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ABSTRACT 

 

  The general objectives of this study were to determine the impact of varieties and 

processing methods on the physiochemical, nutritional and molecular structural characterist ics 

of CDC oat grain, as an alternative to barley grain in dairy cows diets. In the first study, three 

CDC varieties of oat, CDC Nasser (feed type), CDC Arborg and CDC Ruffian (milling type), 

were used and compared to CDC Austenson barley grain (feed type). In the second study, 

commercial oat and barley were tested, the oat was processed using three different methods 

(dry-rolling, steam-flaking, and pelleting) while barley was dry-rolled. In studies 1 and 2, the 

chemical profile, energy value, rumen degradation kinetics of nutrients, hourly effective rumen  

degradation ratios/potential N-to-energy synchronization, and intestinal digestion of nutrients 

were analyzed, the truly absorbed protein supply to dairy cattle and feed milk values were 

evaluated using on the DVE/OEB system and the NRC Dairy model, and the protein molecular 

spectra were analyzed. In study 3, the samples from different processing methods were used in 

a dairy trial, to evaluate production and milk composition as well as metabolic parameters, such 

as blood BHBA and urea. In study 1, CDC Nasser showed significantly higher percentage of 

EE in relation to the other varieties of oat. Degradation of starch and CP in the rumen was 

higher for all varieties of oat when compared to barley. On the other hand, starch, sugar, and 

NFC content were higher for CDC Austenson barley grain, that also showed the highest bypass 

CP and starch. No significant difference was observed between CDC Nasser and CDC 

Austenson barley on total digestible nutrients (TDN1x), net energy for lactation (NEL) and 

intestinal digestibility of bypass CP (dBCP). In study 2, heat processing (steam-flaking and 

pelleting) increased EE (P<0.01) and tended to decrease uNDF (P=0.09). Steam-flak ing 

increased (P=0.04) the total digestible nutrients (TDN1x), ME, and NEL and increased (P<0.01) 

rumen bypass CP (%BCP). Rolled barley showed the lowest (P=0.03) metabolizable protein 

(MP) and degradable protein balance (DPB) (P<0.01) among the studied treatments. Processing 
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methods did not significantly change the protein molecular structure of the oat treatments, 

making the protein related structures hard to separate using PCA or HCLA. In the third study, 

cows fed dry-rolled oat had the lowest DMI, while increased (P<0.01) milk production 

compared to all other treatments. Milk fat percentage was also higher (P<0.01) for rolled-oat 

when compared to pelleted oat and rolled barley. Acetate concentration in the rumen was lower 

(P<0.01) for cows fed pelleted oat (-3.95 mM). Digestibility of starch was higher for oat grain 

(P=0.05). Based on the data presented by this research, oat grain can be suitable as an energy 

concentrate for lactating dairy cows in total mixed rations. 
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1. GENERAL INTRODUCTION 

 Oat comes from the genus Avena that has approximately 22 species, but the most 

prevalent one is Avena sativa, which is the principal cultivated species in the world (Hareland 

and Manthey, 2003). In Canada, oat was the most important grain until the 1920’s but decreased 

in popularity once the horse was replaced by machines, and nowadays is the third most 

important grain cultivated nationally, coming behind only of wheat and barley (Small, 1999; 

Statistics Canada, 2018). In the last decades, the production of oat has been declining, but 

studies conducted all over the world have shown the potential of oat to replace barley as a feed 

grain in cattle production systems which prompted the development of new varieties of oat with 

different nutritional characteristics (Fuhr, 2006; Zalinko, 2014). 

 The common practice of feeding cereal grains to cattle in North America arises from 

the need to supply enough energy for this high producing animal, especially in places where 

the winter reaches very low temperatures. In Canada, the largest single cost of production facing 

dairy operations is feed, after the costs with quota. The increasing price of barley grain in 

western Canada continues to lead farmers to look for an alternative feed grain for dairy cows, 

in order to reduce feed costs. Lactating dairy cows require a substantial amount of energy to 

keep a high level of milk production while maintaining normal body processes and physiology 

(NRC, 2001). In Canada and the United States, common cereal grains fed to dairy cows includes 

barley, corn, wheat or oat because they are a practical and cost-effective source of energy. 

However, different cereal grains have unique physicochemical characteristics, which impact 

the degradation kinetics in the rumen and its intestinal digestion (Herrera-Saldana et al., 1990). 

For this reason, it is important to know the nutritional value of each grain and its behaviour in 

the gastro-intestinal tract of dairy cows. 

 Despite the large use of cereal grains as concentrate for ruminants, the rapid degradation 

in the rumen can lead to digestive disorders, an imbalance between protein breakdown and 
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microbial protein synthesis, which can lead to higher nitrogen excretion, and not enough protein 

and starch bypassing the rumen and being digested in the small intestine (Herrera-Saldana et 

al., 1990). One way to control this problem and increase the passage rates of nutrients to the 

small intestine is through processing methods (Chrenkova et al., 2018). 

Processing methods can vary depending on the temperature, time, pressure, and 

moisture that is added, as well as the conditions that the feed was subjected to while in 

processing can change drastically its effect on ruminants. Rolling is normally used for cereal 

grains to disrupt the hull and expose the groat to microbial degradation in the rumen (Moran, 

1986). To combine feed ingredients, make a mash easier to handle and reduce the number of 

fine particles, the method of pelleting can be used (Muramatsu et al., 2015). Steam-flaking can 

disrupt the protein-starch matrix and increase starch digestibility which leads to an increase in 

milk production and feed efficiency in dairy cows (Kokic et al., 2013).  

 In order to formulate balanced diets to ruminants, the chemical profile and the 

nutritional value of the feed ingredients need to be assessed. Methods for determining nutrit ive 

value includes chemical analysis, in situ rumen degradation kinetics, and intestinal digestion 

using the in vitro protocol of Calsamiglia and Stern (1995), as well as modeling systems such 

as the Cornell Net Carbohydrate and Protein System (CNCPS) and the Dutch DVE/OEB model 

(Tamminga et al., 1994; 2011). These methods have been studied for several years and deemed 

reliable, but they can be very time-consuming and several of these methods result in the 

destruction of the feed sample after analysis. To address these issues, a novel approach has been 

developed in order to study to reveal the chemical composition and structural make-

up/conformation of a feed. Vibrational Fourier transform infrared molecular spectroscopy 

(FTIR) can be used to reveal the molecular structures and several studies have shown the 

relationship between molecular structure and nutrient utilization in ruminants (Yang et al., 

2014). 
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The literature review (Chapter 2) in this study includes the global and nationa l 

production of oat, its place in Canadian history, as well as the studies that have been conducted 

to evaluate the use of oat grain as a part of the concentrate for dairy cattle nutrition and its 

impact on milk production. Feed processing methods and their impact on feed quality and 

nutritional value for ruminants are also described. The methods and techniques of feed 

evaluation, both conventional, such as chemical analysis, CNCPS model, DVE/OEB model, as 

well as the novel technique of molecular structure determination (FTIR), that can be used as a 

non-destructive and fast method, are described. 

The objectives of this project are to characterize and compare the physicochemica l, 

molecular structure, energy values, and molecular structure of different varieties of oat grain 

and compare different processing methods in oat grains, using barley grain as a control, and to 

compare different processing methods of oat grain in dairy cows production performance. As a 

hypothesis, we expect that different varieties of oat, feed processing treatments could impact 

the structural, physicochemical, and nutritional characterization of oat grain grown in western 

Canada and affect nutrient utilization and availability to dairy cows. 



4 
 

2. LITERATURE REVIEW 

 

2.1 Oat grain production in Canada 

 

The exact location of origin of oat (Avena sativa) is yet to be identified, with some 

authors pointing to the Mediterranean area, while others believe this whole crop came from 

Europe. Oat was firstly introduced in Canada by European settlers. Up until the 1920’s, oat was 

the main cereal produced in Canada, mainly to feed horses and other livestock, but also for 

human consumption (Bracken, 1920; Small, 1999). With the increasing automatization of 

agriculture and less dependence on horses, the oat harvest area was decreased steadily through 

1970’s (Small, 1999). 

Oat is an important cereal grain with annual worldwide production projected for over 

22 million metric tonnes in 2018/19 worldwide (USDA, 2018). Canada, with an estimated 

production of 3.4 million metric tonnes from one million hectares in 2018/19, is the second 

largest producer in the world, only producing less than Russia (2018). Saskatchewan, Alberta, 

and Manitoba are the Canadian provinces with the highest production of oat grain, with 

Saskatchewan being responsible for over 49% of the oat production in 2018 (Hoover, et al., 

2003; Statistics Canada, 2018). This high production in Saskatchewan and the prairies is 

explained by the agro-climate characteristics of oat production.  

Oat thrives in cool, moist climates and are particularly sensitive to hot, dry weather from 

head emergence to maturity. The crop is adaptable to many soil types and produces better on 

acid soils than other small grains (Hoffman, 1995). In North America, north-central areas are 

best suited for oat production (Suttie et al., 2004). The long warm days and characteristic of the 

Canadian prairies coupled with adequate moisture levels and dark soil provides producers with 

ideal oat-growing conditions. Oat is mainly grown in spring in most parts of the world, and in 

North America, where winters are long and harsh, short season maturing oat varieties are 
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usually grown and oat are seeded early, usually at the end of May (Suttie et al., 2004; Ziesman 

et al., 2010). 

 

2.2 Cereal grain for dairy cattle nutrition 

 High producing dairy cows require substantial amounts of energy for maintenance, milk 

production, fetal development, and growth (NRC, 2001). Cows being raised in milk ing 

production systems require an adequate supply of amino acids and glucose that can usually be 

accomplished using high amounts of concentrates in their rations. In North America, is a 

common practice to feed concentrates to dairy cows. The main purpose of concentrates is to 

increase animal performance compared to feeding forage-based feed alone and increase the 

economic return to dairy farmers since the price of grain relative to forage can be lower.  

 In western Canada and the United States, dairy cows’ diets usually contain corn, barley 

or oat grain as a concentrate because they are a cost-effective source of digestible energy 

(Gozho and Mutsvangwa, 2008). Cereal grains differ in their physicochemical properties and 

rumen degradation patterns (Herrera-Saldana et al., 1990), which results in different nutritiona l 

characteristics and feeding value for dairy cows. Knowledge of the unique properties of cereal 

grains and how they impact the production performance of dairy cows are of paramount 

importance when formulating diets for a dairy production system. 

 

2.2.1 Barley grain 

 In western Canada and in the United States, barley is widely used as an energy source 

for cattle. Studies usually compare the use of barley to the use of corn grain, since both grains 

are commonly used to feed high producing cows. Differences in the nutritive value of barley 

and corn can be attributed to the lower starch and higher fiber content of barley: the starch and 

NDF content in barley has been reported to be 64.3 and 19.5 %DM, respectively, while corn 
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values were 75.7 and 9.3 % DM, respectively (Herrera-Saldana et al., 1990). Although corn is 

considered a superior cereal grain to feed to cattle, there are reports of similar animal production 

performance using barley grain (DePeters and Taylor, 1985; Khorasani et al., 2001; Yang et al., 

1997). A meta-analysis by Ferraretto et al. (2013) reported that cows fed corn grain-based diets 

produced on average 2.5 kg of milk more than cows fed diets containing barley grain, but the 

milk fat %, protein % and feed efficiency (milk yield/DMI) did not differ between treatments. 

 Barley grain has showed similar values or advantages compared to other concentrates 

fed to dairy cows. In a study conducted in Sweden, researchers substituted barley (high starch 

diet) for fodder beets and raw potato in a proportion of 80:20 (high sugar diet) and found that 

cows fed the barley grain-based diet produced 1.6 kg of milk and 2.3 kg of energy corrected 

milk (ECM) more than cows fed beats and potatoes, although the researchers have attributed 

the lower production to decreased silage intake (Eriksson et al., 2004). Sun and Oba (2014) 

found no difference in milk or fat production when substituting barley grain with wheat DDG’s 

at a 17% diet inclusion level. 

 

2.2.2 Oat grain 

 The total world production of oat has been declining for decades. In the 1960’s world 

oat production was estimated at 49.6 MMT (Hoffman, 1995) and it declined more than 55% to 

this day, which explains the small number of studies that were conducted to assess the effect of 

feeding oat grain on the production performance of dairy cows. The great majority of studies 

published focused comparing oat to other grains in complete rations (Fisher and Logan, 1969; 

Fuhr, 2006; Gozho and Mutsvangwa, 2008; Martin and Thomas, 1988; Moran, 1986; 

Tommervik and Waldern, 1969; Yu et al., 2010) or as a supplement for cows on pastures 

(Valentine and Bartsch, 1989). Some studies have focused on naked oat (Fearon et al., 1998; 
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Fearon et al., 1996; Petit and Alary, 1999), while others have focused on the protein or fat 

content (Ekern et al., 2003; Schingoethe et al., 1982). 

 In a study conducted in Norway, Ekern et al. (2003) produced two different concentrates 

with the same concentration of ingredients, replacing the barley grain of the first concentrate 

by normal oat grain. The concentrates were given as pellets with wilted, formic acid silage (fed 

almost at ad libitum), beetroot, and ammonia-treated straws. As for production performance, 

cows in the oat-based diet produced more milk when compared to cows fed barley grain (26.2 

and 23.6 kg/d), respectively. Fat and lactose yield did not differ between treatments, but fat % 

was 6.4 g/kg higher in barley fed cows. ECM did not differ between treatments. Despite the 

authors not statistically analyzing the intake of the animals in the trial, the fat content of the 

oat-based diet was much higher than the barley-based one. The higher amount of fat was pointed 

by the authors as the reason for the higher production of milk by cows fed the oat-containing 

diet. 

 In a study conducted in Canada, Fuhr (2006), studying the replacement of CDC Dolly 

barley grain with Derby oat or a low lignin hull-high oil groat oat (LLH-HOG), conducted an 

experiment with nine lactating Holstein cows in a triple replicate 3x3 Latin square design and 

fed them diets as TMR, with grains making up to 33% of the diet. The production trial found 

no significant difference in dry matter intake (DMI), milk production and 3.5% fat corrected 

milk (FCM) although milk yield tended to be higher (P=0.08) for cows fed LLH-HOG oat grain 

when compared to barley grain (42.1 and 40.0 kg/d), respectively. 

In a more recent study, Gozho and Mutsvangwa (2008) assessing the performance of 

dairy cows fed a total mixed ration (TMR) containing barley, oat, corn or wheat grains as the 

main source of dietary carbohydrates reported no differences in DMI and milk yield for all four 

treatments. FCM and percentages of fat, protein, and lactose were similar between barley and 

oat fed cows, even though oat-based diets contained 0.6 kg less grain than barley-based diets. 
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2.3 Cereal grain processing techniques 

 Cereal grains can be processed to increase their digestibility, increase the degradation 

in the rumen by disrupting the fibrous hull and allowing microbial attachment and degradation 

(Zalinko, 2014) or to enhance the intestinal digestibility of starch that escapes the rumina l 

degradation (Safaei and Yang, 2017). Processing methods can be physical or chemical and can 

be done using several settings of temperature, pressure, and moisture. The type of processing 

to be utilized depends on the type of grain to be fed since different cereal grains possess physical 

differences in the outer layer of grain kernels and in the different endosperms of cereal grains 

(Hoseney, 1994). 

 

2.3.1 Rolling 

 Dry rolling is a mechanical process that involves passing the grain between two steel 

rotating rolls that are usually grooved in their surface. The two rollers may operate at different 

speeds, depending on the function and pre-established settings. The higher the speed, the greater 

the force applied to the grain (McKinney, 2006). Grains passing between the rollers are sheared 

to break open. It is ideal to control the extent of processing when roller milling feeds for cattle, 

the processing needs to do enough damage to the outer layer of the grain to allow an easier 

attachment and degradation by the ruminal microbes while avoiding extensive processing of 

the kernel, which could produce smaller particles that can rapidly increase rumen degradation 

and contribute to rumen acidosis (Safaei and Yang, 2017). 

 The dry-rolling process is very efficient in increasing surface area for degradation and 

digestion, but it only partly breaks the protein matrix and it is not effective in gelatinizing the 

starch portion of a feed (Millen et al., 2016). Several studies described the advantages of feeding 

rolled grains instead of whole grains to cattle (Moran, 1986; Morgan and Campling, 1978; 



9 
 

Nordin and Campling, 1976; Toland, 1976; Valentine and Wickes, 1982). Oat grain has a higher 

proportion of hull to groat compared to barley, but the pericarp of oat grain is not tightly adhered 

to the endosperm as barley grains (Zalinko, 2014). This observation corroborates the ideas of 

Morgan and Campling (1978) that, when feeding young cows (less than 2 years of age), the 

benefits of rolling oat grain are unlikely to be worth the processing cost, since the higher degree 

of chewing shown in young animals can damage the hull easily and provide an entrance for 

microbes to attack the groat. 

 

2.3.2 Flaking 

Steam flaking is the process of steaming whole grains, to allow at least 5% moisture 

uptake (Zinn et al., 2002), and subsequently rolling it into a flake. The two different methods 

of steam flaking are related to the pressure of steam applied in the grain. The low-pressure 

method of steaming exposes the grain to low-pressure steam for 30 to 60 minutes, maintaining 

the temperature between 95 to 99°C. The high-pressure method submits the grain to a pressure 

of 3.5 kg/cm² for approximately 3 minutes and subsequently allowing it to cool to 95°C before 

rolling (Boyles et al., 2000). 

The quality of steam flaked grains is usually based on physical measurements, such as 

flake thickness (mm), flake density (kg/L), or measures of the starch content, like starch 

solubility and enzyme reactivity, and can be largely different depending on the pressure applied, 

the time inside the steam chest and the roller gap (Zinn et al., 2002). The extent of processing 

increases as the flake density decreases and a flake density of 0.32 to 0.39 kg/L was suggested 

to be the optimal (Plascencia and Zinn, 1996). 

Several studies researched the impact of steam-flaking grains on ruminant performance, 

although very few studies have analyzed the impact of this processing method in oat for dairy 

cattle. Steam-flaking is shown to increase the digestibility of starch in the rumen, and, enhances 
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the extent of starch digestion in the small intestine (Firkins et al., 2001; Safaei and Yang, 2017). 

This increase in starch utilization is usually related to the improved feed efficiency seen for 

feedlot cattle fed steam-flaked grains (Theurer et al., 1999). Zinn et al. (2002) reviewing several 

studies showed that steam-flaking corn can increase the net energy for gain (NEg) between 4.5 

and 27.2%, when compared to dry processing. Qiao et al. (2015) observed that steam flaking 

rice grain increased the ME, NEm and NEg 0.76, 0.66 and 0.59 MJ/kg of DM, respectively. In 

dairy cows, steam-flaking of corn and sorghum was previously shown to increase milk 

production, increase the flow of microbial protein to the duodenum, but slightly decreased milk 

protein and milk fat percentage (Firkins et al., 2001; Yu et al., 1998). 

 

2.3.3 Pelleting 

Pellets are an agglomerate of ground single feed ingredients or combinations of several 

ingredients that by the use of mechanical pressure, moisture and heat, are bound together 

(Muramatsu et al., 2015). To make the pellet, the mash of feeds is forced through holes (die) in 

a metal plate and cut at the preferred length. Pelleting is performed in a wide range of 

conditioning temperatures and can be accomplished with or without the application of steam. 

Pellets can be done in a dry-conditioning (at 20-25°C) or heated (usually from 60-90°C). 

Pellets must endure packing, transportation and handling on the farm without producing 

too many fine particles. The quality of a pellet is determined mainly by its ability to withstand 

handling without fragmentation or abrasion that would generate fine particles (Muramatsu et 

al., 2015). Pellet durability index (PDI) is the main parameter for determining pellet quality, as 

the PDI indicates the percentage of pellets that stay intact after physical testing. There are many 

methods to measure PDI: the tumbling box test, where intact pellets are placed in a box and 

tumbled for 10 minutes before the percentage of intact pellets and fines are measured with a 

sieve; Holmen pellet tester, where pellets are moved through tubes using high-velocity air, to 
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mimic the handling process (Behnke, 2001). Other factors that influence directly the quality of 

the pellet is particle size, moisture addition, fat inclusion and conditioning (Briggs et al., 1999; 

Muramatsu et al., 2015). 

 Previous studies described the benefits of feeding pelleted grain to cattle. In an early 

study, Bishop et al. (1963) found higher milk yield, similar protein and fat percentage for cows 

fed a pelleted concentrate instead of a meal made from the same ingredients. Gozho et al.  

(2008), studying dry-rolled vs. pelleted barley grain for lactating dairy cows, reported lower 

DMI, similar milk yield, but lower fat percentage for cows in the pellet-based diet. Keyserlingk 

et al. (1998) showed a higher value of milk yield for lactating Holstein cows fed a pelleted 

concentrate compared to a textured one, but similar fat suppression was observed. In both 

studies that observed fat depression, the fat yield was not affected, despite the fat percentage 

being lower, as a result of the increased milk yield. Keyserlingk et al. (1998) attributed the 

increase in milk yield to the higher DM and CP degradation in the rumen, which may have 

allowed higher microbial protein production and thus increased milk yield. 

 According to Behnke (1994), the improvement in animal performance when fed pellet 

diets instead of meals, is mainly due to the decrease in food waste (accomplished by the 

reduction in fines), reduction in selective feeding, decreased ingredient segregation, destruction 

of pathogens, improved palatability and thermal modification of the starch and protein. 

 

2.4 Impact of processed grains in dairy cattle performance 

 The tradition of leaving cattle to graze in the fields with little or no supplementation of 

grain or other concentrates is no longer a common practice in North America. With the 

increasing world population demanding more available resources, the efficiency of production 

systems had to increase. Today, high animal performance and production requires larger 

amounts of feed concentrate that will supply the animal with the required amount of energy. 
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However, to minimize the costs of feeding concentrates to dairy cows while maximizing the 

digestibility and energy availability of grains, proper processing is required (Zalinko, 2014). 

 

2.4.1 Milk yield and composition 

There is considerable interest in increasing milk yield without decreasing the fat yield, 

mainly due to the prices of milk in Canada being based on fat content. Processing methods can 

affect milk production by changing the rate, extent, and site of digestion of cereal grains 

(Chrenkova et al., 2018; Firkins et al., 2001). Pelleting concentrates before feeding it to dairy 

cows has been shown to increase milk production but causes depression in milk fat (Gardner et 

al., 1997; von Keyserlingk et al., 1998). The observed pattern in milk fat depression when 

feeding pellet concentrates to dairy cow can be attributed to ruminal fermentation changes that 

result in a decrease in ruminal pH and changes in the biohydrogenation pathways, that can lead 

to an accumulation of inhibitors of de novo of SCFA in the mammary gland, like C18:1 and 

conjugated linoleic acid isomers (Gozho et al., 2008). 

 Lactating dairy cows supplemented with steam-flaked corn showed a decrease of 1.3 kg 

in DMI and an increase of 3.1 kg in milk production, while maintaining milk fat yield similar 

to cows supplemented ground corn in a diet containing a mix of ryegrass and corn silage (Cooke 

et al., 2008). The higher milk yield in cows fed steam-flaked grains is attributed to higher 

digestion of starch in the rumen, that would lead to increased absorption of nutrients availab le 

to the mammary gland (Theurer, 1986; Theurer et al., 1999; Yu et al., 1998). Zhong et al. (2008) 

found similar production of milk and fat for cows fed finely ground or steam-flaked corn, 

despite the higher total-tract digestibility of steam-flaked corn, which might bring up the 

question of the possible role intestinal digestion of starch plays in increase milk yield. 
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2.4.2 Ruminal parameters 

 Several studies reported the impacts of processing grains on the ruminal parameters of 

cows. Not only the processing of the grain impacts pH in the rumen but the extent and method 

of processing will also have an effect. Yang et al. (2000) noticed that despite not finding 

significant statistical difference among coarse, medium, medium-flat and flat-rolled barley, the 

hours during which ruminal pH was below 5.8 linearly increased with decreasing processing 

index (PI %). The effect of pelleting concentrates on ruminal pH is inconsistent throughout the 

literature. Dos Santos et al. (2011) reported higher ruminal pH when pelleted concentrates were 

offered as opposed to ground concentrate and hypothesized that increased release of fat in the 

rumen by pelleted concentrates might be the cause of higher ruminal pH. This hypothesis is 

supported by experiments done with beef cattle, where steers fed high-fat blended pelleted 

products had a higher ruminal pH when compared to high starch pellets (Zenobi et al., 2015). 

On the other hand, Gozho et al. (2008) reported lower ruminal pH for cows fed pellet barley as 

opposed to ground barley, but in this case, diets were already being supplemented with canola 

or flax seed. 

 Ammonia arises from the catabolism of dietary nitrogenous compounds, and in the 

presence of fermentable energy, this ammonia can be used to synthesize microbial protein 

(Rodriguez et al., 2007). Ammonia that is not used for microbial growth can overflow from the 

rumen to the liver, where it will be used to synthesize urea, an energetically costly reaction. 

Ekinci and Broderick (1997), studying the possibility of feeding ground high moisture ear corn 

to dairy cows, reported depressed ruminal NH3 for cows fed the ground-corn diet, and another 

study by Rust et al. (1980) reported the same depression effect in cows fed steam-flaked corn. 

The higher digestibility of processed grains most likely contributed to a more extensive 

degradation of carbohydrates in the rumen, which is positively correlated to the sequestration 

of ammonia into microbial protein (Chibisa et al., 2015; Russell et al., 1992; Theurer, 1986). 
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 The concentration of SCFA in the rumen can also be impacted by the processing method 

used on the feed. Ekinci and Broderick (1997) found lower acetate, acetate to propionate ratio 

and higher propionate for ground corn when compared to whole corn. On the other hand, 

Knowlton et al. (1998) did not find significant difference between corn ground with a 6.4 mm 

screen in a hammer mill or corn rolled in a roller mill with an initial gap of 0.58 mm, on SCFA 

concentration in the rumen.  

 

2.4.3 Digestibility 

 The digestibility and site of nutrients digestion can also be impacted and altered by 

processing, and the effect can depend on whether the grains were submitted only to physical 

processing or to thermal processing. The damage made on the hulls of cereal grains is enough 

to increase the digestibility of the grains for dairy cows. Grinding grain with a hammer mill 

reduces the particle size and increases the surface area that bacteria can attach and degrade. 

This makes the starch more easily digested by the microorganisms in the rumen and rate of 

starch digestion varies inversely with particle size (Dehghan-banadaky et al., 2007). The starch 

present in the fecal matter was decreased by 84% just by coarsely rolling oat grain (Moran, 

1986) and the apparently total-tract digestibility coefficient of organic matter and starch was 

increased by 0.167 and 0.490, respectively, when rolling barley and oat (Morgan and Campling, 

1978). 

 Thermal processing methods can add heat only or can be a combination of heat, 

moisture, and pressure. Submitting feeds to heat treatment without moisture can increase the 

potentially degradable fraction and the intestinal digestion of RUP, while decreasing the 

degradation rate in the rumen, depending on the heat intensity and the duration of the process 

(McNiven et al., 1994; Sadeghi and Shawrang, 2007). The application of moisture to heating 

processes can increase the nutritive value of a feed by increasing the starch degradability, that 
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occurs due to starch gelatinization, that occurs when sufficient moisture is added to the grain in 

an adequate temperature. Different cereal grains posses different starch gelatiniza t ion 

temperatures. Starch gelatinization is a swelling process, in which the crystalline structure of 

the starch granules are broken and the amylose in the starch granule leaks out and solubilizes 

outside of the crystal, increasing viscosity (Kokic et al., 2013; Svihus et al., 2005). When steam-

flaking is used in cereal grains, the rumen degradable fraction of CP (RDP) was significantly 

reduced while the rumen undegradable CP (RUP) and the intestinal digestibility of RUP were 

increased (Chrenkova et al., 2018). Pelleting is another way to decrease the rumina l 

degradability of starch and CP while increasing the total-tract digestibility of CP and starch 

(Goelema et al., 1999), although some studies show that pelleting had no effect on apparent 

total-tract digestibility of grazing cows (Dos Santos et al., 2011). 

 

2.5 Feed evaluation methods 

 It is important to understand the nutritional value of a feed before offering it to 

ruminants, especially to high producing dairy cows that require specific nutrients and energy 

levels to maintain milk production, optimal fetal development and tissues maintenance (NRC, 

2001). The nutritive value of a feed is characterized by its nutrient and chemical composition, 

its nutrient flow through the gastro-intestinal tract and by its inherent molecular structure. To 

accomplish this evaluation, several methods and techniques can be used. 

 

2.5.1 Chemical analysis 

 Chemical analysis is a key component in determining the nutritional value of a feed for 

ruminants. This analysis usually involves the determination of several components, like dry 

matter (DM), organic matter (OM), carbohydrates (CHO), crude protein (CP), soluble CP 

(SCP), starch, and fiber. Several components of the chemical profile of a feed are determined 



16 
 

according to the official methods of analysis published by AOAC International (2005). The 

most widely used methods for determining the fiber portions of a feed are the extraction 

methods of Van Soest et al. (1991). 

The values of each of these components can be further used in the CNCPS model to 

predict protein and carbohydrate sub-fractions and their degradation rates and extent; and on 

the summative equations of the NRC 2001 model for prediction of energy content of feeds for 

dairy cattle. 

 

2.5.2 Cornell Net Carbohydrates and Protein System 

 In the 1990s a series of papers were published describing the CNCPS model in detail, 

outlining carbohydrate and protein digestion, microbial growth, amino acid supply and animal 

requirements (Fox et al., 1992; O’Connor et al., 1993; Russell et al., 1992; Sniffen et al., 1992). 

The CNCPS model was then created to allow diet formulation, considering the nutritiona l 

aspects of feeds available in production systems to enable the formulation of diets that would 

fulfill the animal’s requirements. By accounting for farm-specific characteristics, like 

management, feed ingredients composition and environment, the CNCPS model allows a more 

precise prediction of growth, milk production and nutrient excretion by cattle (Fox et al., 2004). 

To better address this objective, several updates were performed since the release of the 

first version in 1992, that aimed to improve the model’s prediction. Research data related to 

feed analysis, rumen function and metabolism have been incorporated in the mathematica l 

equations of the CNCPS model in the last 15 years. The CNCPS version 6.5 has been availab le 

since 2015 (Higgs et al., 2015; Van Amburgh et al., 2015) and it is extensively used in the 

industry to evaluate and formulate diets through software such as AMTS.Cattle (Agricultura l 

Modeling and Training Systems LLC, Cortland, NY) and NDS (Ruminant Management and 

Nutrition, Reggio Emilia, Italy). The version 6.5 was upgraded with new predictions of nutrient 
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requirements and supply, and changes in the feed library (Higgs et al., 2015; Van Amburgh et 

al., 2015). This use of CNCPS in the industry of several countries makes any improvement in 

the prediction of nutrient supply and animal requirement’s to the model important, not only for 

research development purposes but also directly impacts production on farm (Van Amburgh et 

al., 2015). 

 

2.5.3 Energy values 

 The quantification of the energy value of feeds and diets being offered to cattle is 

important to determine the amount of feed that needs to be offered daily. Energy is vital for 

tissue maintenance, growth, milk synthesis and gestation in dairy cows, so the careful 

assessment of the energy content, needs to be a part of diet formulation (Eastridge, 2002). The 

NRC 2001 model provides summative equations to predict the energy content of feeds for dairy 

cows, based on its chemical composition. In this model, the feed energy values are obtained 

using total digestible nutrients (TDN), determined from composition data rather than being 

experimentally determined (NRC, 2001). The TDN at maintenance is determined using the total 

digestible CP, NFC, FA, and NDF, according to the equation: 

TDN1x = tdNFC + tdCP + (tdFA x 2.25) + tdNDF – 7 

 Since the digestibility of diets in dairy cows decreases when DM intake is high, this will 

reduce the energy value of a diet as intake increases (NRC, 2001). This is particularly important 

to notice when feeding high producing dairy cows, that can have an intake up to 4 times higher 

than maintenance levels. For this reason, the NRC model for predicting energy values of diets 

uses a method to discount the digestibility when calculating digestible energy at a production 

level of intake (DEp). The energy required for maintenance and milk production in dairy cows 

is given by the net energy for lactation (NEL). 
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 When formulating a diet for cows, it is necessary not only to account for the energy 

requirements of the animal but also to adjust the requirements based on the level of activity, 

intake level and environmental stressors, such as temperature (Eastridge, 2002). 

 

2.5.4 In situ rumen degradation kinetics 

 The rate and extent of degradation of a feed in the rumen is of extreme importance for 

determining the nutritional value of a feed. Feed ingredients that have fast ruminal degradation 

can promote digestive disorders in the animal and lead to rumen fermentation disorders (Humer 

and Zebeli, 2017). On the other hand, feeds that have a slow degradation in the rumen might 

escape rumen degradation by the microbes and be digested in the small intestine, thereby 

improving glucose supply to the animal (Humer and Zebeli, 2017). There are two methods of 

determining this rate and extent of degradation in the rumen; either by determining the amount 

of a certain nutrient entering the abomasum or by incubating bags of feed in the rumen for a 

fixed duration of time (Ørskov and McDonald, 1979). 

 The rumen degradation kinetics determined using the nylon bag technique described by 

Damiran and Yu (2012) and the equation described by Ørskov and McDonald (1979), and 

modified by Tamminga (1994) has been proven to be a valuable method to predict the rate and 

extent of degradation of primary feed components, like DM, OM, CP, starch, and NDF. This 

method can be used to evaluate the degradation of a feed in the rumen and estimate the rumen 

bypass part of nutrients, which is important since dairy cows benefit from bypass CP and starch 

that can be digested in the small intestine (Humer and Zebeli, 2017; Rigout et al., 2002). 

 

2.5.5 Intestinal digestion 

 The protein that is digested in the small intestine is compromised in part of rumen 

undegradable CP (RUP) and of microbial protein synthesized in the rumen. The digestibility of 
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rumen bypass protein varies among feed ingredients (Gargallo et al., 2006). The in vivo 

methods of determining intestinal digestion of RUP are expensive and very labour demanding, 

and it required the used of surgically cannulated animals. For this reason, Calsamiglia and Stern 

(1995) developed an in vitro method of measuring intestinal digestibility of RUP. Later the 

methodology was updated by Gargallo et al. (2006). 

 This procedure of determining intestinal digestion using the in vitro technique was 

deemed a reliable procedure, that can be done routinely in the laboratory and results in a 

substantial reduction in labour and costs. Moreover, the close simulation that the technique 

produces, in addition to the ruminal degradation data of individual feed ingredients, can be used 

as quality control of feed and can determine the value of feed protein for ruminants (Calsamiglia 

and Stern, 1995). 

 

2.5.6 Prediction of truly digestible protein supply to the small intestine 

 Models for the prediction of truly digestible protein supply and feed milk values in dairy 

cows have been used for decades. Based on the characteristics of both systems, the efficiency 

of a feed can be calculated as the feed milk value (FMV), that represents the amount of milk 

produced for a given amount of feed DM intake. The Dutch system (DVE/OEB) and the NRC 

model are useful tools for predicting protein supply for dairy cows. The DVE/OEB system 

described by Tamminga et al. (1994, 2011) is used in several European countries, while in 

North America the NRC Dairy is used for research. Both models have similar principles but 

there are some differences in the concepts and factors used by each (Yang et al., 2013; Yu et 

al., 2003).  

 The Dutch system, established in 1991 and revised in 2011, was proposed as a way to 

improve the predictions of N loss due to an inappropriate intake of feed N and to better describe 

the digestion and metabolism of N in dairy cows (Tamminga et al., 1994). In this system, the 
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protein value of feeds and the requirement of dairy cows are indicated as the amount of CP that 

is truly digested and absorbed in the small intestine. The model is based on two main values: 

the DVE is the amount of true protein digested in the small intestine and is described as being 

composed of the amount of undegraded feed CP digested and absorbed in the small intestine as 

amino acids (DVBE), the microbial protein that flows from the rumen and is digested and 

absorbed in the small intestine (DVME), while subtracting the endogenous losses resulting from 

the digestion (DVMFE) (Tamminga et al., 1994). The degradable protein balance (OEB) shows 

the balance or imbalance between the microbial synthesis that would be possible from availab le 

rumen degradable CP and the synthesis that would be possible from energy extracted during 

fermentation in the rumen. When the OEB value is positive, it indicates loss of N from the 

rumen, while negative values indicate impaired microbial synthesis in the rumen due to a lack 

of available N (Yu et al., 2003). Several published studies have focused on using the DVE/OEB 

system in a North American context (Yang et al., 2013; Yu et al., 2003, 2004). 

 The NRC dairy system is a TDN based model, similar to the Dutch model in many ways, 

but differs in some concepts and in the factors used in equations. The metabolizable protein 

(MP) in the NRC model is defined as the true protein that is digested post-ruminally and 

absorbed in the small intestine (NRC, 2001). The degraded protein balance is calculated as the 

difference between the potential microbial protein synthesis based on rumen degraded feed 

protein and the potential microbial protein synthesized based on available energy (TDN) 

(Theodoridou and Yu, 2013; Yu and Racz, 2010). 

 

2.5.7 Vibrational Mid-IR molecular spectroscopy 

 Traditionally, infrared spectroscopy has been used for decades as an important 

analytical technique for research. This technology is applied in the areas of biology, physics, 

chemistry and has been proved effective for the area of food technology (Stuart, 2009). The 
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advantages of using infrared spectroscopy are many: the method can be applied in a wide range 

of samples in liquid, solid or gases state, it does not require the use of reagents, the acquisit ion 

of data is fast, it is cost-effective, the amount of sample required for the analysis is small and 

requires little to no processing (Stuart, 2009). In recent years, the acquisition of infrared spectra 

has been dramatically improved with the use of Fourier-transform infrared (FTIR) 

spectrometer. 

 Conventional methods of analysis such as chemical profile and protein and 

carbohydrates subfractions give us the information about the nutrient composition of a feed, but 

it cannot detect any inherent molecular structure characteristics. In recent years, it has become 

important to utilize vibrational FTIR molecular spectroscopy to reveal intrinsic molecular 

structural changes among feeds that will be used in high producing cows diets (Ismael et al., 

2018). This is mainly due to the knowledge acquired from previous studies that reported the 

correlation between protein and carbohydrate molecular structure profiles and the fermenta t ion 

feature and the feeding value of a feed for dairy cows (Yang et al., 2014; Zhang and Yu, 2012). 

 Different statistical approaches can be used to analyze the spectral data collected from 

the FTIR. The univariate molecular spectral analysis method consists in the evaluation of 

frequency and intensities of specific functional groups (peak height and area as well as their 

ratios). This type of analysis can be correlated to the chemical composition of a feed or the 

pattern of digestion. In the multivariate approach, multiple variables are analyzed at the same 

time to differentiate the samples and classify them. The most common multivariate analyses 

are Principal Component analysis (PCA) and Hierarchical Cluster Analysis (HCLA). The PCA 

is a statistical data reduction method that works by transforming the original data set into a new 

set of uncorrelated variables called principal components (PC). The purpose of PCA is to derive 

as small a number of linear combinations (PC’s) from the data set as possible, while maintaining 

as much of the original information as possible (Yu, 2005, 2007). The HCLA is a statistica l 
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method that searches for similarity in the IR spectra’s and agglomerates them into clusters that 

are displayed as dendrograms. Firstly, the HCLA calculates the distance matrix that contains 

information on the similarity of the spectra, and then the algorithm searches within the distance 

matrix for similar IR spectra (minimal distance between them) and combines them into a cluster 

(Yu, 2005, 2007). 

 

2.6 Literature review summary, overall research objectives, and hypothesis 

 2.6.1 Summary 

In Canada, the largest single cost of production facing dairy operations is feed, after the 

costs with quota. The increasing price of barley grain in western Canada continues to lead 

farmers to look for an alternative feed grain for dairy cows, in order to reduce feed costs. Oat 

(Avena sativa) was widely used in Canada since its introduction by European settlers as a feed 

for cattle and horses. In the 1920’s, with the replacement of horsepower by machines, oat started 

losing its place, being replaced by barley and corn. Nowadays, oat has a worldwide production 

of 22 MMT, and Canada is the second biggest producer in the world, with up to 90% of its 

production coming from the Prairie region. 

The question of whether oat can replace other grains as a feed for dairy cows was raised 

before. Grains such as corn and barley have higher starch and non-fiber carbohydrates when 

compared to oat, which means their energy value is higher than oat. However, previous studies 

conducted in Canada and other countries showed the potential of replacing barley for oat in 

dairy systems, especially when feed is offered as TMR. 

For animal feeding purposes, the highly ligneous hull of the oat grain needs to be broken 

or removed before feeding it to the animals, otherwise, a large amount of grain will resist 

degradation and digestibility and end up evacuated whole. However, the readily available and 

highly ruminal degradable starch present in the oat groat can lead to digestive disorders and an 
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imbalance between N availability and microbial synthesis in the rumen. In this case, processing 

methods can be used to reduce nutrient degradation in the rumen and allow higher amounts to 

bypass to the small intestine. 

To determine the nutritive value of a feed and have an idea of how a certain feed 

ingredient will behave in the animal’s digestive tract, several methods and techniques can be 

applied. The conventional methods of testing feeds can give information about the nutrit ive 

composition of a feed but will not detect the molecular structure characteristics that can be 

related to nutritive value and nutrient utilization. To understand the intrinsic molecular structure 

of oat grain, the vibrational FTIR molecular spectroscopy method can be applied. 

 

2.6.2 Project hypothesis 

In general:  

• Different varieties of oat and feed processing treatments will impact the structura l, 

physicochemical, and nutritional characterization of oat grain grown in western Canada. 

 

In details: 

• The developed CDC oat varieties (CDC Nasser, CDC Arborg, and CDC Ruffian) will 

possess distinct molecular structure and nutritional features compared to other oat and 

barley grain that are already in use in Canada. 

•  The developed CDC oat varieties (CDC Nasser, CDC Arborg, and CDC Ruffian) will 

have higher feeding value and increased digestibility compared to other oat and barley 

grain that are already in use in Canada. 

• The processing of CDC oat grain will increase nutrient availability and thus milk 

production and milk protein or fat yield compared to other oat and barley grain that are 

already in use in Canada. 
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2.6.3 Project objectives 

 Long-term:  

• To increase the economic return to dairy farmers and oat producers by exposing the best 

varieties of oat to be used as animal feed.  

• To help create new low-cost feeding strategies to introduce to highly productive dairy 

cow’s systems. 

• To improve milk quality and milk yield without degrading cow’s health effects through 

optimal processing and varieties selection. 

 

Short-term:  

• To characterize the physicochemical, molecular structure, study energy values, and 

describe nutrient composition using conventional research techniques for ruminant 

nutrition assessment: Compare CDC developed varieties of oat (Feed type vs. Milling 

type vs. Barley as a control) and compare the effects of different processing methods in 

oat grains (Raw vs. Flaking vs. Pelleting). 

• To study ruminal and intestinal degradation and utilization: Compare CDC varieties of 

oat (Feed type vs. Milling type vs. Barley as a control) and compare different processing 

methods in oat grains (Raw vs. Flaking vs. Pelleting). 

• To study the changes induced by the feed processing techniques in nutrient availability 

and ruminal digestibility in dairy cows: Compare CDC varieties of oat (Feed type vs. 

Milling type vs. Barley as a control) and compare different processing methods in oat 

grains (Raw vs. Flaking vs. Pelleting). 

• To identify the difference in feed milk value, nutrients availability, and intestina l 

digestibility: Compare CDC varieties of oat (Feed type vs. Milling type vs. Barley as a 
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control) and compare different processing methods in oat grains (Raw vs. Flaking vs. 

Pelleting). 

• Develop effective feeding strategies to implement CDC varieties of oat into high 

lactation dairy cow’s diet and compare different processing methods on milk production 

(Raw vs. Flaking vs. Pelleting). 
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3. IMPACT OF VARIETY AND GRAIN TYPE ON PHYSIOCHEMICAL, 

NUTRITIONAL, MOLECULAR STRUCTURAL CHARACTERIZATION AND 

DAIRY COW FEEDING VALUE OF OAT GRAIN IN COMPARISON WITH 

BARLEY GRAIN 

 

3.1 Abstract 

The high degradation ratio of protein and starch together with higher prices for barley grains 

are the leading factor in the search for an alternative grain as a concentrate for dairy cattle’s 

diet. Recently, new varieties of oat were produced for the feed and milling industry, but few 

studies have been conducted to evaluate what type of grain or variety could be potentially used 

in dairy cattle nutrition. The main objective of this study was to determine the nutritional and 

digestive characteristics and the protein related molecular spectral profiles of three different 

CDC varieties of oat grain [CDC Nasser (feed-type), CDC Arborg (milling-type) and CDC 

Ruffian (milling-type)] in comparison with CDC barley grain [CDC Austenson (feed-type)]. 

The results showed that Nasser had higher (P<0.01) EE compared to the other varieties. CP 

content was higher (P<0.01) for oat Arborg and Ruffian (15.78 and 14.34%DM), respectively, 

while starch and NFC content was higher (P<0.01) for Austenson barley (58.12 and 

65.88%DM), respectively. NDF and ADF were higher (P<0.01) for oat in comparison to barley 

grain, but Nasser oat and Austenson barley had similar (P>0.05) content of ADL (1.55 and 

0.80%DM), respectively, and uNDF (4.48 and 5.06%DM), respectively. NEL was similar for 

Austenson barley and Nasser oat (2.01 and 2.06 Mcal/kg), respectively. Nasser oat and 

Austenson barley also presented similarly lower values (P<0.01) for indigestible fiber (fraction 

CC) and total ruminally undegraded carbohydrate (TRUCHO) compared to the other oat 

varieties. Oat presented higher (P<0.01) values of effective degraded DM, OM, CP, and starch 

when taken in a percentage basis (%) when compared to Austenson barley grain. Barley also 
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had a higher (P<0.01) bypass fraction for CP and starch (25.44 and 14.20%), respectively. 

Nasser and Ruffian oat maintained the effective degradation ratio between available N and 

available OM close to the optimal level, 25 g of N/kg of OM, while Austenson barley showed 

low values for the first 4 hours of degradation. The microbial protein synthesized in the rumen 

based on available energy (MREE, DVE/OEB system) and the microbial protein synthes is 

based on available protein (MCPRDP, NRC model) were higher (P<0.01) for Austenson barley 

(105.59 and 198.64 g/kg of DM), respectively. Feed milk value (FMV) was also higher 

(P<0.01) for Austenson barley, evaluated by both NRC and DVE models. Univariate molecular 

analysis and principal component analysis (PCA) did not distinguish between Nasser and  

Ruffian oat in the whole amide spectra.  

 

3.2 Introduction 

Barley grain is among the main choices to feed livestock in western Canada, especially 

for dairy and beef cattle (Yu et al., 2010). However, barley grain has a high indigestible hull 

content and high rate of ruminal degradation of protein and starch which can cause digestive 

disorders and an imbalance between protein breakdown and microbial protein synthesis (Yu, et 

al., 2003). This results in unnecessary loss of nitrogen to the environment and decreased 

digestibility (Morgan and Campling, 1978). This metabolic imbalance, together with the high 

price volatility of barley in the market, can lead to serious economic impact on dairy farmers 

and production losses and has been the driving factor to seek alternatives to barley. 

Canada is the third biggest oat producer in the world, with an estimated production of 

3.7 million metric tons in 2017 according to Statistics Canada, with western Canada being the 

most important producer. This makes oat an important candidate to replace barley as an energy 

source for cattle. Although availability and price are attractive for feeding oat grain to cattle, 

this cereal tends to have a more fibrous hull and contains substantial amounts of indigest ib le 
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lignin (Arya, 2010), which can decrease metabolizable energy content (Fuhr, 2006). Recently, 

new varieties of oat produced by the Crop Development Center (CDC), University of 

Saskatchewan, Canada, have shown promise for usage in dairy farms. CDC Nasser was 

designed to produce a low-lignin hull with a high-fat content grain (similar to CDC SO-I); CDC 

Arborg is a milling variety with high-yield and high beta-glucan content; and, CDC Ruffian is 

a high-yield variety with a defensive stance against crown rust. 

Previous studies suggested that partial or total replacement of barley by oat in dairy 

rations can increase milk yield but can possibly lead to a decrease milk fat yield (Ekern et al., 

2003; Yu et al., 2010). However to increase the utilization of glucose present in oat for milk 

production, it is important to have some protein and starch escaping rumen fermentation and 

being digested in the small intestine (Noftsger and St-Pierre, 2003; Rigout et al., 2002). 

However, very limited research has been conducted to determine what variety of oat, milling 

or feed type, and what variety would best replace barley grain, in order to increase the feed milk 

value for high producing dairy cows. Therefore, the present study was conducted to test new 

varieties of oat grain in comparison with barley grain for dairy cattle in terms of chemica l 

composition, energy value, protein partitioning, rumen degradation kinetics, intestina l 

digestion, potential N to energy synchronization, and molecular structure. 

 

3.3 Material and Methods 

3.3.1 Grains Sampling 

 Three varieties of oat grain, CDC Nasser, CDC Arborg, and CDC Ruffian, and one 

variety of barley, CDC Austenson, were obtained from different plots by the Crop Development 

Center (CDC), University of Saskatchewan, Canada. CDC Nasser is a feed type of oat that has 

on average 27% hull; CDC Arborg and Ruffian are milling types, and both have on average 
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25% hull. Each variety had three representative samples and CDC Austenson barley had three 

representative samples (n=12). 

 

3.3.2 Chemical Analysis 

The samples were ground through a 1 mm screen (RetschZM200, Retsch Inc., PA, 

USA) and subsequently analyzed for DM (AOAC official method 930.15), OM, ether extract 

(EE, AOAC official method 920.39), Ash (AOAC official method 942.05), CP (AOAC officia l 

method 984.13) and sugars (AOAC official method 974.06). The neutral detergent fiber (NDF), 

acid detergent fiber (ADF), and acid detergent lignin (ADL) were analyzed according to Van 

Soest et al. (1991) using the filter bag technique from ANKOM Technology. The neutral 

detergent insoluble crude protein (NDICP) and acid detergent insoluble crude protein (ADICP) 

were analyzed according to the procedures described by Licitra et al. (1996). The SCP was 

determined according to Roe et al. (1990) by incubating samples in borate-phosphate buffer 

and filtrating it through Whatman filter paper (#54). Starch was analyzed using a Megazyme 

Total Starch Kit (Megazyme International Ltd., Wicklow, Ireland) Total carbohydrate and non-

fiber carbohydrate were determined according to NRC (2001): CHO = 100 – EE – CP – Ash, 

and NFC = 100 – (NDF – NDICP) – EE – CP – Ash. 

 

3.3.3 Energy Values 

Energy values were determined using the summative approach of the NRC (2001) dairy 

and NRC (1996) beef. The digestible energy at a production level of intake (DE3x), 

metabolizable energy at a production level of intake (ME3x), net energy for lactation at a 

production level of intake (NEL3x), as well as values for truly digestible CP (tdCP), truly 

digestible NDF (tdNDF), truly digestible NFC (tdNFC), and truly digestible fatty acids (tdFA) 
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were determined according to NRC-2001. The values of net energy for maintenance (NEm) and 

net energy for growth (NEg) were estimated according to NRC-1996 beef.  

 

3.3.4 Protein and Carbohydrate Profile 

 The Cornell Net Carbohydrate and Protein System (CNCPS) version 6.5 was used to 

partition the carbohydrate and protein sub-fractions. Fractions were subdivided considering the 

rate and extent of degradation in the rumen. Protein was fractioned into PA2= soluble true 

protein with a Kd ranging from 10 to 40%/h; PB1= insoluble true protein with a Kd of 3-20%/h; 

PB2= fiber-bound protein with a Kd ranging from 1-18%/h and PC= indigestible protein. The 

carbohydrates were subdivided into CA4= water-soluble carbohydrates and has a Kd of 40-

60%/h; CB1= starch that has a Kd of 20-40%/h; CB2= soluble fiber with a Kd ranging from 20 

to 40%/h; CB3= digestible fiber with a Kd of 1-18%/h and CC= indigestible fiber (Higgs et al., 

2015; Van Amburgh et al., 2015). 

 

3.3.5 Rumen Incubation Procedures 

 The University of Saskatchewan Animal Care Committee approved the animal trial 

under the Animal Use Protocol No. 19910012 and animals were cared for and handled in 

accordance with the Canadian Council of Animal Care (CCAC, 1993) regulations. The samples 

used for the in situ animal incubation trial were ground using the Telemecanique Roller Mill 

(Emerson, Poland) with a roller gap of 0.508 mm at the Canadian Feed Research Centre (CFRC, 

University of Saskatchewan) located in North Battleford, SK, Canada. 

The in situ experiment was carried out in the Rayner Dairy Research and Teaching 

Facility, University of Saskatchewan, Canada. For the incubation, four Holstein cows fitted 

with an 88 mm rumen cannula were used. Cows were housed in individual tie stalls with free 
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access to water and fed a TMR composed of barley silage, alfalfa hay, and lactating pellet twice 

a day.  

The incubation procedure followed a ‘gradual addition/all out` schedule according to 

the protocol by Damiran and Yu (2012). Nylon bags with a 40 µm pore size were used to 

incubate approximately 7 g per sample per bag for 0, 2, 4, 8, 12 and 24 h with multi-bags (2, 2, 

2, 2, 3, 4) for each treatment and incubation time. The incubation procedure was performed for 

two experimental runs using the same four cannulated cows. After incubation was completed, 

bags were removed and washed in cold water for six times, to wash out all the rumen fluid, and 

subsequently dried at 55°C for 48h in a forced-air oven. Samples taken out of the oven were 

exposed to room temperature and moisture before being weighed and composite by incubation 

time point and treatment. Pooled samples were then ground through 1 mm screen and analyzed 

for CP using LECO protein analyzer (Model FP-528, Leco Corp., St. Joseph, MI, USA), DM 

and OM according to AOAC (2005), and starch was analyzed using a Megazyme total starch 

kit (Megazyme International Ltd.). 

 

3.3.6 Rumen Degradation Kinetics 

 Degradation characteristics of DM, OM, CP, and starch were determined following the 

first-order kinetics degradation model described by Ørskov and McDonald (1979) and modified 

by Tamminga et al. (1994). The results of rumen degradation kinetics were analyzed using 

NLIN procedure of SAS (Statistical Analysis System,) version 9.4 with iterative least-square 

regression (Gausse Newton method).  

R(t) = U + D × e -Kd × (t  – T0), 

where R(t) was the residue present after t hours of incubation; U was the undegradable fraction 

(%); D was the potentially degradable fraction (%); Kd was the degradation rate (h ̶ 1); and T0 

is the lag time. 
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The percentage of bypass (B) values of nutrients were calculated according to NRC 

Dairy (2001): 

%BDM, BOM, BCP (or RUP) = U + D × Kp/ (Kp + Kd) 

%BSt = 0.1 × S + D Kp/ (Kp + Kd) 

where, S=soluble fraction (%); Kp=estimated passage rate from the rumen (h−1) and was 

assumed to be 6%/h for DM, OM, CP and Starch (Tamminga et al., 1994). The rumen 

undegradable or bypass DM, OM and starch, in g/kg DM, were calculated as: 

BDM, BOM or BSt (g/kg DM) = DM (OM or St) (g/kg DM) × % BOM (BOM or BSt),  

while the rumen bypass CP (BCP) and rumen undegraded CP (RUP) were calculated differently 

according to the DVE or NRC model: 

BCP DVE (g/kg DM) = 1.11 × CP (g/kg DM) × %BCP 

RUP NRC (g/kg DM) = CP (g/kg DM) × %RUP 

The effective degradability (ED), or extent of degradation, of each nutrient was predicted 

according to NRC as: 

%EDDM (EDOM, EDCP or EDSt) = S + D × Kd/(Kp + Kd), 

EDDM (EDOM, EDCP or EDSt) (g/kg DM) = DM (OM, CP or St) (g/kg DM) × %EDDM 

(EDOM, EDCP or EDSt). 

 

3.3.7 Hourly Effective Rumen Degradation Ratio and Potential N to Energy 

Synchronization 

The effective degradation of available N and available OM were calculated according 

to Sinclair et al. (1993): 

Hourly ED (g/kg DM) = S + [(D × Kd) / (Kp + Kd)] × 1 − e−t×(Kd+Kp) 
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The difference in cumulative amounts degraded among successive hours was used to calculate 

the hourly effective degradation ratio between N and OM (ED_N/ED_OM) following the 

equation described by Nuez-Ortín and Yu (2010): 

Hourly ED N/OMt  = (HEDNt − HEDNt−1) / (HEDOMt − HEDOMt−1), 

where, hourly ED_N/ED_OM was the ratio of N to OM at the time t (gN/kgOM);  HEDN t was 

the hourly ED of N at the time t (g/kg DM); HEDN t−1 was the hourly ED of N 1h before the 

time t (g/kg DM); HEDOMt was the hourly ED of OM at the time t (g/kg DM); HEDOM t−1 

was the hourly ED of OM 1 h before the time t (g/kg DM). 

 

3.3.8 Intestinal Digestion  

 The intestinal digestion of CP was determined using the three-steps in vitro protocol by 

Calsamiglia and Stern (1995). Briefly, residues taken out after 12 hours ruminal incubation and 

containing approximately 15 mg of N were placed in a 50 ml centrifuge tube with 10 ml of 

pepsin (Sigma P-7000) solution (0.1 N HCl with pH 1.9) and incubated for 1 h at 38°C. After 

incubation, 0.5 ml of 1 N NaOH solution and 13.5 ml of pancreatin (Sigma P-7545) were added 

and the solution was incubated for 24 h at 38°C. After the incubation, 3 ml of TCA was used to 

stop hydrolysis and then centrifuged at 1000g for 15 min and the supernatant was analyzed for 

soluble N by the Kjeldahl method. Intestinal digestion of protein was calculated as TCA soluble 

N divided by N present after ruminal incubation. 

 

3.3.9 Nutrient Supply and Feed Milk Value  

 The DVE/OEB system and the NRC model were used to estimate the nutrient supply 

and feed milk value. In the Dutch system, the DVE represents the value of a feed protein and it 

was calculated as: 

DVE = DVME + DVBE – ENDP, 
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where DVME was the microbial true protein synthesized in the rumen and digested in the small 

intestine, DVBE was the feed crude protein undegraded in the rumen but digested in the small 

intestine and ENDP was the endogenous protein lost in the digestive process.  

The OEB value was calculated as: 

OEB = MREN – MREE, 

where, OEB was the difference between the potential microbial protein synthesis based on 

available N (MREN) and the potential microbial protein synthesis based on energy extracted 

from anaerobic fermentation (MREE) (Tamminga et al., 1994). 

 In the NRC 2001 model, the total metabolizable protein (MP) is constituted by the 

rumen undegraded feed crude protein (RUP), ruminally synthesized microbial crude protein 

(MCP) and the rumen endogenous crude protein (ECP), and so MP in this study was calculated 

as: 

MP (g/kg of DM) = ARUP+AMCP+AECP, 

where ARUP was the truly absorbable rumen undegraded CP, AMCP was the truly absorbable 

ruminal synthesized microbial CP and AECP was the truly absorbable endogenous CP. 

 The degraded protein balance (DPB) reflects the difference between the potential 

microbial protein synthesis based on the rumen degradable protein (RDP) and the potential 

microbial protein synthesis based on energy (TDN) available for microbial fermentation in the 

rumen. The DPB was calculated as: 

DPB (g/kg of DM) = RDP – 1.18 x MCPTDN, 

where RDP was the rumen degradable protein and MCPTDN was the microbial protein synthes is 

(discounted TDN). Feed milk value was calculated based on metabolizable protein (MP). 
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3.3.10 Protein Molecular Structures Analysis 

 Samples were ground through a 0.12 mm screen and subsequently analyzed using a 

JASCO FTIR-ATR-4200 spectrometer (JASCO Corp., Tokyo, Japan). Right before samples 

were submitted to spectra collection, the background spectrum was measured with 256 scans 

to correct the spectra for CO2 noise. Spectras were collected at the mid-IR region 

(approximately 4000–700 cm−1) with a spectra resolution of 4 cm−1 and using 128 co-added 

scans (SpectraManager II software, JASCO Corp., Tokyo, Japan). Each sample had five spectra 

collected as sub-sample replicates. 

For univariate molecular spectral analysis, the collected spectrum data related to the 

protein structure was preprocessed using OMINIC 7.3 software (Spectra Tech, Madison, WI, 

USA). Each spectrum was normalized, and a second derivative was generated and smoothed, 

prior to the calculation of peak heights and areas. The primary protein structure, amide I region 

(at ca. 1720-1577 cm−1) and amide II (at ca. 1577-1486 cm−1), as well as the secondary 

structures, α-helix (at ca. 1650cm−1) and β-sheets (at ca.1626cm−1) were measured for height 

and area, and their ratios between Amide I to II and α-helix to β-sheet were determined. 

The multivariate molecular spectral analysis was performed to distinguish the inherent 

structure differences in the whole protein structure among the grains. The whole protein related 

structures (Amide I and Amide II) were analyzed using Principal Component Analysis (PCA) 

and Hierarchical Cluster Analysis (HCLA) using Ward’s algorithm method. Multivar ia te 

spectra analysis was performed using the Unscrambler software v. 10.3 (Camo Software, 

Norway). 

3.3.11 Statistical Analysis 

 Results were analyzed using the Mixed model procedure in SAS 9.4 (SAS Institute Inc., 

NC, USA). The detailed chemical profile, protein and carbohydrate subfractions, energy values 

and protein spectral profile were analyzed according to the model: 
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Yij = µ + Ti + eij, 

where Yij was the observation of the dependent variable ij, µ was the fixed effect of the 

population mean, Ti was the fixed effect of grains (Nasser, Arborg, Ruffian, and Austenson), 

and eij was the random error associated with the observation ij.  

The studies of rumen degradation kinetics, hourly effective degradation ratio, nutrient 

supply and intestinal digestion of rumen undegraded nutrients were conducted and analyzed as 

randomized complete block design (RCBD) with the experimental run used as a random block, 

and analyzed with the Mixed model procedure in SAS 9.4, using the model: 

Yijk = µ + Ti + Sk + eijk, 

where Yijk was the observation of the dependent variable ijk, µ was the population mean, Ti was 

the effect of grains (Nasser, Arborg, Ruffian, and Austenson) as fixed effect, Sk was the random 

effect of in situ incubation run and eijk was the random error associated with the observation ijk.  

Prior to the statistical analysis, all outlier data were removed, using the same model, 

with a criterion of Studentized Residual greater than 2.5. For all statistical analyses, significance 

was declared at P<0.05 and trends at 0.05<P<0.10. The differences among the treatments were 

compared using a multiple comparison test following the Tukey method. Contrast statement 

was used to compare the difference between barley grain and oat grain.  The model assumptions 

of CRD and RCBD were checked using residual analysis. The normality tests were carried out 

using Proc Univariate with normal plot options. 

 

3.4 Results and Discussion 

 

3.4.1 Chemical Profile 

The nutrient profile of the three CDC oat varieties in comparison with barley are shown 

in Table 3.1. Barley grain had a lower (P<0.01) DM when compared to CDC Nasser and CDC 

Arborg. The concentration of EE was higher (P<0.01) for Nasser, followed by Ruffian and 
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Arborg (6.66, 4.88 and 4.16 % DM), respectively. CDC Nasser is a feed type oat that was bred 

to contain a high oil (EE) groat and low lignin hull, which might explain the higher EE 

concentration for this oat variety when compared to Arborg and Ruffian, which are two varieties 

of milling oat. Barley Austenson had the lowest concentration of fat and ash, with only 1.90 

and 2.24% DM, respectively. The higher values of ash for oat grain reduced the OM content of 

those varieties and made barley Austenson possess higher (P<0.01) OM when compared to the 

other varieties. Niu et al. (2007) reported values of EE, OM, and ash for three varieties of oat 

grown in Canada, that were similar to the ones found in this study.  

In the present study, the crude protein content for oat ranged between 13.8-15.7% of 

DM, with the higher values being seen in the milling varieties of oat (CDC Arborg and Ruffian). 

Results for soluble crude protein (SCP) had a higher concentration for Arborg oat and 

Austenson barley, and barley grain had higher values when contrasted with oat grain (9.04 vs 

8.90% DM), respectively. The CP content for oat and barley in this study were similar to the 

values found by Prates and Yu (2017), although the SCP content was higher in this study. The 

ADICP and NDICP did not differ among varieties (P=0.18 and P=0.28), respectively, or 

between grains (P=0.55 and P=0.32), respectively. 

The groat and hull contribute to different nutritive aspects of whole cereal grains. The 

hull contains more structural carbohydrates that are low in digestibility, while the groat contains 

more non-structural carbohydrates, such as starch and sugar. In this case, the proportion of hull 

in the grain can be related to grain quality (Fuhr, 2006). In barley grain, the proportion of hull 

falls between 11.1 to 12.9% (Harris, 1949), while oat can have more than 25% hull content 

(Crosbie et al., 1985). The concentration of carbohydrates in Austenson barley was significantly 

higher (P<0.01) than the three oat varieties. The concentration of aNDF was higher (P<0.01) 

for the three oat varieties when compared to Austenson barley. Acid detergent fiber (ADF) was 

also higher (P<0.01) for the three varieties of oat and for oat grain compared to barley grain 
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(P<0.01; 12.52 and 5.59% DM), respectively. These higher values of fiber might have arisen 

from the higher concentration of hull in oat (25-27% in this study). However, the content of 

lignin (ADL) in CDC Nasser did not differ from that in CDC Austenson (1.55 and 0.80 % DM), 

respectively. The ungradable fiber (uNDF) was similar for CDC Nasser and Austenson barley 

(4.48 and 5.06% DM), respectively.  
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Table 3.1. Chemical profile of different varieties of CDC oat grain in comparison with CDC barley grain. 

 

 

  

 Oat varieties (O)  
Barley variety 

(B) 
  Contrast P-value 

Items 
Nasser 

(Feed-Type) 
Arborg 

(Milling-Type) 
Ruffian 

(Milling-Type) 
 Austenson 

(Feed Type) 
SEM P-value B vs. O 

Basic chemical profile       

DM (%) 92.71a 92.22ab 92.68a  91.71b 0.166 <0.01 0.04 
OM (%DM) 96.92b 96.95b 97.09b  97.76a 0.057 <0.01 0.11 
Ash (%DM) 3.08a 3.05a 2.91a  2.24b 0.057 <0.01 0.11 

EE (%DM) 6.66a 4.16c 4.88b  1.90d 0.054 <0.01 <0.01 

Protein profile       

CP (%DM) 13.82b 15.78a 14.34ab  13.54b 0.322 <0.01 0.91 
SCP (%DM) 8.59b 9.65a 8.47b  9.04ab 0.172 <0.01 0.01 

SCP (%CP) 62.20ab 61.24ab 59.06b  66.72a 1.55 0.04 0.01 
NDICP (%DM) 1.14 1.26 1.01  2.14 0.417 0.28 0.32 

NDICP (%CP) 8.24 7.95 7.06  15.82 3.07 0.23 0.33 
ADICP (%DM) 0.33 0.51 0.24  0.09 0.130 0.23 0.67 
ADICP (%CP) 2.34 3.25 1.69  0.65 0.915 0.30 0.72 



 

 
 

4
0
 

Table 3.1. Cont’d Chemical profile of different varieties of oat grain in comparison with barley grain. 

 

SEM: standard error of mean; a-d Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparison using 
Tukey method; DM: dry matter; OM: organic matter; EE: ether extract (crude fat); CP: crude protein; SCP: soluble crude protein; ADICP: acid detergent 
insoluble crude protein; NDICP: neutral detergent insoluble crude protein; CHO: carbohydrates; aNDF: neutral detergent fiber analyzed with amylase; ADF: 
acid detergent fiber; ADL: acid detergent lignin; uNDF: undigestible neutral detergent fiber analyzed after 288h in situ incubation; NFC: non-fiber 
carbohydrate; NSC: non-soluble carbohydrate 
 

 Oat varieties (O)  
Barley variety 

(B) 
  

Contrast P-
value 

Items 
Nasser 

(Feed-Type) 

Arborg 

(Milling-Type) 

Ruffian 

(Milling-Type) 

 Austenson 

(Feed Type) 
SEM P-value B vs. O 

Carbohydrate profile       

CHO (%DM) 76.92b 77.33b 78.22b  82.47a 0.297 <0.01 0.08 

Starch (%DM) 47.89b 47.54b 50.52b  58.12a 0.938 <0.01 0.56 

Sugar (%DM) 1.62b 1.93b 1.92b  2.65a 0.087 <0.01 0.19 

Sugar (%NFC) 2.71b 3.37ab 3.24ab  3.99a 0.176 <0.01 0.57 

NFC (%DM) 54.69b 53.58b 55.49b  65.88a 0.787 <0.01 0.02 

NSC (%DM) 49.51b 49.46b 52.44b  60.77a 0.994 <0.01 0.50 

Fiber profile       

aNDF (%DM) 21.74a 23.43a 22.38a  16.66b 0.898 <0.01 0.13 

ADF (%DM) 11.64a 13.19a 12.73a  5.59b 0.530 <0.01 <0.01 

ADL (%DM) 1.55b 3.07a 3.27a  0.80b 0.236 <0.01 <0.01 

ADL (%NDF) 7.11ab 13.10a 14.55a  4.95b 1.472 <0.01 <0.01 

uNDF (%DM) 4.48c 13.80b 15.86a  5.06c 0.329 <0.01 <0.01 

uNDF (%NDF) 20.66d 58.91b 70.96a  30.99c 1.341 <0.01 <0.01 



 

41 

 

3.4.2 Energy Profile 

 Results for truly digestible nutrients and energy values for the three varieties of oat grain 

compared to barley grain are shown in Table 3.2. The major storage component of energy in 

grains is starch, which will be fermented by rumen microbes producing volatile fatty acids 

(Ørskov, 1986). The content of starch found in barley (58% DM) was lower than the amount 

typically found in corn, which ranges from 71 to 78% DM (Herrera-Saldana et al., 1990), but 

higher than in oat grain. The content of truly digestible NDF (tdNDF) was the highest (P=0.02) 

for CDC Nasser, however, the value was not significantly different from the other two varieties 

of oat. The highest value of tdCP was obtained for CDC Arborg (15.58% DM), which was 

similar to CDC Ruffian (14.24% DM). The higher values of EE, ash, and NDF obtained for the 

oat varieties, decreased the truly digestible non-fiber carbohydrate (tdNFC) value for these 

grains (P<0.01), resulting in Austenson barley having a greater value (69.27% DM). CDC 

Nasser oat had significantly (P<0.01) higher tdFA when compared to all the other treatments, 

and oat grain had higher (P<0.01) values than barley grain (4.23 vs 0.90% DM), respectively. 

Total digestible nutrients (TDN1x) was higher (P<0.01) for Nasser oat and Austenson barley 

(88.88 and 87.71% DM). 

The nutrient requirements of dairy cattle (NRC, 2001) report a higher energy value for 

barley grain in comparison to oat grain. In this study, CDC Nasser, which was bred to possess 

a higher oil content and lower lignin hull, was expected to have a higher energy value compared 

to other varieties of oat. Nasser oat showed similar values of digestible energy (DE), 

metabolizable energy (ME), net energy for maintenance (NEm), net energy for gain (NEg) and 

net energy for lactation (NEL) to Austenson barley grain. CDC Arborg, on the other hand, 

showed the lowest values for DE, ME and NEL, being 0.22, 0.21 and 0.17 Mcal/kg of DM lower 

than Nasser. Similar values of predicted energy for oat grain were reported by Niu et al. (2007). 

Damiran and Yu (2010), studying a high oil groat, low lignin hull (SO-I), in comparison to two 
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milling varieties of oat, reported similar high energy for the high oil oat variety (SO-I). The 

results of DE1x, ME3x and NEL3x found in this study were all higher than the values reported by 

the NRC (2001), but the difference between barley and oat grain values followed the same 

pattern as described by the document. Despite the statistical advantage of barley grain, it can 

be observed that CDC Nasser (feed-type of oat) showed overall higher energy values compared 

to the milling types of oat. This can be due to the lower content of lignin or the higher fat content 

of this variety. 
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Table 3.2. Energy values of different varieties of CDC oat grain in comparison with CDC barley grain.  

 

SEM: standard error of mean; a-c Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparison 

using Tukey method; tdNDF: truly digestible neutral detergent fibre; tdCP: truly digestible crude protein; tdNFC: truly digestible non-fibre 

carbohydrate; tdFA: truly digestible fatty acids; TDN1×: total digestible nutrient at one time maintenance. DEl3×: digestible energy at production level 

of intake (3×); ME3×: metabolizable energy at production level of intake (3×); NEL3×: net energy for lactation at production level of intake (3×); ME: 

metabolizable energy; NEm: net energy for maintenance; NEg: net energy for growth.  
 

 Oat varieties (O)  
Barley variety 

(B) 
  

Contrast P-

value 

Items 
Nasser 

(Feed-Type) 
Arborg 

(Milling-Type) 
Ruffian 

(Milling-Type) 
 Austenson 

(Feed Type) 
SEM P-value B vs. O 

Truly digestible nutrients (%DM)        

tdNDF 12.55a 11.34ab 10.38ab  9.90b 0.490 0.02 0.16 

tdCP 13.69b 15.58a 14.24ab  13.50b 0.328 <0.01 0.97 

tdNFC 56.90b 55.89b 57.59b  69.27a 0.748 <0.01 <0.01 

tdFA 5.66a 3.16c 3.88b  0.90d 0.054 <0.01 <0.01 

Total digestible nutrients (%DM)        

TDN1x 88.88a 82.92b 83.95b  87.71a 0.531 <0.01 <0.01 

Predicted energy value (Mcal/kg of DM)      

DE1x 3.91a 3.69b 3.72b  3.87a 0.024 <0.01 <0.01 

DEp3x 3.60a 3.39b 3.41b  3.55a 0.022 <0.01 <0.01 

MEp3x 3.20a 2.98b 3.00b  3.14a 0.022 <0.01 <0.01 

NELp3x 2.08a 1.91b 1.93b  2.01a 0.016 <0.01 <0.01 

ME 3.21a 3.03b 3.05b  3.17a 0.019 <0.01 <0.01 

NEm 2.20a 2.05b 2.07b  2.17a 0.016 <0.01 <0.01 

NEg 1.52a 1.39b 1.41b  1.49a 0.014 <0.01 <0.01 
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3.4.3 Protein and Carbohydrates Subfractions 

 The Cornell Net Protein and Carbohydrate System (CNCPS) version 6.5 was used to 

partition the protein and carbohydrates subfractions. The sub-fractions of protein and 

carbohydrate, as well as the total rumen degradable and undegradable CP and CHO, are 

represented in Table 3.3. Rapidly degradable fraction (PA2) was higher (P=0.04) for CDC 

Austenson barley when compared to CDC Ruffian oat (66.72 and 59.06%CP), respectively. 

Compared to oat grain, barley CDC Austenson showed significantly lower (P<0.01) value of 

PB1 and higher (P<0.01) values of the slowly degradable fraction (PB2). The unavailable crude 

protein (PC) ranged from 3.25 to 0.65% CP, but there was no significative difference between 

treatments (P>0.30) between varieties or grains. Total rumen degradable protein was 

significantly higher (P<0.01) for CDC Arborg when compared to CDC Nasser and Austenson. 

These findings are in contrast with previous studies (Prates and Yu, 2017), when comparing 

two varieties of oat, CDC Nasser and CDC Seabiscuit, with CDC Meredith barley grain, which 

found only significant difference when comparing unavailable protein fraction. Niu et al. (2007) 

showed differences between milling and feed type of oat when comparing intermed ia te 

degraded protein fractions. In terms of protein fraction, barley contained higher PA2 (P=0.04; 

+5.88% CP), lower PB1 (P<0.01; -13.62% CP) and higher PB2 (P<0.01; +9.51% CP), when 

compared to oat grain. 

 The carbohydrate fraction CA4, which corresponds to sugar, was higher (P<0.01) for 

CDC Austenson barley when compared to the other treatments. The starch corresponding 

fraction CB1 ranged from 61.73 to 70.61% CHO, with higher values (P<0.01) being found for 

barley Austenson. The higher value of CA4 and CB1 for barley Austenson may be explained 

by the higher values of total carbohydrates (CHO), sugar and starch found in this grain (82.47, 

2.65 and 58.12% of DM), respectively. The soluble fiber fraction did not differ among varieties 

(P=0.77). The fraction CB3 was higher (P<0.01) for CDC Nasser oat when compared to CDC 
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Ruffian and CDC Austenson barley (23.33, 18.21 and 16.84% CHO), respectively. Despite the 

total rumen degradable carbohydrate (TRDCHO) being higher (P<0.01) for barley Austenson, 

the CC fraction and total rumen undegradable carbohydrate (TRUCHO) were similar for CDC 

Nasser oat and barley Austenson. The hull of a cereal grain is the structure which presents the 

highest concentration of structural carbohydrates, and oat grain, in general, has a higher 

proportion of hull to whole grain weight. The lower content of lignin presented by CDC Nasser, 

when compared to other varieties of oat grain, could be related to the lower indigestible fraction 

of carbohydrates showed, even though CDC Nasser has an average proportion of hull slightly 

higher than the other oat grain in this study. Prates et al. (2018) found a similar pattern in their 

study, with CB1 being significantly lower for oat when compared to barley (442 and 573 g/kg 

DM, respectively; P<0.01), although the CC fraction was significantly higher for CDC Nasser 

oat when compared to barley Meredith (82.5 and 36.8 g/kg DM, respectively; P<0.01). 
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Table 3.3. Protein and carbohydrate sub-fraction, degradable and undegradable fractions of different varieties of CDC oat grain in comparison to 

CDC barley grain determined according to CNCPS 6.5. 

 

 Oat varieties (O)  
Barley variety 

(B) 
  

Contrast P-
value 

Items 
Nasser 

(Feed-Type) 

Arborg 

(Milling-Type) 

Ruffian 

(Milling-Type) 

 Austenson 

(Feed Type) 
SEM P-value B vs. O 

Protein sub-fraction (%CP)       

PA2   62.20ab 61.24ab 59.06b  66.72a 1.555 0.04 0.04 

PB1 29.56a 30.82a 33.87a  17.80b 1.569 <0.01 <0.01 

PB2 5.90b 5.36b 4.70b  14.83a 1.072 <0.01 <0.01 

PC 2.34 3.25 1.69  0.65 0.915 0.30 0.60 

Carbohydrate sub-fraction (%CHO)      
CA4   2.11b 2.49b 2.46b  3.21a 0.117 <0.01 0.32 
CB1   62.67b 61.73b 64.87ab  70.61a 1.330 <0.01 0.92 
CB2   6.75 5.35 3.92  6.19 1.995 0.77 0.38 
CB3   23.33a 20.35ab 18.21b  16.84b 0.900 <0.01 0.09 
CC   5.12b 10.06a 10.52a  3.14b 0.687 <0.01 0.05 
Rumen degradable fractions (%DM)       

TRDP 10.35b 11.73a 10.72ab  10.13b 0.228 <0.01 0.90 

TRDCHO 53.40b 51.58c 52.56bc  58.73a 0.399 <0.01 <0.01 

Rumen undegradable fractions (%DM)       

TRUP 3.47ab 4.05a 3.61ab  3.41b 0.134 0.04 0.93 

TRUCHO 25.16b 27.59a 27.59a  24.18b 0.453 <0.01 <0.01 

SEM: standard error of mean. a-c Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparison 

using Tukey method; PA2: soluble true protein; PB1: insoluble true protein. PB2: fiber-bound protein; PC: indigestible protein; CA4: sugars; CB1: 

starches; CB2: soluble fiber; CB3: digestible fiber; CC: indigestible fiber; TRDP: Total rumen degradable protein; TRDCHO: Total rumen degradable 

carbohydrate; TRUP: Total ruminally undegraded protein; TRUCHO: Total ruminally undegraded carbohydrate.  
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3.4.4 Rumen Degradation kinetics 

 The degradation rate (Kd), rumen fractions (S, D, U), rumen bypass DM and effective 

degradability of DM for oat grain in comparison to barley grain are shown in Table 3.4. CDC 

Nasser oat had the lowest (P<0.01) soluble (S) and degradable (D) fraction, being significantly 

lower than CDC Ruffian (-10.03%) and Austenson, (-12.9%) respectively. The degradation rate 

ranged from 24.53 to 53.28% per hour and it was higher (P<0.01) for all varieties of oat grain. 

The contrast statement revealed higher (P<0.01) undegradable fraction (U) for oat grain, being 

12.79% higher than barley grain. CDC Nasser, Arborg, and Ruffian presented higher (P<0.01) 

values of BDM (293.10, 303.83 and 280.08 g/kg DM) respectively, and significantly lower 

(P<0.01) effective degradation (707, 696 and 720 g/kg DM) respectively when compared to 

barley Austenson. The values for rumen bypass or undegradable DM and EDDM for oat grain 

were similar to those reported by Damiran and Yu (2010). 

 Rumen degradation kinetics for OM are presented in Table 3.5. Detailed observation 

showed that the degradation rate of OM followed the same pattern as the DM Kd, with the three 

varieties of oat having higher (P<0.01) Kd than barley Austenson. CDC Ruffian showed the 

highest soluble fraction (P<0.01) of OM (22.47%) and the lowest (P<0.01) degradable fraction 

(57.14%). Barley showed lower (P<0.01) undegradable fraction (U) compared to oat grain (9.01 

vs. 21.48%) respectively. The effective degradability of OM was lower (P<0.01) for all three 

varieties of oat, with the lowest value for CDC Arborg (-50.48 g/kg DM) when compared to 

Austenson barley. CDC Ruffian oat and Austenson (273.82 and 250.35 g/kg DM) barley had 

lower (P<0.01) bypass OM (BOM), compared to Nasser and Arborg oat. 

 Results from the rumen degradation of CP are shown in Table 3.6. The degradation rate 

of CP was higher (P=0.01) for oat grain when compared to barley grain (49.44 vs. 17.36% per 

hour) respectively. Oat grain didn’t show any indication of having a lag time (T0), while CDC 

Austenson barley grain showed approximately half an hour of delay (0.54 hours). Similar to the 
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results for DM and OM, CDC Ruffian showed the highest (P<0.01) value for the S fraction, but 

this for CP, the result was not significantly different from the other milling types of oat, CDC 

Arborg (24.96 and 18.74%) respectively. The degradable fraction was higher (P<0.01) for 

barley grain in comparison to oat grain (+18.12%). Consequently, the undegradable fraction 

(U) was lower (P<0.01) for barley grain than for oat grain (2.69 vs. 10.47%) respectively. The 

content of rumen undegradable CP based on the DVE/OEB system (BCP) showed that oat grain 

allowed 7.95 g/kg DM less (P<0.01) to be degraded in the small intestine when compared to 

barley (26.49 vs. 34.45 g/kg DM) respectively. CDC Ruffian showed the lowest (P<0.01) value 

of rumen undegraded crude protein based on the NRC 2001 model (RUP), followed by CDC 

Nasser, Arborg and finally Austenson barley (27.99, 29.29, 30.97 and 38.24 g/kg DM) 

respectively. Similar to this study, Yu et al. (2008) reported intermediate values of BCP and 

RUP for CDC SO-I, a high oil low lignin variety of oat, similar to the CDC Nasser in this study. 

The effective degradability of CP (EDCP) showed similar values (P<0.01) for CDC Nasser and 

Ruffian, while CDC Arborg presented the highest value (129.93 g/kg DM); Austenson barley 

showed the lowest effective degradability of CP, being 28.98 g/kg DM less than CDC Arborg 

(100.95 and 129.93 g/kg DM) respectively. Fuhr (2006) reported similar difference of EDCP 

between oat and barley grain, however, the values for oat grain were higher than the ones found 

in the present study. 

 The results for rumen degradation kinetics of starch is presented in Table 3.7. The three 

varieties of oat grain in this study showed high values (P=0.02) of Kd, however, CDC Arborg 

and Ruffian were not significantly different from Austenson barley grain. The degradable 

fraction (D) was lower (P=0.01) for CDC Ruffian when compared to the other varieties, but the 

contrast statement showed significantly lower (P<0.01) value for oat grain (74.79%), mostly 

likely due to the low value showed by CDC Ruffian. Nasser oat presented the highest value 

(P=0.01) for the undegradable fraction (2.76%) and Austenson barley showed the lowest value 
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(0.63%), with CDC Arborg and Ruffian presenting intermediate values. The rumen 

undegradable starch (BST) was higher (P<0.01) for CDC Austenson barley (82.59 g/kg DM) 

when compared to the other three varieties studied, but the contrast did not show a significant 

difference between barley and oat grain (P=0.26). The effective degradability of starch in the 

rumen (EDST) showed opposite significances when taken as g/kg of DM or as percentage. The 

effective degradability (g/kg DM) was lower (P<0.01) for the three varieties of grains when 

compared to Austenson barley, however, when analyzing the percentage of degradation, the 

three varieties of oat showed higher values (P<0.01) compared to barley. This difference is most 

likely caused by the higher content of starch in the barley grain (58.12% DM). 
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Table 3.4. In situ rumen degradation kinetics of dry matter (DM) of different varieties of CDC oat grain in comparison with CDC barley grain. 

 

 Oat varieties (O)  
Barley variety 

(B) 
  Contrast P-value 

Items 
Nasser 

(Feed-Type) 

Arborg 
(Milling-

Type) 

Ruffian 
(Milling-

Type) 

 
Austenson 

(Feed Type) 
SEM P-value B vs. O 

In situ rumen degradation        

Kd (%/h) 47.42a 53.28a 41.97a  24.53b 3.086 <0.01 0.95 

T0 (h) 0 0.13 0  0.09 0.070 0.46 0.36 

S (%) 12.38b 11.38b 22.41a  12.07b 1.582 <0.01 <0.01 

D (%) 65.72b 65.06b 56.73c  78.62a 1.640 <0.01 <0.01 

U (%) 21.90a 23.55a 20.86a  9.31b 0.767 <0.01 <0.01 

BDM (g/kg DM) 293.10a 303.83a 280.08a  253.10b 7.308 <0.01 <0.01 

EDDM (g/kg DM) 706.91b 696.17b 719.92b  746.90a 7.308 <0.01 0.66 
SEM: standard error of mean; a-b Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparison using 
Tukey method; Kd: the degradation rate of D fraction (%h); T0: lag time; S: soluble fraction in the in-situ incubation; D: degradable fraction; U: rumen 
undegradable fraction; BDM: rumen bypass or undegraded feed dry matter; EDDM: effective degraded dry matter. 
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Table 3.5. In situ rumen degradation kinetics of organic matter (OM) of different varieties of CDC oat grain in comparison with CDC barley 

grain. 

 

 Oat varieties  Barley variety   Contrast P-value 

Items 
Nasser 

(Feed-Type) 
Arborg 

(Milling-Type) 
Ruffian 

(Milling-Type) 
 Austenson 

(Feed Type) 
SEM P-value B vs. O 

In situ rumen degradation      

Kd (%/h) 49.12a 55.66a 43.34a  24.81b 3.177 <0.01 0.90 

T0 (h) 0 0.13 0  0.09 0.070 0.47 0.37 

S (%) 12.43b 11.45b 22.47a  11.65b 1.616 <0.01 <0.01 

D (%) 66.39b 66.68b 57.14c  79.34a 1.664 <0.01 <0.01 

U (%) 21.18a 22.88a 20.39a  9.01b 0.764 <0.01 <0.01 

BOM (g/kg DM) 284.34a 296.16a 273.82ab  250.35b 7.236 <0.01 0.67 

EDOM (g/kg DM) 693.61b 682.40b 705.07b  732.88a 7.035 <0.01 0.76 

%BOM 28.43a 29.61a 27.38ab  25.04b 0.724 <0.01 0.67 

%EDOM 71.56b 70.38b 72.62ab  74.96a 0.724 <0.01 0.67 
SEM: standard error of mean; a-c Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparison using Tukey 
method; Kd: the degradation rate of D fraction (%h); T0: lag time; S: soluble fraction in the in-situ incubation; D: degradable fraction; U: rumen undegradable 
fraction; BOM: rumen bypass dry matter; EDOM: effective degradability of dry matter. 
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Table 3.6. In situ rumen degradation kinetics of crude protein (CP) of different varieties of CDC oat grain in comparison with CDC barley grain. 

 

 Oat varieties (O)  
Barley variety 

(B) 
  Contrast P-value 

Items 
Nasser 

(Feed-Type) 

Arborg 

(Milling-
Type) 

Ruffian 

(Milling-
Type) 

 
Austenson 

(Feed Type) 
SEM P-value B vs. O 

In situ rumen degradation      

Kd (%/h) 49.53a 50.81a 47.99a  17.36b 2.747 <0.01 0.01 

T0 (h) 0b 0b 0b  0.54a 0.069 <0.01 0.03 

S (%) 14.51bc 18.74ab 24.96a  9.06c 2.423 <0.01 <0.01 
D (%) 74.53b 71.19bc 64.66c  88.25a 2.148 <0.01 <0.01 

U (%) 10.95a 10.07a 10.38a  2.69b 0.571 <0.01 <0.01 

BCP (g/kg DM, DVE) 26.38bc 27.90b 25.21c  34.45a 0.441 <0.01 <0.01 

RUP (g/kg DM, NRC) 29.29bc 30.97b 27.99c  38.24a 0.490 <0.01 <0.01 

EDCP (g/kg DM) 111.82b 129.93a 118.19b  100.95c 2.158 <0.01 0.13 

%BCP=%RUP 19.12b 17.72b 17.59b  25.44a 0.431 <0.01 <0.01 

%EDCP (=%RDP) 80.87a 82.28a 82.40a  74.56b 0.431 <0.01 <0.01 
SEM: standard error of mean; a-c Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparison using Tukey 
method; Kd: the degradation rate of D fraction (%h); T0: lag time; S: soluble fraction in the in-situ incubation; D: degradable fraction; U: rumen undegradable 
fraction; BCP: rumen bypassed crude protein in DVE/OEB system; RUP: rumen undegraded crude protein in the NRC Dairy 2001 model; EDCP: effectively 
degraded of crude protein. 
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Table 3.7. In situ rumen degradation kinetics of starch (ST) of different varieties of CDC oat grain in comparison with CDC barley grain. 

 
 

SEM: standard error of mean; a-b Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparison using 
Tukey method; Kd: the degradation rate of D fraction (%h); T0: lag time; S: soluble fraction in the in-situ incubation; D: degradable fraction; U: rumen 
undegradable fraction; BST: rumen bypass or undegraded feed starch; EDST: effective degraded starch. 

 Oat varieties (O)  
Barley variety 

(B) 
  Contrast P-value 

Item 
Nasser 

(Feed-Type) 
Arborg 

(Milling-Type) 
Ruffian 

(Milling-Type) 
 Austenson 

(Feed Type) 
SEM P value B vs. O 

In situ rumen degradation        

Kd (%/h) 62.60a 59.38ab 52.73ab  36.55b 8.384 0.02 0.97 

T0 (h) 0 0.20 0.19  0.46 0.166 0.15 0.83 

S (%) 13.52b 19.00b 36.68a  20.11b 3.525 <0.01 <0.01 

D (%) 83.72a 78.75a 61.90b  79.26a 3.504 0.01 <0.01 

U (%) 2.76a 2.25ab 1.42ab  0.63b 0.440 0.01 0.38 

BST (g/kg DM) 43.80b 44.94b 51.05b  82.59a 6.364 <0.01 0.26 

EDST (g/kg DM) 435.07b 430.43b 454.15b  498.64a 8.672 <0.01 0.95 

%BST 9.22b 9.45b 10.11b  14.20a 1.208 <0.01 0.40 

%EDST 90.78a 90.54a 89.89a  85.80b 1.208 <0.01 0.40 
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3.4.5 Intestinal Digestion 

 Estimated intestinal digestibility of DM and OM is shown in Table 3.8. Percentage of 

intestinal digestibility of bypass or undegradable DM was higher (P<0.01) for barley grain 

(+26.73% BDM). The higher intestinal digestibility together with the higher rumen effective  

degradability of DM resulted in Austenson barley grain having a significantly higher (P=0.02) 

total-tract digestibility of DM (+9.37% DM). The intestinal digestibility of OM (dBOM) was 

lower (P<0.01) for oat grain (-27.19% BOM) when compared to barley grain. The intestina l 

digested bypass OM (IDBOM) was lower (P<0.01) for oat grain when compared in a percentage 

basis, however, when analyzing in a g/kg DM, CDC Nasser showed similar (P>0.10) value to 

barley Austenson, although the contrast statement showed that barley still had a higher value 

(P=0.02; +10.74 g/kg DM). 

 Table 3.9 shows the intestinal digestibility of crude protein (CP) and starch (ST) for the 

three varieties of oat grain compared to barley Austenson. Values for the intestinal digestibi lity 

of rumen bypass CP (dBCP) were similar (P>0.10) for CDC Nasser oat and Austenson barley 

(52.03 and 54.00% RUP), but oat grain had lower (P<0.01) values when compared to barley 

grain (45.52 and 54.00% RUP) respectively. The total tract digestibility of CP was higher 

(P=0.02) for CDC Nasser when compared to Austenson barley, with CDC Arborg and Ruffian 

showing intermediate values. Intestinal digestibility (dBST) and intestinal digested starch 

(IDBST) were higher (P<0.01) for Austenson barley (+2.85% RUP and 32.33 g/kg DM) 

 



 

 
 

5
5
 

Table 3.8. Intestinal digestion of dry matter (DM) and organic matter (OM) of different varieties of CDC oat grain in comparison with CDC 

barley grain. 

 

 
Oat varieties (O) 

 Barley variety 
(B) 

  Contrast P-value 

Items 
Nasser 

(Feed-Type) 

Arborg 

(Milling-Type) 

Ruffian 

(Milling-Type) 

 CDC Austenson 

(Feed Type) 
SEM P-value B vs. O 

DM intestinal digestion      

dBDM (%BBDM) 38.22b 31.40b 33.05b  60.95a 2.423 <0.01 <0.01 

IDBDM (%BDM) 11.19b 9.58b 9.24b  15.44a 0.792 <0.01 <0.01 

IDBDM (g/kg DM) 32.79ab 29.27ab 25.95b  39.21a 2.690 0.01 0.02 

TDDM (%DM) 81.87b 79.19b 81.23b  90.13a 0.823 <0.01 0.02 

TDDM (g/kg,DM) 759.06b 730.31b 752.84b  826.64a 7.524 <0.01 0.04 

OM intestinal digestion      

dBOM (%BOM) 39.05b 31.79b 33.47b  61.96a 2.416 <0.01 <0.01 

IDBOM (%BOM) 11.09b 9.45b 9.15b  15.53a 0.776 <0.01 <0.01 

IDBOM (g/kg. DM) 31.52ab 28.17b 25.13b  39.01a 2.593 <0.01 0.02 

TDOM (%DM) 82.65b 79.84b 81.77b  90.49a 0.799 <0.01 0.01 
TDOM (g/kg, DM) 801.06b 774.07b 793.92b  884.69a 7.812 <0.01 <0.01 

SEM: standard error of mean; a-b Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparison using 
Tukey method; dBDM: intestinal digestibility of rumen bypass dry matter; IDBDM: intestinal digested rumen bypass dry matter; TDDM: total digested dry 
matter; dBOM: intestinal digestibility of rumen bypass organic matter; IDBOM: intestinal digested rumen bypass organic matter; TDOM: total digested 
organic matter. 
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Table 3.9. Intestinal digestion of crude protein (CP) and starch (ST) of different varieties of CDC oat grain in comparison with CDC barley 

grain. 

 

 Oat varieties (O)  
Barley variety 

(B) 
  Contrast P-value 

Items 
Nasser 

(Feed-Type) 

Arborg 

(Milling-Type) 

Ruffian 

(Milling-Type) 

 CDC Austenson 

(Feed Type) 
SEM P-value B vs. O 

CP intestinal digestion      

dBCP (%RUP) 52.03ab 44.61bc 39.91c  54.00a 2.728 <0.01 <0.01 

IDP (%RUP) 9.93b 7.91c 7.01c  13.73a 0.575 <0.01 <0.01 

IDP (g/kg DM) 13.69b 12.46b 10.05c  18.58a 0.795 <0.01 <0.01 

TDP (%CP) 90.81a 90.19ab 89.41ab  88.28b 0.564 0.02 0.58 

TDP (g/kg DM) 125.51bc 142.39a 128.23b  119.54c 2.178 <0.01 0.72 

Starch intestinal digestion      

dBST (%BST) 93.76b 91.63b 94.46ab  97.31a 0.960 <0.01 0.83 

IDBST (%BCHO) 8.67b 8.69b 9.55b  13.85a 1.230 <0.01 0.40 

IDBST (g/kg DM) 41.20b 41.31b 48.22b  80.55a 6.483 <0.01 0.26 

TDBST (%ST) 99.46ab 99.24b 99.44ab  99.65a 0.080 0.01 0.91 
TDBST (g/kg DM) 476.26c 471.74c 502.37b  579.20a 5.931 <0.01 0.34 

SEM: Standard error of mean; a-c Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparison using 
Tukey method; dBCP: intestinal digestibility of rumen bypass protein on percentage basis; IDP: intestinal digested crude protein; TDP: total digested crude 
protein; dBST: intestinal digestibility of rumen bypass starch on percentage basis; IDBSTP: intestinal digested bypass starch; TDBST: total digested bypass 
starch.  
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3.4.6 Hourly Effective Degradation Ratio between N and OM 

 The optimal ratio between effective degradability of available N to available organic 

matter is 25 g N/kg OM (Sinclair et al., 1993). This rate will assure maximal microbial synthes is 

while preventing N loss. A higher rate of degradation, above the optimal, indicates a potential 

loss of N or not enough energy available to allow the use of N for microbial protein synthes is, 

while a lower value than the optimal indicates not enough N to allow microbial growth (Nuez-

Ortín and Yu, 2010). The hourly effective degradation ratios between available N and availab le 

organic matter (ED_N/ED_OM) at different incubation times of oat grain in comparison to 

barley grain are presented in Table 3.10. Meanwhile, the ratio curve of the studied grains is 

shown in Figure 3.1. Results showed that CDC Arborg had higher (P<0.01) overall ratio of ED 

between available N and available OM, while CDC Austenson showed the lowest value. 

Despite the tendency to increase the ED_N/ED_OM with increasing incubation time CDC 

Nasser and CDC Ruffian showed to be close to the optimal rumen fermentation between 0 h 

and 4 h of incubation time. CDC Arborg showed a significantly higher value at 0 h and 4 h 

(P<0.01). Although not statistically significant (P=0.30), at 24 h incubation point CDC 

Austenson barley grain showed the numerically highest value of ED_N/ED_OM (184.42 g/kg). 

This large difference between grains was mainly caused by a significant difference in hourly 

effective degradation of N and organic matter. All varieties and grains presented a similar 

effective degradation of N during 12 h and 24 h incubation, but barley had a larger difference 

in effective degradation of OM. 
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Table 3.10 Hourly effective degradation ratios between N and OM of different varieties of CDC oat grain in comparison with CDC barley grain. 

 Oat varieties (O) 
 Barley variety 

(B) 
  Contrast P-value 

Items 
Nasser 

(Feed-Type) 
Arborg 

(Milling-Type) 
Ruffian 

(Milling-Type) 
 Austenson 

(Feed Type) 
SEM P value B vs. O 

Ratio of N to 

OM 
22.81bc 26.05a 23.63b 

 
22.16c 0.334 <0.01 

0.91 

Ratio of 

ED_N/ED_OM 
25.78b 30.42a 26.68b 

 
22.37c 0.409 <0.01 

0.30 

Ratio at individual incubation hours (g/kg)      

h0 24.91b 43.31a 26.44b  17.58b 4.041 <0.01 0.64 

h2 25.44a 27.97a 27.56a  19.88b 0.769 <0.01 <0.01 

h4 25.22b 30.43a 25.11b  22.97b 1.023 <0.01 0.36 

h8 26.98ab 37.32a 21.00b  31.61ab 4.136 0.05 0.03 

h12 32.23 47.48 17.74  45.56 9.306 0.09 0.03 

h24 89.22 111.48 11.34  184.42 69.134 0.3 0.12 

 
 
SEM: Standard error of mean; a-c Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparison using 
Tukey method; N: nitrogen; OM: organic matter; ED: effective degradability.  
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Figure 3.1. Hourly effective degradation ratios between available N and available OM (ED_N/ED_OM) of different varieties of oat grain in 

comparison with barley grain. 
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3.4.7 Nutrient Supply and Feed Milk Value 

 The results for nutrient supply and feed milk value according to the DVE/OEB model 

are shown in Table 3.11. Bypass crude protein (BCP) was higher (P<0.01) for barley Austenson 

(123.44 g/kg DM). However, CDC Austenson showed the lowest (P<0.01) microbial protein 

synthesized in the rumen based on available energy (MREE) and based on available rumen 

degradable CP (MREN) when compared to the other studied treatments (105.59 and 11.66 g/kg 

DM) respectively. The total true protein supply absorbed in the small intestine was higher for 

barley Austenson (P<0.01) when compared to other treatments. DVE ranged from 101.7 to 

127.90 g/kg DM. Positive values of degraded protein balance (OEB) signifies the potential loss 

of N, while negative values can indicate a shortage of N and consequently an impairment on 

microbial protein synthesis. All treatments in this study presented negative values, ranging from 

-34.30 g/kg DM in CDC Arborg to -93.92 g/kg DM for CDC Austenson barley. Feed milk value 

based on the Dutch model varied significantly between treatments (P<0.01), with CDC 

Austenson barley having the highest value while CDC Ruffian oat had the lowest (2.60 and 

2.05 kg of milk/kg of feed) respectively. The results for barley Austenson in this study were 

different from the data published by Yu (2005b), which obtained much lower DVE and higher 

OEB using 0.5 mm rolled feed type of barley (Valier). Oat grain in this study showed the same 

pattern, it had a higher DVE and lower OEB than previous published results for oat (Yu and 

Niu, 2009). 

The metabolic characteristics, true nutrient supply, and feed milk value according to the NRC 

2001 system is shown in Table 3.12. The truly absorbed microbial protein in the small intestine 

(AMCP) was lower for oat grain (P<0.01) when compared to barley (4.8 g/kg DM) and the 

truly absorbed rumen undegradable protein (ARUP) tended to be lower (P=0.06) for oat grain 

as well (-28.81 g/kg DM). Consequently, metabolizable protein (MP) was lower for oat grain 

(P=0.03) compared to barley grain (75.66 vs. 129.62 g/kg DM) respectively. When compared 
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to the data published by Yu (2005b), that reported a MP 107.4 g/kg DM, barley grain in this 

study presented higher MP and lower DPB (129.62 g/kg DM). The predicted feed milk value  

(FMV) was also higher for barley grain when compared to oat grain (2.63 vs. 1.94 kg of milk/kg 

of DM fed) respectively. The calculation for FMV was based on MP and not energy. 
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Table 3.11. Metabolic characteristics and truly absorbable nutrient supply (based on non-TDN system: DVE-OEB) of different varieties of CDC 

oat grain in comparison with CDC barley grain. 

 

 Oat varieties (O)  
Barley variety 

(B) 
  Contrast P-value 

Items 
Nasser 

(Feed-Type) 
Arborg 

(Milling-Type) 
Ruffian 

(Milling-Type) 
 Austenson 

(Feed Type) 
SEM P-value B vs. O 

Truly digestible nutrient supply to dairy cattle (g/kg DM)      
BCP (g/kg DM) 68.57b 74.23b 78.77b  123.44a 17.116 <0.01 0.42 

EDCP (g/kg DM) 176.13b 173.31b 165.97b  233.70a 13.075 <0.01 0.09 
MREE (g/kg DM) 115.78a 117.90a 116.61a  105.59b 3.308 <0.01 0.10 

MREN (g/kg 
DM) 

69.63a 83.60a 64.63a  11.66b 17.013 <0.01 0.43 

DVME (g/kg 

DM) 
73.81a 75.16a 74.34a  67.31b 2.109 <0.01 0.10 

DVBE (g/kg DM) 35.61b 33.09b 31.63b  65.44a 7.623 <0.01 0.06 

Degraded protein balance (OEB) and Total true protein supply (DVE) to dairy cows (g/kg DM)   
DVE (g/kg DM) 103.35b 103.05b 101.07b  127.90a 5.652 <0.01 0.06 
OEB (g/kg DM) -46.15a -34.30a -51.97a  -93.92b 13.812 <0.01 0.56 

Feed milk value (kg milk/kg DM fed)      
FMV  2.10b 2.09b 2.05b  2.60a 0.114 <0.01 0.06 

SEM: Standard error of mean; a-b Means with different letters in the same row are significantly different (P<0.05); Multi-treatment comparisons using Tukey 
method; BCP: bypass crude protein; MREE: microbial protein synthesized in the rumen based on available energy; EDCP: effective degradability of CP; MREN: 
microbial protein synthesized in the rumen; DVME: rumen synthesized microbial protein digested in the small intestine; DVBE: truly absorbed bypass protein 
in the small intestine; DVE: truly digested protein in the small intestine; OEB: degraded protein balance; FMV: feed milk value. 
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Table 3.12. Metabolic characteristics and true nutrient supply (based on TDN system: NRC dairy) of different varieties of CDC oat grain in 

comparison with CDC barley grain. 

 

 Oat varieties  Barley variety   Contrast P-value 

Items 
Nasser 

(Feed-Type) 
Arborg 

(Milling-Type) 
Ruffian 

(Milling-Type) 
 Austenson 

(Feed Type) 
SEM P-value B vs. O 

Truly Digestible Nutrient Supply to Dairy Cattle      

RUP (g/kg DM) 61.77b 66.87b 70.96b  111.48a 15.421 <0.01 0.42 
MCPTDN (g/kg 

DM) 
98.46b 95.06c 94.79c  103.61a 0.382 <0.01 <0.01 

MCPRDP (g/kg 

DM) 
149.71b 147.31b 141.07b  198.64a 11.891 <0.01 0.09 

AMCP (g/kg 
DM) 

63.02b 60.84c 60.67c  66.31a 0.245 <0.01 <0.01 

ARUP (g/kg DM) 32.08b 29.81b 28.49b  58.95a 6.867 <0.01 0.06 

ECP (g/kg DM) 10.97b 10.95b 11.01a  10.89c 0.005 <0.01 <0.01 

AECP (g/kg DM) 4.40a 4.38a 4.40ab  4.35c 0.005 <0.01 <0.01 

Total metabolizable protein supply and degraded protein balance to dairy cattle    

MP (g/kg DM) 98.38b 95.03b 93.57b  129.62a 7.186 <0.01 0.03 

DPB (g/kg DM) 59.73b 61.13ab 54.05b  111.44a 14.155 0.02 0.16 

Feed milk value (kg milk/kg DM fed)      

FMV 2.00b 1.93b 1.90b  2.63a 0.146 <0.01 0.03 

SEM: Standard error of mean; a-c Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparisons using 
Tukey method; RUP: rumen undegradable feed crude protein; MCPTDN: rumen synthesized microbial protein base on available TDN; MCPRDP:  microbial protein 
synthesized in the rumen based on available protein; AMCP: truly absorbed microbial protein in the small intestine; ARUP: truly absorbed rumen undegradable 
protein in the small intestine; ECP: rumen endogenous protein; AECP: truly absorbed rumen endogenous protein in the small intestine; MP: metabolizable 
protein; DPB: rumen degraded protein balance; FMV: feed milk value. 
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3.4.8 Protein Molecular Structures Analysis 

 Previous findings suggest that protein molecular structure is related to variation in the 

ruminal and intestinal digestibility of proteins (Damiran and Yu, 2011; Peng et al., 2014). The 

univariate analysis of the protein molecular structural characteristics of different varieties of 

oat grain in comparison to barley grain are shown in Figure 3.2 and Table 3.13. In this study 

Amide I height was significantly higher (P<0.01) for CDC Austenson in comparison to all 

varieties of oat. The ratio of Amide I to Amide II peak height and area was significantly lower 

for oat (P<0.01) when compared to CDC Austenson barley grain. The protein secondary 

structures α-helix and β-sheet showed a diverse range between varieties and grains, with CDC 

Nasser showing the lowest numbers when compared to CDC Arborg and CDC Austenson 

(P<0.01). The α-helix to β-sheet ratio was numerically higher for all oat varieties, although 

CDC Arborg and CDC Ruffian did not show a significant difference from barley grain. Peng et 

al. (2014) suggested a strong association between Amide II intensity and CP, rumina l 

degradable protein and intestinal digestibility of RUP, even though this relation could be 

originated from the CP quantitative value. In this study, CDC Arborg, the variety that had the 

highest Amide II height, showed the highest value for CP content, however, the values for 

rumen degradable fraction and intestinal digestibility of RUP were not higher for CDC Arborg 

when compared to the other varieties. 

 Figure 3.3 and 3.4 presents the results of the multivariate molecular spectral analys is, 

PCA and HCLA. The principal component analysis (PCA) was able to group different varieties 

of oat grain, and compared it to barley grain, by its amide related region. The principa l 

component 1 (PC1) was able to explain 91% of the variation between the spectra data in this 

protein related region, while PC2 explained 5% of the variation that CDC Arborg oat and 

Austenson barley were clearly separated from each other and from the other two varieties. On 

the other hand, CDC Nasser and CDC Ruffian were overlapped, implying that the molecular 
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structure in the Amide region was similar for these two varieties. The HCLA revealed that the 

structural makeup between oat varieties was not fully distinguishable in the Amide region. 

These results suggest that the three varieties of oat were not significantly different in the whole 

Amide molecular structure. 
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Figure 3.2. (a) Vibrational Fourier transformed infrared attenuated total reflectance (Ft-IR/ATR) biomolecular spectra of different varieties of 

oat grain in comparison with barley grain of the protein molecular structures, amide I and amide II; (b) Protein secondary structures α-helix and 

β-sheet heights.  
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Table 3.13. Protein molecular structure profile of different varieties of CDC oat grain in comparison with CDC barley grain. 

 

SEM: standard error of mean; a-c Means with different letters in the same row a significantly different (P<0.05); Multi-treatment comparison 
using Tukey method;  

 Oat varieties (O)  
Barley variety 

(B) 
  

Contrast P-
value 

Items 
Nasser 

(Feed-Type) 

Arborg 

(Milling-Type) 

Ruffian 

(Milling-Type) 

 Austenson 

(Feed Type) 
SEM P-value B vs. O 

Amide heights and spectra ratio    

Amide I 0.10c 0.12b 0.11bc  0.14a 0.004 <0.01 <0.01 
Amide II 0.05b 0.06a 0.05b  0.043b 0.003 0.01 0.47 

Amide I/Amide II 2.149b 2.018b 2.25b  3.323a 0.081 <0.01 0.03 

Amide area and spectra ratio 

Amide I 8.69c 10.85b 9.39bc  13.02a 0.421 <0.01 0.02 
Amide II 2.25b 3.32a 2.29b  2.27b 0.218 0.02 0.23 

Amide I/Amide II 3.97b 3.28b 4.10b  6.46a 0.232 <0.01 0.13 

Secondary structure heights and spectra ratio    

α-helix 0.15c 0.18ab 0.15bc  0.18a 0.005 <0.01 0.03 

β-sheet 0.10c 0.12b 0.11bc  0.14a 0.003 <0.01 <0.01 

α-helix/β-sheet 1.56a 1.45ab 1.44ab  1.28b 0.039 <0.01 0.76 
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Figure 3.3 Multivariate spectral analyses of different processed oat grain in comparison with barley grain using FTIR vibrational spectroscopy at 

whole Amide region (ca. 1710-1480 cm-1). PCA (principal component analysis) with a scatter plot of the 1st principal components (PC1) vs. the 

2nd principal components (PC2). 
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Figure 3.4 Multivariate spectral analyses of different processed oat grain in comparison with barley grain using FTIR vibrational spectroscopy at 

whole Amide region (ca. 1710-1480 cm-1). CLA (cluster analysis): cluster method (Ward’s algorithm) and distance method (Squared Euclidean).  
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3.5 Chapter summary and conclusions 

 Chemical profiles were different among varieties and between grains. CDC Nasser had 

lower lignin content despite having a higher percentage of hull compared to the other oat 

varieties (27 vs. 25%). The content of carbohydrate, starch, and sugar for the barley variety was 

82.47, 58.12 and 2.65, respectively, and it was higher than any variety of oat. Despite the 

differences in chemical profile, CDC Nasser oat and CDC Austenson barley showed similar 

energy values. Oat grain had a NEL of 1.96 Mcal/kg and TDN1x 84.89% DM. Oat had a higher 

PB1 and a lower PB2, while the PC sub-fraction did not differ between grains. Despite that, 

CDC Austenson barley showed a higher FMV (2.63 kg of milk/kg of feed) when compared to 

all three varieties of oats. The three oat varieties presented a higher Kd for DM, OM, and CP, 

and oat grain had a higher effective degradability of CP in the rumen (81.85%). The results of 

this study indicate that oat varieties have singular chemical and nutritional characteristics. In 

addition, CDC Nasser and Ruffian can provide higher effective degradability of CP in the 

rumen without affecting the effective degradability of N/OM and so contribute to the maximum 

microbial production while preventing N loss. 
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4. IMPACT OF PROCESSING METHODS ON PHYSIOCHEMICAL, NUTRITIONAL 

MOLECULAR STRUCTURAL CHARACTERIZATION AND DAIRY COW 

FEEDING VALUE OF OAT GRAIN IN COMPARISON WITH BARLEY GRAIN 

 

4.1 Abstract 

Processing cereal grains can lead to an improvement in nutrient digestibility and have an 

impact on the rate and site of grain nutrients digestion. However, there are several methods of grain 

processing and it is important to understand which processing method provides the best results for 

dairy cows ration with oat grain. The main objective of this study was to determine the impact of 

processing methods (Rolling, Steam-Flaking, Pelleting) on the nutritional and digestive 

characteristics and the protein related molecular spectral profiles of oat grain in comparison to 

barley grain. Results showed that heat treating oat (steam-flaking and pelleting) did not alter the 

DM, OM, and SCP of oat grain, but it did increase the EE (+0.50% DM). Rolled barley had higher 

(P<0.01) starch and NFC content when compared to the other treatments. Steam-flaking increased 

the energy content (DE, ME and NEL) and the intermediate degradable protein fraction PB1 

(+13.68% CP), while reduced PA2 (-17.19% CP) fraction when compared to rolled oat. Steam-

flaking also increased bypass CP (+14.71%BCP) while decreasing the EDCP in the rumen (-

14.71%). Rolled barley showed higher values of intestinal digestibility and total-tract digestibility 

for DM and OM. In the DVE/OEB system, steam-flaked oat and pelleted oat presented lower 

values of OEB when compared to rolled oat, but they were higher than the value for rolled barley.
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 Univariate analysis of the protein molecular structure features showed only changes in the 

protein beta-sheet height, with flaked oat presenting the higher value (0.05), pelleted oat showing 

the lowest value (0.02) and rolled barley and oat showing intermediate values (0.04 and 0.03). 

There was overlap among treatments when analyzed with PCA, implying similar molecular 

structure among the treatments. 

 

4.2 Introduction 

Oat (Avena sativa) is one of the most important cereal grains produced in Canada. In recent 

years, with the increase in demand by the international market, oat production has grown more than 

10% in the last two years, which promoted an increase in availability of this grain for Canadian 

farms (Statistics Canada, 2018). Although oat seems to be a good replacement for other cereal 

grains for high producing dairy cattle, oat grain generally has a high proportion of hull, accounting 

for up to 25% of the whole oat weight (Crosbie et al., 1985). This high content of fiber protecting 

the groat is known to decrease the total-tract digestibility of the grain and increases the loss of 

whole grains in feces (Beauchemin et al., 1994; Morgan and Campling, 1978).  

Processing methods have been shown to improve nutrient digestibility and the rate and site 

of grain digestion (Chrenkova et al., 2018; Prates et al., 2018). Grains can be physically processed 

by the application of several combinations of heat, moisture, time and pressure. So, it is important 

to understand which kind of processing method is more adequate to optimize overall dairy cattle 

performance and milk production. It is also important to understand how the molecular structure 

of grains is affected by heat processing methods and how the changes in protein molecular structure 

can affect nutrient profile and availability for dairy cattle (Yu, 2007). Recently, ATR-FT/IR 
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molecular spectroscopy has been used as a non-invasive and non-destructive technique to rapidly 

characterize the feed molecular structure and use this data to predict nutrient profile and utilizat ion. 

Therefore, the present study was conducted to evaluate three different processing methods  

for oat grain in comparison to barley grain in relation to nutrient profile, energy values, protein 

sub-fractions, rumen degradation kinetics, intestinal digestibility, nitrogen to energy 

synchronization and protein molecular structure, in order to determine the most efficient processing 

method to enhance truly absorbable nutrient supply for high production dairy cattle. 

 

4.3 Material and Methods 

4.3.1 Grains Collection and Processing 

 Samples of CDC Ruffian oat and barley grain used in this study were obtained from 

commercial sellers by Canadian Feed Research Centre (CFRC, University of Saskatchewan) . 

Processing of the grains was also conducted at the Canadian Feed Research Centre (CFRC), 

University of Saskatchewan, North Battleford, Canada. Two different production batches were 

made for all treatments (n=8). Pellets were made at 62°C in a pellet mill (UAS-Muyang Model: 

MUZL350II) with a die inside diameter of 350 mm and hole area of 4 mm die (PDI=66%). For 

steam-flaking, samples were steamed for 25 min at atmospheric pressure and subsequently flakes 

were made at approximately 100°C (AT Ferrell 18×39 Dual Drive), before being transferred to the 

flaker cooler (Geelen Model VK 28 × 28 KL). Rolled samples (rolled oat and rolled barley) were 

made using a roller grinder (G.J. Vis Triple Pair 12" x 20"). The grains ended up with a processing 

index of 50.9 for oat and 73.4 for barley. 
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4.3.2 Chemical Analysis 

The samples were ground through a 1 mm screen (RetschZM200, Retsch Inc., PA, USA) 

and subsequently analyzed for DM (AOAC official method 930.15), OM, EE (AOAC offic ia l 

method 920.39), Ash (AOAC official method 942.05), CP (AOAC official method 984.13) and 

sugars (AOAC official method 974.06). The NDF, ADF, and ADL were analyzed according to 

Van Soest et al. (1991) using the filter bag technique from ANKOM Technology. The NDICP and 

ADICP were analyzed according to the procedures described by Licitra et al. (1996). The SCP was 

determined according to Roe et al. (1990) by incubating samples in the borate-phosphate buffer 

and filtrating it through Whatman filter paper (#54). Starch was analyzed using a Megazyme Total 

Starch Kit (Megazyme International Ltd., Wicklow, Ireland). Total carbohydrate and non-fiber 

carbohydrate were determined according to NRC (2001): CHO = 100 – EE – CP – Ash, and NFC 

= 100 – (NDF – NDICP) – EE – CP – Ash. All samples were analyzed in duplicate and repeated if 

chemical analysis error was in excess of 5 %. 

 

4.3.3 Energy Values 

The energy values of grains were determined using the summative approaches of the NRC 

(2001) dairy and NRC (1996) beef. The digestible energy at a production level of intake (DE3x), 

metabolizable energy at a production level of intake (ME3x), net energy for lactation at a production 

level of intake (NEL3x), as well as values for truly digestible CP (tdCP), truly digestible NDF 

(tdNDF), truly digestible NFC (tdNFC) and truly digestible fatty acids (tdFA) were determined 

according to the equations of NRC-2001 dairy. The values of net energy for maintenance (NEm) 

and net energy for growth (NEg) were estimated according to the equations of NRC-1996 beef.  
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4.3.4 Protein and Carbohydrate Profile 

 The Cornell Net Carbohydrate and Protein System (CNCPS) version 6.5 was used to 

partition the carbohydrate and protein sub-fractions. Fractions were subdivided considering the rate 

and extent of degradation in the rumen. Protein was fractioned into PA2= soluble true protein with 

a Kd ranging from 10 to 40%/h; PB1= insoluble true protein with a Kd of 3-20%/h; PB2= fiber-

bound protein with a Kd ranging from 1-18%/h and PC= indigestible protein. The carbohydrates 

were subdivided into CA4= water-soluble carbohydrates and has a Kd of 40-60%/h; CB1= starch 

that has a Kd of 20-40%/h; CB2= soluble fiber with a Kd ranging from 20 to 40%/h; CB3= 

digestible fiber with a Kd of 1-18%/h and CC= indigestible fiber. 

 

4.3.5 Rumen Incubation 

 The University of Saskatchewan Animal Care Committee approved the animal trial under 

the Animal Use Protocol No. 19910012 and animals were cared for and handled in accordance with 

the Canadian Council of Animal Care (CCAC, 1993) guidelines. The in situ experiment was carried 

out in the Rayner Dairy Teaching and Research Facility, University of Saskatchewan, Canada. For 

the incubation, four Holstein cows fitted with an 88 mm cannula were used. Cows were housed in 

individual tie stalls with free access to water and fed a TMR diet composed of barley silage, alfalfa 

hay, and a lactating pellet twice a day.  

The incubation procedure followed a ‘gradual addition/all out` schedule according to the 

protocol by Damiran and Yu (2012). Nylon bags with a 40 µm pore size were used to incubate 

approximately 7 g per sample per bag for 0, 2, 4, 8, 12 and 24 h with multi-bags (2, 2, 2, 2, 3, 4) 

for each treatment and incubation time as well as each experiment run. The incubation procedure 

was performed for two experimental runs using the same four cannulated cows. The two batches 
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of each treatment were used in this experiment (n=8). After incubation was completed, bags were 

removed and washed in cold water for six times, to wash out all the rumen fluid, and subsequently 

dried at 55°C for 48h in a forced-air oven. Samples taken out of the oven were exposed to room 

temperature and moisture before being weighted and composite by incubation time point and 

treatment. Pooled samples were then ground through 1 mm screen and analyzed for CP using 

LECO protein analyzer (Model FP-528, Leco Corp., St. Joseph, MI, USA), DM and OM according 

to AOAC (2005), and starch was analyzed using a Megazyme total starch kit (Megazyme 

International Ltd.). 

 

4.3.6 Rumen Degradation Kinetics 

 Degradation characteristics of DM, OM, CP, and Starch were determined following the 

first-order kinetics degradation model described by Ørskov and McDonald (1979) and modified by 

Tamminga et al. (1994). The results of rumen degradation kinetics were analyzed using NLIN 

procedure of SAS (Statistical Analysis System,) version 9.4 with iterative least-square regression 

(Gausse Newton method).  

R(t) = U + D × e -Kd × (t  – T0) , 

where R(t) was the residue present after t hours of incubation; U was the undegradable fraction 

(%); D was the potentially degradable fraction (%); Kd was the degradation rate (h ̶ 1); and T0 was 

the lag time. 

The percentage of bypass (B) values of nutrients were calculated according to NRC Dairy (2001): 

%BDM, BOM, BCP (or RUP) = U + D × Kp/ (Kp+Kd) 

%BSt = 0.1 × S + D Kp/ (Kp + Kd), 
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where, S=soluble fraction (%); Kp=estimated passage rate from the rumen (h−1) and was assumed 

to be 6%/h for DM, OM, CP and Starch (Tamminga et al., 1994). The rumen undegradable or 

bypass DM, OM and Starch, in g/kg DM, were calculated as: 

BDM, BOM or BSt (g/kg DM) = DM (OM or St) (g/kg DM) × % BOM (BOM or BSt), 

while the rumen bypass CP (BCP) and rumen undegraded CP (RUP) were calculated differently 

according to the DVE or NRC model: 

BCP DVE (g/kg DM) = 1.11 × CP (g/kg DM) × %BCP 

RUP NRC (g/kg DM) = CP (g/kg DM) × %RUP 

The effective degradability (ED), or extent of degradation, of each nutrient was predicted according 

to NRC as: 

%EDDM (EDOM, EDCP or EDSt) = S + D × Kd/(Kp + Kd), 

EDDM (EDOM, EDCP or EDSt) (g/kg DM) = DM (OM, CP or St) (g/kg DM) × %EDDM (EDOM, 

EDCP or EDSt). 

 

4.3.7 Hourly Effective Rumen Degradation Ratio and Potential N to Energy 

Synchronization 

 The effective degradation of available N and available OM were calculated 

according to Sinclair et al. (1993): 

Hourly ED (g/kg DM) = S + [(D × Kd)/ (Kp + Kd)] × 1 − e−t×(Kd+Kp). 

The difference in cumulative amounts degraded among successive hours was used to calculate the 

hourly effective degradation ratio between N and OM (ED_N/ED_OM) following the equation 

described by Nuez-Ortín and Yu (2010): 

Hourly ED N/OMt  = (HEDNt − HEDNt−1)/ (HEDOMt − HEDOMt−1), 



 

78 

 

where, hourly ED_N/ED_OM was the ratio of N to OM at the time t (gN/kgOM);  HEDN t was the 

hourly ED of N at the time t (g/kg DM); HEDN t−1 was the hourly ED of N 1h before the time t 

(g/kg DM); HEDOMt was the hourly ED of OM at the time t (g/kg DM); HEDOM t−1 was the 

hourly ED of OM 1 h before the time t (g/kg DM). 

 

4.3.8 Intestinal Digestion of Rumen Undegradable Protein 

 The intestinal digestion of CP was determined using the three-steps in vitro protocol by 

Calsamiglia and Stern (1995). Briefly, residues taken out after 12 hours ruminal incubation and 

containing approximately 15 mg of N were placed in a 50 ml centrifuge tube with 10 ml of pepsin 

(Sigma P-7000) solution (0.1 N HCl with pH 1.9) and incubated for 1 h at 38°C. After incubation, 

0.5 ml of 1 N NaOH solution and 13.5 ml of pancreatin (Sigma P-7545) were added and the solution 

was incubated for 24 h at 38°C. After the incubation, 3 ml of TCA was used to stop hydrolysis and 

then centrifugated at 1000g for 15 min and the supernatant was analyzed for soluble N by the 

Kjeldahl method. Intestinal digestion of protein was calculated as TCA soluble N divided by N 

present after ruminal incubation. 

 

4.3.9 Nutrient Supply and Feed Milk Value 

 The DVE/OEB system and the NRC model were used to estimate the nutrient supply and 

feed milk value. In the Dutch system described by Tamminga et al. (1994, 2010), the DVE 

represents the value of a feed protein and it is calculated as: 

DVE = DVME + DVBE – ENDP, 

where DVME is the microbial true protein synthesized in the rumen and digested in the small 

intestine, DVBE is the feed crude protein undegraded in the rumen but digested in the small 
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intestine and ENDP is the endogenous protein lost in the digestive process. The OEB value is 

calculated as: 

OEB = MREN – MREE, 

where OEB is the difference between the potential microbial protein synthesis based on availab le 

N (MREN) and the potential microbial protein synthesis based on energy extracted from anaerobic 

fermentation (MREE)  

 In the NRC 2001 model, the total metabolizable protein (MP) is constituted by the rumen 

undegraded feed crude protein (RUP), ruminally synthesized microbial crude protein (MCP) and 

the rumen endogenous crude protein (ECP), and so MP is calculated as: 

MP (g/kg of DM) = ARUP+AMCP+AECP, 

where ARUP is the truly absorbable rumen undegraded CP, AMCP is the truly absorbable rumina l 

synthesized microbial CP and AECP is the truly absorbable endogenous CP. 

 The degraded protein balance (DPB) reflects the difference between the potential microbia l 

protein synthesis based on the rumen degradable protein (RDP) and the potential microbial protein 

synthesis based on energy (TDN) available for microbial fermentation in the rumen. The DPB is 

calculated as: 

DPB (g/kg of DM) = RDP – 1.18 x MCPTDN, 

where RDP is the rumen degradable protein and MCPTDN is the microbial protein synthesis 

(discounted TDN). Feed milk value was calculated based on MP. 

 

4.3.10 Protein Molecular Structures Analysis 

 Samples were ground through a 0.12 mm screen and subsequently analyzed using a JASCO 

FTIR-ATR-4200 spectrometer (JASCO Corp., Tokyo, Japan). Right before samples were 
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submitted to spectra collection, the background spectrum was measured with 256 scans to correct 

the spectra for CO2 noise. Spectra were collected at the mid-IR region (approximately 4000–700 

cm−1) with a spectra resolution of 4 cm−1 and using 128 co-added scans (SpectraManager II 

software, JASCO Corp., Tokyo, Japan). Each sample had five spectra collected as sub-sample 

replicate. 

For univariate analysis, the collected spectrum data related to the protein structure was 

preprocessed using OMINIC 7.3 software (Spectra Tech, Madison, WI, USA). Each spectrum was 

normalized, and a second derivative was generated and smoothed, prior to the calculation of peak 

heights and areas. The primary protein structure, amide I region (at ca. 1718-1584 cm−1) and amide 

II (at ca. 1584-1485 cm−1), as well as the secondary structures, α-helix (at ca. 1647cm−1) and β-

sheets (at ca.1628cm−1) were measured for height and area, and their ratios between Amide I to 

Amide II and α-helix to β-sheet were determined. 

The multivariate spectral analysis was performed to distinguish the inherent differences in 

the whole protein structure between the grains. The whole protein related structures (Amide I and 

Amide II) were analyzed using Principal Component Analysis (PCA) and Hierarchical Cluster 

Analysis (HCLA) using Ward’s algorithm method. Multivariate spectra analysis was performed 

using the Unscrambler X software v. 10.3 (Camo Software, Norway). 

 

4.3.11 Statistical Analysis 

 Results were analyzed using the Mixed model procedure in SAS 9.4 (SAS Institute Inc., 

NC, USA). The detailed chemical profile, protein and carbohydrate subfractions, energy values 

and protein spectral profile were analyzed according to the model: 

Yij = µ + Ti + eij, 
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where Yij was the observation of the dependent variable ij, µ was the fixed effect of the population 

mean, Ti was the fixed effect of treatment and eij was the random error associated with the 

observation ij.  

Rumen degradation kinetics, hourly effective degradation ratio, nutrient supply and 

intestinal digestion of rumen undegraded nutrients were analyzed as randomized complete block 

design (RCBD) with experimental run used as a random block, and analyzed with the Mixed model 

in SAS 9.4, using the model: 

Yijk = µ + Ti + Sk + eijk, 

where Yijk was the observation of the dependent variable ijk, µ was the population mean, Ti was 

the effect of treatment as fixed effect, Sk was the random effect of in situ incubation run and eijk 

was the random error associated with the observation ijk. 

Prior to the statistical analysis, all outlier data were removed, using the same model, with a 

criterion of Studentized Residual greater than 2.5. For all statistical analysis, significance was 

declared at P<0.05 and trends at 0.05<P<0.10. The differences among the treatments were 

compared using a multiple comparison test following the Tukey method. Contrast statement was 

used to compare the difference between barley grain and oat grain. The model assumptions were 

checked using research analysis. The normality test was carried out using Proc Univariate with 

Normal and Plot option. 

 

4.4 Results and Discussion 

4.4.1 Chemical Profile 

 Results for the impact of processing method on the chemical profile of oat in comparison 

to barley grain is shown in Table 4.1. Different processing methods and grain types did not affect 
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dry matter (DM), organic matter (OM) or ash content (P≥0.20). Significant difference was 

observed (P<0.01) for EE between rolled and heat processed oat. The apparent increase in crude 

fat when grains are submitted to heat processing methods has been observed in other studies 

(Doiron et al., 2009) and can be related to the lipid composition of oat and protein denaturation, 

which could affect the oleosins that cover the oil bodies, exposing the inside of these oil bodies to 

one another and allowing them to coalesce (Doiron et al., 2009; Huang, 1996; Huang, 1992). In 

this study, CP (P=0.09) and ADICP (P=0.73) did not differ among treatments, while SCP was 

lower (P=0.02) for flaked oat when compared to rolled oat (3.49 and 5.77% DM, respectively) and 

NDICP was higher (P<0.01) for flaked oat (1.24% DM). For the carbohydrate profile, CHO, NFC, 

and starch content were higher (P<0.01) for rolled barley when compared to rolled oat grain, and 

a significant difference was found between heat processed treatments and rolled oat for starch 

(P<0.01) and NFC (P=0.01). These findings agree with Rahman et al. (2016), that reported an 

increase of more than 5% DM in starch by dry roasting oat grain. Total CHO was not significantly 

impacted by heat processing, and this can be related to the balance between increased EE and lower 

ash, which may have balanced the CHO equation. Both dry-rolled oat and steam-flaked oat had the 

groat separated from the hull after processing, but a large sample was collected and evenly ground 

through a 1mm screen. The acid detergent fiber (ADF) was significantly lower for flaked oat when 

compared to rolled oat (8.43 and 10.29% DM, respectively). Qiao et al. (2015), studying effects of 

steam flaking in three different types of cereal grains, reported no difference between NDF content 

for raw and steam-flaked grains, while ADF was increased for steam-flaked maize when comparing 

to the raw grain (4.07 and 3.05%DM, respectively), but it did not differ between the other two grain 

types. On the other hand, Doiron et al. (2009), studying Vimy flaxseed, described similar decrease 

in ADF concentration when the samples were submitted to autoclave treatment at 120°C, showing 



 

83 

 

a reduction of up to 24%. These results indicate that different grain types and different processing 

methods react differently to heat processing methods. 
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Table 4.1. Effect of heat processing methods on chemical profile of oat grain in comparison with barley grain. 

 

  

 Oat (O)     Contrast P-value 

Items Rolled (R) Flaked (F) Pellet (P)  Barley (B) SEM P-value B vs. O B vs. FP R vs. FP 

Basic chemical profile           

DM (%) 87.73 86.70 88.37  85.78 0.984 0.37 0.63 0.96 0.25 

Ash (%DM) 3.56 2.92 3.34  2.68 0.256 0.20 0.40 0.55 0.52 
EE (%DM) 3.95a 4.60a 4.31a  1.21b 0.272 <0.01 0.01 <0.01 <0.01 
OM (%DM) 96.44 97.08 96.66  97.31 0.256 0.21 0.40 0.55 0.52 

Protein profile           

CP (%DM) 13.48 13.64 13.02  11.76 0.401 0.09 0.13 0.10 0.46 
SCP (%DM) 5.77a 3.49b 4.29ab  3.98ab 0.312 0.02 0.03 0.02 0.20 
SCP (%CP) 42.75a 25.56b 30.03ab  33.87ab 1.876 0.01 <0.01 <0.01 0.08 

ADICP (%DM) 004 0.02 0.02  0 0.024 0.73 0.93 0.94 0.98 
ADICP (%CP) 0.31 0.18 0.15  0.02 0.189 0.76 0.91 0.93 0.96 

NDICP (%DM) 1.02b 1.24a 0.73c  0.78c 0.037 <0.01 <0.01 <0.01 0.02 
NDICP (%CP) 7.62ab 9.12a 5.64c  6.62bc 0.341 <0.01 <0.01 <0.01 0.02 

Carbohydrate profile           

CHO (%DM) 79.00b 78.83b 79.31b  84.34a 0.677 <0.01 0.06 0.03 0.05 

Starch (%DM) 48.91b 52.59b 47.55b  66.58a 1.726 <0.01 0.43 0.07 <0.01 
Sugar (%DM) 1.95 1.75 1.96  2.10 0.145 0.48 0.21 0.20 0.72 
NFC (%DM) 55.09b 59.99b 58.42b  71.86a 0.951 <0.01 0.18 0.04 0.01 

NFC (%CHO) 69.75b 76.10b 73.65b  85.20a 1.491 <0.01 0.96 0.49 0.10 
NSC (%DM) 50.87b 54.35b 49.51b  65.68a 1.398 <0.01 0.57 0.08 <0.01 
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Table 4.1. Cont’d Effect of heat processing methods on chemical profile of oat grain in comparison with barley grain. 
 

SEM: standard error of mean; a-d Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparison 
using Tukey method; R: rolled oat; F: flaked oat; P: pelleted oat; B: rolled barley; B vs. O: contrast between barley and oat grain; B vs. FP: contrast 
between barley grain and heat-processed oat; R vs. FP: contrast between rolled oat and heat-processed oat; DM: dry matter; OM: organic matter; 
EE: ether extract (crude fat); CP: crude protein; SCP: soluble crude protein; ADICP: acid detergent insoluble crude protein; NDICP: neutral 
detergent insoluble crude protein; CHO: carbohydrates; NFC: non-fiber carbohydrate; NSC: non-soluble carbohydrate; aNDF: neutral detergent 
fiber analyzed with amylase; ADF: acid detergent fiber; ADL: acid detergent lignin; uNDF: undigestible neutral detergent fiber analyzed after 288 
h in situ incubation. 

 

 Oat (O)     Contrast P-value 

Items Rolled (R) Flaked (F) Pellet (P)  Barley (B) SEM P-value B vs. O B vs. FP R vs. FP 

Fiber profile           

aNDF (%DM) 23.91a 18.84ab 23.91a  12.48b 1.309 <0.01 0.87 0.71 0.17 

ADF (%DM) 10.29a 8.43b 9.93ab  4.36c 0.312 <0.01 0.55 0.04 <0.01 
ADF (%NDF) 43.18 45.09 47.54  34.98 3.001 0.14 0.41 0.18 0.08 
ADL (%DM) 2.72a 2.04ab 2.11ab  0.75b 0.281 0.03 0.60 0.42 0.34 

ADL (%NDF) 11.49 10.92 10.04  6.04 1.883 0.30 0.47 0.40 0.61 
uNDF (%DM) 15.36a 13.76a 13.41ab  3.11b 1.772 0.04 0.13 0.07 0.09 
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4.4.2 Energy Profile 

 Cereal grains store their energy as starch (Hoseney, 1994). The energy value of barley was 

higher than the oat grains, with NEL being 0.09 Mcal/kg higher (NRC, 2001). However, in this 

study, the oat contained higher values of EE and fat contains more energy per unit (+2.25) than 

protein and carbohydrate (Fuhr, 2006). Results for the impact of processing method on predicted 

energy values and truly digestible nutrients of oat grain in comparison to barley grain are shown in 

Table 4.2. The tdNDF (P=0.08) and tdCP (P=0.10) showed no significant differences between 

grains or processing methods. Rolled barley showed the highest value (P<0.01) for truly digestib le 

NFC, while rolled oat showed the lowest value and was significantly lower (P=0.02) than heat-

processed oat (flaked and pelleted). Results related to the truly digestible FA showed significantly 

higher (P<0.01) values for oat grain when compared to barley, and the heat-processing methods 

increased the tdFA when compared to dry-rolled oat (+0.5% DM). The total digestible nutrients 

(TDN1x) was lower (P=0.02) for rolled oat when compared to flaked oat and rolled barley (82.12, 

86.47 and 86.87, respectively). Results related to digestible energy at maintenance (DE1x) and 

production (DEp3x), metabolizable energy (MEp3x), net energy for maintenance (NEm) and net 

energy for gain (NEg) were significantly lower (P≤0.04) for rolled oat when compared to flaked 

oat and rolled barley. Net energy for lactation (NELp3x) was higher (P=0.04) for flaked oat when 

compared to rolled oat (+0.12 Mcal/kg). Steam flaking corn and sorghum can lead to an increase 

of 20% in NEL (Theurer et al., 1999), while in this study the steam flaking process only increased 

by 6.4%. The energy value for rolled oat in this study was higher than the values determined by 

NRC dairy (2001), probably because of the high values of fat for these grain (Fuhr, 2006). 
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Table 4.2. Effect of heat processing methods on truly digestible nutrients, total digestible nutrients and predicted energy values of oat 

grain in comparison with barley grain. 

 

 Oat (O)     Contrast P-value 

Items Rolled (R) Flaked (F) Pellet (P)  Barley (B) SEM P-value B vs. O B vs. FP R vs. FP 

Truly digestible nutrients (%DM)        

tdNDF 12.86 10.58 11.55  8.06 0.955 0.08 0.84 0.92 0.40 

tdCP 13.46 13.38 13.01  11.76 0.391 0.10 0.23 0.18 0.45 

tdNFC 56.14b 61.39b 59.53b  73.24a 1.081 <0.01 0.27 0.07 0.02 

tdFA 2.95a 3.60a 3.31a  0.36b 0.204 0.01 <0.01 <0.01 <0.01 

Total digestible nutrients (%DM)        

TDN1x 82.12b 86.47a 84.56ab  86.87a 0.670 0.02 0.06 0.07 0.94 

Predicted energy values (Mcal/kg)        

DE1x 3.63b 3.81a 3.73ab  3.81a 0.031 0.04 0.07 0.08 0.85 

DEp3x 3.33b 3.50a 3.42ab  3.49a 0.028 0.03 0.06 0.07 0.78 

MEp3x 2.92b 3.09a 3.01ab  3.08a 0.029 0.04 0.07 0.07 0.74 

NELp3x 1.87b 1.99a 1.93ab  1.98ab 0.021 0.04 0.06 0.06 0.71 

ME 2.97b 3.12a 3.05ab  3.12a 0.027 0.04 0.08 0.08 0.89 

NEm 2.01b 2.13a 2.07ab  2.13a 0.022 0.04 0.07 0.08 0.93 

NEg 1.35b 1.46a 1.41ab  1.46a 0.019 0.04 0.08 0.08 0.92 

SEM: standard error of mean; a-c Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparison 
using Tukey method; R: rolled oat; F: flaked oat; P: pelleted oat; B: rolled barley; B vs. O: contrast between barley and oat grain; B vs. FP: contrast 
between barley grain and heat-processed oat; R vs. FP: contrast between rolled oat and heat-processed oat; tdNDF: truly digestible neutral 
detergent fibre; tdCP: truly digestible crude protein; tdNFC: truly digestible non-fibre carbohydrate; tdFA: truly digestible fatty acids; TDN1×: total 
digestible nutrient at one time maintenance. DEl3×: digestible energy at production level of intake (3×); ME3×: metabolizable energy at production 
level of intake (3×); NEL3×: net energy for lactation at production level of intake (3×); ME: metabolizable energy; NEm: net energy for 
maintenance; NEg: net energy for growth. 
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4.4.3 Protein and Carbohydrates Subfractions 

 Results of the protein and carbohydrate fractions according to CNCPS 6.5 are presented in 

Table 4.3. Steam-flaking decreased the soluble true protein fraction (PA2), which is rapidly 

degraded in the rumen, by 59%. Rolled oat showed lower values of PB1 (P=0.02) when compared 

to flaked oat. Sub-fraction PC is bound to lignin, tannins and to protein complexes of Maillard 

products (Sniffen et al.,1992). Although heat processing methods can increase the Maillard 

reaction, the results of this study showed no significant influence of heat processing methods on 

the PC fraction (P=0.76). Total rumen degradable protein did not differ between treatments 

(P=0.28), but total rumen undegradable protein was significantly higher for flaked oat (P=0.01) 

when compared to barley (4.35 and 3.30% DM, respectively). 

 Rodriguez Espinosa (2018) described the impact of steam pressure and microwave 

irradiation on cool-season adapted faba beans grown in western Canada and reported that the heat-

processing methods decreased the rapidly degradable fraction, increased the intermed iate 

degradable fraction and reduced the undegradable fraction of CHO. In this study, heat-processing 

methods had no effect (P=0.71) on the rapidly degradable fraction (CA4), however steam-flak ing 

and pelleting increased (P<0.01) the fraction related to starches (CB1) when compared to rolled 

oat (63.32 vs. 61.89% CHO, respectively). Despite the increase, rolled barley still presented 

significantly higher (P<0.01) values of CB1 when compared to the other treatments. The 

intermediate degradable fractions CB2 and CB3 did not differ between treatments or grain types 

(P=0.21 and P=0.07, respectively). The indigestible fibre was higher (P=0.02) for rolled oat when 

compared to rolled barley, while the heat-processed treatments showed intermediate values of CC. 

The heat processing (steam-flaking + pelleting) increased (P<0.01) the total digestible CHO 
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(TRDCHO) when compared to dry-rolled oat (+2.11% DM) but had no impact on total 

undegradable CHO (TRUCHO) (P=0.16). 
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Table 4.3. Effect of heat processing methods on protein and carbohydrates subfraction according to CNCPS 6.5 of oat grain in 

comparison with barley grain. 

 

SEM: standard error of mean. a-c Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment 

comparison using Tukey method; R: rolled oat; F: flaked oat; P: pelleted oat; B: rolled barley; B vs. O: contrast between barley and oat grain; B vs. 
FP: contrast between barley grain and heat-processed oat; R vs. FP: contrast between rolled oat and heat-processed oat; PA2: soluble true protein; 
PB1: insoluble true protein. PB2: fiber-bound protein; PC: indigestible protein; CHO: carbohydrates; CA4: sugars; CB1: starches; CB2: soluble fiber; 
CB3: digestible fiber; CC: indigestible fiber; TRDP: Total rumen degradable protein; TRDCHO: Total rumen degradable carbohydrate; TRUP = Total 
ruminally undegraded protein; TRUCHO: Total ruminally undegraded carbohydrate. 

 Oat (O)     Contrast P-value 

Items 
Rolled 

(R) 
Flaked (F) Pellet (P)  Barley (B) SEM P-value B vs. O B vs. FP R vs. FP 

Protein subtractions (%CP)         

PA2  42.75a 25.56b 33.03ab  33.87ab 1.88 0.01 <0.01 <0.01 0.08 

PB1 49.63b 63.31a 61.32ab  59.50ab 2.08 0.02 0.02 0.01 0.06 
PB2 7.31ab 8.94a 5.49b  6.60b 0.33 <0.01 <0.01 <0.01 0.02 
PC 0.31 0.18 0.15  0.02 0.19 0.76 0.92 0.93 0.97 

Carbohydrate subfractions (%CHO)         

CA4 2.48 2.23 2.46  2.49 0.18 0.71 0.30 0.31 0.93 
CB1  61.89b 66.71b 59.94b  78.93a 1.74 <0.01 0.92 0.16 <0.01 

CB2  5.37 7.16 11.25  3.78 2.12 0.21 0.89 0.38 0.06 
CB3  21.60 17.25 19.74  12.54 1.73 0.07 0.74 0.94 0.27 

CC  8.64a 6.64ab 6.59ab  2.26b 0.86 0.02 0.46 0.32 0.34 
Rumen degradable fractions 
(%DM) 

         

TRDP 9.77 9.30 9.16  8.37 0.282 0.10 0.56 0.53 0.81 
TRDCHO 53.48c 55.88b 55.30bc  64.56a 0.360 <0.01 0.01 <0.01 <0.01 

Rumen undegradable fractions (%DM)         

TRUP 3.78ab 4.35a 3.86ab  3.30b 0.109 0.01 <0.01 <0.01 0.07 
TRUCHO 25.78a 23.18ab 24.27a  20.06b 0.637 0.01 0.80 0.76 0.16 
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4.4.4 Rumen Degradation Kinetics 

 Results for the impact of processing method on ruminal degradation kinetics of dry matter 

are shown in Table 4.4. The results showed that rumen undegradable dry matter varied (P<0.01) 

among treatments and flaked oat showed similar values to rolled barley (345 and 378 g/kg, 

respectively). Oat products showed higher values of effective degradability of dry matter, however, 

similar to BDM, flaked oat showed similar values to rolled barley. For organic matter degradation, 

significance followed the same pattern as dry matter. Bypass organic matter (BOM) showed lower 

values (P<0.01) for rolled and pelleted oat while flaked oat showed similar values to rolled barley 

(340 and 371 g/kg, respectively).  

 Rumen degradation of OM is presented in Table 4.5. Heat treatments were previously 

shown to decrease the degradability of DM and OM in the rumen and consequently increasing the 

bypass DM and OM to the small intestine ( Prates et al., 2018; Rahman et al., 2016). Pelleted oat 

showed the highest (P<0.01) degradation rate being 55.42%/h higher than rolled barley (11.97%/h). 

Degradable content (D) was higher for rolled barley (P<0.01) when compared to the other 

treatments. Heat-processing did not impact (P=0.14) the undegradable fraction (U). The highest 

values (P<0.01) for bypass OM (BOM) were found for rolled barley (371 g/kg DM and 37.14%), 

followed by flaked oat (340 g/kg DM and 33.97%), however, flaked oat did not differ from other 

oat treatments. Rolled barley showed the lowest (P<0.01) values for rumen effective degradability 

of OM. 

In situ degradation of crude protein is shown in Table 4.6. Higher values (P<0.01) of rumen 

undegradable crude protein (RUP) are seen in flaked oat and rolled barley (48.15 and 43.44, 

respectively). Chrenkova et al. (2018) reported similar results for flaked wheat, maize, and barley, 

showing higher RUP (40.1, 67.6 and 49.2 % CP, respectively) and lower rumen degradable protein. 
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The increase of NDICP (slowly degraded in the rumen), major constituent of RUP (Sniffen et al., 

1992), for flaked oat presented by the detailed chemical analysis may be directly related to the 

increase in RUP shown by the flaking process. Rolled oat presented the highest value (P<0.01) of 

rumen effective degradable crude protein (112 g/kg DM) followed by pelleted oat (102 g/kg DM). 

Ljøkjel et al. (2003) found no significant differences between untreated and pelleted oat when 

comparing EDCP and EDST, which is consistent with the results found in the present study. When 

the results are accounted in a percentage basis, rolled oat and pelleted oat did not significantly 

differ, probably because of the lower content of protein in pelleted oat when compared to rolled 

oat.  

The values for bypass starch ranged from 34 g/kg DM (pelleted oat) to 156 g/kg DM (rolled 

barley), as seen in Table 4.7. BST was significantly impacted by grain type (P<0.01), but it did not 

differ between rolled oat and heat processed oat (P=0.42). Effective degradability of starch (EDST) 

was similar for flaked oat and rolled barley when measured in a g/kg DM basis and they showed 

higher values when compared to the other oat’s treatments. However, rolled barley contained the 

highest amount of starch (66.58% DM) for the studied treatments, followed by flaked oat (52.59 

%DM), which may have impacted the high amount of the ruminal effective degradable starch (510 

and 470 g/kg DM, respectively). The values for EDST taken in a percentage basis showed that 

barley truly had a smaller amount of rumen degradable starch when compared to the oat grain 

treatments (P<0.01). In the present study, no difference was observed for BST when comparing 

rolled and pelleted oat. Goelema et al. (1999) reported a significant reduction of 51% in BST when 

a feed mixture of broken peas, lupin, and faba beans was submitted to pelleting conditions at 80°C. 

The difference between results could have been raised by the incomplete gelatinization of the starch 

obtained by pelleting of peas, which had a much higher starch gelatinization temperature when 

compared to oat grain, 50% in 55°C on average (Hoseney, 1994). 
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Table 4.4. Effect of heat processing methods on in situ rumen degradation kinetics of dry matter (DM) of oat grain in comparison with 

barley grain. 

 

 Oat (O)     Contrast P-value 

Items Rolled (R) Flaked (F) Pellet (P)  Barley (B) SEM P-value B vs. O B vs. FP R vs. FP 

In situ rumen degradation        

Kd (%/h) 49.83ab 33.51bc 64.86a  11.88a 7.591 <0.01 <0.01 <0.01 0.01 
T0 (h) 0.13 0 0.18  0.25 0.137 0.63 0.37 0.58 0.37 

S (%) 17.99a 20.74a 11.13ab  3.98b 3.134 <0.01 <0.01 <0.01 0.09 
D (%) 59.06b 52.92b 64.98b  90.61a 3.651 <0.01 <0.01 <0.01 0.06 
U (%) 22.94a 26.33a 23.88a  5.41b 1.615 <0.01 <0.01 <0.01 0.17 

BDM (g/kg DM) 299.08b 345.23ab 296.34b  377.86a 13.292 <0.01 <0.01 <0.01 0.01 

EDDM (g/kg 
DM) 

700.92a 654.78ab 703.66a  622.14b 13.292 <0.01 <0.01 <0.01 0.01 

SEM: standard error of mean; a-c Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparison 
using Tukey method; R: rolled oat; F: flaked oat; P: pelleted oat; B: rolled barley; B vs. O: contrast between barley and oat grain; B vs. FP: contrast 
between barley grain and heat-processed oat; R vs. FP: contrast between rolled oat and heat-processed oat; Kd: the degradation rate of D fraction 
(%h); T0: lag time; S: soluble fraction in the in-situ incubation; D: degradable fraction; U: rumen undegradable fraction; BDM: rumen bypass or 
undegraded feed dry matter; EDDM: effective degraded dry matter. 
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Table 4.5. Effect of heat processing methods on in situ rumen degradation kinetics of organic matter (OM) of oat grain in comparison 

with barley grain. 

 

 Oat (O)     Contrast P-value 

Items Rolled (R) Flaked (F) Pellet (P)  Barley (B) SEM P-value B vs. O B vs. FP R vs. FP 

In situ rumen degradation        

Kd (%/h) 51.76ab 34.78bc 67.21a  11.97c 8.250 <0.01 <0.01 <0.01 0.01 

T0 (h) 0.14 0.00 0.17  0.25 0.137 0.63 0.36 0.57 0.37 

S (%) 17.92a 20.75a 11.04ab  3.99b 3.158 <0.01 <0.01 0.01 0.10 
D (%) 59.57b 53.26b 65.47b  91.26a 3.653 <0.01 <0.01 <0.01 0.06 

U (%) 22.50a 25.98a 23.48a  4.75b 1.549 <0.01 <0.01 <0.01 0.14 
BOM (g/kg 

DM) 
292.99b 339.72ab 291.37b  371.44a 13.486 <0.01 <0.01 <0.01 0.01 

EDOM (g/kg 

DM) 
681.92a 641.01ab 684.94a  610.56b 13.500 <0.01 <0.01 <0.01 0.02 

%BOM 29.30b 33.97ab 29.14b  37.14a 1.35 <0.01 <0.01 <0.01 0.01 

%EDOM 70.70a 66.03ab 70.86a  62.85b 1.348 <0.01 <0.01 <0.01 0.01 

SEM: standard error of mean; a-c Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparison 
using Tukey method; R: rolled oat; F: flaked oat; P: pelleted oat; B: rolled barley; B vs. O: contrast between barley and oat grain; B vs. FP: contrast 
between barley grain and heat-processed oat; R vs. FP: contrast between rolled oat and heat-processed oat; Kd: the degradation rate of D fraction 
(%h); T0: lag time; S: soluble fraction in the in-situ incubation; D: degradable fraction; U: rumen undegradable fraction; BOM: rumen bypass dry 
matter; EDOM: effective degradability of dry matter. 
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Table 4.6. Effect of heat processing methods on in situ rumen degradation kinetics of crude protein (CP) of oat grain in comparison 

with barley grain. 

 

 Oat (O)     Contrast P-value 

Items Rolled (R) Flaked (F) Pellet (P)  Barley (B) SEM P-value B vs. O B vs. FP R vs. FP 

In situ rumen degradation        
Kd (%/h) 40.66ab 18.03bc 41.18a  10.06c 6.402 <0.01 <0.01 <0.01 <0.01 

T0 (h) 0.00 0.27 0.16  0.53 0.207 0.36 0.13 0.10 0.46 
S (%) 31.58a 23.35ab 17.26b  16.37b 3.095 0.01 0.04 0.04 0.76 

D (%) 59.17b 61.37b 70.05b  82.02a 3.114 <0.01 <0.01 <0.01 0.33 

U (%) 9.24b 15.28a 12.69ab  1.61c 1.306 <0.01 <0.01 <0.01 0.02 

BCP (g/kg DM) 23.02b 43.38a 27.90b  39.14a 2.034 <0.01 <0.01 <0.01 <0.01 

RUP (g/kg DM) 25.55b 48.15a 30.97b 
 

43.44a 2.257 <0.01 <0.01 <0.01 <0.01 

EDCP (g/kg 

DM) 
111.77a 93.09c 102.33b 

 
78.57d 1.541 <0.01 <0.01 <0.01 <0.01 

%BCP=%RUP 17.06b 31.77a 21.33b  33.20a 1.343 <0.01 <0.01 <0.01 <0.01 

%EDCP 82.94a 68.23b 78.67a  66.80b 1.343 <0.01 <0.01 <0.01 <0.01 
SEM: standard error of mean; a-c Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparison 
using Tukey method; R: rolled oat; F: flaked oat; P: pelleted oat; B: rolled barley; B vs. O: contrast between barley and oat grain; B vs. FP: contrast 
between barley grain and heat-processed oat; R vs. FP: contrast between rolled oat and heat-processed oat; Kd: the degradation rate of D fraction (%h); 
T0: lag time; S: soluble fraction in the in-situ incubation; D: degradable fraction; U: rumen undegradable fraction; BCP: rumen bypassed crude protein 
in DVE/OEB system; RUP: rumen undegraded crude protein in the NRC Dairy 2001 model; EDCP: effectively degraded of crude protein. 
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Table 4.7. Effect of heat processing methods on in situ rumen degradation kinetics of starch (ST) of oat grain in comparison with 

barley grain. 

 

 Oat (O)     Contrast P-value 

Items Rolled (R) Flaked (F) Pellet (P)  Barley (B) SEM P-value B vs. O B vs. FP R vs. FP 

In situ rumen degradation        

Kd (%/h) 54.77ab 47.05ab 93.85a  18.09b 15.364 0.03 0.02 0.01 0.17 

T0 (h) 0.20b 0.00b 0.11b  0.98a 0.171 <0.01 <0.01 <0.01 0.46 

S (%) 24.71 19.98 9.39  19.24 7.111 0.48 0.88 0.80 0.73 

D (%) 72.50 71.37 86.09  79.17 7.053 0.45 0.76 0.99 0.38 

U (%) 2.79b 8.65a 4.52ab  1.58b 1.029 <0.01 <0.01 0.13 <0.01 

BST (g/kg 
DM) 

50.44b 55.75b 34.44b  156.16a 13.148 <0.01 <0.01 <0.01 0.42 

EDST (g/kg 

DM) 
438.72b 470.16ab 441.04b  509.65a 13.80 0.01 <0.01 <0.01 0.10 

%BST 10.38b 10.63b 7.29b  23.30a 2.021 <0.01 <0.01 <0.01 0.48 

%EDST 89.61a 89.36a 92.70a  76.70b 2.021 <0.01 <0.01 <0.01 0.48 

SEM: standard error of mean; a-b Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparison 
using Tukey method; R: rolled oat; F: flaked oat; P: pelleted oat; B: rolled barley; B vs. O: contrast between barley and oat grain; B vs. FP: contrast 
between barley grain and heat-processed oat; R vs. FP: contrast between rolled oat and heat-processed oat; Kd: the degradation rate of D fraction 
(%h); T0: lag time; S: soluble fraction in the in-situ incubation; D: degradable fraction; U: rumen undegradable fraction; BST: rumen bypass or 
undegraded feed starch; EDST: effective degraded starch. 
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4.4.5 Intestinal Digestion 

 Intestinal digestion of dry matter and organic matter, as shown in Table 4.8, were 

significantly higher (P=0.02) for heat processed oat when compared to rolled oat. In this study heat 

treatments (steam-flaking and pelleting) changed the intestinal digestibility of DM and OM. Heat-

processed oat showed higher (P=0.02) values of intestinal digestibility of DM and OM (34.56 

%BDM and 34.87 %BOM, respectively) when compared to rolled oat (25.08 % BDM and 25.55 

% BOM) respectively. The total-tract digestibility was higher for barley grain when compared to 

oat grain; however, no significant difference was found between dry-rolled oat and heat-processed 

oat grain. 

Studying the effects of dry roasting and microwave irradiation on oat grain, Rahman et al. 

(2016) did not notice a significant difference on the intestinal digestibility of RUP of the grains 

submitted to dry roasting, but microwave irradiation numerically increased the RUP degradation 

in the small intestine, which could be related to a shift in protein sub-fractions, but also a lower 

degradability of CP in the rumen. In this study, flaking and pelleting numerically increased the 

intestinal digestion of bypass crude protein, although values did not significantly differ from rolled 

oat (P=0.87). Results for intestinal digestibility of CP and ST are presented in Table 4.9. The 

numerical increase in intestinal digestibility of RUP seen in flaked oat could have been caused by 

the increased PB2 sub-fraction. The intestinal digestion of rumen bypass starch was significantly 

lower for flaked oat (P<0.01, 70.74 %BST) when compared to pelleted oat and rolled barley (87.59 

and 89.33 %BST, respectively), but it was similar to rolled oat (78.78 %BST). Despite the intestina l 

digestibility of starch being higher for pelleted oat when on a percentage basis, changing the unit 

to g/kg of DM showed higher (P<0.01) intestinal digestibility and total-tract digestibility for rolled 

barley (160 and 650 g/kg DM, respectively). 
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Table 4.8. Effect of heat processing methods on intestinal digestion of dry matter (DM) and organic matter (OM) of oat grain in 

comparison with barley grain. 

 

 Oat (O)     Contrast P-value 

Items Rolled (R) Flaked (F) Pellet (P)  Barley (B) SEM P-value B vs. O B vs. FP R vs. FP 

DM intestinal digestion        

%dBDM 
(%BBDM) 

25.08b 34.86b 34.27b  63.27a 2.949 <0.01 0.11 0.03 0.02 

IDBDM 

(%BDM) 
7.64b 12.05b 10.15b  23.46a 1.384 <0.01 0.28 0.05 <0.01 

IDBDM (g/kg 

DM) 
23.34b 41.70b 30.09b  101.62a 9.087 <0.01 0.36 0.09 0.01 

TDDM (%DM) 77.73b 77.53b 80.52b  86.31a 0.789 <0.01 0.01 <0.01 0.15 
TDDM (g/kg 

DM) 
681.87b 672.25b 711.53a  734.73a 5.131 <0.01 <0.01 <0.01 0.63 

OM intestinal digestion        

dBOM (%BOM) 25.55b 35.33b 34.41b  71.49 4.293 <0.01 0.11 0.03 0.02 

IDBOM 
(%BOM) 

7.63b 12.02b 10.02b  23.69a 1.378 <0.01 0.27 0.05 <0.01 

IDBOM (g/kg 
DM) 

22.87b 40.95b 29.20b  100.61a 9.125 <0.01 0.36 0.09 0.01 

TDOM (%DM) 78.33b 78.05b 80.89b  87.34a 0.828 <0.01 <0.01 <0.01 0.09 
TDOM (g/kg 
DM) 

755.39b 757.73b 781.81b  848.39a 7.523 <0.01 <0.01 <0.01 0.06 

SEM: standard error of mean; a-b Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparison 
using Tukey method; R: rolled oat; F: flaked oat; P: pelleted oat; B: rolled barley; B vs. O: contrast between barley and oat grain; B vs. FP: contrast 
between barley grain and heat-processed oat; R vs. FP: contrast between rolled oat and heat-processed oat; dBDM: intestinal digestibility of rumen 
bypass dry matter; IDBDM: intestinal digested rumen bypass dry matter; TDDM: total digested dry matter; dBOM: intestinal digestibility of rumen 
bypass organic matter; IDBOM: intestinal digested rumen bypass organic matter; TDOM: total digested organic matter. 
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Table 4.9. Effect of heat processing methods on intestinal digestion of crude protein (CP) and starch (ST) of oat grain in comparison 

with barley grain. 

 

 Oat (O)     Contrast P-value 

Items Rolled (R) Flaked (F) Pellet (P)  Barley (B) SEM P-value B vs. O B vs. FP R vs. FP 

CP intestinal digestion        

dIDP (%RUP) 42.18b 54.17ab 52.99ab  65.28a 3.524 <0.01 0.87 0.92 0.87 

IDP (%RUP) 7.14c 17.25ab 11.46bc  21.76a 1.413 <0.01 0.04 0.13 0.11 
IDP (g/kg DM) 9.61b 23.55a 15.10b  25.66a 1.980 <0.01 0.01 0.03 0.32 
TDP (%CP) 90.08a 85.48b 90.13a  88.56a 0.688 <0.01 <0.01 <0.01 0.35 

TDP (g/kg DM) 121.39a 116.65a 117.43a  104.23b 2.253 <0.01 0.39 0.19 0.12 

ST intestinal digestion        

dBST (%BST) 78.78ab 70.74b 87.59a  89.33a 3.533 <0.01 <0.01 <0.01 0.28 
IDBST 

(%BCHO) 
8.16b 7.56b 6.52b  20.89a 1.989 <0.01 0.06 <0.01 <0.01 

IDBST (g/kg 
DM) 

39.66b 39.68b 30.78b  159.65a 8.132 <0.01 <0.01 <0.01 <0.01 

TDBST (% ST) 97.77ab 96.9b 99.23a  97.59ab 0.436 0.02 0.03 0.18 0.01 
TDBST (g/kg 

DM) 
478.39b 509.85b 471.82b  649.77a 11.027 <0.01 0.09 <0.01 <0.01 

SEM: Standard error of mean; a-c Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparison 
using Tukey method; R: rolled oat; F: flaked oat; P: pelleted oat; B: rolled barley; B vs. O: contrast between barley and oat grain; B vs. FP: contrast 
between barley grain and heat-processed oat; R vs. FP: contrast between rolled oat and heat-processed oat; dIDP: intestinal digestibility of rumen 
bypass protein on percentage basis; IDP: intestinal digested crude protein; TDP: total digested crude protein; dBST: intestinal digestibility of 
rumen bypass starch on percentage basis; IDBSTP: intestinal digested bypass starch; TDBST: total digested bypass starch.  
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4.4.6 Hourly Effective Degradation Ratio between N and OM 

 The hourly effective degradation ratio between available N and available OM at different 

times for different processing methods of oat grain in comparison to barley grain are shown in 

Table 4.10. The analysis of the data showed that overall ED_N/ED_OM were higher (P<0.01) for 

oat products when compared to rolled barley (24.66 and 20.47 g/kg, respectively). Rolled oat 

showed the highest value of ED_N/ED/OM (26.24 g/kg), while rolled barley showed the lowest 

value. Although not statistically significant (P=0.43), data analysis showed higher values of 

ED_N/ED_OM for rolled barley at the beginning of the incubation time (0h), followed by a rapid 

decrease that made this treatment have the lowest ED_N/ED_OM in all the subsequent time points 

analyzed. At individual incubation times 4 h, 8 h 12 h and 24 h, pelleted oat showed the highest 

ratio of degradation between available N and available OM (31.52, 72.06, 168.74 and 2420.78 

g/kg, respectively), although the values were not statistically different from the other treatments 

for oat. So, the highest point in the degradation curve for oat grain was reached at 24 h incubation, 

while rolled barley had its highest point at the beginning of the incubation period (0h). Huang et 

al. (2015) noted that increasing temperature during processing can lead to a decrease in 

ED_N/ED_OM when studying different temperatures and times of pelleting canola meal. In the 

present study, pelleted had the lowest conditioning temperature of the two heat processing methods . 

It showed higher hourly values of degradation in all the time points when compared to flaked oat. 
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Table 4.10. Effect of heat processing methods on hourly effective degradation ratios between N and OM of oat grain in comparison 

with barley grain. 

 

 Oat (O)     Contrast P-value 

Items Rolled (R) Flaked (F) Pellet (P)  Barley (B) SEM P-value B vs. O B vs. FP R vs. FP 

Ratio of N to 
OM 

22.37a 22.49a 21.56a  19.47b 0.421 <0.01 0.02 0.01 0.25 

Ratio of 

ED_N/ED_OM 
26.24a 23.69b 24.05b  20.47c 0.480 <0.01 0.86 0.59 0.27 

Ratio at individual incubation hours (g/kg)        

h0 40.74 26.12 38.93  72.92 18.004 0.43 0.26 0.2 0.45 

h2 21.23 16.93 21.06  15.52 1.367 0.04 0.17 0.42 0.15 

h4 27.03a 23.14a 31.52a  12.77b 3.015 <0.01 0.82 0.29 <0.01 

h8 34.48bc 46.34ab 72.06a  13.52c 7.798 <0.01 0.45 0.03 <0.01 

h12 99.66ab 101.19ab 168.74a  14.33b 39.497 0.04 0.85 0.27 0.01 

h24 1232.26 1572.16 2420.78  17.19 1003.44 0.24 0.71 0.35 0.09 

SEM: Standard error of mean; a-c Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparison 
using Tukey method; R: rolled oat; F: flaked oat; P: pelleted oat; B: rolled barley; B vs. O: contrast between barley and oat grain; B vs. FP: contrast 
between barley grain and heat-processed oat; R vs. FP: contrast between rolled oat and heat-processed oat; N: nitrogen; OM: organic matter; ED: 
effective degradability. 
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Figure 4.1. Hourly effective degradation ratios between available N and available OM (ED_N/ED_OM) of different varieties of oat 

grain in comparison to barley grain. 
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4.4.7 Nutrient Supply and Feed Milk Value 

 Metabolic characteristics and true nutrient supply based on the DVE/OEB system are 

presented in Table 4.11. The microbial protein synthesized in the rumen based on available energy 

(MREE) did not show any difference (P=0.14) between treatments. On the other hand, the 

potentially synthesized microbial protein based on available nitrogen (MREN) showed a significant 

decline (P<0.01) when oat was submitted to heat treatment (steam-flaking and pelleting) (-15.45). 

The total true protein degradable and absorbed in the small intestine (DVE) was higher (P<0.01) 

for rolled barley (80.80 g/kg DM), followed by flaked oat (66.95 g/kg DM). The degraded protein 

balance was higher (P<0.01) for rolled oat when compared to the other treatments, with flaked oat 

and pelleted oat showing intermediate levels and rolled barley showing the lowest value. According 

to Tamminga et al. (1994), the optimal value for OEB is zero or slightly above, and in this case, 

oat submitted to heat processing had the best value, suggesting that these treatments would have a 

lower loss of N and adequate supply of energy to the rumen for microbial protein growth. The 

predicted feed milk value was higher (P<0.01) for rolled barley, followed by flaked oat (1.64 and 

1.36 kg milk/kg DM fed, respectively). Doiron et al. (2009) found a similar increase of DVE and 

decrease in OEB when flaxseed was autoclaved, despite none of their treatments reaching a 

negative value. 

 Data for the metabolic characteristics and true nutrient supply based on the NRC model are 

shown in Table 4.12. The microbial protein synthesized based on available TDN (MCPTDN) was 

higher (P<0.01) for rolled barley and flaked oat (103.72 and 103.24 g/kg DM, respectively) and 

lower for pelleted oat (-2.76 g/kg DM) and rolled oat (-5.67 g/kg DM). Heat treatments 

significantly reduced (P<0.01) the amount of microbial protein that could be potentially 

synthesized based on rumen degradable protein (MCPRDP). The degraded protein balance was 
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significantly reduced with heat-treatment, steam-flaking and pelleting (-24.81 and -12.88 g/kg DM, 

respectively). The predicted feed milk value was not impacted by treatments (P=0.06), processing 

methods (P=0.57) or grain type (P=0.10). 
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Table 4.11. Effect of heat processing methods on metabolic characteristics and truly absorbable nutrient supply (based on non-TDN 

system: DVE-OEB) of oat grain in comparison with barley grain 

 

 Oat (O)     Contrast P-value 

Items Rolled (R) Flaked (F) Pellet (P)  Barley (B) SEM P-value B vs. O B vs. FP R vs. FP 

Truly digestible nutrient supply to dairy cattle (g/kg DM)     

BCP  25.55b 48.15a 30.97b  43.44a 2.257 <0.01 <0.01 <0.01 0.22 
EDCP  111.17a 93.09c 102.33b  78.57d 1.541 <0.01 0.03 0.29 <0.01 

MREE  95.97 91.17 100.99  98.67 2.858 0.14 0.04 0.10 0.31 
MREN  109.24a 88.32c 99.26b  74.23d 1.606 <0.01 <0.01 0.11 <0.01 

DVME  61.18 58.12 64.38  62.90 1.822 0.14 0.04 0.10 0.31 
DVBE  15.14b 25.57a 13.10b  26.29a 2.148 <0.01 0.01 0.09 0.01 

Degraded protein balance (OEB) and Total true protein supply (DVE) to dairy cows (g/kg DM) 

DVE  59.71b 66.95ab 62.74b  80.80a 3.542 <0.01 0.85 0.46 0.11 

OEB  13.26a -2.86b -1.73b  -24.44c 2.708 <0.01 0.65 0.43 0.27 

Feed milk value (kg milk/kg DM fed) 

FMV  1.21b 1.36ab 1.27b  1.64a 0.071 <0.01 0.85 0.45 0.10 
SEM: Standard error of mean; a-c Means with different letters in the same row are significantly different (P<0.05); Multi-treatment comparisons using 
Tukey method; R: rolled oat; F: flaked oat; P: pelleted oat; B: rolled barley; B vs. O: contrast between barley and oat grain; B vs. FP: contrast between 
barley grain and heat-processed oat; R vs. FP: contrast between rolled oat and heat-processed oat; BCP: bypass crude protein; MREE: microbial 
protein synthesized in the rumen based on available energy; EDCP: effective degradability of CP; MREN: microbial protein synthesized in the 
rumen; DVME: rumen synthesized microbial protein digested in the small intestine; DVBE: truly absorbed bypass protein in the small intestine; 
DVE: truly digested protein in the small intestine; OEB: degraded protein balance; FMV: feed milk value. 
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Table 4.12. Effect of heat processing methods on metabolic characteristics and truly absorbable nutrient supply (based on TDN 

system: NRC dairy) of oat grain in comparison with barley grain. 

 

 Oat (O)     Contrast P-value 

Items Rolled (R) Flaked (F) Pellet (P)  Barley (B) SEM P-value B vs. O B vs. FP R vs. FP 

Truly digestible nutrient supply to dairy cattle (g/kg DM)      

RUP  23.02b 43.38a 27.90b  39.14a 2.034 <0.01 <0.01 <0.01 0.23 

MCPTDN  98.05c 103.24a 100.96b  103.72a 0.464 <0.01 <0.01 <0.01 0.90 
MCPRDP  95.00a 79.13c 86.98b  66.78d 1.309 <0.01 0.03 0.29 <0.01 

AMCP  60.80a 50.64c 55.67b  42.74d 0.837 <0.01 0.03 0.29 <0.01 

ARUP  13.64b 23.04a 11.80b  23.68a 1.935 <0.01 0.01 0.09 0.01 

ECP  10.41ab 10.29ab 10.49a  10.19b 0.068 0.04 0.38 0.93 0.04 

AECP  4.17ab 4.12ab 4.19a  4.07b 0.026 0.03 0.39 0.94 0.04 

Total metabolizable protein supply and degraded protein balance to dairy cattle (g/kg DM)    

MP  78.61a 77.80a 71.66a  70.50a 2.081 0.03 0.10 0.23 0.28 

DPB  -3.92a -28.73c -16.80b  -43.82d 1.200 <0.01 <0.01 <0.01 <0.01 

Feed milk value (kg milk/kg DM fed)        

FMV  1.58 1.58 1.47  1.43 0.041 0.06 0.10 0.16 0.57 
SEM: Standard error of mean; a-d Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparisons 
using Tukey method; R: rolled oat; F: flaked oat; P: pelleted oat; B: rolled barley; B vs. O: contrast between barley and oat grain; B vs. FP: contrast 
between barley grain and heat-processed oat; R vs. FP: contrast between rolled oat and heat-processed oat; RUP: rumen undegradable feed crude 
protein; MCPTDN: rumen synthesized microbial protein base on available TDN; MCPRDP:  microbial protein synthesized in the rumen based on 
available protein; AMCP: truly absorbed microbial protein in the small intestine; ARUP: truly absorbed rumen undegradable protein in the small 
intestine; ECP: rumen endogenous protein; AECP: truly absorbed rumen endogenous protein in the small intestine; MP: metabolizable protein; DPB: 
rumen degraded protein balance; FMV: feed milk value. 
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4.4.8 Protein Molecular Spectra 

 Results for the impact of processing method on protein molecular structure of oat grain in 

comparison to barley grain is shown in Table 4.13. The different processing methods did not 

significantly affect the Amide I height (P=0.17), Amide II height (P=0.11) or Amide I/Amide II 

height ratio (P=0.5) when comparing all treatments, however, rolled oat was significantly different 

from heat-processed oat for Amide II height and area (P=0.03). Amide I area tended to be 

significantly different between treatments (P=0.09) and significantly differ for rolled oat when 

compared to heat-processed oat (P=0.04). Xu et al. (2018) found a strong positive correlation 

between Amide I and Amide II peak area and rumen degradable protein (RDP), but in the present 

study, higher values of Amide I and II area were found for flaked oat (4.26 and 1.15, respectively) 

and are presented together with lower EDCP and a higher RUP. Analysis of the protein secondary 

structure profile revealed that α-helix did not significantly differ between treatments (P=0.18), 

although it tended to differ between rolled oat and heat-processed oat (P=0.07). β-sheet height 

showed significant difference between rolled oat and heat-processed oat (P=0.02) with flaked oat 

being 40% higher than rolled oat (0.0489 and 0.0292, respectively). The heat processing did not 

impact the α-helix to β-sheet ratio among treatments (P=0.52). The lack of significant difference 

between treatments was similar to findings reported by Huang et al. (2015), but these are in contrast 

with the molecular changes induced by heat processing methods described in other studies (Prates 

et al., 2018; Rodriguez Espinosa, 2018). 

 The principal component analysis (PCA) was able to group different processing methods 

of oat and barley grain by its whole Amide related region, however none of the treatments was 

clearly separated from the other, being possible to see overlaps, and implying similar molecular 

structure in terms of protein make up in some degree (Figure 4.3). Principal component one (PC1) 
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explained 74% of the variation between spectra data while PC2 explained 18% of the variation. 

The same overlap could be seen in the hierarchical cluster analysis (HCLA), with pelleted and 

rolled oat being grouped into one cluster, while rolled barley and flaked oat was cluster into another 

group (Figure 4.4). 
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Figure 4.2. (a) Fourier transformed infrared attenuated total reflectance (Ft-IR/ATR) biomolecular spectra of different processed oat grain in 

comparison with barley grain of the protein molecular structures, amide I and amide II; (b) Protein secondary structures α-helix and β-sheet 

heights.  
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Table 4.13. Effect of heat processing methods protein molecular structure profile of oat grain in comparison with barley grain. 

 

 Oat (O)     Contrast P-value 

Items Rolled (R) Flaked (F) Pellet (P)  Barley (B) SEM P-value B vs. O B vs. FP R vs. FP 

Amide heights and spectra ratio      

Amide I 0.04 0.06 0.03  0.04 0.008 0.17 0.80 0.59 0.07 
Amide II 0.02 0.02 0.01  0.01 0.003 0.11 0.94 0.35 0.03 
Amide 

I/Amide II 
2.57 2.38 2.57  3.47 0.500 0.5 0.71 0.51 0.35 

Secondary structure heights and spectra ratio      

α-helix 0.04 0.06 0.03  0.04 0.008 0.18 0.84 0.58 0.07 

β-sheet 0.03ab 0.05a 0.02b  0.04ab 0.004 0.03 0.30 0.92 0.02 

Α-helix/β-
sheet 

1.46 1.24 1.48  1.16 0.096 0.18 0.21 0.31 0.52 

Amide area and spectra ratio      

Amide I 2.45 4.27 1.15  2.95 0.621 0.09 0.66 0.62 0.04 
Amide II 0.56 1.16 0.18  0.38 0.218 0.12 0.97 0.35 0.03 

Amide 
I/Amide II 

4.41 3.70 9.89  17.28 6.855 0.54 0.5 0.34 0.3 

SEM: standard error of mean; a-b Means with different letters in the same row are significantly different (P<0.05); R: rolled oat; F: flaked oat; P: 
pelleted oat; B: rolled barley; B vs. O: contrast between barley and oat grain; B vs. FP: contrast between barley grain and heat-processed oat; R vs. FP: 
contrast between rolled oat and heat-processed oat.
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Figure 4.3. Multivariate spectral analyses of different processed oat grain in comparison with barley grain using FTIR vibrational spectroscopy 

at whole Amide region (ca. 1710-1480 cm-1). PCA (principal component analysis) with a scatter plot of the 1st principal components (PC1) vs. 

the 2nd principal components (PC2). RB: rolled barley; RO: rolled oat; FO: flaked oat; PO: pelleted oat. 
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Figure 4.4. Multivariate spectral analyses of different processed oat grain in comparison with barley grain using FTIR vibrational spectroscopy 

at whole Amide region (ca. 1710-1480 cm-1). CLA (cluster analysis): cluster method (Ward’s algorithm) and distance method (Squared 

Euclidean). RB: rolled barley; RO: rolled oat; FO: flaked oat; PO: pelleted oat.
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4.5 Chapter summary and conclusions  

 In conclusion, the present study showed that heat processing methods altered nutritiona l 

and metabolical characteristics of oat grain, however, the effects caused by steam-flaking and 

pelleting were different. Both heat-treatments increased the ether extract of oat grain 

(+0.50%DM), while only steam-flaking increased the total digestible nutrients. Energy values 

were higher for flaked oat when compared to rolled oat, and although pelleting increased 

numerically the energy value, it was not significantly different from dry-rolled oat. Steam-

flaking also reduced the PA2 fraction by 40.12%, while increasing the PB1 fraction (-13.68% 

CP). Steam-flaking and pelleting increased the rumen undegradable CP while decreasing the 

effective degradability of crude protein in the rumen. Rolled barley showed higher total tract 

digestibility of DM and OM while having a lower total tract digestibility of CP and starch when 

compared to oat grain. The three treatments for oat showed the closest ratio between N and OM 

degradation ratio to the optimum value pointed by Sinclair et al. (1993). Rolled oat showed a 

higher degraded protein balance while rolled barley showed a low OEB; oat submitted to heat-

treatments showed values of OEB close to 0, characterized as the optimal ratio (Tamminga et 

al., 1994). Heat treatment did not seem to have substantially modified the protein molecular 

structure, but pelleted oat had a significant decrease in β-sheet height when compared to flaked 

oat. The principal component analysis showed an overlap between all the treatments in this 

study, suggesting a similar molecular structure in terms of protein make-up of the grains and 

processing methods studied. 
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5. IMPACT OF PROCESSING METHODS ON DAIRY COWS PRODUCTION 

PERFORMANCE AND METABOLIC PARAMETERS 

 

5.1 Abstract 

Several processing techniques can be used to slow degradation rate in the rumen and 

thus provide more bypass CP and starch to the small intestine. The aim of this study was to 

evaluate the effect of processing methods on oat grain compared to dry rolled barley grain when 

fed as TMR for lactating dairy cows. Eight lactating Holstein cows were used in a replicate d 

4×4 Latin square design with 21-day periods and fed TMR’s with one of four treatments (dry-

rolled oat, steam-flaked oat, pelleted oat or dry-rolled barley), using the same treatments as 

chapter 4. DMI ranged from 28.19 to 31.61 kg/d and was lower for rolled oat when compared 

to pelleted oat; despite the nutrient intake being higher for pelleted oat fed cows, rolled oat was 

responsible for the highest milk production and milk fat percentage (49.23 kg/d and 4%, 

respectively), and significantly higher than pellet oat and rolled barley. Ruminal fermenta t ion 

characteristics were similar across treatments with only notable differences in acetate (lowest 

value for pelleted oat) and total SCFA (highest value for rolled barley) concentration and a 

lower pH for flaked oat at the 9 h and 12 h point. Dietary treatments did not affect total-tract 

digestibility of DM, OM, and CP; digestibility of starch was lower for rolled barley (89.04%). 

Measured blood metabolites, urea, glucose, and BHBA, were not affected by dietary treatment. 

Purine derivatives and microbial N supply were also unaffected by dietary treatments. Cows 

fed flaked oat-based TMR showed the lowest N excretion in milk, however, the lack of 

difference between diets on urinary N and fecal N excretion resulted in no significant changes 

in N balance between diets. Therefore, rolled oat allow cows to have higher milk production 

with lower DMI. 
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5.2 Introduction 

 Lactating dairy cows require a high energy intake to maintain milk production and drive 

microbial protein synthesis. Typically, dairy cow rations contain 40-50% concentrates, that are 

used to supply starch as an energy source. In western Canada, barley grain is widely used as a 

concentrate in dairy farms, however, the prairies region of Canada is responsible to produce 

more than 90% of oat in the country (Statistics Canada, 2018), and with a lower price per tonne, 

oat can be a cost-effective source of digestible energy. Although oat grain has lower digestib le 

energy and net-energy for lactation when compared to barley grain (NRC, 2001), several studies 

showed no negative impact of replacing barley by oat grain in production performance (Ekern 

et al., 2003; Fuhr, 2006; Gozho and Mutsvangwa, 2008). 

 Despite cereal grains such as barley and oat being widely used in ruminants diets, the 

whole cereal grains is resistant to digestion by ruminants mainly due to the protective seed coat 

and the ligneous hull that shields the groat from microbial degradation in the rumen (Morgan 

and Campling, 1978). Therefore, processing techniques are required to break the hull and 

expose the grain to microbial attachment and subsequent digestion. Processing techniques can 

also be applied to manipulate ruminal rate and extent of degradation and hence increase the 

availability of nutrients for the rumen and small intestine (Chrenkova et al., 2018; Svihus et al., 

2005). 

 Therefore, the objective of this study was to evaluate the effect of replacement of rolled 

barley grain with three types of processed oat (dry-rolled, steam-flaked and pelleted) on the 

performance, total-tract digestibility, N-balance, ruminal fermentation characteristics and 

metabolic parameters in lactating dairy cows. 
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5.3 Material and Methods 

5.3.1 Animals and Diets 

 Eight lactating multiparous Holstein dairy cows (average of 715 kg BW; 79±12 DIM; 

parities 2.5±1.5, average initial milk yield 51±6.9 kg/d) were used in a replicated 4 × 4 Latin 

square design with 21 days periods (17 days of dietary adaptation and 4 days of sample 

collection). Four cows in one Latin square were ruminally cannulated to allow the measurement 

of ruminal fermentation characteristics. All cows were housed in individual tie stalls in the 

Rayner Dairy Teaching and Research Facility (University of Saskatchewan, Saskatoon, 

Canada) with free access to water. A 7 days adaptation period was established prior to the 

beginning of the experimental period in order to get the animals accustomed to the new 

environment. The University of Saskatchewan Animal Care Committee approved the animal 

trial under the Animal Use Protocol No. 19910012 and animals were cared for and handled in 

accordance with the Canadian Council of Animal Care (CCAC, 1993) regulations.  

The cows were fed diets containing 54% forage and 46% concentrate containing grains 

pertaining to one of the four treatments: R=Rolled oat, F=Flaked oat, P=Pelleted oat or 

B=Rolled barley, as shown in Table 5.1. Grains processing methods are described in chapter 4, 

with estimated prices for dry rolling, steam-flaking and pelleting of $6, $10 and $24 

(grinding+pelleting) per ton, respectively. The diets were formulated using NDS Professiona l 

(Version 3, RUM&N-NDS Professional, Reggio Nell'Emilia, Emilia-Romagna, Italy). Cows 

were fed daily at 0800 as a TMR, refusals were collected every morning before feeding and 

weighted to estimate dry matter intake (DMI). Dry matter intake reported was calculated based 

on the 4 days of the collection period. Feed offerings were adjusted daily to allow for a 5-10% 

refusal (on as fed basis). Samples of alfalfa hay and barley silage were collected twice a week 

and DM content was determined, allowing adjustments to the diet to maintain the forage to 

concentrate ratio. Feed ingredients and orts were sampled in the last four days of each period 
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and pooled together by cow and by period before being ground through a 1 mm screen and 

submitted to chemical analysis.



 

118 

 

Table 5.1. Ingredient composition of experimental diets fed to lactating Holstein cows as total 

mixed ration (TMR). 

 

 Diets 

  Oats 

Items Barley Flaked Rolled Pelleted 

Ingredient composition, %     

Barley silage 36.82 36.82 36.82 36.82 

Alfalfa hay 17.33 17.33 17.33 17.33 

Rolled barley 15.54 - - - 

Flaked oat - 15.54 - - 

Rolled oat - - 15.54 - 

Pelleted oat - - - 15.54 

RP10 Palmitic 1.3 1.3 1.3 1.3 

Canola meal 8.63 8.63 8.63 8.63 

Corn grain 6.62 6.62 6.62 6.62 

Soybean meal 5.13 5.13 5.13 5.13 

Peas 3.98 3.98 3.98 3.98 

Soybean hulls 1.74 1.74 1.74 1.74 

Urea 0.11 0.11 0.11 0.11 

Tallow 0.80 0.80 0.80 0.80 

Premix1 1.04 1.04 1.04 1.04 

PotMag Sulfate 0.21 0.21 0.21 0.21 

Sodium Bicarbonate 0.46 0.46 0.46 0.46 

Limestone 0.13 0.13 0.13 0.13 

Rumensin 0.01 0.01 0.01 0.01 

Ameribond 0.15 0.15 0.15 0.15 

Chemical composition     

Dry matter 53.16 52.62 54.41 53.80 

Crude protein, %DM 16.96 16.56 16.75 17.03 

Starch, %DM 15.90 15.68 16.96 15.82 

Ether extract, %DM 4.75 4.72 4.93 4.80 

Neutral detergent fibre, %DM 34.47 35.55 33.65 34.51 

Acid detergent fibre, %DM 23.02 23.95 22.40 22.91 

NEL, Mcal/kg of DM 1.65 1.63 1.67 1.65 

Diets: B= Rolled Barley, F= Flaked Oat, R= Rolled Oat and P= Pelleted Oat; Mineral-
Vitamin Premix contained: 16% DM Ca, 7% DM P, 7% DM Mg, 2% DM K, 10% DM 
Cl, 1.25% DM S, 1507 ppm Mn, 678 ppm Cu, 1005 ppm Fe, 2513 ppm Zn, 80 ppm I, 

30 ppm Co, 20 ppm Se, 251 256 IU/kg Vit. D3, 2010 IU/kg Vit E. 
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5.3.2 Milk Production and Composition 

 Cows were milked three times a day at 0500, 1200 and 2000 h. Milk yield was recorded 

in the first three days of every collection period (days 18, 19 and 20), and milk samples were 

collected at every milking during the same period, preserved with potassium dichromate, and 

sent to CanWest DHI (Edmonton, AB) to be tested for milk fat (%), protein (CP %), lactose 

(%), total solids (%), milk urea N and somatic cell count (SCC, determined using near infrared 

analyzer, Foss System 4000, Foss Electric, Hillerød, Denmark). Yield of milk fat, protein, and 

lactose were calculated multiplying the item percentage by the milk yield. Fat-corrected milk 

(FCM) was determined as: 3.5% FCM = (0.434 × kg of milk) + (16.216 × kg of milk fat). 

Energy-corrected milk was calculated as ECM = (0.327 × kg of milk) + (12.95 × kg of milk fat) 

+ (7.2 × kg of milk protein) (Chibisa et al., 2015). Feed efficiency was calculated as milk 

yield/DMI, FCM/DMI, and ECM/DMI. 

 

5.3.3 Ruminal Parameters 

 Ruminal parameters were analyzed on the last day of sampling (day 21), every three 

hours, starting right after feeding (0800) and ending right before the next morning feeding time, 

so the collected samples represented 24 h feeding cycle. The digesta were collected from three 

different areas of the rumen (cranial ventral, rumen ventral, and caudal ventral) and filtered 

through 4 layers of cheesecloth. The pH was measured with a pH meter (Accumet AP110, 

Fisher Scientific) and 10 mL was taken and immediately mixed with 2 mL of metaphosphoric 

acid at 25% wt/vol (H2PO4) and stored at -20°C for later determination of SCFA by gas-

chromatography using the TRACE 1310 (Thermo Fisher Scientific, Waltham, MA, USA) at 

the Ministry of Agriculture Strategic Feed Research Chair Lab (Dept. Animal and Poultry 

Sciences, University of Saskatchewan, Canada). 
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5.3.4 Total Collection of Urine and Feces 

 For determination of apparent total-tract digestibility and N balance, a 3-day total 

collection of urine and feces were conducted from 0700 on day 18 to 0700 on day 20. Total 

urine output was collected using Foley bladder catheters (26 Fr, 75-mL ribbed balloon, 

lubricious-coated; C. R. Bard Inc., Covington, GA). Catheters were inserted at 0900 h on day 

17 and were connected to a urine collection container using a hose at 0800 on day 18. Urine 

output was weighted, volume was quantified, and samples were collected at 1300, 1900, 0100 

and 0700, daily. At the end of each sampling day, samples were pooled by cow, by day, and a 

10 mL aliquot was mixed with 40 mL of H2SO4 and stored at -20°C for analysis. Total N was 

measured using the Kjeldahl method, uric acid, and creatinine content were quantified using a 

uric acid assay kit (Item No. 700320) and a creatinine assay kit (Item No. 500701), respectively, 

by Cayman Chemical (Cayman Chemical, Michigan, USA). The concentration of allantoin was 

quantified using the colorimetric method described by Cheng and Gomes (1992). Total purine 

derivative (PD) excretion per day was used to estimate microbial N yield as described by Cheng 

and Gomes (1992). Nitrogen retained was calculated as intake N – fecal N – urinary N – milk 

N. Milk N was determined as milk CP ÷ 6.38. 

Feces were collected in large steel trays, which were positioned to cover the gutter 

behind each stall. Daily fecal output was measured by weight, taken at the same time points as 

urine sampling, mixed thoroughly before 3% was sampled for each time point. At the end of 

each collection day, samples of feces were pooled by cow by day and dried at 60°C for 48 h 

(AOAC 1990, official method 930.15) and ground through a 1 mm screen for analysis of DM, 

OM, CP, NDF, and starch (AOAC, 2005) 
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5.3.5 Blood Sampling 

 On the last day of sampling (day 21), blood samples were collected every six hours at 

0800, 1400, 2000, 0200 and 0800 in the next morning right before feeding, via a jugular vein 

catheter into a 10 mL vacutainer tube containing heparin (Becton Dickinson, NJ, USA). Blood 

samples were placed in ice water immediately after the collection until samples for all animals 

were obtained and then centrifuged at 1200 × g for 15 min at 4°C. Plasma was subsequently 

stored at -20°C until analysis. Beta-hydroxybutyrate (BHBA) was determined according to 

Williamson et al. (1962), blood urea nitrogen (BUN) was determined using the method of 

(Fawcett and Scott, 1960) and plasma glucose concentration was determined using a glucose 

oxidase/peroxidase enzyme and dianisidine dihydrochloride method as described by Oba et al. 

(2010). 

 

5.3.6 Statistical Analysis 

 The data was analyzed using the Procedure Mixed of SAS 9.4 (SAS Institute, NC). Milk 

yield and composition, apparent total-tract digestibility, urinary, and blood parameters and 

ruminal SCFA were analyzed following the model: 

Yijk = µ + Ti + Pj + Ck + eijk, 

where Yijk was the observation of the dependent variable, µ was the population mean, Ti was 

the fixed effect of treatment i, Pj was the fixed effect of period j, Ck was the random effect of 

the cow and eijk was error associated with the observation. Prior to analysis the best variance 

and covariance structure model was selected based on the AIC and BIC values.  

Prior to the statistical analysis, all outlier data were removed, using the same model, 

with a criterion of Studentized Residual greater than 2.5. For all statistical analyses, significance 

was declared at P<0.05 and trends at 0.05<P<0.10. The differences among the treatments were 

compared using a multiple comparison test following the Tukey method. Contrast statements 
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were used to compare the difference between barley grain and oat grain, rolled barley and heat-

processed oat grains, and rolled oat and heat-processed oat. 

 

5.4 Results and Discussion 

5.4.1 DMI, Milk Production and Composition 

 Dry matter intake, milk yield, milk composition, and feed efficiency are shown in Table 

5.2. Dry matter intake was higher (P=0.01) for cows fed pelleted oat-based diet than cows on 

the rolled oat based TMR. Cows on rolled barley, flaked oat and rolled oat consumed 1.90, 2.06 

and 3.42 kg less, respectively, than cows fed pelleted oat diet. However, milk yield was 

significantly higher (P<0.01) for cows fed rolled oat-based TMR when compared to the other 

diets, but the contrast statement showed no significant difference (P=0.39) between rolled oat 

and heat-processed oat (steam-flaked and pelleted). The milk yield values measured were 

different from the feed milk value (FMV) prediction reported on study 2. This difference arises 

from the fact that, in study 2, only the FMV of grains were being reported, while in this study, 

cows were fed a TMR containing several different ingredients. Overall cows fed oat-based diets 

produced an average of 1.17 kg milk more milk (P<0.01) than cows fed barley-based TMR. 

Several comparative studies investigated production responses in trials comparing grain types 

and different processing methods (Ekern et al., 2003; Fuhr, 2006; Gozho and Mutsvangwa, 

2008; Safaei and Yang, 2017). Additionally, some of the studies in the literature showed 

variable production responses. Gozho and Mutsvangwa (2008) reported no differences in DMI 

and milk yield for cows being fed TMR’s containing barley grain, corn grain, wheat or oat 

grain. Ekern et al. (2003) on the other hand reported higher milk yield for cows being fed oat 

grain. 

 Fat percentage ranged from 4.00 to 3.62%, with cows fed pelleted oat-based TMR 

showing the lowest (P<0.01) fat percentage. Milk fat depression has been previously reported 
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for cows being fed a pelleted concentrate (Dos Santos et al., 2011). Increased ruminal release 

of fat from pelleted oat could modify FA metabolism and change biohydrogenation pathways. 

Dos Santos et al. (2011) also showed that pelleting increased trans-C18:1 FA concentration in 

milk, which is correlated with milk fat depression (Harvatine, 2016). Despite that, fat yield and 

FCM were not significantly different (P>0.10) for all the treatments. Protein percentage was 

higher (P<0.01) for barley-based TMR and lower for flaked oat-based diet. In contrast, Cooke 

et al. (2008) reported higher milk protein production per day, while maintaining protein and fat 

percentage, and fat production. Similarly, Zhong et al. (2008) reported similar fat production 

for cows fed finely ground corn or steam-flaked corn-based TMR, but cows being fed steam-

flaked corn produced 0.21% of milk protein more. Milk urea N (MUN) had no significant 

difference between treatments (P=0.27). Somatic cell count (SCC) ranged from 32.56 to 39.35 

103 cell ml-1 and showed no difference (P=0.83) between treatments. The lower DMI of cows 

fed a rolled oat-based diet impacted feed efficiency parameters in this study. Milk yield/DMI 

and FCM/DMI were both higher for rolled oat (P≤0.02) when compared to flaked oat. 
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Table 5.2. Dry matter intake, average daily gain, milk yield and milk composition in lactating Holstein cows fed diets containing rolled barley (B), 

rolled oat (R), flaked oat (F) or pelleted oat (P). 

 

 Oat (O)     Contrast P-value 

Items Rolled (R) Flaked (F) Pellet (P)  Barley (B) SEM P-value B vs. O B vs. FP R vs. FP 

DM Intake, 
kg/d 

28.19b 29.55ab 31.61a 
 

29.71ab 1.010 0.01 0.70 0.43 <0.01 

Milk yield, 
kg/d 

 49.23a 46.55b 47.32b 
 

46.53b 1.970 <0.01 <0.01 0.01 0.39 

3.5% FCM, 
kg/d 

51.54 48.17 50.47 
 

50.09 1.778 0.17 0.05 0.05 0.79 

ECM, kg/d 50.38 47.30 49.51  49.23 1.681 0.15 0.04 0.04 0.80 

Fat, % 4.00a 3.69ab 3.62c  3.93bc 0.165 <0.01 0.04 0.02 <0.01 

Fat yield, 
kg/d 

1.89 1.74 1.78 
 

1.86 0.078 0.11 0.06 0.02 0.11 

Protein, % 2.94b 2.92c 2.95b  3.03a 0.088 <0.01 <0.01 <0.01 <0.01 

Protein 
yield, kg/d 

1.42a 1.34b 1.41ab 
 

1.39ab 0.045 0.03 <0.01 <0.01 0.69 

Lactose, % 4.42 4.35 4.40  4.43 0.029 0.06 0.01 0.02 0.29 

Lactose 
yield, kg/d 

2.15a 1.99b 2.15ab 
 

2.06ab 0.087 0.02 <0.01 0.01 0.26 

MUN, 

mg/dL 
18.81 18.75 18.28 

 
18.59 0.603 0.27 0.54 0.90 0.33 

Total solids, 

% 
12.37ab 12.18b 12.01c 

 
12.47a 0.314 <0.01 0.05 <0.01 <0.01 

SCC, 103 
cell ml-1 

39.35 32.56 38.39 
 

33.97 10.18 0.83 0.49 0.53 0.79 

 



 

 
 

1
2
5

 

Table 5.2. Cont’d Dry matter intake, average daily gain, milk yield and milk composition in lactating Holstein cows fed diets containing rolled 
barley (B), rolled oat (R), flaked oat (F) or pelleted oat (P). 

 

 Oat (O)     Contrast P-value 

Items Rolled (R) Flaked (F) Pellet (P)  Barley (B) SEM P-value B vs. O B vs. FP R vs. FP 

Feed efficiency        

Milk 
yield/DMI 

1.70a 1.52b 1.64ab  1.55b 0.049 <0.01 <0.01 <0.01 0.76 

FCM/DMI 1.81a 1.64b 1.66b  1.67ab 0.058 0.02 0.09 0.03 0.08 

ECM/DMI 1.73a 1.62ab 1.64ab  1.64b 0.049 0.01 0.08 0.09 0.22 

ADG (kg/d) 0.14 0.20 -0.21  -0.22 0.261 0.53 0.29 0.39 0.55 

SEM: Standard error of mean; a-d Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparisons using 
Tukey method; R: rolled oat; F: flaked oat; P: pelleted oat; B: rolled barley; B vs. O: contrast between barley and oat grain; B vs. FP: contrast between 
barley grain and heat-processed oat; R vs. FP: contrast between rolled oat and heat-processed oat; MUN: milk urea nitrogen; SCC: somatic cell count’ 
ADG: average daily gain. 
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5.4.2 Ruminal Parameters 

 Ruminal short-chain fatty acid (SCFA) concentration is presented in Table 5.3. 

Individual SCFA concentration were not affected by dietary treatment, with the exception of 

the concentration of acetate which was significantly lower (P<0.01) for cows fed the pelleted 

oat-based diet when compared to rolled oat and barley. Increased acetate supply is linked to 

milk fat production (Urrutia and Harvatine, 2017) and the decreased amount of acetate 

concentration in cows fed the pellet oat-based diet may explain the lower milk fat percentage 

caused by this diet. Total SCFA concentration was higher (P=0.01) for cows fed rolled barley 

when compared to rolled and pelleted oat. 

Mean ruminal pH over a 24 h period was unaffected (P=0.63) by dietary treatment, with 

mean values of 6.17, 6.14, 6.21 and 6.13 for rolled oat, flaked oat, pelleted oat, and barley, 

respectively (Figure 5.1). At the 9 h and 12 h post-feeding time points, however, flaked oat 

exhibited the lowest pH, while pelleted oat and rolled barley showed the highest values (at 9 

and 12 h, respectively; P=0.03 and P=0.04, respectively). The pH decline was faster for the 

heat-processed oat (steam-flaking and pelleting) up until 6 h post-feeding, but the recovery for 

cows fed pelleted oat was faster and higher when compared to flaked oat and rolled barley. 

Previous studies also reported higher ruminal pH for cows fed pelleted concentrates (Dos 

Santos et al., 2011). Oat grain present a higher starch degradation rate and extent in the rumen 

compared to barley grain, however, no difference in pH was observed between grains in this 

study, which is similar to the results obtained by Gozho and Mutsvangwa (2008). This might 

have resulted from the high concentrations of NDF across all dietary treatments that can result 

in high ruminal buffering from the saliva. Dietary NDF is inversely related to ruminal pH since 

it promotes less acid production and stimulates chewing and saliva production (NRC, 2001). 

 



 

 
 

1
2
7

 

 

Figure 5.1. Ruminal pH of lactating Holstein cows fed diets containing rolled barley (B), rolled oat (R), flaked oat (F) or pelleted oat (P). Cows 

were fed just before the 0 (zero) hour collection. * represents a statistically significant difference between treatments.  

* 

* 
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Table 5.3. Ruminal fermentation characteristics in lactating Holstein cows fed diets containing rolled barley (B), rolled oat (R), flaked oat (F) or 

pelleted oat (P). 

 

 Oat (O)     Contrast P-value 

Items Rolled (R) Flaked (F) Pellet (P)  Barley (B) SEM P-value B vs. O B vs. FP R vs. FP 

SCFA concentrations, mM        

Acetate 58.98a 58.79ab 54.84b  61.11a 2.304 <0.01 0.59 0.18 <0.01 

Propionate 21.96 23.86 23.11  22.86 1.629 0.32 0.22 0.14 0.43 

Butyrate 10.45 10.71 10.97  10.57 0.502 0.08 0.81 0.23 0.02 

Isobutyrate 0.78 0.75 0.74  0.82 0.039 0.15 0.21 0.09 0.07 

Valerate 1.31 1.27 1.42  1.39 0.098 0.04 0.03 0.08 0.14 

Isovalerate 1.37 1.28 1.23  1.34 0.171 0.06 0.44 0.11 0.02 

Caprionic 0.39 0.37 0.46  0.48 0.049 0.28 0.20 0.23 0.53 

Total SCFA 93.62b 96.71ab 92.86b  100.45a 3.976 0.01 0.43 0.79 0.01 

Acetate:Propionate 2.59 2.54 2.44  2.75 0.128 0.42 0.71 0.42 0.18 

SEM: Standard error of mean; a-b Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparisons using 
Tukey method; R: rolled oat; F: flaked oat; P: pelleted oat; B: rolled barley; B vs. O: contrast between barley and oat grain; B vs. FP: contrast between 
barley grain and heat-processed oat; R vs. FP: contrast between rolled oat and heat-processed oat; SCFA: short chain fatty acids; SCFA: short-chain fatty 
acids.
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5.4.3 Nutrient Digestibility 

 Apparent total tract digestibility of DM, OM, CP, NDF, and starch are shown in Table 

5.4. Total-tract digestibility of DM, OM and CP were not affected by dietary treatment 

(P≤0.14). Apparent total tract digestibility of CP tended to be lower (P=0.09) for rolled oat 

when compared to heat-processed oat (3.24 vs. 3.56 kg/d, respectively). Total-tract NDF 

digestibility ranged from 54.16 to 59.92% of NDF intake and it was lower (P=0.03) for rolled 

oat compared to pelleted oat and rolled barley-based diets.  

Apparent total-tract starch digestibility was lower (P<0.01) for rolled barley when 

compared to oat grain-based diets and the contrast also showed significant difference between 

rolled oat and heat-processed oat-based TMR (P=0.02). In dairy cows, the main site for cereal 

grain starch digestion is the rumen, and with oat grain showing a faster and more extensive 

starch degradation in the rumen compared to barley (Herrera-Saldana et al., 1990) it was 

expected that oat-based TMR would have a higher starch digestibility. Moran (1986) also 

described a higher digestibility of starch for cows fed complete diets with rolled oat when 

compared to rolled barley or wheat-based diets. 
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Table 5.4. Apparent total-tract nutrient digestibility of lactating Holstein cows fed diets containing rolled barley (B), rolled oat (R), flaked oat (F) 

or pelleted oat (P). 

 

 Oat (O)     Contrast P-value 

Items 
Rolled 

(R) 

Flaked 

(F) 

Pellet 

(P) 
 

Barley 

(B) 
SEM P-value B vs. O B vs. FP R vs. FP 

Apparent DM digestion, % of DMI 63.96 66.5 66.08  66.27 1.078 0.25 0.37 0.24 0.38 

Apparent DM digestion, kg of DM/d 18.40 20.02 20.19  19.93 0.763 0.23 0.54 0.34 0.22 

Apparent OM digestion, % of OM intake 62.55 65.18 64.33  64.66 1.193 0.35 0.31 0.22 0.54 

Apparent OM digestion, kg of OM/d 15.10 16.46 16.43  16.27 0.631 0.30 0.46 0.30 0.29 

Apparent CP digestion, % of CP intake 69.13 71.37 71.20  70.36 0.988 0.26 0.32 0.16 0.18 

Apparent CP digestion, kg of CP/d 3.24 3.50 3.62  3.50 0.139 0.14 0.77 0.40 0.09 

Apparent NDF digestion, % of NDF intake 54.16b 57.49ab 59.56a  59.92a 1.365 0.03 0.77 0.72 0.07 

Apparent NDF digestion, kg of NDF/d 5.06 5.91 5.96  6.03 0.665 0.09 0.53 0.34 0.25 

Apparent ST digestion, % of ST intake 92.38a 92.79a 92.52a  89.04b 0.588 <0.01 0.05 0.01 0.02 

Apparent ST digestion, kg of ST/d 4.46 4.42 4.44  4.22 0.212 0.65 0.80 0.68 0.60 

SEM: Standard error of mean; a-b Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment comparisons using 
Tukey method; R: rolled oat; F: flaked oat; P: pelleted oat; B: rolled barley; B vs. O: contrast between barley and oat grain; B vs. FP: contrast between 
barley grain and heat-processed oat; R vs. FP: contrast between rolled oat and heat-processed oat; ST: starch. 
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5.4.4 Urine Parameters, N balance, and microbial N flow 

 Urinary purine derivatives excretion and microbial N supply to the small intestine are 

shown in Table 5.5. Allantoin output did not differ between treatments (P=0.16), but contrast 

statement showed lower values for cows fed the heat-processed oat-based diet (steam-flaked and 

pelleted) when compared to dry-rolled oat (P=0.03), suggesting that cows being fed TMRs 

containing heat-processed oat have a lower microbial production compared to dry-rolled oat. Uric 

acid excretion was higher (P=0.05) for cows fed the pelleted oat-based TMR when compared to 

rolled-barley (18.67 vs. 16.46 mmol/d, respectively), however, there was no difference for total PD 

or allantoin excretion between these two treatments. Gozho et al. (2008) also showed no significa nt 

difference in allantoin and PD excretion between cows fed rolled or pelleted barley. Total purine 

excretion did not differ between treatments (P=0.17), however, the contrast statement showed 

lower values (P=0.03) for heat-processed oat when compared to dry-rolled oat. Consequently, the 

calculated intestinal flow of microbial N was also unaffected by dietary treatment (P=0.16), but the 

contrast statement also showed a higher value for cows being fed dry-rolled oat. Theurer et al. 

(1999) pointed that increasing ruminal starch digestibility increased microbial N supply, however, 

in this study, the extra 200 g of starch consumed by cows fed pelleted oat did not increase microbia l 

N production. 

 Nitrogen intake was similar for cows across all diets (Table 5.6). However, as a percentage 

of N intake, urinary N excretion was lower for cows fed rolled barley when compared to oat 

(P=0.03) or heat-processed oat (P=0.04). Total urinary excretion in g/d did not differ between 

treatments (P=0.87). Fecal N excretion did not show any significant difference between the 

treatments studied. Milk N excretion was higher for cows fed the rolled oat-based TMR when 

compared to flaked oat (P=0.03), and as a percentage of N intake, rolled oat-based diet also showed 
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a higher excretion (P<0.01). The higher milk N excretion was expected for rolled oat-based diet 

since cows in this diet presented a higher milk yield (49.23 kg/d). The N balance (N intake – N 

excretion) varied between 1.61 to 67.79 g/d, however, despite the great numerical difference, no 

statistical difference was found between treatments, grains or processing methods (P≥0.11). 

 

5.4.5 Blood parameters 

 The measured blood metabolites are shown in Table 5.5. Plasma concentrations of urea 

nitrogen (PUN) did not differ between treatments (P=0.58). In dairy cows, the resulting NH3-N 

that is not used for microbial protein synthesis in the rumen is absorbed into portal blood and 

subsequently converted to urea in the liver (NRC, 2001). So, despite the higher EDST and lower 

EDCP, and consequently a lower DPB, for rolled barley when compared to oat grain (Chapter 4), 

the difference in fermentation patterns wasn’t enough to lead to a difference in ureagenesis. Plasma 

glucose did not respond to dietary treatment (P=0.82). Generally, due to the extensive degradation 

of starch in the rumen, glucose being absorbed in the small intestine is limited, so glucose in the 

plasma mainly arises from gluconeogenesis in the liver. Rumen derived propionate is the major 

precursor to glucose formation in the liver (Gozho and Mutsvangwa, 2008). In this study, rumen 

propionate concentrations were not different between dietary treatments, which may explain the 

lack of difference in plasma glucose. Blood concentration of the ketone body BHBA (β-

hydroxybutyrate) were not affected by treatment (P=0.10). 
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Table 5.5. Blood metabolites, urine output, urinary purine derivatives excretion and microbial N supply of lactating Holstein cows fed 

diets containing rolled barley (B), rolled oat (R), flaked oat (F) or pelleted oat (P). 

 

 Oat (O)     Contrast P-value 

Items Rolled (R) Flaked (F) Pellet (P)  Barley (B) SEM P-value B vs. O B vs. FP R vs. FP 

Urinary parameters           

Output (kg/d) 36.33 36.37 37.45  38.38 1.555 0.19 0.27 0.31 0.92 

Allantoin (mmol/d) 341.86 335.08 294.47  327.96 26.164 0.16 0.45 0.99 0.03 

Uric acid (mmol/d) 17.77ab 17.55ab 18.67a  16.46b 2.049 0.05 0.89 0.43 0.02 

Purine Derivatives (mmol/d) 360.12 350.38 313.11  345.99 28.106 0.17 0.56 0.88 0.03 

Microbial N supply (g/d) 262.88 255.57 222.02  251.23 23.441 0.16 0.51 0.92 0.03 

Blood metabolites           

BUN (mg/dL) 19.13 18.48 18.75  17.97 0.605 0.58 0.83 0.91 0.78 

Plasma glucose (mg/dL) 46.57 47.06 45.86  45.39 1.249 0.82 0.46 0.48 0.94 

Plasma BHBA (mg/dL) 8.76 9.52 8.94  8.98 0.287 0.10 0.02 0.02 0.8 
SEM: Standard error of mean; a-b Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment 
comparisons using Tukey method; R: rolled oat; F: flaked oat; P: pelleted oat; B: rolled barley; B vs. O: contrast between barley and oat grain; 
B vs. FP: contrast between barley grain and heat-processed oat; R vs. FP: contrast between rolled oat and heat-processed oat; BUN: blood urea 
nitrogen; BHBA: beta-hydroxybutyrate. 
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Table 5.6. Nitrogen balance in lactating Holstein cows fed diets containing rolled barley (B), rolled oat (R), flaked oat (F) or pelleted 

oat (P). 

 

 Oat (O)     Contrast P-value 

Items Rolled (R) Flaked (F) Pellet (P)  Barley (B) SEM P-value B vs. O B vs. FP R vs. FP 

N intake (g/d) 746.28 769.81 816.21  797.38 31.141 0.13 0.46 0.89 0.10 

Urinary N excretion           

N (g/d) 296.40 292.26 294.68  302.03 15.89 0.87 0.64 0.54 0.68 
N (% N intake) 38.48 33.31 38.53  36.19 1.632 0.10 0.03 0.04 0.24 

Fecal N excretion           

N (g/d) 230.56 220.03 233.78  234.81 11.724 0.36 0.10 0.10 0.87 
N (% of N intake) 30.85 28.34 28.80  29.67 1.042 0.26 0.27 0.14 0.20 

Milk nitrogen           

Milk (g/d) 222.99a 210.76b 221.41ab  219.22ab 7.094 0.03 <0.01 <0.01 0.69 
Milk (% of N intake) 29.05a 27.06c 28.39b  28.47b 0.847 <0.01 <0.01 <0.01 <0.01 

Nitrogen balance           

N balance (g/d) 1.61 48.52 67.79  35.56 28.593 0.28 0.69 0.38 0.11 
SEM: Standard error of mean; a-c Means with the different letters in the same row are significantly different (P < 0.05); Multi-treatment 
comparisons using Tukey method; R: rolled oat; F: flaked oat; P: pelleted oat; B: rolled barley; B vs. O: contrast between barley and oat grain; 
B vs. FP: contrast between barley grain and heat-processed oat; R vs. FP: contrast between rolled oat and heat-processed oat; N: nitrogen. 
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5.5 Chapter summary and conclusions  

 This study showed that feeding rolled oat, rolled barley or flaked oat as a concentrate in 

a total mixed ration resulted in similar levels of DMI but that feeding pelleted oat can increase 

DMI. Despite the higher nutrient consumption by cows fed pelleted oat-based TMR, production 

of milk and fat percentage was depressed, however milk fat yield was not affected by dietary 

treatment, mainly because the higher numerical production of milk by cows being fed the 

pelleted oat-based diet when compared to flaked oat and rolled barley helped decrease the gap 

caused by the lower milk fat percentage. Rumen acetate concentration was lower for pelleted 

oat-based diet compared to rolled oat, which might explain the fat depression caused by this 

diet. Other SCFA did not significantly differ between dietary treatments and daily mean pH 

was also unaffected, although flaked oat showed lower pH values at 9-h and 12-h post-feeding. 

Digestibility of DM, OM, and CP was similar across all diets; however, starch digestibility was 

higher for oat-based diets than barley based. This was expected since oat grain has a higher 

rumen and total-tract digestibility compared to other cereal grains. Measured blood metabolites 

(urea, glucose, and BHBA) were similar across all treatments. Purine derivative excretion and 

microbial N supply were not affected by dietary treatments. Overall, the lower production cost 

for dry-rolled oat grain ($6/ton) together with the higher milk yield production suggests that 

rolled oat is the most cost-effective treatment to be fed as a concentrate for dairy cows in North 

America, if the price of purchase of the oat grain is lower than barley. 
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6. Research discussion and conclusions 

 Oat was a common grain used in ruminant and horse nutrition until the earlier twenty 

century, but after the horsepower was replaced by machinery, the use of oat in cows diet 

declined. Oat grain is an adequate feed for ruminants being considered a good protein source, 

however, the low content of starch and high fiber content makes oat grain a less desirable grain 

when compared to highly used grains, like barley or corn. To improve the quality of oat, its 

yield, and nutritional value, the Crop Development Centre (CDC) of the University of 

Saskatchewan has a program to develop new varieties. Three of these varieties were used in 

this study to determine their nutritive value for dairy cows. Moreover, several studies reported 

that processing methods can alter the site and extent of digestion, which can lead to a nutritiona l 

improvement of the feed. For this reason, this study focused on investigating the nutritiona l 

value of different varieties of CDC oat grain and the impact of different processing methods on 

the nutritive value of the grain for dairy cows. 

 The first chapter of this study showed that despite the higher hull content, CDC Nasser 

(feed type of oat) presented a lower lignin and undegradable NDF (uNDF) when compared to 

other varieties of oat, and the values rivaled the ones presented by barley grain. However, CDC 

Austenson barley grain still provided greater levels of starch and sugar on a DM basis. CDC 

Nasser was bred to provide a high oil groat (high in EE) while having a low lignin hull. These 

characteristics resulting in CDC Nasser having a higher energy value when compared to other 

oat varieties and showing similar values to barley grain. According to the CNCPS 6.5 model, 

Nasser oat also showed a low level of CC and TRUCHO, while for protein fraction it did not 

differ from the other oat varieties. The rumen degradation kinetics values obtained from an in 

situ study showed that all varieties of oat had higher degradation kinetics of DM, OM, and CP 

when compared to Austenson barley grain. Synchronizing the degradation of N and OM 

(ED_N/ED_OM) is important to ensure reduction in the loss of N and maximize microbia l 
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protein synthesis, for this a value of 25 g N/kg OM is considered optimal (Sinclair et al., 1993). 

In this circumstance, CDC Nasser presented optimal values up until 8 h of incubation, while 

the other oat varieties presented higher values and CDC Austenson barley showed lower values 

(<23). When the protein molecular structure was analyzed, CDC Austenson was revealed as 

having the highest β-sheet height, this is important since studies related the β-sheet content of 

a feed with lower protein digestibility (Yu, 2007b). 

 The results of the second study showed that heat-treatment of oat grain (steam-flak ing 

and pelleting) did not produce any changes in DM and CP content, but it did increase the crude 

fat of oat. Steam-flaking reduced acid detergent fiber (ADF), decreased PA2 fraction while 

increased the NEL (+0.12 Mcal/kg). The heat-processing methods showed increased bypass 

fraction of DM, OM, and CP, while reduced the effective degradability of the same nutrients in 

the rumen; despite that, no difference was observed for ruminal degradation of starch. Heat 

treatments did not impact the intestinal digestion of DM and OM but steam-flaking increased 

the digestion of CP in the small intestine when compared to dry-rolled oat. The synchroniza t ion 

between N and OM degradation in the rumen was closer to optimal in dry-rolled oat, between 

the 2-h and 4-h incubation points, while dry-rolled barley showed below optimal results for all 

time points after 2 h. This shows that, despite the high nutritional value and FMV (DVE/OEB 

model), rolled-barley presents a lack of available energy in the rumen to allow optimal 

microbial protein synthesis. This is further outlined by the results of DPB of the NRC 2001 

model, showing the lowest value for rolled-barley (-43.82 g/kg DM). Processing methods did 

not impact significantly the protein molecular structure, making the treatments hard to separate 

using multivariate spectral analysis and implying similar molecular structure in terms of protein 

make-up for all the treatments studied. 

 The third study suggests that rolled oat was the best concentrate to put into dairy cows 

ration since it had the lowest dry matter intake (DMI) but highest milk production per day with 
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a high-fat percentage. As a consequence of the lower DMI, cows fed rolled oat also had the 

highest feed efficiency. It is interesting to observe that, even though not statistically significant, 

the amount of microbial N supplied to the small intestine was much higher for rolled oat when 

compared to the other treatments. This implies, as suggested in the second study, that rolled oat 

shows a closer to optimal synchronization between available N and available energy 

degradation in the rumen. 

 In conclusion, different varieties of oat grain differ in their chemical constitution, energy 

profile, protein and carbohydrates fractions, potential N to energy synchronization, rumen 

degradation kinetics, metabolic characteristics, and protein molecular structure features. Based 

on the second study results, steam-flaking oat grain increased the bypass of DM, OM, CP and 

starch to the small intestine. However, the heat processing at the current conditions was not 

enough to cause dramatic changes in the protein molecular structure and one could not 

distinguish treatments in a multivariate spectral analysis. Based on the third study, dry-rolled 

oat was shown to have a superior response in milk production and milk fat percentage, while it 

did not show any negative repercussions on the animals’ metabolites. In this case, dry-rolled 

oat can be used as a high-value grain for high producing lactating dairy cows in total mixed 

rations. 
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