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ABSTRACT 

Many people have abnormal heartbeats from time to time. A Holter monitor is 

a device used to record the electrical impulses of the heart when people do ordinary 

activities. Holter monitoring systems that can record heart rate and rhythm when 

you feel chest pain or symptoms of an irregular heartbeat (called an arrhythmia) 

and automatically perform electrocardiogram (ECG) signal analysis are desirable. 

         The use of the Hilbert transform (HT) in the area of electrocardiogram 

analysis is investigated. A property of the Hilbert transform, i.e., to form the 

analytic signal, was used in this thesis. Subsequently pattern recognition can be 

used to analyse the ECG data and lossless compression techniques can be used to 

reduce the ECG data for storage. 

         The thesis discusses one part of the Holter Monitoring System, Input 

processing. 

         Four different approaches, including the Time-Domain approach, the 

Frequency-Domain approach, the Boche approach and the Remez filter approach 

for calculating the Hilbert transform of an ECG wave are discussed in this thesis. 

By comparing them from the running time and the ease of software and hardware 

implementations, an efficient approach (the Remez approach) for use in calculating 

the Hilbert transform to build a Holter Monitoring System is proposed.  

         Using the Parks-McClellan algorithm, the Remez approach was present, and a 

digital filter was developed to filter the data sequence.  
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         Accurate determination of the QRS complex, in particular, accurate detection 

of the R  wave peak, is important in ECG analysis and is another task in this thesis. 

A program was developed to detect the R  wave peak in an ECG wave. 

         The whole algorithm is implemented using Altera’s Nios SOPC (system on a 

program chip) Builder system development tool. The performance of the algorithm 

was tested using the standard ECG waveform records from the MIT-BIH 

Arrhythmia database. The results will be used in pattern recognition to judge 

whether the ECG wave is normal or abnormal. 
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Chapter 1 Introduction 

 

Since the development of medical science, many instruments for improving 

people’s health have been developed. The electrocardiogram (ECG) monitoring 

system is one of them. The most common type of ECG monitoring is called Holter 

monitoring. Holt monitoring is a portable recording tool and can help doctors make 

a precise diagnosis. 

1.1 Research Motivation 

Many people have irregular heartbeats from time to time. Some heart 

problems occur during certain activities, such as eating, exercise or even sleeping. 

Sometimes the irregular heartbeats don’t influence life style and are usually 

harmless in normal hearts. But it is also possible that these irregular heartbeats with 

pre-existing illness can cause heart attacks that lead to death. A device that can 

record the activities of the heart is very useful in preventing heart attacks. The 

Holter monitoring system was developed for this objective in an ambulatory 

situation. 

A Holter monitoring system is a small recording instrument that is used to 

capture ECG data of the heart’s electrical activities over a period of time. The 
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patient can carry it in a pocket or in a small pouch. The monitor is battery operated. 

The electrocardiogram is saved in a memory card. The electrocardiographer can 

analyse the recordings visually by means of  a computer.  

1.1.1 Electrocadiogram 

The standard ECG is a representation of the heart’s electrical activities 

recorded from electrodes that are placed on different parts of patient’s body.  

The electrocardiogram is composed of complexes and waves. In normal sinus 

rhythm, waves and complexes are the P wave, QRS complex, ST Segment, T wave 

and U wave. Measurements are PR interval, QRS duration, QT interval, RR 

interval and PP interval. Figure 1.1 illustrates a typical waveform of normal 

heartbeats and intervals as well as standard time and voltage measures. 

 

Figure 1.1 ECG signal [1] 



 

 3

Different parts of the ECG waves are caused differently. Detailed information 

will be given below to explain each part of the ECG waveform. 

•   The P wave is due to the electrical activation (depolarization) of the heart 

(atria). It is usually positive, low amplitude and smooth. In normal situation, the 

time of the P wave should be smaller than 0.12 seconds.  

•   The QRS complex represents right and left ventricular depolarization. It is 

high amplitude in normal situations. The shape of the QRS complex will be 

changed if the electrodes are placed on different parts of the body. It also changes 

when abnormal heartbeats occur. A QRS complex can have positive (upwards) or 

negative (downwards) deflections. The figure below summarizes the nomenclature 

used to define the different components of the QRS complex. 

 

Figure 1.2 The different components of the QRS complex [2]. 
 

•   The ST segment represents the time following the QRS it takes for 

depolarization of the ventricles before repolarization. Repolarization of the atria is a 

low amplitude signal that occurs during the time of the high amplitude QRS and 

consequently it can’t be seen on a standard ECG. 
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•   The T wave is caused by the repolarization of the ventricles.  Usually it is 

positive and rounded. 

•   The reason that causes the U wave is not that clear, “afterdepolarizations” in 

the ventricles maybe is the answer. 

•   The PR interval is the time interval from the beginning of the P wave to the 

beginning of the QRS complex. In normal situation the PR interval should be 0.12-

0.2 s, Short PR < 0.12 s, Prolonged PR >0.2 s. 

•   The QRS duration is the time of ventricular depolarization. Normal: 0.06 s-

0.1 s, Prolonged QRS duration: >0.1s. 

•   The QT interval represents the duration of ventricular depolarization and 

repolarization. It is between the onset of the QRS complex and the end of the T 

wave. It normally depends on heart rate. 

•   The RR interval is the duration of ventricular cardiac cycle. The value of 

the RR interval indicates the ventricular rate. 

•   The PP interval is the duration of atrial cycle. It indicates the atrial rate.  

 

         The normal adult heart beats regularly between 60 to 100 beats per minute. 

Bradycardia occurs once the heart rate is slower than 60 beats per minute. The 

waveform is similar to the normal ECG wave, but the RR interval is longer.  A rate 

of above 100 beats per minute is called tachycardia, in this case the RR interval is 

shorter and the waveform is also similar to the regular sinus rhythm. Each P wave 

is following by a QRS complex. A waveform of a regular ECG wave is shown in 
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Figure 1.3. The wave of the bradycardia is shown in Figure 1.4. Figure 1.5 

illustrates the tachycardia. Figure 1.7 shows some abnormal ECG waves. 

 

 

Figure 1.3 A normal ECG wave [3]. 
 

 

Figure 1.4 Bradycardia [3]. 
 

 

Figure 1.5 Tachycardia [3]. 
 
 

 

Figure 1.6 An irregular heartbeat wave [3]. 
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Figure 1.7 Three abnormal ECG waveforms [3]. 
 

The importance of irregular heartbeats depends on the type of pattern they 

produce, how often they occur, how long they last, and whether they occur at the 

same time the patient had symptoms.  

   

1.1.2 Advantanges of Holter Monitoring System 

 As discussed previously, the Holter monitoring system records the electrical 

activity of heart during usual daily activities. A recording is much more likely to 

detect any abnormal heartbeats that occur during these activities. 

 During the late 1960s, computerized ECG's came into use in many of the 

larger hospitals. General Holter monitoring system records continuous 

electrocardiographic measurements of the heart’s rhythm. Usually the recording 
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time is around 24 to 48 hours. That means even when the heartbeat is normal, the 

Holter monitor also works as well. 

 The system discussed in this thesis automatically records the ECG wave when 

the user is not feeling good or the heartbeats are not regular. The recording 

algorithm is not continuous any more. It also can record the heartbeats manually; 

the wearers can record the heartbeat if wanted when the heart rhythms are ordinary. 

The differences between the general Holter monitor and the system developed in 

this thesis are shown in the Table 1.1. 

 
Table 1.1 Comparison general Holter Monitor with new system in this thesis 

 
 General Holter Monitor New system in this thesis 

Continuity Continuous Intermittent 

Saving time 24-48 hours More than 48 hours 

Operation Manually operated Automatic/Manually operated  

 

 The advantages in the system discussed in this thesis are: 

•    Record the ECG wave automatically when wearer does not feel good.  

•    Save memory space and extend the recording time. 

•    Record activities manually when the wearer wants. 

•     Normally record for a few hours or for a few seconds. 
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1.1.3 Structure of the Holter Monitoring System 

The structure of the Holter monitoring system discussed in this thesis is 

shown in Figure 1.8. 

 

 

 

 

 

 

 

 

 

                                                                                        

 

 

Figure 1.8 The structure of the Holter Monitoring System. 
 

         From Figure 1.8 it can be seen that the system includes four sub-systems: the 

Input processing sub-system, the Pattern Recognition sub-system, the Compression 

sub-system and the Storage sub-system. 

 The input data is the raw ECG data. These data record the activities of the 

heart. Every heartbeat is caused by a section of the heart generating an electrical 

signal that then conducts through specialized pathways to all parts of the heart. 
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These electrical signals also get transmitted through the chest to the skin where they 

can be recorded [4].  

1.1.3.1 Input Processing 

 The main objective of this sub-system is to implement the Hilbert transform 

of the input ECG data on the Nios embedded processor. Then the zero crossing 

points corresponding to the input R wave peaks are found and the results 

information is sent to the Pattern Recognition sub-system. 

1.1.3.2 Pattern Recognition 

 Obtain the results of the input processing, and by using properties of the 

Hilbert transform, create the analytic signal and use it to assist in doing pattern 

recognition to determine if the ECG wave is normal or abnormal. 

1.1.3.3 Compression 

Compress all the abnormal data obtained from the “Input processing” sub-

system. 

1.1.3.4 Storage 

 Save all the compressed data in compact flash card. This card is removable 

and can be inserted into the computer to read the information recorded in this card. 

Electrocardiographer can analyze the data or by means of some software to draw 

the waveform to see what happened visually. 
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 Holter monitoring gives doctors the record of patient’s heart rate and rhythm 

over a period of time. The Holter monitor can record heart rate and rhythm when 

the patient feels chest pain or symptoms of an irregular heartbeat (an arrhythmia). 

The doctor can then look at the time when the patient noticed their symptoms. 

Reading this printout will give the doctor an idea about the nature of the heart 

problem. A Holter monitor provides the physician a better opportunity to capture 

any abnormal heartbeats or rhythms that may be causing the patient’s symptoms. 

It’s necessary to develop an efficient (i.e., long time durations and automatic 

pattern recognition analysis) system to record these irregular heartbeats so that the 

doctor can know what had happened when patient had those symptoms. This 

system is a very good tool to prevent people from fatal heart problems. 

 Briefly, the reasons for using a Holter monitor may include: to detect 

problems missed in a regular ECG; to check activity after an arrhythmia; to see if a 

new pacemaker works and to see if drug therapy is working. 

         The work of this thesis is to implement the input processing sub-system. That 

is to develop an efficient algorithm to compute the Hilbert transform of the input 

ECG waves and determine R-R intervals. 

 

1.2 Objectives 

         The objectives of this thesis are to address the aforementioned problems and 

to propose solutions to the following problems. 

 To use different methods to compute the Hilbert transform of an input signal. 
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 To compare these algorithms with each other from running time and 

hardware/software implementation.  

 To develop an efficient algorithm for calculating the Hilbert transform to build 

a Holter ECG Monitoring System.  

 To develop a detector to find all of the zero crossing points that correspond to 

the R wave peaks in the output wave, i.e., the Hilbert transform sequence of an 

ECG wave. 

 

1.3 Outline of Thesis 

         Chapter 2 gives the background materials of the Holter monitor and the 

Hilbert transform including the past history, notation and definition.  

  Chapter 3 is devoted to four different methods used to compute the Hilbert 

transform of an input signal. The four approaches include the Time-Domain 

approach, the Frequency-Domain approach, the Boche approach and the Remez 

filter approach. In this chapter, the examples and the results are given for using 

different approaches to calculate the Hilbert transform. By comparing four methods 

with each other in running time and the ease of software and hardware 

implementations, an efficient algorithm for the Hilbert transform to build a Holter 

ECG Monitoring System will be present.  

  Chapter 4 describes how to design and implement the Remez filter approach 

that was mentioned in Chapter 3, and also describes how to design and implement a 

filter with an optimal fit. The information about Alter’s Nios SOPC Builder system 

development tool is introduced as well. 
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         Chapter 5 concentrates on analyzing the results and compares them to the 

MIT-BIH Arrhythmia database to make sure the results are correct. 

         The thesis is summarized in Chapter 6. At the end of the thesis, an appendix is 

given. 
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Chapter 2 Background 

 

In this chapter, a brief review of Holter Monitoring is given. The definition, 

the properties and the applications of the Hilbert transform are also contained in 

this chapter. 

2.1 Holter Monitoring Review 

As discussed in the previous chapter, an electrocardiogram (ECG) is a record 

produced by an electrocardiography, which indicates the electrical voltage in the 

heart. An ECG provides information on the condition and performance of the heart. 

It is one of the simplest and fastest procedures used to evaluate the heart. Because 

an arrhythmia can occur irregularly, it will be difficult to record when the patient is 

in the doctor’s office.  

In 1949, American physician Norman Jeff Holter (1914-1983) developed a 75 

pound backpack that can record the ECG of the wearer. This portable monitoring 

device is called the Holter monitor, named after its inventor.  

The Holter monitor is battery-powered and can continuously record the 

electrical activities of the heart over a specified period of time, normally 24 to 48 

hours. Usually the patient will undergo Holter monitoring as an outpatient, meaning 



 

 14

that the monitor will be placed on the body of the patient by a technician in a 

cardiologist’s office. Then the patient will go home and do normal activities. With 

the development of technology, the Holter monitor is greatly reduced in size. It is 

now very compact and combined with digital recording and used to record ECGs.  

The Holter monitor can be easily carried without interfering with the patient’s 

activities. At the end of the recording period, the patient will go back to the doctor’s 

office to remove the Holter monitor. The data saved in the Holter monitor will be 

analyzed by an electrocardiographer and a computer. The analysis results will 

provide the information about the patient’s heart rhythm, the frequency of the beats 

and the irregularities. This portable monitor can be an effective and powerful 

diagnostic tool that can directly determine how the physician treats the patient’s 

condition. 

 As Figure 2.1 shows, the Holter monitor is a small-size recording device. The 

monitor has wires called leads. The leads attach to metal disks called electrodes, 

which the user wears on his chest. These electrodes are very sensitive, and they can 

pick up the electrical impulses of the heart. The impulses are recorded by the Holter 

monitor record the heart’s electrical activity.  
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Figure 2.1 A man with the Holter monitor [5]. 
 

 

 If necessary, the ECG can be transmitted by telephone to a computer at the 

hospital or doctor's office for an immediate reading as soon as symptoms occur. 

The use of the effective home care monitor of the heart patients will decrease the 

incidence of the readmissions and lower the costs of the hearth care. 

 Advanced Holter monitors have been developed that employ digital 

electrocardiographic recordings, extended memory for more than 24 hours 

recording, pacemaker pulse detection and analysis, software for analysis of digital 

ECG recordings that are downloaded and stored on a computer, and capability of 

transmission of results over the internet [6]. 

 The system discussed in this thesis is to record the rhythm of the heartbeat 

automatically when the symptoms occur. The monitor does not continuously record 
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but records the heart rate and rhythm when the patients feel symptoms of an 

irregular heartbeat or when abnormal heart beats or rhythms occur. That means the 

device automatically capture the arrhythmias when they occur. It also can be 

activated manually by the patients when chest pain is felt during a symptomatic 

event. So it can record for a long time. Up to now, the Holter monitor in the market 

can record over 24-48 hours; the longest one is not much more than 72 hours.  The 

system discussed in this thesis will much improve the recording time.  The 

advantages of the system have been discussed in Chapter 1. 

 

2.2 Hilbert Transform Review 

In 1893, the physicist Arthur E. Kennelly (1861-1939) and the scientist 

Charles P. Steinmetz (1865-1923) first used the Euler formula  

                                           )sin()cos( zjze jz +=                                                (2.1) 

which was derived by a famous Swiss mathematician Lenonard Euler (1707-1783) 

to introduce the complex notation of harmonic wave forms in electrical 

engineering, that is:  

)sin()cos( tjte jwt ωω += ,                                           (2.2) 

where j  is the imaginary unit. 

In the beginning of the 20th century, the German scientist David Hilbert 

(1862-1943) proved that the Hilbert transform of the function )cos( tω  is )sin( tω . 

This is the one of properties of the Hilbert transform, i.e., basic 
2
π

±  phase-shift. 
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2.2.1 Definition 
 

In mathematics and in signal processing, the Hilbert transform )(ˆ tx  of a real 

time function )(tx  is defined as: 

τ
τ

τ
π

d
t
xtxHtx ∫

∞

∞− −
==

)(1)]([)(ˆ                                    (2.3) 

when the integral exists. 

         It can be seen from the Equation (2.3) that the independent variable is not 

changed as result of this transformation, so the output )(ˆ tx  is also a time dependent 

function. 

It is normally not possible to calculate the Hilbert transform as an ordinary 

improper integral because of the possible singularity at t=τ . The integral is to be 

considered as a Cauchy principal value. 

In mathematics, the Cauchy principal value of certain is defined as  

                               ⎥⎦
⎤

⎢⎣
⎡ +∫ ∫

−

++→

ε

εε

b

a

c

b
dttxdttx )()(lim

0
,                           (2.4) 

where b  is a point at which the behaviour of the function )(tx  is such that 

∫ ±∞=
b

a
dttx )(    for any ba <  

 and                                   ∫ ∞=
c

b
dttx m)(    for any bc > . [7] 

So when the Hilbert transform exists, it is written as presented at Equation (2.3). 

Other forms for ))(( txH  can be obtained by change of variable, that is 



 

 18

τ
τ

τ
π

dtxtxH ∫
∞

∞−

−
=

)(1)]([                                      (2.5) 

  τ
τ

τ
π

dtxtxH ∫
∞

∞−

+
=

)(1)]([  .                                   (2.6) 

         A Hilbert transform of a square wave is shown below: 

 

Figure 2.2 The Hilbert transform of a square wave. 
 

2.2.2 Frequency Response of the Hilbert Transform 
 
 
         From the Equation (2.3), (2.4) and (2.5), it can be seen that Hilbert transform 

is a convolution: 

         )(*1)(ˆ)]([ tx
t

txtxH
π

==                           (2.7) 

Equation (2.7) shows that )(ˆ tx  is a linear function of )(tx . It is obtained from 

)(tx  applying convolution with )/(1 tπ . 
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         According to the convolution theorem (the Fourier transform of a convolution 

of two functions is the product of their Fourier Transforms.), it can be seen that the 

spectrum of )]([ txH  is related to that of )(tx . 

Applied the Fourier transform to the Equation (2.7), that is 

)}({11)}(ˆ{ txF
t

FtxF
⎭
⎬
⎫

⎩
⎨
⎧=

π
                          (2.8) 

where F  is the Fourier transform. 

Since 

                            )sgn(11 *2 fjdxe
xt

F fxj ππ −==
⎭
⎬
⎫

⎩
⎨
⎧ −∞

∞−∫                       (2.9) 

where 

fsgn  is +1  for ,0>f  0 for 0=f  and  -1 for 0<f . 

Rewriting Equation (2.9), that is: 

0
0

)sgn(1
<
>

⎩
⎨
⎧
+
−

=−=⎟
⎠
⎞

⎜
⎝
⎛

f
f

for
for

j
j

fj
t

F
π

. 

         Therefore, the Fourier transform of 
tπ

1  is )sgn( fj− , which is equal to j−  

for positive frequency and j+ for negative frequency. Hence the Hilbert transform 

is equivalent to a kind of filter, in which the amplitudes of the spectral components 

are left unchanged, but their phases are altered by
2
π , positively or negatively 

according to the sign of frequency [8]. 

Therefore, the Fourier transform of the Hilbert transform of )(tf  is given by  

)}({sgn)}ˆ{( txfFjxF −= .                        (2.10) 
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The time domain result can be obtained performing an inverse Fourier 

transform. 

 

2.3 Hilbert Transform Properties 

In this part, some properties of the Hilbert transform will be discussed. 

 

(1)  The Hilbert transform of a real function is linear. 

As discussed in the section 1.2, the Hilbert transform of a function )(tf  is 

defined as 

τ
τ

τ
π

d
t
ftfH ∫

∞

∞− −
=

)(1)]([ . 

Because of the possible singularity at τ=t , the integral is to be considered as a 

Cauchy principal value. It is expressed on the form 

.)(1lim)]([
0

τ
τ

τ
π εε

d
t
ftfH

tx∫ >−→ −
=                            (2.11) 

Suppose )()()( 2211 tfctfctf += , then the Hilbert transform of )(tf  should be 

                   [ ])()()]([ 2211 tfctfcHtfH +=  

τ
τ

ττ
π εε

d
t

fcfc
tx∫ >−→ −

+
=

)()(1lim 2211

0
 

 τ
τ
τ

π
τ

τ
τ

π εεεε
d

t
f

cd
t
f

c
txtx ∫∫ >−→>−→ −

+
−

=
)(1lim

)(1lim 2

02
1

01  

)].([)]([ 2211 tfHctfHc +=                                  (2.12) 
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Equation (2.12) shows the linearity of the Hilbert transform. 

 

(2)  The Hilbert transform of a Hilbert transform is the negative of the original 

function. 

[ ])](ˆ[)sgn()(ˆ̂)](ˆ[ 1 tfFjFtftfH ω−== −  

                                                [ ])]()sgn()[sgn(1 ωωω jFjjF −−= −  

                                                [ ])(1 ωjFF −= −  

                                                )(tf−=                                                                (2.13) 

 

(3) The Hilbert transform of the derivative of a function is equivalent to the 

derivative of the Hilbert transform of a function. [9] 

             τ
τ

τ
π

d
t
ftfH ∫

∞

∞− −
=

)(1)]([ ds
s

stf
∫

∞

∞−

−
=

)(1
π

 

So                             { }
⎭
⎬
⎫

⎩
⎨
⎧ −

= ∫
∞

∞−
ds

s
stf

dt
dtfH

dt
d )(1)]([

π
 

ds
s

stf
∫

∞

∞−

−′
=

)(1
π

 

τ
τ
τ

π
d

t
f

∫
∞

∞− −
′

=
)(1  

)]([ tfH ′= .                                      (2.14) 

(4) A function and its Hilbert transform are orthogonal  

dtdejFjtfdttftf tj∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞− ⎥⎦
⎤

⎢⎣
⎡ −= ωωω

π
ω)()sgn(

2
1)()(ˆ)(  
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                                ωωω
π

ω ddtetfjFj tj

⎥⎦
⎤

⎢⎣
⎡−= ∫∫

∞

∞−

∞

∞−
)()()sgn(

2
1  

                       ωωω
π

djFj 2

)()sgn(
2 ∫

∞

∞−

−
=  

                                =0.                                                                                      (2.15) 

         Since integrand 2)()sgn( ωω jF is an odd function which is integrated over 

symmetric limits, the result is 0.  

Equation (2.15) proves that a real function and its Hilbert transform are 

orthogonal. 

This property can be used in energy and power signals.  

 

(5)  The energy in a real function and its Hilbert transform are equal. 

         The signal and its Hilbert transform have identical energy because a phase 

shift does not change the energy of the signal only amplitude changes can do that. 

The energy of )(tf  and )(ωF  is defined as  

ωω
π

dFdttfE f

22
)(

2
1)( ∫∫

∞

∞−

∞

∞−
== .                     (2.16) 

So the energy of the Hilbert transform of )(tf  can be computed as 

                            dttfE
f ∫

∞

∞−
=

2

ˆ )(ˆ  

ωωω
π

dFj
2

)()sgn(
2
1

∫
∞

∞−
−=  

                               ωω
π

dF
2

)(
2
1

∫
∞

∞−
= .                                     (2.17) 

From Equation (2.16) and Equation (2.17), it shows that ff
EE =ˆ . 
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2.4 Hilbert Transform Applications 

         The Hilbert transform is a very useful tool for the analysis of problems in 

various research areas. The Hilbert transform has a variety of applications, such as 

in the field of radio and signal processing, communication and power area.   

2.4.1 Analytic Signal  

         In digital signal processing, it is often needed to look at the relationships 

between the real part and imaginary part of a complex signal. The relationships are 

usually described by Hilbert transforms. Hilbert transform is also used to create 

special signals called analytic signals which are especially important in simulation.  

An analytic signal is a complex function created by taking a signal and then 

adding in quadrature its Hilbert transform [10]. An analytic signal is defined as  

)()()(ˆ)()( tjetAtfjtftz θ=+= ,                               (2.18) 

where  

        )(tf  is the input signal. 

        )(ˆ tf  is the Hilbert transform of the input signal. 

        )(tz  is the analytic signal constructed from )(tf  and its Hilbert transform. It 

is called the pre-envelope of )(tf . 

The real and imaginary parts can be expressed in polar coordinates as: 

)()()( tjetAtz θ= .                                              (2.19) 

where 
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        )(tA  is the “envelope” or amplitude of  the analytic signal given as 

)(ˆ)()( 22 tftftA += .                                       (2.20) 

        )(tθ is the phase of the analytic signal given as 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

)(
)(ˆ

arctan)(
tf
tftθ .                                          (2.21) 

)(tA  and )(tf  have common tangents and the same values at the points 

where 0)(ˆ =tf , i.e., the envelop determined using Equation (2.20) will have the 

same slope and magnitude of the original signal )(tf  at its maxima. 

 

2.4.2 Analytic Signal Applied in Pattern Recognition [11] 

         In this thesis, given a real function )(tf , such as an ECG wave, it is possible 

to compute the Hilbert transform, )(ˆ tf . This allows the calculation of the envelope 

of )(tf  and also the phase of the pre-envelope of )(tf  and )(ˆ tf . If the two 

functions are then plotted in polar form (polar plot), the result is a waveform 

display very similar to a Vectorcardiogram (VCG) or a Polar-cardiogram (PCG). 

         Thus the resulting magnitude versus angle plot is used for further analysis. 

The temporal dependence of the ECG data is removed. In effect the data has been 

shifted from a magnitude versus time system into a magnitude versus angle system.  

At the same time that because using a sampled-data waveform sampled at a fixed 

frequency (usually 360 Hz), the time information is still implicitly available to the 
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user. A major disadvantage of the time normalisation is that it implicitly assumes 

linear distortion of the ECG waveform over the length of the normalised segment. 

         As mentioned previously, while the Hilbert transform display (polar plot) is 

reasonably familiar to a vectorcardiographic display, the data display is subject to 

different interpretation. Depending on the abnormality occurring in the ECG data, 

different displays are presented to the user. The main use of this display format is to 

monitor the data being placed in the pattern recognition so that different waveform 

segments (P,Q,R,S,T) and different time locations (before QRS ,after QRS) could 

be found. According to these information, the input ECG wave is normal or 

abnormal can be judged 
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Chapter 3 Computation of the Hilbert 

Transform  

 
In this chapter, four methods of implementing the Hilbert transform are given. 

It includes the Time-domain approach, the Frequency-Domain approach, the Boche 

approach and Remez filter approach. 

 

3.1 Time-Domain Approach 

 The Hilbert transform of a signal )(ty  at time t  is given by 

                                          τ
τ

τ
π

d
t
yty ∫

+∞

∞− −
=

)(1)(ˆ .                                               (3.1) 

Assume that the signal )(ty  has been sampled every tΔ  second to give the 

sequence ),( tkyyk Δ=  Nk ,,3,2,1 K= and that the sampled Hilbert transform 

signal )(ˆ ky  is to be computed. If the signal )(ty  is assumed to vary linearly during 

the sampling interval [12], for time from tΔ  to tNΔ , the Hilbert transform at time 

tΔ is  

τ
τ

τ
π

d
tk

ytkyy
tN

tk ∫
Δ

Δ −Δ
=Δ=

)(1)(ˆˆ                      

                    τ
τ

ττ
τ

ττ
τ

τ
π

d
tk

yd
tk

yd
tk

y tk

tk

tk

tk

t

t ∫∫∫
Δ

Δ−

Δ−

Δ−

Δ

Δ −Δ
+

−Δ
++

−Δ
=

)1(

)1(

)2(

2 )()()((1
K  
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 ))()()(
)1(

)2(

)1(

)1(
τ

τ
ττ

τ
τ

τ
τ d

tk
yd

tk
y

tk
y tN

tN

tk

tk

tk

tk ∫∫∫
Δ

Δ−

Δ+

Δ+

Δ+

Δ −Δ
++

−Δ
+

−Δ
+ K  

)(1
2

)()(
2

1

)( ∑∑
+=

−

=

++=
N

ki

r
i

c
k

k

i

f
i III

π
,                                                         (3.2) 

where 

τ
τ

τ d
tk

yI
ti

ti

f
i ∫

Δ+

Δ −Δ
≡

)1()( )(  

τ
τ

ττ
τ

τ d
tk

yd
tk

yI
tk

tk

tk

tk

c
k ∫∫

Δ+

Δ

Δ

Δ− −Δ
+

−Δ
≡

)1(

)1(

)( )()(  

τ
τ

τ d
tk

yI
ti

ti

r
i ∫

Δ

Δ− −Δ
≡

)1(

)( )( . 

When )(ty is linear during the sampling period,  

      ttityyyty iii ΔΔ−−+= + /))(()( 1    for   titti Δ+≤≤Δ )1(  

)/())(()( 1 ttityyyty iii Δ−Δ−−+= −   for titti Δ≤≤Δ− )1( .  

So 

  τ
τ

τ d
tk

yI
ti

ti

f
i ∫

Δ+

Δ −Δ
≡

)1()( )(  

 τ
τ
τ

d
tk

ttiyyyti

ti

iii∫
Δ+

Δ

+

−Δ
ΔΔ−−+

=
)1( 1 /))((

  

 )(
/)(

0

1 tixdx
xtitk

txyyyt iii Δ−≡
−Δ−Δ

Δ−+
= ∫

Δ + τ  

τ
τ
τ

d
tik

tyyyt iii∫
Δ +

−Δ−
Δ−+

=
0

1

)(
/)(

                                                                       (3.3) 

and 

τ
τ

τ d
tk

yI
ti

ti

r
i ∫

Δ

Δ− −Δ
≡

)1(

)( )(  
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τ
τ

τ
d

tk
ttiyyyti

ti

iii∫
Δ

Δ−

−

−Δ
Δ−Δ−−+

=
)1(

1 )/())((
 

))((
/)(0 1 tixdx

xtitk
txyyy
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−= ∫Δ

− τ  

τ
τ
τ

d
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tyyyt iii∫
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/)(

                                                                      (3.4) 

and  

τ
τ

ττ
τ

τ d
tk
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tk

yI
tk

tk

tk
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c
k ∫∫

Δ+

Δ

Δ

Δ− −Δ
+

−Δ
≡

)1(

)1(
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τ
τ
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Further calculation gives 

τ
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and  



 

 29

τ
τ
τ

d
tki

tyyy
I

t iiir
i ∫

Δ −

−Δ−
Δ−+

−=
0

1)(

)(
/)(

 

 τ
τ

τ
d

tki
kiyyttkiyyyt iiiii∫

Δ −−

Δ−−
−−+ΔΔ−−−+

=
0

11

)(
))((/))()((

 

 τ
τ

τ d
tki

kiyyy
dtyy

t iiit

ii ∫∫
Δ −Δ

− Δ−−
−−+

+Δ−=
0

1

0 1 )(
))((

/)(  

 t
iiiii tkikiyyyyy Δ

−− Δ−−−−++−=
011 )(ln)))((()( τ  

)1ln)(1)((1ln 1 ki
kikiyy

ki
kiy iii −

−−
−+−+

−
−−

= −                                       (3.7) 
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So the Hilbert transform of ky  is  
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The results given on the reference [5] is  
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Noticed that )( f
iI  and Equation (3.6), )(c

kI  and Equation (3.8) are the exactly 

same. But )(r
iI  is different from Equation (3.7).  The equation does influence the 

result of the Hilbert transform of a signal. So it is important to prove which one 

(Equation (3.10) or the one given on the reference [12]) is correct, This can be 

proved from the example below. 

Here an example is given. Consider the signal )sin()( xxf = . From Equation 

(3.1), its Hilbert transform is  

                                 τ
τ
τ

π
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x
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=

)sin(1)][sin( .                                     (3.10) 

Letting τ−= xs , get 
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It is well known that 0cos1
=∫
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So                    ds
s

sxxH ∫
∞
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sin1cos)(sin
π

 

 
xcos=  .                                                                       (3.11) 

 

In order to test that the Equation (3.9) is right, here an example is given. 

Assuming the input function is )**2sin( Nfy π= , letting 02.0=f Hz, 500=N .  

From the Equation (3.11), it can be seen that the Hilbert transform of 

)500*02.0*2sin( π=y  should be )500*02.0*2cos( π .  

Writing a MATLAB program for this algorithm, Figure 3.1 and Figure 3.2 

were obtained. Figure 3.1 shows the input waveform and Figure 3.2 (a) illustrates 

the Hilbert transform waveform of this input wave using Equation (3.9). Figure 3.2 

(b) shows the results using the equation from reference [12].  
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Figure 3.1 Input waveform: )500*02.0*2sin( π . 
 

 

Figure 3.2 (a) Output waveform: The Hilbert transform of )500*02.0*2sin( π . 
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Figure 3.2 (b) Output waveform using the equation from [12]. 
 
 

As shown in Figure 3.2 (a), the output waveform is the Hilbert transform of 

the input sine wave. It is a cosine wave. It also illustrates that the Hilbert transform 

of a real function does not change the amplitude of the signal but only changes its 

phase by 
2
π  rad/s. 

The waveform shown in Figure 3.2 (b) is not a cosine wave. From the 

waveform it also can be seen that )(r
iI  from [12] is not correct and Equation (3. 9) 

is correct.  

 

As discussed in previous chapters, the input wave in the Holter monitoring 

system is an ECG wave. Figure 3.3 is the wave obtained from the MIT-BIH 
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(Massachusetts Institute of Technology-Beth Israel Hospital) arrhythmia database 

[see Appendix A] MIT213. According to the Time-Domain Approach, using 

Equation (3.9), the Hilbert transform of this ECG wave can be computed.  

The input ECG waveform is shown in Figure 3.3. According to the 

explanation about the ECG waves in Chapter 1, from the value of the P wave, the 

QRS complex, PR interval, QRS duration, RR interval and PP interval, it can be 

seen that Figure 3.3 is a normal ECG wave. Because each R wave stands for a beat, 

Figure 3.3 describes 4 beats of a heart. 

 

 

Figure 3.3 A normal ECG wave. 
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Figure 3.4 The Hilbert transform of the ECG wave. 
 

 

Figure 3.4 shows the results of the Hilbert transform of this ECG wave. The 

Hilbert transform waveform of the ECG wave should oscillate from negative to 

positive or from positive to negative around the X-axis. The points corresponding 

to peak values of R wave should be zero in the output waveform. But from Figure 

3.4, it can be seen that the output waveform is distorted. It’s not the correct 

waveform, so this method of computing the Hilbert transform may not be suitable 

for the ECG wave. 
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3.2 Frequency-Domain Approach 

To further investigate the Hilbert transform, the frequency domain analysis is 

very useful. The second method to compute the Hilbert transform of a function is 

Frequency-Domain approach.  

As shown before, the Hilbert transform of the function )(ty is: 

τ
τ

τ
π

d
t
yty ∫

∞

∞− −
=

)(1)() . 

Because the usual time domain definition based on the Cauchy principal value 

of an integral is usually not easy to calculate, the Hilbert transform in the frequency 

domain is defined. Suppose )( fY and )( fY
)

are the Fourier transform of )(ty and 

)(ˆ ty .  )( fY  and )( fY
)

are defined as  

dtetyfY ftj∫
∞
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−= π2)()(  

 )()sgn()( fYfjfY −=
)

.                                      (3.12) 

Applying the Fourier transform to the convolution defined in the equation 

above, can obtain 

)()sgn()(1)]([)( ωωω
π

ω jYjjY
t

FTtyFTjY −=⎥⎦
⎤

⎢⎣
⎡== ))

[5],            (3.13) 

where  

[]FT  represents Fourier transform.  

This equation indicates that the Hilbert transform can be interpreted in the 

frequency domain. 
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So given a sampled signal ky , the sequence ky)  can then be computed using 

fast Fourier transform (FFT) techniques as  

]][)sgn([ knk yFFTjIFFTy ω−=) ,                               (3.14) 

where  

[]FFT  represents the fast Fourier Transform operation. 

[]IFFT  represents inverse fast Fourier transform operations. 

 nω  represents the n th frequency of the discrete Fourier transform. 

sgn  is the sign function.  

This formula can be used to calculate the Hilbert transform, by first taking the 

Fourier transform of ky , multiplying it by )sgn( nj ω− , then taking the inverse 

Fourier transform, thus obtaining ky) . Thus the Hilbert transform is a 
2
π

−  phase 

shifter when viewed as a linear system whose input is ky  and output is ky) . 

Here an example is also given. The input is the sine wave, 

)500*02.0*2sin( π , used previously, and the output should be the Hilbert 

transform of the input, i.e., a cosine wave. Figure 3.5 shows the input waveform 

)500*02.0*2sin( π  and Figure 3.6 shows the output results using Frequency-

Domain approach to compute the Hilbert transform of a function. 
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Figure 3.5 Input wave: )500*02.0*2sin( π . 
 

 

Figure 3.6 The Hilbert transform of )500*02.0*2sin( π . 
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         Figure 3.7 shows the same section of ECG wave taken from the MIT-BIH 

database, MIT213, used previously (Figure 3.3). Using the Frequency-Domain 

approach to obtain the Hilbert transform, the output waveform is shown in Figure 

3.8.   

 

 

Figure 3.7 Input ECG wave 
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Figure 3.8 Output: the Hilbert transform of the ECG wave. 
 

 

 The Hilbert transform waveform shown in Figure 3.8 is good. The wave 

oscillates around the X-axis. The zero crossing points corresponding to the R peak 

wave are right.  

From the examples given above, the figures show that the Hilbert transform 

of the sine wave is cosine wave. The output wave oscillates around zero as it should 

when the input wave is the ECG wave. Even though this algorithm works, it’s also 

not suitable for the system developed in this thesis. The reason will be given later. 
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3.3 Boche Approach  

The Boche approach [13] presents a new algorithm by reconstructing a band-

limited function from samples to calculate the Hilbert transform.  

The algorithm can be described as follows: 

A set of discrete instants }{ it  are given with the corresponding values }{ iy  

where exists a function ii ytf =)( . A statement can be made for approximating 

function as Equation (3.15): 

)(
)(sin

)(
1

,
k

k
n

k
nkn tt

tt
btf

−
−

= ∑
= π

π
                                     (3.15) 
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= ∑
= π

π
.                                  (3.16) 

To calculate the coefficients nkb ,  of the Equation (3.16), a system of n linear 

equations, Equation (3.17), have to be solved: 
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where 
)(

)(sin

ki

ki
ik tt

tt
a

−
−

=
π

π
   ki tt ≠  for ki ≠ . 

         Using the iteration method to solve the linear equations, the coefficients  nkb ,  

were obtained. 

The Hilbert transform of the Equation (3.17) can be derived as follows: 

It is well known that 

1
)(

))(sin(
=

−
−

∫
∞

∞−
dt

tt
tt

k

k

π
π
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and 

0
)(

))(cos(
=

−
−

∫
∞

∞−
dt

tt
tt

k

k

π
π

. 

According to the definition of the Hilbert transform of a real function, the 

Hilbert transform )(ˆ tf  of 
)(

))(sin(
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k
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−

−
=

π
π

 is derived as follows: 
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It is shown that the Hilbert transform of the series  

)(
)(sin
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,                          (3.19) 

where nkb ,  are the coefficients in Equation (3.17).         
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Here an example is given to demonstrate the algorithm for the sampled signal 

as well as its Hilbert transform. Assuming the sampled function g is given by 

)6(5.2
))6(5.2sin(

2
1

)5(3
))5(3sin(

4
3

2
)2sin()(

+
+

+
−

−
−=

t
t

t
t

t
ttf . 

The samples were taken in the interval 1010 ≤≤− t with a sampling interval of 

0.25, thus yielding 81 sampling points. Based on the Equation (3. 19), i.e., 

)(
))(cos(1

)(ˆ
k

k

t
t

f
−

−−
=

λπ
λπ

λ  

and the linear property of the Hilbert transform that discussed in Chapter 2, the 

Hilbert transform, )(ˆ tf  , of the function , )(tf , can be written as follows : 

)6(5.2
)))6(5.2cos(1(

2
1

)5(3
)))5(3cos(1(

4
3

2
)2cos(1)(ˆ

+
+−

+
−

−−
−

−
=

t
t

t
t

t
ttf . 

Running a MATLAB program, the results are shown in Figure 3.9 and Figure 

3.10. Figure 3.9 (a) shows the waveform of original function )(tf , Figure3.9 (b) is 

the 26th approximation )(26 tf  after 26 iterations. The error function is obtained 

using )(26 tf  minus )(tf , and the result is shown in Figure 3.9 (c).  The error 

function is smaller than 0.0001 shown in Figure 3.9 (c). The sample sequence it  is 

given in Figure 3.9 (d). 
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Figure 3.9 (a) )(tf     (b) 26f   (c) )()(26 tftf −    (d)  it . 
 

 

Figure 3.10 (a) shows the Hilbert transform )(ˆ tf of the original function )(tf , 

and the 26th approximation )(ˆ
26 tf  is shown in Figure 3.10 (b), and then the error 

function of the Hilbert transform is illustrated in Figure 3.10 (c).  
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Figure 3.10 (a) )(ˆ tf  (b) )(ˆ
26 tf  (c) )(ˆ)(ˆ

26 tftf −  
 

Boche algorithm permits reconstruct the bandlimited function from samples and 

recovery of the Hilbert transform of this function. Compared with other known 

solutions for computing Hilbert transform of a function, this algorithm does not 

need to calculate integrals. However a set of linear equations has to be solved in 

each iteration step.  

Here the algorithm is just given as a reference. In this thesis, the difficulty of 

computing the solution to a variable set of linear equations is not easier than 

calculating an integral. So this method is not suitable for the Holter monitoring 

system in this thesis. 
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3.4 Remez Approach  

     This section mainly talks about using “ remez ” function in MATLAB to 

obtain the Hilbert transform of a signal.          

         The Remez Exchange FIR filter design approach (also called the Parks-

McClellan or Optimal method) is a popular technique used to design FIR filters. 

The well known Parks-McClellan algorithm uses this approach and Chebyshev 

approximation theory to generate filters with an optimal fit between the desired 

frequency responses and actual frequency responses. Filters designed in this way 

illustrate an equiripple wave in the frequency response. By implementing the Parks-

McClellan algorithm [see Appendix B], the Remez approach designs a linear-phase 

FIR filter. 

The syntax of the remez function can be written the following way: 

),,( afnremezb =  

),,( afnremezb =  returns a row vector b including the 1+n  coefficients of 

the order n  FIR filter.  

where  

         “ n  ” represents the order of the filter. 

         “ f ” represents a vector of pairs of normalized frequency points. The 

frequencies are specified in the range between 0 and 1, where 1 corresponds to the 

Nyquist frequency. The frequencies must be in increasing order.  

         “ a ” represents a vector containing the desired amplitudes at the points 

specified in f . f  and  a  are  the same length. The length is an even number. 
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The output coefficients in b  satisfied the symmetry relation 

),2()( knbkb −+=  1,...,1 += nk ; 

Remez function can specify the different filter type: 

)'',,,( ftypeafnremezb = . 

)'',,,,( ftypewafnremezb =  is used when the special filter type is needed. 

where  

'' ftype   represents the filter type parameter. It includes three types: 

Multiband, Differentiator and Hilbert transform. The one used in this thesis is 

'hilbert', that is the Hilbert transformer, for linear-phase filters with odd symmetry. 

The output filter coefficients in b  satisfies )2()( knbkb −+−= , 1,,2,1 += nk K . 

The Hilbert transformer has the desired amplitude of 1 across the entire band. 

 

Here an example is given: 

remezh = (100, [0.05 0.95], [1 1], ' hilbert ') 

designs an approximate FIR Hilbert transformer of length 100. The frequencies are 

specified from 0.05 to 0.95 and their corresponding amplitudes are 1. The 

amplitude will be 0 at other frequencies. 



 

 48

 

Figure 3.11 The input wave: )500*02.0*2sin( π=y . 
 

 

Figure 3.12 The output wave: HT of )500*02.0*2sin( π=y . 
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As before, the input signal is the same sine wave )500*02.0*2sin( π=y , 

used previously. The remez  function discussed above was used to generate a 

Hilbert transformer and obtain the Hilbert transform of the input sine signal. The 

input waveform is shown in Figure 3.11. 

Figure 3.12 shows the Hilbert transform of the input signal 

)500*02.0*2sin( π=y . Because the order of the filter used here is 100=M , the 

filter phase delay should be 502/100 = . From the output waveform, it can be seen 

clearly that the filter has a phase delay for N  from 0 to 50. The output results 

corresponding to the input signal should be calculated from 51=N . Figure 3.12 

illustrates that the Hilbert transform of a sine function is a cosine function. 

Another example is given here. The input wave is still the normal ECG wave 

from the MIT-BITH Arrhythmia database MIT213 used previously (see Figure 

3.3). 
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Figure 3.13 An ECG wave. 
 

 

Figure 3.14 The Hilbert transform of an ECG wave. 
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Figure 3.14 shows the output, i.e., the Hilbert transform of the input ECG 

signal. For the same reason, the filter phase delay, the output wave lags by 50 

samples. 

 

3.5 Comparison  

Four methods for computing Hilbert transform are discussed above. From this 

section, the comparison of these four methods is given. Table 3.1 shows the 

different running time and the easy level of hardware (HW) and software (SW) 

implementation.  All of programs are MATLAB programs and timing was done 

using the tic/toc functions. 

Table 3.1 The comparison of the four methods for computing Hilbert transform. 
 

Time Domain 

Approach 

FrequencyDomain 

Approach 

Remez Filter 

Approach 

 

Sine 

(N=500) 

ECG 

(N=800)

Sine 

(N=500) 

ECG 

(N=800)

 

   Boche 

Approach Sine 

(N=500) 

ECG 

(N=800) 

Running 

Time 

2.7740s 7.1110s 0.010s 0.010s 0.6110 0.0140s 0.030s 

 

HW/SW 

HW&SW 

Problem 

HW 

Problem 

HW&SW 

Problem 

 

OK 

 

For Time-Domain approach, even though the equations for computing the 

Hilbert transform have been derived and it is not needed to calculate the integral 

anymore, it still needs to compute the “ ln ” function. It is hard to implement in the 

Nios system that will be used in this thesis because there is no hardware “ ln ” 
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function in the Nios processor. The running time was measured for sine wave and 

ECG wave individually. Note that the sample number is 500 for sine wave and 800 

for ECG wave. The results are shown in the Table 3.1. Using this method, the 

output waveform that corresponding to an input ECG signal is distorted to some 

extent.  

For Frequency-Domain approach, the running time is very fast, but it is 

inconvenient to be implemented on the hardware because it needs to compute the 

FFT and IFFT for this method. This is not that easy to implement on the hardware. 

The Boche approach supplied a simple way to calculate the Hilbert transform 

of the bandlimited function. Even though it does not need to calculate the integral, a 

set of linear equations has to be solved. The size of the equations is variable. It’s 

not that easy to implement in the Nios processor used in this thesis.  

Compared with the first three methods discussed above, the Remez filter 

approach is a better choice to compute Hilbert transform of a function in this thesis. 

Its running time is shorter and can be implemented on both hardware and software. 

 

The computer performance that used in this thesis: 

Operation System:  Microsoft Window XP 

CPU: Intel® Pentium®4  2.66GHz 

RAM: 512MB. 
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Chapter 4 Implementation 

 

In the previous chapters, four methods to compute the Hilbert transform 

applied to the input data have been discussed. After comparing them in terms of 

running time and the complexities of the software and hardware implementation, 

the Remez approach was selected to be the best method for the ECG Holter 

Monitoring System. The problem now, is how to implement the Hilbert transform 

algorithm to build the Holter monitoring system on the Nios system. In the 

following sections, this will be discussed in detail. 

 

4.1 Nios Embedded Processor Overview 

The Nios embedded processor is a user-configurable, 16-bit ISA (Instruction 

Set Architecture), general-purpose RISC (Reduced Instruction Set Computer) 

embedded processor that was designed to be a very flexible and powerful processor 

solution [14]. The Nios embedded processor has become a commonly used 

embedded processor because of its ease-of-use and flexibility. The Nios embedded 

processor system structure is shown in Figure 4.1. 
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The Quartus II software, the SOPC (System on a Programmable Chip) 

Builder system development tool, is used to build and evaluate custom processor-

based systems.  Designers can use SOPC Builder to integrate one or more 

configurable Nios CPUs with any number of standard peripherals, gluing the 

system together [14]. Using SOPC Builder, a user can combine the Nios 

processor with user logic and program it into a FPGA (Field Programmable Gate 

Array) easily. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Nios Embedded Processor System. 
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 In this thesis, the development tool is SOPC Builder, using a Nios 

development kit, Stratix Professional Edition. It is a complete embedded systems 

development kit for the Nios embedded processor. 

 There are a number of necessary steps to create a Nios system on the Nios 

development board. The procedure is shown in Figure 4.2. The flow includes both 

the hardware and software design tasks required to create a working system. The 

right side illustrates the software development flow and the left side illustrates the 

hardware design flow. 

Based on the system requirements, the hardware design begins with the SOPC 

builder system integration software. At this point, the designer can begin writing 

device-independent C/C++ software. 

 After the hardware designer defines the customer Nios processor hardware 

system using SOPC Builder, SOPC Builder generates a custom software 

development kit (SDK) that forms the foundation for the software development 

flow [16]. With the SDK, the designer can begin writing software that interacts at 

the low level with hardware components.  

The Nios SDK Shell provides an UNIX bash shell environment board on a PC 

platform. It is a very useful utility. Figure 4.3 shows the Nios SDK shell (bash 

environment).
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Figure 4.2 Hardware/Software development flow for a Nios processor system [15] 
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Figure 4.3 Nios SDK Shell (bash). 
 

This “bash” environment can be used for all related development work for the 

Nios system and communicate with the Nios development board. The Nios 

development board is shown in Figure 4.4. The Nios development kit includes 

many Nios-specific utilities that can run in the Nios SDK Shell to generate and 

debug software. The Nios SDK Shell also can be used to run test programs on the 

Nios development board. 
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Figure 4.4 Nios Development Board Components [17]
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Figure 4.4 shows the Nios development board components. It includes [18] 

• Stratix EP1S40F780 device 
• MAX EPM7128AE CPLD configuration control logic 
• SRAM (1 Mbyte in two banks of 512 Kbytes, 16-bit wide) 
• SDR SDRAM (16 Mbytes, 32-bit wide) 
• Flash (8 Mbytes) 
• CompactFlash connector header for Type 1 CompactFlash cards  
• 10/100 Ethernet physical layer/media access control (PHY/MAC) 
• Ethernet connector (RJ-45) 
• Two serial connectors (RS-232 DB9 port) 
• Two 5-V-tolerant expansion/prototype headers  
• Two JTAG connectors 
• 50-MHz crystal (socket), external clock input 
• Mictor connector for debugging 
• Four user-defined push-button switches 
• Eight user-defined LEDs 
• Dual 7-segment LED display 
• Power-on reset circuitry. 
 

Hardware designers can use the Nios development board as a platform to 

prototype complex embedded systems. Software developers can use the Nios 

reference design pre-programmed on the development board to begin prototyping 

software immediately. 

 

4.2 Digital Filter  

In digital signal processing, an important function of a filter is to remove 

unwanted parts of the signal, such as random noise, or to extract useful parts of the 

signal, such as the components lying within a certain frequency range [19]. Figure 

4.5 illustrates the basic concept. 
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        raw (unfiltered) signal                                        filtered signal 

 

    Figure 4.5 Filter. 
 

 

The filter function is implemented as a direct form II transposed structure as 

shown in Figure 4.6. 

 

Figure 4.6 Digital filter transposed structure. 
 

FILTER 
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For a linear time-invariant system (Figure 4.6), its input and output satisfy the 

following equation 

∑ ∑
= =

−=−−
N

k

M

k
kk knxbknyany

1 0
][][][                             (4.1) 

with the corresponding rational system function  

∑

∑

=

−

=

−

−
= N

k

k
k

M

k

k
k

za

zb
zH

1

0

1
)(  [20],                                        (4.2) 

where:  

         ][ knx −  is the previous input. 

         ][ny  is the output. 

         ][ kny −  is the previous output. 

         ka  and kb  are the filter coefficients.      

        )(zH is the filter’s Z transform. 

 For causal FIR (Finite Impulse Response) system, the system function has 

only zeros (except for poles at z=0), FIR filter does not depend on the past values of 

the output. FIR filters are therefore non-recursive. Since the coefficients ka  are all 

zero, the Equation (4.1) reduces to 

   ∑
=

−=
M

k
k knxbny

0
][][ .                                         (4.3) 

         When the filter sequence (impulse response) of FIR filter is either symmetric 

or anti-symmetric, the filter is of linear phase. Such filters do not distort the phase 



 

 62

of the input signal. It is well known that FIR filters can always be designed such 

that they exhibit the desirable characteristic. 

 If the impulse response of the FIR filter satisfies the condition 

][][ nhnMh =−     for Mn ,,1,0 K= , 

it is called symmetric.  

         If the impulse response of the FIR filter satisfies the condition 

][][ nhnMh −=−     for Mn ,,1,0 K= , 

it is called anti-symmetric. Table 4.1 categorizes linear phase filters according to 

their symmetry and length. 

Table 4.1 Four types of the linear phase FIR filter 
 

Type Impulse Response 

1 symmetric      Length (M+1) is odd 

2 symmetric Length (M+1) is even 

3 anti-symmetric      Length (M+1) is odd 

4 anti-symmetric      Length (M+1) is even 

 
Examples of the four types of impulse response sequences are shown in 

Figure 4.7. 

 

Figure 4.7 Illustration of four types of impulse response symmetry. 
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A Type 1 filter may be used to implement any desired bandpass frequency 

response. A Type 2 filter may not be used to define a highpass filter since the 

symmetry condition requires 0)( =πH . It can be used instead of Type 1 in cases 

where an even length filter is preferable [21]. Antisymmetric filters can be used to 

design FIR differentiators and Hilbert transformers. Differentiators are anti-

symmetric FIR filters with approximately linear magnitude responses. Hilbert 

transformers are anti-symmetric FIR filters with approximately constant magnitude.  

 

 

4.3 Implementation 

         In this section, the implementation for performing the Hilbert transform of an 

input signal will be discussed in detail. 

4.3.1 Filter Order 
 

 As discussed in previous chapter, the order of the filter should be determined 

to meet certain filter specifications including the passband ripple, stopband 

attenuation and the transition bandwidth. MATLAB is a perfect tool for this 

purpose. A sine wave signal was used as the test signal. Let M  represent the filter 

order. 

 The Hilbert transform experiments were conducted with the MATLAB 

program and 501 samples of the test signal )*02.0**2sin( nπ  with n = 500,,0 K . 

The input signal is shown in Figure 4.8. The Hilbert transform outputs are shown in 

Figures 4.9-4.13 for the filter order =M  51,71,91,101 and 201. 
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Figure 4.8 Input waveform: )500*02.0**2sin( π . 
 

 

Figure 4.9 Output waveform, 51=M . 
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Figure 4.10 Output waveform, 71=M . 
 

 

Figure 4.11 Output waveform, 91=M . 
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Figure 4.12 Output waveform, 101=M . 
 

 

Figure 4.13 Output waveform, 201=M . 
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The group delay caused by the FIR filter with the anti-symmetric coefficients 

and order M  is 
2
M . As result, the phase delay when the input 

signal )*02.0**2sin( nπ  passes through the filter is 

2
2*02.0*

2
ππ +

M = π)5.0*02.0( +M .  

 The output maximum and the minimum values were checked. The amplitude 

error and the phase delay for different order filters were also illustrated in Table 

4.2. From the Table 4.2, it can be seen that the higher the order is, the less the error 

is when M is changed from 51 to 101. In order to not take long time for compute 

the Hilbert transform of the ECG wave, the filter order should be chosen properly. 

 

Table 4.2 Filter order comparison 
 

M Maximum Minimum Error Phase Delay 

51 0.934020 -0.933397 <6.63% 1.52π 

71 0.975858 -0.967608 <2.83% 1.92π 

91 1.000212 -0.983314 <0.8% 2.32π 

101 1.008626 -0.987704 <0.2% 2.52π 

201 1.046485 -0.997695 <2.44% 4.52π 

 

The frequency responses are shown in Figure 4.14 and Figure 4.15 when the 

order of the filter is 100 or 101. 
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Figure 4.14 Frequency response, 100=M . 
 

 

Figure 4.15 Frequency response, 101=M . 
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Based on the delay analysis above, the phase response is 90
2

*
2

*360 −−
fM  

degree for the normalized sampling frequency of 2. The slopes of the phase 

responses in Figure 4.14 and 4.15 are -9090 degree/Hz and -9180 degree/Hz, 

respectively. 

 From the Figure 4.9, Figure 4.10, Figure 4.11 and Figure 4.12 and Figure 4.13 

it can be seen that the order of the filter must be bigger than 91 so that the 

amplitude of the output wave is 1≈ . The phase shift depends on the filter order as 

shown above. In addition, in this thesis, the error requirement is to be smaller than 

0.5%. From the Figure 4.14 and Figure 4.15, when the order is odd, the frequency 

response is not symmetrical (see the right hand side of Figure 4.14 and Figure 

4.15). So the order of the filter in this thesis is determined as 100. 

 

4.3.2 Filter Coefficients 
 

1. When using MATLAB, the remez function:  

                 )'',,,( filtertypeafnremezb =  

can be used to get the coefficients of the filter directly. That is 

                 05.0[,100(remezb = 1[],95.0  )''],1 h , 

where  

  100=n  is the filter order. 

         =f [0.05 0.95] is a vector of pairs of normalized frequency point, specified in 

the range 0 to 1, where 1 corresponds to the Nyquist frequency. This frequency 

range is determined according to a few tests. 
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         =a [1 1] is a vector containing the desired amplitudes 1 at the points specified 

in f = [0.05 0.95]. It has the same length as f . 

        '''' hfiltertype =  specifies that the filter is Hilbert transformer. This parameter 

allows specifying one of the following filters: Multiband, Differentiator, and 

Hilbert transformer. 

Running a MATLAB program, Figure 4.16 shows that the calculated remez 

filter is an equi-ripple bandpass filter with a symmetrical magnitude response 

around 5.0=f . The coefficient b  was obtained as shown in Figure 4.17.  

 

 

Figure 4.16 Frequency response of the ideal and Remez design filter. 
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Figure 4.17 Coefficients of the filter when 100=M . 
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From the output coefficients shown in the Figure 4.17, it can be seen that the 

Hilbert transformer has negative symmetry. 

 

 

Figure 4.18 Frequency response of Remez filter. 
 

Figure 4.18 demonstrates that the calculated filter has a symmetrical 

magnitude response around 5.0=f  and a linear phase response with the slope of -

9090 degree/Hz. 

 

2. Using C program cremez.  to calculate the coefficients of the filter 

This program uses the Remez exchange algorithm to design linear phase FIR 

digital filters with minimum weighted Chebyshev error in approximating a desired 
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ideal frequency response [22]. The program has a special built-in section for 

specifying the more common ideal filter types such as multi-band, bandpass filters, 

Hilbert transform filters, and differentiators [23]. 

cremez.  calculates the optimal FIR filter impulse response for a set of given 

band edges, the desired response and the weight on those bands. It includes a main 

program that handles the input, sets up the appropriate approximation problem and 

handles the output of the optimal filter coefficients. 

Function 

                )[],[],,,,[],( typeweightdesiredbandsnumbandnumtapshremez  

has input values numtaps , numband , bands , []desired , []weight , type  and output 

value []h , 

where 

[]h  is the impulse response of the filter, i.e. the coefficients of the filter. 

numtaps  is an integer. Specifying number of the filter coefficients. It should 

be 1+M , M  is the order of the filter. 

        numband  is an integer, specifying number of bands in filter specification. 

bands  is a double variable, specifying user_specified band edges, using upper 

and lower cutoff frequencies. The bands array specifys the set F  to be the form 

iUBF =  where each frequency band iB  is a closed subinterval of the frequency 

axis [0, 1/2]. The number of bands  should be numband*2 . 

[]desired  is an array, which is the user_specified band responses, the desired 

frequency response in each band. The number of []desired  should equal to the 

number of bands . 



 

 74

[]weight  is an array, which is the user_specified error weights, a positive 

weight function in each band. The number of []weight  equals to the number of 

bands. The array []desired  and []weight  specify the ideal response and weight 

function in each band. 

type  is the type of the filter. It includes:  

     (a) Multi-band filter;  

     (b) Bandpass filters; 

     (c) Hilbert transform filters; 

     (d) Differentiators. 

 In this thesis, it has been explained that the order of the filter is 100=M , so 

the numtaps  should be 1011 =+M . The numband  is 3. The bands , the []desired  

and the []weight  is defined as shown in Figure 4.19. The type  parameter is 

'' HILBERT . The output result []h  is saved in a text file “coefile.txt”. 

 To test program for the ()remez  function, the appropriate arguments to 

()remez  was used to generate a filter. The initial parameters are shown in Figure 

4.19. The resulting coefficients are shown as the Figure 4.20. 
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Figure 4.19 Initial parameter of cremez. . 
 

 A C program was run in Visual C++ and the filter coefficients are obtained. 

They are shown in Figure 4.20. The frequency response of the filter is illustrated in 

Figure 4.21. 

 

It can be noticed that the coefficients obtained from the C code are not exactly 

the same as those from MATLAB. Since the source code in MATLAB is not 

available, it is not possible to check the differences in the specific calculations. The 

frequency responses in Figure 4.18 and Figure 4.21 also show the differences. It 

looks like the response from C code is closer to the ideal filter response (Figure 

4.16).  
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Figure 4.20 Coefficients from the C program. 
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Figure 4.21 Frequency response for a 100=M  Hilbert transform filter. 
 

 

 This filter should also have a linear phase response as the one in Figure 4.18. 

However the phase response of the plot does not have the same slope in the 

stopband as one in the passband. It is caused by the calculation error because the 

transfer function values in the stopband are very small. 

 

4.3.3 Digital Filter 
 

 According to the FIR filter definition, the function 

),,(_ XinputCoefMfilterfir  was written in C program that is used to apply 

filtering operations on the data sequence in vector Xinput , 

where 
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 M  is an integer. It is the number of coefficients of the filter. 

 Coef  is the coefficients of the filter. 

 Xinput  is the input data. 

 The following codes illustrate how to use this function. 

 

where  

“xin” contains the input data, it could be the ECG data. 

         “infile” is the file name which saved the input data. It is named by users. 

         “h” is the coefficients obtained from the cremez. . 

         “outfile” is the file name which saved the results filtered from the filter. It is 

named by user. In this case, the outfile  saved the Hilbert transform of the input 

ECG data. 

 

4.3.4 Detector for R Wave Peak 
 
         Accurate determination of the QRS complex, in particular accurate detection 

of the R  wave peak, is essential in computer-based ECG analysis [24]. As 

described in the previous chapter, one of the properties of the Hilbert transform is 

that it is an odd function. That is to say that it will cross zero on the x -axis every 

time that there is an inflection point in the original waveform [24]. Similarly a 

crossing of the zero between consecutive positive and negative inflection points in 

the Hilbert transformed conjugate will be represented as a peak in its original 
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waveform. Using this characteristic, a detector for determining the R  wave peak in 

the input ECG waveform was developed. 

The Hilbert transform of the ECG wave was obtained in section 4.3.3. The 

peaks in the Hilbert transform sequence )(nh  represent regions of high probability 

of finding R  wave peaks. An adaptive threshold is used to locate the peaks in the 

)(nh sequence. For finding the R wave peak accurately, a moving 1000 points 

window is used to subdivide the Hilbert transform )(nh sequence. The RMS (Root 

Mean Square) value and the maximum amplitude in the present window are then 

calculated. The threshold in this window was determined according to the criteria 

below: 

1. If (the RMS value) ≥ (18%*maximum amplitude) in the Hilbert transform 

sequence, the threshold is set up at (39%*maximum amplitude). 

2. If (the present maximum amplitude) ≥ (2* previous maximum amplitude), 

the threshold will be (39%*previous maximum amplitude). 

3. If (the RMS value) < (18%* maximum amplitude) in the Hilbert 

transform sequence, the threshold will be (1.6*RMS value). 

4. If the two peaks in the )(nh  sequence are two close together, only one of 

them is the real R  peak. 

 

4.3.5 R Wave Peak Detection Test 
 

         In this section, two ECG waveforms taken from the MIT-BIH Arrhythmia 

database are used as the test signals. 
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 The MIT-BIH Arrhythmia database consists of 48 records, each containing 30 

minutes of two-channel ECG with heartbeat and rhythm annotations. The 

recordings were digitized at 360 samples per second per channel with 11-bit 

resolution over a 10 mV range. All samples are represented as positive numbers. 

The entire 30-minute record is annotated. 

XW_1 and XW_2 are the normal ECG waves. They are the small sections of 

MIT213 from the MIT-BIH database. Figures 4.22 and 4.23 illustrate the input data 

XW_1 and its filtered version, i.e., the Hilbert transform of the input signal. 

 

 

Figure 4.22 Input wavefom: XW_1. 
 

 

 As discussed in the previous chapter, the standard ECG is a representation of 

the heart electrical activity recorded from electrodes on the body face. Figure 4.22 
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shows a small section beats of a normal heart. There are 4 heartbeats since each R 

wave represents a heartbeat.  

 

 

Figure 4.23 Output waveform for XW_1. 
 

Table 4.3 XW_1 extreme points and values 
 

Input (Figure 4.22) Output (Figure 4.23) 

N Extreme Value N Value 

Error 

( )50−− Inputoutput NN

104 1459 155 0≈  1 

329 1419 380 0≈  1 

524 1404      575 0≈  1 

724 1435 774 0≈  0 
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 Figure 4.23 shows the Hilbert transform of the input wave, i.e. XW_1. For 

those points in Figure 4.22 where the slope changed from positive to negative, their 

outputs should be the zero crossing points with the extreme values changing from 

negative to positive. Because of the filter delay, the output results lag the input by 

50 )2/(M . Table 4.3 shows N  and extreme values corresponding to every 

heartbeat, i.e., the R  wave peak. Compared the results with the MIT-BIH database 

annotation file, it can be seen that the output values are close. 

Figure 4.24 and Figure 4.25 are for data XW_2. 

 

 

Figure 4.24 Input waveform: XW_2. 
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Figure 4.25 Output waveform for XW_2. 
 

 Figure 4.24 shows another channel waveform for the same person. The reason 

why Figure 4.24 is different from the Figure 4.22 is the electrode is placed at a 

different location. XW_1 is obtained when the electrode is placed at the front of the 

body while XW_2 is obtained when the electrode is placed on the back of the body. 

For this case, for those points which slope changed from negative to positive, the 

output point should be the zero crossing point with the extreme values changing 

from positive to negative.  
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Table 4.4 XW_2 extreme points and values 

 
Input (Figure 4.24) Output (Figure 4.25) 

N Extreme Value N Value 

Error 

( )50−− Inputoutput NN

103 518 152 0≈  -1 

327 466 377 0≈  0 

522 436 572 0≈  0 

722 416 771 0≈  -1 

 

 
 

Table 4.4 shows the results, for the same reason with the previous wave, filter 

phase delay, the output wave lag the input by 50 ( 2/M ). Comparing the output 

results with the MIT-BIH database annotation file, the error between the output 

results and the annotation results is acceptable. 

 

 

4.4  Nios Implementation  

In order to use the Nios development board [Figure 4.4], connect the host PC 

and open a Nios SDK shell and type  

$ runnios −  t−  r−  

This establishes a simple terminal connection with the development board. Press 

the SafeConfig  button on the Nios development board to reset the Nios 

development board and reconfigure the Stratix FPGA. The reference design emits a 

text message to the serial port when the Nios processor boots. After the LEDs begin 
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to blink and the LED displays network-initialization status messages, press SW3 to 

abort DHCP network configuration. Text will display in the Nios SDK Shell 

window. Press the Enter  key on the PC several times to provide stimulus to the 

reference design. The interface is shown in Figure 4.26. 

 

Figure 4.26 Nios SDK Shell Prompt. 
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If the activity in the Nios SDK shell looks like in Figure 4.26, then the PC is 

communicating correctly with the Nios development board. Press CCtrl +  to exit 

the terminal program and return to the bash shell. 

To compile all programs at the at the bash prompt, use command  

$ buildnios −  

The GNU C/C++ compiler and linker will be invoked. Several intermediate files 

and an executable ( srec. ) file will be produced. The messages are shown in Figure 

4.27. 

 

Figure 4.27 Nios-Build messages. 
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         To download and run the code compiled in Figure 4.27, download the srec  

file to the Nios development board. Redirect stdout to a data file txtoutputdata .1 . 

The message is shown in Figure 4.28. 

 

Figure 4.28 Nios SDK shell prompt. 
 

 The input waveforms XW_1 and XW_2 are a section wave of MIT 213 taken 

from the MIT_BIH Arrhythmia database (Figure 4.29 and Figure 4.31). The output 

file record the data of the Hilbert transform of the ECG wave. The output 

waveforms are shown in the Figure 4.30 and Figure 4.32. 
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Figure 4.29 Input ECG waveform: XW_1. 
 

 

Figure 4.30 The Hilbert transform of XW_1. 
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Figure 4.31 Input ECG waveform: XW_2. 
 

 

Figure 4.32 The Hilbert transform of XW_2. 
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         From the output waveforms in Figure 4.30 and Figure 4.32, it can be seen that 

the waveforms are almost the same as the results obtained from Visual C++.  

 

Table 4.5 XW_1 R wave points and their Hilbert transform points 
 

Input (Figure 4.29) Output (Figure 4.30) 

N Extreme Value N Value 

Error 

( )50−− Inputoutput NN

104 1459 155 0≈  1 

329 1419 380 0≈  1 

524 1404 575 0≈  1 

724 1435 774 0≈  0 

 

Table 4.6 XW_2 R wave points and their Hilbert transform points 
 

Input (Figure 4.31)  Output (Figure 4.32) 

N Extreme Value N Value 

Error 

( )50−− Inputoutput NN

103 518 152 0≈  -1 

327 466 377 0≈  0 

522 436 572 0≈  0 

722 416 771 0≈  -1 

 
 

Table 4.5 and Table 4.6 show the N values of the R wave points and their 

Hilbert transform points. It’s the same as the one discussed in the section 4.2. The 

results illustrates that the programs can work correctly on the Nios embedded 

processor. 
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Chapter 5 Results 

 

 In the previous chapter, implementation of the algorithm for the Hilbert 

transform of an ECG wave has been discussed. In order to prove the program is 

working well in the Nios processor, some ECG waves taking from the MIT-BIH 

Arrhythmia database were used as verifications. The results will be compared with 

the annotation files recorded in the MIT-BIH database. 

 

5.1 Experimental Results  

 Further examples of some ECG waves and their Hilbert transformed output 

waveforms are shown in this part.  

         The file txtfrommit .100212   is a small section from MIT212 recorded in the 

MIT-BIH arrhythmia database. It includes 1000 data samples from 100 to1099 in 

MIT212. Figure 5.1 shows the original ECG waveform. The output, i.e., the Hilbert 

transform of txtfrommit .100212  is shown in Figure 5.2.  The file 

txtfrommit .472001_212  is another section from the MIT212. It also includes 1000 
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data samples. The original waveform and the Hilbert transform of this ECG wave 

are shown in Figure 5.3 and Figure 5.4. 

As discussed preciously, accurate detection of the R wave peaks is important 

in ECG analysis. The zero crossing points corresponding to the true R wave peak in 

the Hilbert transformed data of the original ECG waveform are shown in Table 5.1 

and Table 5.2. The actual position of R wave points in the MIT-BIH arrhythmia 

database is also given. The error between the located R  and actual R is calculated 

using Equation 5.1: 

50−−= −BIHMIToutput NNError ,                                  (5.1) 

where  

        ouputN  is the number of the zero crossing point in the Hilbert transform 

sequence of the original ECG data located by detector. 

BIHMITN −  is the actual R wave peak location recorded in the MIT-BIH 

annotation file.   

 Since the order of the filter used in this thesis is 100, the output waveform 

lagged the input waveform 50. 



 

 93

 

Figure 5.1 Input waveforms: mit212from100.txt. 
 

 

Figure 5.2 Output waveform: outMIT212from100.txt. 
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Table 5.1 mit212from100 extreme points and values 
 

Input  Output 

N Extreme Value N Value 

MIT-BIH 

Value 

Error  

116 1287 165 0≈  114N 1 

353 1294 402 0≈  351N 1 

597 1265 647 0≈  596N 1 

825 1218 875 0≈  824N 1 

 

 

 

Figure 5.3 Input waveform: mit212_1from47200.txt. 
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Figure 5.4 Output waveform: outMIT212from47200.txt. 
 

 

Table 5.2 mit212_1from47200 extreme points and values 
 

Input  Output 

N Extreme Value N Value 

MIT-BIH 

Value 

Error  

48 1255 97 0≈  46N 1 

255 1169 304 0≈  254N 0 

477 1294 527 0≈  476N 1 

714 1324 763 0≈  713N 0 

963 1330     
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 The ECG waveforms (Figure 5.1 and Figure 5.3) are normal because the P 

waves, QRS complexes, ST segments, T waves and U waves are normal. Each R 

wave peak presents a heartbeat. 

 Table 5.1 and Table 5.2 show the positions of the zero crossing points in the 

output waveform which corresponding to the R peaks in the input ECG wave. 

Because of the filter delay, the output results lag the input by 50 ( )2/M . From 

Table 5.1 and Table 5.2, it can be seen that the N  in the output waveform is 

lagging about 50. The error between the zero crossing points obtained in the output 

waves with the value recorded in the MIT-BIH annotation file is very small. It 

proves that the algorithm for calculating the Hilbert transform of the original ECG 

wave is correct. Note in the Table 5.1 and Table 5.2, the meaning of the letter in the 

“MIT-BIH value” is the type of the beat recorded in the MIT-BIH annotation file. 

N means normal QRS, V means premature ventricular contraction (PVC). F means 

fusion PVC. The details about the MIT-BIH annotation code are shown in the 

Appendix A. 

 The files txtfrommit .670001_213  and txtfrommit .14501_213  are small 

sections from another record, MIT213, in the MIT-BIH arrhythmia database. Figure 

5.5 and Figure 5.7 show the ECG waveform. The outputs, i.e., the Hilbert transform 

of the input wave, were illustrated in Figure 5.6 and Figure 5.8. It can be seen there 

is an irregular heartbeat between 600=N  and 700 in Figure 5.5. This kind of beat 

is called a PVC (Premature Ventricular Contraction). PVCs are premature 

heartbeats originating from the ventricals of heart. PVCs are early or extra 

heartbeats that commonly occur and are usually harmless in normal hearts, but can 
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cause problems in hearts with pre-exiting disease. A person with PVCs may or may 

not feel the irregular heartbeat, usually as a skip heartbeat [25]. The characteristic 

of PVCs is that there is no P wave and PR interval and the QRS complex is greater 

than 0.12s. 

 

 

Figure 5.5 Input waveform: mit213_1from67000.txt 
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Figure 5.6 Output waveform: outMIT213_1from67000.txt. 
 

 

Table 5.3 mit213_1from67000 extreme points and values 
 

Input Output 

N ExtremeValue N Value 

Value 

(MIT-BIH) 

Error 

51 1451 101 0≈  50 N 1 

244 1549 293 0≈  243 F 0 

439 1463 489 0≈  438 N 1 

637 1582 689 0≈  635 V 4 

834 1476 884 0≈  833 N 1 
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Figure 5.7 Input waveform: mit213_1from1450.txt. 
 

 

Figure 5.8 Output waveform: outMIT213_1from1450.txt. 
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Table 5.4 mit213_1from1450 extreme points and values 
 

Input Output 

N ExtremeValue N Value 

Value 

(MIT-BIH) 

Error 

17 1388 67 0≈  16 N 1 

206 1388 255 0≈  205 N 0 

400 1396 450 0≈  399 N 1 

598 1415 647 0≈  597 N 0 

 

 

 From the results obtained in Table 5.3 and Table 5.4, it can be seen that the 

error for normal heartbeat and for the PVC beat are small and are acceptable.  

 

 Here other examples are given, the files txtfrommit .477001_223  and 

txtfrommit .79001_223  are sections from the MIT 223 in the MIT-BIH database. 

The input waves are shown in Figure 5.9 and Figure 5.11, the Hilbert transforms of 

the input ECG waves are shown in Figure 5.10 and Figure 5.12. In this case, there 

are a few irregular heartbeats, such as PVCs. In Figure 5.9, the PVCs happened 

between 0=N  to 100 and 800=N  to 900. Table 5.5 and Table 5.6 show the 

compared results.  
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Figure 5.9 Input waveform: mit223_1from47700.txt. 
 

 

Figure 5.10 Output waveform: outMIT223_1_from47700.txt. 
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Table 5.5 mit223_1from47700 extreme points and values 
 

Input Output 

N Extreme Value N Value 

Value 

(MIT-BIH) 

Error 

60 1376 110 0≈  60 V 0 

393 1327 442 0≈  391 N 1 

667 1321 716 0≈  664 N 2 

862 1367 912 0≈  861 V 1 

 

 

 

Figure 5.11 Input waveform: mit223_1from7900.txt. 
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Figure 5.12 Output waveform: outMIT223_1_from7900.txt. 
 

 
 

Table 5.6 mit223_1from7900 extreme points and values 
 

Input Output 

N ExtremeValue N Value 

Value 

(MIT-BIH) 

Error 

79 1303 128 0≈    76 N 2 

352 1328 401 0≈  349 N 2 

591 1143 641 0≈  590 V 1 

879 1298 928 0≈  876 N 2 
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         In Figure 5.11, the PVC happened between 500=N  to 600. The R wave 

peak is not that clear, there are two peaks and the extreme values are close together. 

Table 5.5 and Table 5.6 record the R wave peaks in the input and output waveform. 

From Table 5.5 and Table 5.6, it can be seen that the output results lag the input 

data by 50 because the filter delay is 50 )2/(M .  

 As discussed in the Chapter 4, the points which are of interest are those zero 

crossing points with the extreme value changing from negative to positive or from 

positive to negative. Comparing the results shown in Table 5.1-Table 5.6 with the 

data recorded in the MIT-BIH arrhythmia database, the error is small and is 

acceptable. It illustrated that the algorithm and the program are correct and working 

properly. 

 

5.2 Complete ECG Testing 

 In the previous section, just small sections from the record of the MIT-BIH 

Arrhythmia database are tested. As mentioned previously, each MIT-BIH excerpt 

contains 30 minutes of ECG with heartbeat recording. In this section, the whole 

excerpt will be used to test. Every excerpt includes 649999 data samples. 

 MIT212 is the heart recording of an adult (31 years old). The predominant 

rhythm is normal sinus at rates of 75-90 BPM.  
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 MIT213 is the record of a 61year_old person’s heart; heart rate is 100-110 

BPM. Predominant is normal but there are occasional APBs (Atrial Premature 

Beats). 

 MIT223 is the record of an 84 year_old person’s heart. APBs are present 

throughout. There is high-grade ventricular ectopic activity with frequent multifocal 

VPBs, couplets, and runs of Vtach. 

 The entire excerpt from the MIT-BIH Arrhythmia database was tested by the 

system discussed in this thesis. The Hilbert transform of this excerpt is obtained and 

the R wave peaks are detected. Since the data is too long, just portion of the results 

of MIT212, MIT213 and MIT223 were shown in Figure 5.13, Figure 14-15 and 

Figure 5.16-17. Beat by beat comparison was performed according to the 

annotation file. The results are shown in Table 5.7. 
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Figure 5.13 The portion of results of MIT212. 
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Figure 5.14 The portion of results of MIT213. 
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Figure 5.15 The portion of results of MIT213. 
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Figure 5.16 The portion of results of MIT223. 
 
 
 
 
 
 
 
 
 
 
 
 



 

 110

 
 

  

Figure 5.17 The portion of results of MIT223. 
 

Table 5.7 R wave detection performance 
 
MIT-BIH 

record 
Actual number 

of beats in 
record 

Failed 
detection 
number 

Detection 
error rate  

Average 
error 

MIT212 2748 10 0.00364 1.11 

MIT213 3251 9 0.00277 1.26 

MIT223 2605 10 0.00384 2.43 
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 The detection error rate and average error were calculated using the following 

equations respectively: 

berOfBeatsAcutralNum
rctionNumbeFailedDeterrorRateDetectionE =                       (5.2) 

K

actualRlocatedR
orAverageErr

k

i
⎟
⎠

⎞
⎜
⎝

⎛
−

=
∑

=1 ,                          (5.3) 

where  

K  is the total number of R correctly located by the detector. 

 

 From the detection error rate and the average error, it can be seen that the 

results are closed to the data recorded in the MIT-BIH annotation file. The average 

error in MIT 223 is bigger since MIT 223 records the heart beats of an 83 year old 

person and there are a lot of PVCs, the beat by beat error is larger. That is why the 

average error is larger than others. But the error is still acceptable (< 3 samples). 

The results of the test illustrate the algorithm for calculating the Hilbert transform 

and detecting the R wave peaks is effective. 
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Chapter 6 Summary and Conclusion  

 
 In the previous chapters, the information about the Holter monitoring system 

and the process for calculating the Hilbert transform of an ECG signal are discussed 

in detail. This final chapter summarises the results of the research and the contents 

of the thesis.  

6.1 Summary  

 The Holter ECG Monitoring System mainly consists of four parts: Input 

Processing, Pattern Recognition, Compression and Storage. The main objective of 

the input processing is to calculate the Hilbert transform of the input ECG data. 

Pattern recognition uses vectorcardiograph and polarcardiograph representations 

and the concepts of pre-envelope and envelope of a real waveform given by the 

Hilbert transform to judge whether the ECG wave is normal or abnormal. Lastly 

data is compressed from the abnormal ECG wave and saved in the flash card. In 

this thesis, only the first part of the Holter ECG monitoring system, i.e., Input 

Processing is discussed.  
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 The background of the Holter ECG Monitoring System was presented. The 

Hilbert transform applications and the basic mathematics and properties of a Hilbert 

transformer are also presented. 

The Hilbert transform is a mathematical method for analysing signal 

waveforms, and has been widely used in the areas of communication systems 

analysis. The resulting display of the Hilbert transformed data is similar to that 

obtained from conventional vectorcardiographic systems. It allows easy visual 

indication of the different classes of normal and abnormal morphologies. It allows 

quick, precise segmentation of the incoming ECG into individual heartbeats and 

also allows the detection of Q-, R-, S-, and T-wave complexes in the data.  

In this thesis, four approaches to compute the Hilbert transform including the 

Time-Domain approach, the Frequency-Domain approach, the Boche approach and 

the Remez Filter approach have been discussed in detail. The algorithms are 

deduced and examples are also given for every approach. After comparing them in 

running time and the ease of implementation, the Remez Filter approach which 

implements the Parks-McClellan algorithm to design and apply a linear-phase filter 

was determined to be the best and is used in computing the Hilbert transform of the 

ECG wave in this thesis. The results for every approach were shown in Chapter 3 

and the comparisons were also given. 

 In the software implementation part, as a first step, the filter order and the 

frequency range are determined by analyzing a set of test results using MATLAB. 

The remez  function was used in MATLAB to test the Hilbert transform of the 

ECG data. 
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 In additional, a C  program ( cremez. ) was developed to implement the 

algorithm of the Remez filter approach. cremez.  uses the Parks-McClellan 

algorithm, i.e., uses the Remez exchange algorithm and Chebyshev approximation 

theory to design a filter with the optimal fit between the desired frequency response 

and actual frequency response. A main program that handles the input, sets up the 

appropriate approximation problem and handles the output of the optimal filter 

coefficients was included.  Specifically cremez. has a build-in section for the more 

common ideal filter types such as multi-band, bandpass filters, differentiators and 

the Hilbert transform filters. All results including the order, frequency range and the 

coefficients of the filter were shown in Chapter 4.  

 A digital filter was developed to apply filtering operations on the data 

sequence. Using the coefficients achieved from cremez.  and the input data, i.e., the 

ECG data sequence, the Hilbert transform of the input ECG data was obtained. All 

results and waveforms are also presented in Chapter 4. 

 Accurate determination of the QRS complex, in particular, accurate detection 

of the R  wave peak, is essential in ECG analysis and is another task in this thesis. 

In the system discussed in this thesis, the method of ECG waveform analysis uses 

vectorcardiograph and polarcardiograph representations and examines the concepts 

of pre-envelope and envelope of a real waveform given by the Hilbert transform. A 

prototype two stage QRS detector was used based on the determination of a zero 

crossing in the Hilbert transformed data of the original ECG waveform. The 

positions of the zero crossing points that correspond to the R wave peaks are useful 

in judging whether the heartbeat is normal or abnormal. 
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         A C  program was developed to detect the QRS complex, in particular, to 

detect the R wave peak used in ECG analysis. All the results were shown in 

Chapter 4 and Chapter 5. The simulation results are also presented in Chapter 5. 

 The Nios embedded processor was introduced. SOPC Builder was used to be 

development tool.  Using SOPC builder, users can combine the Nios processor with 

user logic and program it into an FPGA easily. All programs were run on the Nios 

embedded processor. The results, i.e., the Hilbert transform of the ECG data 

sequence, are almost the same as the results obtained in the C program except the 

first 50 data samples. The first 50 data samples in the output sequence can be 

ignored since the phase delay of the filter is 50. The results prove that the program 

can work properly in the Nios embedded processor. 

 

6.2 Conclusion 

 The data used in test were from standard ECG waveform records in the MIT-

BIH arrhythmia database. The performance of the chosen algorithm was tested. The 

test results were compared with the annotation files recorded in the MIT-BIH 

arrhythmia database. The detection error rate is smaller than 0.005. The average 

error is smaller than 3 samples. The results were given in Chapter 5. The error is 

acceptable. The results illustrated that the algorithm performed effectively with 

accurate R wave detection. 
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Appendix A  

The MIT-BIH Arrhythmia Database 

 

A.1 Introduction 

The database consists of 48 records, each containing 30 minutes of two-

channel ECG with beat and rhythm annotations. Each digital record has been 

copied from an analog recording made with an Avionics 445 two-channel recorder. 

Annotations have been made by two independent cardiologists with consultation to 

resolve disagreements. 

         The data base is recorded on twelve 2400-foot (730m) ANSI standard 9-track 

tapes at 800 bpi, odd parity, with NRZI recording. A detailed catalog of the 

contents of each tape, with illustrations, is included with the database. 

         The format is that which will be used for the American Heart Association 

(AHA) Database for Ventricular Arrhythmia Detectors, with these differences: 

         Each 9-track tape contains four 30-minute records. 

         Sampling frequency is 360 Hz per channel. 

         Sampling precision is 11 bits, and all samples are represented as positive 

numbers. 

         The entire 30-minute record is annotated. 

         Annotations are referenced to samples (rather than milliseconds). 
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An additional “0” annotation has been added to the AHA set to specify non-

beat annotations (e. g., rhythms, artifact).The “R” (R-on-T PVC) annotation is not 

used. 

         Space allocated but unused in the AHA format annotation blocks is used to 

specify rhythms and beat types more precisely than is allowed using the AHA 

annotation codes alone. Atrial ectopic beats and conduction defects are among the 

items specified in this way. 

 

A.2 File Structure 

Each tape contains 16 files separated by ANSI standard end-of-file (EOF) 

marks. The last file is terminated with two EOFs to indicate the end of the tape. 

         Each record, corresponding to 30 minutes of ECG and annotations, is 

comprised of four files: an ID block file, a sample data file, an annotation file, and a 

second ID block file. The order of files is: 

(Record 1)              ID Block 
                               (EOF) 
                               Sample Data Blocks 
                               (EOF) 
                               Annotation Blocks 
                               (EOF) 
                               ID Block 
                               (EOF) 
(Record 2)              ID Block 
                               (EOF) 
                               Sample Data Blocks 
                               (EOF) 
                               Annotation Blocks 
                               (EOF) 
                               ID Block 
                               (EOF) 
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(Record3)               Sample Data Blocks 
                               (EOF) 
                               Annotation Blocks 
                               (EOF) 
                               ID Block 
                               (EOF) 
(Record4)               Sample Data Blocks 
                               (EOF) 
                               Annotation Blocks 
                               (EOF) 
                               ID Block 
                               (EOF) 
 

A.3 Notational and Other Conventions 

Multiple-byte Numbers 

In this specification, the least significant 8-bit byte of a multiple-byte number 

is referred to as byte i, the next most significant byte as byte ii, and so on. (The first 

byte read from the tape in a given block is called byte 1.) 

         The AHA format specifies that: 

         16-bit numbers are stored in the order: byte i, byte ii. 

         32-bit numbers are stored in the order: byte iii, byte iv, byte i, byte ii. 

ASCII text 

         In the ID block and in certain annotation labels (see below) brief comments 

are present. These are coded as ASCII characters, and should be read from the tape 

in byte-sequential order. 

TOCs 

         “TOC” means “time of occurrence”, TOCs are always represented as 32-bit 

numbers. TOCs in the AHA database are given as the number of MILLISECONDS 
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from the beginning of the annotated segment of the record. In the MIT-BIH 

database, TOCs are given as the number of SAMPLE COUNTS from the beginning 

of the record. To convert sample counts to milliseconds, multiply sample counts by 

1000/360 (=2.777….). 

 

A.4 File Format Specifications 

ID block file 

         The first and fourth files in each record each consist of a single 512 byte ID 

block, The AHA specification for the ID block is: 

 Bytes Use 

  1-8 record ID (8 ASCII characters) 
  9-10 number of annotations 
11-16 unused 
17-20 time of first sample in the annotated segment of the record 
21-24 time of last sample in the annotated segment of the record 
25-26 number of bytes of sample data, divided by 512 and rounded upward 
27-32 unused 
33-36 TOC-first annotation, relative to the beginning of the annotated segment 
37-40 TOC-last annotation, relative to the beginning of the annotated segment 
41-42 numbers of bytes of annotation data, divided by 512 and rounded upward 
43-512 unused 
 
 
         In each record in the MIT-BIH database, the entire record has been annotated; 

thus the time of the first sample is always zero. Each tape has exactly 649999 

samples, and an end-of-sample-data mark, per channel (30 minutes and 5.444 

seconds), and the annotated segment is considered to end after the end-of-sample-

data mark, so that the time of the last sample in the annotated segment is always 

650000, and the number of bytes of sample data divided by 512 is always 5079 
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(649999 samples per channel, times 2 channels, times 2 bytes per sample, divided 

by 512, rounded up). NOTE THAT THE UNITS OF TIME ARE SAMPLE 

COUNTS, NOT MILLISECONDS 

Sample data file 

         The second file in each record is the sample data file, which consists of 

exactly 2540 blocks, each 1024 bytes long. 

         Each block contains 256 2-byte samples from each channel. Samples are 

stored alternately in the block: 

Byte Use 

1 Channel 1, sample 1, byte i 
2 Channel 1, sample 1, byte ii 
3 Channel 2, sample 1, byte i 
4 Channel 2, sample 1, byte ii 
5 Channel 1, sample 2, byte i 
M   
1021 Channel 1, sample 256, bytei 
1022 Channel 1, sample 256, byteii 
1023 Channel 2, sample 256, bytei 
1024 Channel 2, sample 256, byteii 

 
 
         The AHA database has been recorded using a 12-bit A/D converter with a 

range of -10V to +10V, and preamp gain adjusted so that a QRS complex is 

nominally 1V peak-to-peak, or about 200 ADC units. The MIT-BIH database has 

been recorded using an 11-bit A/D converter with a range of -5mV to +5mV, and 

the unamplified QRS complexes are nominally 1 mV, or about 200 ADC units; thus 

the scales are the same though the ranges differ. Both positive and negative (two’s 

complement, with sign extension to 16 bits) samples are recorded in the AHA 

database; in the MIT-BIH database, all samples are positive (in the range of 0 to 

2047). 
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         Block 2540 contains the last fifteen samples for each channel. The end of the 

sample data is marked in the last sample block by two consecutive sample values of 

10000 (base 8) following the last samples. The remainder of the last sample block 

is padded with zeroes. 

Annotation file 

         The third file in each record is the annotation file, which consists of a variable 

number (typically 20 to 50) of blocks, each 1024 bytes long. 

         Each block contains 64 annotation labels, each 16 bytes long. Annotation 

labels are stored in strict chronologic order. 

         The AHA format leaves a number of unused bytes in each annotation label, 

some of which are used in the MIT-BIH database. 

         The last annotation block is padded with all ones (177 base 8) following the 

last annotation. If there is no room following the last annotation, an entire block of 

177s is written. 

 

A.5 Annotation Specifications 

Annotation labels 

Byte AHA format MIT-BIH format 

1 unused unused(0) 
2 AHA annotation code AHA annotation code 
3-6 TOC (milliseconds) TOC (sample counts) 
7-8 Annotation label Annotation label 
 serial number serial number 
9 unused unused (0) 
10 unused MIT-BIH annotation code 
11-16 unused ASCII text * 
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*The ASCII text field is filled with zero bytes unless the MIT-BIH annotation code 

is 22 or 28 (see next page following). 

 

AHA annotation codes 

         The AHA annotation codes are ASCII characters: 

Character Value (base 8)  Meaning 

N 116 supraventricular beat 
V 126 premature ventricular contraction (PVC) 
E 105 ventricular escape beat 
F 106 fusion PVC 
R 122 R-on-T PVC 
P 120 paced beat 
Q 121 beat of indeterminate origin 
U 125 data unreadable between preceding and following beat labels 
[ 133 beginning of ventricular flutter or fibrillation 
] 135 end of ventricular flutter/fibrillation 
 
 
         The “R” code does not appear in the MIT-BIH database. An additional code, 

“O” (117 base 8), has been defined to permit inclusion of rhythm labels, artifact 

labels, and comments. “O” labels are never QRS labels, and may be ignored for the 

purpose of counting beats. 

 

MIT-BIH annotation codes 

         The MIT-BIH annotation codes are not ASCII characters, but numbers 

between 1 and 37: 

 

Code AHA equivalent  Meaning 

1 N normal QRS 
2 N left bundle branch block beat 
3 N right bundle branch block beat 
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4 N aberrantly conducted beat 
5 V premature ventricular contraction (PVC) 
6 F fusion PVC  *** 
7 N nodal premature beat 
8 N atrial premature bat (APB) 
9 N nodal or atrial premature beat 
10 E ventricular escape beat 
11 N nodal escape beat 
12 P paced beat 
13 Q beat of indeterminate origin 
14     O,U beginning of noise * 
15 O end of noise * 
16 O single QRS-like artifact 
17-21 O reserved for future use ** 
22 O comment (text) annotation *** 
23-24 O reserved for future use ** 
25 N left or right bundle branch block beat 
26 O non-captured pacemaker spike 
27 O axis shift 
28 O rhythm onset (text) annotation *** 
29-30 O reserved for future use ** 
31 O ventricular flutter wave 
32 [ onset of ventricular flutter or ventricular fibrillation 
33 ] end of ventricular flutter/fibrillation atrial ectopic beat 
34 N atrial ectopic beat 
35 N nodal ectopic beat 
36 O missed beat 
37 O blocked APB 
38 O reserved for future use ** 
 
 
*     Annotation codes 14 and 15 are used in pairs. If AHA code corresponding to 

the code 14 “U”, no beats are labeled until the next code 15; otherwise, all beats are 

labeled. 

**   Where codes designated “reserved for future use” appear, they should be 

ignored. 

***   “Text” annotations use the last six bytes of the annotation label for an ASCII 

string (terminated by a zero byte if less than six characters).  
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****  In the context of paced rhythm (tapes 102,104,107,217) annotation code 6 is 

used for pacemaker fusion beats. 

Rhythm onset annoations 

         Rhythm onset annotation (MIT-BIH annotation code 28) include an ASCII 

string which begins with a “(“: 

String Meaning 

(AB atrail bigeminy 
(AFIB            atrial fibrillation 
(AFL              atrial flutter 
(B                  ventricular bigeminy 
(BI                  first degree heart block 
(BII                  second degree heart block 
(BIII   third degree heart block 
(IVR               idioventricular rhythm 
(N normal sinus rhythm 
(NOD             normal (A-V junctional) rhythm 
(PAT              paroxsysmal atrial tachycardia 
(PREX            pre-excitation (WPW) 
(SVTA            supraventricular tachyarrhythmia 
(T ventricular trigeminy 
(VFIB             ventricular fibrillation 
(VFL               ventricular flutter 
(VT                 ventricular tachycardia 

 
 
Comment annotations 

         Sparse comment annotations exist on a few records. They are: 

PSE pause 
TS tape slippage 
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Appendix B 

 

B.1 The Parks-McClellan Algorithm 

 Consider a particularly effective and widely used algorithm procedure for the 

design of FIR filters with generalized linear phase. Although only type I filters are 

considered in detail, where appropriate results that apply to types II, III, and IV 

generalized linear phase filters are indicated. 

 In designing a causal type I linear phase FIR filter, it is convenient first to 

consider the design of a zero-phase filter, i.e., one for which 

                                         ],[][ nhnh ee −=                                                     (1) 

and then to insert sufficient delay to make it causal. Consequently, consider ][nhe  

satisfying the condition of Eq. (1). The corresponding frequency response is given 

by 
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with 2/ML =  an integer or, because of Eq. (1), 
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Note that )( ωj
e eA  is a real, even, and periodic function of ω . A causal system can 

be obtained from ][nhe  by delaying it by 2/ML =  samples. The resulting system 

has impulse response 
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                                        ][]2/[][ nMhMnhnh e −=−=                                   (4) 

and frequency response 

                                             .)()( 2/Mjj
e

j eeAeH ωωω −=                                      (5) 

 The Parks-McClellan algorithm is based on reformulating the filter design 

problem as a problem in polynomial approximation. Specially, the terms )cos( nω  

in Eq. (3) can be expressed as a sum of powers of ωcos  in the form 

                                                   ),(cos)cos( ωω nTn =                                         (6) 

where )(xTn  is an n th-order polynomial. Consequently, Eq. (3) can be rewritten as 

an L th-order polynomial in ωcos . Specially, 
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where the ka ’s are constants that are related to ][nhe , the values of the impulse 

response. With the substitution ωcos=x , Eq. (7) can be expressed as 

                                             ,)()( cosω
ω
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where )(xP  is the L th-order polynomial 

                                               .)(
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k
k xaxP                                                 (9)  

         It is not necessary to know the relationship between the ka ’s and ][nhe ; it is 

enough to know that )( jw
e eA  can be expressed as the L th-degree trigonometric 

polynomial of Eq.(7). 



 

 130

 The key to gaining control over pω  and sω  is to fix them at their desired 

values and let 1δ  and 2δ vary. To formalize the approximation problem, define an 

approximation error function 

                             )],()()[()( ωωωω j
e

j
d eAeHWE −=                                   (10) 

where the weighting function, )(ωW , incorporates the approximation error 

parameters into the design process. In this design method, the error function )(ωE , 

the weighting function )(ωW , and the desired frequency response )( ωj
d eH  are 

defined only over closed subintervals of πω ≤≤0 . 

Parks and McClellan applied the following Alternation Theorem of 

approximation theory to the filter design problem. 

Let PF  denote the closed subset consisting of the disjoint union of closed 

subsets of the real axis x . )(xP  denotes an r th-order polynomial  

.)(
0

∑
=

=
r

k

k
k xaxP                                                

Also, )(xDP  denotes a given desired function of x  that is continuous on PF , and 

)(xEP denotes the weighted error 

)].()()[()( xPxDxWxE PPP −=  

The maximum error E  is defined as  

)(max xEE PFx P∈
= .   

A necessary and sufficient condition that )(xP  is the unique r th-order polynomial 

that minimizes E  is that )(xEP  exhibit at least )2( +r  alternations, i.e., there 
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must exist at least )2( +r  values ix  in PF  such that 221 +<<< rxxx L and such 

that ExExE iPiP ±=−= + )()( 1  for ).1(,,2,1 += ri K  

         The alternation theorem states necessary and sufficient conditions on the error 

for optimality in the Chebyshev sense. Although the theorem does not state 

explicitly how to find the optimum filter, the condition is phrased in terms of type I 

lowpass filters, the algorithm easily generalizes. 

         From the alternation theorem, the optimum filter )( ωj
e eA  will satisfy the 

following set of equations: 

δω ωω 1)1()]()()[( +−=− ij
e

j
di

ii eAeHW ,    ),2(,,2,1 += Li K          (11) 

where δ  is the optimum error and )( ωj
e eA  is given by either Eq. (3) or Eq. (7). 

Using Eq. (.7) for )( ωj
e eA , these equations can be written as 
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where iix ωcos= . This set of equation serves as the basis for an iterative algorithm 

for finding the optimum ).( ωj
e eA The procedure begins by guessing a set of 

alternation frequencies iω , )2(,,2,1 += Li K . Note that Pω and sω are fixed and 

are members of the set of alternation frequencies. Specifically if pl ωω = , then 

sl ωω =+1 . The set of equations (12) could be solved for the set of coefficients ka  

and δ . However, a more efficient alternative is to use polynomial interpolation. 
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Specifically, Parks and McClellan found that for the given set of the extremal 

frequencies, δ is given by the formula 
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and, as above, iix ωcos= . That is, if )( ωj
e eA is determined by the set of 

coefficients ka that satisfy Eq. (12), with δ given by Eq. (13), then the error 

function goes through δ±  at the )2( +L  frequencies iω  or, equivalently, 

)( ωj
e eA has values δK±1  if pi ωω ≤≤0  and δ±  if πωω ≤≤ is . Now since 

)( ωj
e eA  is known to be an L th-order trigonometric polynomial, can interpolate a 

trigonometric polynomial through )1( +L  of the )2( +L  known values )( iE ω  (or 

equivalently )( ωj
e eA ). Parks and McClellan used the Lagrange interpolation 

formula to obtain 
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where ωcos=x , iix ωcos= , 
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and 
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 Now, )( ωj
e eA  is available at any desired frequency without the need to slove 

the set of Eq. (12) for the coefficients ka . The polynomial of Eq. (15) can be used 

to evaluate )( ωj
e eA  and also )(ωE  on a dense set of frequencies in the passband 

and stopband. If δω ≤)(E  for all ω  in the passband and stopband, then the 

optimum approximation has been found. Otherwise a new set of extremal 

frequencies must be found. 

         In this algorithm all the impulse response values ][nhe  are implicitly varied 

on each iteration to obtain the desired optimum approximation, but the values of 

][nhe  are never explicitly computed. 

 

Figure B.1 shows the flowchart of Parks-McClellan algorithm. 
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Figure B.1 Flowchart of Parks-McClellan algorithm. 
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