  In order to get the supply of free amino 

acid, LABs produce a systematic proteolysis and transport system to utilize exogenous proteins.  

The proteolysis starts by an extracellular protease that hydrolyzes proteins into oligopeptides, 

which are then taken up by the cells through peptide transport systems for further degradation 

into shorter peptides and free amino acids by various intracellular peptidases (Christensen et al., 

1999; Kunji et al., 1996).   

Proline withstands to most general peptidases because of its unique cyclic structure that is 

formed by its side chain bonding to both nitrogen and α-carbon.  This cyclic structure constrains 

the dihedral angle of rotation, and further introduces a fixed bend into peptide chains.  
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Moreover, the cyclic structure means the imide bonding rather than the amide bonding.  In 

common peptidases, these properties of proline constrain the hydrolysis of proline-containing 

peptides.  Thus proline-specific peptidases are required for efficient hydrolysis of 

proline-peptides.  There are a number of proline-specific peptidases found in microorganisms, 

plants, animal and human tissues, such as prolyl oligopeptidase (EC 3.4.21.26), dipeptidyl 

peptidase IV (EC 3.4.14.5), aminopeptidase P (EC 3.4.11.9), prolidase (EC 3.4.13.9), proline 

iminopeptidase (EC 3.4.11.5), and prolinase (EC 3.4.13.8) (Cunningham, 1997).  Among these 

peptidases, proline iminopeptidase, aminopeptidase P, prolinase and prolidase are often observed 

in LAB (Christensen et al., 1999).   

Among the proline-specific peptidases of LAB, prolidase is particularly interesting.  

Prolidase is the only peptidase that hydrolyzes Xaa-Pro, which is one of the two ultimate 

products (Xaa-Pro and Pro-Xaa) of the proteolysis by general peptidases (Christensen et al., 

1999).  Pro-Xaa can be hydrolyzed by prolinase and iminopeptidase, while only prolidase can 

hydrolyze Xaa-Pro.  Thus prolidase is expected to be unique among general and proline-specific 

peptidases.  Furthermore, Xaa-Pro is always bitterer than the Pro-Xaa counterpart (Ishibashi et 

al., 1988a) because of the positioning of hydrophobic amino acid (proline) at C-terminus.  

Prolidase is then suggested to be more effective than prolinase and iminopeptidase to reduce the 

bitterness exhibited in the fermented dairy products.   

2.1.3 Benefits of Free Proline 

Proline is the starting material to make hydroxyproline, a building block of collagen.    

Collagen is a substrate found in the skin and connective tissues, and helps to heal cartilage and to 

cushion the joints and vertebrae.  Therefore proline is absolutely essential to the development 

and maintenance of healthy skin and connective tissues, especially at the site of traumatic tissue 

injury.  Free proline supplementation may benefit the treatments of conditions such as 

osteoarthritis, persistent soft tissue strains, and chronic back pain.   

The hydrolysis of proline-peptides increases the amount of free proline in fermented dairy 

products.  In addition, fermented dairy products contain ascorbic acid, which is the intrinsic 
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content of milk and acts as a cofactor for the hydroxylation of proline and lysine residues in 

procollagen followed by its processing to collagen (Gross, 2000).  Therefore, the intake of 

fermented dairy product may assist the collagen synthesis via these active components of free 

proline and ascorbic acid.   

2.2 General Information of Prolidase 

2.2.1 Characteristics of Prolidase 

Prolidase has been detected and purified from porcine kidney (Davis & Smith, 1957), 

porcine and bovine intestine (Sjostrom et al., 1973; Yoshimoto et al., 1983), human organs 

(Cosson et al., 1992; Endo et al., 1987; Myara et al., 1994; Ohhashi et al., 1990) and many 

microorganisms (Morel et al., 1999; Rantanen & Palva, 1997; Stucky et al., 1995).   

Studies of prolidases from various LABs revealed that prolidase was a metalloprotease with 

a calculated pI of 6.0 and a molecular mass of 41 kDa (Morel et al., 1999; Rantanen & Palva, 

1997; Stucky et al., 1995).  Prolidase from Lactobacillus delbrueckii subsp. Bulgaricus CNRZ 

397 had the optimum activity in the range of 45~50°C, and the optimum pH 6.0 (Morel et al., 

1999).  This prolidase showed preference to Xaa-Pro dipeptides with hydrophobic amino acid at 

the N-terminal, and little activity to Gly-Pro and Pro-Pro (Morel et al., 1999; Rantanen & Palva, 

1997).  Prolidases were completely inhibited by the metalloprotease inhibitors EDTA and 

1,10-phenanthroline and activated by varieties of cations like Ca
2+

, Mg
2+

, Mn
2+

, Fe
3+

 and Co
2+

.  

Zinc was suggested to be the essential cation to Lb. bulgaricus prolidase activity (Morel et al., 

1999), while other prolidases required different divalent cations as cofactors, such as Mn
2+

 for Lb. 

casei prolidase (Fernandez-Espla et al., 1997).  The studies of SDS-PAGE and non-denaturing 

size-exclusion chromatography on Lb. bulgaricus prolidase suggested that this enzyme was a 

homodimer (Morel et al., 1999), and the similar studies on L. lactis prolidase also revealed that it 

was a homodimer with a molecular mass of 80 kDa (Yang & Tanaka, 2008).  

L. lactis prolidase was cloned and expressed in E.coli (Yang & Tanaka, 2008).  This 

prolidase showed its maximum activity between pH 6 and 7 with Zn
2+

 or Mn
2+

 at 50°C.  L. 

lactis prolidase preferred hydrophobic Leu-Pro and Phe-Pro in the presence of zinc while Gly-Pro, 
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Pro-Pro, Asp-Pro, Glu-Pro, Leu-Leu-Pro, and Leu-Val-Pro could not be hydrolyzed.  

Interestingly Arg-Pro was a better substrate than Leu-Pro when Mn
2+

 was used as the catalytic 

cation, though the activity was lower than that of Leu-Pro in the presence of Zn
2+

.  Another 

uniqueness of this prolidase was observed as allosteric behaviour towards Leu-Pro and Arg-Pro 

substrates.   

2.2.2 Impact of Prolidase on Human Health 

Prolidase plays an important role in human health.  Prolidase deficiency is a rare autosomal 

recessive disease characterized by chronic ulcerative dermatitis, mental retardation, frequent 

infections and massive urinary excretion of iminodipeptides (Goodman et al., 1968).  It was 

reported that the enzyme activity to Gly-Pro was almost totally deficient in patients with 

prolidase deficiency (Arata et al., 1979).  The prolidase and prolinase (Pro-Xaa dipeptidase) 

activities have been determined in erythrocytes from patients with chronic uremia and in plasma 

from patients with alcoholic liver disease, and found to be enhanced significantly in these 

diseases (Brosset et al., 1988; Gejyo et al., 1983).  Latest research reported that some sulfur 

amino acids such as stereoiosomer and D,L-Methionine could enhance the prolidase activity.  

And the ointment containing glycine and D,L-Methionine with MnCl2 was found to be clinically 

useful for the treatment of leg ulcers of patients with prolidase deficiency (Uramatsu et al., 2007).  

2.3 Structure-Function Relationships 

2.3.1 Homologous Enzymes and the Family of Prolidase 

Homologous enzymes are related by over fifty percent sequence identity and catalyzing the 

same reaction on structurally similar substrates (Palmer et al., 1999).  Their similarities can be 

explained by a common evolutionary origin.  The concept of homology can group enzymes into 

particular enzyme families in aspect of a common evolutionary origin, so that the similarities 

shared in one family can be applied to a newly discovered enzyme to facilitate the understanding 

of its unknown properties.  On the other hand, based on the fact that a protein's function is 

determined by its three-dimensional structure, the structure of a newly discovered enzyme should 
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be similar to those enzymes that share the same function.  And then a three-dimensional 

structure model of the new enzyme can be constructed via comparison with that of the known 

enzymes.   

Peptidases (proteolytic enzymes, protease or peptide-bond hydrolase) refer to a major class 

of enzymes which catalyze the proteolysis − the hydrolysis of peptide bonds.  In a system 

proposed by Hartley (Hartley, 1960), peptidases are classified into four groups of enzymes 

(serine, cysteine, aspartic and metallo-peptidases) based on the catalytic mechanism of hydrolysis.  

The classifications were supplemented by a new group called threonine peptidases (Gerhartz et 

al., 2002).  The catalytic nucleophiles in serine, threonine and cysteine peptidases are the 

hydroxyl groups serine, threonine and the sulfhydryl group of cysteine, respectively.  In aspartic 

peptidases, the nucleophilic water molecule is bound by two aspartic amino acid residues.  And 

in metallopeptidases, the nucleophilic water molecule is activated by one or two metal ions, 

which are usually chelated by three amino acid residues at the active site.   

In order to reflect increasing knowledge about structures and catalytic mechanisms, a more 

detailed classification system called MEROPS system has been proposed by Barrett and 

Rawlings (Barrett, 2001).  This system has three levels, in which individual peptidases comprise 

the basic level, and then homologous peptidases are allocated to families by comparison of amino 

acid sequences and finally to clans, a set of families evolved from a single ancestor.  Families in 

the same clan are recognized by the similar folding of their peptide chains.  By using this system, 

the amino acid sequences responsible for catalytic activity are able to be compared between 

peptidases in the same family since they are homologous enzymes.  It is important to assign a 

newly-discovered peptidase to a correct family.  The assignments are normally supported by the 

evidence of catalytic type like class-specific inhibitors, amino acid sequence data and 

characterizations on the purified peptidases. 

2.3.2 The Classification of Prolidase 

In the study of prolidsae (PepQ) from Lactobacillus delbrueckii subsp. lactis DSM7290 

(Stucky et al., 1995), the computational analysis of amino acid sequence similarities revealed that 
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the PepQ was chiefly related to the Xaa-Pro dipeptidases (e.g., PepD of Homo sapiens, PepQ of 

E.coli) and Xaa-Pro aminopeptidases (e.g., PepP from E.coli, PepP from Streptomyces lividans).  

PepQ was proposed to have Xaa-Pro di-, or aminopeptidase activity, and the substrate specificity 

for Xaa-Pro gave the further evidence that it was a Xaa-Pro dipeptidase.  In the aspect of its 

catalytic mechanism, it was found that the metallopeptidase inhibitors, EDTA and 

1,10-phenanthroline, inactivated PepQ completely.  Because 1,10-phenanthroline is known to 

chelate Zn
2+

 ions, the PepQ has been suggested as a zinc-dependent metallopeptidase.  This 

statement was also supported by a potential zinc-binding site found in the amino acid sequence of 

PepQ.  

Another study on PepQ of Lactobacillus delbrueckii subsp. bulgaricus B14 revealed an 

identity of 98% of its nucleotide sequence to the pepQ gene of Lactobacillus delbrueckii subsp. 

Lactis (Rantanen & Palva, 1997).  The characterizations of PepQ of Lb. delbrueckii subsp. 

Bulgaricus showed that PepQ hydrolyzed almost all dipeptides containing proline at the 

C-terminus, and the activity of PepQ was strongly inhibited in the presence of EDTA.  These 

properties were in accordance with the classification of PepQ as a Xaa-Pro dipeptidase.   

However, Morel and his colleagues presented that the catalytic metal ions of PepQ were not 

only zinc in the study of a PepQ from Lb. delbrueckii subsp. bulgaricus CNRZ 397 (Morel et al., 

1999).  Lb. bulgaricus PepQ shared significant similarity with aminopeptidases P (PepPs) and 

methionyl aminopeptidases (PepMs) in their amino acid sequences.  And the five metal ligands 

(Asp223, Asp234, His298, Glu237 and Glu234) constructing the active site in the PepQ sequence, 

were well conserved with those residues in PepPs and PepMs.  These findings suggested that 

PepQ, PepPs and PepMs were homologous enzymes.  According to the peptidases classification 

database —  the MEROPS system (Barrett, 2001), Lb. bulgaricus CNRZ 397 PepQ was 

suggested to be in the M24 family of metallopeptidases, since PepPs and PepMs belong to the 

M24 family of metallopeptidases.  Moreover, it was claimed in the same study that PepQs from 

Lb. bulgaricus B14 and Lb. lactis DSM7290 also belonged to the M24 family of 

metallopeptidases, based on the fact that the amino acid sequences only differed in one residue 
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between PepQ of Lb. bulgaricus CNRZ 397 and Lb. bulgaricus B14, and three residues between 

Lb. bulgaricus CNRZ 397 PepQ and Lb. lactis DSM 7290 PepQ.   

2.3.3 Mechanism of Metallopeptidases 

Since prolidase was proposed to be a metallopeptidase (Morel et al., 1999), the knowledge 

of the mechanism of thermolysin, which is one of the most thoroughly studied metallopeptidases, 

could help to understand the study of effects of structural changes on prolidase substrate 

specificity.  Thermolysin (TLN, EC 3.4.24.27) is a Zn
2+

-metallopeptidase, belonging to M4 

family as a prototype in MEROPS classification system (Barrett, 2001).  The structure of TLN 

has two domains, a  helical C-terminal domain and an N-terminal domain consisting of  

strands (Matthews, 1988).  The active site cleft is formed at the junction of the two domains 

with a helix as a connection at the bottom.  Four substrate binding subsites (S2, S1, S1' and S2') 

have been identified on this  helix in the active site cleft.  Among those binding subsites, S1' 

site is a hydrophobic pocket that is responsible to cleave peptide chains containing hydrophobic 

amino acid residues (de Kreij et al., 2001).  TLN catalyzes the hydrolysis of peptide bonds 

containing large hydrophobic residues particularly leucine, isoleucine and phenylalanine.  Two 

key residues Glu143 and His231 at the active site interacted with the catalytic zinc ion to catalyze 

the proteolysis of peptide substrates.  And the major dispute was on determining whether 

Glu143 or His231 played the key role of a general base that deprotonated the metal-coordinated 

water molecule in the initial stage of the reaction (Matthews, 1988; Mock & Aksamawati, 1994).  

The presently agreed mechanism has been concluded and stated as following (Pelmenschikov et 

al., 2002).  It is a single-step reaction with Glu143 playing the key role in the general base 

mechanism and His231 stabilizing the tetrahedral intermediate.  The scheme of the mechanism 

of TLN catalyzed reaction is illustrated in Figure 2.3-1.  In the initial state of forming the 

enzyme-substrate complex (ES), the zinc cation is stabilized by three ligands provided by the 

enzyme (His142, His146 and Glu166), and is bound to a water oxygen (Ow) and the peptide 

oxygen (Op).  Glu143 acts as a general base deprotonating the metal-bound water molecule for 

nuleophilic attack, which drives the state of ES complex to the gem-diolate structure (INT).  At   
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Figure 2.3-1 The scheme of the mechanism of TLN catalyzed reaction. 
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this state, His231 stabilizes the peptide oxygen Op by a very strong hydrogen bond and zinc shifts 

the Lewis acidity strength from Ow to Op.  The collapse of INT to the products formation state 

(PROD) occurs relatively faster than other steps.  The second proton is accepted by Glu143 

from Ow to O2 and probably transferred to the product amine.  As a conclusion, TLN catalyzed 

reaction has the general features of the metallopeptidase mechanism, which can be considered as 

a general-acid-base catalysis using metal-coordinated water molecules as nucleophiles.   

2.3.4 Effects of Protein Conformation on Substrate Specificity 

It has been proved in many studies on structure-activity relationships of enzymes that the 

substrate specificity is determined by residues in the active site.  One classic example is from 

the comparison of the substrate binding pockets of chymotrypsin, trypsin and elastase, which are 

serine proteases with very similar three-dimensional structures but display quite different 

substrate specificities (Price, 1999).  These differences of substrate specificities are related to 

the different configurations of their substrate binding pockets.  Chymotrypsin and trypsin share 

the same residues Gly216 and Gly226 on sides of the pocket, while elastase has Val216 and 

Thr226 instead of glycine.  The bulky side chains of Val216 and Thr226 block the entering of 

substrates with bulky side chains.  This explains why elastase cannot take substrates with large 

side chains, while the others can.  The difference of the substrate binding pockets between 

chymotrypsin and trypsin is the residue at the bottom of the pocket, which is Ser189 in 

chymotrypsin and Asp189 in trypsin.  Chymotrypsin shows high specificity to residues with 

aromatic or other large hydrophobic side chains due to the uncharged side chain of Ser189, 

whereas trypsin prefers residues with positively charged side chains determined by the acidic 

residue Asp189.   

The effects of enzyme's conformation on its substrate specificity was studied in 

thermolysin-like proteases (TLPs), which belong to the M4 peptidase family with TLN as the 

prototype (de Kreij et al., 2001).  The S1' site of TLPs is composed of hydrophobic residues 

Phe130, Phe133, Val139, and Leu202, which are optimized for binding a smaller side chain, such 

as leucine, while the binding of phenylalanine is not favoured on the S1‟ site.  With the 
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expectation of an increased preference for phenylalanine at position P1' in the substrate, De Kreij 

and his colleagues (2001) conducted mutations on Phe133 and Leu202, based on the criteria that 

these two residues together dominate the entrance of the S1‟ site pocket.  Since the binding of P1' 

phenylalanine is generally limited by its bulkiness compared to leucine, it is expected that 

enlarging of the S1‟ pocket would accommodate a larger side chain.  However, the mutation of 

Phe133 to leucine resulted in a decreased specificity for P1' phenylalanine substrates.  Then 

more attention was paid to the mutation of Leu202.  The mutations of Leu202 were done with 

substitutions of valine, glycine and alanine amino acids.  The alanine mutant showed more 

activity to substrates with a phenylalanine residue at P1'.  This observation was explained that 

the alanine created more space in the S1' pocket, while the mutant could still have enough 

contacts with P1' side chain.  The mutants L202F and L202Y generated aromatic-aromatic 

interactions with the substrates having the P1' phenylalanine with their newly introduced aromatic 

rings at the S1 site.  As a result, the mutants L202F and L202Y increased their activities towards 

the substrates with the phenylalanine side chain.  In addition, the aromatic group in 

phenylalanine and tyrosine did not create any steric hindrance because of its parallel arrangement 

to the substrate according to the molecular modelling.  The L202Y mutant also had an 

unexpected 16-fold increase in activity towards the substrates with phenylalanine at P1'.  This 

significant activity increase caused by a single mutation could be related to a hydrogen bond 

formed between the Tyr-OH and the substrate.   

In many mutagenesis studies of proteases (Chien et al., 2004; de Kreij et al., 2001; 

Kadonosono et al., 2008), the substrate specificity changed due to the changes of the steric 

interaction and electrostatic environment at the active site or related residues by 

mutation-induced structural alterations.  Thus it is possible to perform mutagenesis on enzymes 

to alter their substrate specificities.  In this project, the proposed S1 site of L. Lactis prolidase 

consists of Phe190, Leu193 and Val302, similar to the TLN S1 site.  Valuable information can 

be derived to guide our research from the above study on how the changes of the S1' site of TLPs 

affected substrate specificities.  The activity increase of the S1' site in TLPs towards the P1' 
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phenylalanine were achieved by two different strategies of mutations with concerns about the size 

and hydrophobicity of the S1' binding pocket.  In the investigation of the substrate specificity of 

L. lactis prolidase, the two influencing factors (i.e., the steric interaction and electrostatic 

environment) should be considered when applying SDM on residues related to catalytic 

functions.   

2.4 Site-Directed Mutagenesis Techniques 

Amino acids in protein polypeptide chains provide functions of proteins through specific 

assembly of amino acids in the proteins, i.e., structures of proteins.  Their structure is formed 

through electrostatic, such as ionic pairing and hydrogen bonding, and hydrophobic interactions.  

The functions of proteins include abilities to recognize specific compounds and to catalyze 

chemical reactions.  The research to investigate the relation between function and structure is 

known as structure-function relationship (SFR) study.   

A powerful tool in SFR studies is site-directed mutagenesis (SDM) that can remove and/or 

change amino acids at specific positions in proteins to analyze the roles of the specific sites.   

2.4.1 Polymerase Chain Reaction (PCR) Based Methods 

Since the incorporation of polymerase chain reaction (PCR) allows high-efficiency 

mutagenesis in a fairly short period of time, PCR-based methods have gained popularity and thus 

received a lot of developments.  

One of the widely used PCR-based protocols is the QuikChange
TM

 Site-directed 

Mutagenesis System (QCM) designed by Stratagene (La Jolla, CA, USA) (Wang W, 1999), 

which is employed to complement all the mutations in this thesis.  It is a widely used 

PCR-based approach using a high fidelity DNA polymerase, Pfu DNA polymerase, and two 

complementary primers containing desired mutations.  The principle of this method is using two 

complementary primers to amplify the entire plasmid in a single PCR reaction.  The 

PCR-generated plasmids are negatively selected by the digestion of methylated parental plasmids 

with the DpnI treatment, and then transformed into a mismatch repair-defective strain of E.coli.  
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The whole procedure is featured by its rapid and reliable operation, and high efficiency of the 

desired mutagenesis, which is normally in the range of 70~90%.  However, this method is 

limited to small primer size of 25~45 bases and the introduction of up to five base alterations.  

These limitations will be taken into consideration when designing the pair of complementary 

primers.  This method allows the mutation with high efficiency in as short as 24 hours.   

However, the primer-dimer formation is more favourable compared to the primer-template 

annealing when the longer primers are used in this method.  To overcome the limitation of the 

primer length in the standard QCM, a modified two-stage PCR mutagenesis protocol has been 

developed (Wang W, 1999).  The strategy of this method contains two stages of performing the 

two extension reactions of forward and reverse primer in separate tubes and subsequently 

carrying out the standard QCM procedure on the mixture of these two reactions.  The separated 

manipulation of two primers' annealing in the first stage not only can avoid the primer-dimer 

formation, but provides a perfect match of primers to the newly synthesized template plasmids 

from the first stage thus improves the efficiency of mutagenesis.  

Recently, a simplified method is described in Shenoy's method (Shenoy & Visweswariah, 

2003) by using a single mutagenic primer and incorporating DpnI digestion to remove the 

methylated parental DNA thus raise the mutation efficiency.  Also a method was described to 

contain two rounds of dsDNA synthesis with a phosphorylated mutagenic primer and a universal 

primer with the combination of DpnI digestion (Xin et al., 2004).  By using the T4 DNA 

polymerase and ligase, this method can overcome the error rate and limitation of product's size 

caused by using Taq DNA ligase in PCR-based SDM.  

2.4.2 Strategies of Using Site-Directed Mutagenesis 

SDM introduces mutations using an oligonucleotide that has a mutated sequence.  By in 

vitro synthesis of a DNA molecule, the oligonucleotide is incorporated into a target gene, yielding 

a mutated gene.  Two general strategies of the SDM are employed to analyze the enzymatic 

activity and other properties: substitution and deletion.   

As strategies of the substitution, there are two ways commonly used.  One strategy is to 
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replace a potential catalytic residue directly determining the enzymatic activity by other amino 

acids to see if it would cause the loss of function.  However, one can only confidently claim that 

the residue replaced is essential for the enzymatic activity when the loss of function is caused by 

SDM without significant disruption of the conformation of the enzyme.  An example of the 

above way of substitution was provided by the study on the structure-function relationship of 

porcine pepsinogen (Lin et al., 1989).  The active site residue Asp32 was changed into an Ala 

residue by the SDM.  Then it was found that the D32A mutated pepsinogen was no longer 

converted to pepsin under acid conditions, indicating that intramolecular pepsinogen activation 

was accomplished by the pepsin active site.  The second strategy of substitution is to change the 

residues that have interactions with the catalytic residues into a different amino acid.  Changes 

made to these residues usually do not result in the total loss of function.  Instead they affect the 

enzymatic activity by motivating the conformational changes on catalytic residues.  In a study 

(Lin et al., 1992), the Ser35 was changed to an alanine to analyze the ionization property of 

porcine pepsin.  In this aspartic peptidase, Ser35 is located closely to Asp32, one of two 

catalytic residues.  It was argued whether this serine provided a hydrogen bond to the carboxyl 

group of Asp32 to lower the pKa values of the catalytic group.  However, the mutant S35A had 

no significant effect on pKa values and catalytic activity.  These results indicated that hydrogen 

bonds from Ser side chains should not lower the pKa values significantly more than do water 

molecules.   

There are more strategies introduced using SDM other than the two concepts above, for 

example, the usage of SDM to investigate the contribution of certain amino acid residues to the 

substrate specificity by changing selected residues to other amino acids.  In the research of the 

influenza A virus neuraminidase (NA) (Kobasa et al., 1999), SDM on residue 275 near the 

enzymatic active site of NA demonstrated that the change of isoleucine to valine resulted in 

higher NeuAc2-6Gal activity without influencing NeuAc2-3Gal activity (NeuAc2-6Gal and 

NeuAc2-3Gal are N–acetylneuraminic acids bound to galactose through an 2,6 linkage and 

2,3 linkage respectively).  Residue 275 was adjacent to Glu276 and Glu277, both of which are 
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directly involved in the binding of sialic acid to the active site.  It was explained that the raised 

NeuAc2-6Gal activity was due to the decreased restrictions on accessibility to the active site by 

altered side chain of residue 275.  Moreover, the deletion strategy helps to identify a critical 

region in an amino acid sequence by removing single or several amino acid residues.  A series 

of deletion mutations have been done in the transmembrane domain of the Sindbis virus 

glycoprotein (E2) in order to identify a region critical for virus growth (Whitehurst et al., 2006).  

They found that single deletions located closer to the cytoplasmic of the membrane bilayer had a 

more deleterious effect on virus growth and infectivity than deletions located closer to the 

luminal of the membrane bilayer.  And an eight amino acid deletion in the C terminal region of 

the E2 transmembrane domain demonstrated the vital function of this segment in normal virus 

production.   

2.5 Allosteric Behaviours 

Wild type prolidase from L. lactis NRRL B-1821 displays the deviation from 

Michaelis-Menten kinetics.  The wild type showed a sigmoid curve in the plot of enzyme 

activities against substrate concentrations.  This observation demonstrates that wild type 

prolidase exhibits allosteric behaviour (Yang & Tanaka, 2008).  

2.5.1 Allosteric Enzymes 

Many enzymes exist as oligomers composed of distinct subunits rather than a single peptide 

chain.  The subunits are often identical with one catalytic site per subunit (Traut, 2008a).  If the 

binding of substrate on one catalytic site does not affect the binding properties on other sites, 

such enzyme subunits are said to be independent and non-cooperative.  However, there are 

oligomeric enzymes that are able to be regulated by ligands bindings, and this behaviour is 

designated allosteric behaviour or cooperativity.   

Allosteric enzymes are distinguished from non-allosteric enzymes essentially in the context 

of conformational states.  All enzymes have multiple conformations under physiological 

conditions (Traut, 2008a).  A non-allosteric enzyme usually adopts only one conformation as the 
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active state with the others being inactive state, and the population of the active conformer is 

never changed by any ligand binding.  An allosteric enzyme has two conformational states, R 

(relaxed state), representing the active form, and T (tense state), being the inactive form.  In the 

absence of any ligands, the majority of the population is in the T state, which is at a lower energy 

state.  When substrates or activators become sufficient, these ligands would bind to enzyme 

molecules in the R state, increasing the abundance of this state thus to raise the enzyme activity.  

Therefore, the allosteric regulation or the cooperativity of activity is performed by changing the 

distribution of the enzyme molecules between the two active and inactive conformational states 

via different ligand-bindings.   

2.5.2 Kinetics of Allosteric Enzymes 

Enzymes without the cooperativity follow the Michaelis-Menten kinetics shown as v = 

Vmax∙S/(Km+S), and generate a hyperbolic velocity curve (Figure 2.5-1).  This equation implies 

that i) enzymes show first-order kinetics at low substrate concentrations, ii) enzyme reaction rates 

do not go beyond Vmax even at extremely high substrate concentrations, and iii) the dissociation 

constant is Km that equals to the concentration where the enzyme shows a half of Vmax.  The 

enzyme kinetics based on this relation is called the Michaelis-Menten kinetics.  Many properties 

of enzymes can be explained using this kinetics, such as the affinity of the substrates.  Therefore 

the Michaelis-Menten kinetics is widely recognized as a powerful tool for enzyme analyses.   

Allosteric enzymes, however, do not follow the Michaelis-Menten kinetics, and the kinetic 

plots for them yield sigmoidal curves (Figure 2.5-2).  While the Michaelis enzymes have 

constant affinity, the allosteric enzymes show two different affinities at R and T states, which are 

represented by KR and KT, respectively.  However these two affinity constants cannot be 

extracted from the sigmoidal curve for an allosteric enzyme in the same manner for a hyperbolic 

curve.  Instead, a putative affinity constant K0.5 is defined as the substrate concentration at 1/2 

Vmax.  Then the allosteric behaviour can be described in the Hill equation  
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Figure 2.5-1 The kinetic plots of velocities versus substrate concentrations. 

 

 

Figure 2.5-2 The Hill plots of Michaelis-Menten kinetics, positive and negative 

cooperativities. 
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(Equation 2.1).  h is the Hill constant, which represents an index of cooperativity.  If h = 1, 

there is no cooperativity; if h ＞ 1, there is positive cooperativity; if h ＜ 1, then there is 

negative cooperativity.   

In the case of positive cooperativity, the enzymes are more sensitive to the changes of 

substrate concentrations at low concentrations than the non-cooperative enzymes are.  In other 

words, smaller changes of substrate concentration are required to reach 90% of the maximum 

velocity from the 10%.  The enzyme with positive cooperativity shows lower activities than 

non-allosteric enzyme at low substrate concentrations (Figure 2.5-1).  These depressed activities 

are influenced by the abundant T state at the initial stage of the reaction, whose low affinity (KT) 

determines the lower activity.  After the R state prevails over the T state via substrates or 

activator binding to some extent, the activity drastically increases.   

In contrast, the negative cooperativity weakens the response to the changes of substrate 

concentration, requiring more substrate concentration changes to reach 90% of the maximum 

velocity.  As shown in the double reciprocal plot of enzyme activities and substrate 

concentrations (the Lineweaver-Burk plot) (Figure 2.5-2), the concave and convex curves 

represent the positive and negative cooperativity, respectively, with changing slopes compared to 

the constant slope Km/Vmax in Michaelis-Menten kinetics.   

In a practical way to determine the allosteric behaviour, the initial velocities at several 

substrate concentrations are measured to plot the velocities of enzyme activity against substrate 

concentrations for the double reciprocal plot.  The Hill constant is calculated by fitting the 

plotted curve into the Hill equation (Equation 2.1) to determine whether the enzyme has 

cooperativity, and positive or negative cooperativity. 

2.5.3 Aspects in Conformational Changes in Cooperativity 

Allosteric enzymes usually stay in the T state without binding to ligands.  Once the 

cooperativity is triggered by ligands binding, a slight conformational change is required to 

(Equation 2.1) max

0.5

h

h

V S
v

K S



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transform the catalytic site to the R state conformation.  Three possible mechanisms for 

conformational changes have been established (Traut, 2008b).  (i) In smaller proteins, the 

catalytic site normally forms at the junction of two domains, which are usually connected by a 

short but flexible polypeptide segment.  A little conformational change of the catalytic site can 

thus be easily achieved by rotation of one domain relative to the other.  (ii) The catalytic pocket 

is usually formed across the interface between the subunits in oligomeric enzymes.  The 

dissociation of the two subunits would enlarge the catalytic pocket residing at the dimer interface.  

The change of enzyme activities would be a function of states of oligomeric subunits.  (iii) Also 

in oligomeric enzymes, there is another type of the association of domains, so-called “3D domain 

swapping”.  The catalytic pocket is composed of domains from separate protein subunits.  

Usually the interactions between domains from neighboring subunits determine the 

conformational changes of the function unit.   

2.5.4 Positive Cooperativity in the Metabolism 

A specific metabolic pathway involves different enzymes in a sequential way for the 

synthesis of a single end product, and several pathways are connected together to supply a certain 

nutrition pool, in which the amount of each end product may be manipulated by dedicated 

regulations of allosteric regulatory enzymes in the pathways.  These enzymes perform 

regulations in various ways according to their intrinsic types of cooperativity.  Since the L. lactis 

prolidase has been reported to show positive cooperativity (Yang & Tanaka, 2008), the 

significance of the positive cooperativity for the metabolism is interested.  Positive 

cooperativity enables enzymes to be more sensitive to changing concentrations of the specific 

cellular metabolites that they recognize, thus to response to the environmental conditions by 

appropriately altering their activity.  These regulations make the metabolic pathway process in a 

control pace.  The allosteric behaviour of the L. lactis prolidase shown to its substrates (Yang & 

Tanaka, 2008) implies that the prolidase responses sensitively to the changes in the dipeptides 

supply, and thus to have a regulatory role in the nitrogen metabolism.   
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2.6 Substrate Inhibition 

2.6.1 Substrate Inhibition of Prolidase 

The previous study in Dr. Tanaka's lab revealed the existence of substrate inhibition in wild 

type prolidase (Yang & Tanaka, 2008).  Substrate inhibition is to describe the phenomenon that 

the enzyme activity is totally depressed or simply reduced at sufficient high concentration of the 

substrate.  It can be envisioned as competitive mechanism, and is achieved by two molecules of 

substrate simultaneously bind to the active site of E (enzyme) simultaneously forming inactive 

ESS complex (Parkin, 2003).   

Since L. lactis prolidase possesses the allosteric behaviour, the substrate inhibition could be 

raised from the binding of substrate either at an inhibitory second site (heterotropic allostery) or 

at the active site (homotropic allostery).  The possibility of heterotropic allostery inhibition was 

first suggested in the study aspartate (Heyde, 1976), which demonstrated a second binding site 

for dicarboxylic acids near the active site to inhibit the enzyme activity.  And the homotropic 

allostery was postulated by Licata (LiCata & Allewell, 1997), who argued that the substrate 

inhibition of aspartate transcarbamylase (ATcase) was a consequence of its allosteric behaviour 

based on the fact that ATcase exhibited positive cooperativity in low substrate concentration and 

consequently its activity was reduced by sufficient high substrate concentration.   

According to the v-S plot of wild type prolidase obtained in previous studies, the curve was 

sigmoidal in the range of low substrate concentrations, indicating the presence of allosteric 

behaviour.  Then the substrate inhibition was displayed at substrate concentrations of greater 

than 4 mM.  These observations were in accordance to the homotropic allostery of substrate 

binding.  This kind of allostery can be visualized as one molecule of substrate binds to the active 

site with its side chains binding to their corresponding subsites.  In case of substrate inhibition, 

each subsite was occupied by a side chain from different substrates, resulting in the formation of 

a nonproductive ESS complex (Parkin, 2003).   

2.6.2 Kinetics of Substrate Inhibition 

According to the description of the homotropic inhibition mechanism that two molecules of 
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S (substrate) form a nonproductive ESS complex at the active site of E, the inhibition can be 

expressed in a model (Equation 2.2) with a dissociation constant (Ki) for the inhibited enzyme 

species (ESS).  And the enzyme reaction velocity can be calculated by Equation 2.3.    

2
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2.7 The pH Dependency of Protein Activity 

The enzymes in general show different levels of activities in a limited pH range, and most 

exhibit bell-shaped profile of pH dependence with optimum pH at which their activities achieve 

the maximum.  This dependence of enzyme activity on pH relates to the ionization of the 

titratable groups in enzyme active site and also in the substrates.   

The common titratable groups in proteins include the C-terminal carboxyl, carboxyl groups 

of aspartic and glutamic acids, the imidazole group of histidine, the sulfhydryl group of cysteine, 

the amino group of lysine and arginine, the hydroxyl group of tyrosine and the N-terminal amino 

group (Harris & Turner, 2002).  At a certain pH, a titratable group is either in protonated or 

deprotonated form determined by its apparent pKa value in the protein.  When the pH is higher 

than its apparent pKa value, the titratable group would be deprotonated.  For the group to be 

protonated, the pH needs to be lower than its apparent pKa value.  A titratable group's apparent 

pKa value is different from its intrinsic pKa value in aqueous solution due to the 

microenvironment created around it by the protein.  In other words, the intrinsic pKa value of a 

titratable group is driven to its apparent pKa value by the charge-charge or charge-dipole 

interactions with fully or partially charged groups, respectively, that surround it.   

In the case of charge-charge interactions, two neighbouring groups with the same negative 

charge will increase each other‟s pKa value, facilitating the protonation in environmental pH to 

avoid like-charge repulsion (Harris & Turner, 2002).  If the neighbouring groups are both 

protonated with positive charge in environmental pH, then the pKa value of the catalytic group 

(Equation 2.3) 

(Equation 2.2) 
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will be decreased to make the deprotonation easier against the repulsion.  If the neighbouring 

groups have opposite charges, then the pKa value of positively charged group will always get 

higher and that of negatively charged group will get lower to favour the opposite-charge 

attraction. 

The titratable group can also have charge-dipole interactions with partially charged polar 

residues.  And normally the charge-dipole interactions are presented by the formation of 

hydrogen bonds.  The energy generated by the formation of a hydrogen bond is utilized to 

increase the pKa value of the hydrogen bond donor and meanwhile decrease the pKa value of the 

hydrogen bond acceptor, facilitating an even stronger hydrogen bonding.   

The interactions in the microenvironment around the catalytic group can be investigated by 

mutations at or near the enzyme active site.  This kind of research was early reported with the 

subtilisin from Bacillus amyloliquefaciens (Thomas et al., 1985), and recently performed on TLN 

(Kusano et al., 2006), Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase 

(Yevenes et al., 2006) and -amlyase from Bacillus licheniformis (Lee et al., 2006).   

A study of TLN is taken as an example to demonstrate the charge-charge interactions, in 

which the pH dependence of the enzyme's activity was affected by the SDM on amino acid 

residue Asn112 located closely to the catalytic zinc and catalytic residues Glu143 and His231 at 

the active site of TLN (Kusano et al., 2006).  The replacement of residue Asn112 to the anionic 

residue aspartate was observed to endow TLN with a different profile of pH dependency and 

change its pKa from 5.3 to 5.7.  As discussed before, the increase of pKa value (by 0.4 units) 

should relate to the charge-charge interaction of the negative charged residue Asp112 with a 

neighbouring catalytic group possessing the same charge.  Asp112 was proposed to interact with 

the anionic catalytic residue Glu143 or the zinc-bound hydroxide ion Zn
2+

-OH, thus its 

protonation should be stabilized to avoid the like-charge repulsion.  Therefore, it was concluded 

that a different pH-dependence profile of the N112D mutant compared to that in wild-type TLN 

was attributed to the increased pKa value of the mutant generated by the charge-charge 

interactions among the neighbouring functional groups.   
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Besides the charge-charge interaction, an example for charge-dipole interaction was found in 

the mutagenesis study of Saccharomyces cerevisiae PEP carboxykinase.  This study suggested 

that the affinity of PEP carboxykinase for Mn
2+

 depends on the deprotonation of a key residue 

Lys213, and evaluated the role of neighbouring residue Phe416 by mutating it to polar residue 

tyrosine.  This mutation was demonstrated to be unfavourable upon the observation that the 

affinity of PEP carboxykinase for Mn
2+

 became lower.  Also based on the measured increase of 

the pKa of Lys213 by 1.5 pH units, it was indicated that the introduced polarity triggered the 

charge-dipole interaction between Lys213 and Tyr416, resulting in the protonation of Lys213.  

For the appropriate Mn
2+

 binding, Lys213 should be always in the neutral form.  So the 

hydrophobic residue Phe416 provided a low polarity microenvironment maintaining Lys213 in 

the neutral form to allow suitable Mn
2+

 binding.  

The above discussions suggest that the changes of pH dependence of enzyme activities can 

be explained by the different pKa values that are introduced by the mutations of catalytic residues.   

2.8 The Thermal Dependency and Stability of Protein Activity 

For many enzymes, the conformational motion plays a vital role in enzyme activity, which 

can be interpret in two aspects: the stability of the structure for being recognized by the 

approaching substrates; and the flexibility of the structure for being able to be transformed when 

releasing the products (Hammes-Schiffer, 2002).  These two contrary requirements for enzyme 

activities result in a minimum activation energy when the enzyme's physiological temperature is 

achieved, which is also considered as its optimum temperature.  And the overall conformational 

flexibility of enzymes should be preserved at their optimum temperatures, according to the theory 

of “corresponding states” (Jaenicke & Závodszky, 1990).  For example, the 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Thermotoga maritime (TmGAPDH), 

which was a thermostable enzyme with optimum temperature near 68°C, was found to be more 

rigid at room temperature than its mesophilic counterpart GAPDH from rabbit muscle 

(RmGAPDH) with optimum temperature of 25 °C (Hajdú et al., 2008).  And the largest 

structural differences were observed in flexibility at the NAD binding and substrate binding 
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regions in TmGAPDH and RmGAPDH.  These findings indicated that thermal dependences of 

enzyme activities closely relied on the conformational flexibility of the regions being vital for 

enzyme functions, and enzymes preserved the maximum conformational flexibilities at their 

optimum temperatures.   

Based on the above discussions, it is conceivable that changes in conformational flexibility 

of the functional regions are able to cause the different thermal dependences of enzyme activities, 

specifically their optimum temperatures.  A study on a lysozyme is taken as an example to 

elucidate the effects of the conformational changes on the thermal dependency of enzyme activity 

by mutations of Met12 and Leu56 in the wild type (Yoshida et al., 2005).  The thermal 

dependency of the activity was examined in M12L/L56F mutant with double alterations of Met12 

and Leu56 to leucine and phenylalanine respectively.  Compared with that of the wild type 

activity, the M12L/L56F mutant had optimum activity at a higher temperature.  In the 

well-elucidated crystal structure of the wild-type lysozyme, a cavity is formed far from the active 

site by a surrounding hydrophobic core, which consists of residues Leu8, Met12, Leu17, Trp28, 

Ile55, Leu56, Ile88 and Val92.  The residues Met12 and Leu56 face each other across the cavity 

without van der Waals interactions.  Due to the fact that the cavity was far away from the active 

site, the shift of optimum temperature in the M12L/L56F mutant was caused by long-range 

effects rather than by the direct pKa changes of catalytic residues.  They suggested that the 

replacements of Met12 and Leu56 by residues leucine and phenylalanine stabilized the cavity, 

thus restricted the internal motions of the mutant compared to the wild type.  In other studies, 

the internal motion was reported to be critical for the enzyme activity due to the observed 

conformational dynamics of the active site, i.e. suitable relaxation of the conformational rigidity 

was required for enzyme function (Cole & Loria, 2002; Falzone et al., 1994).   

In contrast, the requirement of enzyme activity for the internal motions is adverse to the 

conformational rigidity, which is critical for the enzyme stability.  Proteins fold to minimize 

their free energy, and the stable state is to have hydrophobic residues well packed inside and 

hydrophilic residues at the surface.  However, the enzyme stability was increased by the 
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introduction of hydrophobic amino acids to the solvent-exposed surface residues in TLN, such as 

residue 63 (Van den Burg et al., 1994) and residues 128 and 225 (Tatsumi et al., 2007).  These 

phenomena were interpreted that the tightly packed hydrophobic surface residues formed a layer 

separating the hydrophilic protein surface and solvent from the rest of protein, thus stabilizing the 

three-dimensional structure of the enzyme through preventing the invading of water molecules 

and unfolding process.   

A relationship between enzyme stability and activity was described based on the study of 

mutations at the active site of T4 lysozyme (Shoichet et al., 1995).  It was generally stated that 

residues in an enzyme participating in catalysis were not optimized for stability.  This statement 

was supported by several observations in research of enzymes: Thermophilic enzymes with 

higher stability always have lower activities than their mesophilic counterparts at low 

temperatures; And the protein engineering designed to elevate enzyme activity is always 

accompanied by the destabilization of the enzyme (Eriksson et al., 1992; Scrutton et al., 1992).   

2.9 The Metal Dependency of Prolidase Activity 

According to the MEROPS classification system, prolidase belongs to the M24 family of 

metallopeptidases (Morel et al., 1999), of which the catalytic mechanism involves metal ions.  

The major function of metal ions is generally suggested to act as lewis acids coordinating with 

the substrate peptide carbonyl oxygen to facilitate the nucleophilic attacks (Lipscomb & Strater, 

1996; Matthews, 1988).  A water molecule is employed as the nucleophile by many 

metallopeptidases, such as TLN (Matthews, 1988) and metallo--lactamases (Badarau & Page, 

2006).  And the metal ion coordinates to the water molecule in an intermediate anion of metal 

and hydroxide ion (M
2+

-OH).  If the pKa of metal-bound water gets lower, then the metal ion 

center would have more electron deficiency to be a better Lewis acid to stabilize the negative 

charge generated on the substrate peptide carbonyl oxyanion during the nucleophilic attack, thus 

to accelerate the catalytic reaction.  Likewise, a higher pKa of metal-bound water indicates that 

the metal ion acts as a weaker Lewis acid resulting in a decreased enzyme activity.  This 

increase in enzyme activity with lower pKa of metal-bound water can be also explained as the 
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stabilization of the intermediate anion by metal ion acting as a better Lewis acid stabilizing the 

negative charge during catalytic reaction.  However there are cases that enzyme activity 

increases with higher pKa of metal-bound water, indicating that the nucleophilic role of 

metal-bound hydroxide ion is more important than the coordinating role for developing a more 

electron deficient metal ion center during nucleophilic attack.  

Substitution of the native metal ion by other metal ions provides a pathway to look into the 

relationship between the enzyme activity and the pKa of metal-bound water.  Badarau et al. have 

studied on metallo--lactamases (Badarau & Page, 2006) by replacing the native catalytic zinc 

ion with cadmium (II) in this aspect.  The pKa of the Cd
2+

-bound water was measured to be 

about three pH units larger than that of the Zn
2+

-bound water.  And the native 

metallo--lactamases with Zn
2+

 was demonstrated to have higher activity than the enzyme 

substituted of Cd
2+

.  According to the above discussion on the role of metal-bound water, these 

observations suggested that the increase of pKa of Cd
2+

-bound water reduced the electron 

deficiency of the metal ion center, leading to lower stabilization of the negative charge developed 

on the substrate peptide carbonyl oxyanion during nucleophilic attack.  The enzyme activity was 

more related to the role of metal ion as a Lewis acid than a nucleophile. 
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3 HYPOTHESES and OBJECTIVES 

Three residues Phe190, Leu193 and Val302 of L. lactis prolidase were proposed by Yang 

and Tanaka (2008) to compose the S1 substrate binding subsite, and their hydrophobicity was 

suggested to determine prolidase's preferences to hydrophobic substrates.  Based on their initial 

findings, it was hypothesized in this study that the mutations on these S1 residues would alter the 

substrate specificity of prolidase by introducing charged amino acids to the S1 site.  The 

mutations at these three positions might also influence prolidase's unique property of allosteric 

behaviour, based on the concern that the allosteric determining residue Arg293 was located 

closely to Val302 (Zhang et al., 2009).   

Following the above hypotheses, several studies have been designed and implemented to 

investigate the characteristics of mutated prolidases as well as the wild type, including substrate 

specificity, pH dependency, allosteric behaviour and substrate inhibition, thermal dependency and 

metal dependency.  The objectives of this project are: to analyze the effects of substituted 

hydrophilic functional groups on prolidases' substrates specificity, pH and thermal dependency, 

and allosteric behaviour; to find which residue(s) is more important among Phe190, Leu193 and 

Val302 residues at the S1 site for determining wild type prolidase's catalytic efficiency, substrate 

binding or allosteric behaviour.   
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4 MATERIAL and METHODS 

4.1 Site-Directed Mutagenesis 

The pUC18 clones of L. lactic prolidase NRRL B-1821 (ARS culture collection, USDA, 

Peoria, IL, USA) were constructed in Dr. Tanaka's lab (Yang & Tanaka, 2008).  They were 

cultivated and the plasmids were isolated to use as dsDNA templates for SDM.   

Considering the hydrophobicity, charges and sizes of amino acid residues, three residues, 

Phe190, Leu193 and Val302, were chosen for single amino acid mutations in the S1 site of L. 

lactis prolidase: Phe190 was changed to glutamate, arginine or threonine (F190E, F190R, and 

F190T, respectively); Leu193 was changed to glutamate, arginine or threonine (L193E, L193R, 

and L193T, respectively); Val302 was changed to aspartate, lysine or threonine (V302D, V302K, 

and V302T, respectively).  After determining the substrate specificity profiles of all nine 

mutants on single residues, the combined mutations on two amino acid residues, Leu193 and 

Val302, were selectively performed.  The combined mutations were: the mutant of Val302 to 

aspartate together with Leu193 to glutamate (L193E/V302D); and the mutant of Val302 to 

aspartate together with Leu193 to arginine (L193R/V302D).  These two combined mutations 

were implemented by the introductions of mutagenic oligonucleotide primers, L193R and L193E, 

respectively, to the pUC18 clone of the V302D mutant prolidase gene.  Pairs of corresponding 

complementary mutagenic oligonucleotide primers were designed as following: 

 

F190E-F 

5'-CAC AgA TgT CAg Agg ACA CAC TAg TTT TAT CAg-3' 

BcuI 

 

F190E-R 

5'-CTg ATA AAA CTA gTg TgT CCT CTg ACA TCT gTg-3' 
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F190R-F 

5'-CAC AgA TgT CTC gCg ACA CgC TTg-3 

                    Bsp68I 

 

F190R-R 

5'-CAA gCg TgT CgC gAg ACA TCT gTg-3' 

 

F190T-F 

5'-CAC AgA TgT CgA CTg ACA CgC TTg-3' 

SalI 

 

F190T-R 

5'-CAA gCg TgT CAg TCg ACA TCT gTg-3' 

 

L193E-F 

5'-CAT TTg ACA Cgg AAg TAC TAT CAg gAg CTC-3' 

ScaI 

 

L193E-R 

5'-gAg CTC CTg ATA gTA CTT CCg TgT CAA ATg-3' 

 

L193R-F 

5'-CAT TTg ACA CgC gTg TTT TAT C-3' 

MluI 

 

L193R-R 

5'-gAT AAA ACA CgC gTg TCA AAT g-3' 

 

L193T-F 

5'-CAT TTg ACA CgA CAg TAC TAT CAg gAg CTC-3' 

ScaI 

 

L193T-R 

5'-gAg CTC CTg ATA gTA CTg TCg TgT CAA ATg-3' 

 

V302D-F 

5'-Cgg AAT ggA TgA TCA CgA ATA TCC-3' 

BclI 

 

V302D-R 

5'-ggA TAT TCg TgA TCA TCC ATT CCg-3' 
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V302T-F 

5'-Cgg AAT ggA CAC TCA TgA ATA TCC ATC-3' 

PagI 

 

V302T-R 

5'-gAT ggA TAT TCA TgA gTg TCC ATT CCg-3' 

 

V302K-F 

5'-ggA ATg gAC AAg CAC gAA TAT CCA TCg ATT gTT gCC-3' 

                                         Bsu15I 

 

V302K-R 

5'-ggC AAC AAT CgA Tgg ATA TTC gTg CTT gTC CAT TCC-3' 

 

The newly introduced restriction enzyme sites were indicated by underlines and the name of 

restriction enzymes.  Designed primers were then synthesized at Integrated DNA Technologies 

(IDT), Coralville, IA, USA.   

The single and combined mutations and protein expressions were carried out using the 

technique of QuikChange
TM

 SDM in PCR (Wang W, 1999).  The total 100 µL reaction mixture 

of PCR contained 1 µg of template plasmid (the pUC18 prolidase clone), 20 pmol of each 

complementary primer, 0.02 mM dNTPs (Roche, Basel, Switzerland) and 1 unit of Pfu DNA 

polymerase (Fermentas, Burlington, ON, Canada).  PCR was carried out with 16 cycles, 

consisting of 1 min denaturation at 95°C, 1 min primer annealing at 55°C and extension at 68°C 

of increasing duration by 5 sec per cycle from 3 min 30 sec to 4 min 45 sec.  

The PCR product was then treated with DpnI (Fermentas, Burlington, ON, Canada) to digest 

the methylated parental template DNA.  The treated products were transformed into E.coli 

TOP10F' and cultivated on the LB (pH 7.5) agar (1.5%) plate with 150 µg/mL ampicillin.  The 

grown colonies on the plate were cultivated in 2 mL LB broth and plasmid DNA was isolated 

using the alkali-SDS DNA preparation method (Brown, 2001).  The mutants were screened by 

restriction endonuclease digestion of isolated plasmids.  The recipe of restriction endonuclease 

reaction mixture is 1 µg isolated plasmid and 1 unit restriction enzyme (Fermentas, Burlington, 

ON, Canada) corresponding to the introduced restriction site of the mutant plasmids.  The 



 32 

digested plasmids were analyzed on an agarose gel electrophoresis if they have expected 

fragment sizes.  The positive mutants were further confirmed by DNA sequencing at the 

National Research Council-Plant Biotechnology Institute (Saskatoon, SK, Canada).  Then the 

sequencing results were validated to the correct nucleic acid sequences using the BLAST 

database in the PubMed online services.  The confirmed recombinant E.coli cells containing 

mutated pUC18 plasmids were stored as glycerol solutions at -70°C.  

The pUC18 clones yielded the mutants easily by its high replication number, but it was hard 

to get significant amount of mutated protein because of its poor expression efficiency.  In order 

to gain high expression of mutated prolidases, the mutated prolidase genes from the pUC18 

clones were subcloned into pKK223-3 plasmids for protein expressions.   

To subclone to pKK223-3 plasmids, the mutated prolidase gene was firstly amplified by 

PCR using Pfu DNA polymerase and two primers (LacQ (C-2): 5'- ATT CTG CAG TTA GAA 

AAT TAA TAA GTC ATG - 3', LacQ (N-2): 5'- GGA GAA TTC ATG AGC AAA ATT GAA CGT 

ATT - 3'. IDT, Coralville, IA, USA) that are designed to amplify the gene with an introduction of 

EcoRI and PstI restriction site at N- and C-terminal, respectively.  The PCR products were then 

digested by DpnI, EcoRI and PstI to exclude methylated parental DNA and to form the adhesive 

ends.  The amplified mutant gene DNA underwent ligation with EcoRI-PstI-digested pKK223-3 

plasmids using T4 DNA ligase (Invitrogen, Carlsbad, CA, USA).  Then the recombinant 

pKK223-3 plasmids were transformed into E.coli TOP10F' and grown on the LB-Agar plate with 

ampicillin.  The plasmids were isolated from the culture of the grown colonies and checked on 

the agarose gel after EcoRI and PstI digestion for mutants.  The positive pKK223-3 clones were 

identified to yield 1.0 and 4.6 kb fragments on the agarose gel electrophoresis.  The positive 

pKK223-3 clones were further verified by DNA sequencing at the National Research 

Council-Plant Biotechnology Institute (Saskatoon, SK, Canada).   

The recombinant E.coli carrying pKK223-3 clones with desired mutations were preserved as 

glycerol solutions at -70°C for further expression and characterization of mutated prolidases.   
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4.2 Expression of Mutated Prolidase 

The expression of mutated prolidases followed the standard procedure (Yang & Tanaka, 

2008).  The recombinant E.coli containing desired mutated prolidase was cultivated in total 300 

mL LB broth (pH 5.5) containing 150 µg/mL ampicillin in 16°C waterbath with agitated shaking, 

and induced at optical cell density of 0.5 with IPTG (Invitrogen, Carlsbad, CA, USA) and 

chloramphenicol of 1 mM and 1 µg/mL final concentration, respectively.  It was noticed that 

good aeration was crucial to the cells growth and high expression of L. lactis prolidase.  In 

practice, the mutated prolidase was cultivated in a 500 mL flask containing 50 mL media, and six 

flasks of this culture were gathered to get 300 mL final culture of each mutated prolidase. 

4.3 Purification of Prolidase 

The cells were resuspended in 10-times volume/wet cell weight of a 20 mM sodium citrate 

(pH 6.0)/ 1 mM ZnCl2/ 50 mM NaCl solution.  The resuspended cells were disrupted using 

ultrasonication.  After centrifuge to remove cell debris (Sorval ss-34, 12,000 rpm, 20 min, 4°C), 

the crude extracts were brought to 40 % saturated ammonium sulfate and kept on ice for 12 h.  

The precipitated protein fractions were removed by centrifuge (Sorval ss-34, 12,000 rpm, 20 min, 

4°C).  The supernatant was then brought to 60 % saturated ammonium sulfate and kept on ice 

for another 12 h.  The precipitant was collected by centrifuge (Sorval ss-34, 12,000 rpm, 20 min, 

4°C), and was dissolved in a 2 mL buffer solution (20 mM sodium citrate (pH 6.0)/ 1 mM ZnCl2/ 

50 mM NaCl).  Then the partially purified sample was dialyzed against 4 L of 20 mM sodium 

citrate (pH 6.0)/ 1 mM ZnCl2.  The protein concentration of the dialyzed protein fraction was 

determined and protamin sulfate was added at 10 % of the total protein amount.  The mixture 

was kept at 4°C for 12 h and centrifuged (Sorval ss-34, 12,000 rpm, 20 min, 4°C) to remove 

nucleic acid fractions.  The supernatant was applied onto a DEAE Sephacel column (2.5  20 

cm, GE Health Sciences, Little Chalfont, Buckinghamshire, UK) equilibrated with 20 mM 

sodium citrate (pH 6.0)/ 1 mM ZnCl2.  Prolidase was eluted using a linear gradient from 0 to 0.5 

M NaCl.  Prolidase fractions were identified on SDS-PAGE and concentrated with Amicon 

YM-10 ultrafiltration (Millipore, Billerica, MA, USA).  The condensed sample was again 
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loaded on a Phenyl Sepharose column (1.5  20 cm, GE Health Sciences, Little Chalfont, 

Buckinghamshire, UK) equilibrated with 20 mM sodium citrate (pH 6.0)/ 1 mM ZnCl2/ 1 M 

ammonium sulfate.  An ammonium sulfate solution with gradually decreasing concentration 

from 1 to 0.2 M was applied to the column to obtain the eluted fractions.  Then the fractions 

containing prolidase were identified on SDS-PAGE and condensed with Amicon YM-10 

ultrafiltration.  The concentrated sample was kept at -20°C as a 50 % glycerol solution for 

further analyses.   

4.4 Measuring Enzyme Concentration 

A modified Lowry method (Bio-Rad Dc Protein concentration determination kit, Hercules, 

CA, USA) was employed in this project to determine the concentrations of all the purified 

mutated prolidases.  The bovine serum albumin (BSA) solutions were prepared at several 

known concentrations such as 0.2, 0.4, 0.8, 1.2 and 1.8 mg/mL to determine the standard curve of 

the Lowry method.  The BSA solutions were added in Bio-Rad reagent A and B at a 1: 5: 40 

ratio to allow colour-developing reaction for 15 min.  The absorbances of the samples were then 

measured at wavelength of 750 nm using spectrophotometer Beckman Coulter DU800 (Fullerton, 

CA, USA).  The standard curve obtained through fitting BSA concentrations versus absorbances 

to a straight line.  The standard curve was calculated as  

 

      (Equation 4.1) 

 

The concentrations of studied 11 mutants were all determined using this standard curve of 

the Lowry method.  

4.5 Enzyme Activity Assay 

The enzyme activity assay was performed by using a ninhydrin method (Doi et al., 1981).  

The released amount of free proline was determined by the colour developing reaction between 

ninhydrin and proline.  The ninhydrin solution was formulated as 3g ninhydrin dissolved 

[ ]( / ) 3.968 0.366E mg ml Abs  
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in100mL organic solvent (acetic acid: phosphoric acid= 6:4/V: V) and was heated to 70°C to 

dissolve ninhydrin.  In order to create a standard curve, the known concentration of free proline 

solutions was reacted with the ninhydrin solution, and it showed a linear relation to the 

absorbance of the yielded chromophore.  The substrates and free amino acids other than proline 

did not generate any chromophore under these conditions. 

Before conducting enzyme activity assay on each prolidase, the concentration of the purified 

prolidase to be employed in the assay was determined in order to allow keeping initial reaction 

rates for more than 5 min.  Upon the concern of practical manipulations, the starting point of 

measuring was chosen at 2 min after reaction started. 

The standard enzyme activity assay was performed by preheating 90 L reaction mixture 

(RM: 20 mM sodium citrate buffer of pH 6.5/ 1 mM zinc chloride/ 2 mM Leu-Pro substrate) at 

50°C in the waterbath for 2 min.  Then a 10 L purified enzyme preparation was added to the 

RM to start the reaction.  The enzyme reaction was kept in the waterbath for the whole time 

length until the enzyme activity was quenched in the ninhydrin solution.  Two minutes after the 

start of reaction, 20 L of the mixture was taken out from the reaction reservoir and then 

immediately quenched by adding a 100 L ninhydrin solution.  The sampling procedure was 

repeated at every minute thereafter and four points were obtained in total until 5 min after the 

start of reaction.  The samples were heated on heating block at 100°C for 10 min and then 

immediately cooled down on ice for the colour-developing step.  The absorbance values of the 

samples were determined by spectrophotometry using DU800 at the wavelength of 515 nm.   

The obtained absorbance values were then converted to the amount of free proline in the 

samples by multiplying a constant of 0.725549 ABS/mol, which was determined by a standard 

curve of amounts of proline vs. absorbance values.  The enzyme activity is represented by the 

released amount of proline per minute.  Each point of enzyme activity was determined by taking 

average of the triplicate experiments under each condition.  The enzyme activity v (mol·min
-1

) 

was divided by the amount of enzyme (mg) participating in the enzymatic reaction to give the 

specific activity of the enzyme (mol·min
-1·mg

-1
).   
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4.6 Substrate Specificity 

The investigation of the substrate specificity of each mutant was carried out by measuring its 

activities towards nine dipeptides and two tripeptides, which were Leu-Pro, Phe-Pro, Val-Pro, 

Arg-Pro, Lys-Pro, Gly-Pro, Asp-Pro, Glu-Pro, Pro-Pro, Leu-Leu-Pro and Leu-Val-Pro.  The 

reactions were individually conducted under the optimum conditions (pH 6.5 and 50°C) in the 

presence of zinc ions using 2 mM dipeptide substrate.   

4.7 Metallic ion Dependency 

The metallic ion dependency was investigated by measuring each mutant's activity towards 

eleven peptide substrates in the presence of Mn
2+

 instead of Zn
2+

 at the optimum condition (pH 

6.5 and 50 °C).  The procedure was similar to that in the study of substrate specificity, with the 

only difference that 1 mM zinc chloride in the RM was replaced by 1 mM manganese chloride.   

4.8 pH Dependency 

In the study of pH dependency of each mutant, the reactions were conducted using Leu-Pro 

as the substrate at different pHs at the optimum temperature 50°C with Zn
2+

.  The different pHs 

in the reactions were achieved by using different buffer systems.  Most pHs required for the 

study (pH 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9) were made by mixing 20 mM sodium citrate (pH 4.96) 

and 20 mM sodium borate (pH 9.23) in different ratios.  The two extreme pHs 4 and 10 were 

achieved using 20 mM citrate-HCl buffer and 20 mM sodium borate buffer, respectively.  The 

RM for each mutant was composed of 1 mM zinc chloride, 2 mM dipeptide substrate (Leu-Pro, 

Asp-Pro or Arg-Pro), and the aforementioned buffer component.  The enzyme reactions and the 

colour-developing reactions were processed in the same manner as the standard enzyme assay.  

The calculated enzyme activities at various pHs were transformed to relative activities to the 

enzyme activity at pH 6.5 (for Leu-Pro) and pH 7.0 (for Asp-Pro and Arg-Pro) for the 

construction of the pH dependency profile of each mutant.  
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4.9 Thermal Dependency 

The RMs for each mutant's reactions at different temperatures were the same as that in the 

standard enzyme assay (20 mM sodium citrate buffer of pH 6.5/ 1 mM zinc chloride/ 2 mM 

Leu-Pro substrate solution).  Temperatures employed were 20, 30, 35, 40, 45, 50, 55, 60, 70, 

and 80 °C for the study of the thermal dependency of enzyme activity.  Temperature was 

controlled constantly in a waterbath.  The enzyme activities were plotted against temperatures to 

show the thermal dependency profile of each mutant.   

4.10 Kinetics Study 

Each of the purified mutated prolidases was analyzed by the kinetics study with the 

expectation of interpreting the allosteric behaviour and substrate inhibition of the L. lactis 

Prolidase.  The reactions were performed under different concentrations of Leu-Pro at the 

optimum condition (pH 6.5, 50°C with zinc ions).  The used substrate concentrations were 0.1, 

0.2, 0.3, 0.4, 0.5, 0.7, 1, 2, 4, and 8 mM.  The RMs were 20 mM sodium citrate buffer of pH 6.5, 

1 mM zinc chloride and Leu-Pro at a target concentration.   

Then the reactions were operated in the same procedure of the standard enzyme activity 

assay.  Michaelis constants and Vmax values were determined initially with the data from the 

substrate concentration range where obvious substrate inhibition was not observed.  This 

preliminary Vmax was used to calculate the preliminary Hill constants as the slopes of linear 

regression of Ln [v/ (Vmax-v)]-Ln S plot.  These preliminary numbers were used as the starting 

values for direct fitting of the data to Equation 4.2 using the Profitcurve-fitting software 

(Quantumsoft, Uetikon am See, Switzerland, http://www.quansoft.com/).  The kinetic 

parameters determined include the maximum velocity (Vmax), the affinity constant (K0.5), the Hill 

constant (h) and the substrate inhibition constant (Ki).   



v 
V  sh

Km  s
h 
Km  s

2h

Ki

 (Equation 4.2) 
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4.11 Statistical Analyses 

Different statistical methods were chosen and applied on the studies of substrate specificity, 

pH and thermal dependency of enzymes, and the model assumptions were evaluated to determine 

whether the model fitting was appropriate and the derived results were useful.  

In the study of substrate specificity, the nested ANOVA model was chosen by considering 

enzyme activity (“act”) as the single continuous response variable, “substrate” as one categorical 

explanatory variable and the factor of “enzyme” nested in substrate.  The nested ANOVA model 

was then constructed by applying the lm function with the model formula of act~substrate/ 

enzyme (Crawley, 2007).  The constructed model was translated as act responding to different 

levels of enzyme nested in substrate.  The p-value in this model was smaller than 2.2e-16, 

indicating that the differences of the means of act among enzyme (nested in substrate) were 

significant at 0.1%.  This model was then plotted to check the assumptions of the ANOVA 

model (see Appendix A).  

In the study of pH dependency, the statistical analysis was first conducted on the relationship 

of activity to the pH change in each research object (referring to each enzyme in the presence of 

different substrates), such as the pH dependency profile of wild type prolidase towards substrate 

Leu-Pro.  The enzyme activity was considered as the continuous response variable, and the pH 

value was the continuous explanatory variable.  The scatter plot of all data points in every object 

revealed a non-linear relationship between enzyme activity and pH, and there was no theoretical 

equation describing the shape of such relationship.  For these reasons, generalized additive 

models (GAM) were chosen for the non-linear regression of enzyme activity versus pH by using 

non-parametric smoothers (Crawley, 2007).  The formula used to specify the GAM model was 

simply expressed as act ~ s (pH) using the non-parametric smoother function “s”.  Then the 

slopes of activity change in this pH range were calculated by predictions from the established 

GAM model of each object.  In the biological meanings, these slopes indicated the extent that 

the enzyme activity was influenced by the pH change.  By comparisons of the slopes of a certain 

enzyme with charged substrate Asp-Pro or Arg-Pro to its slopes when using a neutral substrate 
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Leu-Pro, it could be stated whether the substrate specificity was related to the electrostatic nature 

of the S1 substrate binding subsite and which residue had the most effect on this character.  The 

one-way ANOVA was used with the slopes of activity change in the range of pH 0.5 increment 

between pH 5 and 7 as single continuous response variable and research object (enzymes with 

different substrates) to be the categorical explanatory variable.  The non-linear regression and 

one-way ANOVA were carried on by utilizing the functions of gam and lm, respectively, in the R 

software (Crawley, 2007).  And the results of models following the assumptions were plotted to 

check their applicability for the study of pH dependency (see Appendix A). 

4.12 Molecular Modelling 

Using the NAMD2 molecular modeling program (Kal et al., 1999), the molecular models of 

the nine mutants were created with an energy-minimizing calculation based on the molecular 

model of wild type prolidase (Yang & Tanaka, 2008).  The wild type model was generated with 

3D-JIGSAW server based on the crystallographic model of Pyrococcus furiosus OT3 (PDB 1PV9). 

Initial models of each mutant prolidase were created by substituting target amino acids on 

SWISS-PDB Viewer (Kaplan & Littlejohn, 2001).  The initial models were then subjected to the 

energy-minimization calculation using the NAMD2 program.  The calculation was carried out in 

a water-filled box using the topology force field data provided with the program.  The cut-off 

distance was set to 15 Ǻ and the calculation was run 5000 times.  The energy-minimizing 

models were then subjected to the VMD molecular visualizing program (Humphrey et al., 1996) 

to analyze the relations of the substituted residues in the active site. 
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5 RESULTS and DISCUSSIONS 

5.1 Mutations of pepQ Gene 

The DNA sequencing results of all single and combined mutants were validated to be the 

correct nucleic acid sequences using the BLAST database in the PubMed online services.  

Results showed that recombinant E.coli cells containing all mutated prolidases have been 

successfully constructed with designed mutations.  An example of the nucleic acid sequence of 

one mutant is depicted in Figure 5.1-1. 

5.2 Purification of Mutated Prolidases 

All mutated prolidases were purified by four sequential steps: crude extraction, ammonium 

sulfate precipitation, DEAE-Sephacel and Phenyl Sepharose chromoatography.  The samples 

were examined on SDS-PAGE after every purification step to confirm and identify the existence 

of prolidase.  Since all the prolidases were purified under the same conditions and had the same 

behaviour in the purification steps, the obtained prolidases should be properly folded to have 

catalytic activities.  The protein concentrations and enzyme activities were also measured after 

each purification step (Table 5.2-1).  The activity of each sample was measured using 2 mM 

Leu-Pro as substrate at pH 6.5 and 50°C, following the procedure of the standard enzyme assay 

as stated in the section of Material and Methods.   

The purification of L193R mutant prolidase is taken as an example.  A 300-mL culture 

yielded 5 mg of the purified L193R enzyme, with a purification fold of 7.8.  The total activity 

after each treatment decreased by nearly a half of the activity before that, and 12.2% of the total 

activity was recovered from the crude extract.  However, to optimize the purification process of 

the mutated prolidases was not a necessity for this project.  The obtained amounts of purified 

mutated prolidases were sufficient for the characterization experiments to interpret the   
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Table 5.2-1 The purification of the mutant L193R. 

Purification process 

Total 

protein 
Specific activity Yield Purification 

(mg) (mol·min
-1·

mg
-1

) (% activity) (fold) 

Crude extract 318.9 9.0 100 1 

Ammonium sulfate 

precipitation 
108.8 15.8 59.8 1.8 

DEAE-Sephacel 

chromatography 
17.8 45.9 28.4 5.1 

Phenyl Sepharose 

chromatography 
5.0 70.6 12.2 7.8 

 

  

GGA TGATCA CGA ……ACA CGGAAG TAC TAT CAG L193E/V302D mutant 

GGA CGTTCA CGA ……ACA CGCTTG TTT TAT CAG Wild type 

 
Figure 5.1-1 The comparison of the segments. 

Segments of nucleic acid sequence of the pKK223-3 mutant with combined mutations 

of V302D and L193E compared with the corresponding segment in the wild type. 
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structure-function relationship of the prolidase at the S1 site.  

5.3 Characterization of Mutated Prolidases 

5.3.1 Substrate Specificity 

The activities of each mutant to different substrates were measured under the optimum 

conditions of wild type prolidase (Yang & Tanaka, 2008).  The relative activities to different 

substrates of each mutant were displayed as percentages to the activity using Leu-Pro as the 

substrate (Table 5.3-1).  All the Phe190 mutants lost their activities to any substrate, thus 

omitted from Table 5.3-1.  The Leu193 and Val302 mutants retained activities, and exhibited 

various substrate specificity profiles, which are presented by different relative activities to eleven 

substrates including dipeptides (Leu-Pro, Asp-Pro, Glu-Pro, Arg-Pro, Lys-Pro, Phe-Pro, Val-Pro, 

Pro-Pro and Gly-Pro) and tripeptides (Leu-Leu-Pro and Leu-Val-Pro) (Table 5.3-1).  

The statistical analyses interpreted the observations of mutants' substrate specificities in 

more details, based on the data obtained from Table 5.3-1.  Table 5.3-2 listed the statistically 

calculated differences of each mutant's activity from the corresponsive activity values of the wild 

type for each substrate (for statistical analyses please refer to Appendix B). 

Table 5.3-2 shows the differences in the substrate specificities between the wild type and 

mutant.  Larger values marked with three asterisks mean the mutant preferred the particular 

substrate more than the wild type.  Compared with wild type prolidase, the L193T mutant 

exhibited preferences towards Lys-Pro, Arg-Pro and Phe-Pro, and the mutant V302T took more 

Lys-Pro and Arg-Pro.  The substrate specificity profile of the V302K mutant was almost the 

same as that of wild type prolidase.  Both V302D and L193E mutants showed more preferences 

to Lys-Pro and Arg-Pro.  The V302D and L193R mutants had evident activities to the anionic 

Asp-Pro that the wild type did not hydrolyze at all.  Since the V302D mutant took both positive 

and negative dipeptides as substrates, it would be interesting to see how the activities changed to 

Lys-Pro and Arg-Pro in the L193E/V302D mutant or to Asp-Pro in the L193R/V302D mutant.  

Results showed that a double mutant L193R/V302D had activity to Asp-Pro similar to each 

single mutant of L193R and V302D.  However, the other double mutant L193E/V302D did not  
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Table 5.3-1 Relative activities to different substrates in the wild type and mutated prolidases. 

Relative activity () (Leu-Pro=100%) 

 Wild type L193E L193R L193T V302D V302K V302T L193R/V302D L193E/V302D 

 (468.7±6.6) (99.6±5.2) (118.8±10.6) (67.3±2.5) (14.1±1.6) (55.9±7.7) (73.5±1.7) (7.5±0.6) (0.95±0.1) 

Leu-Pro 100±1.4 100±5.9 100±8.2 100±2.5 100±5.6 100±0.9 100±4.2 100±5.6 100±4.8 

Asp-Pro N.D. 5.9±0 37.0±9.0 N.D. 25.9±1.6 2.6±0.5 3.4±1.6 33.0±2.6 16.0±0.9 

Glu-Pro N.D. 2.0±0.3 2.5±0.7 11.4±2.5 7.4±3.2 N.D. 2.0±1.0 24.9±1.3 20.0±1.8 

Arg-Pro 12.0±0.9 51.0±9.0 1.9±1.0 81.4±4.3 57.4±5.6 5.7±0.9 32.8±2.1 13.8±0 62.0±5.6 

Lys-Pro 6.6±0.5 39.2±6.8 2.3±0.3 48.6±10.8 31.5±1.5 4.1±0.9 37.5±1.8 19.2±2.8 78.0±8.3 

Phe-Pro 23.8±0.4 33.3±6.8 20.2±2.9 278.6±8.6 59.3±6.4 8.8±2.9 14.5±0.6 21.9±3.4 180.0±16.5  

Val-Pro 14.4±0.4 70.6±0 11.1±1.4 34.3±4.3 N.D. 29.4±0 46.0±3.1 2.7±0.6 N.D. 

Pro-Pro N.D. 3.9±0.6 0.7±0.3 14.3±1.2 7.4±3.2 N.D. N.D. N.D. N.D. 

Gly-Pro N.D. N.D. 2.9±0.9 2.9±0.9 N.D. N.D. 1.0±0.2 N.D. N.D. 

Leu-Leu-Pro N.D. 3.9±0.7 N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

Leu-Val-Pro N.D. 9.8±1.4 N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

N.D. refers to “not detectable”.  

Data in parentheses refer to specific activities (mol/min·mg) of prolidases using 2 mM Leu-Pro as substrates.  
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Table 5.3-2 The differences in substrate specificities of mutants compared with the wild type 
a
. 

Substrate/Charge L193E L193R L193T V302D V302K V302T L193R/V302D L193E/V302D 

Leu-Pro neutral -5.56 -7.73 -2.78 -5.26 -0.51 -3.27 -3.64 -1.96 

Asp-Pro 
negative 

5.56 34.13*** 2.78 24.56*** 2.56 3.27 31.77*** 15.68 

Glu-Pro 1.85 2.27 11.11 7.02 2.4E-15 1.96 23.96*** 19.61** 

Lys-Pro 
positive 

30.43*** -4.47 40.62*** 23.23*** -2.49 29.67*** 11.89 69.87*** 

Arg-Pro 36.15*** -10.27 67.17*** 42.39*** -6.36 19.7** 1.28 48.78*** 

Val-Pro 

neutral 

52.27*** -4.13 18.93** -10.89 14.83** 30.02*** -11.80 -10.48 

Gly-Pro 9.97E-16 2.67 2.78 3.51 0.51 0.98 0.78 9.80 

Pro-Pro 3.7 0.67 13.89 7.02 1.03 0 1.60 6.25 

a: Mean of each mutant's activity (%) to a certain substrate － mean of wild type prolidase's activity (%) to the same substrate 

*** P<0.001, meaning most significant differences from wild type prolidase 

**P<0.01, meaning relatively significant differences from wild type prolidase 

 

 

4
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show significant changes in activity to Asp-Pro while it had increased preferences to cationic 

substrates Lys-Pro and Arg-Pro and a hydrophobic substrate Phe-Pro.  L193R/V302D had 

activity to Asp-Pro similar to each single mutant of L193R and V302D.  However, the other 

double mutant L193E/V302D did not show significant changes in activity to Asp-Pro, while it 

had increased preferences to cationic substrates Lys-Pro and Arg-Pro, and a hydrophobic 

substrate Phe-Pro.   

To interpret these observations, the molecular modelling was conducted to investigate the 

conformational changes of the S1 site and neighbouring residues in each mutant.  The models of 

the active sites of the single mutants and double mutants were generated using the NAMD2 and 

VMD molecular visualizing software (Figure 5.3-1). 

The Phe190 mutants did not have significant activities to Leu-Pro dipeptide.  In the model 

of F190E (Figure 5.3-1), a relocation of one catalytic zinc ion was observed at a large degree.  

Negative charged Glu190 coordinated one of the zinc ions, causing the disruption of its original 

coordination with Glu339, which was coordinated with both zinc ions in wild type prolidase.  

The loss of activity and the molecular models suggested that Phe190 was an important residue to 

keep the zinc positioning, the structure of the S1 site, and thus the catalytic activity of prolidase.   

The observed activities of mutants at position 193 were concluded to follow the assumption 

that the introductions of charged functional groups at the S1 site would influence the electronic 

nature of preferred substrates.  At pH 6.5 (the standard condition used for all the enzyme assays 

in the study of substrate specificity), the activity of L193E mutant was increased towards the 

cationic substrates Lys-Pro and Arg-Pro due to the negative charge introduced at S1 site via the 

deprotonation of Glu193.  In contrasts, the Arg193 in L193R would have positive charge by the 

protonation at that pH, thus to take anionic dipeptide Asp-Pro as the substrate.   

Whereas the Leu193 mutants hydrolyzed the dipeptides with opposite charges, a 

position-302 mutant (V302D) was able to catalyze both anionic and cationic substrates 

disobeying the assumption.  The substituted residue Asp302 should be deprotonated and should 

have a negative charge at pH 6.5.  The positively charged substrates like Lys-Pro and Arg-Pro   
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Figure 5.3-1 The illustrations of molecular modelling of the single mutants and wild type 

prolidase. 

Each model shows (a): wild type prolidase; (b): F190E; (c): L193E; (d): L193R; (e): L193T; (f): 

V302D; (g): V302K; (h): V302T; (i): L193R/V302D; (j): L193E/V302D.  All residues are 

shown in licorice models, and zinc ions are grey balls.  The S1 site (Leu193, Phe190 and Val302) 

of wild type prolidase is represented in blue.  The mutated residues are differentiated by colours 

according to their electronic nature.  Negative and positive charged residues at the S1 site are red 

and yellow, respectively, and polar residues are in green.  The cyan licorice models are 

metal-chelating residues (Asp221, Asp232, His296, Glu325 and Glu339).  The purple licorice 

model represents the key residue Arg293 to the allosteric behaviour.  Some bonds are displayed 

with values of distances (Å) in the models of the wild type and mutated prolidases.  
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would be accommodated by Asp302 to bind selectively in the S1 site, resulting in a higher rate of 

hydrolysis.  It was interesting that V302D also showed activity to negatively charged substrate 

Asp-Pro, which was expected to be excluded from the S1 site of the V302D mutant.  This 

contradictory result could be explained as the effects of its neighbouring residues.  According to 

the molecular model of V302D (Figure 5.3-1 (f)), the mutated residue Asp302 flanked positively 

charged residues His296 and Arg293.  Compared to wild type prolidase, the opposite-charge 

attractions would keep His296 and Arg293 close to Asp302, by distances of 2.12 and 2.88 Å, 

respectively.  Therefore His296 and/or Arg293 would stabilize Asp302 at the S1 site via 

opposite-charge attraction, and consequently formed a hydrophilic environment for the anionic 

substrate.  Although V302D could hydrolyze substrates with both charges, this mutant showed 

lower catalytic efficiency (Vmax/ Km) compared to the L193E mutant (Section 5.3.3, Table 5.3-5).  

The lower catalytic efficiency of V302D suggested that the mutations at position 302 could have 

larger influence on the active centre than that at position 193.  In metal peptidases, a residue acts 

as the proton acceptor to allow a water molecule to form the catalytic intermediate with the 

peptide substrate.  The results of pH dependency suggested that the catalytic residue (i.e., proton 

acceptor) had a pKa value of approximately pH 5 to 6.  Since free histidine has a pKa at pH 6.0, 

His296 likely worked as the catalytic residue to accept a proton from the water attacking the 

amide bond of the substrate for the hydrolysis.  At neutral pH, His296 can accept a proton, but 

His296 would not accept any proton once it is protonated at acidic pH.  The introduction of a 

polar (charged) residue in the S1 site would affect the hydrogen bond network, resulting in an 

altered protonation tendency of this histidine.  The observations suggest that mutations at 

position 302 affected the electronic state of the nearby His296, thus to influence the prolidases 

activities.   

The substrate specificity of V302K was observed similar to that of the wild type, showing 

the highest activity to hydrophobic Leu-Pro dipeptide and no significant activity to polar 

substrates.  This observation indicated that the substitution of valine at position-302 by cationic 

lysine did not affect the substrate specificity of prolidase.  As illustrated in the molecular model 
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of V302K (Figure 5.3-1 (g)), Lys302 was located closely to the positive residues Arg293 and 

His296.  Lys302 would be possibly in the neutral form through effects of neighbouring residues 

with the same charge as discussed in the part of literature survey (section 2.5).  Thus the S1 

substrate binding subsite would be maintained in the neutral state to accept hydrophobic 

substrates. 

The combined mutant L193R/V302D increased in the activity to Asp-Pro, but a little 

activity changes was shown in the combined mutant L193E/V302D.  The combined mutant 

L193E/V302D exhibited relatively higher preferences to the cationic substrates Lys-Pro and 

Arg-Pro, while these dipeptides were poor substrates for the combined mutant L193R/V302D 

compared with the single mutant V302D.  Considering the V302D mutant hydrolyze both 

cationic and anionic dipeptides, these observations indicated that the mutation at position 193 had 

more effect on the preferences towards charged substrates than that at position 302.  In other 

words, the residue Leu193 was the determining residue for the substrate specificities to 

hydrophobic dipeptides in wild type prolidase.  The mutation L193R maintained relatively high 

catalytic efficiency (Vmax/ Km) than the other mutants as discussed later (Section 5.3.3, Table 

5.3-5).  Also in the molecular modelling, the conformational changes in the L193R did not 

significantly affect the positions of the two catalytic zinc ions at the S1 site.  It was concluded 

that the mutation of L193R expanded the substrate specificity to the anionic peptide Asp-Pro 

without disrupting the three-dimensional structure of the active site.   

In conclusion, the charged substitutions of the S1 site residues did affect the polarity of the S1 

site, making mutated prolidases present different specificities towards charged substrates.  The 

mutations on residue Leu193 of the wild type showed expected changes of substrate specificity 

according to the charge of substitutions.  In contrast, rather than the direct influences of residues 

at position 193 on the charges of the substrate binding site, the Val302 mutations presented 

effects on the prolidases activities via interactions with His296, which was proposed to be a 

proton acceptor in the nucleophilic attack of prolidases.  Therefore, Leu193 was suggested to 

have more effect than Val302 did on substrate specificities of prolidases. 
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5.3.2 pH Dependency 

The pH dependency profiles of wild type and mutated prolidases are presented as curves of 

relative activities versus different pH values (Figure 5.3-2).  The activities of each prolidase 

were measured using Leu-Pro dipeptide as the substrate at the optimum temperature, 50°C, over a 

range of pH from 4.0 to 10.0.  The activities of some prolidases in the presence of charged 

dipeptide substrates were also investigated and compared with those to Leu-Pro (Figure 5.3-2): 

they were activities of L193E, V302D and wild type prolidases to cationic dipeptide Arg-Pro; 

and those of V302D and L193R to anionic dipeptide Asp-Pro.  

All eight active mutants obtained in this study and wild type prolidase showed bell-shaped 

profiles of pH dependency to different substrates.  Wild type prolidase catalyzed the reaction in 

a range of pH 6.0 to 8.0 with highest activity at pH 6.5 (Yang & Tanaka, 2008).  Compared to 

the wild type, all mutated prolidases exhibited activities to substrates in a broader pH range of 5.0 

to 8.0 with the optimum pH at 6.0 or 6.5.  It was interesting to notice that the mutants 

maintained relatively higher activities at extreme pH of 5.0 and 8.0.  For example, the mutants 

L193E, L193T, V302D and V302T had activities around 50% relative activities at pH 5.0, and all 

six single mutants at position 193 and 302 exhibited much higher activities (from 68.1% to 

90.0%) than the wild type at pH 8.0.   

The relationships of relative activities and pH values in prolidases were expressed 

statistically into coplots (see Appendix B).  The slopes of the regression curves were calculated 

for each 0.5 increment out of these coplots (Table 5.3-3), and were used to compare the effects of 

pH changes among enzymes and substrates to investigate the assumption that the interactions 

between substituted residue at the S1 site and charged side chains in the substrates would 

influence the mutant's substrate specificity.  These influences were perceived in two different 

ways: the different profiles of pH dependency in various mutated prolidases were observed to the 

same substrate, leading to the research of the influence from substituted residues at the S1 site; In 

a certain pH range, the mutated prolidases showed activities' decreases in different extents 

towards different substrates, indicating the joint influence of mutated S1 residues and 
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Figure 5.3-2 pH dependency of each enzyme's activity to Leu-Pro. 

The observed activity at each pH was plotted as relative activity to the activity at pH 7 for 

Leu-Pro and at pH 6.5 for Asp-Pro and Arg-Pro.  Thick solid lines and open circles (––––) 

indicate dependency with Leu-Pro as the substrate, dotted lines and open triangles (--------) 

present dependency with Asp-Pro, and thin solid lines and solid triangles (––––) present 

dependency with Arg-Pro.  Error bars indicate the standard error values for triplication.  a) 

Wild type, b) L193E, c) L193R, d) L193T, e) V302D, f) V302K, g) V302T, h) L193R/V302D
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Table 5.3-3 Differences of enzymes' pH dependences in the range of pH 5.0~5.5, 5~5.5, 5.5~6.0, 6.5~7.0. 

Enzymes /Substrate 
Means of slopes in the range of 

pH 5.0 ~ 5.5 pH 5.5 ~ 6.0 pH 6.0 ~ 6.5 pH 6.5 ~ 7.0 

WT/Leu-Pro 31.39 143.76*** 13.32 20.87 

L193E/Leu-Pro 80.44*** 31.45 10.68 -14.27 

L193R/Leu-Pro 121.98*** 48.64** 24.59 -40.01** 

L193T/Leu-Pro 116.17*** 40.96** 21.52 -9.66 

V302D/Leu-Pro 110.34*** 37.99 17.99 -12.78 

V302K/Leu-Pro 154.00*** 44.62** 31.43 -1.88 

V302T/Leu-Pro 126.53*** 28.53 -0.02 -27.94 

WT/Arg-Pro 14.73 124.25*** 59.95** 15.30 

L193E/Arg-Pro 122.38*** 24.59 35.64 -3.77 

L193R/Asp-Pro 18.18 38.75 47.80** 27.47 

V302D/Asp-Pro 91.54*** 16.79 41.53** -18.06 

V302D/Arg-Pro 247.05*** 25.53 -8.21 -34.91 

a
 represented by the differences in the mean value of slopes of the non-linear regression curves of enzyme activities versus pHs in the 

range of pH 5~5.5.  E.g. the value at the first left top is calculated as: -86.79 = mean value of slopes from the wild type － 

mean value of slopes from L193T.  

Significant codes: *** P <0.001, ** P <0.01, *P < 0.1.  
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charged side chains in the substrates.   

Based on the data in Table 5.3-3, some overall observations can be made that 1) wild type 

prolidase had a drastic activity drop between pH 5.5~6.0 towards Leu-Pro or Arg-Pro; 2) the 

activities of most mutated prolidases to various substrates had largest drops in the range of pH 

5.0~5.5; and 3) L193R was an exception among mutants by showing activity drop to anionic 

substrate Asp-Pro in the range of pH 6.0~6.5.  

Since the significant activity decreases of the mutated prolidases all happened in the range 

of pH 5.0~5.5, further statistical analyses were conducted to study how these decreases related to 

the different mutations and substrates within this pH range. The results (included in Table 5.3-3) 

were derived from the boxplots in these analyses (details of statistical analyses described in 

Appendix B).  The statistical analyses showed that the activity of L193E to cationic substrate 

Arg-Pro steeply decreased in the pH range of 5.0~5.5 more than that to Leu-Pro.  The difference 

of the slope between Asp-Pro and Leu-Pro reached 41.94.  The L193R mutant had a much less 

activity change from pH 5.5 to pH 5.0 with Asp-Pro compared to its activity change to Leu-Pro.  

The V302D mutant exhibited the largest decrease in activity to Arg-Pro from pH 5.5 to pH 5.0 in 

the comparisons of its activity decreases when using other substrates.   

In the molecular model of the wild type (Figure 5.3-1), five residues (His296, Asp232, 

Asp221, Glu325 and Glu339) were observed to be the metal-chelating residues which had direct 

bonding with the catalytic zinc ions.  Among them, His296 was proposed in Section 5.3.1 to 

have coordination with the zinc-bound water molecule and to act as a general base in the 

deprotonation of the water molecule for the nucleophilic attack.  Histidine residue can be 

protonated, but its pKa value is much lower than other two cationic amino acids, arginine and 

lysine (Table 5.3-4).  This pKa of histidine suggested that acidification might protonate His296 

in the pH range of 5.5~6.0, losing the capacity of accepting a proton from the nucleophile water 

molecule and thus leading to the activity loss of wild type prolidase.   

To maintain the prolidase's activity at lower pH than the value of 6.0, His296 should 

somehow remain in the deprotonated form below pH 6.  Judging from the molecular modelling,  
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Table 5.3-4 pKa values of their side chains. 

Amino acids Conjugate acid pKa 

Arginine Guanidinium-NH2
+
 12.48 

Histidine Imidazole-NH
+
 6.0 

Aspartic acid -COOH 3.86 

Glutamic acid -COOH 4.25 

Lysine -NH3
+
 10.53 
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the positive charge of Arg293 could interact with His296 because of their close locations.  And 

the introduced residue at positions 193 and 302 could affect the interaction between Arg293 and 

His296, resulting in the change of pKa of His296.  The following discussions will focus on 

individual changes of the protonation form of His296 which were only determined by the 

mutations at the S1 site without considering the influences from substrates. 

The substitutions of Val302 would directly influence the electronic environment around 

His296 due to its close location to His296 (Figure 5.3-1).  In the V302K mutant, the substituted 

Lys302 with positive charge could prevent the protonation of His296 at pH 5.5, according to the 

theory that the positively charged group will lower the pKa of the neighbouring positively 

charged group, facilitating deprotonation of that group to avoid the like-charge repulsion (Harris 

& Turner, 2002).  Then the stabilized deprotonated form of His296 could keep receiving the 

proton from the metal-bound water molecule to facilitate nucleophilic attack at pH 5.5, leading to 

higher activity under more acidic conditions compared to wild type prolidase.  The V302D 

mutation, which brought in negative charge to the S1 site, also had more tolerance to the acidic 

condition than the wild type, though its activity was observed to have a larger decrease than that 

of V302K from pH 5.5 to pH 5.0.  This observation might be explained in a way that the anionic 

Asp302 brought Arg293 and His296 closer to each other in the V302D mutant, to keep the 

deprotonated form of His296 based on Harris and Turner's theory.   

The mutations at the position 193 also exhibited more acidic tolerance than wild type 

prolidase.  The L193R mutation introduced positive charge to the active site, where His296 

would tend to retain the deprotonated form at lower pH compared to the wild type to avoid the 

like-charge repulsion from arginine residues with strong positive charge at positions 193 and 293.  

The opposite mutation of L193E also had extended working pH range with lower activity at pH 

5.5 compared to that of L193R.  This observation suggested that negatively charged Glu193 in 

the L193E mutant influenced His296 by attracting opposite-charged Arg293 towards the catalytic 

zinc centre, thus towards His296, which coordinated with the catalytic zinc ion.  The force that 

kept His296 in the deprotonated form came from the more closely located Arg293 in the L193E 
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mutant.   

When further perceiving the influences on His296 by both the mutations and side chains of 

substrates, it was proposed that the mutant would have higher activity at certain acidic pH to any 

positively charged substrate and have lower activity in the presence of anionic substrates.  The 

results from the comparison of mutants' activities to differently charged substrates were in 

accordance to the deduction: L193E and V302D exhibited the preference of cationic Arg-Pro to 

Leu-Pro at pH 5.5; L193R and V302D both had decreased activities towards negatively charged 

substrate Asp-Pro than to Leu-Pro.  Moreover, the V302D mutant showed distinguishing higher 

activity at pH 5.5 when binding to the positively charged substrate Arg-Pro.  This observation 

demonstrated that the binding of charged side chains of substrates at position-302 imposed more 

effects than that at position-193 on the electronic states of His296 because of the close location of 

position-302 to -296.   

By comparing the differences of pH dependences of mutants to various substrates, it was 

concluded that the prolidases' activities were indeed affected by the introduced electronic charges 

to the active site and the charged side chains of substrates.  Since His296 was proposed to be 

involved in the catalytic properties providing a proton to the metal-bound water molecule, it was 

possible that electronic charges introduced by the mutated S1 residues and the charged side chains 

of substrates caused the extended pH ranges of the mutated prolidases' activities via influencing 

the electronic states of His296.   

5.3.3 Kinetics Studies 

5.3.3.1 Allosteric behaviour  

The relations of substrate concentration and observed catalytic rates were shown in Figure 

5.3-3.  Since L. lactis prolidase shows both allosteric behaviour and substrate inhibition, the 

equations 2.1 and 2.3 are combined to give Equation 4.2 that describes the allosteric behaviour 

and substrate inhibition (Equation 4.2) (Parkin, 2003).  Then the kinetic constants were 

determined by fitting the v-S plots into this equation. 
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Figure 5.3-3 The v-S plots of eight mutants 

The lines show the relation between rates and Leu-Pro substrate concentrations (Equation 5.1) 

with the calculated constants.  a) Wild type, b) L193E, c) L193R, d) L193T, e) V302D, f) 

V302K, g) V302T, h) L193E/V302D, i) L193R/V302D. 
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The velocity is expressed as the specific activity in the unit of mol/min·mg.  The kinetic 

parameters, the maximum velocity (Vmax), the Hill constant (h), the dissociation constant (K0.5) 

and inhibition constant (Ki) are calculated from the fitting and summarized in Table 5.3-5.   

The single mutants L193R, L193T, V302D and double mutants L193R/V302D and 

L193E/V302D had the Hill constants (h) close to 1.  According to the descriptions of allosteric 

behaviour in the literature review section, these mutants lost the allosteric behaviour that was 

observed in the wild type.  The plots of these non-allosteric prolidases were hyperbolic with 

constant affinities (Km), following Michaelis-Menten kinetics at low substrate concentrations.  

The Hill constants of the L193E, V302K and V302T mutants were larger than 1, indicating that 

they possessed the cooperativity as shown in wild type prolidase.  The v-S plot of a mutant with 

allostery showed depressions at relatively low substrate concentrations and became much steeper 

after substrate accumulating to certain concentration.   

The loop structure (position 33 to 41 with charged residues Asp36, His38, Glu39 and Arg40 

in the middle) have been proposed to be responsible to the allosteric behaviour (Yang & Tanaka, 

2008).  A recent study on deregulation of allosteric behaviour showed that the loopless mutant 

lost the activity and the mutation of Arg293 by serine eliminated the allosteric behaviour (Zhang 

et al., 2009).  It was proposed that the interactions between the loop structure and residue 

Arg293 caused the allosteric behaviour.  In this research, the kinetic studies indicated that 

L193R, L193T, V302D, L193R/V302D and L193E/V302D led to the loss of allosteric behaviour.  

Based on previous conclusions about the allosteric behaviour, these findings implied that residues 

Leu193 and Val302 might affect the interactions between residue Arg293 and the loop structure.   

In the molecular model of V302D (Figure 5.3-1), Asp302 was located close to Arg293 with 

a length of 2.88 Å, indicating the formation of a possible ionic bonding between Asp302 and 

Arg293 via the opposite-charge attraction.  This attraction restricted the mobility of Arg293 and 

also dragged Arg293 away from the loop structure.  Combined the model observation and the 

kinetic data, it is concluded that the restriction imposed by Asp302 would not allow the 

conformation of allostery determining sites (the loop and Arg293) to respond to the binding of 
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Table 5.3-5 Kinetic parameters of eight mutants and wild type prolidase. 

 

 

Kinetic parameters 

Prolidases Wild type L193E L193R L193T V302D V302K V302T L193R/V302D L193E/V302D 

Vmax(µmol/min·mg) 1740.0 305.6 777.1 761.9 18.3 184.8 166.3 20.2 1.3 

h 1.49 1.35 0.91 0.93 1.04 1.60 1.39 1.00 1.00 

Km(mM) 7.0 3.8 6.3 12.8 0.32 6.0 1.92 2.7 0.6 

Ki(mM) 90.8 15.7 7.0 22.7 10.2 48.2 9.6 15.7 - 

Vmax/ Km 248.6 81.2 122.5 59.5 57.2 30.6 86.5 7.5 2.2 

 

6
3
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the substrates, resulting in the loss of allosteric behaviour.  In addition, a dissociation of 

coordination between Arg293 and metal-chelating residue Glu325 was observed in its model, and 

would be another factor affecting the allosteric behaviour.  The loss of the allosteric behaviour 

in the L193R/V302D mutant could also be explained as the restriction of Arg293's mobility by 

forming an ionic bond with the negative charged residue Asp302.  Further investigation of the 

model of the L193R/V302D mutant (Figure 5.3-1) suggested that the positive charged Arg193 

attracts metal-chelating residue Asp221, causing one of the two coordination of Asp221 with the 

zinc ion to be dissociated.  To compensate the missing coordination, the metal-chelating residue 

Glu339, which coordinates with both zinc ions in the wild type, was disconnected from the zinc 

on the side of Asp302 to form two coordinations with the other zinc ion near Arg193.  This 

rearrangement disrupted the connection between two catalytic zinc ions and might cause the 

much lower catalytic efficiency observed in the mutant L193R/V302D than that in the wild type, 

as compared by their Vmax/ Km values (Table 5.3-5). 

In the model of the L193E/V302D mutant (Figure 5.3-1), it was observed that the repulsion 

between negative charged residues Glu193 and Asp221 caused two zinc ions to come closer to 

each other.  Under this movement of zinc ions, another connection via metal-chelating residue 

Glu325 was formed between two zinc ions, resulting in the disruption of the ionic bond between 

the allosteric-determining residue Arg293 and the metal-chelating residue Glu325 in the wild 

type.  In consequence, Arg293 formed an ionic bond with Asp302 and had no binding with any 

metal-chelating residues.  Therefore, the mobility of Arg293 was restricted to cause the loss of 

the allosteric behaviour in the L193E/V302D mutant.   

The allosteric behaviour of wild type L. lactis prolidase suggested it to be a regulatory 

enzyme in the nitrogen metabolism.  There have been some supports from previous reports: (i) 

the branched-chain amino acids (BCAA, isoleucine, leucine and valine) served as the nitrogen 

signals, provoking the binding of the transcriptional regulator CodY to regulatory sites of its 

target genes, thus to regress the transcriptions of the genes of important proteases in L. lactis such 

as pepN and pepC (Petranovic et al., 2004);  (ii) the dipeptide Leu-Pro decreased the level of 



 65 

transcriptions of pepN and pepC (Guedon et al., 2001);  (iii) the CcpA, a key regulatory enzyme 

in the carbon metabolism, had a direct effect on the transcription of pepQ via a ccpA-pepQ link in 

L. lactis (Zomer et al., 2007).  From these findings, it can be depicted how the prolidase 

functions in the regulation of the nitrogen metabolic pathway.  If there is a sudden oversupply of 

the dipeptide substrate Leu-Pro, the prolidase would have a quick response to the substrate 

concentration change facilitated by its allosteric behaviour.  Then the excessive Leu-Pro is 

consumed quickly to release its stress on the transcriptions of proteases genes pepN and pepC, 

thus to help retain the normal degradation of oligopeptides.  In the mean time, the product 

leucine from digestion of Leu-Pro by the prolidase would be accumulated in the cell.  When 

amount of this BCAA increases to an extent, it would stimulate the regulator CodY to regress the 

transcriptions of pepN and pepC, so that further degradation of peptides to gain amino acids is 

abolished.   

5.3.3.2 Substrate inhibition 

Decreased activities at high substrate concentrations were observed in most of the mutants, 

rather than that the activity reaches plateau in the Michaelis-Menten kinetic.  The same 

observation was reported in the wild type and interpreted as the substrate inhibition (Yang & 

Tanaka, 2008).   

Judged from the kinetic plots of the mutants, V302D and L193E/V302D had almost lost the 

substrate inhibition.  As discussed in our previous studies of allosteric behaviour of L. lactis 

prolidase (Zhang et al., 2009), the interactions between the loop structure and Arg293 caused the 

allosteric behaviour by attracting the loop structure towards the active site.  When substrate 

concentration gets higher, the stabilization of loop structure by substrate binding increases to an 

extent that approach of substrate molecules is prevented, resulting in the substrate inhibition.  

Base on this speculation that the substrate inhibition is related to the allosteric behaviour, the loss 

of substrate inhibition in the mutant V302D and L193E/V302D could also be explained by the 

restriction imposed by Asp302 to the conformational change of the allosteric-determining site 

composed of the loop structure and Arg293, as discussed in the loss of allosteric behaviour.   
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In the model of V302D (Figure 5.3-1), an ionic bond was formed between Asp302 and 

Arg293 and the electrostatic attraction was exhibited between Asp302 and the zinc ion, causing 

the dissociation of residue Glu325 from the zinc ion near Asp302.  Thus the 

allosteric-determining residue Arg293 was no longer associated with catalytic zinc ions via 

metal-chelating residue Glu325.  This dissociation was also found in the model of the mutant 

L193E/V302D.  Glu325 coordinated to both catalytic zinc ions, resulting in the dissociation 

with Arg293.  However the dissociation was not observed in L193R/V302D.  Then it was 

suggested that the dissociation of Arg293 with zinc ion was responsible to the loss of the 

substrate inhibition.  In prolidases exhibiting substrate inhibition, the substrate binding might 

rearrange the interactions at residue Arg293 through the metal-chelating Glu325 residue and then 

restrict movements of Arg293 as substrate accumulated.  Thus the above mentioned dissociation 

of Arg293 to metal-chelating residue or zinc ion resulted in the loss of substrate inhibition.  This 

speculation was supported by the fact that R293S mutant also lost the substrate inhibition (Zhang 

et al., 2009).  It was readily to say that the zinc-bound substrate molecule was no longer able to 

affect the position of Arg293 because of those dissociations of Arg293 from zinc ion in the 

V302D and L193R/V302D mutants. 

In conclusions, Val302 was indicated as an important residue associated with both the 

allosteric behaviour and substrate inhibition in wild type prolidase.  The loss of allosteric 

behaviour and substrate inhibition in L193R, L193T, V302D, L193R/V302D and L193E/V302D 

would be caused by restricting the movement of Arg293 via electrostatic attraction from Asp302 

and the dissociation of Arg293 from catalytic zinc ions. 

5.3.3.3 Allosteric mechanism 

It was proposed that the allosteric behaviour and substrate inhibition had the same 

determining region in prolidase, which was defined by a loop structure (position 33 to 41 with 

charged residues Asp36, His38, Glu39 and Arg40 in the middle) and Arg293 as discussed in the 

previous sections (Zhang et al., 2009).  The allosteric behaviour was aroused by the 

conformational change between the tense (T) and relax (R) states.  In the proposed model, the 
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loop structure was located closely to the active site on the other subunit of this homodimeric 

peptidase and associated with Arg293 near the active site.  In this allostery model, prolidase 

adopts the T state with the loop structure residing closely to the active site and blocking the 

entering of substrate at lower substrate concentration.  When substrate concentrations increase 

to a certain level, the binding of substrate molecules at the active site of one subunit induces that 

of the other subunit, causing the conformational change to the R state.  At this state, the enzyme 

structure is more relaxed with the loop structure more open to the binding of more substrates.  

However, the substrate inhibition is presented when substrate concentrations are greater than a 

certain level.  It is proposed in this project that the substrate inhibition follows the homotropic 

allostery (LiCata & Allewell, 1997).  Two molecules of substrate accommodate at the active site 

to form an inactive ESS complex, and each subsite of active site in prolidase is occupied by a 

side chain from different molecule of substrates.  This ESS complex differs from active ES 

complex based on the fact that only one molecule of substrate binds to the active site by its side 

chains bound to their corresponding subsites in the active form (Parkin, 2003).   

Since prolidase is a homodimer and the allosteric region would be composed with the loop 

structure from subunit A and the active site pocket from subunit B, the mechanism of allosteric 

conformational changes is suggested as the second mechanism mentioned in the literature survey 

part (2.5.3 (ii)).  The conformational change of one subunit would influence that of the other 

subunit.  That is the binding of substrate molecule at the active site of subunit A would cause 

the conformational change of the loop structure in the same subunit, which constitutes an 

allosteric region with the active pocket of subunit B.  The allosteric behaviour is then presented 

through the conformational change at the interface between two subunits, and determined by the 

different state of these subunits. 

5.3.4 Thermal Dependency 

Thermal dependency of each mutant was investigated by measuring activities of each 

enzyme at different temperatures.  The observed activities were expressed as the relative 

activities to the activity of each prolidase towards Leu-Pro at 50 °C (Figure 5.3-4).  All mutants 
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and wild type prolidase showed bell-shaped profiles of thermal dependency of activity (Figure 

5.3-4).  Most mutants exhibited a wider range of working temperature than the wild type did.  

To compare the differences of thermal dependences in details, the optimum temperatures of the 

wild type and mutants were calculated from the non-linear regression of curves of activity versus 

temperatures through statistical analyses (Table 5.3-6).   

The results revealed that L193R, L193T, V302D, L193R/V302D and L193E/V302D had 

higher optimum temperatures (around 60 °C) than others (around 50 °C) (Table 5.3-6).  It was 

interesting to notice that these mutants with higher optimum temperatures were observed to lose 

the allosteric behaviour.  Many studies have suggested that suitable relaxation of the 

conformational rigidity was required for enzyme function (Hajdú et al., 2008; Hammes-Schiffer, 

2002; Shoichet et al., 1995).  If the mutated enzyme conformation has less flexibility compared 

to the wild type, a higher energy input would be required to achieve the flexibility of the mutated 

enzymes at the required levels for their enzyme activities.  This higher energy input could be 

achieved by increasing the environmental temperature during the enzyme reaction, and the higher 

environmental temperature would give a faster enzyme reaction as far as the enzyme structure is 

not disturbed.  Thus higher optimum temperatures would be observed; if the enzymes become 

more rigid.   

It suggested that all the non-allosteric mutants possess more rigid conformations compared 

to the wild type.  The rigidity was performed by the restriction of the conformational change 

observed at the allosteric region of non-allosteric mutants, which was composed with the loop 

structure and Arg293.  In specific case of the V302D mutant, the restriction was presented by 

the opposite-charge attraction between the anionic substituted residue Asp302 and positively 

charged Arg293.  As discussed, the loop structure and Arg293 would not interact in this mutant 

and it would restrict the structure variance in the allosteric behaviour.  The loss of allostery 

means the enzymes do not have conformation changes between R and T states, thus, 

non-allosteric mutant prolidases would have more rigid conformation than the wild type.  This 

indicated that the higher optimum temperatures of non-allosteric prolidases were the results of   
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Figure 5.3-4 Thermal dependences of prolidases' activities. 

The thermal dependency of each prolidase was presented as a plot of relative activities 

towards 2 mM Leu-Pro versus temperatures.  The relative activities were calculated to the 

activity of each prolidase towards Leu-Pro at 50 °C.    
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Table 5.3-6 The optimum temperatures of enzymes 

 Optimum Temperature (°C) Residual standard error 

WT 49.0 25.4 

L193E 54.5 6.2 

L193R 59.8 6.5 

L193T 61.1 8.2 

V302D 59.7 11.3 

V302K 49.3 12.9 

V302T 49.2 9.3 

L193R/V302D 62.2 10.7 

L193E/V302D 62.8 12.7 
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rigid structure due to the loss of allostery.   

5.3.5 Metal Dependency 

The metal dependency was investigated by measuring the activities of each mutant to eleven 

different dipeptide and tripeptide substrates after the substitution of Mn
2+

 for Zn
2+

 as the catalytic 

metal ions.  Table 5.3-7 shows the relative activities of each mutant to eleven different 

substrates in the presence of Mn
2+

, presented as the activity of each mutant relative to the activity 

on Leu-Pro.   

It has been observed (Table 5.3-7) that the absolute activities were smaller in all mutants 

than in wild type prolidase, and were much larger in the presence of Mn
2+

 than Zn
2+

 in the 

anionic mutations L193E and V302D and in the hydrophilic L193T.   

More detailed comparisons were deduced from Table 5.3-8 on the differences of mutants' 

activities with two catalytic ions.  When comparing the preferences of the mutated prolidases, 

the L193E, L193R, L193T, V302D and V302T mutants showed much more preferences towards 

positively charged substrates Arg-Pro and Lys-Pro in the presence of Mn
2+

 than that with Zn
2+

, 

while none of the Leu193 and Val302 mutants preferred negatively charged substrates Asp-Pro or 

Glu-Pro with Mn
2+

 presenting.   

Manganese has many oxidation states (from –III to +VII), among which divalent manganese 

is the most stable oxidation state in acid and neutral solutions (Cotton, 1999).  Divalent 

manganese has a ionic radius of 0.75 Å, which is close to the ionic radius of divalent zinc (0.74 Å) 

(Glusker, 1991).  The predominant coordination number of Mn
2+

 is six, while four, five, six are 

common coordination numbers for Zn
2+

 based on the crystal structure analysis (Bock et al., 1999).  

In wild type prolidase, the higher activities to various substrates were generally shown in the 

presence of Zn
2+

 than that with Mn
2+

 in our previous study (Yang & Tanaka, 2008).  The 

molecular modelling showed that five residues, Asp221, Asp232, His296, Glu325 and Glu339, 

are metal-chelating residues for the two catalytic zinc ions.  By the consideration of the 

hydrophobic feature of the catalytic pocket in the wild type, the coordination number might be 

six for Mn
2+

 and four for Zn
2+

, and there might be just one catalytic manganese ion in wild type
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Table 5.3-7 The absolute activities of mutants to Leu-Pro with Zn
2+

. 

Metals 
Specific activity(mol/min·mg)  

L193E L193R L193T V302D V302K V302T L193R/V302D L193E/V302D WT 

Zn
2+

 99.6±5.6 118.8±12.1 67.3±9.3 14.1±2.6 55.9±1.4 73.5±5.2 7.5±0.36 0.95±0.05 468.7 

Mn
2+

 234.3±8.3 54.4±2.5 406.4±7.76 97.1±3.2 47.0±4.4 88.8±10.3 5.6±0.08 0.8±0.14 234.5 

 

 

 

 

Table 5.3-8 The substrate specificities of mutants in relative activities. 

Substrates Metals 
Relative Activity (%) 

L193E L193R L193T V302D V302K V302T L193R/V302D L193E/V302D 

Leu-Pro 
Zn

2+
 100.0  100.0  100.0  100.0  100.0  100.0  100.0  100.0  

Mn
2+

 235.2  45.8  604.3  691.1  84.1  120.9  74.7  88.6  

Phe-Pro 
Zn

2+
 33.3 20.2 278.6 59.3 8.8 14.5 21.9 180.0  

Mn
2+

 114.7  24.5 886.6  186.7  35.1  71.9  7.9  51.1  

Asp-Pro 
Zn

2+
 5.9 37 N.D. 25.9 2.6 3.4 33 16 

Mn
2+

 5.7  7.9  2.8  57.8  0.0  2.1  50.6  27.3  

Glu-Pro 
Zn

2+
 2 2.5 11.4 7.4 N.D. 2 24.9 20 

Mn
2+

 8.4  16.3  20.8  5.5  0.0  3.8  29.4  27.5  

Arg-Pro 
Zn

2+
 51 1.9 81.4 57.4 5.7 32.8 13.8 62 

Mn
2+

 374.2  22.3  228.1  1381.1  19.4  69.6  30.1  56.7  

Lys-Pro Zn
2+

 39.2 2.3 48.6 31.5 4.1 37.5 19.2 78 
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Mn
2+

 532.7  51.4  507.7  1797.8  1.2  85.2  21.6  29.7  

Val-Pro 
Zn

2+
 70.6 11.1 34.3 N.D. 29.4 46 2.7 N.D. 

Mn
2+

 212.1  94.9  265.4  564.4  31.1  88.5  5.6  20.8  

Gly-Pro 
Zn

2+
 N.D. 2.9 2.9 N.D. N.D. 1 N.D. N.D. 

Mn
2+

 13.3  3.2  14.3  75.5  0.1  9.6  1.7  0.0  

Pro-Pro 
Zn

2+
 3.9 0.7 14.3 7.4 N.D. N.D. N.D. N.D. 

Mn
2+

 11.9  2.4  1.1  22.3  1.0  3.1  1.1  3.4  

Leu-Leu-Pro 
Zn

2+
 3.9 N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

Mn
2+

 0.0  1.2  1.6  27.8  0.0  1.1  0.2  2.5  

Leu-Val-Pro 
Zn

2+
 9.8 N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

Mn
2+

 3.7  0.5  0.8  26.1  0.1  0.0  0.0  2.0  
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prolidase instead of two zinc ions (Bock et al., 1999).  The larger coordination number of Mn
2+

 

meant less effective positive charge on the metal, leading to a higher pKa of Mn
2+

-bound water.  

In other words, the Mn
2+

 had weaker metal-ligand bindings due to its larger coordination number, 

resulting in a weaker polarization of O-H in the intermediate anion of Mn
2+

-OH, and thus the 

Mn
2+

-bound water has a higher pKa.  Then the higher pKa of Mn
2+

-bound water caused a 

reduced electron deficiency of the metal ion centre, which stabilized less negative charge 

developed on the substrate peptide carbonyl oxyanion during the nucleophilic attack.  It was 

proposed that the changes of the charge states on the S1 site residues and the choice of the 

polarity of side chains of the P1 residue affected the relative coordination of the chelating 

residues to metal cations and that they led to the changes in the activity through pKa 

modifications.  This proposal needs to be investigated in the future research, such as X-ray 

crystallography.   

The possible higher pKa of Mn
2+

-bound water than Zn
2+

-bound water might explain the large 

increases in absolute activities observed in L193E, L193T, V302D and V302T mutants in the 

presence of Mn
2+

.  In previous discussion, His296 was proposed to be the proton acceptor 

receiving protons from water molecules in the catalysis of prolidase.  The introduced charge by 

mutated residues could influence its electronic state, thus to affect the catalytic efficiency.  It 

was possible that the catalytic Mn
2+

 together with His296 performed different extent of influence 

on the mutants.  The introduction of negatively charged residues glutamate and aspartate in the 

L193E and V302D mutants would stabilize His296 in protonated form through the 

opposite-charge attraction.  The protonation of His296 was negative for its performance as a 

proton acceptor, resulting in depressed catalytic efficiency.  The less depression in the presence 

of Mn
2+

 (the absolute activities of L193E and V302D were lower than wild type, but higher with 

Mn
2+

 than with Zn
2+

) was suggested to relate to the higher pKa of Mn
2+

-bound water than 

Zn
2+

-bound water.   

In the comparisons of mutants' substrate specificities, the preferences of positively charged 

substrates to negatively charged substrates were observed in most mutants as stated before.  This 
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observation might also be explained by the higher pKa of Mn
2+

-bound water than Zn
2+

-bound 

water.  Further research is needed for understanding the influence of catalytic metals on 

substrate specificities of prolidases.   

For a conclusion, catalytic metals with different pKa values were suggested to work with the 

proton acceptor His296 to influence the catalytic efficiencies of different mutated prolidases.  

The different profiles of substrate specificities of mutants with different catalytic metals might 

relate to the different pKa values of metal-bound water during the nucleophilic attack.  More 

detailed research, e.g. X-ray crystallography, is needed to further elucidate the structural 

differences of mutated prolidases in the presence of different metals. 
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6 GENERAL CONCLUSIONS 

A series of studies have been designed and implemented on the mutated prolidases' 

characteristics, including substrate specificity, pH dependency, allosteric behaviour, thermal 

dependency and metal dependency, to investigate the roles of three residues Phe190, Leu193 and 

Val302 in the structure-function relationship of prolidases.  The experimental results were 

analyzed together with the molecular modelling to be shown as following. 

Substrate specificity towards hydrophobic Xaa-Pro dipeptides was determined by Leu193 

and Val302.  Especially Leu193 showed more influence on prolidase's substrate specificity 

shown by the several facts: the substitutions of Leu193 by charged residues improved the 

prolidase's preferences towards the dipeptide substrates which had opposite charge to the mutated 

residue; the V302D mutant took both anionic Asp-Pro and cationic Arg-Pro as substrates, due to 

its interactions with neighbouring cationic residues Arg293 and His296 which generated a 

hydrophilic substrate binding site.  The close location of Val302 to Arg293 was then suggested 

to cause the loss of allosteric behaviour in the kinetic studies of prolidase.  This finding proves 

that Arg293 is a key residue in the allosteric behaviour by constituting the allosteric region with 

the loop structure.  The catalytic efficiency was influenced by both Leu193 and Val302 

mutations, with Val302 having more effect on it.  This was because the location of Val302 was 

nearer to His296 than that of Leu193, and His296 was proposed to be involved in the catalytic 

centre as the proton acceptor.  Because His296 would lose its capability of being a proton 

acceptor when it became protonated at pHs lower than 6.0, wild type prolidase lost the activity at 

these pHs.  However, the mutated prolidases were observed to have extended working pH 

ranges towards the acidic conditions compared to the wild type, indicating that the catalytic role 

of His296 was retained at lower pHs in these mutants through interactions with charged 

substituted residues at the S1 site.  Furthermore, the changes of pH ranges were observed in the 
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comparisons within each mutant prolidase in the presence of different charged substrates.  It was 

suggested that the positively charged substrate would also influence the electrostatic form of 

His296 and thus would affect the catalysis of prolidases.  
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7 FUTURE RESEARCH 

Currently the functions of the loop structure are being investigated by Dr. Tanaka's research 

group to elucidate more details of the catalytic mechanisms and to modify L. lactis prolidase for 

the debittering applications.  The mutations on the loop, including substitution, deletion or 

addition, would be considered to examine the interactions of the loop to other residues in the 

prolidase structure.  It will clarify how this loop structure is involved in the allosteric behaviour, 

substrate inhibition, and other kinetic characteristics.  Also the role of His296 as the proton 

acceptor in the catalysis of prolidase will be elucidated via more direct experiments focusing on it.  

These results will be combined to develop mutant prolidases that are efficient to remove the 

bitterness.   
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APPENDIX A  

JUSTIFICATIONS OF STATISTICAL MODELS 

Applicability of ANOVA Model in the Study of Substrate Specificity 

The plots checking the ANOVA model were shown in Figure A-1.  The first plot (top left) 

showed no pattern of the scattering points, approving the most important assumption of 

constancy of variance.  According to the assumption of normal distribution of errors, the normal 

QQ plot (top right) should be a straight-line between standardized residuals and theoretical 

quantiles.  However this plot appeared in a long-symmetric shape, which deviated from the 

straight line at two ends (Verzani, 2005).  The residuals were well distributed in the 

Scale-location plot (bottom left).  The Constant-leverage plot (bottom right) also showed the 

evenly distributed residuals versus factor levels.  In a conclusion, the assumptions of ANOVA 

model were generally satisfied.  So the results obtained from the nested ANOVA model could be 

employed for interpretations of the substrate specificity. 

Applicability of Statistical Models in the Study of pH Dependency 

To check the assumption of the GAM model, the significances (p-values) of several 

parameters were analyzed, such as smooth terms, values of R-squares and explained deviances 

from the GAM models of the research objects (Table A-1).  All the smooth terms were 

significant with p-values smaller than 0.001 (merited three asterisks), and the values of R-squared 

and explained deviance were close to 1, indicating good model-fittings.   

The applicability of the ANOVA model was checked by plotting (Figure A-2).  The first 

plot displayed a scattering pattern of several perpendicular lines, and the points of residual versus 

fitted were evenly distributed on both sides of the horizontal line.  This distribution was 

acceptable for the assumption of constancy of variance.  In the normal QQ plot, the residuals   
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Figure A-1 The plots to check the ANOVA model assumption in the study of substrate 

specificity. 
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Table A-1 Summaries of GAM models in the study of pH dependency. 

 
p-value 

LE.LP LE.RP LR.DP LR.LP VD.DP VD.LP VD.RP WT.LP WT.RP 

s (pH) <2e-16*** <2e-16*** 3.73e-06*** <2e-16*** 2.81e-16*** <2e-16*** <2e-16*** 6.7e-10*** <2e-16*** 

R
2
 0.987 0.985 0.714 0.99 0.965 0.989 0.973 0.904 0.988 

Deviance 

explained 
99.10% 98.90% 78.20% 99.30% 97.50% 99.20% 98.10% 93.20% 99.10% 

Significant codes: *** P <0.001, ** P <0.01, *P < 0.1.  

 

 

  

 

9
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Figure A-2 The plots to check the ANOVA model assumptions in the study of pH dependency 
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and theoretical quantiles generally formed a straight line, which was the sign of the normal 

distribution of errors.  The scale-location and leverage plots both exhibited evenly distributed 

residuals.  In a conclusion, the ANOVA model appropriately fitted the slope data and its results 

were useful to interpret the results from the study of pH dependency.
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APPENDIX B 

STATISTICAL ANALYSES 

The Bwplots of Relative Activities to Different Substrates 

The relative activities to different substrates were plotted statistically for each enzyme in 

bwplots using ANOVA model, having the activity to substrate Leu-Pro as 100% (Figure B-1).  

The relative activities of mutant were compared with that of WT to a certain substrate.  The 

numerous differences were calculated from these plots by taking a difference between mean 

activity of a mutant to a substrate and that of WT to the same substrate.  The results are 

concluded in Table 5.3-2.   

The Coplots of Relative Activities vs. pHs for Prolidases 

The coplots were calculated using the GAM model in the R software, showing the statistical 

regression on prolidases' activities versus pH values in the presence of substrate Leu-Pro (Figure 

B-2) or Arg-Pro, Leu-Pro and Asp-Pro (Figure B-3).  These statistically generated regression 

curves of activities versus pHs (Figure B-2 and B-3) were in accordance to the estimated 

bell-shaped curves (Figure 5.3-3).  The slopes of the regression curves for each 0.5 increment 

(Table 5.3-3) were calculated out of these coplots, and were used to compare the effects of pH 

changes among enzymes and substrates. 

The Slopes of the Regression Curves of Enzymes' pH Dependency 

Each little box in the boxplot (Figure B-4) represented the slopes of activity changes 

between pH 5.0 and pH 5.5 in a mutated prolidase, with the middle line referring to the average 

value.  The differences of the activity changes between prolidases were then calculated using the 

mean values of the slopes.  And some results are presented and discussed in section 5.3.2.    
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Figure B-1 The bwplots of activities versus substrates in different enzymes. 

Enzymes are shortened as: “LE”, L193E; “LR”, L193R; “LT”, L193T; “VD”, V302D; “VDLE”, 

L193E/V302D; “VDLR”, L193R/V302D; “VK”, V302K; “VT”, V302T; “WT”, wild type 

prolidase.  Substrates are shorten as: “DP”, Asp-Pro; “EP”, Glu-Pro; “GP”, Gly-Pro; “KP”, 

Lys-Pro; “LP”, Leu-Pro; “PP”, Pro-Pro; “RP”, Arg-Pro; “VP”, Val-Pro.   
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Figure B-2 The coplot of non-linear regression curves of prolidases with substrate Leu-Pro. 

Each panel of the coplot depicts the activities of a prolidase at different pHs using 2 mM Leu-Pro 

as the substrate. 

Symbols interpretations: “LE”, L193E; “LR”, L193R; “LT”, L193T; “VD”, V302D; “VK”, 

V302K; “VT”, V302T; “WT”, wild type prolidase.  

 

LE 

WT 

VT VK VD 

LT LR 
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Figure B-3 The coplot of non-linear regression curves of prolidases with different 

substrates. 

Each panel of the coplot depicts the activities of a prolidase at different pHs using 2 mM Leu-Pro, 

Arg-Pro or Asp-Pro as the substrate. 

Symbols interpretations: “LE.LP”, L193E to substrate Leu-Pro; “LE.RP”, L193E to substrate 

Arg-Pro; “LR.DP”, L193R to substrate Asp-Pro; “LR.LP”, L193R to substrate Leu-Pro; 

“VD.DP”, V302D to substrate Asp-Pro; “VD.LP”, V302D to substrate Leu-Pro; “VD.RP”, 

V302D to substrate Arg-Pro; “WT.LP”, wild type prolidase to substrate Leu-Pro; “WT.RP”, wild 

type prolidase to substrate Arg-Pro.  

LE.LP 

VD.RP 

VD.LP VD.DP LR.LP 

LR.DP LE.RP 

WT.RP WT.LP 
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Figure B-4 The boxplot of ANOVA analysis on slopes of the non-linear regression curves of 

enzymes' pH dependency in the range of pH 5.0~5.5. 

Symbols interpretations: “LE.LP”, L193E to substrate Leu-Pro; “LE.RP”, L193E to substrate 

Arg-Pro; “LR.DP”, L193R to substrate Asp-Pro; “LR.LP”, L193R to substrate Leu-Pro; 

“VD.DP”, V302D to substrate Asp-Pro; “VD.LP”, V302D to substrate Leu-Pro; “VD.RP”, 

V302D to substrate Arg-Pro; “WT.LP”, wild type prolidase to substrate Leu-Pro; “WT.RP”, wild 

type prolidase to substrate Arg-Pro.  
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