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ABSTRACT 

 The objective of this thesis is to develop a fast model to predict the 

performance of a Run-Around Membrane Energy Exchanger (RAMEE). The 

RAMEE is a novel air-to-air energy recovery system that is capable of transferring 

both heat and moisture between two air streams. The utilization of a properly 

controlled RAMEE in the HVAC system of a building can significantly reduce the 

required energy to condition the ventilation air of the buildings. A neural network 

(NN) approach is applied to model the steady-state and transient performance of the 

RAMEE under a wide range of operating and system parameters. 

 In order to approximate the underlying function of a physical system using a 

NN approach, a set of examples (data points) that describes the behavior of the 

system is required to train NNs. In this study, two separate numerical models that 

predict the steady-state and transient effectiveness of the RAMEE are utilized to 

generate the required training data sets. The Back-Propagation algorithm is applied 

to feed-forward NNs of different architectures to minimize the errors between the 

predicted effectivenesses by the numerical models and the NN models. Root Mean 

Squared Error (RMSE) between the results of steady-state NN models and the 

steady-state simulations are 0.05 °C for the sensible NN and 0.02 gv/kga for the latent 

NN. The accuracy of the transient NNs are reported in terms of Mean Absolute 

Difference (MAD) which are 0.5 °C for the sensible model and 0.2 gv/kga for the 

latent NN. The steady-state NN models show an excellent accuracy and the accuracy 

of transient NN models are quite acceptable for energy transfer calculation purposes, 

which is the main application of the NN models. 

 The main advantage of NNs over numerical models is the non-iterative nature 

of the NN models that provides a very fast feed-forward model that can generalize 
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and predict the RAMEE effectiveness for any practical operating condition in a 

fraction of second. This simplicity of predictions allowed the steady-state NN 

models to be used with a simple optimization algorithm to find the optimal 

performance of RAMEE during each operational hour. The TRNSYS computer 

simulations used the output of the optimized NNs to predict the annual energy 

savings caused by an optimally controlled RAMEE for an office building as well as a 

hospital. The results for an office building show up to 43% heating energy saving in 

cold climates, and up to 15% cooling energy saving in hot climates. The same 

analysis for the application of an optimally controlled RAMEE in the HVAC system 

of a hospital shows even more energy savings. The optimized RAMEE reduces the 

annual heating energy by 58 ‐ 66% in cold climates, and the annual cooling energy 

by 10 ‐ 18% in hot climates. The RAMEE allows the heating system to be downsized 

by 45% in cold climates, and the cooling system to be downsized by 25% in hot 

climates. 

  

   



 

iv 

 

 

ACKNOWLEDGMENTS 

I am deeply grateful to my supervisor, Professor Carey Simonson, who 

helped me with his valuable ideas, friendly manner, and patience. His understanding 

of different aspects of my life significantly helped me to complete my studies. 

Meeting somebody like Carey is not a chance that happens often in my life! I would 

like to thank my co-supervisor Professor Robert Besant for his deep knowledge and 

improving comments. I believe this world needs more people like Professor Besant 

to discover and deal with unknown problems. 

I am thankful to all students at University of Saskatchewan RAMEE research 

group that I learned a lot from them. The interactions between the students in our 

research group were a very effective educative experience. 

I also appreciate the financial support by the National Science and 

Engineering Research Council of Canada (NSERC) and Venmar CES, Inc., 

Saskatoon, SK, Canada. 

  



 

v 

 

To the people whom I like! 

  



 

vi 

 

TABLE OF CONTENTS 

page 

 
ABSTRACT ...................................................................................................................... ii 

ACKNOWLEDGMENTS ................................................................................................ iv 

Dedication ........................................................................................................................... v 

List of Tables .................................................................................................................... xi 

List of Figures ................................................................................................................. xiv 

NOMENCLATURE ....................................................................................................... xix 

CHAPTER 1: INTRODUCTION ....................................................................................... 1 

1.1. An Overview on Energy Recovery in Buildings ....................................... 1 

1.2. Run-Around Membrane Energy Exchanger (RAMEE) ............................ 3 

1.3. The Importance of Controlling and Modeling the RAMEE System ......... 4 

1.4. Thesis Objectives and Overview ............................................................... 5 

1.5. References of chapter 1 ............................................................................. 7 

 
CHAPTER 2: STEADY STATE PERFORMANCE OF RAMEE .................................... 9 

2.1. Overview of Chapter 2 .............................................................................. 9 

MANUSCRIPT #1 

2.2. Abstract ................................................................................................... 11 

2.3. Introduction ............................................................................................. 12 

2.4. Discription of RAMEE ............................................................................ 14 

 2.4.1. Main Components .............................................................................. 14 

 2.4.2. Numerical Model ............................................................................... 15 

 2.4.3. Parameters Affecting RAMEE Performance ..................................... 16 

  2.4.3.1. Design Parameters ........................................................................ 16 

  2.4.3.2. Operating Parameters ................................................................... 17 

 2.4.4. Effect of Design Parameters .............................................................. 17 

  2.4.4.1. Effect of NTU and NTUm .............................................................. 17 

  2.4.4.2. Effect of Aspect and Entrance Ratio ............................................ 18 

2.5. Back-Propagation Algorithm .................................................................. 20 



 

vii 

 

2.6. Neural Model, Inputs and Outputs, and Data Generation Process .......... 20 

2.7. NN Architecture and Training Process ................................................... 26 

 2.7.1. NN Architecture  ................................................................................ 26 

 2.7.2. Training Process ................................................................................. 27 

2.8. Verification and Application of the NN Model ....................................... 30 

 2.8.1. Accuracy of the NN Models .............................................................. 30 

 2.8.2. Comparing the NN and FD Models for Different Operating Condition 

Factors  ........................................................................................................... 33 

 2.8.3. Experimental Validation .................................................................... 35 

 2.8.4. Application of the NN Model ............................................................ 37 

2.9. Conclusions ............................................................................................. 39 

2.10. References of chapter 2 ......................................................................... 40 

 
CHAPTER 3: TRANSIENT PERFORMANCE OF RAMEE SYSTEM ........................ 44 

3.1. Overview of Chapter 3 ............................................................................ 44 

MANUSCRIPT #2 

3.2. Abstract ................................................................................................... 45 

3.3. Introduction ............................................................................................. 46 

3.4. Discription of RAMEE  ........................................................................... 47 

 3.4.1. Main Components .............................................................................. 47 

 3.4.2. Numrical Model ................................................................................. 49 

 3.4.3. Parameters Affecting the Transient Performance of RAMEE ........... 50 

  3.4.3.1. Outdoor and Initial Conditions ..................................................... 50 

  3.4.3.2. System Parameters ........................................................................ 53 

  3.4.3.3. Effect of Geometrical Parameters and Salt Solution Storage Tanks 

Volume ........................................................................................................... 56 

3.5. Back-Propagation Algorithm  ................................................................. 62 

3.6. Neural Model Inputs and Outputs and Data Generation  ........................ 63 

 3.6.1. Neural Model Inputs and Outputs ...................................................... 63 

 3.6.2. Data Generation ................................................................................. 65 

3.7. NN Architecture and Training Process ................................................... 66 

3.8. Verification and Application of the NN Models  .................................... 68 

 3.8.1. Verification of the NN Models for Different Locations .................... 68 

 3.8.2. Applications ....................................................................................... 71 



 

viii 

 

3.9. Conclusions  ............................................................................................ 72 

3.10. References of chapter 3  ........................................................................ 73 

 

CHAPTER 4: APPLICATION OF A RAMEE IN A HEALTH-CARE FACILITY 

HVAC SYSTEM .............................................................................................................. 80 

4.1. Overview of Chapter 4 ............................................................................ 80 

MANUSCRIPT #3 

4.2. Abstract ................................................................................................... 82 

4.3. Introduction ............................................................................................. 82 

4.4. Model Description ................................................................................... 84 

4.5. Run-Around Membrane Energy Exchanger (RAMEE)  ......................... 85 

 4.5.1. Overview ............................................................................................ 85 

 4.5.2. System Performance, Controls and Operation ................................... 87 

4.6. Results  .................................................................................................... 94 

 4.6.1. Energy ................................................................................................ 94 

 4.6.2. Control Based on an Operating Averaged Cr* .................................. 96 

 4.6.3. Life Cycle Cost Analysis (LCCA) ..................................................... 97 

 4.6.4. Life Cycle Environmental Assessment (LCEA) .............................. 100 

 4.6.5. Comparison of Two Case Studies .................................................... 103 

4.7. Conclusions ........................................................................................... 105 

4.8. References of chapter 4 ......................................................................... 106 

 
CHAPTER 5: SUMMARY, CONCLUSIONS, AND FUTURE WORKS .................... 111 

5.1. Summary ............................................................................................... 111 

5.2. Conclusions ........................................................................................... 113 

5.2. Limitations and Future Works ............................................................... 115 

 
APPENDIX A: APPLICATION OF A RUN-AROUND MEMBRANE ENERGY 

EXCHANGER IN AN OFFICE BUILDING HVAC SYSTEM ................................... 117 

MANUSCRIPT #4 

Abstract ........................................................................................................ 117 

1. Introduction .............................................................................................. 118 

2. Run-Around Membrane Energy Exchanger (RAMEE)  .......................... 119 

 2.1. Exchanger Design ............................................................................... 119 



 

ix 

 

 2.2. System Performance ........................................................................... 121 

  2.2.1. Impact of NTU and Cr* on RAMEE Performance ........................ 122 

  2.2.2. Impact of Indoor and Outdoor Conditions on RAMEE  

  Performance ............................................................................................. 123 

3. RAMEE Control  ...................................................................................... 125 

 3.1. Heating Season (winter) ...................................................................... 126 

 3.2. Cooling Season (summer) ................................................................... 127 

 3.3. Economizer ......................................................................................... 128 

 3.4. Part-Load Operation ............................................................................ 129 

4. Model Specification  ................................................................................ 132 

 4.1. Building Description ........................................................................... 132 

 4.2. HVAC System .................................................................................... 133 

 4.3. Climatic Conditions ............................................................................ 134 

 4.4. Simulation Program ............................................................................ 135 

5. Results and Discussions ........................................................................... 137 

 5.1. Heating Season .................................................................................... 138 

 5.2. Cooling Season ................................................................................... 139 

6. Control Based on Average Cr* Values  ................................................... 141 

7. Life Cycle Cost Analysis (LCCA)  .......................................................... 143 

8. Conclusions  ............................................................................................. 147 

9. References of Appendix A  ...................................................................... 149 

 
APPENDIX B: REQUIRED DATA TO REPRODUCE THE NN MODELS .............. 155 

B.1. NONLINEAR MODEL OF A NEURON ............................................ 155 

B.2. REQUIRED DATA TO REPRODUCE THE STEADY-STATE NN 

MODELS ...................................................................................................... 156 

B.2.1. Weights and biases of the steady-state sensible model ................. 157 

B.2.2. Weights and biases of the steady-state latent model ..................... 158 

B.3. REQUIRED DATA TO REPRODUCE THE TRANSIENT NN 

MODELS ...................................................................................................... 160 

B.3.1. Weights and biases of the transient sensible model ...................... 161 

B.3.2. Weights and biases of the transient latent model .......................... 163 

 
APPENDIX C: COMPUTER CODE TO OPTIMIZE THE RAMEE  



 

x 

 

PERFORMANCE ........................................................................................................... 165 

APPENDIX D: COPYRIGHT PERMISSIONS ............................................................. 167 

D.1. Manuscript #1 ....................................................................................... 167 

D.2. Manuscript #2 ....................................................................................... 168 

D.3. Manuscript #3 ....................................................................................... 169 

D.4. Manuscript #4 ....................................................................................... 172 

  



 

xi 

 

LIST OF TABLES 

Table Page 

Table 2.1. Membrane and air gap properties of each LAMEE …………………..……. 18 

Table 2.2. The range and increment values for NTU, Cr*, and indoor humidity ratio 

used to provide the training data set ………………………………………........ 

 

23 

Table 2.3. Result of linear regression along with MSE for different architectures for 

training and test sets. M and B are the slope and intercept of the linear trend 

line respectively. R and MSE are the correlation coefficient and Mean Squared 

Error between the NN and FD model results respectively ……...……………... 

 

 

 

 

29 

Table 2.4. Error values between the results from NN model and FD model outputs for 

both sensible and latent networks tested using 9000 test points…..…..……….. 

 

33 

Table 2.5. Specifications of Beriault’s prototype used to develop the experimental 

validation data points ………………..……………………………………......... 

 

37 

Table 3.1. Dimensions and membrane properties of each LAMEE………………......... 54 

Table 3.2. The RMSE between counter flow and cross-counter flow yearly 

simulations for different locations. (NTU=5, Cr*=2, AHRI summer indoor 

condition)Average sensible and latent effectiveness of the RAMEE………….. 

 

 

57 

Table 3.3. Result of linear regression along with MSE for different architectures on 

training, validating, and test sets. A and B are the slope and intercept of the 

linear trend line respectively. R and MSE are the correlation coefficient and 

Mean Squared Error between the NN and TNM outputs respectively…...…….. 68 

Table 3.4. Architecture and configuration of the NN models …………………………. 68 

Table 3.5. Climate description of the unseen test locations ……..…………………….. 69 



 

xii 

 

Table 3.6A. Mean Absolute Difference, Standard deviation, mean value of the 

difference between TNM and NN results, and percent of data falling in 1, 2, 

and 3 standard deviations for the sensible network outputs compared to 

transient simulations in different test locations. (NTU=2, 4, 6, 8, 10 and 

Cr*=1.75, 2.75, 3.75, 4.75. The errors were calculated for over 200,000 points 

per location)……………………………………………………………….……. 

 

 

 

 

 

 

 

70 

Table 3.6B. Mean Absolute Difference, Standard deviation, mean value of the 

difference between TNM and NN results, and percent of data falling in 1, 2, 

and 3 standard deviations for the latent network outputs compared to transient 

simulations in different test locations. (NTU=2,4,6,8,10 and 

Cr*=1.75,2.75,3.75,4.75. The errors were calculated for over 200,000 points 

per location)…………………………………………………………………….. 

 

 

 

 

70 

Table 4.1. Cr* control strategy and definitions of Cr*opt for optimal performance of 

the RAMEE in different steady-state operating conditions.………….………… 

 

 

91 

 

Table 4.2. Average sensible and latent effectiveness of the 

RAMEE…………………………………………………………………..…...... 

 

93 

Table 4.3. Seasonal and yearly weighted average Cr* and associated standard 

deviation for the hospital building………………………………………..…….. 97 

Table 4.4. Annual energy saved with the RAMEE system operating with selected Cr* 

values…………………………………………………………………………… 

 

97 

Table 4.5. LCC (including capital and operational costs) of the two HVAC system 

alternatives for a 15-year life-cycle...…………………………………….…….. 

 

100 

Table 4.6. The greenhouse gas emission due to electricity and natural gas 

consumption in different locations……………………………………..………. 

 

 

101 

 

Table 4.7. Summary of the characteristics of each case study…………………..……... 103 

Table 4.8. Comparison of weighted average yearly Cr* for the two case studies in 

different locations………………..……………………………………………... 104 

Table A.1. Seasonal and yearly weighted average Cr* and associated standard 

deviation for the office building in each location………………………………. 

 

142 



 

xiii 

 

Table A.2. Annual energy saved with the RAMEE system operating with selected Cr* 

values…………………………………………………………………………… 

 

142 

Table A.3. Summary of equipment capacity and HVAC equipment costs for three 

system alternatives for the selected office building……………...…………….. 

 

145 

Table A.4. Summary of annual energy consumption and energy cost of different 

alternatives excluding the fan energy consumption due to the pressure drop in 

the RAMEE……...……………………………………………………………... 

 

 

 

146 

Table A.5. Payback period of RAMEE and economizer in different locations……....... 147 

Table B.1. Architecture and configuration of the steady-state NN models …….……… 156 

Table B.2. Architecture and configuration of the transient NN models ………...…....... 160 



 

xiv 

 

LIST OF FIGURES 

Figure Page 

Figure 1.1. Energy wheel …………………………………………….……....... 
 

2 

Figure 1.2. Schematic illustration of a RAMEE with all main 

components………………………………………………………….…. 

 

3 

Figure 2.1. Schematic view of RAMEE components and inlet and outlet air 

conditions……………………………………………………………… 

 

14 

Figure 2.2. More details for structure and operation of a) counter flow 

LAMEE b) cross-counter flow LAMEE…………………………. 

 

 

15 

Figure 2.3. RAMEE sensible and latent effectivenesses with two cross-

counter flow LAMEEs with different entrance ratio ((a) and (b)) and 

aspect ratio ((c) and (d)). The numerical data is generated with 

NTU=10, and (a) Cr*=2.5, aspect ratio=0.1, and AHRI summer 

condition, (b) Cr*=1.5, aspect ratio=0.1 and AHRI winter condition, 

(c) Cr*=2.5, entrance ratio=0.05 and AHRI summer condition, and (d) 

Cr*=1.5, entrance ratio=0.05 and AHRI winter condition. The 

effectivenesses for the RAMEE with two pure counter flow LAMEEs 

are included for comparison………………………………………...…. 

 

 

 

 

 

 

 

 

 

 

19 

 

Figure 2.4. RAMEE (a) sensible and (b) latent effectivenesses, for different 

NTUs, versus Cr* for AHRI summer condition presenting the training 

data set range and increments……………………………….…...…….. 

 

 

22 

Figure 2.5. Outdoor temperature and humidity ratio conditions on the 

psychometric chart, used to provide the training data set 

…….……….. 

 

24 

Figure 2.6. Outdoor conditions for different cities compared to the outdoor 

conditions used in the training data set……….………………………... 

 

 

25 



 

xv 

 

Figure 2.7. Architecture of a fully connected three layer neural network with 

five inputs, m neurons in the first hidden layer, n neurons in the 

second hidden layer, and one neuron in the output layer which might 

be written as a 5-m-n-1 network …………………………………..…... 

 

 

 

 

 

26 

Figure 2.8. Outdoor operating conditions used to create the unseen test set 

compared to conditions used to create the training data set………........ 

 

 

30 

Figure 2.9. Frequency of absolute difference between predicted values by NN 

model and numerically simulated values for (a) the sensible NN (b) 

the NN model…………………….……………………………………. 

 

 

 

32 

Figure 2.10. Comparison between numerical and NN model effectivenesses 

with NTU=10 for a) AHRI summer condition. b) AHRI winter 

condition ………………………………………………………..….….. 

 

 

 

34 

Figure 2.11. Comparison between numerical and NN model effectivenesses 

with NTU=10 for (a) H*=7. (b) H*=-0.4…............................................ 

 

 

34 

Figure 2.12. Experimental results for NTU=17 and H*=-0.68 compared to a) 

sensible NN model b) latent NN model ……………………………..... 

 

36 

Figure 3.1. A) Schematic view of RAMEE components and inlet and outlet 

air conditions. More details for structure and operation of B) counter 

flow LAMEE C) cross-counter flow LAMEE …………………….….. 

 

 

48 

Figure 3.2. A) Sensible and B) latent transient effectivenesses for the first 336 

hours (two weeks) of the RAMEE operation in Calgary, AB. (NTU=9, 

Cr*=2)..................................................................................................... 

 

 

51 

Figure 3.3. A) Supply side temperature difference (∆Ts) compared to 

temperature difference between supply and exhaust inlets (∆T) B) 

Supply side humidity ratio difference (∆Ws) compared to humidity 

ratio difference between supply and exhaust inlets (∆W) for the first 

336 hours (two weeks) of the RAMEE operation in Calgary, AB, 

(NTU=9, Cr*=2)…………………………………….……….………… 

 

 

 

 

 

 

51 



 

xvi 

 

Figure 3.4. A) Sensible and B) latent effectivenesses, for different NTU 

values, C) Sensible and D) latent effectivenesses, for different Cr* 

values for the first 336 hours (two weeks) of the RAMEE operation in 

Calgary, AB.……………………………………………………..…...... 

 

 

 

55 

Figure 3.5. Sensible and latent responses of systems with different storage 

tank volumes (1x vs. 20x) for A and B) NTU=5, Cr*=2. C and D) 

NTU=1, Cr*=10 before, during, and after the step change of the 

outdoor condition at hour 1300 in Miami, FL………………………..... 

 

 

 

 

58 

Figure 3.6. MAD values for supply side outlet A) temperature and B) 

humidity ratio between the outlet air condition of two systems with 

storage tank volume of 10x and 20x for different NTU and Cr* values 

in different locations of different climates…………...…………...…… 

 

 

 

61 

Figure 3.7. Black box illustration of the NN model and its inputs and output ... 
 

64 

Figure 4.1 Schematic view of a HVAC system equipped with a RAMEE…… 86 

Figure 4.2 RAMEE effectiveness (a) as a function of NTU at Cr*=2, and as a 

function of Cr*and outdoor air conditions at (b) cold, (c) hot-low 

enthalpy and (d) hot-high enthalpy outdoor conditions with NTU=10... 

 

 

 

 

88 

Figure 4.3 Operating condition of the RAMEE in the hospital in different 

locations in one year…………………………………………………… 

 

90 

Figure 4.4 Yearly variation of the hourly Cr* for optimal operation of the 

RAMEE………………………………………………………………... 

 

91 

Figure 4.5 Variation of the sensible and latent effectiveness in one year in 

different locations (operation with Cr*opt)………...…………………… 

 

 

93 

Figure 4.6 The impact of RAMEE on annual energy consumption for (a) 

heating and (b) cooling………………………………………………… 

 

 

94 



 

xvii 

 

Figure 4.7 The impact of RAMEE on the capacity of HVAC equipment for 

(a) heating and (b) cooling……………..……………………………… 

 

 

95 

Figure 4.8 Life-cycle cost analysis results (a) capital costs and (b) operational 

costs for the HVAC system (1) without the RAMEE and (2) with the 

RAMEE………………………………………………………….…….. 

 

 

 

98 

Figure 4.9 Payback period of the RAMEE in Miami and Phoenix as a function 

of pressure drop across each LAMEE…………………………………. 

 

 

99 

Figure 4.10 Annual equivalent emission of CO2 from the hospital building 

with and without the RAMEE…………………………………………. 

 

 

102 

Figure 4.11 Comparison of (a) energy intensity of the HVAC system without 

the RAMEE and (b) energy saved with the RAMEE for two case 

studies in different climate…………………………………………...... 

 

 

 

104 

Figure A.1. Schematic diagram of a (a) HVAC system equipped with a 

RAMEE, and (b) air and solution flow in a LAMEE…………………. 

 

 

120 

Figure A.2. Variation of RAMEE effectiveness as a function of NTU and Cr* 

for outdoor condition at 5°C and 5 g/kg and indoor condition at 22°C 

and 9.3 g/kg (a) NTU (at Cr*=1.3) and (b) Cr* (at 

NTU=10)…............................................................................................. 

 

 

 

 

 

123 

Figure A.3. RAMEE effectiveness versus Cr* for five different outdoor 

conditions (NTU=10) (a) the psychrometric chart, (b) cold-dry (5°C 

and 5 g/kg ), (c) hot-humid (35°C, 20g/kg), (d) hot-dry (30°C, 2g/kg), 

(e) cool-humid, high enthalpy (22°C, 15g/kg), and (f) cool-humid, low 

enthalpy (19°C, 10g/kg)……………………………………………...... 

 

 

 

 

 

 

124 

Figure A.4. Schematic of the RAMEE system operating under part-load 

condition……………………………………………………………..… 

 

130 

Figure A.5. Operating condition of the RAMEE system in different outdoor 

condition……………………………………………………………….. 

 

132 



 

xviii 

 

Figure A.6. TMY2 yearly distribution of hourly outdoor conditions and 

HVAC system operation when heating is required (1), economized 

cooling is available (2) and cooling is required (3) in  (a) Saskatoon, 

(b) Chicago, (c) Miami and (d) Phoenix………….………..………….. 

 

 

 

135 

Figure A.7. Schematics of the dataflow between the TRNSYS model and the 

ANN…………………………………………………………………… 

 

136 

Figure A.8. Yearly variation of hourly optimal Cr* values for different 

climatic conditions, (a) Saskatoon, (b) Chicago, (c) Miami, and (d) 

Phoenix………………………………………………………..……...... 

 

 

 

138 

Figure A.9. Impact of the RAMEE on (a) annual heating energy consumption 

and (b) the size of heating equipment……………...…………………... 

 

 

139 

Figure A.10. Impact of the RAMEE system on (a) annual cooling energy 

consumption and (b) the size of cooling equipment………………….... 

 

 

140 

Figure A.11. LCC of the three alternative systems as a function of pressure 

drop across the RAMEE system in (a) Saskatoon, (b) Chicago, (c) 

Miami and (d) Phoenix………………………………………………… 

 

 

 

147 

Figure B.1. Block diagram for the first neuron in the first hidden layer of the 

steady-state neural models ………………………...…………………... 

 

 

155 

  



 

xix 

 

NOMENCLATURE 

Acronyms 

ACH    Air Change per Hour 

AHRI    Air-Conditioning, Heating and Refrigeration Institute  

ANN    Artificial Neural Network 

ASHRAE   American Society of Heating, Refrigerating and  

 Air-conditioning Engineers 

BP  back-propagation 

CAV    Constant Air Volume 

CBECS   Commercial Buildings Energy Consumption Survey 

EPA    Environment Protection Agency 

ERV    Energy Recovery Ventilator 

FD  Finite Difference 

HVAC    Heating, Ventilation and Air-Conditioning; 

IAQ    Indoor Air Quality 

LAMEE   Liquid to Air Membrane Energy Exchanger 

LCEA    Life-Cycle Environmental Assessment 

LCC    Life-Cycle Cost 

MAD    Mean Absolute Difference 

MLP    Multi Layer Perceptron 

MSE    Mean Squared Error 

NN    Neural Network 

PNL    Pacific Northwest Lab 

RAHE    Run-Around Heat recovery Exchanger 

RH    Relative Humidity 

RAMEE   Run-Around Membrane Energy Exchanger 

RMSE    Root Mean Squared Error 

TESS    Thermal Energy System Specialists 

TMY    Typical Meteorological Year 

TNM    Transient Numerical Model 

US    United States 

VAV    Variable Air Volume 

 

English Symbols 

 ̇    Mass flow rate (kg/s) 

A     Membrane surface area in the exchanger (m
2
) 

B    Intercept of the linear trend line 

b{i}    Bias to layer i 

Cair    heat capacity rate of air, [W/°C] 

Cp    Specific heat capacity of air (J/kg.K) 

 



 

xx 

 

Csalt    heat capacity rate of salt solution, [W/°C] 

Cr*     heat capacity rate ratio 

Eff.    Effectiveness 

H    Enthalpy (kJ/kg) 

h    Enthalpy of air (J/kg dry air) 

hfg    Enthalpy of phase change (J/kg) 

H*    Operating Condition Factor  

h    Air side convective heat transfer coefficient [W/m
2
.°C] 

hm    Air side convective mass transfer coefficient [kg/(m
2
.s)] 

iw{1,i}    weights to layer 1 from input layer (input weight) 

K    Kelvin 

k    Membrane heat conductivity [W/(m.°C)] 

km    Membrane mass conductivity (water vapor   

    permeability) [kg/(m.s)] 

Lat.    Latent 

lw{2,1}     weights to layer 2 from layer 1 (layer weight) 

lw{3,2}     weights to layer 3 from layer 2 (layer weight) 

lw’{3,2}     transpose of weights matrix to layer 3 from layer 2 

M    Slope of the linear trend line 

NTU    Number of Heat Transfer Units 

NTUm    Number of Mass Transfer Units 

OC     Operational costs ($US) 

PBP     Payback period (yr) 

Q     Energy transfer via the RAMEE system (W) 

Qsens,rec    Sensible heat recovery (J/s) 

Qlat,rec    Latent energy recovery (J/s)  

r    linear correlation coefficient 

R     Bypass fraction (dimensionless) 

U’     Overall convective mass transfer coefficient (kg/m
2
 s)  

Sen.    Sensible 

T    temperature, [°C] or [F] 

t    time (s) 

th    air channel thickness (m) 

U    overall heat transfer coefficient, [W/(m
2
.°C)] 

Um    overall mass transfer coefficient, [kg/(m
2
.s)] 

W    humidity ratio, [kgv/kga] 

x    volume of salt solution in each exchanger (m
3
) 

xi    LAMEE entrance length [m] 

xi/x0    entrance ratio 

x0    LAMEE length [m] 

y0    LAMEE height [m] 

y0/x0     aspect ratio 
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Greek Symbols 

∆T    the difference between outdoor and indoor air  

    temperature (TIn,S –TIn,E) 

∆Tdiff    the absolute difference between supply side   

    temperature variation predicted by neural   

    network model and finite difference model  

    (        |               |) 

∆Ts    the supply side temperature difference (TIn,S – Tout,S) 

∆W    the difference between outdoor and indoor air humidity 

    ratio (WIn,S –WIn,E) 

∆Wdiff    the absolute difference between supply side humidity 

    ratio variation predicted by neural network model and 

    finite difference model     

    (        |               |) 

∆Ws    the supply side humidity ratio difference (WIn,S – Wout,S) 

δ    Membrane thickness [m] 

ε    Effectiveness (%) 

εl    Latent effectiveness (%) 

εs    Sensible effectiveness (%) 

 

Subscript 

a    air 

air    Refers to the air properties or air side properties 

ave     Average 

C    counter flow 

CC    cross-counter flow 

E    exhaust side 

exh,in    The exhaust air at the inlet of the energy exchanger, 

    i.e., indoor air 

In    inlet 

in     Refers to indoor condition (temperature, humidity ratio 

     or enthalpy) 

l     Latent 

m    moisture 

mem    membrane 

net    value determined by the neural network model 

Out    outlet 

out     Refers to outdoor condition (temperature, humidity  

     ratio or enthalpy) 
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oa    Outdoor ventilation air 

opt     Optimal 

S    supply side 

s     Sensible 

sim    by finite difference simulations 

sol    Refers to the solution properties 

sup    The air supplied to the conditioned space 

sup,in    The supply air at the inlet of the energy exchanger, i.e., 

    outdoor air 

t     Total 

sup,out    The supply air at the outlet of the energy exchanger 

v    water vapor 

w    water 
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CHAPTER 1 

INTRODUCTION 

 

 1.1. An Overview on Energy Recovery in Buildings 

 Energy is one of the crucial concerns for the future of the world. Around 40 

percent of the energy used by humans is consumed in buildings and almost half of 

this amount is used by the Heating Ventilating and Air-Conditioning (HVAC) 

systems of buildings [1.1]. A growing population requires more buildings and more 

energy. At the same time, the demand for a good thermal comfort and better Indoor 

Air Quality (IAQ) for occupants of buildings is changing HVAC standards (e.g. 

ASHRAE std. 55-2010, ASHRAE std. 62.1-2010, ASHRAE std. 90.1 2010) in a way 

that increases the required energy for air conditioning buildings. 

 With new and revised standards and increasing prices of energy, engineers 

have been trying to design and develop energy efficient systems to meet occupant 

comfort and IAQ standards for buildings. One method to save energy in buildings is 

called ‘return air recirculation’. In this method the HVAC system uses a portion of 

the return air to mix with the supply air stream. This method is easy and cheap to 

implement but has two main problems. First, the other portion of the return air that is 

not being used for mixing with the supply air is discharged as exhaust air and all of 

its energy is lost. Second, since the return air may contain some airborne, it does not 

enhance the IAQ, health, and comfort for occupants in the building. 

 Over the last few decades energy recovery from exhaust air has been used in 

devices called Energy Recovery Ventilators (ERVs). ERVs are divided into two 
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main categories: heat recovery ventilators and heat and moisture recovery 

ventilators. Heat recovery ventilators transfer only sensible energy (heat) between 

supply and exhaust air streams using some specific types of heat exchangers (e.g. 

heat pipe and metal flat plate heat exchangers). The main advantage of this method is 

that there is little or no contaminant transfer from exhaust to supply air. In warm 

humid climates heat exchanger devices are being replaced by heat and moisture 

recovery ventilators since researches [1.2,1.3] show that a properly controlled heat 

and moisture exchanger can recover higher amounts of energy. The most commonly 

used heat and moisture exchanger is the ‘energy wheel’ (Figure 1.1) which makes up 

about ¾ of the new building market in North America. The energy wheel is a 

regenerative rotating wheel, comprised of numerous narrow desiccant coated 

channels that can transfer heat and moisture between two adjacent air streams as the 

wheel rotates between the supply and exhaust air flows. The advantages of this 

system are high performance, low cost, simplicity, and the possibility of defining a 

relatively simple control strategy for its optimum operation. The main disadvantages 

of energy wheels are the necessity of having adjacent supply and exhaust ducts, and 

the transfer of a small fraction of contaminants from the exhaust duct to the supply 

duct due to seal leakage and carry over.  

 

Figure 1.1. Energy wheel (from www.venmarces.com) 
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 In this thesis, extensive research has been conducted on a new type of heat 

and moisture ERV, called a Run-Around Membrane Energy Exchanger (RAMEE), 

which does not have the disadvantages of energy wheels. Next section explains the 

principals about the RAMEE since. 

1.2. Run-Around Membrane Energy Exchanger (RAMEE) 

 A Run-Around Membrane Energy Exchanger (RAMEE) is a novel air-to-air 

heat and moisture recovery system that consists of two separate liquid-coupled 

membrane-based energy exchangers, called LAMEEs, which each allow the transfer 

of both heat and water vapor as shown in Figure 1.2. RAMEEs do not need an 

adjacent supply and exhaust air ducting and can be installed for retrofit applications 

where supply and exhaust ducts may not be adjacent. Also for applications in 

buildings with more than one exhaust or supply duct, RAMEEs are easily applicable.  

 
 

Figure 1.2. Schematic illustration of a RAMEE with all main components. 

 

 As is shown in Figure 1.2, each LAMEE in the RAMEE system transfers 

heat and moisture between each air stream and the pumped liquid desiccant salt 

solution flow. Assuming a winter operating condition when the indoor air is warmer 

and more humid than the outdoor air, the RAMEE preconditions the supply air by 

transferring heat and moisture from the exhaust to the supply air flow. During 

Membrane

Exhaust Air Flow

Supply Air FlowLiquid Desiccant Flow

Salt Solution Storage Tank

Heat and 

Moisture

Liquid to Air Membrane Energy Exchanger 

(LAMEE)

Pump
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summer outdoor conditions, the supply air is preconditioned by transferring heat and 

moisture to cooler and dryer exhaust flow.  

1.3. The Importance of Controlling and Modeling the RAMEE System 

 Since the RAMEE is a coupled heat and moisture transfer system, the 

performance of the RAMEE is characterized by two effectiveness values for energy 

transfer, called sensible effectiveness and latent effectiveness for sensible energy and 

phase change energy transfer, respectively. 

 Effectiveness of the RAMEE depends on many parameters including 

operating conditions (outdoor and indoor air temperature and humidity), air flow 

rate, and solution flow rate. In many cases, uncontrolled operation of a RAMEE can 

increase the energy consumption of the HVAC system. For instance when the system 

is operating under a part load condition (the building needs cooling and the outdoor 

air is cool enough (e.g. 16 °C) to overcome internal loads) an uncontrolled RAMEE 

warms up the supply air, then the cooling unit has to cool down the supply air to 

adjust it to set-point temperature that causes a waste of energy. In many similar cases 

heat transfer, moisture transfer, or both may not be desired or heat transfer should be 

minimized and at the same time moisture transfer has to be maximized etc. For such 

conditions, an appropriate control strategy should be determined to maximize the 

RAMEE energy savings. 

 The first step for controlling any system is to realize the system behavior 

under different practical operating conditions. Therefore, representing models are 

required to predict the RAMEE effectivenesses. Some graduate students at Venmar 

CES student research group at the University of Saskatchewan have developed 

numerical models for the steady-state and transient performance of RAMEE [1.4-

1.8].  
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1.4. Thesis Objectives and Overview 

 As mentioned in section 1.3, extensive research has been conducted to model 

and predict RAMEE performance. All the researchers have used experimental or 

numerical approaches (finite difference solutions) for the coupled heat and moisture 

transfer to quantify RAMEE performance. The numerical models are comprehensive 

and suitable for sensitivity studies, but due to their iterative nature, these codes are 

not fast enough to predict the RAMEE performance for some specific applications 

like calculating annual energy savings using transient building simulation tools 

(TRNSYS) and optimization of the RAMEE performance for different operating 

conditions where the system effectiveness for many hours of operation is required. 

 In order to develop a fast model to predict the performance of the RAMEE, a 

Neural Network (NN) approach is implemented in this thesis to map some of the 

inputs of numerical models to the corresponding desired outputs. 

 The objectives of this M.Sc. study are to:  

1. Model the steady-state performance of RAMEE using NN approach over a wide 

range of operating conditions 

2. Model the transient performance of a specific design of RAMEE using NNs for a 

practical transient operating conditions 

 The details of the methods implemented to meet the objectives of this 

research are described in chapter 2 for the steady-state NN model and chapter 3 for 

the transient NN model. Chapter 4 is an example for the application of the model 

presented in chapter 2, which shows the annual energy savings in a health-care 

facility with an optimally controlled RAMEE in its HVAC system. 
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 This thesis is compromised of four manuscripts. As listed below, manuscript 

#1, #2, and #3 are presented in chapter 2, 3, and 4 respectively, while manuscript #4 

which is a similar study to manuscript #3, is attached as Appendix A. 

1. S. Akbari, H.B. Hemingson, D. Beriault, C.J. Simonson, R.W. Besant, 

Application of neural networks to predict the steady state performance of a 

Run-Around Membrane Energy Exchanger, Int. J. Heat Mass Transfer 55 

(2012), pp. 1628–1641. 

2. S. Akbari, C.J. Simonson, R.W. Besant, Application of neural networks to 

predict the transient performance of a Run-Around Membrane Energy 

Exchanger for yearly non-stop operation, Submitted to Int. J. Heat Mass 

Transfer for publication (Mar. 2012). 

3. M. Rasouli, S. Akbari, C.J. Simonson and R.W. Besant. Analysis of a health-

care facility HVAC system equipped with a run-around membrane energy 

exchanger, submitted to Energy and Buildings (Nov. 2010) 

4. M. Rasouli, S. Akbari, H. Hemingson, R.W. Besant and C.J. Simonson. 

2010. Application of a run-around membrane energy exchanger in an office 

building HVAC system, ASHRAE Transactions, 117 (2) (2012), pp. 686-

703. 

 Appendix B is presenting the data needed to reproduce the steady-state and 

transient models presented in chapter 2 and 3. Appendix C covers the computer 

codes developed to optimize the RAMEE performance in chapter 4 and appendix A. 

Appendix D presents the copyright permissions from the publishers of manuscript #1 

and #4 and the co-authors who contributed to manuscripts # 2 and #3.  
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CHAPTER 2 

STEADY STATE PERFORMANCE OF RAMEE 

 

2.1. Overview of Chapter 2 

 This chapter contains manuscript #1, which provides a detailed description of 

the methods applied to develop neural networks (NNs) that predict the steady-state 

performances of the RAMEE over a wide range of affecting parameters. 

 After a literature review, this chapter presents the physical description of the 

RAMEE and introduces the numerical model for the RAMEE. The parameters that 

may affect the performance of the RAMEE are studied in sections 2.4.3 and 2.4.4 

followed by the selected inputs and outputs for the NN models and the description of 

NNs architecture and training process. Finally, numerical and experimental 

validation of the NN models are presented in section 2.8. 

 The required data to train NN models is provided using the latest version of 

steady-state model available in Venmar CES student research group (this version is 

the last version before the EPS 1.3.1). The Neural Network Toolbox of MATLAB
®

 

version 7.10.0 is used to train the data provided by steady-state numerical model. 

The contributions of each author to this research work are as follows: 

Soheil Akbari, M.Sc. student and main author, generated and processed the 

numerical data, trained the networks, developed the figures and tables, and wrote the 

paper. 
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Howard B. Hemingson, M.Sc. student, helped the main author to understand the 

physical problem more profoundly, debugged and supported the numerical model, 

and helped the main author to generate the numerical data. 

David Beriault, M.Sc. student, provided the experimental data to validate the NN 

models (Figure 2.12) 

Carey J. Simonson, and Robert W. Besant, the research group supervisors, 

conceived the research study, read and edited the paper and improved this study with 

their valuable comments.  
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MANUSCRIPT # 1 

Application of neural networks to predict the steady state performance of a 

Run-Around Membrane Energy Exchanger 

Soheil Akbari, Howard B. Hemingson, David Beriault, Carey J. Simonson
*
, Robert 

W. Besant 

2.2. Abstract 

 Modeling the performance characteristics of thermal systems has been a 

research interest for many decades with moisture transfer systems experiencing a 

resurgence over the last decade, especially in heating, ventilating, and air 

conditioning (HVAC) applications. In this study, a Neural Network (NN) model is 

developed to predict the heat and moisture transfer performances (i.e., the sensible 

and latent effectivenesses) of a novel HVAC energy exchanger called the Run-

Around Membrane Energy Exchanger (RAMEE) which is able to transfer both heat 

and moisture between exhaust and supply air streams. The training data set for the 

NN model covers a wide range of design and operating parameters and is produced 

using an experimentally validated finite difference (FD) model. Two separate NNs 

(one for sensible and one for latent energy transfer) each with five inputs and one 

output, are selected to represent the RAMEE. The results from NN models are 

numerically and experimentally validated. The root mean squared error (RMSE) 

between the FD and NN models are 0.05 °C and 2×10
-5

 kgv/kga, indicating 

satisfactory agreement for energy exchange calculations. The paper reports the 

weights and biases to make the results of this study reproducible. These NN models 

are very fast and easy to use therefore, they might be used for design and for 

estimating the annual energy savings in different buildings which use the RAMEE in 

their HVAC system. Additionally, the NN models can be used with optimization 
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algorithms to maximize energy savings and minimize life-cycle costs for a given 

system. 

2.3. Introduction 

 With increasing emphasis on reducing energy consumption, extensive 

research has been done to model heat and energy exchangers. Zhang et al. [2.1] 

studied the conjugate heat and mass transfer in membrane-formed channels for 

different flow configurations using a CFD model. Zhang [2.2] also modeled heat and 

mass transfer in plate-fin enthalpy exchangers and compared different plate and fin 

materials. Several researchers have measured and modeled heat and mass transfer 

characteristics of a rotating regenerative total energy wheel [2.3-2.7]. 

 The use of computational intelligence techniques like neural networks (NNs), 

instead of conventional methods, is sharply increasing, since they have many 

interesting advantages [2.8]. NNs are easy to implement and use. Also a correctly 

designed NN can approximate any complex, continuous, and nonlinear function to a 

pre-specified accuracy and can generalize underlying functions describing a physical 

phenomenon (e.g. the performance function of a thermal and/or moisture transfer 

system).  

 Kalogirou [2.8] discuses various applications of neural networks in energy 

analysis problems. During recent years, many researchers have used neural networks 

to predict the performance of thermal systems using experimental or numerical data 

[2.9-2.14]. Ning and Zaheeruddin [2.15] developed a dynamic neural model to 

determine the optimal control of a variable-air-volume HVAC system in a building. 

 Using numerical simulation methods, Vali et al. [2.16] studied the 

effectiveness of a Run-Around Heat recovery Exchanger (RAHE) system with 

combined counter and cross flow exchangers. They also developed a new 
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effectiveness correlation for counter/cross flow configuration. Fan et al. [2.17] 

developed a finite difference (FD) model to predict the performance of a Run-

Around Membrane Energy Exchanger (RAMEE) system using cross flow 

exchangers for simultaneous heat and moisture transfer for air-to-air energy 

recovery. The transient performance of the RAMEE was developed by Seyed 

Ahmadi et al. [2.18] and a complete study about the steady state performance under 

different outdoor air conditions was presented by Hemingson et al. [2.19, 2.20]. 

 Although a numerical model for performance prediction of counter flow 

RAMEE system exists, it is too computationally intensive to be used by design 

engineers. Also working with this code for performance and energy consumption 

optimization purposes would be even more time consuming. For example, in order to 

maximize annual energy savings in a building using the RAMEE system, the 

optimum performance of the system during every operational hour through the year 

is required. Therefore, having a computationally fast model that relates the operating 

conditions to performance of RAMEE would be very useful.  

 Such a desired correlation would be very complex because the behavior of 

the RAMEE system is non-linear and there are many parameters that affect the 

performance of the RAMEE and each of these vary over wide ranges. Therefore, 

finding correlations with desired accuracy using conventional methods for a RAMEE 

system is likely very difficult or impractical.  

 The purpose of this study is to correlate the performance characteristics (i.e. 

sensible and latent effectivenesses) of a counter flow RAMEE system for a covering 

and practical range of independent parameters that affect the system performance 

using a multi-layer perceptron (MLP) neural network [2.21], trained with a back-

propagation algorithm [2.22]. 
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2.4. Description of RAMEE 

2.4.1. Main Components 

 As can be seen in Figure 2.1, the RAMEE is composed of two exchangers, 

which simultaneously transfer heat and moisture between two air streams using an 

aqueous salt solution as a coupling liquid. For example in HVAC applications during 

winter operating condition, the outdoor air (inlet of supply exchanger) is usually 

cooler and dryer than the indoor air (inlet of exhaust exchanger). During such 

conditions, the RAMEE recovers heat and moisture from the exhaust air and 

transfers this recovered heat and moisture to the supply air. Therefore it saves energy 

and increases the indoor comfort for occupants. 

 

Figure 2.1. Schematic view of RAMEE components and inlet and outlet air conditions. 

 Each exchanger is made up of many air and liquid flow channels, each 

separated by a semi-permeable membrane (Figure 2.2). These membranes allow 

water vapor to transfer between the fluid streams but they prevent liquid transfer 

[2.23]. Such a heat and moisture exchanger is called a Liquid-to-Air Membrane 

Energy Exchanger (LAMEE). An individual LAMEE can have different flow 

configurations. Figure 2.2a and b show counter and cross-counter flow 

configurations respectively. 
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Figure 2.2. More details for structure and operation of a) counter flow LAMEE b) cross-counter 

flow LAMEE. 

The RAMEE system which is studied and modeled in this paper has two identical 

LAMEEs with equal mass flow rates of air. 

2.4.2. Numerical Model 

 A numerical model which solves the governing physical equations for steady-

state coupled heat and mass transfer through the RAMEE system is presented by 

Hemingson et al. [2.19, 2.20]. This model predicts the sensible and latent 

effectivenesses of the RAMEE system defined in equations 2.1 and 2.2 where the 

mass flow rate of supply and exhaust air streams are equal. 

   
   

  
 
            

           
 (2.1) 

   
   

  
 
            

           
 (2.2) 

 Where, ∆TS and ∆WS are the air temperature and humidity ratio difference 

between the inlet and outlet of supply LAMEE, and ∆T and ∆W are the air 
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temperature and humidity ratio difference between the inlets of supply and exhaust 

LAMEEs. ∆T and ∆W can be considered as the driving potentials for heat and 

moisture transfer in RAMEE system. The other symbols are defined in the 

nomenclature. In this study, the results from this numerical model are used to 

develop the NN models. 

2.4.3. Parameters Affecting RAMEE Performance 

 Hemingson et al. [2.19, 2.20] showed that many parameters affect the 

performance of the RAMEE. The purpose of studying the effect of these parameters 

is to determine the importance of each parameter. It helps us to simplify the 

predicting model by eliminating the parameters that are not important. Here we 

categorize them into two groups, first design parameters and second operating 

parameters. 

2.4.3.1. Design Parameters 

 There are four important dimensionless design parameters that affect the 

performance of the RAMEE as listed below. 

    
  

    
 

  

 ̇     
 (2.3) 

     
   

 ̇ 
 (2.4) 

             
  

  
 (2.5) 

               
  

  
 (2.6) 

where NTU is the number of heat transfer units of each LAMEE and NTUm is the 

number of mass transfer units. 
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The aspect ratio is the ratio of the height to the length of the LAMEEs and the 

entrance ratio is the ratio of solution flow entrance length to the length of LAMEE 

(Figure 2.2). 

2.4.3.2. Operating Parameters 

 Operating parameters are parameters that may change during the operation of 

a RAMEE in a building. These parameters include the temperature and humidity 

ratio of the outdoor and indoor air (Figure 2.1) and the heat capacity rate ratio, Cr*, 

as defined in equation 2.7. 

    
    

  
 (2.7) 

Ca and Csol are respectively heat capacity rate of air and salt solution flows. Cr* is an 

operating parameter because the solution flow rate may be changed to maximize or 

minimize heat and moisture transfer depending on the building needs [2.24]. 

2.4.4. Effects of Design Parameters 

2.4.4.1. Effect of NTU and NTUm 

 According to equations 2.3 and 2.4 the ratio of NTUm and NTU would be 

    

   
      

  

 
 (2.8) 

where Cp,a is the thermal capacity of air and can be assumed as a constant value. The 

ratio of Um and U is equal to 
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]
   (2.9) 

where hair and hm,air are air-side convective heat and moisture transfer coefficients 

respectively. For the practical operation range of RAMEE, the air and salt solution 

flow are laminar and mainly fully developed therefore the convective heat and mass 

transfer coefficients for a given design are constant since the Nusselt number is 
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constant and equal to 8.24 [2.25]. Thus, hair and hm,air are only a function of air 

channel thickness, the thickness of membrane, δ, and the heat conductivity and mass 

conductivity of the membrane, k and km. Therefore, for a given membrane and air 

channel thickness the ratio of Um and U is constant. It means that NTUm and NTU for 

a given LAMEE are always proportional therefore, only one of these design 

parameters needs to be known or used as input to the NN model. In this paper NTU 

will be used as an input parameter for the NN model and NTUm/NTU will be constant 

and equal to 0.26 based on the specifications of the LAMEEs presented in table 2.1. 

Table 2.1. Membrane and air gap properties of each LAMEE. 

Property Value 

LAMEE Dimensions 

Length 1800 [mm] 

Width 200 [mm] 

Entrance Length 76 [mm] 

Channel Thickness 

Air 4.4 [mm] 

Solution 2.7 [mm] 

Membrane Properties 

Thickness 0.2 [mm] 

Thermal Conductivity 0.334 [W/(m·K)] 

Water Vapour Permeability 1.66 x 10
-6

 [kg/(m·s)] 

 

 Aspect and entrance ratios affect the solution flow distribution through 

counter-cross flow LAMEEs therefore they change the performance of counter-cross 

flow RAMEE systems only. The effect of aspect and entrance ratios on the 

performance of RAMEE is presented in section 2.4.2. 

2.4.4.2. Effect of Aspect and Entrance Ratios 

 As was discussed in the previous section, entrance and aspect ratios can 

change the performance of the RAMEE by changing the solution flow distribution. 

In order to quantify the effect of these parameters the simulated effectiveness values 

for a cross-counter flow RAMEE using different entrance and aspect ratios are 

compared to effectiveness values for a counter flow RAMEE in Figure 2.3. This 
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sensitivity study is based on the system performance at different outdoor air 

conditions defined by AHRI summer and winter test conditions [2.26]. 

 

Figure 2.3. RAMEE sensible and latent effectivenesses with two cross-counter flow LAMEEs 

with different entrance ratio ((a) and (b)) and aspect ratio ((c) and (d)). The numerical data is 

generated with NTU=10, and (a) Cr*=2.5, aspect ratio=0.1, and AHRI summer condition, (b) 

Cr*=1.5, aspect ratio=0.1 and AHRI winter condition, (c) Cr*=2.5, entrance ratio=0.05 and 

AHRI summer condition, and (d) Cr*=1.5, entrance ratio=0.05 and AHRI winter condition. The 

effectivenesses for the RAMEE with two pure counter flow LAMEEs are included for 

comparison. 

 According to the sensitivity study in Figure 2.3, it can be concluded that the 

sensible and latent effectiveness values for counter flow RAMEE can be used to 

predict the performance of cross-counter flow RAMEE systems of sufficiently small 

aspect and entrance ratios i.e. for entrance ratios less than 0.1 (when the aspect ratio 

is 0.1) the difference between cross-counter and counter flow RAMEE systems for 

both sensible and latent effectiveness values is less than 5%. Also for aspect ratios 

less than 0.2 (when the entrance ratio is 0.05) this difference is not more than 1%. 

The NN models presented in this study are based on counter flow numerical model 

therefore the entrance and aspect ratios are not included in the NN model. Although, 
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(d)(c)
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this sensitivity study shows that the NN model can predict the effectivenesses for 

cross-counter flow RAMEEs of sufficiently small aspect and entrance ratios. 

2.5. Back-Propagation Algorithm 

  Neural networks are a non-algorithmic modeling method and can learn based 

on examples. Among various types of NNs, Multi Layer Perceptrons [2.21], using 

back-propagation (BP) [2.22] method, are being widely used to solve many 

engineering modeling problems [2.9-2.14]. The main idea of the back-propagation 

method is to update the matrices of weights and biases based on the error between 

desired output values (targets) and NN outputs. Different error functions can be 

applied to achieve a neural model of desired accuracy. In order to simply implement 

the back-propagation algorithm, equation 2.10 can be considered. 

           (2.10) 

where Fn is the current weights and biases matrix and ∆F is the update matrix which 

mainly depends on the error gradient vector and the type of training and performance 

functions. Reference [2.22] provides a more detailed description about the BP 

method. 

 One of the most popular applications of NNs in engineering is called function 

approximation. In this study the BP algorithm will be applied to approximate the 

underlying function describing the RAMEE sensible and latent effectivenesses. To 

achieve this, the inputs and outputs of the neural model have to be selected then a 

training data set including inputs and corresponding outputs is required. 

2.6. Neural Model, Inputs and Outputs, and Data Generation Process 

 The training data set used in this study is provided using the FD model 

presented by Hemingson [2.20]. The training data set has a key role in the training 
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process and should have two important properties. First, the inputs should include all 

the parameters which affect the performance of the system. Second, every input 

parameter should cover a practical range with reasonable increments because the 

number of training data points depends on both the range of input parameters and the 

size of increments. Smaller increments provide a higher accuracy but require more 

training data. Therefore it is important to choose reasonable increments to achieve 

acceptable accuracy and training time. 

 In order to determine a practical range with reasonable increments Figure 2.4 

was plotted. It shows that the slope of the effectiveness-Cr* curves is decreasing 

when Cr* passes the peak Cr* value. This slope is very small for Cr* values around 

5. Therefore the model was limited to Cr* values less than 5. Also with the increase 

in NTU the effectiveness curves tend to be very similar. It shows that it is not 

necessary to include higher NTUs in the model. According to Figure 2.4 it can be 

concluded that the ranges for NTU and Cr* are completely covering for the purpose 

of this study because the variations in effectivenesses are very slight for NTUs and 

Cr*s higher than 14 and 5. The increment of 0.2 for Cr* is shown in the curves with 

NTU=1. As can be observed the points are quite close therefore increments smaller 

than 0.2 is not necessary. 
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Figure 2.4. RAMEE (a) sensible and (b) latent effectivenesses, for different NTUs, versus Cr* for 

AHRI summer condition presenting the training data set range and increments. 

 As was mentioned before, the design parameters affecting the RAMEE 

performance are NTU, NTUm, aspect ratio, and entrance ratio. The results of the 

sensitivity study (section 2.4.2) showed that the difference between effectivnesses of 

counter flow RAMEE and cross-counter flow one of small aspect and entrance ratios 

is negligible. Therefore, these two geometrical parameters which describe the 

geometry of counter-cross flow LAMEEs were not assumed as the inputs of neural 

model and the neural model was developed based on counter flow numerical model. 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6

Se
n

si
b

le
 E

ff
e

ct
iv

e
n

e
ss

 

Cr* 

NTU=14

NTU=12

NTU=10

NTU=8

NTU=6

NTU=4

NTU=2

NTU=1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6

La
te

n
t 

Ef
fe

ct
iv

e
n

e
ss

 

Cr* 

NTU=14

NTU=12

NTU=10

NTU=8

NTU=6

NTU=4

NTU=2

NTU=1



23 

 

Also, as was discussed in section 2.4.1, NTUm and NTU are proportional so we only 

used NTU as the neural network model input. Table 2.2, shows the range and 

increment values for NTU as a design parameter and Cr*as an operating parameter. 

Table 2.2. The range and increment values for NTU, Cr*, and indoor humidity ratio used to 

provide the training data set. 

Input Parameter Minimum Value Maximum Value Increment 

NTU 1 15 2 

Cr* 0.4 5 0.2 

WIn,E 0 0.012 kgv/kga 0.002 kgv/kga 

 

 In addition to NTU and Cr*, the ranges and increments for the other effecting 

parameters have to be included. Since the variations in indoor temperature are 

usually smaller than ±2°C, the indoor temperature is assumed to be constant and 

equal to 23°C in this study (based on the average of ASHRAE winter and summer 

indoor comfort temperature [2.27]). The main advantage of this assumption is that it 

decreases the size of training data set and subsequently training process time. The 

validity of this assumption will be verified in results and discussion section. 

 Although indoor temperature is almost constant and will be controlled in 

buildings, the indoor humidity is often free-floating. Furthermore, according to 

ASHRAE summer and winter indoor comfort zones [2.27, 2.28], the humidity ratio 

of indoor air (Figure 2.1, WIn,E), ranges from 0 to 0.012 kgv/kga. In developing the 

training set, the indoor humidity ratio was varied between 0 to 0.012 kgv/kga with the 

increment of 0.002 kgv/kga. 

 Finally, practical values for the other operating parameters (outdoor 

temperature, TIn,S, and outdoor humidity ratio, WIn,S) that represent different outdoor 

operating conditions for various climates throughout the year should be obtained.  In 

Figure 2.5, circles show the outdoor operating cases on the psychometric chart used 

to provide the training data set for NN model. As is depicted in Figure 2.5, these 110 



24 

 

points range from -16 to 50 °C and fall between the aqueous salt solution (Lithium 

Bromide) saturation line [2.29] and the air saturation line. 

 

 

Figure 2.5. Outdoor temperature and humidity ratio conditions on the psychometric chart, used 

to provide the training data set. 

 In order to make sure that the cases presented in Figure 2.5 cover the outdoor 

operating conditions for different climates, these operating points are compared with 

the yearly hour by hour (8760 hr) outdoor temperature and humidity conditions for 

four cities of different climates based on Typical Meteorological Year [2.30] (Figure 

2.6). Saskatoon, Chicago, Phoenix, and Miami are selected for comparison as they 

represent cold and dry, cold and humid, hot and dry, and hot and humid climates 

respectively [2.31]. 
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Figure 2.6. Outdoor conditions for different cities compared to the outdoor conditions used in 

the training data set. 

 As can be seen in Figure 2.6, the selected range of outdoor conditions for 

training the NN model almost covers all outdoor temperature and humidity ratio 

conditions for the different climates except for operating hours of temperatures 

below -16 °C. In very cold climates like Chicago and Saskatoon only 1% and 11% of 

the hours are colder than -16 °C respectively. Therefore the applied outdoor 

condition to develop the NN model sufficiently covers the different climates.  

 Using these ranges for input data and their corresponding increments a data 

set of approximately 140,000 points, which represents and covers the real physical 

problem was provided to train the NN model. 

 According to what was discussed in section 2 and section 4, the inputs for the 

NN model would be NTU, Cr*, ∆T,  WIn,S, and WIn,E. In this study instead of using 

sensible and latent effectivenesses as outputs of NN models, for simplicity ∆TS and 

∆WS were used which can be easily used to calculate sensible and latent 
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effectivenesses using equations 2.1 and 2.2. The acceptable output range for sensible 

and latent networks are ∆Ts = -32.9 to 24.8 °C and ∆Ws = -0.008 to 0.0155 kgv/kga. 

2.7. NN Architecture and Training Process 

2.7.1. NN Architecture 

 Two separate Multi Layer Perceptron feed-forward networks using the well-

known Levenberg-Marquardt [2.32-2.34] training algorithm were used to map the 

inputs of the network (NTU, Cr*, ∆T,  WIn,S, and WIn,E) to their corresponding targets 

(∆TS or ∆WS). Figure 2.7 shows a simplified schematic view of the NN model which 

has two hidden layers and one output layer. In this figure, for simplicity, the biases 

are not shown. The network with an output of ∆TS is called the sensible network and 

the other network (with ∆WS as output) is called the latent network. For more 

information about the mathematical model of neural networks a block diagram for a 

single neuron is included in the appendix B1. 

 

Figure 2.7. Architecture of a fully connected three layer neural network with five inputs, m 

neurons in the first hidden layer, n neurons in the second hidden layer, and one neuron in the 

output layer which might be written as a 5-m-n-1 network.  

 It would be possible to develop a single neural model to predict both ∆TS and 

∆WS at once. But defining a network with multiple outputs may decrease the 
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accuracy of the results because the hidden neurons would have difficulty to model at 

least two functions at the same time. Therefore it is very common to train separate 

networks for each output, then to combine them into a package and run them as a 

unit. This is the method used in this study. We have developed two different models 

that target the sensible and latent performance of RAMEE separately. The training 

data set is the same for both sensible and latent networks and it represents a coupled 

heat and moisture transfer action. For example the sensible network presents the 

sensible performance of a system that transfers heat and moisture at the same time. It 

is not a model for sensible heat transfer of a heat exchanger.  

 Generally speaking, there is no proven method to find the optimum neural 

model (the simplest model with the highest accuracy) for different problems. Thus, 

for every specific problem a pre-defined desired accuracy would be a reasonable 

stopping criterion. Finding a neural model to represent a real and unique problem is 

basically a trial and error process and depends on the type and complexity of the 

problem as well as the experience of the trainer. To reach the desired accuracy, 

different topologies for the neural models were tried. 

2.7.2. Training process 

 To improve the generalization of the neural model, the early stopping method 

[2.35] was applied. In this method, the generated data set is divided into three 

subsets. The first subset is called the training subset, which is used for back-

propagating the errors and updating weights and biases during the training session. 

The second subset is called the validating set which is monitored during the training 

session by the early stopping method to prevent the network from over-fitting the 

training subset. The third subset is called the test set. The test set is the “unseen” by 

the NN because it is not used for either updating weights or stopping the training. 
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The error of the test set is very important because it is monitored by the trainer to 

make sure that the accuracy of network is acceptable for unseen data. This error 

facilitates the comparison of different neural models for a specific problem and 

allows the researcher to choose the most accurate one. 

 In this paper, the generated data set was divided into three subsets (training, 

validating, and testing). Different dividing ratios were applied to the data set to get 

the best results. In this study, the tried NN models were not very sensitive to slight 

variations in dividing ratios (due to the large number of data points) although, the 

lowest errors were reached using training subset, 70%, validating, 15 %, and testing, 

15% of the whole generated data set. 

 In order to make the computations easier all input and corresponding outputs 

were normalized to [-1,1] range using a simple linear function  which, for every 

parameter, sets the minimum value as -1 and maximum value as +1 and linearly 

maps other values between -1 and +1. 

 After dividing and normalizing the training data set, different architectures 

for sensible and latent networks were applied and the errors were compared to each 

other. The nonlinearity and complexity of the problem didn’t let the authors to use 

linear neurons in hidden layers since the networks with linear hidden neurons caused 

much bigger errors than the desired values. Also networks with one hidden layer 

failed to provide the desired accuracy. Thus, networks with more hidden layers (2 or 

3 layers) of different number of neurons in each layer were trained and tested. 

Finally a 5-10-10-1 model for both sensible and latent networks was found as an 

appropriate architecture. Table 2.3 shows the training set error compared to the test 

set error for different architectures of the sensible network. These values are the best 

results of around 10 runs for each architecture. 
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Table 2.3. Result of linear regression along with MSE for different architectures for training 

and test sets. M and B are the slope and intercept of the linear trend line respectively. R and 

MSE are the correlation coefficient and Mean Squared Error between the NN and FD model 

results respectively. 

No. Architecture 

For Sensible 

Net. 

Training Set Error Test Set Error 

M B r MSE 

(°C)
2 

M B r MSE 

(°C)
2 

1 5-20-1 0.908 0.483 0.928 1.1136 0.909 0.491 0.925 1.1541 

2 5-40-1 0.962 0.237 0.957 0.9135 0.955 0.244 0.944 0.9732 

3 5-10-10-1 1.000 0.001 0.999 0.0018 1.000 0.002 0.999 0.0021 

4 5-16-14-1 1.000 0.001 1.000 0.0007 0.999 0.001 0.998 0.0029 

5 5-8-12-8-1 0.997 0.003 0.993 0.0082 0.995 0.004 0.988 0.0088 

 

 Note that in Table 2.3, M and B are the slope and intercept of the linear trend 

line respectively and ‘r’ is the correlation coefficient. These three parameters show 

the average accuracy of the different architectures while the Mean Squared Error 

(MSE) shows the scatter of the prediction. Architectures number 1 and 2 have only 

one hidden layer and their accuracy is lower than number 3 and 4 which have two 

hidden layers. Number 5 shows higher errors, although it has three hidden layers. 

Number 4 shows higher accuracy than number 3 on the training set while it has 

higher error for the test set. Therefore network number 3 is proposed as the one with 

preferred architecture. 

 Another important parameter in determining the configuration of a neural 

network is the type of the transfer functions of its neurons. In this study different 

common transfer functions for hidden and output layers were applied. The best 

obtained combination was the hyperbolic tangent function (see the appendix B1) for 

hidden layers and linear function for output layer. In order to make the results of this 

study reproducible, the architecture and properties of both sensible and latent models 

along with matrices of weights and biases are reported in appendix B2. 

 After completely defining and presenting the developed NN models the 

accuracy of their predictions is discussed in the next section and the results from 

these models are verified. 
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2.8. Verification and Application of the NN Model 

2.8.1. Accuracy of the NN Models 

 To make sure that the performances of the sensible and latent NN models are 

acceptable for a complete range of unseen data, an unseen test data set of 9000 data 

points were created using the FD model. The 30 outdoor temperature and humidity 

ratio conditions used to create the new unseen test set are shown in Figure 2.8 along 

with the condition used for the training data set. 

 

Figure 2.8. Outdoor operating conditions used to create the unseen test set compared to 

conditions used to create the training data set. 

 As can be seen in Figure 2.8, the unseen data set covers a wide range of 

temperatures and relative humidity conditions. Also the locations of the squares 

(unseen points) are chosen in a way that are between circles (training points) and not 

too close to them. 

 For every outdoor condition (TIn,s and WIn,s) other input parameters (NTU, 

Cr*, and WIn,E) were systematically changed in a way that almost cover all possible 

input cases. For this purpose, five values of NTU (ranging from 3 to 15 in increments 
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of 3), five values of Cr*, (ranging from 1 to 5 in increments of 1), two values of TIn,E 

(21 and 25 °C), and six values of WIn,E (ranging from 0.001 to 0.011 kgv/kga in 

increments of 0.002 kgv/kga) were applied to get the unseen data set. Therefore, with 

30 outdoor conditions, 5 NTUs, 5 Cr*s, 2 TIn,E, and 6 WIn,E, the unseen set has a total 

of 9000 points. 

 This test set, that has quite different input vectors than the test set used in 

training process, was used to evaluate the performance of the neural models. Figure 

2.9 presents a frequency distribution histogram showing the difference between the 

NN and the FD model where the terms ∆Tdiff and ∆Wdiff are defined by equations 2.11 

and 2.12. 

        |               | (2.11) 

        |               | (2.12) 
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Figure 2.9. Frequency of absolute difference between predicted values by NN model and 

numerically simulated values for (a) the sensible NN (b) the NN model. 

 In Figure 2.9, the absolute difference between predicted and simulated supply 

side temperature variations (∆Tdiff), for 94.5% of the 9000 test points is less than 0.1 

°C which gives a desired accuracy for the purpose of this study. The absolute 

humidity ratio difference (∆Wdiff), for 97.3% of test cases is less than 5×10
-5

 kgv/kga. 
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 For the unseen 9000-point test set, table 2.4 shows four different error types 

that all verify a very good agreement between the results from NN model and FD 

model outputs. 

Table 2.4. Error values between the results from NN model and FD model outputs for both 

sensible and latent networks tested using 9000 test points. 

Error Type 
Error Value For 

Sensible NN Model 
Error Type 

Error Value For 

Latent NN Model 

Max. of ∆Tdiff 0.49 °C Max. of ∆Wdiff 1.2 × 10
-4

 kgv/kga 

MSE 0.0026 (°C)
 2 MSE 3.92 × 10

-10
 (kgv/kga)

2
 

RMSE 0.05 °C RMSE 2 × 10
-5

 kgv/kga 

Mean ∆Tdiff = 

∑ (      ) 
    
   

    
 

0.03 °C 
Mean ∆Wdiff = 

∑ (      ) 
    
   

    
 

1.4 × 10
-5

 kgv/kga 

 

 According to the high accuracy of the results, assuming constant indoor 

temperature (TIn,E = 23°C) to provide the training data set is valid. Because the 

models were tested using a data set of two different indoor temperatures (21 and 25 

°C) and the results were acceptable. On the other hand, assuming constant indoor 

temperature helped to shrink the training data set and subsequently decrease the 

training time. 

2.8.2. Comparing the NN and FD Models for Different Operating Condition 

Factors 

 After making sure about the accuracy of the NN model in previous section, it 

is interesting to compare NN model outputs with FD model results for some sample 

cases. In order to do this comparison Figure 2.10 and 2.11 are plotted. In these 

figures dashed lines show the results from NN model while solid ones are 

representative of the FD model outputs. 
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Fig. 2.10. Comparison between numerical and NN model effectivenesses with NTU=10 for a) 

AHRI summer condition. b) AHRI winter condition. 

 

Fig. 2.11. Comparison between numerical and NN model effectivenesses with NTU=10 for (a) 

H*=7. (b) H*=-0.4. 

 Figure 2.10 shows a very good agreement between the NN model and 

simulation results for NTU=10, variable Cr* between 0.4 and 5, and AHRI summer 

and winter operating conditions. In this figure, a usual trend for variation of 

effectivenesses with Cr* is shown. The sensible and latent effectivenesses increase 

with Cr* and reach a maximum value then slightly decrease. This trend depends on 

the operating condition. 

 Equation 2.13 defines a factor called operating condition factor [2.19,2.20] 

which is the ratio of latent to sensible energy differences between the indoor and 

outdoor air. 
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 (2.13) 

 According to equation 2.13, outdoor air conditions that are warmer and more 

humid or cooler and drier than the indoor condition have a positive H* value and all 

other conditions have a negative H* value. Positive values for H* mean that the 

driving potentials for heat and moisture transfer are in the same direction (e.g. both 

heat and moisture transfer flow are from supply air to exhaust air when the supply is 

warmer and more humid than the exhaust air) while the negative H* values mean 

that the driving potentials for heat and moisture transfer are in the opposite direction. 

The behaviour of RAMEE is very different when H* is positive than when H* is 

negative as documented and explained in references [2.19] and [2.20]. Figure 2.11 

shows a comparison between simulated and network results for two different 

operating condition factors. 

 Figure 2.11a presents good agreement for H*=7 (i.e. latent to sensible 

enthalpy difference between indoor and outdoor air) where the sensible effectiveness 

has an unusual trend (see Figure 2.12a), and Figure 2.11b is for H*= -0.4 with an 

unusual trend for latent effectiveness. This figure implies that NN models show good 

agreement in both trend and value over different operating condition factors. 

2.8.3. Experimental Validation 

 The experimental results developed by Beriault [2.36] are used to validate the 

results from the NN models. An extreme experimental case with H*=-0.68 is chosen 

to test the ability of NN models in predicting the behaviour of the RAMEE. The 

experimental results, consisting of some measurements taken at constant NTU and 

H* but different Cr*s, were produced by a counter/cross flow RAMEE system with 

aspect and entrance ratios of 0.25 and 0.05. Figure 2.12 shows a high degree of 
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scatter for the experimental results and very big experimental uncertainties due to 

small differences between humidity ratios and temperatures of two air flows. 

 

Fig. 2.12. Experimental results for NTU=17 and H*=-0.68 compared to a) sensible NN model b) 

latent NN model. 

 The scatter and deviation from NN results can result from many reasons like 

flow maldistribution in the channels, salt solution leakage from the liquid channels, 

deformation of the channels and the membranes [2.37], and heat transfer between the 

system and the environment [2.38]. Table 2.5 contains dimensions of the exchangers 

and the membrane properties of the Beriault’s LAMEE prototype. 
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 Detailed information about the experimental set-up, and testing condition and 

procedure is presented in [2.36]. 

Table 2.5. Specifications of Beriault’s prototype used to develop the experimental validation 

data points. 

Property Value 

LAMEE Dimensions 

Length 1220 [mm] 

Width 305 [mm] 

Entrance Length 64 [mm] 

Channel Thickness 

Air 5.4 [mm] 

Solution 2.6 [mm] 

Membrane Properties 

Thickness 0.5 [mm] 

Thermal Conductivity 0.334 [W/(m·K)] 

Water Vapour Permeability 3.4 x 10
-6

 [kg/(m·s)] 

 

 Although an extreme operating condition (H*=-0.68 means an opposite 

direction in heat and moister transfer with small temperature and humidity ratio 

differences [2.20]) was chosen to experimentally validate the NN results (membrane 

water vapour permeability, and air and solution thicknesses of Beriault’s model are 

slightly different from the values were used to provide the training data set but 

NTUm/NTU value for these two prototypes are equal to 0.26), a reasonable agreement 

for both sensible and latent effectivenesses can be seen in Figure 2.12. In this figure 

trends for NN model and experimental results are similar and the values are in 

agreement within the uncertainty bounds. 

2.8.4. Application of the NN Model 

 Generally speaking, NNs can simply interpolate any new pattern that falls in 

the domain of input parameters. Unlike the FD model, the NN models predict the 

sensible and latent performance of the RAMEE system at a very high speed due to 

their non-iterative data processing (The NN models are approximately 10
7
 times 

faster than the FD model). For example the NNs presented in this paper take less 
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than one second to produce the results for 8760 points (i.e. hourly effectiveness 

values for one year) using a common Pentium desktop, while the FD model takes a 

few days to produce the same data.  

 One of the most important applications of the NN models is to predict annual 

energy savings by the RAMEE. The definition of the optimal system performance 

for the RAMEE, operating under different outdoor and indoor conditions, is 

developed by Rasouli et al. [2.39]. This definition can vary depending on building 

demand. For example in the hours that the building needs sensible heating (i.e. only 

heat transfer from exhaust air to supply air is important and moisture transfer does 

not matter) the optimum performance is to maximize the sensible effectiveness of the 

RAMEE. As is discussed in previous sections (see Figs. 2.10 and 2.11) the sensible 

or latent effectiveness of the system can be maximized or minimized changing the 

Cr* (or salt solution flow rate). Using an optimization algorithm applied to the 

neural network models, the optimum effectiveness values for RAMEE under 

different operating conditions are obtained. These optimum values are used for 

TRNSYS computer simulation of the RAMEE system when operating in an office 

building in four different climates to estimate the annual savings by RAMEE [2.39]. 

The results show up to 43% heating energy saving in cold climates, and up to 15% 

cooling energy saving in hot climates. The same analysis for the application of a 

RAMEE system in the HVAC system of a hospital shows even more savings [2.40]. 

The optimized RAMEE saves the annual heating energy by 58% to 66% in cold 

climates, and the annual cooling energy by 10% to 18% in hot climates. The 

RAMEE can also downsize the heating system by 45% in cold climates, and the 

cooling system by 25% in hot climates [2.40]. 
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2.9. Conclusions 

 In this study, sensible and latent effectiveness of a Run-Around Membrane 

Energy Exchanger (RAMEE) were predicted using two separate neural network 

(NN) models. A training data set of approximately 140,000 points, provided using a 

Finite Difference (FD) model, was subjected to a back-propagation algorithm to 

minimize the error between the outputs of the FD model and the NN. Finally, a 5-10-

10-1 configuration was concluded to result in a NN model of satisfactory accuracy 

for both sensible and latent energy transfer in the RAMEE. 

 The ability of the trained NN models to predict the effectiveness of the 

RAMEE was double checked numerically and experimentally. A completely unseen 

test set of 9000 data points which covers a wide range of parameters (i.e. NTU from 

1 to 15, Cr* from 0.4 to 5, and outdoor and indoor conditions covering different 

climates) was used to test the accuracy of the NN models. The root mean squared 

error (RMSE) and average absolute error between the results from FD and NN 

models were 0.05 °C and 0.03 °C for the sensible NN model and 2×10
-5

 kgv/kga and 

1.4×10
-5

 kgv/kga for the latent neural network. Also the results from NN model show 

a reasonable agreement with experimental data. 

Such a fast and non-iterative mathematical model can be used as a computational 

component in commercial building energy simulation packages to estimate the 

possible annual energy savings using a RAMEE [2.39]. Also the NN models can be 

used to find the optimum design or operating parameters (NTU and Cr*) of RAMEE 

for various outdoor and indoor air conditions. 
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CHAPTER 3 

TRANSIENT PERFORMANCE OF RAMEE SYSTEM 

 

3.1. Overview of Chapter 3 

 After developing the steady-state model described in Chapter 2, it was 

decided to modify the NN model to predict the transient performance of RAMEE. In 

addition to all the parameters that affect the steady-state performance of the 

RAMEE, the effects of parameters that might play a role in transient behavior of the 

system were studied individually. Sensitivity studies showed that the problem can be 

simplified to achieve a very fast model to predict the transient performance of a 

given design of RAMEE with an acceptable accuracy. The general approach to 

model the transient behavior of a RAMEE system in this chapter is very similar to 

the previous chapter. 

 Version 1.3.1 of the EPS code was used to provide the required training data 

set. This data was processed using the Neural Network Toolbox of MATLAB
®

 

version 7.10.0. 

The contributions of each author to this research work are as follows: 
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trained the networks, developed the figures and tables, and wrote the paper. 

Carey J. Simonson, and Robert W. Besant, the research group supervisors, 

conceived the research study, read and edited the paper and improved this study with 

their valuable comments.  
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MANUSCRIPT #2 

Application of neural networks to predict the transient performance of a Run-

Around Membrane Energy Exchanger for yearly non-stop operation 

Soheil Akbari, Carey J. Simonson, Robert W. Besant 

 

3.2. Abstract 

 Application of soft computing methods (i.e. neural networks and genetic 

algorithms) for modeling and controlling the dynamic and transient behavior of 

systems has been increasing during the last decade. In this study, a Neural Network 

(NN) model is developed to predict the transient heat and moisture transfer 

performances (i.e., the sensible and latent effectivenesses) of a novel HVAC energy 

exchanger, called the Run-Around Membrane Energy Exchanger (RAMEE), which 

is able to transfer both heat and moisture between exhaust and supply air streams. 

The training data set for the NN model covers a wide range of outdoor conditions 

and system parameters and is produced using a Transient Numerical Model (TNM) 

that has been experimentally validated for some transient applications. Two separate 

NNs (one for sensible and one for latent energy transfer) each with 12 inputs and 1 

output, are selected to represent the RAMEE. The ability of NN models to predict 

the performance of a given RAMEE design in different climates is numerically 

validated. The mean absolute difference (MAD) between the results of TNM and NN 

models for different locations are 0.5 °C for the sensible model and 0.2 gv/kga for the 

latent model, which indicates satisfactory agreement for energy exchange 

calculations. These NN models are very fast and easy to use therefore, they might be 

used for design purposes or estimating the annual energy savings in different 

buildings with continuous operation and a RAMEE in their HVAC system. 
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3.3. Introduction 

 The use of computational intelligence techniques like neural networks (NNs), 

instead of conventional simulation methods, is increasing since they have many 

interesting advantages [3.1]. NNs are easy to implement and use. Also a correctly 

designed NN can approximate any complex, continuous, and nonlinear function to a 

pre-specified accuracy and can generalize underlying functions describing a physical 

phenomenon (e.g. the performance function of a heat and/or moisture transfer 

system). Kalogirou [3.1] discuses various applications of neural networks in energy 

analysis problems. Tan et al. [3.2] studied the thermal performance of a compact fin-

tube heat exchanger using a neural network model. Xie et al. [3.3] developed a 

neural network with experimental data to model heat transfer from shell-and-tube 

heat exchangers. Many other researchers have used neural networks to predict the 

performance of thermal systems using experimental or numerical data [3.4-3.8]. 

 Beside modeling different thermal systems using NNs, extensive research has 

been conducted to model heat and moisture exchanger systems. Simonson et al. 

developed the dimensionless parameters for air to air regenerative energy wheels to 

find the performance correlations [3.9-3.11]. Zhang [3.12] studied heat and mass 

transfer in hollow fiber membrane contactors for liquid desiccant air dehumidifiers 

analytically. Bergero et al. [3.13] numerically investigated the steady state 

performance of a hybrid air conditioning system working with a vapour compression 

inverse cycle combined with an air dehumidification system. Using numerical 

simulation methods, Vali et al. [3.14] studied the effectiveness of a Run-Around 

Heat Recovery Exchanger system with combined counter and cross flow exchangers. 

They also developed a new effectiveness correlation for counter/cross flow 

configuration. Fan et al. [3.16] developed a finite difference (FD) model to predict 
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the performance of a Run-Around Membrane Energy Exchanger (RAMEE) system 

using cross flow exchangers for simultaneous heat and moisture transfer for air-to-air 

energy recovery. The transient performance of the RAMEE was numerically 

modeled by Seyed Ahmadi et al. [3.16,3.17] and it was experimentally investigated 

by Erb et al. [3.18]. A comprehensive numerical study on the steady state 

performance under different outdoor air conditions was presented by Hemingson et 

al. [3.19,3.20]. Akbari et al. [3.21] developed a neural network to predict the steady 

state performance of a RAMEE system under different design and operating 

parameters. 

 Although a numerical model for the transient performance prediction of 

counter flow RAMEE system exists, it is computationally too intensive to be used 

for some applications. For example, in order to estimate annual energy savings in a 

building using the RAMEE system, the transient performance of the system during 

every operational hour through the year is required. Therefore, having a correlation 

or a computationally fast model that relates the operating conditions to performance 

of RAMEE would be necessary. 

 The purpose of this study is to present a new mathematical model to correlate 

the transient performance (i.e. sensible and latent effectivenesses) of a counter flow 

RAMEE system for a practical range of independent parameters. For this purpose, a 

Multi-Layer Perceptron (MLP) neural network [3.22] was trained with a back-

propagation (BP) algorithm [3.23]. 

3.4. Description of RAMEE 

3.4.1. Main Components 

 As can be seen in Figure 3.1A, the RAMEE is composed of two exchangers, 

which simultaneously transfer heat and moisture between two air streams using an 
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aqueous salt solution as a coupling liquid. An example to show how the RAMEE can 

be beneficial in HVAC applications during winter operating condition which the 

outdoor air (inlet of supply exchanger) is usually cooler and dryer than the indoor air 

(inlet of exhaust exchanger). During such conditions, the RAMEE recovers heat and 

moisture from the exhaust air and transfers this recovered heat and moisture to the 

supply air. Therefore it saves energy and increases the indoor comfort for occupants. 

Similarly, the RAMEE reduces energy consumption in the summer by cooling and 

drying the hot and humid outdoor ventilation air being supplied to a building by 

rejecting heat and moisture to the cool and dry exhaust air leaving the building. 

 

Figure 3.1. A) Schematic view of RAMEE components and inlet and outlet air conditions. More 

details for structure and operation of B) counter flow LAMEE C) cross-counter flow LAMEE. 
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 Each exchanger is made up of many air and liquid flow channels, each 

separated by a semi-permeable membrane (Figure 3.1B). These membranes allow 

water vapor to transfer between the fluid streams (i.e. air and liquid) but they prevent 

liquid transfer [3.24]. Such a heat and moisture exchanger is called a Liquid-to-Air 

Membrane Energy Exchanger (LAMEE). An individual LAMEE can have different 

flow configurations. Figure 3.1B and 3.1C show counter and cross-counter flow 

configurations respectively. The mass flow rate of air in the supply and exhaust 

LAMEEs are equal or nearly equal. After each exchanger there is a storage tank (of 

the same volume) and a pump which provides a continuous salt solution circulation 

through the system. 

3.4.2. Numerical Model 

 A numerical model which solves the physical governing equations for 

transient coupled heat and mass transfer through the RAMEE system was presented 

by Seyed Ahmadi et al. [3.16]. This model was modified and expanded by 

Hemingson [3.20] which predicts the transient sensible and latent effectivenesses of 

the RAMEE system under different initial and operating conditions. For the case of 

balanced exhaust and supply air mass flow rates, Equations 3.1 and 3.2 define 

sensible and latent effectivenesses of the RAMEE. 

   
   

  
 
            

           
 (3.1) 

   
   

  
 
            

           
 (3.2) 

where ∆TS and ∆WS are the temperature and humidity ratio difference of air between 

the inlet and outlet of supply LAMEE, and ∆T and ∆W are the temperature and 

humidity ratio difference of air between the inlets of supply and exhaust LAMEEs. 
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∆T and ∆W can be considered as the driving potentials for heat and moisture transfer 

in a RAMEE. In this study, the results from the transient numerical model (TNM) 

are used to develop the NN models. 

3.4.3. Parameters Affecting the Transient Performance of RAMEE 

 Seyed Ahmadi et al. [3.17] identified the important parameters affecting the 

transient performance of the RAMEE. He studied the transient response of RAMEEs 

with changing parameters including: the number of heat transfer units (NTU), 

thermal capacity rate ratio (Cr*), salt solution storage volume, and the initial salt 

solution concentration. 

 In this paper the effect of affecting parameters was studied more specifically. 

The purpose of studying the effect of these parameters is to determine the importance 

of each parameter. It helps us to simplify the predicting model by eliminating the 

parameters that are less important or practically unnecessary to be included in the 

NN models. Here the parameters are organized into three groups, first outdoor and 

initial conditions, second system parameters, and third geometrical parameters and 

salt solution storage tank volume. 

3.4.3.1 Outdoor and Initial Conditions 

The purpose of having a predicting model for the transient performance of the 

RAMEE system under non-stop yearly operating conditions, is to find the sensible 

and latent effectiveness of the RAMEE for each hour of operation since they are 

needed for annual energy consumption calculations. Figure 3.2 shows the transient 

sensible and latent effectiveness for first two weeks (January 1
st
  to January 14

th
) of 

the typical meteorological year [3.25] in Calgary, AB, predicted by Seyed Ahmadi’s 

model [3.16]. 
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Figure 3.2. A) Sensible and B) latent transient effectivenesses for the first 336 hours (two weeks) 

of the RAMEE operation in Calgary, AB. (NTU=9, Cr*=2) 

 As can be seen in Figure 3.2, sensible and latent effectivenesses are sharply 

decreasing during first a few hours then keep fluctuating with the time. The sharp 

initial drop of the RAMEE effectivenesses is mainly caused by the initial conditions 

(initial salt solution temperature and concentration in exchangers and reservoir tanks) 

while, the fluctuations that happen after are the result of variable outdoor conditions 

(variable supply exchanger inlet temperature and humidity ratio). Figure 3.3 is 

presented to show how the variation of outdoor condition changes the performance 

of RAMEE. 

Figure 3.3. A) Supply side temperature difference (∆Ts) compared to temperature difference 

between supply and exhaust inlets (∆T) B) Supply side humidity ratio difference (∆Ws) 

compared to humidity ratio difference between supply and exhaust inlets (∆W) for the first 336 

hours (two weeks) of the RAMEE operation in Calgary, AB, (NTU=9, Cr*=2). 

 In Figure 3.3A, the supply side air temperature difference (∆TS) is compared 

to the air temperature difference between supply and exhaust inlets (∆T). As is 

shown ∆T and ∆TS are chosen to be equal at the initial point while they deviate as 

0.6

0.7

0.8

0.9

1.0

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336

Se
n

si
b

le
 E

ff
e

ct
iv

e
n

e
ss

Time (hr)

A

0.3

0.4

0.5

0.6

0.7

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336

La
te

n
t 

Ef
fe

ct
iv

e
n

e
ss

Time (hr)

B

-50

-45

-40

-35

-30

-25

-20

-15

-10

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336

Te
m

e
ra

tu
re

D
if

fe
re

n
ce

 (
°C

)

Time (hr)

∆T

∆Ts

-10

-9

-8

-7

-6

-5

-4

-3

-2

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336

H
u

m
id

it
y

 R
a

ti
o

 D
if

fe
re

n
ce

 (
g

/k
g

)

Time (hr)

∆W

∆Ws

A B



52 

 

soon as the system starts to operate. Both ∆T and ∆TS have a similar trend although 

∆TS values are a portion of ∆T at any time, since ∆T is considered as the driving 

potential for sensible heat transfer. Seyed Ahmadi’s numerical model does not show 

a significant lag between ∆T and ∆TS values since the thermal mass effect of the 

materials of the exchangers and also heat losses to the environment from exchangers, 

reservoir tanks, and connecting tube lines are not included in this model. The same 

trend for latent performance of system can be seen in Figure 3.3B. 

   Figures 3.2 and 3.3 are only a sample of system behavior under variable 

outdoor condition and cannot be used for generalizing the behavior of system. For 

example for a different initial temperature and concentration of salt solution, the 

effect of initial condition might be longer or shorter than what is shown in Figure 

3.2. 

 According to Figure 3.2 and 3.3, the effect of outdoor condition must be 

included in the neural models since the outdoor condition has a major and continuous 

effect on system transience. While the effect of salt solution initial condition on 

transient performance can be neglected for two main reasons. First, the aim in this 

study is to develop a model to predict the non-stop yearly transient performance of 

RAMEE and a discrepancy for the first a few hours or days does not change the 

accuracy of yearly results significantly. Second, a reasonable and practical 

assumption for initial condition is selected that is close to real operation of the 

RAMEE system. It is assumed that at t = 0 the only air in the supply exchanger is the 

only part of the system that is in equilibrium with the outdoor air and the rest of the 

system, including the air in the exhaust system and salt solution temperature and 

concentration in the storage tanks, is in equilibrium with the indoor air. This implies 

that the RAMEE is located inside the building. 
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3.4.3.2 System Parameters 

 System parameters are parameters that may change during the design or 

operation of a RAMEE. These parameters include the number of heat transfer units, 

NTU, number of mass transfer units, NTUm, which are both design and operating 

parameters, and the heat capacity rate ratio, Cr* which is only an operating 

parameter, as are defined in Equations 3.3 to 3.5. 

    
  

    
 

  

 ̇         
 (3.3) 

     
   

 ̇   
 (3.4) 

    
    

    
 (3.5) 

 According to Equations 3.3 and 3.4, the ratio of NTUm to NTU would be: 

    

   
        

  

 
 (3.6) 

where Cp,air is the thermal capacity of air and can be assumed as a constant value. 

The ratio of Um to U is equal to 
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]
   (3.7) 

where hair and hm,air are air-side convective heat and moisture transfer coefficients 

respectively. The air and salt solution flows are assumed to be laminar and fully 

developed for the practical operating range of RAMEEs, therefore the convective 

heat and mass transfer coefficients for a given design are constant since the Nusselt 

number for a fully developed laminar flow is constant and is equal to 8.24 for a 

uniform heat flux in a parallel plate channel [3.26].Thus, Um/U is only a function of 

air channel thickness, th, (since for a constant Nusselt number, the convective heat 

and mass transfer coefficients change with th) the thickness of membrane, δ, and the 
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heat conductivity and mass conductivity of the membrane, k and km. Therefore, for a 

given membrane and air channel thickness the ratio of Um to U is constant provided 

that analogy between heat and mass transfer applies in the airstream and the flow 

configuration (counterflow in this paper) remains constant [3.27, 3.28]. For other 

conditions and designs, the heat and mass transfer coefficients and the ratio of Um to 

U may change [3.27-3.32]. Since this paper focus on a given LAMEE design, where 

NTUm and NTU are nearly proportional, only one of these design parameters needs 

to be known or used as input to the NN model. In this paper, NTU will be used as an 

input parameter for the NN model and NTUm/NTU will be constant and equal to 0.26 

based on the specifications of the LAMEEs presented in Table 3.1. 

Table 3.1. Dimensions and membrane properties of each LAMEE. 

Property Value 

LAMEE Dimensions 

Length 1800 [mm] 

Height 200 [mm] 

Entrance Length 76 [mm] 

Channel Thickness 

Air 4.4 [mm] 

Solution 2.7 [mm] 

Membrane Properties 

Thickness 0.2 [mm] 

Thermal Conductivity 0.334 [W/(m·K)] 

Water Vapour Permeability 1.66 x 10
-6

 [kg/(m·s)] 

 

 The physical dimensions of the LAMEEs in Table 3.1 are based on physical 

LAMEEs that have been built and tested under steady-state operating conditions in a 

test laboratory [3.33, 3.34]. Other LAMEE physical dimensions (e.g., airflow gaps) 

and combinatios of NTUm/NTU have been studied by other researchers to determine 

the steady-state heat and moisture transfer performance and pressure drop [3.34-3.36, 

3.14, 3.19] and are not considering in this study. Rather this study focuses on the 

transient NN modeling of a RAMEE during continuous operation in a building 

HVAC system. Figure 3.4 (A and B) shows the effect of NTU on the sensible and 
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latent effectiveness of RAMEE. The effectivnesses increase with NTU as expected. 

Therefore, the effect of NTU on the RAMEE performance must be included in the 

NN models. 

Figure 3.4. A) Sensible and B) latent effectivenesses, for different NTU values, C) Sensible and 

D) latent effectivenesses, for different Cr* values for the first 336 hours (two weeks) of the 

RAMEE operation in Calgary, AB. 

 The next parameter that has to be included in the NN models is the heat 

capacity rate ratio, Cr*, which is defined as the ratio of salt solution heat capacity 

rate, CSol, to air heat capacity rate, Cair. Cr* is a pure operating parameter and is 

typically adjusted by changing the salt solution flow rate since the air flow rate is 

often determined by building needs. Figure 3.4 (C and D) presents the variation of 

sensible and latent effectivenesses for different Cr* values. For the case presented in 

Figure 3.4 (C and D) the sensible effectiveness decreases with Cr* while latent 

effectiveness is maximum for Cr*=2. The optimal Cr* is case sensitive due to the 

coupled effect of heat and moisture transfer in the RAMEE, therefore Cr* can be 
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changed to optimize annual energy transfer in different climates. Rasouli et al. 

showed the optimal operation of RAMEE for an office building [3.37] and a health 

care facility [3.38] using optimized hourly Cr* values. In these studies, the steady-

state neural network model developed by Akbari et al. [3.21] was subjected to an 

optimization algorithm to predict the optimum sensible and latent effectivenesses in 

each hour of RAMEE operation that results in a maximum annual savings for a 

building. According to the discussion above Cr*, like NTU, is a very important 

operating parameter which must be included in the NN models. 

3.4.3.3. Effect of Geometrical Parameters and Salt Solution Storage Tanks 

Volume 

 The third group of parameters that effect RAMEE performance is the 

geometrical parameters (i.e. aspect and entrance ratios as defined in Equations 3.8 

and 3.9) and the volume of salt solution in the storage tanks. 

             
  

  
 (3.8) 

               
  

  
 (3.9) 

 Akbari et al. [3.21] showed that the steady state sensible and latent 

effectivenesses for counter flow RAMEE can be used to predict the performance of 

cross-counter flow RAMEE systems of sufficiently small aspect and entrance ratios. 

Where the entrance ratio is less than 0.1 (and the aspect ratio is less than 0.1), the 

difference between cross-counter and counter flow RAMEEs for both sensible and 

latent effectivenesses is smaller than 5%. Also for aspect ratios less than 0.2 (when 

the entrance ratio is less than 0.05), this difference is not more than 1%. 

 In this study, we are interested to model the transient behavior of the cross-

counter flow RAMEE of Mahmud [3.34, 3.34] where the physical dimensions of the 
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LAMEEs are presented in Table 3.1. Therefore, the results of a sensitivity study that 

compares the transient performance of this specific design (Table 3.1) to a counter 

flow RAMEE is presented in Table 3.2. The supply side outlet air temperature and 

humidity ratio from the counter flow RAMEE (TS,Out,C and WS,Out,C) is compared to 

the corresponding values from cross-counter flow RAMEE (TS,Out,CC and WS,Out,CC) in 

terms of Root Mean Squared Error (RMSE). 

Table 3.2. The RMSE between counter flow and cross-counter flow yearly simulations for 

different locations. (NTU=5, Cr*=2, AHRI summer indoor condition) 

 RMSE between TS,Out,C 

and TS,Out,CC (°C) 

RMSE between WS,Out,C 

and WS,Out,CC (g/kg) 

Saskatoon, SK 0.08 0.016 

Chicago, IL 0.06 0.011 

Miami, FL 0.03 0.005 

Phoenix, AZ 0.04 0.008 

 The yearly simulations using typical meteorological year [3.25] for different 

locations of different climates are performed. The results from Table 3.2 shows 

almost identical supply side outlet temperature and humidity ratio for a counter flow 

RAMEE and a cross-counter flow RAMEE as described in Table 3.1 (Aspect Ratio = 

0.111 and Entrance Ratio = 0.042). Therefore all required data in this study is 

produced using the counter flow model since it uses less computational nodes (by a 

factor of 25) and is much faster than the cross-counter flow model. 

 Seyed Ahmadi [3.39] showed that the volume of the salt solution in the 

storage tanks has a significant effect on the required time for the RAMEE to reach a 

quasi-steady state condition. He showed that a 5.5 times reduction in the size of 

storage tanks, results in a 75% lower transient time for standard AHRI operating 

conditions [3.39]. So it is very important to determine the effect of the storage tank 

volume on the specific application that we are studying in this paper which is yearly 

dynamic and transient performance of the RAMEE. Therefore, different simulations 

with different storage tank volumes were performed and the results were compared 
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to each other.  Parameter ‘x’ is defined as the volume of the salt solution in each 

exchanger that is 9.72 liters for an exchanger with 10 solution channels. Figure 3.5 

compares the response of a system with storage tank volume of 1x to the same 

system with a bigger storage tank (20x) during a step change in the outdoor 

condition at hour 1300.  

Figure 3.5. Sensible and latent responses of systems with different storage tank volumes (1x vs. 

20x) for A and B) NTU=5, Cr*=2. C and D) NTU=1, Cr*=10 before, during, and after the step 

change of the outdoor condition at hour 1300 in Miami, FL. 

 In this figure at hour 1300 the outdoor air jumps to 42 °C and 2g/kg and is 

kept constant since then. Before hour 1300, which shows the transient operation of 

the system under variable outdoor condition, a close agreement between the 

responses of 1x and 20x systems is shown although after the step change in the 

operating condition, which represents the transient operation of the system under 

constant operating condition (similar to Seyed Ahmadi’s study [3.39]), 1x system 

shows a quicker response to the change in operating condition. In Figures 3.5A and 
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3.5B the response of the system for NTU=5 and Cr*=2 is shown and can be 

compared to Figures 3.5C and 3.5D with NTU=1and Cr*=10. For NTU=1and 

Cr*=10, which has a higher mass flow rate of air and salt solution, the system shows 

a better agreement before the step change, quicker response during the step change 

hour (from hour 1299 to 1300), and shorter transient time after step change. 

Therefore it seems necessary to study the effect of NTU and Cr* on the response of 

the systems with different storage tank sizes. 

 As shown in Figure 5, there is a difference between continuous operation of 

the RAMEE where the outdoor weather conditions change gradually with time 

compared to the case where the outdoor conditions change drastically (such as the 

large step change introduced in Figure 3.5). A step change in outdoor conditions 

might be experienced if the RAMEE is used intermittently such that it turned off for 

many days or even months and then turned back on. During continuous operation, 

the effect of the mass of the storage tank is quite small, but during intermittent 

operation (a step change in outdoor conditions here), the size of the storage tank 

plays a large role. In some cases, it would be beneficial to have a small storage tank 

so that the time constants of the RAMEE are small, while in other cases, it would be 

advantageous to have a large storage tank and large time constants as discussed by 

Erb [3.41] for the RAMEE and by other researchers for thermal storage systems 

[3.42, 3.43]. 

In real applications of The RAMEE in HVAC systems with continuous operation 

as studied in this paper, “There will be a minimum allowable storage volume for a 

range of ambient weather conditions. This minimum storage volume depends on 

several parameters which cannot be selected arbitrarily. The operating condition of 

the system, including inlet air conditions, has a significant impact on the appropriate 
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size of the storage volume. In practice, the operating condition may change on a 

daily or even an hourly basis. This suggests that the appropriate liquid desiccant 

storage volume must be chosen to cover a range of humidity conditions from dry to 

humid during which the desiccant volume will change significantly” [3.39]. During 

many simulations with the TNM it was observed that the minimum allowable storage 

volume for different NTU and Cr* values in most climates is around 10x or more. 

Therefore the difference between hourly results from two systems with different salt 

solution volumes (10x and 20x) in different locations with extreme climates in North 

America was found. Extreme climatic condition causes a large amount of heat and 

mass transfer between the exchangers and helps us to notice the possible difference 

between 10x and 20x systems easier.  Miami, FL, is the representative of hot and 

humid climate, Calgary, AB, represents cold and dry climate with sharp variations in 

temperature and humidity, and Tucson, AZ, is the representative of hot and dry 

climate with drastic changes in temperature and humidity during the Monsoon 

season. In order to include the effect of NTU and Cr*, different simulations for 

NTU=7and Cr*=1, 3, 5 and also Cr*=3 and NTU=1, 7, 13 was performed and in 

each case the supply side outlet temperature and humidity ratio from 10x system 

were compared to the corresponding value from 20x system in terms of MAD 

(Figure 3.6). 
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Figure 3.6. MAD values for supply side outlet A) temperature and B) humidity ratio between 

the outlet air condition of two systems with storage tank volume of 10x and 20x for different 

NTU and Cr* values in different locations of different climates. 

 Figure 3.6 shows a negligible difference between the TNM results for storage 

volume of 10x and 20x. At first glance, the very minor effect of storage tank volume 

on the dynamic and transient performance of the system seems unreasonable. Since 

Seyed Ahmadi’s [3.39] results show a major dependency between the storage 

volume and the system time response. The key difference is that his study is based 

on the transient performance of the system under constant operating condition which 

requires a long time for salt solution in storage tanks to reach a stable temperature 

and concentration, while the current study, considers the transient performance of 

the RAMEE under variable operating conditions in which the outdoor temperature 

and humidity ratio are changing on an hourly basis. 
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 Therefore the effect of storage tank volume is not included in the NN models. 

All the TNM simulations in this study for developing the NN model is done using 

the tank volume equal to 10x. 

3.5. Back-Propagation Algorithm 

 Neural networks are a non-algorithmic modeling method and can learn based 

on examples. Among various types of NNs, Multi Layer Perceptrons [3.22], using 

back-propagation (BP) [3.23] method, are being widely used to solve many 

engineering modeling problems [3.4-3.7]. The main idea of the back-propagation 

method is to update the matrices of weights and biases based on the error between 

desired output values (targets) and NN output. Different error functions can be 

applied to achieve a neural model of desired accuracy. In order to simply implement 

the back-propagation algorithm, Equation 3.10 can be considered. 

           (3.10) 

Where Fn is the current weights and biases matrix and ∆F is the update matrix which 

mainly depends on the error gradient vector and the type of training and performance 

functions. Reference [3.23] provides a more detailed description about the BP 

method. 

 One of the most popular applications of NNs in engineering is called function 

approximation. In this study the BP algorithm will be applied to approximate the 

underlying function describing the transient performance of the RAMEE system. To 

achieve this, the inputs and outputs of the neural model have to be selected then a 

training data set including inputs and corresponding outputs is required. 
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3.6. Neural Model Inputs and Outputs and Data Generation 

3.6.1. Neural Model Inputs and Outputs 

 The results of the sensitivity studies presented in section 3.4.3.1 showed that 

the effect of outdoor condition has to be included in the transient NN model while 

initial conditions effects can be neglected. In order to cover a wide range of outdoor 

conditions real hourly meteorological data [3.25] (i.e. hourly outdoor temperature 

and humidity ratio for a year) in Saskatoon, SK, Chicago, IL, Miami, FL, and 

Phoenix, AZ, are selected as the representative of cold and dry, cold and humid, hot 

and dry, and hot and humid climates respectively [3.44]. 

 Section 3.4.3.2 showed the important effect of NTU and Cr* on the transient 

behavior of the RAMEE system. Akbari et al. [3.21] presented a sensitivity study 

which shows the effective and practical range of NTU and Cr*. According to this 

sensitivity study, the variations in sensible and latent effectivenesses are very slight 

for NTUs larger than 14 or Cr*s higher than 5. Therefore the inputs of the NN 

models for NTU and Cr* were limited to these values. 

 In section 3.4.3.3 the difference between the performance of counter flow 

RAMEE and cross-counter flow RAMEE (i.e. Table 3.1) is investigated. Aspect and 

entrance ratio which describe the geometry of cross-counter flow LAMEEs are not 

included in neural models since the difference between the performance of a counter 

flow RAMEE and the cross-counter flow RAMEE, studied in this paper, is 

negligible. Therefore, the neural model was developed based on counter flow 

numerical model. Also the results of section 3.4.3.3 showed that effects of storage 

tank volume are negligible for the case of continuous RAMEE operation. 
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 Figure 3.7 depicts a black box illustration of the neural model and its inputs 

and outputs. A model with 12 inputs and one output is presented to predict the 

transient performance of RAMEE system. 

 

Figure 3.7. Black box illustration of the NN model and its inputs and output. 

 NTU, Cr*, outdoor temperature and humidity ratio at the current time, and 

their difference with the outdoor temperature and humidity ratio during past four 

hours of system operation are the inputs of the neural networks. Using the previous 

outdoor conditions for more than four hours may improve the results, while it 

significantly increases the complexity of the models and the training time. Also some 

models with less hours of the history of system operation were tried that could not 

achieve the desired accuracy and were mainly unstable models that would generate 

unacceptable (extremely big) outputs. 
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Outlet temperature and humidity ratio of the supply side exchanger (TOut,S and WOut,S) 

are respectively the output for sensible and latent NN models which can be easily 

substituted in Equations 3.1 and 3.2 to calculate sensible and latent effectivenesses. 

3.6.2. Data Generation 

 The training data set used in this study is provided using the TNM developed 

by Seyed Ahmadi [3.16]. Training set has a key role in the training process and 

should cover a practical range of the input parameters. Therefore a training set of 

various NTU, Cr*, TIn,S, and  WIn,S and the corresponding outputs (i.e. TOut,S and 

WOut,S) is required. 

 For each NTU and Cr* a yearly simulation for 8760 hourly meteorological 

data (TIn,S  and  WIn,S) from four different climatic representative locations, listed in 

section 3.6.1, was done. The indoor condition was assumed as constant and equal to 

AHRI summer condition (TIn,E=24 °C and WIn,E =9.3 g/kg). 

 Seven values of NTU (ranging from 1 to 13 in increments of 2), nine values 

of Cr*, (ranging from 1 to 5 in increments of 0.5), and 4×8760 sets of (T(t)In,S , 

W(t)In,S) were applied to get approximately 2.2 million data points. This test set is 

extremely large and it causes computational difficulty in training the NN models. 

Also the authors realized that such a huge training set is not required for developing 

the neural networks, since the real outdoor data is highly redundant (the weather 

patterns in many days of year are very similar and the temperatures and humidity 

values are almost the same). In order to shrink this data set, smaller data sets (e.g. 

50000, 100000, 150000, etc.) were randomly picked from the 2.2 million points then 

some neural networks were trained using these smaller data sets. The trained neural 

networks were tested for both the full 2.2 million-point data set and the smaller ones. 

The errors were identical which shows that even the smallest data set includes all the 
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patterns in the 2.2 million-point data set. Therefore, for simplicity of computations 

the 50,000 point data set was used for training purposes. 

3.7. NN Architecture and Training Process 

 Generally speaking, there is no proven method to find the optimum neural 

model (the simplest model with the highest accuracy) for different problems. Thus, 

for every specific problem a pre-defined desired accuracy would be a reasonable 

stopping criterion. Finding a neural model to represent a real and unique problem is 

basically a trial and error process and depends on the type and complexity of the 

problem as well as the experience of the trainer. 

 Two separate Multi Layer Perceptron feed-forward networks using the well-

known Levenberg-Marquardt [3.45, 3.46] training algorithm were used to map the 

inputs of the network to the corresponding targets. The network with an output of 

TOut,S is called the sensible network and the other network (with WOut,S as output) is 

called the latent network. It would be possible to develop a single neural model to 

predict both TOut,S and WOut,S at once. But defining a network with multiple outputs 

usually decreases the accuracy of the results because the hidden neurons would have 

difficulty to model two complicated functions at the same time. Therefore it is very 

common to train separate networks for each output, then combine them into a 

package and run them as a unit. This is the method used in this study. 

 To improve the generalization of the neural model, the early stopping method 

[3.47] was applied. In this method, the generated data set is divided into three 

subsets. The first subset is called the training subset, which is used for back-

propagating the errors and updating weights and biases during the training session. 

The second subset is called the validating set which is monitored during the training 

session by the early stopping method to prevent the network from over-fitting the 
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training subset. The third subset is called the test set. The test set is “unseen” by the 

NN because it is not used for either updating weights or stopping the training. The 

error of the test set is very important because it is monitored by the trainer to make 

sure that the accuracy of network is acceptable for unseen data. This error facilitates 

the comparison of different neural models for a specific problem and allows the 

researcher to choose the most accurate one. 

 In this paper, the generated data set was divided into three subsets (training, 

validating, and testing). Different dividing ratios were applied to the data set to get 

the best results. The lowest errors were reached using training subset, 60%, 

validating, 25 %, and testing, 15% of the 50,000-point data set. 

 Different topologies for the neural models of one to three hidden layers with 

combinations of linear and non-linear neurons in output and hidden layers were tried 

to get the model of highest accuracy. In order to make the computations easier all 

input and corresponding outputs were normalized using a standard deviation based 

function which, for every parameter, sets the min value as zero and deviations as 

one. After dividing and normalizing the training data set, the Levenberg-Marquardt 

[3.45, 3.46] algorithm was applied to minimize the error between the targets (TNM 

outputs) and the NN outputs for various architectures. Table 3.3 presents the results 

of linear regression analysis for training, validating, and testing sets for some of the 

best architectures that were tried to achieve a sensible NN of satisfactory accuracy. 
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Table 3.3. Result of linear regression along with MSE for different architectures on training, 

validating, and test sets. M and B are the slope and intercept of the linear trend line 

respectively. ‘r’ and MSE are the correlation coefficient and Mean Squared Error between the 

NN and TNM outputs respectively. 

# Architecture 

For The 

Sensible 

Network 

Training Set Error Validating Set Error Test Set Error 

M B r MSE 

(°C)2 

M B r MSE 

(°C)2 

M B r MSE 

(°C)2 

1 12-10-8-8-1 0.992 0.21 0.994 0.3613 0.991 0.23 0.994 0.3703 0.991 0.22 0.994 0.3638 

2 12-8-6-1 0.994 0.19 0.996 0.2916 0.992 0.19 0.995 0.3100 0.994 0.16 0.944 0.3095 

3 12-20-20-1 0.997 0.25 0.995 0.4055 0.996 0.28 0.994 0.4185 0.996 0.24 0.994 0.4147 

4 12-16-16-1 0.996 0.24 0.994 0.3884 0.995 0.29 0.994 0.4075 0.996 0.27 0.994 0.3987 

 As can be seen in Table 3.3, the errors are very close. Network number 2 

gives the lowest errors and is the simplest (smallest) model that was trained. 

Although further investigation shows that it is not the best NN. The accuracy and the 

ability of the models, listed in Table 3.3, to predict transient performance of the 

system for new locations (locations that are different from the training cities) with 

different climates were double checked. Finally it was concluded that the 12-16-16-1 

model has the best performance over all unseen locations for both sensible and latent 

models. Further explanation and verification for model number 3 is presented in the 

next section. Table 3.4 shows the architecture and properties of the selected NN and 

Appendix B presents the weights and biases of the trained NN. 

Table 3.4. Architecture and configuration of the NN models. 

Number Of Inputs 12 

Number Of Outputs 1 

Number Of Hidden Layers 2 

Number Of Neurons In each Hidden Layer 16 

Number Of Neurons In Output Layer 1 

Network Type Fully Connected With Biases For All Neurons 

Hidden Layers Transfer Function Tangent Hyperbolic (Tangent Sigmoid) 

Output Layer Transfer Function Linear 

3.8. Verification and Application of the NN Models 

3.8.1. Verification of the NN Models for Different Locations 

 To verify the ability of selected NN models to predict the performance of the 

RAMEE system under different climates, the yearly results from NN models for six 
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different unseen locations (Vancouver, BC, Halifax, NS, Boston, MA, Calgary, AB, 

Albuquerque, NM, and Tucson, AZ) were compared to the values from the TNM. 

None of the locations listed above were used for training purpose that is why these 

are called ‘unseen’. Table 3.5 briefly describes the climate types and weather 

patterns in these test locations.  

Table 3.5. Climate description of the unseen test locations. 

Location 
Climate 

Type 
Brief Climate Description 

Vancouver, BC Oceanic 

Mild climate. Minor and slow variations in temperature and 

humidity. Cool summers and warm winters compared to central 

Canada. 

Halifax, NS 
Humid 

Continental 

Mild climate compared to the central Canada with temperature 

mostly changing between −15 °C and 25 °C. Tropical storms 

often from August to October. 

Boston, MA 
Humid 

Continental 

Warm, rainy and humid summers with cold, snowy, and windy 

winters. Unstable weather with sharp variation in temperature 

and humidity due to winds. 

Calgary, AB 
Dry Humid 

Continental 

Generally cold, long, and dry winters that may be occasionally 

warm due to Chinook winds blowing from Canadian Rocky 

mountains during the winter months. Chinook can raise the 

winter temperature by up to 15 °C in a few hours. 

Albuquerque, NM Arid 

All monthly average temperatures are above freezing (0 °C). 

Sunny with four seasons. Due to a dry weather, sunshine, and 

very high elevation (~1620 m above sea level), temperature 

fluctuates between day and night (e.g. warm summer days and 

cool nights). 

Tucson, AZ Desert 

Two main seasons. Hot summers and warm winters. Three 

minor seasons: spring, fall, and monsoon. Monsoon causes 

serious thunderstorms that drastically change the air humidity. 

 As can be seen Vancouver and Halifax are two locations with moderate 

climate and smoother variations in outdoor temperature and humidity, while the rest 

of locations have different extreme climates with drastic changes in outdoor 

condition in a short period of time. For each location the TNM was run to simulate 

8760 hourly performances over a wide range of NTU and Cr* values (NTU =2, 4, 6, 

8, 10 and Cr*=1.75, 2.75, 3.75, 4.75) and the results were compared to the predicted 
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values by the NN models. The mean absolute difference (MAD), standard deviation, 

mean difference values (μ), and the distribution of ∆T and ∆W are listed in Table 3.6. 

Table 3.6A. Mean Absolute Difference, Standard deviation, mean value of the difference 

between TNM and NN results, and percent of data falling in 1, 2, and 3 standard deviations for 

the sensible network outputs compared to transient simulations in different test locations 

(NTU=2, 4, 6, 8, 10 and Cr*=1.75, 2.75, 3.75, 4.75. The errors were calculated for over 200,000 

points per location). 

Location Mean 

Absolute 

Difference 

[K] 

σT 

(Std. Dev. 

∆T [K]) 

μT 

(Ave. ∆T 

[K]) 

% 

Falling 

In μT ± 

1σT 

% 

Falling 

In μT ± 

2σT 

% 

Falling 

In μT ± 

3σT 

Vancouver, BC 0.34 0.36 0.21 77.1 94.5 98.1 

Halifax, NS 0.42 0.52 0.18 76.0 96.0 99.0 

Boston, MA 0.37 0.54 0.03 78.8 94.6 98.5 

Calgary, AB 0.52 0.71 0.04 75.1 94.6 98.8 

Albuquerque, 

NM 

0.71 0.81 -0.32 70.9 94.8 99.6 

Tucson, AZ 0.79 0.91 -0.43 70.6 94.8 99.3 

Table 3.6B. Mean Absolute Difference, Standard deviation, mean value of the difference 

between TNM and NN results, and percent of data falling in 1, 2, and 3 standard deviations for 

the latent network outputs compared to transient simulations in different test locations 

(NTU=2,4,6,8,10 and Cr*=1.75,2.75,3.75,4.75. The errors were calculated for over 200,000 points 

per location). 

Location Mean 

Absolute 

Difference 

[g/kg] 

σW 

(Std. Dev. 

∆W  [g/kg]) 

μW 

(Ave. ∆W 

[g/kg] 

% 

Falling 

In μW ± 

1σW 

% 

Falling 

In μW ± 

2σW 

% 

Falling 

In μW ± 

3σW 

Vancouver, BC 0.09 0.14 -0.021 82.9 95.5 97.3 

Halifax, NS 0.13 0.17 -0.042 78.2 95.4 97.8 

Boston, MA 0.14 0.20 -0.006 77.0 94.0 98.4 

Calgary, AB 0.19 0.25 -0.019 72.8 94.9 99.1 

Albuquerque, 

NM 

0.27 0.31 0.15 71.0 94.6 99.4 

Tucson, AZ 0.33 0.36 0.220 72.2 94.7 99.1 

In all locations around 75% of ∆T and ∆W values fall in the range of one 

standard deviations (μT ± 1σT), 95% fall in two standard deviations, and 98% in three 

standard deviations that shows a normal distribution. The results show a better 

agreement for locations with smoother variations in the outdoor condition 

(Vancouver and Halifax) while larger errors happen in extreme climatic conditions. 

This trend is expected since the presented NN models produce the output not only 

based on the current hour outdoor condition but also include the effect of previous 

hours. For the conditions that a sharp change in the outdoor condition happens the 
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NN response will be different from TNM results while for smooth variations in the 

outdoor condition the TNM and NN outputs are closer. 

 The most important error for energy calculation purposes, which is one of the 

main applications of NN models, is the mean absolute difference (MAD). The 

average MAD for all six unseen locations is 0.52 °C for sensible NN and 0.2 gv/kga 

for the latent one which shows satisfactory accuracy for energy calculations for the 

buildings with RAMEE in their HVAC system.  

3.8.2. Applications 

 Generally speaking, NNs can simply interpolate any new pattern that falls in 

the domain of input parameters. Unlike the TNM model, the NN models predict the 

sensible and latent performance of the RAMEE system at a very high speed due to 

their non-iterative data processing (The NN models are approximately 10
5
 times 

faster than the TNM). For example the NNs presented in this paper take less than 1 

second to produce the results for 8760 points (i.e. hourly transient effectiveness 

values for 1 year) using a common desktop, while the TNM takes up to several days 

to produce the same data for a cross-counter flow configuration and up to 1 hour for 

counter flow system. 

 One of the most important applications of the NN models is to use their 

outputs to predict annual energy savings by the RAMEE. The definition of the 

optimal system performance for the RAMEE, operating under different outdoor and 

indoor conditions, is developed by Rasouli et al. [3.37]. This definition can vary 

depending on building demand. For example in the hours that the building needs 

sensible heating (i.e. only heat transfer from exhaust air to supply air is important 

and moisture transfer does not matter) the optimum performance is to maximize the 

sensible effectiveness of the RAMEE. As is discussed in previous sections the 
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sensible or latent effectiveness of the system can be maximized or minimized 

changing the Cr* (or salt solution flow rate). Using an optimization algorithm 

applied to the neural network models, the optimum effectiveness values for RAMEE 

under different operating conditions are obtained. These optimum values are used for 

TRNSYS computer simulation of the RAMEE system when operating in an office 

building in four different climates to estimate the annual savings by RAMEE [3.37]. 

The results show up to 43% heating energy saving in cold climates, and up to 15% 

cooling energy saving in hot climates. The same analysis for the application of a 

RAMEE system in the HVAC system of a hospital shows even more energy savings. 

The optimized RAMEE saves the annual heating energy by 58 ‐ 66% in cold 

climates, and the annual cooling energy by 10 ‐ 18% in hot climates. The RAMEE 

can also downsize the heating system by 45% in cold climates, and the cooling 

system by 25% in hot climates [3.38]. 

3.9. Conclusions 

 In this study, the sensible and latent effectivenesses for the non-stop yearly 

transient operation of Run-Around Membrane Energy Exchanger (RAMEE) were 

predicted using two separate neural network (NN) models. A training data set of 

approximately 50,000 points, provided using a transient numerical model (TNM), 

was subjected to a back-propagation algorithm to minimize the error between the 

outputs of the simulations and the NN models. Finally, a 12-16-16-1 configuration 

was concluded to result in a NN model of satisfactory accuracy for either sensible or 

latent energy transfer in the RAMEE. 

 The ability of the trained NN models to predict the effectiveness of the 

RAMEE was double checked numerically. The TNM was used to provide a 

completely unseen test set for six new locations (with two location of moderate 
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climate and four location of different extreme climatic conditions) over a wide range 

of NTU and Cr* and the results were compared to the corresponding values from NN 

models.  The mean absolute difference (MAD) between the results from TNM and 

NN models were around 0.5 °C for the sensible NN and 0.2 gv/kga for the latent 

neural network. 

 Such a fast and non-iterative mathematical model can be used as a 

computational component in commercial building energy simulation packages to 

estimate the annual energy savings that are possible using a RAMEE [3.38]. Also the 

NN models can be used to find the optimum design or operating parameters (NTU 

and Cr*) of RAMEE for various outdoor air conditions. 

 The application of this model is not only limited to non-stop yearly operation. 

For the applications that the effect of initial condition is not important or for the 

cases that the performance of the system after initial hours is requested, NN model 

will provide a fast and sufficiently accurate response. 
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CHAPTER 4 

APPLICATION OF A RAMEE IN A HEALTH-CARE FACILITY HVAC 

SYSTEM 

 

4.1. Overview of Chapter 4 

This chapter shows an example of a practical application of the neural 

network (NN) model presented in chapter 2. A health-care facility HVAC system 

which benefits from a RAMEE is investigated. After an overview of previous 

research on RAMEE (sections 4.3 and 4.5.1 and 4.5.2), a summary of the strategies 

to control the RAMEE in different conditions (section 4.5.2) is presented. Then using 

the optimal control of ERV (presented in Appendix A), a definition for the optimal 

effectiveness of RAMEE for each hour is provided. These hourly optimal 

effectiveness definitions are met using an optimization algorithm (implemented in 

MATLAB
® 

version 7.10.0) which runs the NN models as the function that needs to 

be optimized to obtain the optimal effectiveness values for each hour. A hospital 

building, the RAMEE and the HVAC system are simulated in TRNSYS and then the 

optimal effectiveness values are used to calculate the effect of an optimally 

controlled RAMEE on: 

1. Cooling and heating energy consumption, 

2. HVAC equipment capacity, 

3. Life-cycle cost of the HVAC system, and 

4. Greenhouse gas emissions 
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The results from a similar study for an office building (Appendix A) and the 

hospital described in this chapter are compared in section 4.6.5. 

 The contributions of each author to this research work are as follows: 

Mohammad Rasouli, M.Sc. student and main author, simulated the hospital 

building and the HVAC system in TRNSYS, post-processed the results to provide 

most of the figures and data in the article, and wrote the first draft of manuscript # 3. 

Soheil Akbari, M.Sc. student, developed steady-state NN models, determined the 

optimum effectiveness of the RAMME for different operating conditions by 

implementing the definitions of the RAMEE optimum operation (provided by the 

main author) on NN outputs. This optimal effectiveness values were needed for 

TRNSYS simulations and energy calculation purposes (Figures 4.4 and 4.5). 

Carey J. Simonson, and Robert W. Besant, the research group supervisors, 

conceived the research study, read and edited the paper and improved this study with 

their valuable comments.  
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MANUSCRIPT #3 

Energetic, economics and environmental analysis of a health-care facility hvac 

system equipped with a run-around membrane energy exchanger 

M. Rasouli, S. Akbari, C.J. Simonson and R.W. Besant  

4.2. Abstract 

Run-Around Membrane Energy Exchanger (RAMEE) is a novel heat and 

moisture recovery system that consists of two separate supply and exhaust 

exchangers coupled with an aqueous salt solution flow. The salt solution transfers 

energy (heat and moisture) in a closed loop between outdoor ventilation air and the 

exhaust air from buildings. The system performance is a function of the flow rate of 

the salt solution and ventilation air and the outdoor air conditions. The dependency 

of system performance on the solution flow rate and the outdoor conditions requires 

adjustment of the appropriate flow rate which gives the optimal system performance 

at any specific outdoor condition. In this paper, the RAMEE is simulated for a 

hospital building in four different climates using TRNSYS and MATLAB computer 

programs. The steady-state RAMEE can reduce the annual heating energy by 60% in 

cold climates and annual cooling energy by 15% to 20% in hot climates. The 

RAMEE has an immediate payback in cold climates and a 1 to 3-year payback in hot 

climates depending on the pressure drop across the exchangers. Finally, the RAMEE 

reduces greenhouse gas emission (CO2- equivalent) by 25% and 10% in cold 

climates and hot climates, respectively. 

4.3. Introduction 

Energy Recovery Ventilators (ERVs) have been widely used to reduce the 

energy required to condition the ventilation air. ERVs transfer heat (heat recovery 

systems) or heat and moisture (energy recovery systems) between conditioned 
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exhaust air and outdoor ventilation air. Heat pipes, fixed-plate heat exchangers and 

heat wheels are examples of the heat recovery systems, and energy wheels coated 

with desiccant [4.1] and flat-plate exchangers made of water permeable membranes 

[4.2] are examples of energy recovery systems. The main disadvantage of present 

ERVs is that some are unable to transfer moisture. Also, they all require a side-by-

side installation of the supply and exhaust ducts. This may impose a higher ducting 

cost for adjacent installation of the supply and exhaust ducts. Adjacent air inlet and 

exhaust increases the probability of contaminant transfer from exhaust air to the 

supply air, especially for polluted spaces (e.g., some laboratories) and highly-

sensitive areas (e.g., surgery room). 

A novel Run-Around Membrane Energy Exchanger (RAMEE) that consists 

of two separate supply and exhaust exchangers was presented by Fan et al. [4.3]. For 

this system, each exchanger is a flat-plate energy exchanger constructed with water 

vapor permeable membranes that allow the transfer of heat and water vapor. Such a 

system is suitable for retrofitting buildings even where the supply and exhaust ducts 

are not adjacent. Research has been done on (a) developing numerical models of the 

RAMEE [4.4-4.8] (b) predicting the system performance at different conditions 

using an artificial neural network [4.9] (c) investigating the crystallization risk of the 

salt solution [4.10] and (d) obtaining experimental data on RAMEE performance for 

two prototypes [4.11-4.12]. 

ASHRAE Standard 170-2008 [4.13], ventilation of health-care facilities, has 

recommended much higher rates of outdoor air flow compared to ASHRAE 62-2010 

[4.14] for ventilation rates of other types of buildings. For example, a typical office 

building may require about 0.5 ACH ventilation air [4.15], while a minimum outdoor 

air change of 2 to 6 ACH is recommended for health-care facilities. The energy 
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consumption due to conditioning of ventilation air increases as the ventilation rate 

increases [4.16-4.18]. For instance, McDowell et al. [4.16] showed that, without 

energy recovery, increasing the ventilation rate of a building in Washington D.C. 

from 0 to 10 l/s.person (corresponding to about 0.37 ACH) increases the annual 

energy consumption of the HVAC system by 14%. This result is in a good 

agreement with Commercial Building Energy Consumption Survey (CBECS) in 

2003 [4.19] that reported that health-care facilities were the second highest energy-

intense commercial buildings with 1472 MJ/ m
2
.year HVAC system energy 

consumption. This is 2.8 times higher than the average HVAC energy consumption 

in US office buildings (i.e., 533 MJ/m
2
.year) [4.19]. Although the ventilation energy 

is very significant in hospitals, most of the recent research has focused on energy-

saving technologies in office spaces, residential buildings and educational facilities. 

Rasouli et al. [4.20] studied the application of a RAMEE in an office building 

HVAC system. The TRNSYS simulation of the RAMEE showed savings of about 30 

to 40% for heating energy in cold climates (Saskatoon and Chicago) and 8 to 15% 

for cooling energy in hot climates (Miami and Phoenix). This paper presents the 

energy saving with a RAMEE for a hospital building (as the second case study of the 

RAMEE). An overview of the RAMEE is presented and the findings of Rasouli et al. 

[4.20] regarding the control and operation of the RAMEE are implemented when it 

operates in a hospital building. This paper presents the energy savings, Life-Cycle 

Cost (LCC) analysis and Life Cycle Environmental Assessment (LCEA) of the 

RAMEE in the hospital over a 15-year life-cycle for four different climates. 

4.4. Model Description 

A 3-storey hospital with total floor area of 3150 m
2
 is chosen for this study. 

The thermal resistances of walls, roof and the floor are 2.72, 3.64 and 3.45 
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(m
2
.K/W), respectively. The building has double-glazed windows, about 31 (W/m

2
) 

of internal heat gains (includes lighting, cooking and equipment loads based on 

CBECS data, [4.19]) and an occupant density of 5 People/100 m
2
. A variable air 

volume HVAC system is considered for the building that maintains the indoor 

temperature within ASHRAE comfort zone (i.e., 24°C in summer and 22°C in winter 

[4.21]), and the indoor humidity below 60% RH. The day-time (6:00-22:00) 

ventilation rate is set at 2 ACH as an average rate recommended by ASHRAE 

ventilation standard for different spaces in health-care facilities [4.13] and is reduced 

to 1.3 ACH for the rest of the day (22:00-6:00) when a lower occupancy is expected. 

A total air change rate of 3 times the ventilation rate is always maintained for the 

space (as recommended by ASHRAE for most of health-care spaces [4.13]).  

The building is simulated in Saskatoon (Saskatchewan, Canada), Chicago 

(Illinois), Miami (Florida) and Phoenix (Arizona) as the four North American cities 

which represent different climatic conditions. Chicago, Miami and Phoenix are 

chosen as representatives of cool-humid, hot-humid and hot-dry climates, 

respectively, based on Briggs et al. [4.22] climatic classifications for building energy 

analysis. Saskatoon is chosen to represent a cold climate because heating is required 

for a large fraction of a year [4.20]. 

4.5. Run-Around Membrane Energy Exchanger (RAMEE) 

4.5.1.  Overview 

Figure 4.1 schematically presents a HVAC system equipped with a RAMEE. 

The RAMEE shown in Figure 4.1 consists of two separate exchangers located in 

supply and exhaust ducts. Each exchanger is a flat-plate, liquid-to-air membrane 

energy exchanger (LAMEE) that is made using water vapor permeable membranes. 
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Figure 4.1. Schematic view of a HVAC system equipped with a RAMEE. 

The LAMEEs are coupled with an aqueous salt solution that is pumped in a closed 

loop and transfers both heat and moisture between the exhaust and ventilation 

airstreams. Such a design has the capability of transferring both heat and moisture in 

new and retrofit applications where the ducts are not adjacent.  

During the winter, the mixture of outdoor ventilation air and the return air is 

heated by the heating system up to the desired supply temperature. In the absence of 

the RAMEE, the ventilation air temperature is equal to the outdoor temperature. But, 

the RAMEE transfers energy (heat and moisture) from the exhaust air to the supply 

air. Such an energy transfer increases the ventilation air temperature and 

consequently lowers the energy consumption of the heating system. During the 

summer, the mixture of outdoor ventilation air and the return is cooled and also 

dehumidified if the humidity of the mixture (state 3) is unable to maintain the indoor 

humidity within comfort zone (i.e., below 60% RH; [4.21]). The operation of the 

RAMEE in summer transfers heat and moisture from warm-humid outdoor air to the 

cool-dry exhaust air. This reduces the enthalpy of the ventilation air and 

consequently decreases the cooling energy for the auxiliary cooling system. The air 

and salt solution can flow in counter flow, cross flow or counter/cross flow 
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arrangements through each LAMEE. A counter flow RAMEE is studied in this 

paper. 

4.5.2. System Performance, Controls and Operation 

The effectiveness of a RAMEE for transferring heat (εs), moisture (εl) and 

enthalpy (εt) is mainly a function of three dimensionless groups defined in Equations 

4.4 to 4.6, indoor and outdoor air conditions and the air/salt solution flow 

arrangement. Figure 4.2 illustrates the dependency of RAMEE effectiveness on 

NTU, Cr* and outdoor conditions for some specific conditions. 
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Figure 4.2. RAMEE effectiveness (a) as a function of NTU at Cr*=2, and as a function of Cr* 

and outdoor air conditions at (b) cold, (c) hot-low enthalpy and (d) hot-high enthalpy outdoor 

conditions with NTU=10. 

Similar to the other types of ERVs, NTU is directly proportional to the 

surface area or the size of the RAMEE. Hemingson et al. [4.8] showed that RAMEE 

effectiveness increases with NTU (as shown in Figure 4.2a) and follows a similar 

trend expected by other references [4.23-4.24]. By increasing NTU, the sensible 

effectiveness increases significantly and the latent effectiveness increases slightly. 

Also, a considerable increase in latent effectiveness may be obtained by increasing 

NTUm to a larger value. A design NTU of 10 may be feasible for ERVs [4.25] 

therefore, it is used for this study. As well, NTU will increase when the night-time 

ventilation rate is lower than the day-time.  

Hemingson [4.7] found that the variation of indoor conditions between the 

heating and cooling indoor set-points has a minimal impact on the RAMEE 

effectiveness, and may change the total effectiveness by 0.3%. But, the dependency 

of RAMEE effectiveness on outdoor air conditions is more significant which is due 

to the impact that the outdoor temperature and humidity have on the liquid desiccant 
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and the fact that heat and moisture transfer are coupled in the RAMEE [4.8]. A 

greater temperature difference between outdoor and indoor air (either summer or 

winter) improves the RAMEE moisture transfer. Also, the RAMEE heat transfer 

increases as the humidity ratio difference between indoor and outdoor air increases. 

Figures 4.2b, 4.2c and 4.2d present the RAMEE effectiveness as a function of Cr* in 

different outdoor conditions and NTU=10. As shown in these figures, the Cr* at 

which the peak effectiveness is achieved (Cr*opt) varies depending on the outdoor 

conditions. Therefore, at any given outdoor condition, the Cr* should be controlled 

so that the maximum effectiveness is achieved. Rasouli et al. [4.20] studied the 

operation of the RAMEE in different outdoor conditions in an office building and 

showed that the strategy of controlling the Cr*opt depends on RAMEE’s operating 

condition (heating, cooling and part-load operation). Figure 4.3 presents the TMY 

operating conditions of the RAMEE for one year in different locations.  
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Figure 4.3. Operating conditions of the RAMEE for different locations for the hospital building 

in one year. 

As an explanation of Figure 4.3, the RAMEE heats the ventilation air in a 

full-load or part-load operation for low outdoor temperatures. The RAMEE should 

be off or by-passed when the building needs cooling while both outdoor temperature 

and enthalpy are lower than that of the indoor air [4.26]. The operation of RAMEE in 

such conditions heats and humidifies the cool outdoor air and increases the cooling 

energy consumption. When either the outdoor temperature or the outdoor enthalpy is 

greater than that of the indoor air, the RAMEE should be operated to reduce the 

temperature or the enthalpy of the ventilation air. Rasouli et al. [4.20] found that in 

order to optimize the operation of the RAMEE, the Cr* needs to be controlled under 

a different strategy as the RAMEE’s operating condition changes. Table  .1 

summarizes the required control strategy to achieve optimal performance of the 

RAMEE. 
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Table 4.1. Cr* control strategy and definitions of Cr*opt for optimal performance of the RAMEE 

for different steady-state operating conditions. 

RAMEE’s  

operating 

condition 

Heating Cooling  

(hout>hin) 

Cooling  

(hout<hin) 

Part-load 

Cr*opt is the 

Cr*  

at which: 

εs is 

maximum 

εt is 

maximum 

and positive 

εt is 

minimum 

and negative 

εs is maximum and bypass fraction of 

: 

  
 ̇      

 ̇           

   
     

  (     )
 

 

The numerical solution of heat and mass transfer in the RAMEE for steady-

state operation was developed in previous research [4.3], [4.6], and [4.8]. Based on 

the numerical solution of the counter flow RAMEE, Akbari et al. [4.9] developed an 

optimization Artificial Neural Network (ANN) using MATLAB 2010 neural network 

toolbox. For given RAMEE operating condition, NTU and indoor and outdoor 

conditions, the ANN is able to predict the Cr*opt and the associated effectivenesses. 

Figure 4.4 shows the variation of hourly Cr*opt during a TMY of operation of the 

RAMEE in each location. Cr* of  ero refers to RAMEE’s being off operation that 

means the conditions specified in Table 4.1 are not satisfied.  

 

Figure 4.4 Yearly variation of the hourly Cr* for optimal operation of the RAMEE. 
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Figure 4.4 shows less scatter variation of Cr*opt during the winter compared 

to the summer. For all climates (except for Miami), the Cr*opt varies between 1.2 and 

1.3 during the heating season, and increases up to 4 during the summer. It should be 

noted that Cr* is a function of ventilation rate and salt solution flow rate (Equation 

4.6). Since the air flow rate is typically set based on minimum standard ventilation 

requirement, the solution flow rate remains the controllable variable to achieve 

Cr*opt. 

As mentioned previously, the effectiveness of the RAMEE depends on the 

outdoor/indoor air conditions, the operating Cr* and the ventilation air flow rate. All 

these variables (except for NTU that switches between day-time and night-time 

values) show scatter during a year which may results in a variation of the 

effectiveness. The ANN can determine the effectiveness of the RAMEE based on the 

specified outdoor conditions (Figure 4.3), indoor conditions (ASHRAE [4.21]) and 

operating Cr* (Figure 4.4). Figure 4.5 shows the variation of sensible and latent 

effectiveness for different locations for one typical year. The effectiveness values are 

bounded between 0 and 1 in Figure 4.5. However, the effectiveness of RAMEE may 

exceed 100% at specific operating conditions. These mostly occur when the energy 

transfer via the RAMEE is not very significant [4.7]. 
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Figure 4.5 Variation of the RAMEE steady-state sensible and latent effectiveness for a TMY in 

different locations (Cr*=Cr*opt). 

The hourly effectiveness values are inputs to the TRNSYS [4.27] model of 

the RAMEE. The thermal system (including the HVAC system, RAMEE and the 

building) is simulated using the TRNSYS building energy simulation program 

equipped with TESS libraries (Thornton et al. [4.28]). 

In order to quantify an average operating effectiveness for the RAMEE, the 

hourly effectiveness values are weighted by the associated hourly net energy transfer 

via the RAMEE. Table 4.2 presents the average sensible and latent effectiveness of 

the RAMEE throughout a year in different locations. 

Table 4.2. Average sensible and latent effectiveness of the RAMEE. 

Location Saskatoon Chicago Miami Phoenix 

Average sensible effectiveness 0.78 0.76 0.86 0.73 

Average latent effectiveness 0.70 0.59 0.59 0.58 
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4.6. Results 

In this section, the following assumptions are made regarding the RAMEE 

and the HVAC system unless otherwise stated: The HVAC system consists of a gas-

fired boiler with efficiency of 88% and a direct-expansion water chiller with a COP 

of 3 which satisfies ASHRAE Standard 90.1-2004 minimum boiler efficiency of 

80% and chiller COP of 2.78 [4.29]. Fan efficiency is assumed to be 60% and air 

pressure drop of the HVAC system and each LAMEE are assumed to be 10 cm and 2 

cm of water, respectively. The RAMEE operates under hourly Cr*opt and design 

NTU of 10. 

4.6.1. Energy 

Figure 4.6 shows the simulation results for the impact of RAMEE on annual 

heating and cooling energy consumption in the hospital compared to the case of no 

energy recovery. The RAMEE saves 58%, 66%, 90% and 83% of annual heating 

energy in Saskatoon, Chicago, Miami and Phoenix, respectively. Also, it saves 4%, 

10%, 18% and 15% of the annual cooling energy in Saskatoon, Chicago, Miami and 

Phoenix, respectively. The cooling energy saved in cold climate (Saskatoon and 

Chicago) is not very significant since the internal loads (not the ventilation load) 

account for the larger portion of the cooling load.  

 

Figure 4.6. The impact of RAMEE on annual energy consumption for (a) heating and (b) cooling. 
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Figure 4.7 presents the impact of the RAMEE on the size of HVAC 

equipment compared to the case of no energy recovery. The size of heating 

equipment can be reduced by about 45% in cold climates and 65% in hot climates. 

Also, the cooling system can be downsized by about 25% in all climates. 

  

Figure 4.7. The impact of RAMEE on the capacity of HVAC equipment for (a) heating and (b) 

cooling. 

CBECS reported inpatient health-care facilities to have the second highest 

energy intensity among US commercial buildings with an average total energy 

intensity of 2830 (MJ/m
2
.year) in 2003. The HVAC system energy consumption 

accounted for 52% of the total energy use which gives an average HVAC energy 

intensity of 1472 MJ/m
2
.year. Thus the HVAC energy intensity of inpatient health-

care facilities was much higher than the total energy intensity of educational 

facilities (944 MJ/m
2
.year) or office buildings (1055 MJ/m

2
.year). In this research, 

the HVAC system for the studied hospital has an energy intensity of 1730, 1100, 739 

and 672 MJ/m
2
.year with no energy recovery in Saskatoon, Chicago, Miami and 

Phoenix, respectively (giving an average of 1060 MJ/m
2
.year). By employing the 

RAMEE, the total energy intensities will be reduced by 48%, 45%, 8% and 17% in 

Saskatoon, Chicago, Miami and Phoenix, respectively. 
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It should be noted that the underestimating of annual energy consumption 

using the computer simulation (compared to CBECS reported values) might be 

mostly due to the energy-saving envelope (well-insulated walls and roofs and 

double-glazed windows) considered for the simulated building compared to the data 

obtained from the US office building categorization. In addition, the following 

assumptions are made for this research which may cause underestimation of energy 

consumption in computer simulation compared to real buildings: (1) high-efficiency 

heating and cooling systems (combustion efficiency of 88% and chiller COP of 3), 

(2) zero heat loss and leakage from equipment and ducting, and (3) running a VAV 

HVAC system in the building (instead of a less-efficient CAV system; Yao et al. 

[4.31]). 

4.6.2. Control based on an Operating Averaged Cr* 

As discussed in section 4.5.2, the optimal operation of the RAMEE requires 

an accurate control of the salt solution flow rate (giving the Cr*opt). Rasouli et al. 

[4.20] showed that the RAMEE may be operated in an office building using an 

average seasonal or yearly Cr* value with no significant impact on energy savings 

(i.e., less than 2% for most climates). The advantage of operating the RAMEE using 

an average Cr* is that there is no need for an accurate control of salt solution flow 

rate for each slight change of outdoor condition. In this section, the impact of 

applying an average seasonal or yearly Cr* value on energy saving with the RAMEE 

in the hospital is studied. Table 4.3 shows the seasonal and yearly averaged Cr* 

weighted by hourly energy transfer via the RAMEE and the associated standard 

deviation. Table 4.4 presents the annual cooling and heating energy savings when the 

RAMEE system operates under specified average Cr* values.  

Table 4.3. Seasonal and yearly weighted average Cr* and associated standard deviation for the 

hospital building. 
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Seasonal average Cr* Yearly average Cr* 

Location Winter 

(heating) 

Summer 

(cooling) 

Heating and cooling 

Saskatoon 1.21±0.09 2.25±0.35 1.22±0.53 

Chicago 1.26±0.12 2.78±0.42 1.37±0.70 

Miami 1.52±0.28 3.07±0.52 2.99±0.71 

Phoenix 1.31±0.13 1.88±0.47 1.64±0.55 

 

Table 4.4. Annual energy saved with the RAMEE system operating with selected Cr* values. 

 Annual heating energy saved Annual cooling energy saved 

Location Optimal 

Cr*  

Seasonal 

Cr* 

Yearly 

Cr* 

Optimal 

Cr*   

Seasonal 

Cr* 

Yearly 

Cr* 

Saskatoon 58% 58% 58% 4% 4% 3% 

Chicago 66% 66% 65% 10% 9% 7% 

Miami 90% 90% 83% 18% 18% 18% 

Phoenix 83% 83% 81% 15% 14% 14% 

 

Compared to using the optimal Cr*, the results in Table 4.4 show that the 

energy savings slightly reduce by using a yearly average Cr*, however the reduction 

in energy savings is negligible with the averaged seasonal Cr* values. The RAMEE 

may operate under seasonal or yearly average Cr* with no significant loss of energy. 

4.6.3. Life Cycle Cost (LCC) Analysis  

LCC analysis is known as a very good measure to evaluate and compare 

different available alternatives in terms of expenses associated with each system 

during the life-cycle. The life-cycle of a system includes its production, operation, 

demolition and disposal. The two alternative systems in this research are: (1) A VAV 

HVAC system that is not equipped with any energy recovery systems, and (2) A 

VAV HVAC system that is equipped with the RAMEE. The cost analysis is 

conducted over a 15-year life-cycle for both systems. For this LCC study, only those 

expenses that are not equal for the two alternatives need to be considered. These 

costs can be categorized as capital costs, that have to be invested before the project 
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begins to operate, and operational costs that include all the expenses during the 

operation of the system (i.e., maintenance and energy).  

The capital costs include the cost of the HVAC system that consists of a cast-

iron gas-fired boiler ($68.3/kW), a direct expansion water chiller ($227/kW) and 

Centrifugal type HVAC fans ($851/m
3
/s). These costs are based on RSMeans 

Mechanical Cost Data 2010 (Mossman et al. [4.31]). The cost of the RAMEE, as an 

ERV, is considered to be $3/CFM ($6357/m
3
/s) as recommended by technical papers 

in the field of air-to-air energy exchangers [4.32-4.33]. Also, a zero residual value is 

assumed as the worth of the HVAC system at the end of its life-cycle. The 

operational costs include the cost of the energy consumed by the heating/cooling 

equipment and the fans and the maintenance cost. Assuming equal maintenance costs 

for both alternatives, the operational cost will only include the cost of energy. The 

energy rates may vary depending on the location and the energy source. In this study, 

natural gas and electricity are assumed to be those for the energy sources for heating 

and cooling, respectively. The gas-fired boiler using natural gas produces 

combustion heat at 37.8 MJ/m
3
 [4.34]. Figure 4.8 presents the comparison of capital 

costs and operational costs for the two alternatives. 

 

Figure 4.8 Life-cycle cost analysis results (a) capital costs and (b) operational costs for the 

HVAC system (1) without the RAMEE and (2) with the RAMEE.  
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It can be seen in Figure 4.8a that the RAMEE can be purchased at no net 

extra cost for cold climates (Saskatoon and Chicago) due to the money saved by 

downsizing the heating/cooling equipment. This means that the payback of the 

RAMEE in cold climate is instant (immediate payback) and the energy savings 

during the RAMEE’s life-cycle are achieved with no extra investment. On the other 

hand, an HVAC system equipped with a RAMEE has a higher capital cost in hot 

climates (Miami and Phoenix shown in Figure 4.8a). The operational cost of the 

RAMEE depends on air pressure drop across each LAMEE. Figure 4.8b is plotted 

based on air pressure drop of 2 cm of water across each LAMEE. Increasing the 

RAMEE’s pressure drop decreases the energy savings of the RAMEE due to higher 

fan energy. In cold climates (Saskatoon and Chicago), increasing the LAMEE’s 

pressure drop reduces the energy saved, but the payback period will remain zero for 

air pressure drops within 0 to 5 cm of water across each LAMEE (expected range by 

manufacturer). On the other hand, increasing the LAMEE’s pressure drop increases 

the payback period in hot climates (Miami and Phoenix). Figure 4.9 presents the 

payback period of the RAMEE in Miami and Phoenix as a function of the pressure 

drop across each LAMEE. 

 

Figure 4.9. Payback period of the RAMEE in Miami and Phoenix as a function of pressure drop 

across each LAMEE. 
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Based on the results presented in Figure 4.9, the RAMEE system will have a 

payback period of 1-2 years in Phoenix and 2-3 years in Miami. Table 4.5 

summarizes the life cycle cost (including investment and operation costs) of two 

alternative systems over 15 years of operation assuming 2 cm of water pressure drop 

across each LAMEE. 

Table 4.5. LCC (including capital and operational costs) of the two HVAC system alternatives 

for a 15-year life-cycle. 

 Saskatoon Chicago Miami Phoenix 

Without RAMEE ( Thousands of $US) 961 1018 389 850 

With RAMEE ( Thousands $US) 701 901 354 763 

% saving 27% 11% 9% 10% 

 

4.6.4. Life Cycle Environmental Assessment (LCEA) 

Similar to the life cycle cost analysis that addresses the expenses associated with a 

project during its life-cycle (including production, operation and disposal), life cycle 

environmental assessment (LCEA) deals with the impact of a system on the 

environment. Both approaches are similar in that they study the system over its life 

cycle rather than making a decision based on just the capital cost; however, they are 

different in their measuring metrics (i.e., money for LCC and environment for LCEA 

[4.35]). In this paper, the environmental impact of the two systems, i.e. VAV HVAC 

systems with and without the RAMEE on greenhouse gas emissions and climate 

change is studied. The tons of CO2- equivalent emission is used to represent the 

climate change since CO2 is the main greenhouse gas. 

The mass of greenhouse gases emitted during the combustion of natural gas 

depends on the fuel composition and this may vary slightly from location to location. 

However, an average value is used for both US and Canada based on the data 

obtained from Canada's Clean and Renewable Energy Research Centre [4.36]. On 

the other hand, due to the variety of resources that different utilities use to generate 

electricity (e.g., hydro, nuclear, fossil fuel, etc.), the greenhouse gas emissions due to 

http://canmetenergy-canmetenergie.nrcan-rncan.gc.ca/eng/
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electricity consumption varies dramatically for different locations. Table 4.6 presents 

the amount of emitted greenhouse gases associated with consuming natural gas and 

electricity in the different locations studied in this paper. Data obtained from 

Canada's Clean and Renewable Energy Research Centre [4.36] and US 

Environmental Protection Agency [4.37] are used to produce the results shown in 

this table. CO2-equivalent is calculated using weighting factors (also called Global 

Warming Potential, GWP) of CO2, N2O and CH4 as 1, 310 and 21, respectively 

[4.36].  

Table 4.6. The greenhouse gas emission due to electricity and natural gas consumption in 

different locations. 

 Natural gas Electricity 

Location CO2 

(t/TJ) 

N2O 

(kg/TJ) 

CH4 

(kg/TJ) 
CO2- 

equivalent 

(t/TJ) 

CO2 

(t/TJ) 

N2O 

(kg/TJ) 

CH4 

(kg/TJ) 
CO2-

equivalent 

(t/TJ) 

Saskatoon 49.68 0.52 1.1 49.86 - - - 234 

Chicago 49.68 0.52 1.1 49.86 194 3.2 2.3 195.04 

Miami 49.68 0.52 1.1 49.86 166 2.1 5.8 166.77 

Phoenix 49.68 0.52 1.1 49.86 165 2.3 2.2 165.76 

 

Nyman and Simonson [4.35] studied the LCA of air-handling units with and 

without energy recovery systems and found that the emission of greenhouse gases 

during their operation in a 20-year life-cycle was typically 20 to 40 times greater 

than the emissions occurred during the manufacturing process of the units. 

Therefore, the LCA in this paper takes the environmental impacts of the systems 

during the operation only. Figure 4.10 compares the annual equivalent CO2 emission 

by the HVAC system with and without the RAMEE for the hospital in different 

locations. 

http://canmetenergy-canmetenergie.nrcan-rncan.gc.ca/eng/
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Figure 4.10. Annual equivalent emission of CO2 from the hospital building with and without the 

RAMEE. 

Figure 4.10 demonstrates the positive impact of energy recovery when a 

RAMEE is used to reduce the emission of greenhouse gases. By employing the 

RAMEE, the emission of CO2-equivalent from the hospital building HVAC system 

can be reduced by about 25% and 10% in cold climates and hot climates, 

respectively. A typical mature tree absorbs CO2 at a rate of 21.6 kg/year [4.38], and a 

new medium size car emits 3.3 tons of CO2 per year (traveling 20,000 km/year, using 

regular gas with an automatic transmission; Natural Resources Canada 2010). 

Therefore, the carbon offset by purchasing the RAMEE for the hospital building is 

equal to planting 5450, 3440, 1850 and 1490 trees or removing 36, 23, 12 and 10 

cars off the road in Saskatoon, Chicago, Miami and Phoenix, respectively. 

4.6.5. Comparison of Two Case Studies 

Rasouli et al. [4.20] studied the application of a RAMEE in an office building 

HVAC system simulated for different climates. In this section, a comparison of 

results between the two case studies of the RAMEE (i.e., the office building and the 
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hospital) is presented. Table 4.7 summarizes the differences and similarities between 

the characteristics of the two cases. 

Table 4.7. Summary of the characteristics of each case study. 

Area: 
Office: 28800 m

2
, 10-storey 

Hospital: 3150 m
2
, 3-storey 

Heating system: 

Office: Radiator 

heating 

Hospital: VAV HVAC 

Building 

envelope: 
Similar, described in section 4.4 Cooling system: 

Similar, VAV HVAC 

Operation 

schedule: 

Office: 6:00-22:00 

Hospital: day-time: 6:00-22:00;  

                night-time: 22:00-6:00 

Min. required 

total air change 

Office: N/A 

Hospital: 6 ACH day-

time; 4 ACH night-time 

Ventilation 

rate:  

Office: 0.5 ACH 

Hospital: 2 ACH day-time;  

                1.3 ACH night-time 
Indoor RH 

Similar, below 60% 

when building is 

occupied 

Indoor set-point 

temperature: 

Office: 24°C at summer day-

time; 22°C at winter day-time; 

15°C night-time 

Hospital: 24°C in summer, 22°C 

in winter 

RAMEE’s 

control and 

operating 

condition 

Similar, refer to Tables 

4.1 

Efficiency and 

pressure drop 

of HVAC 

equipment 

Similar, specified in section 4.6 Internal loads: 

Similar in loads but 

different operation 

schedules 

 

Figure 4.11a presents the comparison of the total annual energy intensity for 

the buildings in different climates. The results show that the total energy intensity in 

the hospital without the RAMEE is 3.7, 3.1, 2.4 and 2.8 times greater than the office 

building in Saskatoon, Chicago, Miami and Phoenix, respectively. As a comparison 

to the TRNSYS simulation results, CBECS [4.19] has reported 2.8 times higher 

HVAC energy intensity in hospitals compared to office buildings in US in 2003 (i.e., 

1472 MJ/m
2
 in hospitals versus 533 MJ/m

2
 in office buildings). Figure 4.11b shows 

the energy savings with RAMEE (including heating, cooling and fan energy) that is 

48%, 45%, 8% and 17% in the hospital, and 30%, 28%, 5% and 10% in the office 

building in Saskatoon, Chicago, Miami and Phoenix, respectively. 
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Figure 4.11. Comparison of (a) energy intensity of the HVAC system without the RAMEE and 

(b) energy saved with the RAMEE for two case studies in different climate. 

 

Table 4.8 shows the comparison of operating average yearly Cr* for the two 

case studies. The results show that the average Cr* is very close for both buildings in 

each location. Therefore, average Cr* seems to be a climate-dependent parameter 

(not a building-dependent parameter). 

 

 

Table 4.8. Comparison of weighted average yearly Cr* for the two case studies in different 

locations. 

 Saskatoon Chicago Miami Phoenix 

Office 1.22 1.30 2.90 1.62 

Hospital 1.22 1.37 2.99 1.64 

 

Assuming similar air pressure drop of 2 cm of water across each LAMEE, the 

payback of the RAMEE in the hospital is about 2 years faster than the office 

building. In cold climates (Saskatoon and Chicago), the payback is immediate for 

hospitals and takes 1.8 to 2 years for office buildings. In hot climates (Miami and 

Phoenix), the payback may take 1.5 to 2.5 years for hospitals and about 4 to 4.8 

years for office buildings. 

4.7. Conclusions 
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The steady-state operation of a Run-Around Membrane Energy Exchanger 

(RAMEE) that transfers heat and moisture between outdoor ventilation and building 

exhaust air is described in the paper. The RAMEE effectiveness varies depending on 

outdoor conditions, indoor conditions, ventilation air flow rate (represented by NTU) 

and salt solution flow rate (represented by Cr*). The RAMEE effectiveness can be 

optimized by changing these parameters; however, the salt solution flow rate is the 

only controllable variable for a given building in a given location. During the winter, 

the RAMEE should operate at the Cr* which gives maximum sensible effectiveness. 

While in the summer, the RAMEE should be operated at the Cr* resulting in 

maximum reduction of outdoor air enthalpy. The RAMEE is simulated in a hospital 

building using TRNSYS computer program joint with an Artificial Neural Network 

(ANN) that predicts the optimal salt solution flow rate (corresponding to Cr*opt). The 

hospital building is simulated in four different climates, i.e., Saskatoon (cold and 

dry), Chicago (cool and humid), Phoenix (hot and dry) and Miami (hot and humid). 

The simulation results showed about 58% to 65% annual heating energy saving in 

cold climates and 15% to 20% annual cooling energy saving in hot climates. Since 

the application of hourly optimal Cr* requires an accurate control of the salt solution 

flow rate, the impact of applying average seasonal and yearly Cr* values was 

studied. Also, the results show that operating the system under seasonal or yearly 

average Cr* (that vary depending on the location) has a minimal impact on energy 

savings compared to the case that hourly optimal Cr* is applied. The life cycle 

analysis results showed that the payback of the RAMEE is immediate in cold 

climates and reduces the equivalent emission of CO2 (corresponding to the climate 

change) by 25%. In hot climates, the payback may take up to 2 to 3 years, and the 

RAMEE reduces the equivalent emission of CO2 by 10%. 
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CHAPTER 5 

SUMMARY, CONCLUSIONS, AND FUTURE WORKS  

 

5.1. Summary 

The Run-Around Membrane Energy Exchanger (RAMEE) is an air-to-air 

heat and moisture recovery system (composed of two Liquid to Air Membrane 

Energy Exchangers (LAMEEs) that are coupled with a salt solution flow) which can 

be used in Heating, Ventilating, and Air Conditioning (HVAC) systems of buildings 

to precondition the supply air stream. Like many other thermal systems (e.g. thermal 

solar panels, energy wheels, air conditioning systems, etc.), controlling the RAMEE 

to achieve the highest possible performance is important. The first step to develop a 

control algorithm for a specific system is to obtain a mathematical model 

representing the behavior of that system.  

 The objective of this thesis was to develop mathematical models to predict: 

1. the steady-state performance of a RAMEE 

2. the transient performance of a RAMEE 

The neural network (NN) approach was implemented to achieve the objectives of 

this thesis. 

After a short introduction in chapter 1, chapter 2 describes the NN model 

used to predict the steady-state performance (i.e. sensible and latent effectiveness) of 

the RAMEE. The importance of each design or operating parameter was investigated 

using appropriate sensitivity studies. Then, only the parameters that had a significant 



112 

 

effect on the RAMEE performance were included in the NN model. Sensitivity 

studies showed that the Number of Transfer Units (NTU), the solution to air heat 

capacity rate ratio (Cr*), and the indoor and outdoor air conditions (i.e. temperature 

and humidity) had a significant effect on the steady-state performance of RAMEE 

while the effect of Entrance Ratio and Aspect Ratio had a small effect and could be 

neglected. 

The training data set required for the steady-state NN model was generated 

using a finite difference numerical model which solves the physical governing 

equations for steady-state coupled heat and mass transfer through the RAMEE 

system and predicts the performance of the system for different input parameters. 

Two separate neural networks each with five inputs and one output (with two hidden 

layers of 10 neurons in each layer) were selected as the architecture with desired 

accuracy to predict the RAMEE sensible and latent effectiveness separately. The 

steady-state NN models were verified using numerical and experimental data. The 

root mean squared error (RMSE) between the numerical and NN models were 0.05 

°C for sensible results and 0.02 gv/kga for latent results, indicating satisfactory 

agreement for energy exchange calculations. Also the NN and experimental results 

agreed within the 95% uncertainty bound of experimental data. 

New NN models to predict the transient performance of the RAMEE were 

developed in chapter 3 using a similar approach as in chapter 2. A transient 

numerical model (TNM) that can predict the behavior of the system for different 

initial, design, and operating parameters was used to determine the required data set 

for training the NN models. All parameters that could affect the transient 

performance of RAMEEs were introduced and the effect of each parameter was 

investigated individually. Finally, outdoor conditions, NTU, and Cr* were included 
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in the model while the effect of initial conditions, geometrical parameters, and salt 

solution storage tanks volume were neglected. Two separate (i.e. sensible and latent) 

NN models with 12 inputs and one output were selected as representative models and 

the NN models were verified using numerical data. The mean absolute difference 

(average for all different test cities with different climates) between the results of 

transient numerical model and NN models were 0.5 °C for the sensible model and 

0.2 gv/kga for the latent model, which indicates satisfactory agreement for energy 

exchange calculations. 

 Chapter 4 presents a practical application of the NN models developed in 

chapter 2. The NN models were optimized to find the optimum effectiveness (i.e. the 

effectiveness that results in the maximum energy savings) of the RAMEE in each 

hour. These optimum effectiveness values were used in the TRNSYS computer 

program to find the maximum possible energy savings by implementing an optimally 

controlled RAMEE in a conventional hospital HVAC system. The optimized 

RAMEE reduces the annual heating energy by 58% to 66% in cold climates, and the 

annual cooling energy by 10% to 18% in hot climates. The RAMEE can also reduce 

the required capacity of the heating system by 45% in cold climates, and the required 

capacity of the cooling system by 25% in hot climates. The same analysis for the 

application of a RAMEE system in the HVAC system of an office building 

(presented in Appendix A) shows up to 43% heating energy saving in cold climates, 

and up to 15% cooling energy saving in hot climates. 

5.2. Conclusions 

According to the investigations presented in this thesis the following 

conclusions can be made: 
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1. It is concluded that the implemented neural network (NN) models in chapter 2 

are able to predict the steady-state effectiveness of the RAMEE. A completely 

unseen test set of 9000 data points which covers a wide range of parameters (i.e. 

NTU from 1 to 15, Cr* from 0.4 to 5, and outdoor and indoor conditions 

covering different climates) is used to test the accuracy of the NN models 

numerically. Also, an experimental validation for an extreme experimental case 

with H*=-0.68 is presented. 

2. The sensible and latent effectivenesses for the continuous yearly transient 

operation of the RAMEE are predicted using two separate NN models. A 

training data set of approximately 50000 points, generated using the TNM, is 

used to train the NN models using a back-propagation algorithm to minimize the 

error between the outputs of the TNM and the NN models. Finally, a 12-16-16-1 

configuration is concluded to result in a NN model of satisfactory accuracy for 

either sensible or latent energy transfer in the RAMEE. 

3. Such a fast and non-iterative mathematical model (NNs) can be used as a 

computational component in commercial building energy simulation packages to 

estimate the possible annual energy savings using a RAMEE. Also NN models 

are useful to get a quick idea of system behavior in order to modify the operation 

or design parameters. 

4. The NN models are some multivariable mathematical functions, describing the 

behavior of RAMEE, and depending on the application can be simply optimized 

using common optimization algorithms. 

5. An optimally controlled RAMEE: results in great savings in cold climates (up to 

60% in annual heating energy), significantly decreases the annual cooling 

energy in hot climates (up to 20%), downsizes the cooling or heating 
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equipments, increases the indoor air quality, and improves the health of 

occupants. 

5.3. Limitations and Future Works 

This M.Sc. thesis has shown an attempt to predict both the steady-state and 

transient performance of the RAMEE using an alternative method (NNs) with 

specific advantages over traditional numerical solutions. During the development of 

the NN models, some limitations and simplifying assumptions were applied that 

require further study to make the results of this thesis more practical and useful. 

1. The validity range of the steady-state NN models can be expanded 

significantly by including number of mass transfer units (NTUm) in the NN 

inputs. The NTUm mainly depends on membrane water vapor permeability. 

After including NTUm in the inputs, the NN models will be able to predict the 

steady-state performance of counter flow RAMEEs with different membranes 

and air and solution channel thicknesses. In order to cover the effect of NTUm 

in the steady-state models, the training data set should be expanded by adding 

new data points with different NTUm values than the existing training set. 

2. The limitations for transient NN models are: 

A. Fixed temperature and humidity ratio values are assumed for indoor 

air. 

B. The effect of initial conditions has not been included in NN models 

since the focus of chapter 3 is the non-stop yearly operation of 

RAMEE. 

C. The NN models are developed for a specific design of counter flow 

RAMEE. Therefore, major modifications in geometrical design, 
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membrane properties, storage tank volume, or flow configuration may 

require new training data sets and new NN models. 

Each of the above mentioned limitations can be a topic for further study. 

3. The transient NN models are developed to cover different climates. This 

decreases the accuracy of the NN models. For significantly better results, 

sophisticated NN models that are simpler and highly accurate can be 

developed for each specific climate or location. In this case, the NN models 

will have less difficulty to map the data since it will be easier to model a 

specific weather pattern than a few different weather patterns at the same 

time.  

4. Any modifications like expanding the range of input parameters, significantly 

changing the aspect and entrance ratios, or changing the salt solution type 

(with something other than MgCl2 or LiBr) may require re-training the 

existing models or developing new NN models using appropriately modified 

training data sets. 

5. In chapter 4 and Appendix A it was assumed that the RAMEE is always 

operating close to steady state condition. The validity of this assumption can 

be double checked by repeating the TRNSYS simulations using transient NN 

models of chapter 3 instead of steady-state NN models of chapter 2. 
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APPENDIX A 

MANUSCRIPT #4 

Application of a Run-Around Membrane Energy Exchanger in an office 

building HVAC system  

M. Rasouli, S. Akbari, H. Hemingson, R.W. Besant and C.J. Simonson 

 

Abstract 

 A Run-Around Membrane Energy Exchanger (RAMEE) has been introduced 

in the literature as a novel energy recovery system that transfers heat and moisture 

between the ventilation and exhaust air. The RAMEE consists of two separate 

(supply and exhaust) flat-plate exchangers made of water vapor permeable 

membranes, and coupled with an aqueous salt solution. In this paper, the application 

of a RAMEE in an HVAC system is investigated. The paper discusses the 

dependency of RAMEE performance on ventilation air and salt solution flow rates 

and indoor and outdoor air conditions and describes how to control the RAMEE in 

different operating conditions (summer, winter and part-load). An Artificial Neural 

Network (ANN) that is able to predict the optimal system performance was 

developed in previous research. The ANN results are used for TRNSYS computer 

simulation of the RAMEE system when operating in an office building in four 

different climates. The results show up to 43% heating energy saving in cold 

climates, and up to 15% cooling energy saving in hot climates. Cost analysis proves 

the important role of pressure drop across the exchangers in life cycle cost, and 

predicts payback period ranging from 2 to 5 years for the RAMEE. 

 

 



118 

 

1. Introduction 

Recent research has presented a strong relationship between indoor air 

quality (IAQ) and occupants’ productivity [A.1-A.3]. On the other hand, studies have 

indicated a higher demand for energy when a higher ventilation flow is introduced to 

a conditioned space [A.4-A.6]. Therefore, HVAC system operating conditions and 

equipment sizes should be optimized to provide a satisfactory level of productivity 

and thermal comfort while HVAC energy consumption is minimized. 

Energy Recovery Ventilators (ERVs) reduce the energy required to condition 

ventilation air by transferring heat (and moisture) between conditioned exhaust air 

and outdoor ventilation air. The pre-conditioning of this outdoor air reduces the 

energy required by HVAC systems, while thermal comfort is satisfied. In general, 

ERVs can be divided into two groups: i.e., heat recovery systems which transfer only 

sensible heat, and heat and moisture recovery systems (also called energy 

exchangers) which transfer both sensible and latent energy. Heat pipes, flat plate heat 

exchangers and rotary heat wheels only transfer heat between the supply and exhaust 

airstreams, however, they are common due to their low pressure drop and convenient 

maintenance [A.7]. The main disadvantage of heat recovery systems is that they 

cannot transfer moisture. Energy wheels and permeable flat plate exchangers can 

transfer both heat and moisture. For example, an energy wheel coated with a 

desiccant can transfer both heat and moisture between two air streams [A.8-A.9]. 

Flat plate exchangers constructed with water permeable membranes can transfer heat 

and moisture between the airstreams [A.10]. 

All above mentioned devices require that the supply and exhaust ducts to be 

side-by-side which usually imposes higher ducting costs. In addition, contaminant 

carryover in rotary wheels and cross-flow leakage of air through seals are concerns 
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in some types of buildings such as health care facilities and laboratories. The extra 

ducting cost and the contaminant transfer could be avoided if the exhaust and supply 

air ducts were separated. In this paper, a literature review on a novel Run-Around 

Membrane Energy Exchanger (RAMEE) which is capable of transferring both heat 

and moisture between remote supply and exhaust ducts is presented. Since the 

performance of a RAMEE depends on the ventilation air and salt solution flow rates 

and indoor and outdoor air conditions, which continuously change throughout the 

year, appropriate control of the RAMEE system is needed. Therefore, an 

investigation on the optimum operation of a RAMEE during summer, winter and 

part-load conditions is conducted. As a case study, an office building equipped with 

a RAMEE is simulated in different climates using the TRNSYS [A.11] computer 

program, and the potential cooling and heating energy savings are presented. A Life 

Cycle Cost Analysis (LCCA) is performed over a 15-year period to study the 

economics of the RAMEE system compared to a conventional HVAC system with 

no energy recovery. 

2. Run-Around Membrane Energy Exchanger (RAMEE) 

In this section, an overview of the literature is presented to introduce the 

RAMEE. A schematic of exchangers and the flow diagrams of a HVAC system 

equipped with a RAMEE is described. The parameters affecting the RAMEE 

effectiveness are discussed. 

2.1. Exchanger Design 

A Run-Around Membrane Energy Exchanger (RAMEE), shown in Figure 

A.1a, which exchanges both heat and water vapor between the exhaust air and un-

conditioned outdoor ventilation air has been proposed to overcome the limitations of 



120 

 

currently available ERVs [A.12]. The RAMEE system consists of two separate 

exchangers with a salt solution coupling liquid that is pumped in a closed loop 

between the two exchangers. Each exchanger, which is called a liquid to air 

membrane energy exchanger (LAMEE), is a flat plate energy exchanger constructed 

with vapor permeable membranes that allow the transmission of water vapor but not 

liquid water. The salt solution loop couples these two LAMEEs in the RAMEE, and 

the air and salt solution may flow in cross flow [A.13-A.14], counter/cross flow 

[A.15-A.16] or counter flow [A.17] arrangement through each of the two LAMEEs 

placed into the supply and exhaust streams. However, the flow arrangement that 

combines high performance with practical header design is the cross/counter flow 

arrangement as shown in Figure A.1(b). It should be noted that the numerical 

simulation results of a counter flow LAMEE are used in this paper [A.16]. However, 

the manufacturer may consider a counter/cross flow due to the limitation in 

separating the flow inlets. The numerical model of the RAMEE system shows that a 

good cross/counter flow will reduce the RAMEE effectiveness by less than 2% 

compared to a counter flow design at the same operating condition [A.18].  

 

Figure A.1. Schematic diagram of a (a) HVAC system equipped with a RAMEE, and (b) air and 

solution flow in a LAMEE. 

  

The RAMEE system uses the exhaust air to precondition the ventilation air 

and decreases the energy consumption and the size of the heating/cooling equipment. 
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For example, during the summer when the outdoor air is warm and humid, the 

desiccant salt solution gains heat and moisture from the ventilation air stream in the 

supply exchanger. The solution is then pumped into the exhaust exchanger where it 

releases this heat and moisture to the exhaust air stream. This loop cools and 

dehumidifies the outdoor ventilation air in summer. During winter, the salt solution 

gains heat and water vapor from the conditioned exhaust air when passing through 

the exhaust exchanger. This solution then releases both heat and moisture while it 

flows through the supply exchanger and thus pre-conditions (i.e., heats and 

humidifies) the ventilation air before it enters to the heating equipment. 

2.2. System Performance 

Based on the numerical model developed in previous research [A.16-A.17] 

for a RAMEE system with equal supply and exhaust air flow rates, the RAMEE 

effectiveness in transferring heat (εs), moisture (εl) and enthalpy (εt) is a function of 

three dimensionless groups, i.e., NTU (number of heat transfer units), NTUm (number 

of mass transfer units) and Cr* (ratio of salt solution heat capacity to that of the air) 

as defined below: 

   
     
     

 (A.1) 
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 ̇         
 (A.4) 
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 ̇         

 ̇         
 (A.6) 

In addition, the system performance strongly depends on the condition of 

outdoor ventilation air, and slightly depends on the indoor air conditions which 

might vary between summer and winter indoor set-points [A.17]. 

2.2.1. Impact of NTU and Cr* on RAMEE Performance 

Equation A.4 shows that NTU is directly related to the heat exchange surface 

area of each exchanger and represents the size of the RAMEE. The higher the NTU, 

the higher the effectiveness (shown in Figure A.2(a)) [A.17]. Cr* characterizes 

thermal capacity rate of the liquid flow compared to the thermal capacity rate of the 

air flow in the RAMEE system and is similar to Cr used in the literature to describe 

the thermal capacity rate ratio for run around heat exchangers [A.18]. As shown in 

Figure A.2(b), effectiveness increases from zero as Cr* increases from zero until it 

reaches the peak value. The optimum Cr* at which the peak performance is achieved 

depends on the type of ERV. For instance, the maximum effectiveness of a run-

around heat and moisture recovery system operating at the AHRI summer test 

conditions [A.19] occurs approximately at Cr*=3 (for equal supply and exhaust air 

flow rates), while a run-around heat recovery system has its peak effectiveness at 

Cr=1 [A.20]. 

Hemingson et al. [A.17] used a numerical model to predict the RAMEE 

effectivenesses in different outdoor conditions and these results showed good 

agreement with heat transfer theory. They indicated that the RAMEE effectiveness 

increases with NTU (as shown in Figure A.2(a)) and it follows the same trend as 
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expected by analytical solutions and empirical correlations [A.21-A.22]. The system 

has a significantly higher sensible effectiveness and slightly higher latent 

effectiveness when its NTU is increased. Also, increasing NTUm leads to a 

considerable increase in latent effectiveness and a slight increase in sensible 

effectiveness. The system performance varies with Cr* until it reaches the optimal 

value where the peak performance is achieved. This is schematically shown in Figure 

A.2(b) for a specific outdoor condition. It should be noted that the dependency of the 

RAMEE effectiveness on Cr* varies with outdoor condition and is discussed in the 

next section.  

 

Figure A.2. Variation of RAMEE effectiveness as a function of NTU and Cr* for outdoor 

condition at 5°C and 5 g/kg and indoor condition at 22°C and 9.3 g/kg (a) NTU (at Cr*=1.3) and 

(b) Cr* (at NTU=10). 

2.2.2. Impact of Indoor and Outdoor Conditions on RAMEE Performance 

Hemingson et al. [A.17] showed the influence of outdoor air temperature and 

humidity on the effectiveness of the RAMEE. The main reason for the dependency 

of RAMEE effectiveness on outdoor conditions is the impact that outdoor 

temperature and humidity will have on the liquid desiccant and the fact that heat and 

moisture transfer are coupled. The moisture transfer between the two fluid streams in 

each LAMEE releases/absorbs phase change energy and increases/decreases the 

desiccant temperature and consequently the sensible effectiveness. The change in 
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desiccant temperature and humidity due to heat and moisture transfer affects the 

latent effectiveness of the system as well.  Hemingson et al. [A.17] concluded that as 

the temperature difference between outdoor and indoor air increases (either summer 

or winter), the latent effectiveness increases. Also, the greater the humidity ratio 

difference between the indoor and outdoor air, the higher the heat transfer. Figure 

A.3 presents the RAMEE effectiveness for five different outdoor conditions for 

NTU=10 where the summer/winter indoor conditions are chosen from the AHRI test 

conditions [A.19]. 

 

Figure A.3. RAMEE effectiveness versus Cr* for five different outdoor conditions (NTU=10) (a) 

the psychometric chart, (b) cold-dry (5°C and 5 g/kg), (c) hot-humid (35°C, 20g/kg), (d) hot-dry 

(30°C, 2g/kg), (e) cool-humid, high enthalpy (22°C, 15g/kg), and (f) cool-humid, low enthalpy 

(19°C, 10g/kg). 
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Figure A.3 shows that the optimal Cr* (i.e., the Cr* at which the maximum 

RAMEE effectiveness is achieved) varies significantly with outdoor condition. Cr*, 

as defined in Equation (A.3), depends on ventilation air and salt solution flow rates. 

For a given building, where ventilation rates are maintained at a constant rate 

specified by standards [A.23-A.24], Cr* remains only a function of the salt solution 

flow rate. Therefore, the salt solution flow rate should be controlled to give the 

optimal Cr* at all outdoor conditions.  

Regarding the impact of indoor condition, Hemingson et al. [A.17] found that 

changing the indoor conditions between summer and winter indoor temperature and 

humidity set-points has a minimal impact on RAMEE performance (about 0.3% 

change in total effectiveness). 

3. RAMEE Control  

As mentioned in the previous section, the RAMEE effectiveness depends on 

NTU, Cr* and indoor and outdoor air conditions. Among these variables, only NTU 

and Cr* are controllable and the optimal operation of the RAMEE system requires 

proper control of these variables. The design NTU is determined during the 

exchanger design and manufacturing process. But, it can be changed by changing the 

ventilation air flow rate (e.g., bypassing a fraction of ventilation air) during the 

operation of the RAMEE. The operating Cr* can be controlled via adjustment of salt 

solution or ventilation air flow rates by the operator during the operation of the 

RAMEE.  

NTU represents the size of the RAMEE system, and the greater the NTU, the 

higher the effectiveness. On the other hand, increasing the size of the system 

increases the manufacturing costs [A.25]. Therefore, NTU should be large enough to 

give a reasonable effectiveness, but not extremely large which may cause excessive 



126 

 

production cost. A design NTU of 10 is found feasible in the literature [A.25] and is 

used for this study. However, it may change as the ventilation rate might change 

during the operation of the RAMEE. The following sub-sections discuss the 

appropriate control of Cr* and NTU to achieve the optimal performance of the 

RAMEE system in different operating conditions (i.e., summer, winter and part-

load). 

3.1. Heating Season (Winter) 

When the outdoor temperature is lower than the HVAC system indoor set-

point, and the internal heat loads and solar radiation gains do not satisfy the space 

heating demand, the heating system needs to be operated. Due to a low outdoor air 

temperatures and moisture content, conditioning the outdoor ventilation air during 

cold weather requires heating and possibly humidification.  

Previous research [A.9] and [A.26-A31] has studied the savings using 

different types of ERVs in various climates and have found that the operation of 

ERV is beneficial especially for cold weather conditions. For instance, Rasouli et al. 

[A.28] simulated an office building in different climates and showed that ERVs with 

sensible effectiveness values in the range of 55%-95% may save 15-30% of annual 

heating energy for buildings in cold climates. They showed that in a typical office 

building in the US, the sensible heating accounts for most (about 96%) of the annual 

HVAC heating energy consumption while humidification accounts for less than 4% 

of the annual heating energy when the goal is to maintain an indoor humidity of 30% 

R . Since humidification energy is small and many buildings don’t have 

humidification system, the focus on the winter is to reduce the sensible heating 

energy. 
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As shown in Figure A.3, the Cr* at which maximum sensible, latent and total 

effectiveness occur depends on the outdoor conditions. As indicated by Rasouli et al. 

[A.28], minimizing the sensible heating load of the HVAC system is the main 

concern during the winter, therefore, the optimal Cr* is the Cr* at which the sensible 

effectiveness is maximum (Cr* of about 1.5 in Figure A.3(b)). Applying such an 

optimal Cr* does not sacrifice the latent effectiveness, and gives a latent 

effectiveness that is only slightly lower than its peak value. The moisture transfer 

from exhaust air to the outdoor ventilation air should improve the indoor humidity 

during the winter when outdoor air is mostly dry and humidification is not provided 

by the HVAC system. Studies have shown that absenteeism in schools and offices 

may be reduced when the indoor humidity is increased in the winter [A.32-A.33]. 

3.2. Cooling Season (Summer) 

Research on ERVs in the cooling season has shown that reducing the annual 

cooling energy requires proper control of the ERV ([A.29] and [A.34-A.35]). In 

general, the present control strategies can be categorized into two groups: (i) 

temperature-based controls which allow the ERV to operate only if the outdoor air 

temperature is greater than the indoor air, and (ii) enthalpy-based controls which 

allow the ERV to operate only if it can reduce the enthalpy of outdoor air. Rasouli et 

al. [A.29] compared the present control strategies and proposed an optimal ERV 

control. Based on their results, an ERV should be operated only if it can reduce the 

enthalpy of outdoor ventilation air, and the greater the reduction of outdoor air 

enthalpy the lower the coil cooling load. Therefore, as defined in Equation (A.3), the 

RAMEE system should be operated at maximum absolute total effectiveness when 

the outdoor enthalpy is greater than the indoor, and should have minimum (and 

negative) total effectiveness when the outdoor enthalpy is lower than the indoor. 



128 

 

For a better explanation, refer to the performance of the RAMEE in four 

different summer outdoor conditions presented in Figure A.3(c), (d), (e), and (f). For 

cases (c) and (e), where the outdoor enthalpy is greater than the indoor enthalpy, the 

RAMEE should be operated at maximum positive total effectiveness (i.e., Cr* of 

about 2.5). Such Cr* maximizes both heat and moisture transfer (cooling and 

dehumidification) for the hot-humid case (Figure A.3(c)). But, it maximizes the 

moisture transfer (dehumidification) and minimizes the heat transfer (heating) for the 

cool-humid case (Figure A.3(e)). When the outdoor enthalpy is lower than the indoor 

enthalpy and the cooling is still required, the RAMEE should be operated only if a 

negative total effectiveness can be achieved by adjusting the appropriate Cr*. 

Therefore, for case (d), the RAMEE should be operated at Cr* of about 0.8 where 

the minimum (and negative) total effectiveness is achieved. Such Cr* maximizes the 

heat transfer (cooling) and minimizes the undesirable moisture transfer 

(humidification). In case (f), however, the RAMEE should be turned off, because no 

Cr* value gives negative total effectiveness values. 

3.3. Economizer  

During the heating and cooling season, HVAC system energy consumption 

increases as the outdoor ventilation rate increases [A.4-A.5]. Therefore the outdoor 

air flow is typically maintained at the minimum rate that satisfies ASHRAE 

ventilation standard requirements [A.23]. However, during cool summer days when 

the internal loads and solar gains necessitate the operation of the cooling system, free 

cooling can be provided by increasing the outdoor air flow rate. In such outdoor 

conditions, the RAMEE should be turned off (to prevent heating of the cool outdoor 

air) and an economizer should be employed to introduce 100% outdoor air to meet a 

portion (or all) of the building cooling load. This will reduce (or even eliminate) the 
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cooling load and improves the indoor air quality. Seem and House [A.36] introduced 

a strategy to control economizers based on minimization of coil cooling load. Their 

results showed that the outdoor ventilation flow should be increased when the 

outdoor enthalpy and outdoor temperature are lower than the indoor. In practice, the 

introduction of 100% outdoor air when the outdoor temperature is slightly lower than 

the indoor temperature may not be beneficial, because the additional fan power may 

exceed the cooling energy savings. Therefore, in this paper, 100% outdoor air is 

provided when the outdoor enthalpy is lower than the indoor enthalpy and the 

outdoor temperature is between 14°C and 20°C. To prevent thermal discomfort, if 

the outdoor temperature falls below 14°C, a fraction of the exhaust air is recirculated 

and mixed with the outdoor air to maintain minimum of 14°C supply temperature.  

3.4. Part-Load Operation 

During cool summer days when the outdoor temperature is lower than the 

indoor temperature, a cooling system might be still required to meet the internal heat 

loads and solar radiation gain. The supply temperature is determined based on the 

building cooling load and the required ventilation air flow rate. In case the outdoor 

temperature is below the required supply temperature, the outdoor air needs to be 

heated up to the desired supply temperature. As an alternative, an ERV could be 

operated to heat the ventilation air, however, full-load operation of the ERV may 

overheat the outdoor air to temperatures greater than the desired supply temperature. 

This require the cooling of overheated air, and in such conditions, the ERV should be 

operated in part-load operating condition (i.e., not in full capacity of transferring heat 

and moisture).  

Depending on the type of ERV, different methods can be used to adjust the 

effectiveness to the desired value. For example, adjusting the wheel speed for energy 
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wheels, decreasing the flow rate of the fluid streams (ventilation or exhaust) or by-

passing a fraction of the ventilation air can give the required effectiveness for other 

ERVs. For the RAMEE system, considering the parameters affecting the system 

effectiveness, adjusting NTU or Cr* are the two available strategies to control the 

part-load operation. Considering Equations (A.4) and (A.6), Cr* and NTU are 

functions of salt solution and ventilation air flow rate, therefore the system 

effectiveness could be changed by changing the flow rate of any of these two 

streams. Between the two available options, adjusting NTU is simpler because the 

RAMEE effectiveness is more predictable with changing NTU (i.e., effectiveness 

increases with NTU), but the effectiveness has a complex behavior with changing 

Cr* as shown in Figure A.3 By-passing a fraction of ventilation air, as shown 

schematically in Figure A.4, decreases the heat transfer from exhaust air to the cool 

ventilation air and prevents overheating. The bypass fraction should be adjusted 

carefully to give the desired supply temperature.  

 
Figure A.4. Schematic of the RAMEE system operating under part-load condition. 

For given indoor and outdoor conditions and a known ventilation rate (i.e., 

minimum standard requirement), the condition at state (3) is a function of RAMEE 

effectiveness, and the fraction of ventilation air bypassing the RAMEE:  
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 ̇           ̇    

 ̇        ̇ 
 (A.7) 

Where T2 is the condition of outdoor air leaving the RAMEE and can be stated as: 

        (     ) (A.8) 

And, assuming no air leakage in the exchangers: 

 ̇        ̇   ̇                   (        ) (A.9) 

The condition at state (3) can be specified as a function of RAMEE effectiveness and 

bypass fraction by substitution of Equations A.8 and A.9 into Equation A.7: 

        (   )(     ) (A.10) 

where, R is the bypass fraction and is defined as: 

  
 ̇      

 ̇ 
 

(A.11) 

Equation A.13 can be re-arranged to determine the bypass fraction: 

    
     

  (     )
 

(A.12) 

Equation (A.12) determines the by-pass fraction as a function of indoor, outdoor and 

supply temperature and the RAMEE optimal sensible effectiveness at the given 

operating condition. 

 In conclusion, the operation of RAMEE in different outdoor conditions is 

shown on the psychometric chart in Figure A.5. States (3) and (4) refer to the 

condition of the supply air and indoor air, respectively. 
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Figure A.5. Operating condition of the RAMEE system in different outdoor condition. 

4. Model Specification 

4.1. Building Description 

The RAMEE system is simulated in a 10-storey office building with total 

floor area of 28,800 m
2
 (310,000 ft

2
), representing 3.34% of the existing U.S. office 

buildings [A.37]. The building description is taken from a study carried out at Pacific 

Northwest National Lab and includes the building parameters required for an energy 

analysis. The original building is constructed in Fort Worth, Texas, and only has 

about 2 cm (0.8 in) of insulation which gives a thermal resistance of 0.78 m
2
 K/W 

(4.43 h ft
2
 F/BTU). In order to have a building that could fairly represent a typical 

building in different locations, walls, slabfloor and roof are improved by adding 

insulation layers. Walls are made of light weight concrete, an insulation layer and 

gypsum board that gives a total thermal resistance of 2.72 m
2
 K/W (15.45 h ft

2
 

F/BTU). The roof is made of built up roofing, insulation and aluminum siding that 

gives a total thermal resistance of 3.64 m
2
 K/W (20.68 h ft

2
 F/BTU) and the slab 
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thermal resistance is 3.45 m
2
 K/W (19.60 h ft

2
 F/BTU). The windows are changed 

from single pane (as specified in the original PNL report) to double pane windows. 

The building has about 30 W/m
2
 (9.5 BTU/h ft

2
) of internal heat gains based on PNL 

report. An occupant density of 5 People/100 m
2
 (≈ 0. 7 people/100 ft

2
) is assumed 

that gives an outdoor ventilation air flow rate of 0.5 ACH (11.3 m
3
/s; 24,000 CFM), 

limited to occupied hours (7am to 9pm), to meet the ASHRAE ventilation 

requirement [A.23]. 

4.2. HVAC System 

The cooling system operating in the described building is a variable air 

volume HVAC system (VAV HVAC) that supplies air at 14°C (57.2 F) or higher 

when the building is occupied. The RAMEE system pre-conditions the ventilation 

air, and the cooling unit completes the air-conditioning process and provides the 

supply air at the required temperature and humidity to maintain the indoor conditions 

at the average ASHRAE comfort temperature (i.e., 24°C (75.2 F) in summer) [A.38]. 

The cooling system may sensibly cool the supply air if it is dry enough to provide a 

satisfactory indoor humidity, but dehumidification is provided to prevent indoor 

humidity ratios above 12 g/kg (0.012 lb/lb) (about 64% RH at specified indoor 

temperature). 

The heating system consists of radiators that operate with hot water (natural 

convection) and are installed inside the building. The radiant heating system mainly 

addresses the building loads and maintains an indoor temperature of 22°C (71.6°C) 

in the winter [A.38]. Outdoor ventilation air is provided when the building is 

occupied and the RAMEE system along with an auxiliary heating system heats the 

ventilation air up to 14°C (57.2 F) to prevent thermal discomfort. During unoccupied 
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hours, no ventilation air is provided, and the radiant heating system does not operate 

unless the indoor temperature falls below 15°C (59 F). 

The outdoor ventilation rate is maintained at the minimum standard 

requirement (i.e., 0.5 ACH) when the building is occupied, unless economized 

cooling is available. During economizer operation, the outdoor ventilation rate can 

increase up to 4 ACH. The ventilation rate is reduced to 50% and 25% of the design 

flow rate on Saturdays and Sundays due to lower occupancy, respectively.  

4.3. Climatic Conditions 

The described office building is studied in Saskatoon (Saskatchewan, cold-

dry climate), Chicago (Illinois, cool-humid climate), Miami (Florida, hot-humid 

climate) and Phoenix (Arizona, hot-dry climate) as the four North American cities 

that represent different climate zones [A.39]. Figure A.6 shows the yearly 

distribution of outdoor conditions for each location in three main regions on the 

psychometric chart; i.e., Region 1 includes low outdoor temperatures when heating is 

required (i.e., the HVAC system is in heating mode), region 2 includes outdoor 

conditions when economized cooling is available (lower temperature and lower 

enthalpy than the indoor), and region 3 includes high temperature and humidity 

outdoor conditions where cooling and possibly dehumidification is required. The pie 

graph associated with each building location presents the fraction of a year that the 

HVAC system operates in each specific region. Typical Meteorological Year (TMY 

2 weather data format) [A.40] which contains typical hourly weather data required 

for yearly building energy analysis is used for this study.  
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Figure A.6. TMY2 yearly distribution of hourly outdoor conditions and HVAC system 

operation when heating is required (1), economized cooling is available (2) and cooling is 

required (3) in  (a) Saskatoon, (b) Chicago, (c) Miami and (d) Phoenix. 

4.4. Simulation Program 

The numerical solution of heat and mass transfer in the RAMEE system for 

steady-state and balanced air flow rates was developed in previous research [A.12], 

[A.16], and [A.17]). Akbari et al. [A.41] developed an Artificial Neural Network 

(ANN) that is able to predict the RAMEE performance. The neural network was 

subjected to direct pattern search optimization algorithm that is able to find the 

optimal operating Cr* at any given condition. The thermal system (including the 

HVAC system, RAMEE and the building) is simulated using the TRNSYS building 
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energy simulation tool [A.11] equipped with the Second version of TESS libraries 

[A.42] working in conjunction with MATLAB 2010 programming language. Figure 

A.7 schematically shows the dataflow between the TRNSYS model and the ANN. 

 
Figure A.7. Schematics of the dataflow between the TRNSYS model and the ANN. 

At any specific hour, the TRNSYS simulation gives the hourly building loads 

based on internal loads, infiltration rate and outdoor condition (temperature, 

humidity, solar radiation, wind, etc.). Assuming that the RAMEE system is not 

employed, the condition and flow rate of the supply air to the conditioned space that 

meets the space loads, minimum ventilation requirement, and the indoor comfort 

conditions, and the hourly heating/cooling loads are calculated. Based on the indoor 

and outdoor conditions the TRNSYS model (and the assumed NTU of 10), the ANN 

predicts the optimal Cr* and the sensible and latent effectiveness associated with 
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such optimal Cr*. The sensible and latent effectiveness are input to the TRNSYS 

model of the RAMEE system. The operation of RAMEE system under specified 

effectivenesses preconditions the outdoor ventilation air and reduces the 

heating/cooling loads. It should be noted that the operation of RAMEE may slightly 

change the indoor condition compared to the base case. Such a change in indoor 

condition can affect the system effectiveness and requires iterations to determine the 

modified system effectiveness based on new indoor conditions. Iterations between 

the TRNSYS and ANN models are not conducted here, because typical variations in 

indoor conditions may change the RAMEE effectiveness by less than 0.3% [A.17]. 

5. Results and Discussions 

In this section, the TRNSYS simulation results of the RAMEE employed in 

different climates are presented. The results mainly focus on the impact of the 

RAMEE on annual energy consumption and equipment sizes for both heating and 

cooling seasons at each location. As mentioned before, the ANN predicts the hourly 

optimal Cr* at which the RAMEE system should operate to have the peak 

performance. The optimal Cr* varies from hour to hour as the outdoor (and possibly 

indoor) conditions change. Figure A.8 shows the hourly values of optimal Cr* 

during one year in each location.    
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Figure A.8. Yearly variation of hourly optimal Cr* values for different climatic conditions, (a) 

Saskatoon, (b) Chicago, (c) Miami, and (d) Phoenix. 

As is shown in Figure A.8, the optimal Cr* (Cr*opt) is higher in the summer 

than in the winter. For cold climates (Saskatoon and Chicago), the average Cr*opt is 

close to 1.2, where for Miami as representative of hot and humid climate, the optimal 

hourly Cr* is close to 3 for most of the year. As shown in Equation (A.6), Cr* is a 

function of ventilation air and salt solution flow rates. Having the ventilation rate set 

at the minimum ASHRAE requirement, the solution flow rate has to be controlled to 

achieve the optimal Cr*. In the next sections, the annual cooling and heating energy 

saved due to the use of the RAMEE when operating under hourly optimal Cr* is 

presented. 

5.1. Heating Season 

The results for annual heating saving and reduction in the size of heating 

system when the RAMEE is operating under hourly optimal Cr* (i.e., the Cr* that 

gives the maximum sensible effectiveness) are presented in Figure A.9.  
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Figure A.9. Impact of the RAMEE on (a) annual heating energy consumption and (b) the size of 

heating equipment. 

The simulation results presented in Figure A.9, indicate that the operation of 

the RAMEE under optimal Cr* leads to 32%, 43%, 74% and 63% annual heating 

energy saving in Saskatoon, Chicago, Miami and Phoenix, respectively. The size of 

heating equipment is also reduced by 23%, 26%, 38% and 29% in Saskatoon, 

Chicago, Miami and Phoenix, respectively. The results obtained from a series of 

TRNSYS simulations of constant effectiveness ERVs indicated that such savings 

could be achieved if a constant effectiveness ERV with sensible effectiveness of 

about 77% was employed in the same building during the heating season. 

5.2. Cooling Season 

The results from the TRNSYS simulation of the RAMEE operating in the 

office building during the cooling season are presented in Figure A.10. The results 

show that the RAMEE with economizer reduces the annual cooling energy by 39%, 

21%, 8% and 15% in Saskatoon, Chicago, Miami and Phoenix, respectively. The 

cooling energy saved in Saskatoon (cold climate) is mostly due to the presence of 

economizer, which saves about 30% of the cooling energy, rather than the RAMEE 

itself, which saves about 9% of annual cooling energy. This is because Saskatoon 
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represents a cold climate and free cooling is available for a majority of the time in 

cooling season (Figure A.6). On the other hand, the savings with the RAMEE 

account for the majority of cooling energy saved in Miami and the RAMEE system 

alone reduces the cooling energy by 7%, and adding an economizer results in an 

additional 1% energy saving. The size of the cooling equipment is reduced by 5% in 

Saskatoon and Phoenix, and by 10% in Miami and remains unchanged in Chicago.  

 

Figure A.10. Impact of the RAMEE system on (a) annual cooling energy consumption and 

(b) the size of cooling equipment. 

It should be noted that Commercial Building Energy Consumption Survey 

(CBECS) has reported an average energy intensity of 533 MJ/m
2
.year (46.9 

Thousand BTU/ft
2
.year) for HVAC system energy consumption in US office 

buildings [A.43]. In this research, the energy intensity of the studied office building 

varies depending on the climate and for the base case it is found 555, 300, 304 and 

237 MJ/m
2
.year (48.8, 26.4, 26.7 and 20.9 Thousand BTU/ft

2
.year) for Saskatoon, 

Chicago, Miami and Phoenix, respectively. These results are lower than the CBECS 

average value except for Saskatoon. This could be due to the fact that existing 

buildings may have equipments operating at lower efficiencies compared to the high-

efficient heating and cooling equipments used in this paper (i.e., boiler with 88% 

nominal combustion efficiency, cooling unit with COP of 3 and fans of 60% 
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efficiency). In addition, as mentioned previously, the building envelope was 

improved by using double pane glasses (instead of single pane glasses that are used 

in the original building) and adding 10 cm (4 in) and 15 cm (6 in) of insulation to 

walls and roof, respectively. Having the RAMEE and an economizer employed in 

the office building, the total energy intensity was reduced by 30%, 32%, 5% and 

12% in Saskatoon, Chicago, Miami and Phoenix, respectively. 

6. Control Based on Average Cr* Values 

For any specific outdoor condition, the implementation of optimal Cr* 

requires an accurate control of salt solution flow rate to achieve the desired Cr* 

value. As shown in Figure A.8, a scatter variation of optimal hourly Cr* between 1 

and 5 is observed; however, the optimal Cr* stays fairly constant during each season. 

For example in Chicago, the optimal Cr* fluctuates around an average value of 1.2 

during the winter and increases to about 2.4 during the summer. Therefore, it may be 

possible to use a constant salt solution flow rate (Cr* value) during each season (or 

during the entire year) rather than having the Cr* value change every hour. Table 

A.1 shows the seasonal and yearly weighted averaged values of Cr* for each 

location for the office building and its associated standard deviation. The standard 

deviation is higher for cooling season as the optimal Cr* has a more scatter variation 

with Cr* in summer (shown in Figure A.8). The weighted average Cr* is defined as: 

     
  

∑        
    

    
   

∑    
    
   

 
(A.13) 

Where: Cr*opt,i and Qi are the optimal Cr* and energy transfer via the 

RAMEE system (positive values for both heating and cooling) at i
th 

hour, 

respectively.  
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When employing the seasonal average Cr* value, the Cr* switches between 

the heating and cooling set-points according to the season. But, with the yearly 

average value, the RAMEE system operates with constant Cr* throughout the year. 

Table A.1. Seasonal and yearly weighted average Cr* and associated standard deviation for the 

office building in each location. 

 Seasonal average Cr* Yearly average 

Cr*  Winter (heating) Summer (cooling) Heating and cooling 

Saskatoon 1.21±0.05 2.19±0.17 1.22±0.29 

Chicago 1.24±0.05 2.41±0.31 1.30±0.46 

Miami 1.43±0.01 2.91±0.38 2.90±0.41 

Phoenix 1.29±0.02 1.76±0.51 1.62±0.54 

 

Table A.2 presents the annual cooling and heating energy savings when the 

RAMEE system operates under specified average Cr* values. In order to highlight 

the effect of implementing average Cr* values on RAMEE savings, the energy 

savings with economizer are not included in the cooling savings. 

Table A.2. Annual energy saved with the RAMEE system operating with selected average Cr* 

values. 

 Annual heating energy saved Annual cooling energy saved 

 Optimal  

Cr* 

Seasonal  

Cr* 

Yearly  

Cr* 

Optimal  

Cr* 

Seasonal  

Cr* 

Yearly  

Cr* 

Saskatoon 32% 32% 32% 9% 9% 8% 

Chicago 43% 43% 43% 6% 6% 5% 

Miami 74% 74% 67% 7% 7% 7% 

Phoenix 63% 62% 61% 8% 8% 7% 

 

Based on the results obtained from the TRNSYS simulation of the studied 

office building (Table A.2), the annual cooling and heating energy savings are nearly 

the same whether hourly or average Cr* values are used. Such an insignificant 

change in annual energy savings can be explained by considering the behavior of the 

RAMEE effectiveness as a function of Cr* presented in Figure A.3. As shown in the 

figure, changing the Cr* around the optimal value does not influence the RAMEE 

effectiveness significantly (sensible effectiveness in the winter and total 
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effectiveness in the summer). For instance, for typical summer conditions presented 

in Figures A.3c and 3.3e, the total effectiveness is fairly constant for Cr* values 

ranging from 2 to 3. Therefore, applying an average Cr* value instead of the hourly 

optimal value does not reduce the total effectiveness and consequently the cooling 

energy saved significantly. As an advantage of implementing yearly average Cr* 

value, there is no need to vary the salt solution flow rate as seasons change; however, 

a negligible reduction in annual savings is observed compared to seasonal average 

Cr* approach. 

7. Life Cycle Cost Analysis (LCCA) 

A Life Cycle Cost Analysis (LCCA) of the RAMEE system is performed to 

study the system from an economic point of view. The LCCA is carried out for three 

different alternatives; i.e., the base case where the VAV HVAC system is not 

equipped with an economizer or ERV, the second alternative that is the VAV HVAC 

system equipped with the RAMEE, and a case where the HVAC system is equipped 

with an economizer and the RAMEE. The LCCA is carried out over a 15-year life 

cycle and the present value method (all expenses converted to the present equivalent 

value) is used. The LCCA includes capital costs and operation costs. The capital 

costs (or investment costs) include all the expenses before the project begins to 

operate and includes the cost of heating and cooling equipment, supply and exhaust 

fans and the RAMEE. The operational costs are defined as all the expenses that 

occur during the operation of the system throughout its life cycle and include the 

energy costs to run the HVAC equipments. The main assumptions for this LCCA 

approach are: no demolition cost or residual value for the alternative systems, and no 

extra cost for the maintenance of the RAMEE system. RSMeans Mechanical Cost 

Data [A.44] that includes the required information about HVAC system equipment 
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cost is used to estimate the investment costs. Also, the local energy prices in each 

city are used to calculate the operational costs. 

A gas-fired boiler with nominal efficiency of 88% is selected as the heating 

unit (to satisfies the minimum combustion efficiency of 80% required by ASHRAE 

standard 90.1: [A.45]). RSMeans Mechanical Cost Data [A.44] suggests an average 

investment cost of about $68.3/KW ($20/MBH) for cast-iron gas-fired boilers 

operating in the range of power outputs required for the studied building. An air-

cooled air conditioning unit with coefficient of performance (COP) of 3 is selected as 

the cooling unit (to satisfies ASHRAE standard 90.1 minimum requirement of 2.78 

COP [A.45]). The capital cost of the cooling unit based on RSMeans Mechanical 

Cost Data [A.44] for direct-expansion water chillers is considered to be on average 

171$/KW ($600/ton). Centrifugal type HVAC fans that cost $851/m
3
/s ($0.4/CFM) 

are used for the LCCA in this study. RSMeans Mechanical Cost Data [A.44] 

estimates an investment cost of about $1.5/CFM for energy wheels, however, 

technical papers in the field of air-to-air energy recovery ventilators [A.46-A.47] 

have expected the manufacturing cost of an ERV as high as $5/CFM. In this paper, 

the investment cost of the RAMEE is considered $3/CFM.  

Table A.3 compares the capital costs for different alternatives. It should be 

noted that the addition of an economizer to an HVAC system does not change the 

design heating load. Also, the design cooling load occurs at high temperature 

outdoor conditions that are out of the economi er’s operating range; therefore, the 

design cooling load remains unchanged when an economizer is employed. The 

capacity of supply and exhaust fans is similar for all three alternatives. Therefore, the 

investment cost of RAMEE is similar to the case which RAMEE works with an 

economizer. In Tables A.3 and 3.4, for simplification, Alt. 1 refers to the base case 
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HVAC system that is not equipped with a RAMEE, Alt. 2 refers to the HVAC 

system equipped with a RAMEE and Alt. 3 refers to the HVAC system equipped 

with a RAMEE and an economizer. 

Table A.3. Summary of equipment capacity and HVAC equipment costs for the selected office 

building. 

   Saskatoon Chicago Miami Phoenix 

  Alt. 1 Alt. 2 

Alt. 3 

Alt. 1 Alt. 2 

Alt. 3 

Alt. 1 Alt. 2 

Alt. 3 

Alt. 1 Alt. 2 

Alt. 3 

E
q

u
ip

. 
S

iz
e 

Heating system, KW 2814 2169 1948 1453 449 279 799 569 

Cooling system, KW 1168 1104 1720 1720 2757 2532 1941 1857 

Fan capacity, m
3
/s 90 90 95 95 96 96 127 127 

E
q

u
ip

. 
C

o
st

 

Heating system, 

Thousand $US  

192.2 148.1 133 99.2 30.7 19.1 54.6 38.9 

Cooling system, 

Thousand $US 

199.2 188.4 293.4 293.4 470.4 432 331.2 316.8 

Cost of fans, 

Thousand $US 

76 76 80.4 80.4 81.6 81.6 108 108 

Cost of RAMEE, 

Thousand $US 

0 72 0 72 0 72 0 72 

Total investment, 

Thousand $US, ($US/m
2
) 

467.4 

(16.2) 

484.5 

(16.8) 

506.8 

(17.6) 

545.0 

(18.9) 

582.7 

(20.2) 

604.7 

(21.0) 

493.8 

(17.1) 

535.7 

(18.6) 

 

Table A.4 shows the comparison of three alternatives in operational costs of 

heating and cooling equipment and the fan energy consumption excluding the 

pressure drop across the RAMEE system. The fan power is a function of air flow 

rate, the pressure drop in the supply and exhaust ducting and the fan efficiency. The 

pressure drop across the ducting system and fan efficiency are assumed to be 4 in. 

water and 60%, respectively.  

Although the RAMEE system reduces the energy consumption of heating and 

cooling equipment, it imposes an extra pressure drop that increases the energy 

consumed by the fan(s). Therefore, the life cycle cost of the RAMEE system will be 

dependent upon the pressure drop across the exchangers. 
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Table A.4. Summary of annual energy consumption and energy cost of different alternatives 

excluding the fan energy consumption due to the pressure drop in the RAMEE. 

Location Saskatoon Chicago Miami Phoenix 

Alt. 

 # 

Alt 

1 

Alt 

2 

Alt 

3 

Alt 

1 

Alt 

2 

Alt 

3 

Alt 

1 

Alt 

2 

Alt 

3 

Alt 

1 

Alt 

2 

Alt 

3 

Heating 

energy 

(TJ/year) 

14.1 9.6 9.6 5.9 3.3 3.3 0.1 0.02 0.02 0.7 0.3 0.3 

Cooling 

energy 

(TJ/year) 

1.1 1.0 0.7 1.8 1.7 1.4 7.0 6.5 6.4 4.4 4.1 3.8 

Fans 

(TJ/year) 
0.80 0.80 0.89 0.99 0.99 1.08 1.74 1.74 1.78 1.76 1.76 1.86 

Natural gas, 

Thousand 

m3/year 
 

373 
 

253 
 

253 
 

156 
 

88 
 

88 
 

2 
 

0.6 
 

0.6 
 

19 
 

7 
 

7 
 

Natural gas, 

Thousand 

$US/year 

21.4 14.9 14.9 39.8 23.6 23.6 0.6 0.5 0.5 6.8 2.8 2.8 

Electricity,  

TJ/year 
 

1.92 
 

1.81 
 

1.58 
 

2.77 
 

2.66 
 

2.48 
 

8.71 
 

8.24 
 

8.15 
 

6.19 
 

5.86 
 

5.63 
 

Electricity, 

Thousand 

$US/year 

73.9 69.9 66.0 154.5 148.2 147.8 103.3 98.2 97.9 109 103.2 100.7 

Total 

energy cost, 

$US/year 

95.3 84.8 80.9 194.3 171.8 171.4 103.9 98.7 98.4 115.8 106.0 103.5 

 

Figure A.11 summarizes the LCCA for three alternatives in different 

locations as a function of pressure drop across each LAMEE. As expected, the 

greater the pressure drop across the exchangers, the higher the life cycle cost.  

Payback Period (PBP) is a measure to determine the amount of time it takes 

the consumer to recover the extra investment cost to purchase the high-efficient 

alternative as a result of lower operation cost [A.48]. The PBP, as defined in 

Equation A.14, is the ratio of extra investment cost to purchase the more efficient 

option to the decrease in annual operation costs. 

    
   

   
 (A.14) 
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Figure A.11. LCC of the three alternative systems as a function of pressure drop across the 

RAMEE system in (a) Saskatoon, (b) Chicago, (c) Miami and (d) Phoenix. 

Where, IC and OC stand for investment costs and operational costs, 

respectively. The PBP of employing alternative 3 (i.e., the RAMEE system along 

with an economizer) in different locations, assuming a total pressure drop of 0.8 in. 

water across each exchanger (as expected by the manufacturer) is presented in Table 

A.5. 

Table A.5. Payback period of RAMEE and economizer in different locations. 

Location Saskatoon Chicago Miami Phoenix 

PBP(years) 1.8 2.0 4.8 4.0 

 

8. Conclusions 

The operation of a Run-Around Membrane Energy Exchanger (RAMEE) that 

is able to transfer heat and moisture between outdoor ventilation and building 

exhaust air is described in this paper. The RAMEE control varies depending on 

outdoor condition and whether the building needs heating or cooling. When the 

HVAC system is on heating mode, the RAMEE operates with maximum sensible 
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effectiveness. However, a fraction of ventilation air should be bypassed if the full-

load operation at maximum sensible effectiveness overheats the outdoor air (also 

called part-load operation). When the HVAC system is in the cooling mode, the 

RAMEE should operate with maximum total effectiveness. Using an Artificial 

Neural Network (ANN) that is trained based on a numerical solution of heat and 

moisture transfer in the RAMEE, the optimal system performance (optimal hourly 

Cr* and associated sensible and latent effectiveness) is predicted when the RAMEE 

system operates in a 10-storey office building. This building represents 3.34% of US 

office building stock, and is simulated using the TRNSYS computer program in four 

different North American locations representing major climatic conditions; i.e., 

Saskatoon (cold and dry), Chicago (cool and humid), Phoenix (hot and dry) and 

Miami (hot and humid). The simulation results showed 32% and 43% annual heating 

energy saving in Saskatoon and Chicago as representatives of cold climate. During 

the cooling season, the RAMEE operates under maximum absolute total 

effectiveness (to maximize the reduction of outdoor air enthalpy) and results in about 

8% and 15% cooling energy saving when it operates along with an economizer in 

Miami and Phoenix as hot climates. Since the application of hourly optimal Cr* 

requires an accurate control of the salt solution flow rate and causes a transient 

response, the impact of applying average seasonal and yearly Cr* was studied. The 

results show that operating the system under seasonal average Cr* (i.e., constant salt 

solution flow rate throughout each season) that switches between cooling and heating 

season set points has a minimal impact on energy savings. The life cycle cost 

analysis showed that the pressure drop across the exchangers plays an important role 

in payback of the RAMEE system. Based on manufacturer’s estimation on 
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RAMEE’s pressure drop, the payback period of the RAMEE system was found to be 

about 2 years in cold climates and 4 to 5 years in hot climates. 
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APPENDIX B 

REQUIRED DATA TO REPRODUCE THE NN NETWORKS 

 

B.1. Nonlinear model of a neuron 

 

A simple mathematical model of the first neuron in the first hidden layer (Fig. 7) is 

presented in Fig. B1. 

 

Figure B.1. Block diagram for the first neuron in the first hidden layer of the steady-state 

neural models.  

The input signals, corresponding weights and biases, and the output of this neuron 

which is one of the inputs of the neurons in the next layer are shown in the Fig. B1.  

According to the notation was used to present weights and biases in appendix B2:  

0.19859 -1.8995 -0.050675 0.0087069 0.046394 

0.55701 0.3513 -0.096322 -0.43183 -0.014339 

-0.19905 -0.29534 0.049543 0.051683 -0.066359 

0.047809 0.15776 0.020629 0.0027475 -0.00025207 

0.4518 -1.5997 0.036601 0.13825 -0.037164 

0.30161 -0.074799 -0.033415 0.052818 -0.015584 

-0.0032581 0.27176 0.013249 -0.0017261 -0.0035854 

0.17796 0.76575 0.27456 -0.2898 -0.21276 

2.7969 -0.014024 0.13183 0.015218 0.0067013 

-2.5942 0.13637 0.13636 -0.022977 0.0034435 
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therefore, 

w1
1
=0.19859, w2

1
=-1.8995, w3

1
=-0.050675, w4

1
=0.0087069, and w5

1
=0.046394. 

According to this,  

a = w1
1
×NTU+ w2

1
×Cr*+ w3

1
×ΔT+ w4

1
×wIn,S+ w5

1
×wIn,E+b

1
 and the output of this 

neuron is equal to tanh(a). 

B.2. Required data to reproduce the steady-state neural networks   

The order of the inputs and corresponding units are as follows: 

1) NTU, dimensionless parameter, value should be between 1 and 15 

2) Cr*, dimensionless parameter, value should be between 0.4 and 5 

3) ∆T =TIn,S - TIn,E (°C) 

4) Win,s, supply inlet humidity ratio (kgv/kga) 

5) Win,E, exhaust inlet humidity ratio, value should be between 0 to 0.012 (kgv/kga) 

** Output units are °C and kgv/kga for sensible and latent NNs respectively. 

Table B.1 shows the architecture and properties of steady-state sensible and latent 

networks. 

Table B.1. Architecture and configuration of the steady-state NN models. 

Number Of Inputs 5 

Number Of Outputs 1 

Number Of Hidden Layers 2 

Number Of Neurons In each Hidden Layer 10 

Number Of Neurons In Output Layer 1 

Network Type Fully Connected With Biases For All Neurons 

Hidden Layers Transfer Function Tangent Hyperbolic (Tangent Sigmoid) 

Output Layer Transfer Function Linear 

 

 


