
Bluetooth Low Energy Based CoAP Communication

in IoT

CoAPNonIP: An Architecture Grants CoAP in

Wireless Personal Area Network

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

NAN CHEN

c©NAN CHEN, July/2016. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should

be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

In recent years, the development of smart devices has led to the Internet of Things (IoT). In IoT, the

Constrained Application Protocol (CoAP) is a well-known protocol used in constrained networks. CoAP

aims to work in IP-based networks. However, there are many constrained devices using different scenarios

to transfer data. For example, Bluetooth Low Energy (BLE) devices use the Media Access Control (MAC)

address as an identifier and use Generic Attribute Profile (GATT) to transfer data. Therefore, how to

overcome those barriers is an important topic. There are several approaches to overcome those barriers. For

example, a new hardware component can be added to make those devices support TCP/IP protocol stacks,

then CoAP can easily be implemented in those devices. On the other hand, an application layer architecture

can be added upon existing communication technologies to support CoAP. Considering to minimize the

changes of underlying communication infrastructure, the second approach can achieve the goal with less

effort.

This thesis proposes an architecture that apply CoAP to different Non-IP based communication tech-

nologies. Meanwhile, Bluetooth Low Energy is used to explore how to overcome limitations of underlying

technology. By adopting the proposed architecture, existing devices can participate in the IoT through CoAP

without extra hardware upgrade or hardware modification. Although experiments show that the current im-

plementation of the proposed architecture has relatively low data rate, the problem can be solved via changing

the factory settings of BLE devices. Compared with the hardware solution, the proposed architecture takes

less effort to support different underlying technologies and platforms.

ii

Acknowledgements

I would like to express my very great appreciation to my supervisor Professor Ralph Deters. Under

his supervision, I have gained great skills in the past two years. The past two years was a wonderful and

memorable journey of my life. Under Professor Ralph Deterss guide, I not only achieved marks in academic

but also increase skills in programming.

I would also like to extend my thanks to all colleagues in MADMAC lab. Their support helped me to

work through the tough time at the first year and granted me confidence to overcome problems. At last, I

want to thank the support of my parents and family members. Without their support, I can not study and

work smoothly in the past two years.

iii

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vi

List of Figures vii

List of Abbreviations viii

1 Introduction 1

2 Problem Definition 2
2.1 How to identify Non-IP based devices? . 2
2.2 How to overcome packet size limitation of BLE communication? 2
2.3 How to serve multiple applications as a background service 3
2.4 How to provide interface to support different technologies . 3
2.5 Research Goal . 3

3 Literature Review 4
3.1 Internet of Things (IoT) . 4
3.2 Personal Cloud . 6
3.3 Simple Object Access Protocol (SOAP) and Representational State Transfer (REST) 7

3.3.1 SOAP . 7
3.3.2 REST . 8
3.3.3 REST VS SOAP . 9
3.3.4 REST VS SOAP in mobile app . 10
3.3.5 Summary . 10

3.4 MQ Telemetry Transport (MQTT) and Constrained Application Protocol (CoAP) 10
3.4.1 MQTT . 10
3.4.2 CoAP . 11
3.4.3 COAP VS MQTT . 14
3.4.4 Summary . 15

3.5 Bluetooth . 15
3.5.1 Classic Bluetooth . 15
3.5.2 Bluetooth Low Energy . 17
3.5.3 Classic Bluetooth vs Bluetooth Low Energy . 20
3.5.4 Summary . 21

3.6 CAP Theorem . 21

4 Architecture 23
4.1 Application Layer . 23

4.1.1 Process component . 24
4.1.2 Communication component . 25

4.2 Network Layer . 26
4.3 Detail Design . 27

iv

4.3.1 Application layer . 27
4.3.2 Network layer . 28

4.4 Proposed Solutions for Problems . 34

5 Implementation 36
5.1 Application Layer . 36
5.2 Network Layer . 37
5.3 Demo Applicaitons for Experiment . 38

6 Experiments/Evaluations 40
6.1 Goals of Experiment . 40
6.2 Experiment Setup . 40
6.3 Details . 41

6.3.1 Minimum Data with Interval . 41
6.3.2 Multiple Packets . 44
6.3.3 Round-Trip . 47
6.3.4 Multiple Apps . 49

6.4 Conclusion . 50

7 Conclusion and Future Work 52
7.1 Summary and Contributions . 52
7.2 Future Work . 53

7.2.1 Data Rate . 53
7.2.2 Availability . 53
7.2.3 Cross-Platform . 53
7.2.4 Underlying Technology . 54
7.2.5 Security . 54

References 55

A Link for code 58

v

List of Tables

6.1 Experiment goals . 40
6.2 Specifications of devices . 41

vi

List of Figures

3.1 Trend of devices vs people [15] . 5
3.2 SOAP message structure example [24] . 7
3.3 MQTT message format[2] . 11
3.4 CoAP message format [34] . 12
3.5 From Web Applications to IoT Nodes [33] . 13
3.6 Topology of Classic Bluetooth [35] . 16
3.7 The relationship between Bluetooth Smart and Bluetooth Smart Ready devices [40] 17
3.8 GATT format [35] . 18
3.9 Topology of BLE [35] . 18
3.10 IPv6 and IPSS on the Bluetooth LE Stack [27] . 20

4.1 Layers of proposed architecture . 23
4.2 Application layer structure . 24
4.3 Process component flowchart . 25
4.4 Life cycle of network service . 30
4.5 Life cycle of network service . 31
4.6 Packet structure . 32
4.7 Communication mechanism . 33
4.8 Virtual resource mechanism . 34

5.1 core-code for process componenet . 36
5.2 core-code for communication compoennet . 37
5.3 core-code for client service . 37
5.4 core-code for server service . 38
5.5 screenshot of demo application . 39

6.1 Packet structure . 42
6.2 Result of sending headers with no interval . 43
6.3 Result of sending headers with 150ms interval . 43
6.4 Result of sending headers with 200ms interval . 44
6.5 Results of sending multiple packets . 45
6.6 Result of sending 12-byte payload . 46
6.7 Result of sending 28-byte payload . 46
6.8 First set of 4-byte round trip . 47
6.9 Second set of 4-byte round trip . 48
6.10 Third set of 4-byte round trip . 48
6.11 Result of Multi-App Experiment . 50

vii

List of Abbreviations

BLE Bluetooth Low Energy
CoAP Constrained Application Protocol
GATT Generic Attribute Profile
IoT Internet of Things
IP Internet Protocol
IPSP Internet Protocol Support Profile
IPV6 Logical Link Control and Adaptation
MAC Media Access Control
MTU Maximum Transmission Unit
NFC Near Field Communication
PA Partition Tolerance and Availability
PC Partition Tolerance and Consistency
REST Representational State Transfer
SIG Special Interest Group
SOAP Simple Object Access Protocol
TCP Transmission Control Protocol
UDP User Datagram Protocol
WPAN Wireless Personal Area Network

viii

Chapter 1

Introduction

The boom of the smartphone market and the development of wearable devices are introducing low energy

sensors and personal hubs (phone, tablet or other portable devices) with increasing rate. In this trend, we

find that the role of the smartphone has shifted from a single function device to an integrated personal data

hub. Meanwhile, with the development of tiny sensors, more and more small devices are installed to collect

data as the new edge of Internet. Since more and more people have multiple smart devices to interact with

each other, the communications between personal hubs and edge devices become increasingly important.

There are multiple technologies to support short range wireless data communications like Bluetooth

Low Energy (BLE) and Near Field Communication (NFC). However, different technologies have different

restrictions on data transfer. Although, technologies like CoAP are popular in IoT, IP address is an essential

requirement in the current implementations. Therefore, the IP address becomes barrier in communications

between the Internet and wireless personal area networks (WPAN). There are two approaches to overcome

the barrier. One is to add software layer to make protocol transfer. The other is to add hardware (acting as IP

layer) on existing technologies. For example, Isomaki et al. [19] proposed a hardware solution to install IPv6

on BLE devices by adopting 6lowpan. However, there are no efforts being made on implementing a software

layer architecture to directly deliver CoAP messages on existing technologies instead of adding new hardware

layer or translating mechanism. In this paper, I propose an architecture to enable CoAP communications

between smartphone gateways and WPAN nodes. Meanwhile, BLE is used as the underlying network layer

protocol to implement the architecture.

1

Chapter 2

Problem Definition

As mentioned above, the goal of the research is to propose an architecture to enable direct CoAP com-

munications between smartphone gateways and BLE nodes. To achieve this goal, we need to develop a

lightweight protocol to carry information as well as a set of mechanisms to guarantee data transfer. The

architecture also needs to run as a background service to support different apps in a device with sensors. In

short, we need to answer the following key questions:

• How to identify Non-IP based devices?

• How to overcome packet size limitation of BLE communication?

• How to serve multiple applications as a background service?

• How to provide a common interface to support different technologies?

2.1 How to identify Non-IP based devices?

The concept of IoT is firmly associated with IPv6. It tags things by assigning a unique address (usually

IPv6) to each of them. However, in the real world, not all devices using IPv6. For Example, BLE uses MAC

address to identify devices. To unify communication between Non-IP and IP-based devices, a software layer

identifier is needed.

2.2 How to overcome packet size limitation of BLE communica-

tion?

In BLE communication, the size of each packet is limited to 20 bytes in default. According to Bluetooth4.0

specification [35]. ”All L2CAP implementations shall support a minimum MTU (maximum transmission

unit) of 48 octets over the ACL-U logical link and 23 octets over the LE-U logical link”. The available

payload size of a ”characteristic” (data unit in BLE) is 20 bytes. However, in IoT, one packet can easily

extend 20 bytes. Therefore, the architecture should be able to cut long byte array messages into short sub

packages and assemble them at remote side. We need a simple protocol, as well as relevant pack and unpack

mechanism to solve this problem.

2

2.3 How to serve multiple applications as a background service

The consumer of a specific request may come from different applications in one device, which means the

communication between provider and consumer are not at device level but application level. Thus, the

architecture must be able to identify a certain piece of message come from which application at which device.

2.4 How to provide interface to support different technologies

Beside BLE, other Non-IP based wireless communication technologies have the same requirement to take

advantages of CoAP. An abstract interface should be proposed to support those technologies.

2.5 Research Goal

The goal of the research is to propose architecture to accelerate the merging of WPAN technologies into IoT.

It is composed of the following four sub-goals.

• Goal 1. A general method to identify Non-IP based devices.

• Goal 2. An architecture to support CoAP communication in BLE.

• Goal 3. A background service to support multiple apps.

• Goal 4. An interface to support other WPAN technologies.

3

Chapter 3

Literature Review

In order to find solutions for the proposed problems, this chapter reviews related researches in the following

areas.

• Internet of Things (IoT)

• Personal Cloud

• Simple Object Access Protocol (SOAP) and Representational State Transfer (REST)

• MQ Telemetry Transport (MQTT) and Constrained Application Protocol (CoAP)

• Bluetooth

• CAP Theorem

3.1 Internet of Things (IoT)

IoT is a concept of making real world things become available through the Internet. It is happening and

will fundamentally change our world. A background of this technological trend is the increasing number of

smart devices. According to the analysis from Evans in 2011 [7], by 2010, the number of connected devices

has exceeded the population of human beings. In 2020, 50 billion devices will be connected in IoT.

As shown below, recent research from Philip N. Howard [15] has demonstrated this trend. Between 2011

and 2015 the connected device has experienced exponential growth.

4

Figure 3.1: Trend of devices vs people [15]

The concept of IoT is not only a simple extension of Internet. It introduces a way to make physical

devices become available in the virtual world. In order to make a real object become a ”thing” on the

internet, according to Dr. John Barrett [3], there are several essential steps to convert an ordinary object in

daily life into a smart object in IoT:

• First, a unique identifier to tag a thing. Every asset in the IoT has a tag to uniquely identify itself. In

this context. IPv6 is the solution for the first step because of its huge volume. Besides IPv6, IPv4 and

MAC are also widely being used. However, IPv4 has a fatal limitation of its capacity. With 32-bits

space, IPv4 has only 4,294,967,296 addresses which will be used up soon [29]. In contrast, the IPv6 has

128-bits space available [29]. Similarly, the MAC address is designed to identify a network interface on

the physical network level. It has two versions: EUI-48 [16] and EUI-64 [17].

• Second, the ability to communicate. In order to communicate with the internet, smart objects or called

things in IoT must implement a way to communicate. Therefore, different transmission media need

different communication mechanisms. Today, we mainly use microwave and twisted-pair as the front

end media.

• Third, give object senses. In the real world, an object can be identified by smell, feeling, color and

so on. It is also true in the digital world. By collecting different data of an object, people can know

changes of an object or its surrounding environment. Therefore, people need to implement different

kinds of sensors on an object to make it become ”smart”. By implementing sensors, we acquire desired

data of an object to share on the internet.

5

• Fourth, a controller at remote side. Since we can get data from sensors and deliver them to a remote

object through the internet, the remote side may have requirements to modify values of a smart object

through Internet. Therefore, people need a remote controller to achieve remote control.

After above four procedures, objects in real life becomes available as virtual assets in the Internet. As a

virtual asset, it can take part in data communication of IoT.

The highlight of IoT is the concept of gathering data from the machine and transmitting data between

with pre-programmed procedures, which means less manual operations are required in IoT. In this way, it

liberates more productive forces from input data to The Internet to more valuable work. As a basic concept

of ”smart homes” and ”wearable devices”, the IoT is a promised coming future. It will make a great influence

on our daily life.

In the section, we will discuss the concept of personal cloud which helps us define the edge of proposed

architecture.

3.2 Personal Cloud

The personal cloud is a combination of the private cloud and the public cloud. According to Na, Park

and Huh [26], ”The Personal Cloud describes a user-centric model of Cloud computing where an individual’s

personal content and services are available anytime and anywhere, from whatever device they choose to access

it.”. For example, Seagate proposed a personal cloud solution [31] which aims to provide a centralized media

library where a user can access to their data from anywhere. The model consists of software on different

platforms and a central server. People can access their digital assets on different platforms through different

interfaces but their data are backed up in one physical device.

In recent years, with the increasing number of personal mobile devices (like smartphones, pads or wearable

devices), more and more digital assets are distributed on different devices. For most of the time, those devices

are not all in the radiation range of a Wi-Fi network. In this case, those scattered personal devices need to

connect to a center node or a bridge device to reach the Internet. Therefore, there are two important facts

of a short-range wireless communication technology.

• First, the data communication between mobile devices is relatively less intensive than PC to PC com-

munications. It depends on the computing power of mobile devices.

• Second, the network state is constantly changing from time to time. It is determined by the nature of

short-range wireless communication.

After examining the context of IoT, we found that more and more smart devices are available for a single

person. Those smart devices may be placed in a particular place or taken by their owners as portable devices.

The personal cloud discovers the requirement of user: Access data at time on any device.

6

In the next section, we will discuss two popular design styles for the machine to machine communication:

SOAP and REST.

3.3 Simple Object Access Protocol (SOAP) and Representational

State Transfer (REST)

In general, SOAP is a protocol which was popular in the late 1990s. REST is a design style which has been

proposed with HTTP but is not popular until recent years. Technically, SOAP and REST are two different

kinds of concept and not directly comparable. Here we put them together just because each of them stands

for a style of design.

3.3.1 SOAP

SOAP is the abbreviation for Simple Object Access Protocol. According to Hadley et al. [14], it is a

”lightweight protocol intended for exchanging structured information in a decentralized, distributed envi-

ronment”. It is a widely adopted protocol for data exchanging among web applications. Both SMTP and

HTTP are notable transport protocols which support SOAP well. The format of SOAP message is based on

Extensible Markup Language (XML).

Figure 3.2: SOAP message structure example [24]

As shown above, a SOAP envelope consists of two sub-elements: Header and Body. The Header contains

metadata which are optional. The Body contains the payload.

7

The benefit of SOAP is obvious. It allows internet communication between programs with the support of

different transport protocols. Meanwhile, because it follows post/response mechanism in HTTP, it can easily

pass through firewalls and proxies.

3.3.2 REST

REST stands for representational state transfer. It is proposed by Fielding [9]. In REST, each available

resource at server side can be visited through a consistent path (URI). The client can request different opera-

tions (Create, Read, Update, and Delete) through standard HTTP verbs (POST, GET, PUT, and DELETE).

Although operations in REST are defined by HTTP verbs, REST is not bound with web service. According

to the author, the advantage of REST is obvious because it ”emphasizes scalability of component interac-

tions, the generality of interfaces, independent deployment of components, and intermediary components to

reduce interaction latency, enforce security, and encapsulate legacy systems”. However, those features not

just bring benefits but also limitations as well. According to Arcitura [1], there are five constraints for a

REST architecture.

• Stateless: Stateless is the most important feature of the RESTful design. It indicates that each request

from client contains all information a server needs to know, and all session state data should be sent

to a client after each request.

• Cache: A RESTful design should support cacheable mode by which people can save the latest response

for further usage.

• Uniform Interface: It is the fundamental characteristic of a REST service which guarantees each request

can independently get an individual resource.

• Layered system: An REST-based solution may consist of multiple layers. Communications between

service providers and consumers are independent events that can not be affected by changes in other

layers.

• Code-On-Demand: It is an optional constraint. A client can update its codes independently from a

server.

The RESTful design makes web application back to the original purpose of HTTP. Since many existing

systems adopted SOAP design style, Fowler [11] proposed three ways towards REST (from a traditional

HTTP web service to a RESTful service).

• Level 1. Identify every resource: Developers need to design URI to guarantee one to one mapping

between resources and URIs.

• Level 2. HTTP Verbs: Use appropriate HTTP verbs under different situations instead of using POST

only.

8

• Level 3. Hypermedia Controls: Grant discoverability to response. By adopting hyperlinks in response,

users can always get links for next possible operation.

3.3.3 REST VS SOAP

It is common that REST and SOAP are put together to make a comparison. Theoretically, SOAP is a

protocol. It should not be compared with REST. However, those two terms define two popular ways to

design services. According to Pautasso et al. [30], ”REST is well suited for basic, ad hoc integration

scenarios, WS-* is more flexible and addresses advanced quality of service requirements commonly occurring

in enterprise computing” (WS-* refers to Web service specifications). In SOAP, all requests and responses

must follow XML standard as well as use the verb: POST. In REST, all four verbs are available and each

URLs map to resources. The following section will discuss those two technologies in detail.

• Complexity: SOAP adopts XML as transfer format, which means the complexity of serializing and

de-serializing is certain. In contrast, REST can adopt different protocols to transfer data. For example,

comparing with XML, JSON can store more information with fewer words. On the other hand, in

SOAP, operations are all encapsulated in a POST request, which makes it become a black box for

users. In contrast, operations in REST are defined by four HTTP verbs. Therefore, the user can easily

tell the target resource and action of a request.

• Scalability: SOAP was popular when IT services were only available for giant companies. It is designed

to fulfill a particular task, which makes codes are hard to scale. On the other hand, REST maps one

URL to one resource. It divides complexity of a single page into multiple pages. This characteristic

naturally increases the scalability of a system.

• Cache: REST is a natural suit for caching. As mentioned above, at the last step towards REST,

possible operations of next request are included in the return. In this way, the client-side can easily

load and store result before the user makes a request. In SOAP, resources are always wrapped together

which makes the next operation of a user is hard to predict. This characteristic makes cache becomes

much harder in SOAP.

• Security: Because of WS-Security, many people believe SOAP is more secure than REST. However,

it is not true. According to Flanders research [10],” the WS-* arena certainly has more standards

than the RESTful arena (and this will probably always continue to be the case), but there are efforts

to support federated security in the world of REST. OpenID is one such effort” (Ws-* refers to Web

service specifications). In fact, according to HTTP specification [8] only HEAD and GET operations

are considered as ”safe”.

In conclusion, we can not simply state SOAP is better than REST or REST is better than SOAP. In order

to make a right architectural decision for the proposed architecture, developers need to take more factors

9

into consideration.

3.3.4 REST VS SOAP in mobile app

For a mobile app, where the internet connection is fragile (nature of wireless connection), one single commu-

nication between client and server is expected to be short and light. As mentioned above, compared with

SOAP, REST is more lightweight, flexible and controllable. Those characteristics meet the requirement of

the wireless connection between mobile devices and the internet. On the other hand, SOAP is not a bad

option when mobile apps are used to serve web applications for complex business logic.

3.3.5 Summary

From the analysis above, it is obvious that REST is more simple and clear. In REST, each URI has clear

meaning and operations are limited within POST, DELETE, UPDATE and GET. On the other hand, in

general, there are more logics in a single page of a SOAP architecture. The XML makes the SOAP can

handle complex logics but also increases complexity. In brief, REST prevails over SOAP in lightweight

communication. It is especially true at the edge of the network where lightweight payload is required.

After the comparison, I chose REST as the design style of proposed architecture. Since REST is chosen,

I turn to explore popular protocols based on REST. In the next chapter, we will discuss advantages and

disadvantages of CoAP by comparing it with MQTT.

3.4 MQ Telemetry Transport (MQTT) and Constrained Applica-

tion Protocol (CoAP)

MQTT and CoAP are two popular protocols in IoT. In this section, we put MQTT and CoAP together to

discuss features of CoAP.

3.4.1 MQTT

MQTT stands for MQ Telemetry Transport. It is a lightweight publish-subscribe protocol running on TCP/IP

protocol. According to its official website [2], ”MQTT is a Client Server publish/subscribe messaging trans-

port protocol. It is light weight, open, simple, and designed so as to be easy to implement.”.

Packet Format

According to the specification V3.1.1 [2], MQTT packet has two bytes fixed header. Therefore, the minimum

size of an MQTT packet is two bytes. The following chart shows how an MQTT packet looks like according

to the description of the official document.

10

Figure 3.3: MQTT message format[2]

As shown above, the first byte of MQTT consists of two parts. Bits from 7 to 4 indicate the packet type.

Bits from 3 to 0 set flags. Bytes since the second indicate the remaining length of the message. The minimum

size of this section is one byte and the maximum is four bytes. After specifying remaining size of a packet,

the developer can add optional headers to a packet. After the optional headers, the remaining section of a

packet is payload.

Feature

Publisher and subscriber (pub/sub): In this model, the publisher and the subscriber do not know about the

existence of each other. Instead, a broker will gather all published messages from a publisher and accordingly

send them to the subscribers after filtering. In other words, there is a central server between publishers and

subscribers. In addition, the support of QoS and the Last Will and Testament are two key features of MQTT.

• QoS: According to Thangavel et al. [39], MQTT supports three levels of QoS. At level 0, a message will

not be acknowledged or resent by a sender. At level 1, a message will be guaranteed to deliver at least

once. At level 2, the receiver will guarantee the message to process. In this case, the sender stores a

message and is ready to resend of it. Meanwhile, the receiver stores the reference of a received packets

id to prevent from processing the same message twice.

• Last Will and Testament(LWT): The client can register a LWT when a connection is initialized with

a broker. If a client has been disconnected from a broker, the broker will send LWT to all clients

subscribed the ”lastWillTopic”.

In conclusion, the MQTT is a well-designed protocol for lightweight bandwidth. Its logic is simple where

all communication between clients is based on message transition of a broker.

3.4.2 CoAP

CoAP is short for Constrained Protocol. It is based on REST model and designed for constrained networks.

According to RFC 7252 [34], UDP is the default transport protocol for it. Meanwhile, it could also be used

11

over other transports such as TCP. CoAP offers an elegant solution for low bandwidth communication with

HTTP-like

Packet Format

CoAP has a four-byte header which includes information of ”version”, ”token”, ”length of variable-length

token field”, ”message ID” and code of ”message type”.

Figure 3.4: CoAP message format [34]

As shown above, the header of a CoAP message consists of four bytes.

• The first 2 bits of a message shows CoAP version of the message. The following 2 bits indicates message

type (4 options available). TKL stands for Token Length (4 bits), which indicates the length of the

token field.

• The second byte is ”Code” which indicates operation of the message. There are two types of Code.

One is called ”method code” which consists of 4 verbs in HTTP (GET, POST, PUT and DELETE).

The other is called ”response code” which returns the result of a request. For example, CREATED,

DELETED, VALID and etc.

• The third byte and fourth byte store Message ID.

Besides the four-byte header, token and options are additional information which is neither part of header

nor payload. The size of token ranges from to 0 to 8 bytes. It is used to match the request and the response.

CoAP also supports common used metadata in HTTP. In the Options section, a user can define parameters

like in HTTP header, such as Etag, Max-Age, Content-Format, etc. Those options simplify the process of

translating COAP messages into HTTP messages.

Unlike MQTT where the remaining length is defined to indicate the length of the optional header and

payload size, in CoAP, a 1-byte flag is used before the payload. When a processor first time encounters a

0xFF, it indicates that the payload starts from the next byte.

12

Feature

CoAP has several features. I list the most interesting four as the following:

• URI support: CoAP follows a URI scheme which is similar as the one in HTTP.

• Similar features to HTTP: Operations in CoAP are based on four HTTP verbs (GET, POST, PUT,

and DELETE). Metadata and URI are optional in CoAP. Those two characteristics make it easy to

convert messages to HTTP messages

• Resource discovery: ”/.well-known/core” is a special URI in CoAP [32]. By sending request to this

URI, a client can get all available resources of a server.

• Observation: CoAP supports data observation as an extra option besides traditional ”send” and ”re-

ceive”. At server side, a developer can add observable resources to the observer list. Then, a client can

register resource observer to get data change notifications.

From the highlights introduced above, we know that CoAP is a compatible protocol designed for IoT.

Although it is efficient, it does not aim to replace HTTP. It is designed to support constrained networks

under the consideration of merging them into existing networks. As shown in the following chart, we expect

the CoAP to handle medium or small size messages as a bridge between fat web services and low payload

networks.

Figure 3.5: From Web Applications to IoT Nodes [33]

The chart above also shows the current status of IoT network regarding payload size. Web applications

are the backbone of IoT network. The majority of web applications adopt HTTP. In general, the payload

size should beyond 1000 bytes.

13

Between giant network and IoT nodes, there are routers which act as interpreters between CoAP services

and HTTP services. As shown above, attributes in CoAP and HTTP are similar, which minimize works in

a proxy. On the other hand, since CoAP is designed for lightweight communication, it can be transferred in

channels with lower bandwidth (less than 1000 bytes). Further, at the far end nodes of IoT networks, there

are many tiny devices with low bandwidth networks, for example, sensors in a room, iBeacon in a small store,

and remote start components in cars.

Besides low-bandwidth, CoAP also consumes less power when compared with HTTP, Colitti et al. pointed

out that the power consumption in CoAP is about half of that in HTTP [5].

Although UDP is the default underlying protocol to support CoAP, CoAP can be implemented on different

protocols. In 2011, Laum et al. [21] proposed two ways to communicate with WPAN through mobile gateway.

• Using 802.1 D standard to connect other 802 projects like Ethernet, Wireless LAN and WiMax.

• Using DHCPv6 prefix delegation together with a static routing mechanism to connect other IPv6 based

devices.

Those two methods can support the communication between smartphones and WPAN. Devices in the

WPAN need to acquire either 802 structure or IPv6 address.

Similarly, in 2011, Mitsugi et al. [25] proposed a UPnP and ZigBee based solution for CoAP communi-

cation between the Internet and constrained networks. In their solution, gateways do not need to translate

CoAP messages instead directly deliver them to ZigBee based sensors.

So far, solutions for implementing CoAP in WPAN assume that sensors have met special hardware

requirements. However, in reality, popular technologies like BLE and NFC do not fit the assumption. This

fact leads me to explore the possibility of a software layer architecture with better compatibility.

In conclusion, CoAP provides a solution for merging low payload networks into the existing HTTP-based

networks. Apparently, it improves the communication between personal networks and the cloud.

3.4.3 COAP VS MQTT

Although both CoAP and MQTT can be used as IoT protocols, they focus on different aspect of data transfer.

MQTT, it applies the concept of ”client and broker” to replace the concept of ”server and client”. Since

the central hub (broker) is used, it is good for multiple communications between smart machines. Meanwhile,

with smaller header, MQTT is more efficient than CoAP in transferring small payload. On the other hand,

since it is based on subscription and push model, it expects little data in the payload. In addition, the imple-

mentation of ”last will statement” makes the protocol with better performance when running in intermittent

connectivity. Further, the support of three level QoS makes it a clear solution for reliable communication.

CoAP is designed for HTTP-like communication. A CoAP message can easily be transferred into a HTTP

message. One the other hand, the minimum size of a CoAP message is 4-byte which makes it suitable for

low bandwidth environment. CoAP does not have a build-in standard to provide quality service, but gives

14

options like ”if-match”, ”if-none-match” and ”accept”. Those attributes can be used to implement developers

own strategies for quality service. Similarly, regarding data access mechanism, as mentioned above, the last

will statement is implemented in MQTT. However, in CoAP, developers have to take advantages of supported

”Etag” and ”Max-Age” options to implement their own solutions.

In conclusion, the MQTT aims to support multiple clients communication within a small network. The

CoAP focuses on REST communications and the communications between small networks and the Internet.

The CoAP is more flexible and closer to HTTP protocol. In addition, it is more friendly to developers. At

last, it requires less effort to transfer a HTTP service into a low bandwidth network.

3.4.4 Summary

In the above section, I compared two most popular technologies in IoT. According to the analysis, I draw

the conclusion that CoAP is closer to the Internet than MQTT. If I plan to design an architecture where

messages can easily be transferred into HTTP messages, I should adopt COAP. As mentioned in the problem

definition, our goal is to accelerate the process of merging NonIP based devices into IoT. So, I decide to

choose CoAP.

Since I decided to use BLE as an example to test the proposed architecture, I need to review associate

works of BLE. In the next chapter, the paper will discuss strength and weakness of Bluetooth and Bluetooth

Low Energy.

3.5 Bluetooth

Bluetooth is a standard for low bandwidth wireless communication. It is maintained by the Bluetooth Special

Interest Group (SIG). The latest version of Bluetooth is 4.2. The BLE has widely been implemented in smart

devices like tablet, smartphone, and wearable devices. It is designed for networks with low data payload but

needs frequent small data transfer. It is invented in 1994. Originally, ”Bluetooth was designed was conceived

as a wireless alternative to data cables by exchanging data using radio transmissions” [38].

So far, Bluetooth consists of four technologies: Bluetooth, Bluetooth EDR, Bluetooth HS and Bluetooth

low energy. Since Wi-Fi takes great advantages in the field of high-speed data transfer, SIG focuses more on

lightweight and low energy communications. In version 4.0, the SIG proposed ”Bluetooth Low Energy” to

take up the market of low energy wireless communication.

In the remaining section of the chapter, I will discuss the differences between class Bluetooth and Bluetooth

low energy. Further, I will explore relevant works of BLE.

3.5.1 Classic Bluetooth

As mentioned above, Classic Bluetooth is a reference of Bluetooth 2.1 or below. It is designed for streaming

data transfer. It adopts Standard Bluetooth Profiles (SPP, DUN and PAN) where one master device can

15

have up to seven slaves. Communication through Classic Bluetooth is based on data streaming. In this way,

the Classic Bluetooth has better data rate but less energy efficiency.

As shown in the following figure [35], in a BR/EDR piconet, two or more devices occupy the same

physical channel. Messages in a physical channel are synchronized by a common clock and hopping sequence.

A Bluetooth can not be a master of more than one piconet, but it may belong to two or more piconets. In

the following figure, the device A is a master of a piconet with device B, C, D and E as slaves. Meanwhile,

the device D is a master of another piconet with J as the slave. The device E plays a role of slave in both

the piconet of A and F. The K is an isolated advertising node.

Figure 3.6: Topology of Classic Bluetooth [35]

As mentioned above, the classic Bluetooth has widely been adopted in wireless communications. However,

it has a natural disadvantage. Since wireless communications are built-in fragile, the streaming data can be

interrupted at any time. Moreover, in a single piconet network, one master device can only be connected to

up to seven slave devices. Those limitations have impeded the development of it. On the other hand, in 1997,

Wi-Fi is introduced. And, the data rate of Wi-Fi reached 11Mbit/s [6]. With the development of Wi-Fi, it

gradually overlaps the use cases of Bluetooth with better data rate. For example, a research from Friedman

et al. [12] shows the advantage of Wi-Fi in smartphones file transfer. After the attempt of increasing data

rate in version 3.0, the SIG turns to develop low-energy version of Bluetooth.

In conclusion, the class Bluetooth is a success product. However, it can not make a breakthrough when

facing the challenges of Wi-Fi. The future of Bluetooth has turned out to focus on support smart devices by

adopting BLE. In the following section, we will discuss BLE.

16

3.5.2 Bluetooth Low Energy

The concept of Bluetooth Low Energy is introduced since Bluetooth 4.0. It is designed for low-cost data

communication. According to Litepoint [22], the new low energy technology of Bluetooth supports short

data packages with the speed of 1Mbps. In addition, it supports fast transactions as short as 3ms.

Figure 3.7: The relationship between Bluetooth Smart and Bluetooth Smart Ready devices [40]

As shown above, so far, there are three kinds of Bluetooth devices (”Bluetooth”, ”Bluetooth Smart Ready”

and ”Bluetooth Smart”). Devices with ”Bluetooth” logo only supports Classic Bluetooth connection. If a

Bluetooth device can communicate with both Classic Bluetooth devices and BLE device, it is named as ”

Bluetooth Smart Ready ”. At last, those devices that only support BLE are called ”Bluetooth Smart”.

As shown below, unlike classic Bluetooth communication between BLE devices is based on GATT (Generic

Attribute Profile) and ATT (Attribute Protocol). According to Bluetooth4.0 specification [35], ”The GATT

server sends responses to requests and when configured, sends indication and notifications asynchronously to

the GATT client when specified events occur on the GATT server.”. As shown in the following figure, a GATT

profile may contain one or more services. Each service acts as a folder to contain a set of characteristics to

store data. For a characteristic, there are three types of attributes: ”Properties”, ”Value” and ”Descriptor”.

The BLE client can read, write or monitor the ”Value”.

17

Figure 3.8: GATT format [35]

As shown below, there is a great difference between Classic Bluetooth and Bluetooth Low Energy in terms

of topology. In BLE, one physical channel consists of two devices, which means each slave communicates

with a master in a separate physical channel.

Figure 3.9: Topology of BLE [35]

18

So far, there are two more versions available for BLE. The first update is available since 2013 (called

Bluetooth 4.1). The second update is available since 2014 (called Bluetooth 4.2).

Bluetooth 4.1

There are four main changes in version 4.1 [36].

• Solve interference: Bluetooth and LTE interfered with each other. In this version, it tries to prevent

the interference between them.

• Flexible Connections: Bluetooth 4.1 allows manufacturers to customize reconnection timeout intervals,

which helps to reduce power consumption.

• Multiple roles: Devices can act as hubs and end points at the same time.

Jawanda [36] pointed out that ”We updated the Bluetooth specification to address this projected growth,

making changes to give developers more control in assigning a role to their product, limiting interference with

other wireless technologies, and allowing Bluetooth Smart products to exchange data faster and maintain

connections with less manual intervention.”.

Bluetooth 4.2

The latest version of Bluetooth is 4.2. According to FAQ document of Bluetooth [37], the latest version has

improved BLE in three aspects: IoT capability, security, and speed.

• Regarding IoT capability, a BLE device can directly participate in IoT network by adopting 6LowPAN

and connect with routers supporting Bluetooth Smart Internet Gateway.

• Regarding security, LE Privacy 1.2 was introduced to prevent Bluetooth smart devices being tracked

by untrusted devices. Moreover, it uses FIPS-compliant encryption to secure data transfer.

• Regarding speed, the SIG claims the new patch will make BLE 2.5 times faster and capacity of packet

will be 10 times larger than previous versions.

iBeacon

iBeacon is a protocol proposed by Apple. It defines the usage of BLE in goods information transfer. According

to BLEs advertising standard, users can set up to 20-byte payload. Apple proposed the protocol to format

advertising data [18]. The 20-byte are divided into three parts: 16-byte UUID, 2-byte major value, and 2-byte

minor value. The protocol is designed for business owners who want to push ids of their products to people

who are nearby around the store. The technology takes the advantages of BLEs advertising mechanism which

can guarantee that those 20 bytes can always be pushed to BLE smart ready devices.

19

6LowPAN

6LowPAN is short for IPv6 over Low-Power Wireless Personal Area Networks. So far, the latest version of

BLE [37] has proposed 6LoWPAN implementation and Bluetooth Smart Internet Gateways to support IPv6

based communication. This means that a remote device can directly control a BLE sensor through IPv6.

The 6LowPAN is designed for low cost implementation of IPv6. A research from Chawathaworncharoen

et al. [4] shows that ”the power consumption of 6LoWPAN over BLE is one-tenth lower than that of IP

over WiFi”. In addition, Kovatsch [20] pointed out that ”The low-cost, low-power 6LoWPAN modules can

easily be embedded into inexpensive small appliances as well as battery-powered controllers like sensor nodes

or mobile light switches”. According to the analysis from Ma et al. [23], ”Because of its cheapness and

practicality, 6LowPAN displays the great market foreground.”.

Figure 3.10: IPv6 and IPSS on the Bluetooth LE Stack [27]

As shown above, the 6LowPAN works in parallel with the original GATT protocol stack. At application

layer, it can support different languages which are not limited in UDP and TCP. The adoption of 6LowPAN

will accelerate the integration between BLE and the IoT.

3.5.3 Classic Bluetooth vs Bluetooth Low Energy

Based on above introduction, we can draw a conclusion that Classic Bluetooth and Bluetooth Low Energy

target different markets. For Classic Bluetooth, it is a desirable solution where higher data rate is required

and more power is available. For Bluetooth Low Energy, it is designed for devices with less power than Classic

Bluetooth devices. BLE is a better option where small amount of data need to be transferred frequently.

Also, the BLE it different from Classic Bluetooth. This conclusion can be supported by the research from

Rolf Nilsson and Bill Saltzstein [28]. They pointed out that ”Bluetooth low energy technology does not

replace Classic Bluetooth technologyit is a whole new game”

20

3.5.4 Summary

So far, the BLE is widely adopted in smart devices, which has strengthened its position in the market. With

the adoption of IPv6, it can join the IoT with little effort. Meanwhile, with more and more extra protocols

are developed (e.g. iBeacon), the ecosystem of BLE will become more and more robust. The latest changes

for BLE are IPv6’s capability, packet size and security level. Those improvements meet the evolution of IoT.

Bluetooth needs to become more compatible with existing networks and transfer more data in a more secure

way. With the development of IoT, it is expected that both the density of sensors and the computing power

will increase. In recent BLE have two innovative directions:

• The first direction goes toward: BLE devices become cheaper and simpler. This kind of sensors aim

to collect limited amount of data. For example, in a large farm land, the farmer needs to manage

temperature and humidity in different spots. In this scenario, many sensors will be involved in the

network. They will constantly report two types of data to the local hub. In this case, each sensor needs

to be as cheap as possible.

• The other direction is: integrating sensors in smart devices, where different kinds of data are processed

at the same time. Therefore, this type of devices is constrained by both battery and bandwidth. The

recent updates improved BLEs performance. Now, developers are more comfortable to develop medium

size apps based on integrated sensors.

In the next section, I will discuss the CAP theorem which becomes a principle guiding the design and

implementation of the proposed architecture.

3.6 CAP Theorem

The CAP stands for Consistency, Availability, and Partition-tolerance. It is an important concept in any

design of a distributed architecture. It was first proposed by Brewer in 2000. In 2002, Seth Gilbert and

Nancy Lynch proved [13] the theorem and pointed out that ”It is impossible to achieve all three.”. The

following are details of those three concepts:

• Consistency: Consistency means operations can only be fully executed or dropped.

• Availability: Availability means a user can be served at any time. For example, a high availability

system can be accessed by users at any time even when it is updating or maintaining.

• Partition Tolerance: A system with high partition tolerance can still serve users even if connections

between two nodes are lost.

Since the intermittent connectivity is a given condition, mobile applications must achieve high partition

tolerance. Therefore, the options for a mobile application are limited between PC (Partition Tolerance and

Consistency) and PA (Partition Tolerance and Availability).

21

In the context of PA (Partition Tolerance and availability), the system and database are separated into

different nodes to guarantee both Partition Tolerance and availability. Since the whole data assets are

available for each node, a user can access any data when one or more nodes are not available. However, in

this scenario, consistency cannot be guaranteed since changes made by the user need to synchronize with the

lost node only when the network is available.

In the context of PC (Partition Tolerance and Consistency), if a systems Consistency is required while

the system needs partition tolerance, the system can not have high availability. When a node lost connection,

other nodes can change data without worrying about the issue of inconsistency. However, in this scenario,

users can not access data in the lost node.

The proposed architecture aims to guarantee high availability. Even if a connection between devices are

not available, a request should get a response. Therefore, the system must choose PA as its design principle.

22

Chapter 4

Architecture

With the development of smart devices, the fragile network of sensors becomes more and more reliable.

Under this context, we expect the CoAP should be supported in those networks. In this research, our main

goal is to propose a suitable solution to support CoAP in Non-IP based WPAN.

Currently, implementations of CoAP only support IP based communication. Technologies like BLE

(below v4.2) and NFC do not support IP and have their own standards to transfer data. However, with the

development of WPAN and CoAP, it is time to think about the possibility to grant CoAP in WPAN. In

addition, if CoAP is adopted as a general protocol in WPAN, it can simply the data communication between

WPAN and existing networks.

In the remaining section of this chapter, we will introduce our solution: CoAPNonIP architecture.

As shown below, the proposed CoAPNonIP architecture consists of an application layer and a network

layer. The application layer focuses on message management and message delivery.

Figure 4.1: Layers of proposed architecture

4.1 Application Layer

I would like to thank my colleague XiaoDan.Li who has involved in the implement and design of application

layer. In order to provide an easy-to-use tool for developers, we adopt an application layer to manage data

and provide a user-friendly interface.

23

Figure 4.2: Application layer structure

As shown above, in order to make sure the proposed architecture have the capability of supporting different

protocols of WPAN and providing a robust management mechanism, we have implemented two components

in the application layer. The process component aims to provide queue management for sending and receiving

messages. The communication component aims to provide a common interface for message delivery between

current layer and network layer.

4.1.1 Process component

The process component aims to provide a message management hub where message queue and cache are

implemented. In the process component, important concepts are listed below:

• Receiver: Receiver is the access point of received data.

• Sender: Sender is a thread to convert objects to a byte array and send it to the network layer.

• Processor: The processors consist of multiple processor threads where specific CoAP request can be

processed in a predefined way.

• Resource: Resource keeps the original concept in CoAP. It represents an available data value at server

side. A resource management tool is provided in the application layer.

• Callback Map: When a user tries to send a request, he or she can specify a customized callback function

to handle responses, which will be registered in a callback map for management.

• Default Receive Handler: If users do not specify a callback function for a request message, a default

response handler will be triggered when a response comes.

The main task of process component is to manage resources and handle messages. To increase the

efficiency of the system, we grant the architecture the ability to define multiple threads to process data. In

detail, users can define one or more processors to process received data and one or more senders to send data.

24

Figure 4.3: Process component flowchart

As shown above, there are three important roles in application layer: Receiver, Processor, and Sender.

When a receiver gets messages from the network layer, it will trigger a callback function which is defined

by the developer. If the call back function needs to process the received message, it will run a dispatcher to

decide which processor to process the data. After processing the data, a response may need to be sent.

4.1.2 Communication component

Messages received and sent in process component are based on function calls at communication component.

The communication component implements a general interface where following actions are defined:

• Broadcast: if a device wants to become a server in WPAN, it needs to broadcast itself to make sure

other devices can find it. When a device is broadcasting itself, it is in discoverable state. Regarding

BLEs implementation, this broadcast method will try to claim the device as a BLE advertiser.

• Search Peers: If a device plays the role of a client, it needs to search nearby broadcast signals to find

other nodes. Regarding BLEs implementation, this method triggers a search operation. If a searcher

finds a broadcaster and creates a connection with it, the searcher becomes a central device.

• Get Nodes: A node needs to know available devices in its network to decide destinations of a message.

Regarding BLEs implementation, this method returns all connected devices.

• Send Data: Nodes may send data to one or multiple target devices. Regarding BLEs implementation,

this method sends CoAP message and its destinations to network layer.

• Receive Data: Nodes need to receive data from remote devices. Regarding BLEs implementation, this

method receives data through call back function.

25

The communication component is implemented based on the technology used at the network layer, which

grants the architectures reusability. Meanwhile, since the interface only consists of five functions, it guarantees

low coupling.

From descriptions above we know that the application layer consists of two layers. The process component

proposes a multiple thread mechanism to manage messages. It grants more efficiency to the whole solution.

Meanwhile, by supporting default handler and customized handler, it defines a standard procedure to handle

CoAP messages.

The communication component defines an interface for five common functions. For different technologies,

there are different ways to implement those functions. However, the definitions of those functions set standard

actions for communication. In practice, based on those five basic functions, developers can customize more

actions to meet a specific requirement. In this way, this component provides great flexibilities as well as basic

principles.

To sum up, the application layer introduces two components to handle messages, support multiple com-

munication technologies and provide the capability of processing and sending data.

In the next section, I will explain the detail design of network layer for BLE.

4.2 Network Layer

In the proposed architecture, the network layer is the underlying layer for communication. The main task

of network layer is to transfer data between application layer and connected devices. The network layer has

different implementations for different protocols.

Under the context of BLE, I create a background service as network layer to serve the application layer.

The service receives messages from the application layer and chops messages into multiple 20-byte packets

before sending them out. Meanwhile, it retrieves data from remote devices, assembles them into CoAP

messages and delivers those messages to the application layer.

At network layer, a device can act either as a server service or a client service. If a device decides to search

other devices signals, it will act as a client service. Otherwise, it will broadcast itself as a server service.

Since the communication between network layer and application layer is based on broadcast, network layer

can easily send messages to multiple applications.

If the device acts as a server, it will create a thread to loop message queue for sending out messages and

an instance to register callback functions. Meanwhile, the server defines two characteristics for receiving and

sending data respectively. On the other hand, if a device acts as a client, it will try to connect with the

nearby server. A client maintains a send thread for each connection.

In the following section, I will discuss the communication mechanism of client and server in details.

26

4.3 Detail Design

In this section, I will explain details of proposed two-layer structure.

4.3.1 Application layer

As mentioned in the previous chapter, the application layer consists of process component and network

component. In the following section, more details are discussed below.

Process Component

The process component defines how users communicate with underlying architecture. Instead of dealing with

message delivery or pruning messages into appropriate format, it focuses on loading balance as well as role

determination. There are five basic functions in the component:

• ”InitReceiver”: In this function, developers define actions when CoAP messages are received by appli-

cation layer. If developers do not want to customize the handler for receiving data, the architecture

will send received messages to a default handler.

• ”InitProcessor”: By calling this function, a developer can create numbers of threads to handle received

CoAP requests. Those threads will execute predefined actions for each resource.

• ”InitSender”: By calling this function, a developer can create one or more threads to send out messages.

• ”SetDefaultResponseHandler”: The user needs to provide a default handler for coming request which

does not have predefined process.

• ”Run”: After complete all necessary initial settings, the developer can start the CoAP service with

different parameters. I defined four different roles to start-up a service.

– Broadcaster: The device will advertise itself and wait for connection requests from remote devices.

– Seeker: The device will search nearby broadcasters to create a connection with it.

– Auto: The device will try to find an available broadcaster in limited time. If no broadcaster is

found in time, it will turn to broadcast mode to broadcast itself.

Communication Component

As mentioned above, I define three events and six abstract functions in the network components. The

architecture defines three kinds of events: peer found, peer lost, and data receive. Developers can either

handle those events at communication level or expose them to process component. Regarding functions, the

architecture defines actions for broadcasting, searching peers, sniffing peers, getting nodes, sending data and

receiving data.

27

4.3.2 Network layer

As mentioned above, in the proposed architecture, a device can either acts as a client or a server. A client or

a server encapsulates its communication mechanism in a service which runs at background to serve multiple

apps.

In the following section, I will discuss the detail design of client side and server side separately.

Client Side

As mentioned above, the client side runs independently as a background service. It serves one or more apps

through message broadcasting. The service can automatically search nearby available servers and connect

with them. Whenever a client service gets an available server, it will create a new thread to communicate

with the server. The client service will maintain each communication thread in a list. A communication

thread will not only listen to events from the remote side but also maintain a message queue to send data.

A client service will listen to two kinds of messages from the upper layer: announcement and data.

(announcement is a special type of message, which is designed for information exchange when a connection

is initialized) The communication mechanism will be introduced in a separated chapter. Since the size of

a CoAP message can easily over 20 bytes, the service may need to split one CoAP message into multiple

packets before sending to BLE channel.

On the other hand, the client service will handle events of a communication channel by creating three

handlers: ”OnMessageReady”, ”OnReceiveAnnouncement” and ”OnLostConnection”.

• The ”OnMessageReady” will be triggered when a complete CoAP message is received.

• The ”OnReceiveAnncouncement” will be triggered when an announcement is received. Since the archi-

tecture forces client and server to exchange announcement whenever they establish a connection, the

architecture also regards it as a signal of connection created.

• The ”OnLostConnection” will be triggered when a connection is lost.

Regarding sending and receiving messages, when messages need to be sent, the client side will write data

to the ”InCharacteristic”. Meanwhile, the client listens to the ”OutCharacteristic” to get data from server

side.

The service also maintains a receiver. As soon as get a message from the remote side, the receiver

will retrieve its type. If the message type is 0 (an announcement), the receiver will construct an object

with information of remote UserID, remote AppID, and remote mac address. In addition, the receiver will

trigger an announcement-received event where constructed object is the parameter. If a message type is 1 (a

subsequent packet), the receiver will add the received message to a hashmap where the combined string of

UserID and AppID is the key. The hashmap maintains messages received from the connected device. If the

28

message type is 2 (the end packet of a CoAP message), the receiver will add the message to the hashmap,

combine existing message pieces into an object and trigger a message-received event.

Server Side

As mentioned above, the server side runs independently as a background service. It serves one or more apps

through message broadcasting. A server broadcasts itself and remote clients can connect with it. Once a

connection is created, connected devices can read and write values to the server.

Similarly, the server-side listens to the request of sending announcements or messages from upper layer.

When new request is received by the service, it will process the data and push data packets to a queue. A

sending thread manages the queue and constantly sends data.

Regarding sending and receiving messages, the server service listens to the value of ”InCharacteristic” to

get data changes. Meanwhile, when data need to be sent, it will change the value of ”OutCharacteristic” and

send a notification to the client side.

The server side also supports three types of messages which have been described earlier. Once the message

is received, the server-side needs to parse it into an object and trigger a message received event.

In the flowing section, I will use two flowcharts to explain how service works and how messages are

processed.

29

Flowchart

The flowchart below shows the lifecycle of a service. As shown above, whenever the user creates a CoAPNonIP

service, he or she needs to create an instance of an object called App. At the time of initializing the App,

logics at application layer need to be specified. After calling several functions to initialize the application

layer, users need to call ”Run” function to start the service. If no service is running at background, a new

service will be created. The service keeps running until the user forces to stop it.

Figure 4.4: Life cycle of network service

The flowchart below shows the life cycle of communication. Since the architecture is resource driven, a

request needs to specify the resource URL and targets. After creating a request, the system will send the

message to the sender queue and register a handler for handling response. Sender thread sends messages to

30

network layer service. In the service, the program decides whether the communication channel is available

before sending data. When a request is received, the network layer of remote device will throw it to the

application layer. In the application layer, messages will be pushed into processor queue. When a processor

thread retrieves messages from the queue, it will judge whether target resource is available. If the resource is

available, the system will execute operations, generate a CoAP response and send the response back. Finally,

in the application layer of request sponsor, the program will try to find a handler in the hashmap (key value

pair of message id and handler) to handle the response.

Figure 4.5: Life cycle of network service

31

Packet Format

As shown below, in the proposed architecture, a protocol is designed based on 20-byte BLE packet. The

protocol consists of two parts: 4-byte header and 16-byte payload.

In the header, the first 2 bits indicate the type of the packet. Currently, there are three types available.

• ”00” stands for announcement: Announcement message is a special type of message which only has

4-byte header. It is used to exchange AppID and UserID.

• ”01” indicates that the packet is a continued packet, and the service should expect more packets and

assemble them into a CoAP message.

• ”10” means that the last peace of a CoAP message is received.

The following 14 bits are used by AppID. It defines which apps are sending the request. The range of the

number is from 1 to 16383.

The remaining 16 bits are used by UserID is used to indicate which user is sending data. The range of it

is from 1 to 65535.

Since header has 4 bytes, the remaining 16 bytes are used as payload to carry the CoAP messages.

Figure 4.6: Packet structure

Communication Mechanism

As introduced in the literature review, BLEs communication mechanism is not stream based. Instead, a

BLE connection is open and close periodically. Messages are only sent out in short time frames when the

connection is open. There are two ways to send a message in BLE: One is to send a message sequentially,

which will wait for a signal from a remote device before sending the next message. The other is to send

messages without waiting responses from the remote device. The proposed architecture sends and receives

messages sequentially. The following chart shows how BLE client and server communicate with each other.

32

Figure 4.7: Communication mechanism

As shown above, once a connection between devices is created, the client side will send one or more

announcements to the server side. Meanwhile, the server side will send an announcement to the client. Once

the announcement information is exchanged, client side can write characteristics at server side to send a

message. Meanwhile, server side can send a message to the client through notification.

The announcement is introduced as a ”shake hands” mechanism before communication. Unlike AppID

and UserID in other messages, AppID and UserID in an announcement are values of the source device. In

this way, before sending any information, each side can know the role of the device. Since the architecture

uses AppID and UserID fields in two different ways, it can overcome the chaos of message received at the

server side as well as act like utilize them as unique IDs to filter messages for different applications. After

”shake hands”, messages between two devices must be sequential, which means both sides need to wait the

received signal of previous BLE packet before sending a one.

Virtual Resource

In standard CoAP protocol, all requests and responses are RESTful. In this context, resources are bound on

one device. However, one device may need to gather the same type of same data from different devices. Since

more and more cheap sensors are available in the market, this kind of requirement will increase. Therefore,

in the proposed architecture, a virtual resource mechanism is proposed to meet the need of multi-sampling.

33

The virtual resource is achieved by introducing a timer to wait for return values from connected devices.

Figure 4.8: Virtual resource mechanism

As shown in the above chart, in the view of resources, all involved devices are resource containers. The

device A broadcasts a request (requiring the value of virtual resource 100) to all connected devices. The

device B does not respond the request because resource 100 is not available. The device C successfully

returns the value of resource 100. The device D has resource 100 but it did not respond in time. Therefore,

the device A will receive one return.

4.4 Proposed Solutions for Problems

In the following sections, I will discuss solutions for problems mentioned in problem definition section.

Identify Non-IP based devices

The proposed architecture adopts the concept of AppID and UserID. As mentioned above, an application can

get a unique identifier by combining those two numbers together. In this way, the architecture has a software

34

layer ID to identify services. In the physical layer, devices may have MAC address, IP address or another way

to identify itself. However, all devices in the proposed architecture need to use AppID and UserID to identify

themselves. One advantage of this design is that the system can easily change devices with less effects on.

Moreover, the adoption of AppID and UserID grants flexibility to the architecture if multiple communication

technologies need to be supported at the same time.

Overcome packet size limitation of BLE communication

An automatic packet ”chop” and ”assemble” mechanism is proposed. In our solution, all CoAP messages will

be divided into one or more 20-byte units. In this way, the size limitation of BLE is solved at the software

level.

Serve multiple applications as a background service

In this architecture, the user can declare roles in applications. When a new message comes, the network layer

will simply broadcast it to the upper layer with the information of remote devices AppID and UserID. The

developer can select interesting messages from a specific data provider. This design makes the architecture

can serve one or more applications at the same time.

Providing interface to support different technologies

As mentioned above, the proposed architecture consists of the application layer and the network layer. A

developer can make the architecture supports different communication technologies by overwriting ”commu-

nication component” of the application layer as well as rewriting the network layer.

35

Chapter 5

Implementation

To test the performance of proposed architecture, a test program is made to create a BLE connection

between two devices and send packages between them. The application is written in C# and compiled into

native Android application in a cross-platform framework: Mono (maintained by Microsoft).

As mentioned earlier, by default, the CoAP supports RESTful communication mechanism by adopting

HTTP verbs and the concept of ”Resources”. Therefore, in the implementation, we follow instructions in

CoAPs specification to achieve RESTful communication. Meanwhile, in order to support multiple apps as

a background service, codes are divided into two parts to implement application layer and network layer

respectively.

5.1 Application Layer

As shown below, in application layer, a manager class: ”APP” is defined. After creating an instance of the

”APP”, developers need to define how many processors and senders are available. They also need to register

resources and define event handlers. Finally, developers need to call the ”Run” function to start the service.

Figure 5.1: core-code for process componenet

36

As shown below, the communication component of application layer is implemented as an abstract class

called ”AbstractNetwork”. In the abstract class, basic operations of a node have been defined. To support

different underlying technologies, the abstract class needs to be inherited by different classes.

Figure 5.2: core-code for communication compoennet

5.2 Network Layer

In the network layer, two roles need to be supported: Client and Server. Therefore, two kinds of services

are defineded. In Android, a component called ”Service” is available for customized background running

program. The ”Service” can get messages from different applications by registering ”BroadcastReceiver” and

send messages to applications by ”Broadcast”.

As shown below, both ”client service” and ”server service” need to register a receiver before scan or

broadcast.

Figure 5.3: core-code for client service

37

Figure 5.4: core-code for server service

5.3 Demo Applicaitons for Experiment

The procedure of implementation consists of two stages. In the first stage, I implement the BLE infrastructure

to send CoAP message. In the second stage, two apps are developed to do the experiments. The first App

is called ”Major App.” It is designed to do first three experiments. The second app is called ”Trigger App.”

It is designed to play the role as a second sender in the fourth experiment (”Multiple Apps”).

As shown below, the UI of the ”Major App” consists of three sections. The left side contains a list of

available devices and a role indicator. The top of the right side is ”experiment selection” section with a ”start

test” button. The remaining section of the right side is the output console where experiment information

is recorded. The UI of ”Trigger app” is a lite version of that in ”Major App” where experiment selection

section is disabled. For those experiment apps, the producer threads generate designed packets and call ”send

request” function to send a message out.

38

Figure 5.5: screenshot of demo application

39

Chapter 6

Experiments/Evaluations

In this chapter, I will evaluate the performance of the proposed architecture in BLE. As mentioned above

the architecture is compatible with different technologies. In the implementation, BLE is adopted to make a

prototype. So far, all the experiments are under the context of BLE.

Although Bluetooth low energy has been widely tested and adopted, we should keep in mind that Android

device to device communication through BLE (peripheral communication) has not been widely tested. So

far, only latest Android devices with Bluetooth4.1 hardware support peripheral mode.

6.1 Goals of Experiment

Five experiments are designed and they are listed in the below table.

Table 6.1: Experiment goals

Title Goals

Minimum Data with Interval Test performance of sending CoAP header with different intervals.

Multiple Packets Test performance of sending different CoAP messages with different data size.

Round-Trip Test performance of round trip

Multiple Apps Test performance of underlying service to support multiple apps.

6.2 Experiment Setup

As explained earlier, the proposed architecture is designed for server-client communication. Two Android

devices are used to do the test. Since only latest hardware with Bluetooth v4.1 supports android to android

Bluetooth communication, two Nexus 9 are used to test BLE implementation of the architecture.

40

Table 6.2: Specifications of devices

Hardware Details

OS Android OS, v5.1.1(Lollipop)

CPU Dual-core 2.3 GHz Denver

Memory 16GB/2GB RAM

Bluetooth v4.1, A2DP, apt-X

Two devices run a test app (more details in implementation chapter). The app can connect two devices

together through BLE.

6.3 Details

In the following sections, I will discuss details of each experiment in ”Description”, ”Procedure” and ”Result

and Analysis”.

6.3.1 Minimum Data with Interval

Description

As mentioned in the chapter of design, we implement BLE in sequential-send mode, which means messages

are not sent out at the same time. Instead, each message needs to wait for a signal from the remote device

before writing a new data to BLE characteristic. In this way, the connection between the devices becomes

more stable.

Since the design of BLE aims to support lightweight data transfer, it is important to get its performance

with the minimum payload. In this test, I send 4-bytesheader without any payload between two devices. I

expect to find some patterns of time cost of sending data with delay.

Procedure

• Start sample program scan and create a connection between two devices.

• Send 4-byte header (100 times with 0,50,100,150,200,250,300,350,400,450ms respectively) with different

intervals to remote devices.

• Record received time at sender side (get 99 sets of data).

• Calculate transfer time according to time gap between messages received.

41

Result and Analysis

Figure 6.1: Packet structure

As shown above, ten series of data were recorded. The x-axis is the number of samples (99 samples for

each series). The y-axis is the data transfer time plus waits time (unit is ms). From the above chart, four

interesting points were found. First, the first three series have similar y value. The average time is around

100ms. Since the sery 4, the Y value increases uniformly by 50ms. The reason is when a message is sent to

the message queue with interval 0ms, 50ms, and 100ms, the message does not need to wait before it is sent

because the system always needs to wait for a response signal of the previous message before sending a new

one out. Since the time of sending a message and waiting for response signal is around 100ms, the message

the Y values of first three series are around 100ms.

Second, there is a heartbeat-like pattern in those series. The pattern is always observed with the increasing

of intervals. As shown in the blow three charts, the heartbeat-like pattern is also visible with 150ms delay

and 200ms delays. The heartbeat-like pattern has similar amplitude (around 50ms). And, the pattern can

be explained with energy saving strategy of BLE.

42

Figure 6.2: Result of sending headers with no interval

Figure 6.3: Result of sending headers with 150ms interval

43

Figure 6.4: Result of sending headers with 200ms interval

Third, as shown in the above, there are not only randomly spread fluctuations but also have random

amplitudes. This pattern can be explained with a known issue with Android Lollipops implementation of

BLE.

Last, from those three charts, we know that those random fluctuations become a regular pattern when

the system sends data with delay. This phenomenon can be explained by communication interval of BLE.

To further investigate the behaviors of the system, another set of test is designed to focus on the size

change of BLE packets.

6.3.2 Multiple Packets

Description

From the first experiment, we have found three interesting patterns. The reason for first pattern is obvious.

The reasons for the other two to are more complex. Although, I have proposed explanations for the last

two patterns, more experiments are needed to verify my assumptions. As explained earlier, we send data in

BLE by writing and reading data in BLE characteristic. And, the maximum unit size is 20-byte. In this

experiment, we send multiple BLE packets of data by controlling the payload of the CoAP message. We

would like to find out whether the data patterns of one experiment still exist. Meanwhile, we expect more

evidence to support our hypothesis of data patterns in the previous experiment.

44

Procedure

• Start a sample program scan and create a connection between two devices.

• Send CoAP message with 4-byte (1 packet), 12 (2 packets),28 (3 packets), 44 (4 packets), 60(5 packets),

76 (6 packets) and 92(7 packets) bytes payload 100 times respectively (0 interval time).

• Record the received time when receiving a response from the connected device.

• Calculate transfer time according to the time gap between messages received.

Result and Analysis

Figure 6.5: Results of sending multiple packets

As shown above, the 7 series of data display the performance of the architecture with the increasing size of

BLE packets. From the summary chart, we get following information:

• With the increasing size of messages, transfer time linearly increases from 100ms to 700ms.

• The heartbeat-like pattern still exists.

• The random fluctuation observed in previous experiments still exists in the chart.

45

Figure 6.6: Result of sending 12-byte payload

Figure 6.7: Result of sending 28-byte payload

As shown above, both random fluctuations and heartbeat-like patterns exist in those two charts. Com-

pared with the detected random fluctuations in experiment one, random fluctuations in the above charts are

not predictable. It shows the delay of data will influence the random fluctuation.

46

This experiment supports our explanation of the random fluctuation and heartbeat-like pattern.

6.3.3 Round-Trip

Description

In order to test the performance of real-time data communication between two devices, the round trip

experiment is designed, where the receiver of 4-byte header request always sends a response to the sender.

Procedure

• Start sample program scan and create a connection between two devices.

• Send 4-byte header 100 times (0 interval time).

• Record received time at sender side (get 99 sets of data).

• Calculate round trip time according to the time gap between message received.

• Repeat 2 to 4 steps three times.

Result and Analysis

Figure 6.8: First set of 4-byte round trip

47

Figure 6.9: Second set of 4-byte round trip

Figure 6.10: Third set of 4-byte round trip

In the first experiment, we examined one-way time consumption of 4-byte header CoAP message. The data

we got from that experiment shows a pattern obviously. However, according to the charts above, we can

not find any pattern for the round trip experiment. Comparing those two experiments, I find that the curve

fluctuates greatly around 100ms. Meanwhile, some great fluctuation occurs from time to time. The greater

48

fluctuation of the curve may due to channel interference caused by complex reasons. On the other hand, I

believe the random fluctuation here is caused by Android Lollipops BLE implementation.

According to the round trip experiment and the minimum payload experiment, we draw the conclusion

that the default communication interval of BLE in Android should be 100ms. Meanwhile, the average time

consumption of one-way communication and round trip communication are close in the proposed architecture.

6.3.4 Multiple Apps

Description

The experiment aims to test the performance of underlying network service. In this experiment, the two

applications on the same device try to send 100 CoAP headers to the remote device at the same time. The

sender side will record total transfer time to calculate average time.

Procedure

• Start both the ”Major APP” and the ”Trigger App”.

• Click start test button at either app to start test.

• Record start time and end time at sender side.

• Repeat 2-3 steps 10 times.

49

Result and Analysis

Figure 6.11: Result of Multi-App Experiment

As mentioned above, the two apps use underlying services for CoAP communication. The ”Major App”

has a listener listening to the event of ”start test” from the ”Trigger App”. After 10 times repeat, there

are 10 sets of data available. As shown above, the average time cost of round trip in the ”Major App” is

always higher than that in ”Trigger App”. Meanwhile, values of the ”Trigger App” are fluctuant. This result

is due to the competition of communication channel. Before the ”Major App” gets broadcast message, the

”Trigger App” can push requests into ”send thread” without interruption. Therefore, the ”Trigger App”

always finishes task earlier.

6.4 Conclusion

Based on the analysis of the experiment results, we have enhanced understanding of implementations of

Androids BLE. Meanwhile, we have obtained more data about the performance of proposed architecture.

In previous experiments, we also tested our architectures performance in lightweight and medium weight

payload communication. According to above analysis, we draw the following conclusions:

• The minimum transfer time of proposed architecture is around 100ms. In single communication channel

(one characteristic is used to transfer data), we have 16 bytes available to transfer CoAP messages (more

details in packet design subchapter). Therefore, in current architecture, the data rate is 10*16 byte/s.

50

• ”Connection interval” is a parameter in BLE. It determines how often a central device exchange data

with peripheral. Since the data is specified by devices implementation, it can be any value between

7.5ms and 4s. It is an important factor to affect data transfer. It is most likely the reason of constant

fluctuation when we send data with different latency.

• There is a considerable amount of bad performance reports about Android lollipop’s implementation

of BLE. The Android V5.0 (Lollipop) is the first Android version to support peripheral mode. It is not

surprising to get bad performance by the introduction of the new feature. We expect the experimental

results can be improved on new Android devices with latest API and BLE hardware.

• Because a single message queue and ”send thread” are used to send data in the underlying architecture,

the competition of sending messages will influence the send time of a message.

51

Chapter 7

Conclusion and Future Work

7.1 Summary and Contributions

With the development of IoT, more and more small sensors are involved in data collecting. However, different

protocols and hardware limitations make communications between devices become more and more difficult.

To overcome those limitations, this research proposes an architecture to grant CoAP in BLE. And, it has the

potential to support other WPAN technologies as well.

In terms of design and architecture, the proposed architecture consists of two layers. The application layer

provides an interface to send and receive CoAP messages as well as the message management. The network

layer implements underlying logics of assembling and disassembling CoAP message on the top of Bluetooth

Low Energys GATT service. The architecture uses two parameters (UserID and AppID) to identify different

communication instances. In order to make the architecture works as a background service to serve one or

more Apps in one physical device, special packet format and communication principles are designed.

In terms of implementation, Mono is used develop the proposed architecture. Mono is a software platform

developed by Xamarin for cross-platform application development in C#. There are two stages in the

implementation. In the first stage, I developed the underlying network layer for Bluetooth Low Energy for

Android. In the second stage, developed two test program for the experiments. They are ”Major App”

and ”Trigger App”. The ”Trigger App” only was used in the last experiment to test the performance of

background running service when it serves multiple apps.

In order to test the performance of the proposed architecture, I have done four experiments. Those

experiments reveal the cost and limitations of the proposed architecture on the top of BLEs GATT service.

• The first experiment shows that sending a message with interval may have consistent fluctuations.

• The second experiment shows that the latency of sending a message increases linearly with the increasing

size of BLE packets.

• The third experiment shows that there is no significant time difference between sending one-way and

round trip messages in the proposed architecture. Meanwhile, there are random fluctuations.

• The fourth experiment shows that competitions happen when multiple apps try to send messages at

the same time.

52

To achieve four research goals, the architecture adopts various mechanisms:

• AppID and UserID are used to identify all devices in a WPAN. This solution unified the way to identify

a device.

• A ”chop” and ”assemble” mechanism to overcome the 20-byte size limitation of BLE packet.

• Messages are broadcasted to serve all registered apps.

• An interface to abstract operations of communication

In conclusion, the proposed architecture has provided a general solution to achieve cross communication

technologies CoAP communication in WPAN. So far, although there are some limitations and restrictions to

send CoAP messages in BLE, the proposed architecture works on BLE and can serve APPs as a background

running service. Since the proposed architecture is capable of supporting different underlying technologies,

the low data rate performance should not be a reason to stop improving the performance. In order to support

other WPAN technologies, more works need to be done in the future.

7.2 Future Work

The proposed architecture can be improved in several aspects. In the following section, I will discuss them

in details.

7.2.1 Data Rate

As shown in the experiments, the average time to send out a CoAP header is around 100ms in the current

implementation. According to our analysis, the data rate performance is significantly influenced by the

implementation of BLE as well as the sequential data transfer strategy. In the future, data rate could

be improved in two ways. First, latest smart phone with latest Android APIs should be utilized on the

architecture. Second, we could explore the possibility to use asynchronous mechanism to send data.

7.2.2 Availability

In the current version, the network layer does not have cache mechanism. Since the wireless connection

is naturally fragile, the cache strategy should be added in the future works. In addition, the reconnection

mechanism should also be added.

7.2.3 Cross-Platform

At present, the proposed architecture is implemented in Android because of two facts. First, a developer

has the full control of the most hardware. Second, background services are well supported. In the future,

attempts should be made to achieve cross-platform implementation in iOS or Windows Phone

53

7.2.4 Underlying Technology

As mentioned above, the proposed architecture is designed to have the potential to support multiple under-

lying communication technologies. In the current implementation, it only supports BLE. In further research,

the proposed architecture should support more WPAN technologies.

7.2.5 Security

All communications in the current implementation are not encrypted. In further research, the proposed

architecture should implement symmetric or asymmetric algorithm encryption to improve its security level.

54

References

[1] Arcitura. Rest constraints. http://whatisrest.com/rest_constraints/index, 2016. Accessed April,
2016.

[2] Andrew Banks and Rahul Gupta. Mqtt version 3.1. 1. OASIS standard, 2014.

[3] John Barrett. The internet of things. http://tedxtalks.ted.com/video/The-Internet-of-Things-
Dr-John, 2012. Accessed April, 2016.

[4] Varat Chawathaworncharoen, Vasaka Visoottiviseth, and Ryousei Takano. Feasibility evaluation of
6lowpan over bluetooth low energy. arXiv preprint arXiv:1509.06991, 2015.

[5] Walter Colitti, Kris Steenhaut, and Niccol De Caro. Integrating wireless sensor networks with the web.
Extending the Internet to Low power and Lossy Networks (IP+ SN 2011), 2011.

[6] LAN/MAN Standards Committee et al. Part 11: Wireless lan medium access control (mac) and physical
layer (phy) specifications. IEEE-SA Standards Board, 2003.

[7] Dave Evans. The internet of things - how the next evolution of the internet. http://www.cisco.com/

c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf, 2011. Accessed April, 2016.

[8] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul Leach, and Tim Berners-
Lee. Hypertext transfer protocol–http/1.1. 1999. Accessed April, 2016.

[9] Roy Thomas Fielding. Architectural styles and the design of network-based software architectures. PhD
thesis, University of California, Irvine, 2000.

[10] Jon Flanders. Service station - more on rest. https://msdn.microsoft.com/en-us/magazine/

dd942839.aspx#id0070007, 2009. Accessed April, 2016.

[11] Martin Fowler. Richardson maturity model: steps toward the glory of rest. Online at
http://martinfowler. com/articles/richardsonMaturityModel. html, 2010.

[12] Roy Friedman, Alex Kogan, and Yevgeny Krivolapov. On power and throughput tradeoffs of wifi and
bluetooth in smartphones. IEEE Transactions on Mobile Computing, 12(7):1363–1376, 2013.

[13] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent, available, partition-
tolerant web services. ACM SIGACT News, 33(2):51–59, 2002.

[14] Marc Hadley, Noah Mendelsohn, J Moreau, H Nielsen, and M Gudgin. Soap version 1.2 part 1: Messaging
framework. W3C REC REC-soap12-part1-20030624, June, pages 240–8491, 2003.

[15] Philip N Howard. Sketching out the internet of things trendline. http://www.brookings.edu/blogs/

techtank/posts/2015/06/9-future-of-iot-part-2, 2015. Accessed April, 2016.

[16] IEEE-SA. Guidelines for 48-bit global identifier (eui-48). https://standards.ieee.org/develop/

regauth/tut/eui48.pdf, 2016. Accessed April, 2016.

[17] IEEE-SA. Guidelines for 64-bit global identifier (eui-64). https://standards.ieee.org/develop/

regauth/tut/eui64.pdf, 2016. Accessed April, 2016.

55

http://whatisrest.com/rest_constraints/index
http://tedxtalks.ted.com/video/The-Internet-of-Things-Dr-John
http://tedxtalks.ted.com/video/The-Internet-of-Things-Dr-John
http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://msdn.microsoft.com/en-us/magazine/dd942839.aspx#id0070007
https://msdn.microsoft.com/en-us/magazine/dd942839.aspx#id0070007
http://www.brookings.edu/blogs/techtank/posts/2015/06/9-future-of-iot-part-2
http://www.brookings.edu/blogs/techtank/posts/2015/06/9-future-of-iot-part-2
https://standards.ieee.org/develop/regauth/tut/eui48.pdf
https://standards.ieee.org/develop/regauth/tut/eui48.pdf
https://standards.ieee.org/develop/regauth/tut/eui64.pdf
https://standards.ieee.org/develop/regauth/tut/eui64.pdf

[18] iOS. Getting started with ibeacon. https://developer.apple.com/ibeacon/Getting-Started-

with-iBeacon.pdf, 2014. Accessed April, 2016.

[19] Markus Isomaki, Johanna Nieminen, Carles Gomez, Zach Shelby, Teemu Savolainen, and Basavaraj
Patil. Transmission of ipv6 packets over bluetooth low energy. 2013.

[20] Matthias Kovatsch, Markus Weiss, and Dominique Guinard. Embedding internet technology for home
automation. In Emerging Technologies and Factory Automation (ETFA), 2010 IEEE Conference on,
pages 1–8. IEEE, 2010.

[21] Nico Laum, Christian Lerche, Frank Golatowski, and Dirk Timmermann. A web service-based com-
munication architecture for smartphone/wpan sensor ensembles. In Proceedings of 2012 IEEE 17th In-
ternational Conference on Emerging Technologies Factory Automation (ETFA 2012), pages 1–7. IEEE,
2012.

[22] Litepoint. Bluetooth low energy. http://www.litepoint.com/wp-content/uploads/2014/02/

Bluetooth-Low-Energy_WhitePaper.pdf, 2014. Accessed April, 2016.

[23] Xin Ma and Wei Luo. The analysis of 6lowpan technology. In 2008 IEEE Pacific-Asia Workshop on
Computational Intelligence and Industrial Application, 2008.

[24] Nilo Mitra and Yves Lafon. Soap version 1.2 part 0: Primer. W3C recommendation, 24:12, 2003.

[25] Jin Mitsugi, Shigeru Yonemura, Hisakazu Hada, and Tatsuya Inaba. Bridging upnp and zigbee with
coap: protocol and its performance evaluation. In Proceedings of the workshop on Internet of Things
and Service Platforms, page 1. ACM, 2011.

[26] Sang-Ho Na, Jun-Young Park, and Eui-Nam Huh. Personal cloud computing security framework. In
Services Computing Conference (APSCC), 2010 IEEE Asia-Pacific, pages 671–675. IEEE, 2010.

[27] J Nieminen, T Savolainen, M Isomaki, B Patil, Z Shelby, and C Gomez. Ipv6 over bluetooth (r) low
energy. 2015. Accessed April, 2016.

[28] Rolf Nilsson and Bill Saltzstein. Bluetooth low energy vs. classic bluetooth: Choose the best wireless
technology for your application. Medical Electronics Design, 2012.

[29] William R Parkhurst. Routing first-step. Cisco Press, 2004.

[30] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services vs. big’web services:
making the right architectural decision. In Proceedings of the 17th international conference on World
Wide Web, pages 805–814. ACM, 2008.

[31] Seagate. What is a personal cloud? http://www.seagate.com/ca/en/do-more/what-is-personal-

cloud-master-dm/, 2016. Accessed April, 2016.

[32] Zach Shelby. Constrained restful environments (core) link format. 2012. Accessed April, 2016.

[33] Zach Shelby. Arm coap tutorial. http://www.slideshare.net/zdshelby/coap-tutorial, 2014.
Accessed April, 2016.

[34] Zach Shelby, Klaus Hartke, and Carsten Bormann. The constrained application protocol (coap). Tech-
nical report, 2014.

[35] SIG. Bluetooth core specification version 4.0. Specification of the Bluetooth System, 2010.

[36] SIG. Updated bluetooth 4.1 extends the foundation of bluetooth technology for the internet of things.
https://www.bluetooth.com/news/pressreleases/2013/12/04/updated-bluetooth4-1-extends-

the-foundation-of-bluetooth-technology-for-the-internet-of-things, 2013. Accessed April,
2016.

56

https://developer.apple.com/ibeacon/Getting-Started-with-iBeacon.pdf
https://developer.apple.com/ibeacon/Getting-Started-with-iBeacon.pdf
http://www.litepoint.com/wp-content/uploads/2014/02/Bluetooth-Low-Energy_WhitePaper.pdf
http://www.litepoint.com/wp-content/uploads/2014/02/Bluetooth-Low-Energy_WhitePaper.pdf
http://www.seagate.com/ca/en/do-more/what-is-personal-cloud-master-dm/
http://www.seagate.com/ca/en/do-more/what-is-personal-cloud-master-dm/
http://www.slideshare.net/zdshelby/coap-tutorial
https://www.bluetooth.com/news/pressreleases/2013/12/04/updated-bluetooth4-1-extends-the-foundation-of-bluetooth-technology-for-the-internet-of-things
https://www.bluetooth.com/news/pressreleases/2013/12/04/updated-bluetooth4-1-extends-the-foundation-of-bluetooth-technology-for-the-internet-of-things

[37] SIG. Bluetooth core specification 4.2 frequestly asked questions. https://www.bluetooth.org/ja-

jp/Documents/Bluetooth4-2FAQ.pdf, 2014. Accessed April, 2016.

[38] SIG. Bluetooth. https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth, 2016.
Accessed April, 2016.

[39] Dinesh Thangavel, Xiaoping Ma, Alvin Valera, Hwee-Xian Tan, and Colin Keng-Yan Tan. Performance
evaluation of mqtt and coap via a common middleware. In Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP), 2014 IEEE Ninth International Conference on, pages 1–6. IEEE,
2014.

[40] Karl Helmer Torvmark. Three flavors of bluetooth: Which one to choose? http://www.edn.com/Home/

PrintView?contentItemId=4405960, 2013. Accessed April, 2016.

57

https://www.bluetooth.org/ja-jp/Documents/Bluetooth4-2FAQ.pdf
https://www.bluetooth.org/ja-jp/Documents/Bluetooth4-2FAQ.pdf
https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth
http://www.edn.com/Home/PrintView?contentItemId=4405960
http://www.edn.com/Home/PrintView?contentItemId=4405960

Appendix A

Link for code

For more information about detail implementation, Please visit the github link: https://github.com/

chennanoka/CoAPNonIP_V1

58

https://github.com/chennanoka/CoAPNonIP_V1
https://github.com/chennanoka/CoAPNonIP_V1

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Problem Definition
	How to identify Non-IP based devices?
	How to overcome packet size limitation of BLE communication?
	How to serve multiple applications as a background service
	How to provide interface to support different technologies
	Research Goal

	Literature Review
	Internet of Things (IoT)
	Personal Cloud
	Simple Object Access Protocol (SOAP) and Representational State Transfer (REST)
	SOAP
	REST
	REST VS SOAP
	REST VS SOAP in mobile app
	Summary

	MQ Telemetry Transport (MQTT) and Constrained Application Protocol (CoAP)
	MQTT
	CoAP
	COAP VS MQTT
	Summary

	Bluetooth
	Classic Bluetooth
	Bluetooth Low Energy
	Classic Bluetooth vs Bluetooth Low Energy
	Summary

	CAP Theorem

	Architecture
	Application Layer
	Process component
	Communication component

	Network Layer
	Detail Design
	Application layer
	Network layer

	Proposed Solutions for Problems

	Implementation
	Application Layer
	Network Layer
	Demo Applicaitons for Experiment

	Experiments/Evaluations
	Goals of Experiment
	Experiment Setup
	Details
	Minimum Data with Interval
	Multiple Packets
	Round-Trip
	Multiple Apps

	Conclusion

	Conclusion and Future Work
	Summary and Contributions
	Future Work
	Data Rate
	Availability
	Cross-Platform
	Underlying Technology
	Security

	References
	Link for code

