NUMERICAL IMPLEMENTATION OF THE
HILBERT TRANSFORM

A Thesis
Submitted to the College of Graduate Studies and Research
in Partial Fulfillment of the Requirements
For the Degree of Master of Science
in the Department of Electrical Engineering
University of Saskatchewan

Saskatoon, Saskatchewan

by

Xiangling Wang

© Copyright Xiangling Wang, September 2006, All Rights Reserved



PERMISSION TO USE

I agree that the Library, University of Saskatchewan, may make this thesis
freely available for inspection. I further agree that permission for copying of this
thesis for scholarly purpose may be granted to the professor or professors who
supervised the thesis work recorded herein or, in their absence, by the Head of the
Department or the Dean of the College in which the thesis work was done. It is
understood that due recognition will be given to me and to the University of
Saskatchewan in any use of the material in this thesis. Copying or publication or
any other use of this thesis for financial gain without approval by the University of

Saskatchewan and my written permission is prohibited.

Request for permission to copy or to make any other use of the material in this

thesis in whole or part should be addressed to:

Head of the Department of Electrical Engineering
57 Campus Drive

University of Saskatchewan

Saskatoon, Saskatchewan

Canada S7N 5A9



ACKNOWLEDGEMENTS

I wish to express my gratitude to the following people who not only made this

thesis possible but also an enjoyable experience:

Dr. Ronald J. Bolton: my supervisor, for his valuable guidance, criticisms and

consistent encouragement throughout the course of this research work.
My husband, Zhanghai Wang: for his love and encouragement.

My parents, my sister Xiangrong Wang and brother-in-law Xianggang Yu: for

the support they provided to me.

All my friends in Saskatoon, Sha Li, Song Hu, Jing Yin, Ying Cui, Quan
Wan, Yajun Wang, Xin Xu and Yanan Xing: for making me feel welcome. They

will always be special friends in my life.

The Department of Electrical Engineering: for supplying the opportunity to

study in Canada and the necessary facilities with which to work.

i



ABSTRACT

Many people have abnormal heartbeats from time to time. A Holter monitor is
a device used to record the electrical impulses of the heart when people do ordinary
activities. Holter monitoring systems that can record heart rate and rhythm when
you feel chest pain or symptoms of an irregular heartbeat (called an arrhythmia)
and automatically perform electrocardiogram (ECG) signal analysis are desirable.

The use of the Hilbert transform (HT) in the area of electrocardiogram
analysis is investigated. A property of the Hilbert transform, i.e., to form the
analytic signal, was used in this thesis. Subsequently pattern recognition can be
used to analyse the ECG data and lossless compression techniques can be used to
reduce the ECG data for storage.

The thesis discusses one part of the Holter Monitoring System, Input
processing.

Four different approaches, including the Time-Domain approach, the
Frequency-Domain approach, the Boche approach and the Remez filter approach
for calculating the Hilbert transform of an ECG wave are discussed in this thesis.
By comparing them from the running time and the ease of software and hardware
implementations, an efficient approach (the Remez approach) for use in calculating
the Hilbert transform to build a Holter Monitoring System is proposed.

Using the Parks-McClellan algorithm, the Remez approach was present, and a

digital filter was developed to filter the data sequence.
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Accurate determination of the QRS complex, in particular, accurate detection
of the R wave peak, is important in ECG analysis and is another task in this thesis.
A program was developed to detect the R wave peak in an ECG wave.

The whole algorithm is implemented using Altera’s Nios SOPC (system on a
program chip) Builder system development tool. The performance of the algorithm
was tested using the standard ECG waveform records from the MIT-BIH
Arrhythmia database. The results will be used in pattern recognition to judge

whether the ECG wave is normal or abnormal.
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Chapter 1 Introduction

Since the development of medical science, many instruments for improving
people’s health have been developed. The electrocardiogram (ECG) monitoring
system is one of them. The most common type of ECG monitoring is called Holter
monitoring. Holt monitoring is a portable recording tool and can help doctors make

a precise diagnosis.

1.1 Research Motivation

Many people have irregular heartbeats from time to time. Some heart
problems occur during certain activities, such as eating, exercise or even sleeping.
Sometimes the irregular heartbeats don’t influence life style and are usually
harmless in normal hearts. But it is also possible that these irregular heartbeats with
pre-existing illness can cause heart attacks that lead to death. A device that can
record the activities of the heart is very useful in preventing heart attacks. The
Holter monitoring system was developed for this objective in an ambulatory
situation.

A Holter monitoring system is a small recording instrument that is used to

capture ECG data of the heart’s electrical activities over a period of time. The



patient can carry it in a pocket or in a small pouch. The monitor is battery operated.
The electrocardiogram is saved in a memory card. The electrocardiographer can

analyse the recordings visually by means of a computer.

1.1.1 Electrocadiogram

The standard ECG is a representation of the heart’s electrical activities
recorded from electrodes that are placed on different parts of patient’s body.

The electrocardiogram is composed of complexes and waves. In normal sinus
rhythm, waves and complexes are the P wave, QRS complex, ST Segment, T wave
and U wave. Measurements are PR interval, QRS duration, QT interval, RR
interval and PP interval. Figure 1.1 illustrates a typical waveform of normal

heartbeats and intervals as well as standard time and voltage measures.

_Time—>
%_ TP ————— RRinterval
s 0.2 secr+ i
niu,.T... e h i QRS Complex

- PR —| QRSF—

Figure 1.1 ECG signal [1]



Different parts of the ECG waves are caused differently. Detailed information
will be given below to explain each part of the ECG waveform.

e The P wave is due to the electrical activation (depolarization) of the heart
(atria). It 1s usually positive, low amplitude and smooth. In normal situation, the
time of the P wave should be smaller than 0.12 seconds.

e The QRS complex represents right and left ventricular depolarization. It is
high amplitude in normal situations. The shape of the QRS complex will be
changed if the electrodes are placed on different parts of the body. It also changes
when abnormal heartbeats occur. A QRS complex can have positive (upwards) or
negative (downwards) deflections. The figure below summarizes the nomenclature

used to define the different components of the QRS complex.
R R R
5 s
R R
Qs Q Qs

Figure 1.2 The different components of the QRS complex [2].

e The ST segment represents the time following the QRS it takes for
depolarization of the ventricles before repolarization. Repolarization of the atria is a
low amplitude signal that occurs during the time of the high amplitude QRS and

consequently it can’t be seen on a standard ECG.



e The T wave is caused by the repolarization of the ventricles. Usually it is
positive and rounded.

e The reason that causes the U wave is not that clear, “afterdepolarizations” in
the ventricles maybe is the answer.

e The PR interval is the time interval from the beginning of the P wave to the
beginning of the QRS complex. In normal situation the PR interval should be 0.12-
0.2 s, Short PR <0.12 s, Prolonged PR >0.2 s.

e The QRS duration is the time of ventricular depolarization. Normal: 0.06 s-
0.1 s, Prolonged QRS duration: >0.1s.

e The QT interval represents the duration of ventricular depolarization and
repolarization. It is between the onset of the QRS complex and the end of the T
wave. It normally depends on heart rate.

e The RR interval is the duration of ventricular cardiac cycle. The value of
the RR interval indicates the ventricular rate.

e The PP interval is the duration of atrial cycle. It indicates the atrial rate.

The normal adult heart beats regularly between 60 to 100 beats per minute.
Bradycardia occurs once the heart rate is slower than 60 beats per minute. The
waveform is similar to the normal ECG wave, but the RR interval is longer. A rate
of above 100 beats per minute is called tachycardia, in this case the RR interval is
shorter and the waveform is also similar to the regular sinus rhythm. Each P wave

is following by a QRS complex. A waveform of a regular ECG wave is shown in



Figure 1.3. The wave of the bradycardia is shown in Figure 1.4. Figure 1.5

illustrates the tachycardia. Figure 1.7 shows some abnormal ECG waves.

Figure 1.4 Bradycardia [3].

Figure 1.6 An irregular heartbeat wave [3].



Figure 1.7 Three abnormal ECG waveforms [3].

The importance of irregular heartbeats depends on the type of pattern they
produce, how often they occur, how long they last, and whether they occur at the

same time the patient had symptoms.

1.1.2 Advantanges of Holter Monitoring System

As discussed previously, the Holter monitoring system records the electrical
activity of heart during usual daily activities. A recording is much more likely to
detect any abnormal heartbeats that occur during these activities.

During the late 1960s, computerized ECG's came into use in many of the
larger hospitals. General Holter monitoring system records continuous

electrocardiographic measurements of the heart’s rhythm. Usually the recording



time is around 24 to 48 hours. That means even when the heartbeat is normal, the
Holter monitor also works as well.

The system discussed in this thesis automatically records the ECG wave when
the user is not feeling good or the heartbeats are not regular. The recording
algorithm is not continuous any more. It also can record the heartbeats manually;
the wearers can record the heartbeat if wanted when the heart rhythms are ordinary.
The differences between the general Holter monitor and the system developed in

this thesis are shown in the Table 1.1.

Table 1.1 Comparison general Holter Monitor with new system in this thesis

General Holter Monitor New system in this thesis
Continuity Continuous Intermittent
Saving time 24-48 hours More than 48 hours
Operation Manually operated Automatic/Manually operated

The advantages in the system discussed in this thesis are:

e Record the ECG wave automatically when wearer does not feel good.
e Save memory space and extend the recording time.

e Record activities manually when the wearer wants.

e Normally record for a few hours or for a few seconds.




1.1.3 Structure of the Holter Monitoring System

The structure of the Holter monitoring system discussed in this thesis is

shown in Figure 1.8.

Raw
ECG Data

A 4

Input Processing
(Hilbert Transform)

Nios

Pattern Recognition
Normal/Abnormal

Nios

Nios

Compression

y

Abnormal

Storage

Compact
Flash Card
(Removable)

A 4

User
Interface

Figure 1.8 The structure of the Holter Monitoring System.

From Figure 1.8 it can be seen that the system includes four sub-systems: the

Input processing sub-system, the Pattern Recognition sub-system, the Compression

sub-system and the Storage sub-system.

The input data is the raw ECG data. These data record the activities of the

heart. Every heartbeat is caused by a section of the heart generating an electrical

signal that then conducts through specialized pathways to all parts of the heart.




These electrical signals also get transmitted through the chest to the skin where they

can be recorded [4].

1.1.3.1 Input Processing

The main objective of this sub-system is to implement the Hilbert transform
of the input ECG data on the Nios embedded processor. Then the zero crossing
points corresponding to the input R wave peaks are found and the results

information is sent to the Pattern Recognition sub-system.

1.1.3.2 Pattern Recognition

Obtain the results of the input processing, and by using properties of the
Hilbert transform, create the analytic signal and use it to assist in doing pattern

recognition to determine if the ECG wave is normal or abnormal.

1.1.3.3 Compression

Compress all the abnormal data obtained from the “Input processing” sub-

system.

1.1.3.4 Storage

Save all the compressed data in compact flash card. This card is removable
and can be inserted into the computer to read the information recorded in this card.
Electrocardiographer can analyze the data or by means of some software to draw

the waveform to see what happened visually.



Holter monitoring gives doctors the record of patient’s heart rate and rhythm
over a period of time. The Holter monitor can record heart rate and rhythm when
the patient feels chest pain or symptoms of an irregular heartbeat (an arrhythmia).
The doctor can then look at the time when the patient noticed their symptoms.
Reading this printout will give the doctor an idea about the nature of the heart
problem. A Holter monitor provides the physician a better opportunity to capture
any abnormal heartbeats or rhythms that may be causing the patient’s symptoms.
It’s necessary to develop an efficient (i.e., long time durations and automatic
pattern recognition analysis) system to record these irregular heartbeats so that the
doctor can know what had happened when patient had those symptoms. This
system is a very good tool to prevent people from fatal heart problems.

Briefly, the reasons for using a Holter monitor may include: to detect
problems missed in a regular ECG; to check activity after an arrhythmia; to see if a
new pacemaker works and to see if drug therapy is working.

The work of this thesis is to implement the input processing sub-system. That
is to develop an efficient algorithm to compute the Hilbert transform of the input

ECG waves and determine R-R intervals.

1.2 Objectives

The objectives of this thesis are to address the aforementioned problems and
to propose solutions to the following problems.

® To use different methods to compute the Hilbert transform of an input signal.

10



® To compare these algorithms with each other from running time and
hardware/software implementation.

® To develop an efficient algorithm for calculating the Hilbert transform to build
a Holter ECG Monitoring System.

® To develop a detector to find all of the zero crossing points that correspond to
the R wave peaks in the output wave, i.e., the Hilbert transform sequence of an

ECG wave.

1.3 Outline of Thesis

Chapter 2 gives the background materials of the Holter monitor and the
Hilbert transform including the past history, notation and definition.

Chapter 3 is devoted to four different methods used to compute the Hilbert
transform of an input signal. The four approaches include the Time-Domain
approach, the Frequency-Domain approach, the Boche approach and the Remez
filter approach. In this chapter, the examples and the results are given for using
different approaches to calculate the Hilbert transform. By comparing four methods
with each other in running time and the ease of software and hardware
implementations, an efficient algorithm for the Hilbert transform to build a Holter
ECG Monitoring System will be present.

Chapter 4 describes how to design and implement the Remez filter approach
that was mentioned in Chapter 3, and also describes how to design and implement a
filter with an optimal fit. The information about Alter’s Nios SOPC Builder system

development tool is introduced as well.

11



Chapter 5 concentrates on analyzing the results and compares them to the
MIT-BIH Arrhythmia database to make sure the results are correct.
The thesis is summarized in Chapter 6. At the end of the thesis, an appendix is

given.

12



Chapter 2 Background

In this chapter, a brief review of Holter Monitoring is given. The definition,
the properties and the applications of the Hilbert transform are also contained in

this chapter.

2.1 Holter Monitoring Review

As discussed in the previous chapter, an electrocardiogram (ECG) is a record
produced by an electrocardiography, which indicates the electrical voltage in the
heart. An ECG provides information on the condition and performance of the heart.
It is one of the simplest and fastest procedures used to evaluate the heart. Because
an arrhythmia can occur irregularly, it will be difficult to record when the patient is
in the doctor’s office.

In 1949, American physician Norman Jeff Holter (1914-1983) developed a 75
pound backpack that can record the ECG of the wearer. This portable monitoring
device is called the Holter monitor, named after its inventor.

The Holter monitor is battery-powered and can continuously record the
electrical activities of the heart over a specified period of time, normally 24 to 48

hours. Usually the patient will undergo Holter monitoring as an outpatient, meaning
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that the monitor will be placed on the body of the patient by a technician in a
cardiologist’s office. Then the patient will go home and do normal activities. With
the development of technology, the Holter monitor is greatly reduced in size. It is
now very compact and combined with digital recording and used to record ECGs.
The Holter monitor can be easily carried without interfering with the patient’s
activities. At the end of the recording period, the patient will go back to the doctor’s
office to remove the Holter monitor. The data saved in the Holter monitor will be
analyzed by an electrocardiographer and a computer. The analysis results will
provide the information about the patient’s heart rhythm, the frequency of the beats
and the irregularities. This portable monitor can be an effective and powerful
diagnostic tool that can directly determine how the physician treats the patient’s
condition.

As Figure 2.1 shows, the Holter monitor is a small-size recording device. The
monitor has wires called leads. The leads attach to metal disks called electrodes,
which the user wears on his chest. These electrodes are very sensitive, and they can
pick up the electrical impulses of the heart. The impulses are recorded by the Holter

monitor record the heart’s electrical activity.
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Monitor

Figure 2.1 A man with the Holter monitor [5].

If necessary, the ECG can be transmitted by telephone to a computer at the
hospital or doctor's office for an immediate reading as soon as symptoms occur.
The use of the effective home care monitor of the heart patients will decrease the
incidence of the readmissions and lower the costs of the hearth care.

Advanced Holter monitors have been developed that employ digital
electrocardiographic recordings, extended memory for more than 24 hours
recording, pacemaker pulse detection and analysis, software for analysis of digital
ECG recordings that are downloaded and stored on a computer, and capability of
transmission of results over the internet [6].

The system discussed in this thesis is to record the rhythm of the heartbeat

automatically when the symptoms occur. The monitor does not continuously record
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but records the heart rate and rhythm when the patients feel symptoms of an
irregular heartbeat or when abnormal heart beats or rhythms occur. That means the
device automatically capture the arrhythmias when they occur. It also can be
activated manually by the patients when chest pain is felt during a symptomatic
event. So it can record for a long time. Up to now, the Holter monitor in the market
can record over 24-48 hours; the longest one is not much more than 72 hours. The
system discussed in this thesis will much improve the recording time. The

advantages of the system have been discussed in Chapter 1.

2.2 Hilbert Transform Review

In 1893, the physicist Arthur E. Kennelly (1861-1939) and the scientist

Charles P. Steinmetz (1865-1923) first used the Euler formula
e’ =cos(z) + jsin(z) 2.1
which was derived by a famous Swiss mathematician Lenonard Euler (1707-1783)
to introduce the complex notation of harmonic wave forms in electrical
engineering, that is:
e™ = cos(wt) + jsin(mt), (2.2)
where | is the imaginary unit.
In the beginning of the 20" century, the German scientist David Hilbert

(1862-1943) proved that the Hilbert transform of the function cos(wt) is sin(at).

This is the one of properties of the Hilbert transform, i.e., basic J_r% phase-shift.
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2.2.1 Definition

In mathematics and in signal processing, the Hilbert transform X(t) of a real
time function X(t) is defined as:

R(t) = H[X(t)] = % J.Zﬂdr (2.3)

t—7
when the integral exists.

It can be seen from the Equation (2.3) that the independent variable is not
changed as result of this transformation, so the output X(t) is also a time dependent
function.

It is normally not possible to calculate the Hilbert transform as an ordinary
improper integral because of the possible singularity atz =t. The integral is to be
considered as a Cauchy principal value.

In mathematics, the Cauchy principal value of certain is defined as

lim [ [ xwdt+ [ x(t)dt} , (2.4)

where b is a point at which the behaviour of the function x(t) is such that

.[b X(t)dt =400 forany a<b

and jbc X(t)dt =Foo forany c>b.[7]

So when the Hilbert transform exists, it is written as presented at Equation (2.3).

Other forms for H(X(t)) can be obtained by change of variable, that is
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Hpx)=— [ X 3)

x(t + z')

H[x(t)] = —j (2.6)

A Hilbert transform of a square wave is shown below:

Figure 2.2 The Hilbert transform of a square wave.

2.2.2 Frequency Response of the Hilbert Transform

From the Equation (2.3), (2.4) and (2.5), it can be seen that Hilbert transform

1s a convolution:
HIX(t)]=X(t) = * X(t) (2.7)

Equation (2.7) shows that X(t) is a linear function of x(t) . It is obtained from

X(t) applying convolution with 1/(zt).
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According to the convolution theorem (the Fourier transform of a convolution
of two functions is the product of their Fourier Transforms.), it can be seen that the

spectrum of H[X(t)] is related to that of x(t).

Applied the Fourier transform to the Equation (2.7), that is

F{X(t)} :%F{%}F{X(t)} (2.8)

where F is the Fourier transform.

Since
1 © 1 _joprix :
F{—}:J. — " ¥dx = — jrsgn(f) (2.9)
t — X
where

sgnf is+1 for f >0, Ofor f =0 and -1 for f <O.

Rewriting Equation (2.9), that is:
1 . —j  forf>0
FIl — |=—]sgn(f)=
(ﬂtj Jsgn(t) { :

+j forf<0
Therefore, the Fourier transform of % is — jsgn(f), which is equal to — |

for positive frequency and + j for negative frequency. Hence the Hilbert transform

is equivalent to a kind of filter, in which the amplitudes of the spectral components
are left unchanged, but their phases are altered by%, positively or negatively

according to the sign of frequency [8].

Therefore, the Fourier transform of the Hilbert transform of f (t) is given by

F{(X)} =—]sgn fF{x(t)}. (2.10)
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The time domain result can be obtained performing an inverse Fourier

transform.

2.3 Hilbert Transform Properties

In this part, some properties of the Hilbert transform will be discussed.

(1) The Hilbert transform of a real function is linear.

As discussed in the section 1.2, the Hilbert transform of a function f (t) is

defined as
HEF 1=~ [ ~Pdr.
Tret—1

Because of the possible singularity at t = 7, the integral is to be considered as a

Cauchy principal value. It is expressed on the form

H[f(t)]:limlj RGO (2.11)
&0 g1

Xt t — 1
Suppose f (t) =c, f,(t)+c, f, (1), then the Hilbert transform of f (t) should be

HIf(®)]=Hlc, f,t)+c, f, )]

_ liml ¢ fi(m)+c,f, (T)dZ'
>0 g7 Jx-t]>¢ t—1
=C, lirnl Mdr+c2 lirnl Mdr
e>0 x> t — e>0 rdx-t>e t —r
=c,H[f,(®O]+c,H[f,(D)]. (2.12)
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Equation (2.12) shows the linearity of the Hilbert transform.

(2) The Hilbert transform of a Hilbert transform is the negative of the original

function.

HIF 1= ft)=F [ jsen(@FLf )]

—F! [_ jsgn(w)[—j sgn(a))F(ja))]]

[-F(jw)]
=—f(t)

(2.13)

(3) The Hilbert transform of the derivative of a function is equivalent to the

derivative of the Hilbert transform of a function. [9]

HI f (1)) = j@d ”ﬁ@d

So {H HOE { j }

:lj'oo f'(t—s) s
T S

R

=H[f'(1)].

(4) A function and its Hilbert transform are orthogonal

jz f(t)f (t)dt = j“; f (t){i j:— jsgn(w)F( ja))eiwtda)}dt

21
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= ij.:— j sgn(a))F(ja))Ui f (t)ej‘”‘dt]da)

—j 2
= Losgn(a))|F( jo) do

0. (2.15)

Since integrand sgn(a))|F(ja))|2 is an odd function which is integrated over

symmetric limits, the result is 0.

Equation (2.15) proves that a real function and its Hilbert transform are

orthogonal.

This property can be used in energy and power signals.

(5) The energy in a real function and its Hilbert transform are equal.

The signal and its Hilbert transform have identical energy because a phase

shift does not change the energy of the signal only amplitude changes can do that.

The energy of f(t) and F(w) is defined as

- 2 1 e 2
E, =Lo|f(t)| dt:EI_m|F(a))| do. (2.16)
So the energy of the Hilbert transform of f(t) can be computed as
o | A 2
E, = U f (t)‘ dt
1 0 i 2
= EJ‘—J_ jsgn(w)F (a))| dw

2.17)

I 2
:EJ._OC|F(G))| da).
From Equation (2.16) and Equation (2.17), it shows that E, = E, .
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2.4 Hilbert Transform Applications

The Hilbert transform is a very useful tool for the analysis of problems in
various research areas. The Hilbert transform has a variety of applications, such as

in the field of radio and signal processing, communication and power area.

2.4.1 Analytic Signal

In digital signal processing, it is often needed to look at the relationships
between the real part and imaginary part of a complex signal. The relationships are
usually described by Hilbert transforms. Hilbert transform is also used to create
special signals called analytic signals which are especially important in simulation.

An analytic signal is a complex function created by taking a signal and then
adding in quadrature its Hilbert transform [10]. An analytic signal is defined as

2(t) = f(t) + jf(t) = At)el’®, (2.18)
where

f (t) is the input signal.

f(t) is the Hilbert transform of the input signal.

z(t) is the analytic signal constructed from f(t) and its Hilbert transform. It
is called the pre-envelope of f(t).

The real and imaginary parts can be expressed in polar coordinates as:

z(t) = A(t)e!?V (2.19)

where
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A(t) is the “envelope” or amplitude of the analytic signal given as

At) =+ F2)+ f2 (). (2.20)

6(t) is the phase of the analytic signal given as
O(t) = arctan f® . (2.21)
f(t)

A(t) and f(t) have common tangents and the same values at the points

where f(t) =0, i.e., the envelop determined using Equation (2.20) will have the

same slope and magnitude of the original signal f(t) at its maxima.

2.4.2 Analytic Signal Applied in Pattern Recognition [11]
In this thesis, given a real function f(t), such as an ECG wave, it is possible
to compute the Hilbert transform, f(t). This allows the calculation of the envelope

of f(t) and also the phase of the pre-envelope of f(t) and f(t). If the two

functions are then plotted in polar form (polar plot), the result is a waveform
display very similar to a Vectorcardiogram (VCGQG) or a Polar-cardiogram (PCG).
Thus the resulting magnitude versus angle plot is used for further analysis.
The temporal dependence of the ECG data is removed. In effect the data has been
shifted from a magnitude versus time system into a magnitude versus angle system.
At the same time that because using a sampled-data waveform sampled at a fixed

frequency (usually 360 Hz), the time information is still implicitly available to the
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user. A major disadvantage of the time normalisation is that it implicitly assumes
linear distortion of the ECG waveform over the length of the normalised segment.
As mentioned previously, while the Hilbert transform display (polar plot) is
reasonably familiar to a vectorcardiographic display, the data display is subject to
different interpretation. Depending on the abnormality occurring in the ECG data,
different displays are presented to the user. The main use of this display format is to
monitor the data being placed in the pattern recognition so that different waveform
segments (P,Q,R,S,T) and different time locations (before QRS ,after QRS) could
be found. According to these information, the input ECG wave is normal or

abnormal can be judged
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Chapter 3 Computation of the Hilbert

Transform

In this chapter, four methods of implementing the Hilbert transform are given.
It includes the Time-domain approach, the Frequency-Domain approach, the Boche

approach and Remez filter approach.

3.1 Time-Domain Approach

The Hilbert transform of a signal y(t) at time t is given by

gty="["Yq, . G.1)

~tl-7
Assume that the signal y(t) has been sampled every At second to give the
sequence Y, = Y(kAt), k=123,...,N and that the sampled Hilbert transform
signal Y(K) is to be computed. If the signal y(t) is assumed to vary linearly during
the sampling interval [12], for time from At to NAt, the Hilbert transform at time
Atis

j, = gat) =~ [ D g,

T KAt -7
(J-zm y(z-) .“+J-(k—1)At y(z-) T+J-kAt y(f) .
At KAL — (k=2)at KAt — 7 (k=Dat kAt — 7
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+J~(k+1)m y(z-) +J-(k+2)At y(z-) r 4 J-NAt y(z-) ;
kAt kAt — 7 (k+D)At kKAt — 7 (N-DAt KAt — 7

1 k-2 N
:;(Zw” +10+ 1,
i=1

i=k+2

where

|-(f) Efiﬂ)m y(z-) .
' it kAt-r

||§C) _ J-kAt y(f) T+J-(k+1)m y(f) .
(k=Dat KAt — 7 kat KAt —7

| Er_“ Y@ 4,
' (i-DAt KAt — 7

When y(t) is linear during the sampling period,

y) =y + (Y, — V)t —iAt) /At for At <t <(i+1)At

y)y =y, +(y,, — Yt —iAt) /(=At) for (i—DAt <t <IiAt.

So

) _ (i+1)At y(z-)

= —[W kAt —7 ‘
_ J‘(””At Vi + (Vi — YT — iAt)/Ath
i kAt — 7

Aty 4+ (Vi — Vi) X/ At
0 KAt —IAt — X

dx (X=r7-I1At)

Aty + (Yo — yi)T/Ath
0 (k—=DAt—7

and

[ = J‘i_m y(7) dr
' (i-Dat KAt — 7
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_ J‘iAt yi + (Vi — ¥i)(z —iAt) /(_At)dr
(i-1At kAt —

I Vi + (Vi — Yi)X/Ath

X=—(r—iAt
x KAL—iAt+ X (x =~z ~1AD)

— J'At y|+(y| 1 y|)T/Ath
—K)At -7

and

[ s (G LR O
s KAL—7 e KAt—7

_ J~kAt Vi + (Y, — Vi )(r— kAt) /(—At)dz_+"-(k+l)At Ve + (Vi
(

kAt

k-1)At kAt —

-y o/ At W

(3.4)

—Y(E kA /AL,

J‘O Y +(yk yk 1)X/Atd +IM Y + (Vi
0 —w

(x=7—-kAt, w=7-KkAl)

J‘O Y + (Vi — yk1)T/Atd _I_J'OAtyk +(yk+1—yk)r/Atdr.

-7

Further calculation gives

e =.[“ Yi + Vi — yi)T/Ath
I 0 (k=DAt -7

_ _J‘At Yi + Vi = Y@ = (K=DAY /At + (y;,, — YK - i)d‘[

7—(k—1)At
At Aty i~ YK~
:_J.o Vi _y‘)/Ath_J.o ’ +Sﬁ?k —yil))A(t e

= (Vi =¥ = % + (Vi = YK =) Injz = (k =D)AL

k— . k—

=Y;In + (Vi — YD1+ (k=D)In

and
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| (O :_J'At Y + (Vi —yi)T/Ath
| o (i-k)At-r

_ J’At Yi + (Vi =YD — (i KA /At +(y;, — Y ) _k)dr
0 7—(1—K)At

+ (Y, -y - k)dz'
7—(1—k)At

At At Y,
= .[0 (Vi — yi)/Ath+'|.0

= (Vi = YD+ (Y + (Vi =¥ = k) Infr = (i = K)AY |

Cy i =y Sy -k =R
i—k i—k

) (3.7)

and

|© :J‘O Yi + (Y _yk_l)T/Atdz_+J‘A‘ Y + (Yin —yk)T/Ath

—At — 0 -7

0 Yk + (Vi - yk—l)(_x)/Ath _J‘At Vi + (Vi — yk)T/Atdz'

N At X 0 T

_ J‘At Yi + (Y — yk—l)(_f)/Ath_J‘m Y + Vi — yk)T/Atdz_
0

T 0 T

At
= [ e = Vi) Atdz

=Yea = Y - (3-8)

So the Hilbert transform of y, is

. 1 k-2 ‘ N
Y« :;(Zli( '+ IIEC) + Zli(r))
i=1

i=k+2

—l(kf( In K-l + (Yo, — Y )(=1+(kk—i)In k-l
= 4 Yi K—i—1 Yia = Yi K—i—1

)

+ (Y —Yia)
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+ Z(Y. ! +(y,1 y(+(i - k)ln )))- (3.9)

i=k+2 -

The results given on the reference [5] is

K—i K—i
SRRV : 1+(k—i)1
i ylnk_i_1+(y|+1 y)( +( )nk— _1

)

©)_
L =Y = Yia

i—k . i—k
1O —y In = yYO)(=1+(—k)1 :
i y| ni_k_1+(y|—1 yl)( +(| )ni—k—l)

Noticed that Ii(f) and Equation (3.6), Ik(c) and Equation (3.8) are the exactly
| _(r)

same. But is different from Equation (3.7). The equation does influence the

result of the Hilbert transform of a signal. So it is important to prove which one
(Equation (3.10) or the one given on the reference [12]) is correct, This can be
proved from the example below.

Here an example is given. Consider the signal f (X) = sin(X). From Equation

(3.1), its Hilbert transform is

H{[sin(x)] = j Sm(” . (3.10)
Letting s =X—17, get

H(sin x) = j wm( —ds)

ds

B lro sin XcosS — cos Xsin S
S

1| ¢= sin XcosS © COS XSIn S
:——j —ds—j SR s
Tl *® S ® S
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I . 1ns
=——|sinx[
oo S
It is well known that lJ‘ @d =0 and I %d =1.
T
So H (sin X) = cos X— rm
=COSX . (3.11)

In order to test that the Equation (3.9) is right, here an example is given.
Assuming the input function isy =sin(2z * f *N), letting f =0.02 Hz, N =500.
From the Equation (3.11), it can be seen that the Hilbert transform of
y =sin(27 *0.02*500) should be cos(2z *0.02 *500) .

Writing a MATLAB program for this algorithm, Figure 3.1 and Figure 3.2
were obtained. Figure 3.1 shows the input waveform and Figure 3.2 (a) illustrates
the Hilbert transform waveform of this input wave using Equation (3.9). Figure 3.2

(b) shows the results using the equation from reference [12].
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Figure 3.2 (a) Output waveform: The Hilbert transform of sin(2z *0.02 * 500) .
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Figure 3.2 (b) Output waveform using the equation from [12].

As shown in Figure 3.2 (a), the output waveform is the Hilbert transform of
the input sine wave. It is a cosine wave. It also illustrates that the Hilbert transform

of a real function does not change the amplitude of the signal but only changes its
phase by % rad/s.

The waveform shown in Figure 3.2 (b) is not a cosine wave. From the
waveform it also can be seen that Ii(r) from [12] is not correct and Equation (3. 9)

1s correct.

As discussed in previous chapters, the input wave in the Holter monitoring

system is an ECG wave. Figure 3.3 is the wave obtained from the MIT-BIH
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(Massachusetts Institute of Technology-Beth Isracl Hospital) arrhythmia database
[see Appendix A] MIT213. According to the Time-Domain Approach, using
Equation (3.9), the Hilbert transform of this ECG wave can be computed.

The input ECG waveform is shown in Figure 3.3. According to the
explanation about the ECG waves in Chapter 1, from the value of the P wave, the
QRS complex, PR interval, QRS duration, RR interval and PP interval, it can be
seen that Figure 3.3 is a normal ECG wave. Because each R wave stands for a beat,

Figure 3.3 describes 4 beats of a heart.
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Figure 3.3 A normal ECG wave.
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Figure 3.4 The Hilbert transform of the ECG wave.

Figure 3.4 shows the results of the Hilbert transform of this ECG wave. The
Hilbert transform waveform of the ECG wave should oscillate from negative to
positive or from positive to negative around the X-axis. The points corresponding
to peak values of R wave should be zero in the output waveform. But from Figure
3.4, it can be seen that the output waveform is distorted. It’s not the correct
waveform, so this method of computing the Hilbert transform may not be suitable

for the ECG wave.
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3.2 Frequency-Domain Approach

To further investigate the Hilbert transform, the frequency domain analysis is
very useful. The second method to compute the Hilbert transform of a function is
Frequency-Domain approach.

As shown before, the Hilbert transform of the function y(t)is:

Because the usual time domain definition based on the Cauchy principal value

of an integral is usually not easy to calculate, the Hilbert transform in the frequency

domain is defined. Suppose Y (f)and Y (f)are the Fourier transform of y(t)and

J(t). Y(f) and Y(f)are defined as

Y(f)= j“; y(t)e >t

Y(f)=—jsgn(f)Y(F). (3.12)
Applying the Fourier transform to the convolution defined in the equation

above, can obtain
Y(j@)=FT[y(t)]= FT{%}Y(JE) =—jsgn(@)Y (jo)[5], (3.13)

where

FT[] represents Fourier transform.

This equation indicates that the Hilbert transform can be interpreted in the

frequency domain.
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So given a sampled signal Yy, , the sequence Yy, can then be computed using

fast Fourier transform (FFT) techniques as
Y. = IFFT[-]sgn(@,)FFT[y, 1], (3.14)

where

FFT[] represents the fast Fourier Transform operation.

IFFT[] represents inverse fast Fourier transform operations.

o, represents the n th frequency of the discrete Fourier transform.

sgn is the sign function.

This formula can be used to calculate the Hilbert transform, by first taking the

Fourier transform of y, , multiplying it by — jsgn(®, ), then taking the inverse
Fourier transform, thus obtaining Yy, . Thus the Hilbert transform is a z phase

shifter when viewed as a linear system whose input is y, and outputis Y, .

Here an example is also given. The input is the sine wave,

sin(277*0.02*500) , used previously, and the output should be the Hilbert

transform of the input, i.e., a cosine wave. Figure 3.5 shows the input waveform

sin(27*0.02*500) and Figure 3.6 shows the output results using Frequency-

Domain approach to compute the Hilbert transform of a function.
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Figure 3.5 Input wave: sin(2z *0.02 *500) .

'
| ' ' '
' '
'
] '
T g~ —
' ]
'
' '
' '
' ' ' '
'
e - oo dmmm oo |, [V e~ S E —
' I
' | T '
] '
' '
' '
'
' '
F---=----- [ il === -- [ il b ittt ol —
'
] '
' ' ' '
' '
' I | '
' '
el R SRR REEEEELEE it =Ll —
' '
'
'
'
' '
' '
e e i e e i —
' '
' '
[ '
' '
'
'

15
‘] b e e = =

- SR
0

D& -~
R EE

15

Wwiojsuel | pag(H

100 150 200 250 300 350 400 450 500

a0

Figure 3.6 The Hilbert transform of sin(27 * 0.02 * 500) .
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Figure 3.7 shows the same section of ECG wave taken from the MIT-BIH
database, MIT213, used previously (Figure 3.3). Using the Frequency-Domain
approach to obtain the Hilbert transform, the output waveform is shown in Figure

3.8.

1ot : : . . : :
TN T TN S A i
IR .
IR S S
1100

1000 f-f ---- -

a0a

g00

- L | | L |
0 100 200 300 400 s00 B00 J00 200
I

Figure 3.7 Input ECG wave
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Figure 3.8 Output: the Hilbert transform of the ECG wave.

The Hilbert transform waveform shown in Figure 3.8 is good. The wave
oscillates around the X-axis. The zero crossing points corresponding to the R peak
wave are right.

From the examples given above, the figures show that the Hilbert transform
of the sine wave is cosine wave. The output wave oscillates around zero as it should
when the input wave is the ECG wave. Even though this algorithm works, it’s also

not suitable for the system developed in this thesis. The reason will be given later.
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3.3 Boche Approach

The Boche approach [13] presents a new algorithm by reconstructing a band-
limited function from samples to calculate the Hilbert transform.
The algorithm can be described as follows:

A set of discrete instants {t;} are given with the corresponding values {y;}
where exists a function f(t;) =y,. A statement can be made for approximating

function as Equation (3.15):

n sinz(t-t,)

=200 — (3.15)
R sinz(t, —t,)
fn(ti)_;bk,n 7Z'(ti _tk) (316)

To calculate the coefficients by , of the Equation (3.16), a system of nlinear

equations, Equation (3.17), have to be solved:

fn (t) a4y, bln
o= ey I (3.17)
fn (tn ) anl ann bnn
inz(t, —t .
where &, _sinzt =t) t. =t fori=Kk.
z(t; ~t)

Using the iteration method to solve the linear equations, the coefficients b, ,

were obtained.
The Hilbert transform of the Equation (3.17) can be derived as follows:

It is well known that

J-oo sin(z(t—t,)) it — 1
= -t
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and

r cos(z(t—t,)) t—0.
= xt-t,)

According to the definition of the Hilbert transform of a real function, the

sin(z(t—t,)) .

Hilbert transform f(t) of f(t)=—————* is derived as follows:
z(t-t,)
; 1 = sin(z(t—t 1
f(y- L[ SnCr 1)
o omt-t) A-t

L sin(r(t=t)) 1 1
e Z(A-t) A-t t-t,
1 J»oo sin(z(t-t,)) sin(z(t-4+4-1,))

- )dt
T(A-t) "= z(t-t,) 7(t—A)

1 ro sin(z(t—t,)) B sin(zz(t — A)) cos((A —1,)) + cos(x(t — A))sin(7w(4 -1, )))dt

T2t )= xt-t) 2(t—2)

1
= (1- A-t
ety
_ 1-cos(z(A—t,)) (3.18)
n(A-t,) ' ’
It is shown that the Hilbert transform of the series
L sinz(t—t,)
fn (t) = b n —
Z “ort-t)
1S
HiT ) = Db, , =k (3.19)
k=1

z(t—-t,)

where b, , are the coefficients in Equation (3.17).
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Here an example is given to demonstrate the algorithm for the sampled signal

as well as its Hilbert transform. Assuming the sampled function ¢ is given by

sin(2t) 3 sin(3(t -5)) N 18in(2.5(t +6))

M= "2 305 2 25(+6)

The samples were taken in the interval —10 <t <10 with a sampling interval of
0.25, thus yielding 81 sampling points. Based on the Equation (3. 19), i.e.,

1-cos(w(A—t,))

= n(A-t,)

and the linear property of the Hilbert transform that discussed in Chapter 2, the

Hilbert transform, f(t) , of the function , f(t), can be written as follows :

1-cos(2t) _3 (1-cos(3(t=5)) _ 1 (I-cos(25(t+6))

fO="—"5 4 3(t-5) 2 25(t+6)

Running a MATLAB program, the results are shown in Figure 3.9 and Figure
3.10. Figure 3.9 (a) shows the waveform of original function f (t), Figure3.9 (b) is
the 26" approximation f, (t) after 26 iterations. The error function is obtained
using f, (t) minus f(t), and the result is shown in Figure 3.9 (c). The error
function is smaller than 0.0001 shown in Figure 3.9 (c). The sample sequence t; is

given in Figure 3.9 (d).
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a. Original b. Estimate: 26 iterations
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Figure 3.9 (a) f(t) (b) fzs (C) f26 (t)_ f(t) (d) ti :

Figure 3.10 (a) shows the Hilbert transform f(t) of the original function f (1),

and the 26™ approximation f% (t) is shown in Figure 3.10 (b), and then the error

function of the Hilbert transform is illustrated in Figure 3.10 (c).
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a. Original Hilbert Transfarm b. Estimate: 26 iterations
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Figure 3.10 () f(t) (b) f, (1) (c) f, () — f(b)

Boche algorithm permits reconstruct the bandlimited function from samples and
recovery of the Hilbert transform of this function. Compared with other known
solutions for computing Hilbert transform of a function, this algorithm does not
need to calculate integrals. However a set of linear equations has to be solved in

each iteration step.

Here the algorithm is just given as a reference. In this thesis, the difficulty of
computing the solution to a variable set of linear equations is not easier than

calculating an integral. So this method is not suitable for the Holter monitoring

system in this thesis.
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3.4 Remez Approach

This section mainly talks about using “remez ” function in MATLAB to
obtain the Hilbert transform of a signal.

The Remez Exchange FIR filter design approach (also called the Parks-
McClellan or Optimal method) is a popular technique used to design FIR filters.
The well known Parks-McClellan algorithm uses this approach and Chebyshev
approximation theory to generate filters with an optimal fit between the desired
frequency responses and actual frequency responses. Filters designed in this way
illustrate an equiripple wave in the frequency response. By implementing the Parks-
McClellan algorithm [see Appendix B], the Remez approach designs a linear-phase
FIR filter.

The syntax of the remez function can be written the following way:

b =remez(n, f,a)
b =remez(n, f,a) returns a row vector b including the n+1 coefficients of

the order n FIR filter.
where

n ” represents the order of the filter.

“f ” represents a vector of pairs of normalized frequency points. The
frequencies are specified in the range between 0 and 1, where 1 corresponds to the
Nyquist frequency. The frequencies must be in increasing order.

“a” represents a vector containing the desired amplitudes at the points

specifiedin f. f and a are the same length. The length is an even number.
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The output coefficients in b satisfied the symmetry relation
b(k)=b(n+2-k), k=1,...,n+1;

Remez function can specify the different filter type:

b =remez(n, f,a," ftype').
b =remez(n, f,a,w,' ftype') is used when the special filter type is needed.
where
'ftype' represents the filter type parameter. It includes three types:

Multiband, Differentiator and Hilbert transform. The one used in this thesis is
'hilbert!, that is the Hilbert transformer, for linear-phase filters with odd symmetry.

The output filter coefficients in b satisfies b(k) =-b(n+2-k), k=1,2,....,n+1.

The Hilbert transformer has the desired amplitude of 1 across the entire band.

Here an example is given:
h = remez (100, [0.05 0.95], [1 1], "hilbert ")
designs an approximate FIR Hilbert transformer of length 100. The frequencies are
specified from 0.05 to 0.95 and their corresponding amplitudes are 1. The

amplitude will be 0 at other frequencies.

47



3,':

The HT of y=sin(2"pi"0.02%500)

sin(2*pi*0. 02*500)

DB _ 1 1 i _ I % i - i_ - _i_ —]
0.4 f--t---4 ; - : S S -
0.2} S -
D - R S i _—
| ; ; e
R R R e IR ARER il LRLh b ¢ AR AL
S S T i ke R deemm bbb
1 i i i i | | i |
0 a0 100 180 200 250 350 400 450 500
M
Figure 3.11 The input wave: y = sin(2z *0.02 * 500).
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Figure 3.12 The output wave: HT of y = sin(27 *0.02 * 500).
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As before, the input signal is the same sine wave Yy = sin(2z *0.02 *500) ,

used previously. The remez function discussed above was used to generate a
Hilbert transformer and obtain the Hilbert transform of the input sine signal. The
input waveform is shown in Figure 3.11.

Figure 3.12 shows the Hilbert transform of the input signal
y =sin(27 *0.02*500) . Because the order of the filter used here is M =100, the
filter phase delay should be 100/2 = 50. From the output waveform, it can be seen
clearly that the filter has a phase delay for N from 0 to 50. The output results
corresponding to the input signal should be calculated from N =51. Figure 3.12

llustrates that the Hilbert transform of a sine function is a cosine function.

Another example is given here. The input wave is still the normal ECG wave
from the MIT-BITH Arrhythmia database MIT213 used previously (see Figure

3.3).
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Figure 3.14 The Hilbert transform of an ECG wave.
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Figure 3.14 shows the output, i.e., the Hilbert transform of the input ECG
signal. For the same reason, the filter phase delay, the output wave lags by 50

samples.

3.5 Comparison

Four methods for computing Hilbert transform are discussed above. From this
section, the comparison of these four methods is given. Table 3.1 shows the
different running time and the easy level of hardware (HW) and software (SW)
implementation. All of programs are MATLAB programs and timing was done

using the tic/toc functions.

Table 3.1 The comparison of the four methods for computing Hilbert transform.

Time Domain FrequencyDomain Remez Filter

Approach Approach Boche Approach

Sine ECG Sine ECG | Approach Sine ECG

Running | 2.7740s | 7.1110s | 0.010s | 0.010s 0.6110 0.0140s | 0.030s

Time

HW&SW HW HW&SW
HW/SW Problem Problem Problem OK

For Time-Domain approach, even though the equations for computing the
Hilbert transform have been derived and it is not needed to calculate the integral
anymore, it still needs to compute the “In” function. It is hard to implement in the

Nios system that will be used in this thesis because there is no hardware “In”
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function in the Nios processor. The running time was measured for sine wave and
ECG wave individually. Note that the sample number is 500 for sine wave and 800
for ECG wave. The results are shown in the Table 3.1. Using this method, the
output waveform that corresponding to an input ECG signal is distorted to some

extent.

For Frequency-Domain approach, the running time is very fast, but it is
inconvenient to be implemented on the hardware because it needs to compute the

FFT and IFFT for this method. This is not that easy to implement on the hardware.

The Boche approach supplied a simple way to calculate the Hilbert transform
of the bandlimited function. Even though it does not need to calculate the integral, a
set of linear equations has to be solved. The size of the equations is variable. It’s

not that easy to implement in the Nios processor used in this thesis.

Compared with the first three methods discussed above, the Remez filter
approach is a better choice to compute Hilbert transform of a function in this thesis.

Its running time is shorter and can be implemented on both hardware and software.

The computer performance that used in this thesis:

Operation System: Microsoft Window XP
CPU: Intel® Pentium®4 2.66GHz

RAM: 512MB.
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Chapter 4 Implementation

In the previous chapters, four methods to compute the Hilbert transform
applied to the input data have been discussed. After comparing them in terms of
running time and the complexities of the software and hardware implementation,
the Remez approach was selected to be the best method for the ECG Holter
Monitoring System. The problem now, is how to implement the Hilbert transform
algorithm to build the Holter monitoring system on the Nios system. In the

following sections, this will be discussed in detail.

4.1 Nios Embedded Processor Overview

The Nios embedded processor is a user-configurable, 16-bit ISA (Instruction
Set Architecture), general-purpose RISC (Reduced Instruction Set Computer)
embedded processor that was designed to be a very flexible and powerful processor
solution [14]. The Nios embedded processor has become a commonly used
embedded processor because of its ease-of-use and flexibility. The Nios embedded

processor system structure is shown in Figure 4.1.
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The Quartus II software, the SOPC (System on a Programmable Chip)
Builder system development tool, is used to build and evaluate custom processor-
based systems. Designers can use SOPC Builder to integrate one or more
configurable Nios CPUs with any number of standard peripherals, gluing the
system together [14]. Using SOPC Builder, a user can combine the Nios
processor with user logic and program it into a FPGA (Field Programmable Gate

Array) easily.

C/C++
VHDL/Verilog Svstem
y .| Development
Component " Boards & Kit
Develop oaras S
Design
CPU Nios Development Kit,
SOPC Builder Stratix Edition
Aval . .
Quartus@ 11 Sv\:f?t((:)llll Fabric Nios Develqpment Kit,
Software Cyclone Edition
Embedded Software Peripherals Nios Development Kit
Development Tools . Stratix Professional
gnl-)Chlp Edition
e in
Third-Party Tools UEEnS
Third-Party
Boards&Kits

Figure 4.1 Nios Embedded Processor System.
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In this thesis, the development tool is SOPC Builder, using a Nios
development kit, Stratix Professional Edition. It is a complete embedded systems
development kit for the Nios embedded processor.

There are a number of necessary steps to create a Nios system on the Nios
development board. The procedure is shown in Figure 4.2. The flow includes both
the hardware and software design tasks required to create a working system. The
right side illustrates the software development flow and the left side illustrates the
hardware design flow.

Based on the system requirements, the hardware design begins with the SOPC
builder system integration software. At this point, the designer can begin writing
device-independent C/C++ software.

After the hardware designer defines the customer Nios processor hardware
system using SOPC Builder, SOPC Builder generates a custom software
development kit (SDK) that forms the foundation for the software development
flow [16]. With the SDK, the designer can begin writing software that interacts at
the low level with hardware components.

The Nios SDK Shell provides an UNIX bash shell environment board on a PC
platform. It is a very useful utility. Figure 4.3 shows the Nios SDK shell (bash

environment).
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Figure 4.2 Hardware/Software development flow for a Nios processor system [15]
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SOPC Builder 3.00

To Altera SOPC Builder
3.88, Built Tue Jun 18 18:21:38 FDT 2063

To Nios Development Kit
3.18, Built Tue Jul 2% @2:@%:35 PDT 2883

Example designs can be found in
soeygdrivescsalteraskits/nios/examples

(You may add a startup sceipt: c:isalteraskits/niossusep.hashpc)

[SOPC Builderls .

Figure 4.3 Nios SDK Shell (bash).

This “bash” environment can be used for all related development work for the
Nios system and communicate with the Nios development board. The Nios
development board is shown in Figure 4.4. The Nios development kit includes
many Nios-specific utilities that can run in the Nios SDK Shell to generate and
debug software. The Nios SDK Shell also can be used to run test programs on the

Nios development board.
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Figure 4.4 Nios Development Board Components [17]
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Figure 4.4 shows the Nios development board components. It includes [18]

o Stratix EP1S40F780 device

e MAX EPM7128AE CPLD configuration control logic

e SRAM (1 Mbyte in two banks of 512 Kbytes, 16-bit wide)

e SDR SDRAM (16 Mbytes, 32-bit wide)

e Flash (8 Mbytes)

e CompactFlash connector header for Type 1 CompactFlash cards
¢ 10/100 Ethernet physical layer/media access control (PHY/MAC)
¢ Ethernet connector (RJ-45)

e Two serial connectors (RS-232 DB9 port)

e Two 5-V-tolerant expansion/prototype headers

e Two JTAG connectors

¢ 50-MHz crystal (socket), external clock input

¢ Mictor connector for debugging

¢ Four user-defined push-button switches

e Eight user-defined LEDs

¢ Dual 7-segment LED display

e Power-on reset circuitry.

Hardware designers can use the Nios development board as a platform to
prototype complex embedded systems. Software developers can use the Nios

reference design pre-programmed on the development board to begin prototyping

software immediately.

4.2 Digital Filter

In digital signal processing, an important function of a filter is to remove
unwanted parts of the signal, such as random noise, or to extract useful parts of the
signal, such as the components lying within a certain frequency range [19]. Figure

4.5 illustrates the basic concept.
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raw (unfiltered) signal filtered signal

> FILTER >

Figure 4.5 Filter.

The filter function is implemented as a direct form II transposed structure as

shown in Figure 4.6.

b
x(n) : -(? > y(n)
Z—i
¥
bl -2
— -
Z—*l
¥
t:1 -4,

Figure 4.6 Digital filter transposed structure.
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For a linear time-invariant system (Figure 4.6), its input and output satisfy the

following equation
N M
yInl-2 a,yln—k]= > bx[n—kK] 4.1)
k=1 k=0

with the corresponding rational system function

M
Dbz

H(z) = ":ON— [20], (4.2)

where:
X[n—K] is the previous input.
y[n] is the output.
y[n—K] is the previous output.
a, and b, are the filter coefficients.

H (z) is the filter’s Z transform.

For causal FIR (Finite Impulse Response) system, the system function has
only zeros (except for poles at z=0), FIR filter does not depend on the past values of
the output. FIR filters are therefore non-recursive. Since the coefficients a, are all

zero, the Equation (4.1) reduces to

y[n]=> b x[n—kI. 4.3)

k=0
When the filter sequence (impulse response) of FIR filter is either symmetric

or anti-symmetric, the filter is of linear phase. Such filters do not distort the phase
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of the input signal. It is well known that FIR filters can always be designed such
that they exhibit the desirable characteristic.
If the impulse response of the FIR filter satisfies the condition
h[M —n]=h[n] for n=0,1,...,M,
it is called symmetric.
If the impulse response of the FIR filter satisfies the condition
h[M —n]=-h[n] for n=0,1,....,M,
it is called anti-symmetric. Table 4.1 categorizes linear phase filters according to
their symmetry and length.

Table 4.1 Four types of the linear phase FIR filter

Type Impulse Response
1 symmetric Length (M+1) is odd
2 symmetric Length (M+1) is even
3 anti-symmetric Length (M+1) is odd
4 anti-symmetric Length (M+1) is even

Examples of the four types of impulse response sequences are shown in
Figure 4.7.

TYFE 1 TYPE Z

TYFE 2 TYFE 4

.J_‘T' 'TrI *
B

Figure 4.7 Tllustration of four types of impulse response symmetry.
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A Type 1 filter may be used to implement any desired bandpass frequency
response. A Type 2 filter may not be used to define a highpass filter since the

symmetry condition requires H(7z)=0. It can be used instead of Type 1 in cases

where an even length filter is preferable [21]. Antisymmetric filters can be used to
design FIR differentiators and Hilbert transformers. Differentiators are anti-
symmetric FIR filters with approximately linear magnitude responses. Hilbert

transformers are anti-symmetric FIR filters with approximately constant magnitude.

4.3 Implementation

In this section, the implementation for performing the Hilbert transform of an

input signal will be discussed in detail.

4.3.1 Filter Order

As discussed in previous chapter, the order of the filter should be determined
to meet certain filter specifications including the passband ripple, stopband
attenuation and the transition bandwidth. MATLAB is a perfect tool for this
purpose. A sine wave signal was used as the test signal. Let M represent the filter
order.

The Hilbert transform experiments were conducted with the MATLAB

program and 501 samples of the test signalsin(2* 7 *0.02*n) with n=0,...,500.

The input signal is shown in Figure 4.8. The Hilbert transform outputs are shown in

Figures 4.9-4.13 for the filter order M = 51,71,91,101 and 201.
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Figure 4.9 Output waveform, M =51.
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The HT of y=sin(2*pi*0.02%500)
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Figure 4.13 Output waveform, M =201.
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The group delay caused by the FIR filter with the anti-symmetric coefficients

As result, the phase delay when the input

and order M is %

signal sin(2* 7 *0.02*n) passes through the filter is

%*O.OZ*2E+%Z(O.O2*M +0.5)7.

The output maximum and the minimum values were checked. The amplitude
error and the phase delay for different order filters were also illustrated in Table
4.2. From the Table 4.2, it can be seen that the higher the order is, the less the error
is when M is changed from 51 to 101. In order to not take long time for compute

the Hilbert transform of the ECG wave, the filter order should be chosen properly.

Table 4.2 Filter order comparison

M Maximum Minimum Error Phase Delay
51 0.934020 -0.933397 <6.63% 1.52xn
71 0.975858 -0.967608 <2.83% 1.92%
91 1.000212 -0.983314 <0.8% 2.32n
101 1.008626 -0.987704 <0.2% 2.52n
201 1.046485 -0.997695 <2.44% 4.52n

The frequency responses are shown in Figure 4.14 and Figure 4.15 when the

order of the filter is 100 or 101.
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Figure 4.15 Frequency response, M =101.
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Based on the delay analysis above, the phase response is —360*%*%—90

degree for the normalized sampling frequency of 2. The slopes of the phase
responses in Figure 4.14 and 4.15 are -9090 degree/Hz and -9180 degree/Hz,
respectively.

From the Figure 4.9, Figure 4.10, Figure 4.11 and Figure 4.12 and Figure 4.13
it can be seen that the order of the filter must be bigger than 91 so that the
amplitude of the output wave is ~ 1. The phase shift depends on the filter order as
shown above. In addition, in this thesis, the error requirement is to be smaller than
0.5%. From the Figure 4.14 and Figure 4.15, when the order is odd, the frequency
response is not symmetrical (see the right hand side of Figure 4.14 and Figure

4.15). So the order of the filter in this thesis is determined as 100.

4.3.2 Filter Coefficients
1. When using MATLAB, the remez function:
b =remez(n, f,a,' filtertype")
can be used to get the coefficients of the filter directly. That is
b = remez(100,[0.05 0.95],[1 1],'h"),

where
n =100 is the filter order.

f =[0.05 0.95] is a vector of pairs of normalized frequency point, specified in

the range 0 to 1, where 1 corresponds to the Nyquist frequency. This frequency

range is determined according to a few tests.
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a=[1 1] is a vector containing the desired amplitudes 1 at the points specified
in f=1[0.050.95]. It has the same length as f .

'filtertype'="h' specifies that the filter is Hilbert transformer. This parameter
allows specifying one of the following filters: Multiband, Differentiator, and
Hilbert transformer.

Running a MATLAB program, Figure 4.16 shows that the calculated remez
filter is an equi-ripple bandpass filter with a symmetrical magnitude response

around f =0.5. The coefficient b was obtained as shown in Figure 4.17.
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Figure 4.16 Frequency response of the ideal and Remez design filter.
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Figure 4.17 Coefficients of the filter when M =100.
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From the output coefficients shown in the Figure 4.17, it can be seen that the

Hilbert transformer has negative symmetry.
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Figure 4.18 Frequency response of Remez filter.

Figure 4.18 demonstrates that the calculated filter has a symmetrical

magnitude response around f =0.5 and a linear phase response with the slope of -

9090 degree/Hz.

2. Using C program remez.c to calculate the coefficients of the filter

This program uses the Remez exchange algorithm to design linear phase FIR

digital filters with minimum weighted Chebyshev error in approximating a desired
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ideal frequency response [22]. The program has a special built-in section for
specifying the more common ideal filter types such as multi-band, bandpass filters,
Hilbert transform filters, and differentiators [23].

remez.c calculates the optimal FIR filter impulse response for a set of given
band edges, the desired response and the weight on those bands. It includes a main
program that handles the input, sets up the appropriate approximation problem and
handles the output of the optimal filter coefficients.

Function

remez(h[],numtaps, numband,bands, desired[], weight[], type)

has input values numtaps ,numband , bands, desired[], weight[], type and output
value h[],
where

h[] is the impulse response of the filter, i.e. the coefficients of the filter.

numtaps is an integer. Specifying number of the filter coefficients. It should
beM +1, M is the order of the filter.

numband is an integer, specifying number of bands in filter specification.

bands is a double variable, specifying user specified band edges, using upper
and lower cutoff frequencies. The bands array specifys the set F to be the form

F =UB, where each frequency band B, is a closed subinterval of the frequency

axis [0, 1/2]. The number of bands should be 2 * numband .

desired[] is an array, which is the user specified band responses, the desired
frequency response in each band. The number of desired[] should equal to the

number of bands.
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weight[] is an array, which is the user specified error weights, a positive
weight function in each band. The number of weight[] equals to the number of
bands. The array desired[] and weight[] specify the ideal response and weight

function in each band.

type is the type of the filter. It includes:

(a) Multi-band filter;
(b) Bandpass filters;
(c) Hilbert transform filters;
(d) Differentiators.
In this thesis, it has been explained that the order of the filter is M =100, so

the numtaps should be M +1=101. The numband is 3. The bands, the desired[]
and the weight[] is defined as shown in Figure 4.19. The type parameter is
"HILBERT'. The output result h[] is saved in a text file “coefile.txt”.

To test program for the remez() function, the appropriate arguments to
remez() was used to generate a filter. The initial parameters are shown in Figure

4.19. The resulting coefficients are shown as the Figure 4.20.
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desired[0] = 0O
desired[1] = 1:
desired[2] = 0;
weight=s[0] = 10;
weight=[1] = 1;
weight=s[2] = 10;
band=[0] = 0:
band=[1] = 0.025;
band=[2] = 0.050;
band=[3] = 0.45;
band=[4] = 0.475;
band=[5] = 0.5;
remszi(h, TAPS. 3. band=. desired. weight=. HILEEET):

Figure 4.19 Initial parameter of remez.c.

A C program was run in Visual C++ and the filter coefficients are obtained.
They are shown in Figure 4.20. The frequency response of the filter is illustrated in

Figure 4.21.

It can be noticed that the coefficients obtained from the C code are not exactly
the same as those from MATLAB. Since the source code in MATLAB is not
available, it is not possible to check the differences in the specific calculations. The
frequency responses in Figure 4.18 and Figure 4.21 also show the differences. It
looks like the response from C code is closer to the ideal filter response (Figure

4.16).
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Figure 4.20 Coefficients from the C program.
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Figure 4.21 Frequency response fora M =100 Hilbert transform filter.

This filter should also have a linear phase response as the one in Figure 4.18.
However the phase response of the plot does not have the same slope in the

stopband as one in the passband. It is caused by the calculation error because the

transfer function values in the stopband are very small.

4.3.3 Digital Filter

According to the FIR  filter  definition, the function

fir _ filter(M,Coef, Xinput) was written in C program that is used to apply
filtering operations on the data sequence in vector Xinput,

where
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M is an integer. It is the number of coefficients of the filter.
Coef is the coefficients of the filter.
Xinput is the input data.
The following codes illustrate how to use this function.
¥hile [ (fzcanf (infile, "X1{", =in)) != EOF)

v = fir filter(TAPS. h. =in):
fprintf{outfile, "¥23 20f~n", ¥v);
I

where
“xin” contains the input data, it could be the ECG data.
“infile” is the file name which saved the input data. It is named by users.
“h” is the coefficients obtained from the remez.c.
“outfile” is the file name which saved the results filtered from the filter. It is

named by user. In this case, the outfile saved the Hilbert transform of the input

ECG data.

4.3.4 Detector for R Wave Peak

Accurate determination of the QRS complex, in particular accurate detection
of the R wave peak, is essential in computer-based ECG analysis [24]. As
described in the previous chapter, one of the properties of the Hilbert transform is
that it is an odd function. That is to say that it will cross zero on the x-axis every
time that there is an inflection point in the original waveform [24]. Similarly a
crossing of the zero between consecutive positive and negative inflection points in

the Hilbert transformed conjugate will be represented as a peak in its original
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waveform. Using this characteristic, a detector for determining the R wave peak in

the input ECG waveform was developed.

The Hilbert transform of the ECG wave was obtained in section 4.3.3. The

peaks in the Hilbert transform sequence h(n) represent regions of high probability

of finding R wave peaks. An adaptive threshold is used to locate the peaks in the

h(n) sequence. For finding the R wave peak accurately, a moving 1000 points

window is used to subdivide the Hilbert transform h(n) sequence. The RMS (Root

Mean Square) value and the maximum amplitude in the present window are then

calculated. The threshold in this window was determined according to the criteria

below:

1.

If (the RMS value) > (18%*maximum amplitude) in the Hilbert transform
sequence, the threshold is set up at (39%*maximum amplitude).
If (the present maximum amplitude) > (2* previous maximum amplitude),

the threshold will be (39%*previous maximum amplitude).

. If (the RMS value) < (18%* maximum amplitude) in the Hilbert

transform sequence, the threshold will be (1.6*RMS value).

If the two peaks in the h(n) sequence are two close together, only one of

them is the real R peak.

4.3.5 R Wave Peak Detection Test

In this section, two ECG waveforms taken from the MIT-BIH Arrhythmia

database are used as the test signals.
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The MIT-BIH Arrhythmia database consists of 48 records, each containing 30
minutes of two-channel ECG with heartbeat and rhythm annotations. The
recordings were digitized at 360 samples per second per channel with 11-bit
resolution over a 10 mV range. All samples are represented as positive numbers.
The entire 30-minute record is annotated.

XW_1 and XW_2 are the normal ECG waves. They are the small sections of
MIT213 from the MIT-BIH database. Figures 4.22 and 4.23 illustrate the input data

XW _1 and its filtered version, i.e., the Hilbert transform of the input signal.
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Figure 4.22 Input wavefom: XW_1.

As discussed in the previous chapter, the standard ECG is a representation of

the heart electrical activity recorded from electrodes on the body face. Figure 4.22

80



shows a small section beats of a normal heart. There are 4 heartbeats since each R

wave represents a heartbeat.
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Figure 4.23 Output waveform for XW_1.
Table 4.3 XW_1 extreme points and values
Input (Figure 4.22) Output (Figure 4.23) Error
N Extreme Value N Value (N ouput = Njppue = 50)
104 1459 155 =0 1
329 1419 380 =0 1
524 1404 575 ~0 1
724 1435 774 =0 0
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Figure 4.23 shows the Hilbert transform of the input wave, i.e. XW_1. For
those points in Figure 4.22 where the slope changed from positive to negative, their
outputs should be the zero crossing points with the extreme values changing from
negative to positive. Because of the filter delay, the output results lag the input by
50 (M/2) . Table 4.3 shows N and extreme values corresponding to every
heartbeat, i.e., the R wave peak. Compared the results with the MIT-BIH database

annotation file, it can be seen that the output values are close.

Figure 4.24 and Figure 4.25 are for data XW_2.
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Figure 4.24 Input waveform: XW 2.
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Figure 4.25 Output waveform for XW_2.

Figure 4.24 shows another channel waveform for the same person. The reason
why Figure 4.24 is different from the Figure 4.22 is the electrode is placed at a
different location. XW 1 is obtained when the electrode is placed at the front of the
body while XW_2 is obtained when the electrode is placed on the back of the body.
For this case, for those points which slope changed from negative to positive, the
output point should be the zero crossing point with the extreme values changing

from positive to negative.
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Table 4.4 XW 2 extreme points and values

Input (Figure 4.24) Output (Figure 4.25) Error
N Extreme Value N Value (N ouput = Njppue = 50)
103 518 152 ~0 -1
327 466 377 ~0 0
522 436 572 =0 0
722 416 771 =0 -1

Table 4.4 shows the results, for the same reason with the previous wave, filter
phase delay, the output wave lag the input by 50 (M /2). Comparing the output
results with the MIT-BIH database annotation file, the error between the output

results and the annotation results is acceptable.

4.4 Nios Implementation

In order to use the Nios development board [Figure 4.4], connect the host PC
and open a Nios SDK shell and type
$ nios—run —t —r
This establishes a simple terminal connection with the development board. Press
the SafeConfig button on the Nios development board to reset the Nios
development board and reconfigure the Stratix FPGA. The reference design emits a

text message to the serial port when the Nios processor boots. After the LEDs begin
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to blink and the LED displays network-initialization status messages, press SW3 to
abort DHCP network configuration. Text will display in the Nios SDK Shell
window. Press the Enter key on the PC several times to provide stimulus to the

reference design. The interface is shown in Figure 4.26.

OPC Builder 4.00

To Altera SOPC Builder
4.88, Built Mon Mov 18 16:27:12 PST 2883

Te Hios Development Kit
3.18, Built Fri Aug 8 11:39:81 PDT 2883

Example designz can bhe found in
soygdrivescralteraskits/niossexamples

¥You may add a startup script: cirsalterarskitssnios- user.bazhrc?

[SOPC Builder1% nios—run —t —»

nioz—run: Entering terminal mode over COM1i: at 115208 bhps

nios—run: Terminal mode (Control-C exits?

ystem ID: Safe GConfig—u3.A

+
+————MNioz Weh server

To access this web site:
* Attach an Ethernet cable to the connector RJ1.
and plug the other end into your LAH Ce.g. a hub).
For a point—to-—point connection to a PC. insert
a crossover cahle or adapter.

* Open a web—hrowser and enter the URL, helow,
into the *address’ field

#*# Type "help’ at this promnpt for more information.
URL: http:/-18.8.8.51 ~

———— e ———————————} +

ApPAiBB1 FFFFABAB FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

SW1 sW2  5uU3

4@8: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF #
%@: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF # ..
: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF #

: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF #

Figure 4.26 Nios SDK Shell Prompt.
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If the activity in the Nios SDK shell looks like in Figure 4.26, then the PC is
communicating correctly with the Nios development board. Press Ctrl + C to exit
the terminal program and return to the bash shell.

To compile all programs at the at the bash prompt, use command

$ nios — build
The GNU C/C++ compiler and linker will be invoked. Several intermediate files
and an executable (.srec) file will be produced. The messages are shown in Figure

4.27.

SOPC Builder 4.00
[SOPC Builderl$ nios-build remez.c fir_filter.c testPMi.c

ources:
PEMEZ . C
fir_filter.c
testPMl.c

it 2085 _11.30 14:53:5%1 <(*} nios—elf-gqcc -1 .. -1 ..~» .. -1 ..#inc -1 ..~ ..~ inc -1
A sine -1 LAl LAl tine D LLsl sl Lol L Aine W —Uno—multichar —g —mno
—zero—extend —02 —mdcache —m32 remez.c —o remez.c.o —c

it 2085 _11.30 14:53:52 (#} nios—-elf-gcc -1 .. -1 ..~ .. -1 ..#inc -1 ..~ ..~ inc -1
LA osdne -1 Ll Ll Ldine D LAl Ll LAl /dne W “Uno—multichar —g —mno
—zero—extend —02 —mdcache —m32 fir filter.c —o fir filter.c.o —c

i 2085 _11.30 14:53:5%2 <(+} niozs—-elf-gqcc -1 .. -1 ..~ .. -1 ..#inc -1 ..~ ..~ inc -1
Ao osine -1 Ll sl Lsine L Ll Ll Lo sdine W —Uno—multichar —g —mno
—zero—extend —02 —mdcache —m32 testPMli.c -o testPMi.c.o —c

f 2085.11.308 14:53:52 <»» nioz—elf-1d -e _start —u _start —g -T C:- quartus- sopc
huilder~binsexcalibur.1ld ..-libsobj32-/nios_jumptostart.s.o remez.c.o fir filtep
.c.0 testPMl.c.o —start—group -1 nios3d2 -1 ¢ -1 m -1 gecc ——end—group —LAcygdriv
escralteraskitssniossbinsnios—gnupro-niocs—-elf-lib-sm32 -L-scugdrivescralteraskitss|
nios/bins/nios—gnuproslibsgoc—libs/nios—elf 2 _9-nios=—-A10881-20830718. m32 -L..-1ih
FL../../lib L. /0 A0 /ib Lo/l Al Al 2ldib LA A/l lib L sine L LAY
«.#inc -L../.. /. /1inc Lo/l osl o/ ine Lol o/l /0 /. 21ne L —o testPHl Lout

i 2085._11.38 14:53:52 (*} niosz—elf-obhjcopy -0 srec testPMl.out testPHl.srec

# 2085.11.38 14:53:52 (%> nios—elf-nm testPMi.out | sort > testPHi.nm
it 2085 _11.308 14:53:5%3 <(#> nioz—elf-objdunp —-d ——source testPMl_out > testPMi_ohj

[SOPC Builder1s

Figure 4.27 Nios-Build messages.
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To download and run the code compiled in Figure 4.27, download the srec

file to the Nios development board. Redirect stdout to a data file outputdatal .txt .

The message is shown in Figure 4.28.

e SOPC Builder 4.00

[SOPC Builderl% nios—run —r testPMl.srec »outputdatal.txt

Figure 4.28 Nios SDK shell prompt.

The input waveforms XW 1 and XW_2 are a section wave of MIT 213 taken
from the MIT BIH Arrhythmia database (Figure 4.29 and Figure 4.31). The output
file record the data of the Hilbert transform of the ECG wave. The output

waveforms are shown in the Figure 4.30 and Figure 4.32.
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Figure 4.30 The Hilbert transform of X
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From the output waveforms in Figure 4.30 and Figure 4.32, it can be seen that

the waveforms are almost the same as the results obtained from Visual C++.

Table 4.5 XW _1 R wave points and their Hilbert transform points

Input (Figure 4.29) Output (Figure 4.30) Error

N Extreme Value N Value (Noutput = N jnpue —50)
104 1459 155 ~0 1
329 1419 380 ~0 1
524 1404 575 ~0 1
724 1435 774 ~0 0

Table 4.6 XW_2 R wave points and their Hilbert transform points

Input (Figure 4.31) Output (Figure 4.32) Error

N Extreme Value N Value (Nouput = Njppue = 50)
103 518 152 ~0 -1
327 466 377 =0 0
522 436 572 ~0 0
722 416 771 ~0 -1

Table 4.5 and Table 4.6 show the N values of the R wave points and their
Hilbert transform points. It’s the same as the one discussed in the section 4.2. The
results illustrates that the programs can work correctly on the Nios embedded

processor.
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Chapter 5 Results

In the previous chapter, implementation of the algorithm for the Hilbert
transform of an ECG wave has been discussed. In order to prove the program is
working well in the Nios processor, some ECG waves taking from the MIT-BIH
Arrhythmia database were used as verifications. The results will be compared with

the annotation files recorded in the MIT-BIH database.

5.1 Experimental Results

Further examples of some ECG waves and their Hilbert transformed output
waveforms are shown in this part.

The file mit212 from100.txt is a small section from MIT212 recorded in the
MIT-BIH arrhythmia database. It includes 1000 data samples from 100 to1099 in
MIT212. Figure 5.1 shows the original ECG waveform. The output, i.e., the Hilbert

transform of mit212 froml00.txt is shown in Figure 5.2. The file

mit212 _1from47200.txt is another section from the MIT212. It also includes 1000
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data samples. The original waveform and the Hilbert transform of this ECG wave
are shown in Figure 5.3 and Figure 5.4.

As discussed preciously, accurate detection of the R wave peaks is important
in ECG analysis. The zero crossing points corresponding to the true R wave peak in
the Hilbert transformed data of the original ECG waveform are shown in Table 5.1
and Table 5.2. The actual position of R wave points in the MIT-BIH arrhythmia
database is also given. The error between the located R and actual R is calculated
using Equation 5.1:

Error = Noutput —Nyr_ain =50, (5.1)

where

N is the number of the zero crossing point in the Hilbert transform

ouput
sequence of the original ECG data located by detector.

Ny1_sn 1S the actual R wave peak location recorded in the MIT-BIH
annotation file.

Since the order of the filter used in this thesis is 100, the output waveform

lagged the input waveform 50.
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Figure 5.1 Input waveforms: mit212from100.txt.
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Figure 5.2 Output waveform: outMIT212from100.txt.
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Table 5.1 mit212from100 extreme points and values

Input Output MIT-BIH Error
N Extreme Value N Value Value
116 1287 165 ~0 114N 1
353 1294 402 ~0 351N 1
597 1265 647 ~0 596N 1
825 1218 &75 ~0 824N 1
L ! ! ! ! . ! ! !
e S
7N SN U SO SO SN SO OO S
R e L e e
= : : : : : : : : :
L I S | N S
1080 --
1000 --
950 [ L
800

1] 00 200 300 400 500 GO0 Y00 800 900 1000
i

Figure 5.3 Input waveform: mit212_1from47200.txt.
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Figure 5.4 Output waveform: outMIT212from47200.txt.
Table 5.2 mit212_1from47200 extreme points and values
Input Output MIT-BIH | Error
N Extreme Value N Value Value
48 1255 97 ~0 46N 1
255 1169 304 ~0 254N 0
477 1294 527 =0 476N 1
714 1324 763 =0 713N 0
963 1330
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The ECG waveforms (Figure 5.1 and Figure 5.3) are normal because the P
waves, QRS complexes, ST segments, T waves and U waves are normal. Each R
wave peak presents a heartbeat.

Table 5.1 and Table 5.2 show the positions of the zero crossing points in the
output waveform which corresponding to the R peaks in the input ECG wave.

Because of the filter delay, the output results lag the input by 50 (M /2). From

Table 5.1 and Table 5.2, it can be seen that the N in the output waveform is
lagging about 50. The error between the zero crossing points obtained in the output
waves with the value recorded in the MIT-BIH annotation file is very small. It
proves that the algorithm for calculating the Hilbert transform of the original ECG
wave is correct. Note in the Table 5.1 and Table 5.2, the meaning of the letter in the
“MIT-BIH value” is the type of the beat recorded in the MIT-BIH annotation file.
N means normal QRS, V means premature ventricular contraction (PVC). F means
fusion PVC. The details about the MIT-BIH annotation code are shown in the
Appendix A.

The files mit213 _1from67000.txt and mit213 1from1450.txt are small

sections from another record, MIT213, in the MIT-BIH arrhythmia database. Figure
5.5 and Figure 5.7 show the ECG waveform. The outputs, i.e., the Hilbert transform
of the input wave, were illustrated in Figure 5.6 and Figure 5.8. It can be seen there
is an irregular heartbeat between N = 600 and 700 in Figure 5.5. This kind of beat
is called a PVC (Premature Ventricular Contraction). PVCs are premature
heartbeats originating from the ventricals of heart. PVCs are early or extra

heartbeats that commonly occur and are usually harmless in normal hearts, but can
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cause problems in hearts with pre-exiting disease. A person with PVCs may or may
not feel the irregular heartbeat, usually as a skip heartbeat [25]. The characteristic
of PVCs is that there is no P wave and PR interval and the QRS complex is greater

than 0.12s.
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1100 |- -
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0 100 200 300 400 a00 R0 00 a0 Qa0

Figure 5.5 Input waveform: mit213_1from67000.txt
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Figure 5.6 Output waveform: outMIT213 _1from67000.txt.
Table 5.3 mit213_1from67000 extreme points and values
Input Output Value Error
N ExtremeValue N Value (MIT-BIH)
51 1451 101 ~0 50N 1
244 1549 293 ~0 243 F 0
439 1463 489 ~0 438 N 1
637 1582 689 ~0 635V 4
834 1476 884 ~0 833N 1
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Figure 5.8 Output waveform: outMIT213_1from1450.txt.
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Table 5.4 mit213_1from1450 extreme points and values

Input Output Value Error

N ExtremeValue N Value (MIT-BIH)

17 1388 67 ~0 16 N 1
206 1388 255 ~0 205N 0
400 1396 450 =0 399N 1
598 1415 647 =0 597N 0

From the results obtained in Table 5.3 and Table 5.4, it can be seen that the

error for normal heartbeat and for the PVC beat are small and are acceptable.

Here other examples are given, the files mit223 1from47700.txt and
mit223 1from7900.txt are sections from the MIT 223 in the MIT-BIH database.

The input waves are shown in Figure 5.9 and Figure 5.11, the Hilbert transforms of
the input ECG waves are shown in Figure 5.10 and Figure 5.12. In this case, there
are a few irregular heartbeats, such as PVCs. In Figure 5.9, the PVCs happened

between N =0 to 100 and N =800 to 900. Table 5.5 and Table 5.6 show the

compared results.
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Figure 5.9 Input waveform: mit223 1from47700.txt.
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Table 5.5 mit223 1from47700 extreme points and values

Input Output Value Error
N Extreme Value N Value (MIT-BIH)
60 1376 110 ~0 60 V 0
393 1327 442 ~0 391N 1
667 1321 716 ~0 664 N 2
862 1367 912 ~0 861V 1
1400 T T T T T T
1300
1200 +-----
o 1100 F----
R
=

||

ono [ -]

g0

S I T T T N N R S N
0 o0 200 300 400 SO0 BOO YOO 800 900 1000
M

Figure 5.11 Input waveform: mit223 1from7900.txt.
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Figure 5.12 Output waveform: outMIT223 1 from7900.txt.

Table 5.6 mit223 1from7900 extreme points and values

Input Output Value Error
N ExtremeValue N Value (MIT-BIH)
79 1303 128 ~0 76 N 2
352 1328 401 ~0 349N 2
591 1143 641 ~0 590 V 1
879 1298 928 ~0 876 N 2
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In Figure 5.11, the PVC happened between N =500 to 600. The R wave
peak is not that clear, there are two peaks and the extreme values are close together.
Table 5.5 and Table 5.6 record the R wave peaks in the input and output waveform.
From Table 5.5 and Table 5.6, it can be seen that the output results lag the input

data by 50 because the filter delay is 50 (M /2).

As discussed in the Chapter 4, the points which are of interest are those zero
crossing points with the extreme value changing from negative to positive or from
positive to negative. Comparing the results shown in Table 5.1-Table 5.6 with the
data recorded in the MIT-BIH arrhythmia database, the error is small and is

acceptable. It illustrated that the algorithm and the program are correct and working

properly.

5.2 Complete ECG Testing

In the previous section, just small sections from the record of the MIT-BIH
Arrhythmia database are tested. As mentioned previously, each MIT-BIH excerpt
contains 30 minutes of ECG with heartbeat recording. In this section, the whole
excerpt will be used to test. Every excerpt includes 649999 data samples.

MIT212 is the heart recording of an adult (31 years old). The predominant

rhythm is normal sinus at rates of 75-90 BPM.

104



MIT213 is the record of a 6lyear old person’s heart; heart rate is 100-110
BPM. Predominant is normal but there are occasional APBs (Atrial Premature
Beats).

MIT223 is the record of an 84 year old person’s heart. APBs are present
throughout. There is high-grade ventricular ectopic activity with frequent multifocal
VPBs, couplets, and runs of Vtach.

The entire excerpt from the MIT-BIH Arrhythmia database was tested by the
system discussed in this thesis. The Hilbert transform of this excerpt is obtained and
the R wave peaks are detected. Since the data is too long, just portion of the results
of MIT212, MIT213 and MIT223 were shown in Figure 5.13, Figure 14-15 and
Figure 5.16-17. Beat by beat comparison was performed according to the

annotation file. The results are shown in Table 5.7.
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MIT-BIH OUTPUT ERROE MIT-EIH OUTEPUT ERROR
214 265 2806 8857

451 Loz 9049 9100
E9E 747 9280 9331
924 975 9506 9557

1168 1219
1440 1492
1707 17548
1953 2004
2191 2242
2397 24418
2604 2655
2826 2878
3049 3100
3280 3331
3544 35919
3789 3840
4030 40581
42718 4330
451%6 4567
4754 4305
4976 co27
5199 5251
54348 5490
SEE0 £731
5917 5963
6161 6212
£398 6450
6630 6651
EB54 6906
7091 7142
7333 7384
7570 7621
7813 7064
g80e8 8120
8331 8382
8571 8622

9741 9792
9992 10043
10232 10284
10473 10529
10716 10767
10943 10995
11171 11222
11402 11453
11637 11688
11868 11919
12097 12148
12335 12386
12574 12625
12809 12860
13044 13095
13276 13327
134919 13550
13731 13782
13972 14023
14220 14271
14467 14518
14727 14778
14981 15032
15224 15275
15453 15509
15699 15750
15940 15991
16177 16228
16416 16467
16669 16720
16925 16976
17166 17217

il Lttt Ll £ N el el el LS AL e e O e e e e e e e e e el U e e
e el e e el e T e B e e e e e e o s N S U ST S Sy Sy Sy

Figure 5.13 The portion of results of MIT212.
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MIT-EIH OUTPUT ERROE MIT-EIH OUTPUT ERROE

95 N 146 1 7134 N 7185 1
253 H a04 1 7333 H 7384 1
478 N £249 1 7522 N 7573 1
673 H 724 1 7715 H 7766 1
873 H 923 1] 7914 H 7965 1
1076 N 1127 1 8107 N 8157 1]
1272 H 1323 1 g302 H 8352 o
1466 H 1517 1 2497 H 8543 1
1655 N 1705 1] 8699 N 8750 1
1249 H 1900 1 g2298 H 2949 1
2047 N 2097 1] 9095 N 914% 1
2236 H 2287 1 9284 H 9335 1
2433 H 2484 1 9481 H 9531 1]
2632 N 2682 1] 9681 N 9733 2
2832 H 2883 1 29882 H 9933 1
anz21 H anzrz 1 10074 H 10125 1
3219 N 3270 1 10273 N 10324 1
3408 H 3459 1 10462 H 10513 1
3603 N 3654 1 10656 N 10707 1
3806 H 3856 1] 10850 H 10900 1]
4007 H 4058 1 11042 H 11093 1
4200 N 4251 1 11236 N 11287 1
4401 H 4452 1 11433 H 11454 1
4592 H 46473 1 11636 H 11687 1
4785 N 4335 1] 11827 N 115878 1
4976 H co27 1 12021 H 12072 1
5172 N 5223 1 12214 N 12265 1
5374 H 5425 1 12409 H 12460 1
£571 H Ee21 1] 12606 H 12657 1
5771 N 5822 1 12308 N 12859 1
5963 H 6013 o 13005 H 13056 1
6156 H 6207 1 132203 H 13254 1
6347 N 6393 1 13391 N 13442 1
6543 H 6594 1 13585 H 13635 1]
E742 N 6793 1 13781 N 13832 1
6941 H 6392 1 13978 H 140248 1]

Figure 5.14 The portion of results of MIT213.
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MIT-EIH OUTFUT ERRCE MIT-BIH OUTPUT ERROR

185139 H 185190 1 192228 N 192278 0
185336 H 185386 0 192422 F 192472 0
185530 NH 185581 1 192612 W 192663 1
135725 F 185778 3 132807 ¥ 132861 4
185926 H 185977 1 193010 W 133060 0
186131 F 1861581 0 193212 F 193261 -1
186326 H 186376 0 193403 N 193454 1
186519 ¥ 186573 4 193600 F 193650 0
186716 H 186767 1 133794 N 193845 1
136909 F 136960 1 133991 F 194040 -1
187108 NH 187159 1 194184 N 194235 1
13731e F 187366 O 1343584 F 134435 1
187506 H 187557 1 194578 W 194628 0
187704 F 187754 0 194777 W 134832 5
137894 H 137945 1 194983 N 195033 0
188090 ¥ 188144 4 135180 F 195232 2
188282 H 188333 1 195377 N 195428 1
138475 ¥ 138529 4 195573 F 195624 1
188676 N 188728 0 135772 N 135823 1
138874 F 138924 0 195972 NW 196023 1
189072 H 189123 1 196171 W 196222 1
189265 F 18931 1 196367 N 196417 0
189460 H 189511 1 196566 W 196617 1
189660 F 189714 4 196761 N 196812 1
189852 H 189903 1 196955 W 197006 1
190050 F 190100 0 197148 F 197198 0
190258 H 190308 0 197350 N 197401 1
190458 F 190510 4 197542 F 197596 4
190663 H 190714 1 197740 W 197791 1
190852 F 130902 0 197911 ¥ = —

191047 H 131098 1 198143 H 198194 1
191244 F 191293 -1 198341 F 198391 0
191442 H 131493 1 138534 NH 138585 1
191636 F 191686 0 198732 W 138782 0
191828 NH 191879 1 138930 N 198951 1
192029 W 192083 4 199134 N 199185 1

Figure 5.15 The portion of results of MIT213.
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MIT-EIH OUTPUT ERRCE MIT-BIH OUTPUT ERRCE

204 N 257 3 9851 N 9903 2
480 H 533 3 10118 N 10171 3
759 N &1l 2 10388 N 10440 2
1034 N 1086 2 10667 N 10720 3
1306 N 1359 3 10941 N 10993 2
1574 N 1627 3 11209 W 11262 3
1855 N 1908 3 11477 W 11529 2
2125 N 2177 2 11760 N 11813 3
2383 N 2438 2 12035 N 12087 2
2646 N 2698 2 12308 N 12361 3
zang N 2960 2 12583 N 12638 2
3175 N 3227 2 12852 N 129058 3
3444 N 349 2 13130 N 13182 2
3710 N 3763 3 13402 N 13454 2
3967 N 4019 2 13668 N 13720 2
4238 N 4290 2 13933 N 13985 2
4514 N 4566 2 14214 N 14267 3
4779 N 4831 2 14481 N 14534 3
5036 N 50&8 2 14742 N 14795 3
5300 N 5353 3 15009 N 15061 2
EEeE N ER20 2 15276 N 15328 2
ca4? N GBI 2 15548 N 15600 2
6107 N 6160 3 15823 N 15876 3
6371 N 6423 2 16097 N 16149 2
6644 N GRIT 3 16371 N 16424 3
£919 N 6971 2 16664 N 16716 2
7184 N 723 2 16942 N 16994 2
7443 N 749 3 17211 W 17283 2
7707 N 7760 3 17489 N 17541 2
7976 N E028 2 17766 N 17817 2
8249 N 8301 2 18045 N 18097 2
a490 ¥ - - 18316 N 18389 3
A776 N Ba&zaE 2 18583 N 18635 2
9046 N 9098 2 18850 N 18902 2
9321 N 9373 2 19124 W 19177 3
9586 N 9638 2 19389 N 19442 3

Figure 5.16 The portion of results of MIT223.
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MIT-EIH OUTEUT ERROR MIT-EIH OUTPUT ERROR
47994 ¥ 43044 0 52850 N 52902 2
43415 N 43487 2 53104 H 53157 3
43620 ¥ 43872 2 £3373 F 53423 1
44045 N 44097 2 53640 N 53B92 2
44326 N 44377 2 £3892 N 53943 1
44586 ¥ 44836 0 4146 H 54198 2
44879 N 44931 2 54396 F 54447 1
45163 N 45215 2 4676 N G4729 3
454724 ¥ 45474 0 54947 N 54993 2
45693 N 45745 2 55211 N GE2e3 2
4596 N 46017 2 EE4CE  F  GEEO7 1
46216 ¥ 46266 0 55753 N §5a0s 2
46499 N 4551 2 6028 N GgOg0 2
46763 N 48816 3 E294 N GR34E 2
46995 ¥ 47045 0 56551 F  GREO1L D
47295 N 47348 3 62819 N Ggg72 3
47571 N 47623 2 57086 N 57137 1
47760 ¥ 47810 0 E7356 N G7408 3
48091 W 48147 1 E7E05 N G765E 1
48364 N 48416 2 57857 N 57909 2
48561 ¥ 48p12 1 59121 N §a173 2
48903 N 48955 2 58386 N 58438 2
49167 W 49220 3 58639 N Ggg9l 2
49364 ¥ 49413 -1 £9891 N 58943 2
49694 N 49746 2 59061 ¥ 59112 1
49943 ¥ - - 59397 N §3449 2
CO0165 ¥ 50215 0 9660 N 59713 3
0490 W 50547 2 59915 H 59967 2
Co753 N 5080 2 0169 N g0221 2
£1032 NH 51084 2 60432 H 60485 3
£i1293 F 51343 0 0704 N &O756 2
L1546 N  51G98 2 0963 N g1015 2
1806 N 518583 2 61217 N 61270 3
C2066 N 52119 3 61477 N g1529 2
2332 F 52384 2 1733 N B1786 3
2598 NH 52650 7 61995 N 62047 2
Figure 5.17 The portion of results of MIT223.
Table 5.7 R wave detection performance
MIT-BIH | Actual number Failed Detection Average
record of beats in detection error rate error
record number

MIT212 2748 10 0.00364 1.11

MIT213 3251 9 0.00277 1.26

MIT223 2605 10 0.00384 2.43
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The detection error rate and average error were calculated using the following
equations respectively:

DetectionErrorRate = FailedDetectionNumber (5.2)

AcutralNumberOfBeats

k
(Z“ocatedR - actuaIR|j

AverageError =~ <

: (53)

where

K is the total number of R correctly located by the detector.

From the detection error rate and the average error, it can be seen that the
results are closed to the data recorded in the MIT-BIH annotation file. The average
error in MIT 223 is bigger since MIT 223 records the heart beats of an 83 year old
person and there are a lot of PVCs, the beat by beat error is larger. That is why the
average error is larger than others. But the error is still acceptable (< 3 samples).
The results of the test illustrate the algorithm for calculating the Hilbert transform

and detecting the R wave peaks is effective.
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Chapter 6 Summary and Conclusion

In the previous chapters, the information about the Holter monitoring system
and the process for calculating the Hilbert transform of an ECG signal are discussed
in detail. This final chapter summarises the results of the research and the contents

of the thesis.

6.1 Summary

The Holter ECG Monitoring System mainly consists of four parts: Input
Processing, Pattern Recognition, Compression and Storage. The main objective of
the input processing is to calculate the Hilbert transform of the input ECG data.
Pattern recognition uses vectorcardiograph and polarcardiograph representations
and the concepts of pre-envelope and envelope of a real waveform given by the
Hilbert transform to judge whether the ECG wave is normal or abnormal. Lastly
data is compressed from the abnormal ECG wave and saved in the flash card. In
this thesis, only the first part of the Holter ECG monitoring system, i.e., Input

Processing is discussed.
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The background of the Holter ECG Monitoring System was presented. The
Hilbert transform applications and the basic mathematics and properties of a Hilbert
transformer are also presented.

The Hilbert transform is a mathematical method for analysing signal
waveforms, and has been widely used in the areas of communication systems
analysis. The resulting display of the Hilbert transformed data is similar to that
obtained from conventional vectorcardiographic systems. It allows easy visual
indication of the different classes of normal and abnormal morphologies. It allows
quick, precise segmentation of the incoming ECG into individual heartbeats and
also allows the detection of Q-, R-, S-, and T-wave complexes in the data.

In this thesis, four approaches to compute the Hilbert transform including the
Time-Domain approach, the Frequency-Domain approach, the Boche approach and
the Remez Filter approach have been discussed in detail. The algorithms are
deduced and examples are also given for every approach. After comparing them in
running time and the ease of implementation, the Remez Filter approach which
implements the Parks-McClellan algorithm to design and apply a linear-phase filter
was determined to be the best and is used in computing the Hilbert transform of the
ECG wave in this thesis. The results for every approach were shown in Chapter 3
and the comparisons were also given.

In the software implementation part, as a first step, the filter order and the
frequency range are determined by analyzing a set of test results using MATLAB.
The remez function was used in MATLAB to test the Hilbert transform of the

ECG data.

113



In additional, a C program ( remez.c ) was developed to implement the
algorithm of the Remez filter approach. remez.c uses the Parks-McClellan
algorithm, i.e., uses the Remez exchange algorithm and Chebyshev approximation
theory to design a filter with the optimal fit between the desired frequency response
and actual frequency response. A main program that handles the input, sets up the
appropriate approximation problem and handles the output of the optimal filter
coefficients was included. Specifically remez.chas a build-in section for the more
common ideal filter types such as multi-band, bandpass filters, differentiators and
the Hilbert transform filters. All results including the order, frequency range and the
coefticients of the filter were shown in Chapter 4.

A digital filter was developed to apply filtering operations on the data
sequence. Using the coefficients achieved from remez.c and the input data, i.e., the
ECG data sequence, the Hilbert transform of the input ECG data was obtained. All
results and waveforms are also presented in Chapter 4.

Accurate determination of the QRS complex, in particular, accurate detection
of the R wave peak, is essential in ECG analysis and is another task in this thesis.
In the system discussed in this thesis, the method of ECG waveform analysis uses
vectorcardiograph and polarcardiograph representations and examines the concepts
of pre-envelope and envelope of a real waveform given by the Hilbert transform. A
prototype two stage QRS detector was used based on the determination of a zero
crossing in the Hilbert transformed data of the original ECG waveform. The
positions of the zero crossing points that correspond to the R wave peaks are useful

in judging whether the heartbeat is normal or abnormal.
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A C program was developed to detect the QRS complex, in particular, to
detect the R wave peak used in ECG analysis. All the results were shown in
Chapter 4 and Chapter 5. The simulation results are also presented in Chapter 5.

The Nios embedded processor was introduced. SOPC Builder was used to be
development tool. Using SOPC builder, users can combine the Nios processor with
user logic and program it into an FPGA easily. All programs were run on the Nios
embedded processor. The results, i.e., the Hilbert transform of the ECG data
sequence, are almost the same as the results obtained in the C program except the
first 50 data samples. The first 50 data samples in the output sequence can be
ignored since the phase delay of the filter is 50. The results prove that the program

can work properly in the Nios embedded processor.

6.2 Conclusion

The data used in test were from standard ECG waveform records in the MIT-
BIH arrhythmia database. The performance of the chosen algorithm was tested. The
test results were compared with the annotation files recorded in the MIT-BIH
arrhythmia database. The detection error rate is smaller than 0.005. The average
error is smaller than 3 samples. The results were given in Chapter 5. The error is
acceptable. The results illustrated that the algorithm performed effectively with

accurate R wave detection.
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Appendix A

The MIT-BIH Arrhythmia Database

A.l Introduction

The database consists of 48 records, each containing 30 minutes of two-
channel ECG with beat and rhythm annotations. Each digital record has been
copied from an analog recording made with an Avionics 445 two-channel recorder.
Annotations have been made by two independent cardiologists with consultation to
resolve disagreements.

The data base is recorded on twelve 2400-foot (730m) ANSI standard 9-track
tapes at 800 bpi, odd parity, with NRZI recording. A detailed catalog of the
contents of each tape, with illustrations, is included with the database.

The format is that which will be used for the American Heart Association
(AHA) Database for Ventricular Arrhythmia Detectors, with these differences:

Each 9-track tape contains four 30-minute records.

Sampling frequency is 360 Hz per channel.

Sampling precision is 11 bits, and all samples are represented as positive
numbers.

The entire 30-minute record is annotated.

Annotations are referenced to samples (rather than milliseconds).
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An additional “0” annotation has been added to the AHA set to specify non-
beat annotations (e. g., thythms, artifact).The “R” (R-on-T PVC) annotation is not
used.

Space allocated but unused in the AHA format annotation blocks is used to
specify rhythms and beat types more precisely than is allowed using the AHA
annotation codes alone. Atrial ectopic beats and conduction defects are among the

items specified in this way.

A.2 File Structure

Each tape contains 16 files separated by ANSI standard end-of-file (EOF)
marks. The last file is terminated with two EOFs to indicate the end of the tape.

Each record, corresponding to 30 minutes of ECG and annotations, is
comprised of four files: an ID block file, a sample data file, an annotation file, and a
second ID block file. The order of files is:

(Record 1) ID Block
(EOF)
Sample Data Blocks
(EOF)
Annotation Blocks
(EOF)
ID Block
(EOF)
(Record 2) ID Block
(EOF)
Sample Data Blocks
(EOF)
Annotation Blocks
(EOF)
ID Block
(EOF)
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(Record3) Sample Data Blocks
(EOF)
Annotation Blocks
(EOF)
ID Block
(EOF)

(Record4) Sample Data Blocks
(EOF)
Annotation Blocks
(EOF)
ID Block
(EOF)

A.3 Notational and Other Conventions

Multiple-byte Numbers

In this specification, the least significant 8-bit byte of a multiple-byte number
is referred to as byte i, the next most significant byte as byte ii, and so on. (The first
byte read from the tape in a given block is called byte 1.)

The AHA format specifies that:

16-bit numbers are stored in the order: byte i, byte ii.

32-bit numbers are stored in the order: byte iii, byte iv, byte 1, byte ii.

ASCII text

In the ID block and in certain annotation labels (see below) brief comments
are present. These are coded as ASCII characters, and should be read from the tape

in byte-sequential order.
TOCs

“TOC” means “time of occurrence”, TOCs are always represented as 32-bit

numbers. TOCs in the AHA database are given as the number of MILLISECONDS
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from the beginning of the annotated segment of the record. In the MIT-BIH
database, TOCs are given as the number of SAMPLE COUNTS from the beginning
of the record. To convert sample counts to milliseconds, multiply sample counts by

1000/360 (=2.777....).

A.4 File Format Specifications

ID block file

The first and fourth files in each record each consist of a single 512 byte ID

block, The AHA specification for the ID block is:

Bytes Use

1-8 record ID (8 ASCII characters)

9-10 number of annotations
11-16 unused
17-20 time of first sample in the annotated segment of the record
21-24 time of last sample in the annotated segment of the record
25-26 number of bytes of sample data, divided by 512 and rounded upward
27-32 unused
33-36 TOC-first annotation, relative to the beginning of the annotated segment
37-40 TOC-last annotation, relative to the beginning of the annotated segment
41-42 numbers of bytes of annotation data, divided by 512 and rounded upward
43-512  unused

In each record in the MIT-BIH database, the entire record has been annotated;
thus the time of the first sample is always zero. Each tape has exactly 649999
samples, and an end-of-sample-data mark, per channel (30 minutes and 5.444
seconds), and the annotated segment is considered to end after the end-of-sample-

data mark, so that the time of the last sample in the annotated segment is always

650000, and the number of bytes of sample data divided by 512 is always 5079
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(649999 samples per channel, times 2 channels, times 2 bytes per sample, divided
by 512, rounded up). NOTE THAT THE UNITS OF TIME ARE SAMPLE

COUNTS, NOT MILLISECONDS
Sample data file

The second file in each record is the sample data file, which consists of
exactly 2540 blocks, each 1024 bytes long.

Each block contains 256 2-byte samples from each channel. Samples are

stored alternately in the block:

Byte Use

1 Channel 1, sample 1, byte i

2 Channel 1, sample 1, byte i1
3 Channel 2, sample 1, byte i

4 Channel 2, sample 1, byte i1
5 Channel 1, sample 2, byte i
1021 Channel 1, sample 256, bytei
1022 Channel 1, sample 256, byteii
1023 Channel 2, sample 256, bytei
1024 Channel 2, sample 256, byteii

The AHA database has been recorded using a 12-bit A/D converter with a
range of -10V to +10V, and preamp gain adjusted so that a QRS complex is
nominally 1V peak-to-peak, or about 200 ADC units. The MIT-BIH database has
been recorded using an 11-bit A/D converter with a range of -5SmV to +5mV, and
the unamplified QRS complexes are nominally 1 mV, or about 200 ADC units; thus
the scales are the same though the ranges differ. Both positive and negative (two’s
complement, with sign extension to 16 bits) samples are recorded in the AHA
database; in the MIT-BIH database, all samples are positive (in the range of 0 to

2047).
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Block 2540 contains the last fifteen samples for each channel. The end of the
sample data is marked in the last sample block by two consecutive sample values of
10000 (base 8) following the last samples. The remainder of the last sample block
is padded with zeroes.

Annotation file

The third file in each record is the annotation file, which consists of a variable
number (typically 20 to 50) of blocks, each 1024 bytes long.

Each block contains 64 annotation labels, each 16 bytes long. Annotation
labels are stored in strict chronologic order.

The AHA format leaves a number of unused bytes in each annotation label,
some of which are used in the MIT-BIH database.

The last annotation block is padded with all ones (177 base 8) following the
last annotation. If there is no room following the last annotation, an entire block of

177s is written.

A.5 Annotation Specifications

Annotation labels

Byte AHA format MIT-BIH format
1 unused unused(0)
2 AHA annotation code AHA annotation code
3-6 TOC (milliseconds) TOC (sample counts)
7-8 Annotation label Annotation label
serial number serial number
9 unused unused (0)
10 unused MIT-BIH annotation code
11-16 unused ASCII text *
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*The ASCII text field is filled with zero bytes unless the MIT-BIH annotation code

is 22 or 28 (see next page following).

AHA annotation codes

The AHA annotation codes are ASCII characters:

Character Value (base 8) Meaning

N 116 supraventricular beat

A% 126 premature ventricular contraction (PVC)

E 105 ventricular escape beat

F 106 fusion PVC

R 122 R-on-T PVC

P 120 paced beat

Q 121 beat of indeterminate origin

U 125 data unreadable between preceding and following beat labels
[ 133 beginning of ventricular flutter or fibrillation

] 135 end of ventricular flutter/fibrillation

The “R” code does not appear in the MIT-BIH database. An additional code,
“O” (117 base 8), has been defined to permit inclusion of rhythm labels, artifact
labels, and comments. “O” labels are never QRS labels, and may be ignored for the

purpose of counting beats.

MIT-BIH annotation codes

The MIT-BIH annotation codes are not ASCII characters, but numbers

between 1 and 37:

Code AHA equivalent Meaning

1 N normal QRS
N left bundle branch block beat
3 N right bundle branch block beat
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4 N aberrantly conducted beat

5 Vv premature ventricular contraction (PVC)
6 F fusion PVC ***

7 N nodal premature beat

8 N atrial premature bat (APB)

9 N nodal or atrial premature beat

10 E ventricular escape beat

11 N nodal escape beat

12 P paced beat

13 Q beat of indeterminate origin

14 o,u beginning of noise *

15 O end of noise *

16 O single QRS-like artifact

17-21 O reserved for future use **

22 O comment (text) annotation ***

23-24 O reserved for future use **

25 N left or right bundle branch block beat

26 O non-captured pacemaker spike

27 O axis shift

28 O rhythm onset (text) annotation ***
29-30 O reserved for future use **

31 O ventricular flutter wave

32 [ onset of ventricular flutter or ventricular fibrillation
33 ] end of ventricular flutter/fibrillation atrial ectopic beat
34 N atrial ectopic beat

35 N nodal ectopic beat

36 0) missed beat

37 O blocked APB

38 0) reserved for future use **

*  Annotation codes 14 and 15 are used in pairs. If AHA code corresponding to
the code 14 “U”, no beats are labeled until the next code 15; otherwise, all beats are
labeled.
**  Where codes designated “reserved for future use” appear, they should be
ignored.
A% “Text” annotations use the last six bytes of the annotation label for an ASCII

string (terminated by a zero byte if less than six characters).
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*#%% In the context of paced rhythm (tapes 102,104,107,217) annotation code 6 is

used for pacemaker fusion beats.
Rhythm onset annoations

Rhythm onset annotation (MIT-BIH annotation code 28) include an ASCII

string which begins with a “(*:

String Meaning

(AB atrail bigeminy

(AFIB atrial fibrillation

(AFL atrial flutter

(B ventricular bigeminy

(BI first degree heart block

(BII second degree heart block

(BIII third degree heart block

(IVR idioventricular thythm

(N normal sinus rthythm

(NOD normal (A-V junctional) rhythm
(PAT paroxsysmal atrial tachycardia
(PREX pre-excitation (WPW)

(SVTA supraventricular tachyarrhythmia
(T ventricular trigeminy

(VFIB ventricular fibrillation

(VFL ventricular flutter

(VT ventricular tachycardia

Comment annotations

Sparse comment annotations exist on a few records. They are:

PSE pause
TS tape slippage
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Appendix B

B.1 The Parks-McClellan Algorithm

Consider a particularly effective and widely used algorithm procedure for the
design of FIR filters with generalized linear phase. Although only type I filters are
considered in detail, where appropriate results that apply to types II, III, and IV
generalized linear phase filters are indicated.

In designing a causal type I linear phase FIR filter, it is convenient first to
consider the design of a zero-phase filter, i.e., one for which

he[n] = h,[-n], (1)
and then to insert sufficient delay to make it causal. Consequently, consider h,[n]

satisfying the condition of Eq. (1). The corresponding frequency response is given
by

A(e"")= D h[ne™" )

with L =M /2 an integer or, because of Eq. (1),

L

A(€") = h,[0]+ " 2h,[n]cos(wn). 3)

n=1
Note that A (e'”) is a real, even, and periodic function of @. A causal system can
be obtained from h,[n] by delaying it by L =M /2 samples. The resulting system

has impulse response
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hin]=h,[n—M /2]=h[M —n] 4)

and frequency response
H(e")=A(")e ™" )
The Parks-McClellan algorithm is based on reformulating the filter design

problem as a problem in polynomial approximation. Specially, the terms cos(wn)
in Eq. (3) can be expressed as a sum of powers of cos® in the form

cos(wn) =T  (cos w), (6)
where T, (X) is an nth-order polynomial. Consequently, Eq. (3) can be rewritten as

an L th-order polynomial in cos®. Specially,
i L
A(e'") =Y a(cosm)", (7
k=0

where the a, ’s are constants that are related to h,[n], the values of the impulse

response. With the substitution X =cos®, Eq. (7) can be expressed as
Ae(ejw) = P(X)| X=cos @ ? (8)

where P(X) is the L th-order polynomial
L
P(x) =Y a,x". 9)
k=0

It is not necessary to know the relationship between the a, ’s and h,[n]; it is

enough to know that A (e™) can be expressed as the L th-degree trigonometric

polynomial of Eq.(7).
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The key to gaining control over @, and @, is to fix them at their desired

values and let 0, and o, vary. To formalize the approximation problem, define an
approximation error function

E(w) =W (@)[H (")~ A (")), (10)
where the weighting function, W(w) , incorporates the approximation error
parameters into the design process. In this design method, the error function E(w),
jo

the weighting function W (@), and the desired frequency response H,(e'”) are

defined only over closed subintervals of 0<w < 7.
Parks and McClellan applied the following Alternation Theorem of
approximation theory to the filter design problem.

Let F, denote the closed subset consisting of the disjoint union of closed

subsets of the real axis X. P(X) denotes an r th-order polynomial
P(x)=> a,x".
k=0

Also, D, (x) denotes a given desired function of X that is continuous on F,, and
E; (X) denotes the weighted error
Ep (X) =Wp (X)[Dp (X) = P(X)].

The maximum error ||E|| 1s defined as

|E| = max|E, (x)].

xeFp

A necessary and sufficient condition that P(X) is the unique r th-order polynomial

that minimizes ||E|| is that E,(X) exhibit at least (r +2) alternations, i.e., there
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must exist at least (r+2) values X, in F, such that X, <X, <---<X,,, and such

that E, (X)) = —Ep(x;,,) = +[E| for i=12,....(r+1).

i+1

The alternation theorem states necessary and sufficient conditions on the error
for optimality in the Chebyshev sense. Although the theorem does not state
explicitly how to find the optimum filter, the condition is phrased in terms of type |

lowpass filters, the algorithm easily generalizes.

From the alternation theorem, the optimum filter A (e'”) will satisfy the
following set of equations:

W(w)[Hy €)= AE™)]=(-D"5, i=12,..,(L+2), (11)

where & is the optimum error and A (e'”) is given by either Eq. (3) or Eq. (7).

Using Eq. (.7) for A (e'”), these equations can be written as

B Ir T B oy ]
1 X1 )(12 XlL 1 ao Hd (e )
W(a,)
-1 :
1 x X2 e X a H, (e
2 2 2 W(a)z) : 1| d( ) , (12)
_1)L+2
1 X XE, o Xp D _
I L+2 L+2 L+2 W (a)L+2 )_ _5 | _H ; (e 1O o )_

where X, = cosw;. This set of equation serves as the basis for an iterative algorithm
for finding the optimum A (e'”). The procedure begins by guessing a set of
alternation frequencies @,, i =1,2,...,(L+2). Note that @, and ®, are fixed and
are members of the set of alternation frequencies. Specifically if @, = ®,, then

®,,, = @, . The set of equations (12) could be solved for the set of coefficients a,

and 0. However, a more efficient alternative is to use polynomial interpolation.
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Specifically, Parks and McClellan found that for the given set of the extremal

frequencies, o is given by the formula

where

and, as above, X; =cos; .

L+2

2D Hq ()
5:w, (13)
kZZI: W(o,)
b, = H—(X 1_X_) (14)

izk

That is, if A (e')is determined by the set of

coefficients a, that satisfy Eq. (12), with o given by Eq. (13), then the error

function goes through =6 at the (L+2) frequencies @, or, equivalently,

A, (e') has values 1+K& if 0< o, <w, and 6 if o, <w, <7 . Now since

Ae(ej“’) is known to be an L th-order trigonometric polynomial, can interpolate a

trigonometric polynomial through (L +1) of the (L +2) known values E(w;) (or

equivalently A (e')). Parks and McClellan used the Lagrange interpolation

formula to obtain

where X =cosw, X, =cosw;,

Cy=H (") -

L+1

D [d /(x=x)IC,

A (e') =P(cosw) =+ , (15)

Z[dk (X = Xk)]
k=l

(_ 1) k+1 5

W(a®,) ’ (10
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and

L+1 1 bk

% :H(Xk_xi):(xk_xuz)' 17

i=k

Now, A (e'”) is available at any desired frequency without the need to slove
the set of Eq. (12) for the coefficients a, . The polynomial of Eq. (15) can be used
to evaluate Ae(ej”’) and also E(w) on a dense set of frequencies in the passband
and stopband. If |E(a))| <o for all w in the passband and stopband, then the

optimum approximation has been found. Otherwise a new set of extremal

frequencies must be found.

In this algorithm all the impulse response values h,[n] are implicitly varied

on each iteration to obtain the desired optimum approximation, but the values of

h,[n] are never explicitly computed.

Figure B.1 shows the flowchart of Parks-McClellan algorithm.
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Figure B.1 Flowchart of Parks-McClellan algorithm.
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