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Abstract

In 1993, ’t Hooft (1999 Nobel Prize winner in physics) proposed that quantum gravity

requires that the information in a three dimensional world can be stored on a two dimensional

manifold much like a hologram. This is known as the holographic principle, and since then

this idea has changed the direction of researches in quantum gravity. A concrete realization

of this idea in string theory was first discovered in 1997 by Maldacena in his famous anti de-

Sitter/Conformal Field Theory1 correspondence conjecture. The AdS/CFT correspondence

states that some string theories on a certain manifold that contains AdS space, in some limits,

are dual to a CFT living on the boundary of this manifold.

Despite the rapid progress in studying the AdS/CFT, this proposal is still away from

practical applications. Some of the reasons are the fact that the AdS (anti-de Sitter) space-

time is not likely the spacetime where we are living nowadays and the existence of extra

dimensions (as one of the ingredients in string theory) is still under question. The Kerr/CFT

correspondence which was proposed in 2008 by Strominger et al appears to be a more “down

to earth” duality, compared to the AdS/CFT correspondence. Originally, this new corre-

spondence states that the physics of extremal Kerr black holes which are rotating by the

maximal angular velocity can be described by a two dimensional CFT living on the near

horizon.

In this thesis, after reviewing some concepts in Kerr/CFT correspondence, I present some

of my research results which extend and support the correspondence for non-extremal rotating

black holes. I discuss the extension of the Kerr/CFT correspondence for the rotating black

holes in string theory, namely Kerr-Sen black holes, and the Kerr/CFT analysis for vector

field perturbations near the horizon of Kerr black holes.

It is recently conjectured that a generic non-extremal Kerr black hole could be holo-

graphically dual to a hidden conformal field theory in two dimensions. Furthermore, it is

known that there are two CFT duals (pictures) to describe the charged rotating black holes

which correspond to angular momentum J and electric charge Q of the black hole. Further-

1AdS/CFT for short. AdS stands for anti de-Sitter, and CFT is the acronym for Conformal Field Theory.
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more these two pictures can be incorporated by the CFT duals (general picture) that are

generated by SL(2,Z) modular group. The general conformal structure can be revealed by

looking at a charged scalar wave equation with some appropriate values of frequency and

charge. In this regard, we consider the wave equation of a charged massless scalar field in

the background of Kerr-Sen black hole and show in the “near region”, the wave equation

can be reproduced by the squared Casimir operator of a local SL(2,R)L×SL(2,R)R hidden

conformal symmetry. We can find the exact agreement between macroscopic and micro-

scopic physical quantities like entropy and absorption cross section of scalars for Kerr-Sen

black hole. We then find an extension of the vector fields that in turn yields an extended

local family of SL(2,R)L × SL(2,R)R hidden conformal symmetries, parameterized by one

parameter. For some special values of the parameter, we find a copy of SL(2,R) hidden

conformal algebra for the charged Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole

in the strong deflection limit.

The generic non-extremal Kerr-Newman black holes are holographically dual to hidden

conformal field theories in two different pictures. The two pictures can be merged together to

the CFT duals in the general picture that are generated by SL(2,Z) modular group. We find

some extensions of the conformal symmetry generators that yield an extended local family

of SL(2,R)L × SL(2,R)R hidden conformal symmetries for the Kerr-Newman black holes,

parameterized by one deformation parameter. The family of deformed hidden conformal

symmetry for Kerr-Newman black holes also provides a set of deformed hidden conformal

generators for the charged Reissner-Nordstrom black holes. The set of deformed hidden

conformal generators reduce to the hidden SL(2,R) conformal generators for the Reissner-

Nordstrom black hole for specific value of deformation parameter. We also find agreement

between the macroscopic and microscopic entropy and absorption cross section of scalars

for the Kerr-Newman black hole by considering the appropriate temperatures and central

charges for the deformed CFTs.

Also in this thesis, we derive an appropriate boundary action for the vector fields near

the horizon of near extremal Kerr black hole. We then use the obtained boundary action

to calculate the two-point function for the vector fields in Kerr/CFT correspondence. In

performing this analysis we borrow a formula proposed in AdS/CFT, namely the equality
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between the bulk and boundary theories partition functions. We show the gauge-independent

part of the two-point function is in agreement with what is expected from CFT.
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Chapter 1

Introduction

One of the most dramatic predictions in general relativity is the existence of black holes.

These objects are mysterious and yet very interesting. Even today, we may find a physicist

who has such a skepticism of the existence of a black hole. However, at least we have two

reasons in believing that black holes exist out there. The first one is that black holes are

the unavoidable natural consequences in Einstein general theory of relativity. The success

of Einstein’s general relativity in predicting some physical phenomenon, which are tested by

experimental observations, convinces us that black holes must exist. The second one is we

are provided astronomical data that strongly support them to be part of our universe [1, 2].

For many years black holes had been just the objects of science fiction, but there is now a

significant body of evidence that supports the existence of black holes, or at least objects

very much like them. They are considered as the endpoints of stellar collapse. A strong

candidate of black hole can be found in the X-ray binary Cygnus X-1. Quite recently the

authors of [3] have studied this black hole candidate to determine it’s accurate value of mass.

One way to understand a black hole is describing it as a spacetime singularity surrounded

by an event horizon. A classical point particle can enter an event horizon of a black hole with

no ill effects, but the spacetime structure inside of a black hole is such that he cannot return

from inside of the event horizon. Black holes according to general relativity are characterized

by three physical parameters only. They are the black hole mass M , the angular momentum

J , and the electric charge Q. The fact that only these three parameters that characterize

the most complex black hole in general relativity raises the “no hair” theorem of a black

hole. This “no hair” theorem says that black holes have no other distinguishing classical

characteristics beyond M , J , and Q.

In statistical mechanics, entropy has an important physical implication as an amount
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of “disorder” of a system. By considering general relativity only, black holes are “dead”

thermodynamical objects, i.e. they have no entropy. Including quantum mechanics in the

studies of black holes gives birth to the nonzero black hole entropy. Gedanken experiments

carried out since the early 1970s [4, 5, 6] have established that a black hole of horizon area

A behaves as if it were a thermodynamic object with an entropy

S =
c3kBA

4~G
, (1.0.1)

where G is the Newton gravitational constant, ~ is Planck’s constant, kB is the Boltzmann’s

constant, and c is the speed of light. It turns out, by using this entropy formula, we find that

the entropy of black holes is enormous. One can compute that a solar mass black hole (about

6 kilometers in diameter) should have an entropy that is 22 orders of magnitude greater

than the entropy of the sun itself. According to Boltzmann, entropy in a physical system

is a manifestation of statistical degeneracy of the underlying states. Then, by following

Boltzmann’ idea, one big question for a quantum theory of gravity is explaining how black

holes can have the statistical degeneracy of exp (c3kBA/4G~). In other words, a key challenge

to any quantum theory of gravity is to identify the “atoms” of spacetime that can explain

such a spectacular amount of entropy for a black hole.

In string theory, for a special class of highly symmetric and near-extremal charged black

holes, this problem was solved by Strominger and Vafa [7]. The main idea of their work is that

the physics of near-extremal black holes is strongly related to the properties of the spacetime

in the vicinity of, but outside, the black hole horizon. This vicinity is called as the black hole

“throat”, and has the AdS or AdS like geometrical structure. The AdS geometry itself is a

solution to the Einstein’s gravitational equation with a negative cosmological constant [8].

In his very famous paper, Maldacena [9] argued that quantum gravity in the AdS spacetime

is equivalent or holographically dual to a conformally invariant quantum field theory (CFT)

with no gravity in a lower number of spacetime dimensions namely the boundary.

The idea by Maldacena, which later known as the AdS/CFT correspondence, is a con-

crete example of holographic world proposal by ’t Hooft [10] and Susskind [11]. The name

“holographic” comes from an analogy to the optical holograms analogy, where the image of

a three dimensional object can be stored in a two dimensional piece of film. The image in
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this film can be recreated by using some light technologies, where the image or information

can be rebuilt. According to ’t Hooft and Suskind, quantum gravity theory needs that the

degrees of freedom a gravitational object in D dimensions are equivalent to the degrees of

freedom of matter described by quantum theory in D − 1 dimensions. In the context of the

AdS/CFT correspondence, the conformal field theory living on the boundary of AdS can

reproduce the results of computations in the AdS spacetime gravitational theory. A black

hole in AdS spacetime is then simply described by the holographic dual CFT as a thermal

state (gas with a temperature), whose statistical degeneracy explains the black hole entropy.

The AdS/CFT correspondence is found to be such a remarkable discovery, that for about

more than a decade since it was proposed, the main concern of many theoretical physicists,

not only among string theorists, has been around this subject.

Nevertheless, the universe that we live in does not have a negative cosmological constant,

and the evidence of astrophysical black holes that we have now do not hint at the existence

of the highly electrically or magnetically charged ones as in [7]. How then can we get the

benefits of this new holographic or duality ideas to the “real” world, or to be more specific

“real” astrophysical black holes. In a 2008 Physical Review D paper [12], Guica et al propose

that the entropy of an extremal Kerr black hole can be described holographically by a non-

gravitational two dimensional CFT (CFT2). The rotational parameter per unit mass a∗ for

an extremal black hole is unity. In [13], the authors show that the astrophysical object GRS

1915+105, whose mass is about 14 times the mass of the sun, has a∗ > 0.98. It reflects that

near-extreme rotating black holes, or at least a near-extremal ones, certainly occur in nature.

The argument given by Guica et al is free of string theory, or any other specific quantum

gravity theory. Following an earlier work by Bardeen and Horowitz [14], the authors observe

that an extreme rotating black hole has a near-horizon throat of a certain form that controls

the dynamical properties of low-energy objects orbiting the black hole horizon. Examining

the properties of this geometry, they argue that the quantum theory of gravity in this space

must have the two dimensional conformal symmetry. Guica et al. use this symmetry to count

the microstates of an extremal Kerr black hole, i.e. deriving its entropy. This work later

is called the Kerr/CFT correspondence. The Kerr/CFT correspondence has been studied

extensively for different four and higher dimensional extremal rotating black holes which the
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dual chiral conformal field theory always contains a left-moving sector1 [15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27]. For these extremal black holes, the near horizon geometry

contains a copy of AdS space with isometries that could be extended to Virasoro algebra,

hence it may explain the appearance of conformal structure.

However, the standard techniques of Kerr/CFT correspondence for extremal rotating

black holes cannot be applied to non-extremal black holes because there is no simple sym-

metry near the non-extremal black hole horizon that may point to the conformal structure.

Moreover, for the non-extremal black holes, the right-moving sector of dual CFT turns on

and there is no consistent boundary conditions that allow for both left and right-moving sec-

tors in CFT. Nevertheless, as it is noted in [28], there is other conformal invariance, known

as hidden conformal invariance, in the solution space of the wave equation in the background

of rotating non-extremal black holes. This means the existence of conformal invariance in a

near horizon geometry is not a necessary condition, and the hidden conformal invariance is

sufficient to have a dual CFT description. The idea of hidden conformal symmetry in the

solution space of the wave equation for a neutral scalar field in different rotating backgrounds

was explored in detail in [29, 30, 31, 32, 33].

For the class of four-dimensional rotating charged black holes such as Kerr-Newman,

there are two dual CFTs; one is associated with the rotation of the black hole, while the

other one is associated with the electric charge of the black hole. The two different dual

pictures of black hole are called J and Q pictures [34]. The angular momentum and the

charge of a Kerr-Newman black hole are in correspondence with the rotational symmetry of

a black hole in the φ direction and the gauge symmetry, respectively. The latter symmetry

can be considered geometrically as the rotational symmetry of the uplifted Kerr-Newman

black hole in the fifth-direction χ. By doing so, the original four dimensional spacetime with

coordinates (t, r, θ, φ) is embedded into a five dimensional one with χ as an extra dimension.

As a result, the combination of two rotational symmetries of uplifted five-dimensional Kerr-

Newman black hole lead to two new CFTs (φ′ and χ′ pictures [23]). These two pictures neatly

can be embedded into a general picture by using the torus (φ, χ) modular group SL(2,Z).

1In CFT2, we are introduced to the left-moving and right-moving sectors that refer to the holomorphic
and anti-holomorphic parts of the theory, respectively.
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One can easily obtain the CFT results in J or Q pictures for Kerr-Newman black hole [34]

as the special case of CFT results in either φ′ or χ′ pictures after setting some specific values

to the components of SL(2,Z) modular group transformation’s matrix.

One other class of rotating charged black hole solutions in four dimensions is Kerr-Sen

geometry [35]. The solution includes three non gravitational fields: an antisymmetric tensor

field, a vector field and a dilaton. The Kerr-Sen solution is an exact solution to the equations

of motion of effective action of heterotic string theory in four dimensions. In [16], it was

shown that for an extremal Kerr-Sen black hole, the central charge of dual chiral CFT

doesn’t get any contributions from the non-gravitational fields. Furthermore, the central

charge leads to the microscopic entropy of Kerr-Sen black hole that is in perfect agreement

with the Bekenstein-Hawking entropy. We also notice that the Kerr-Sen solutions contain

a scalar dilatonic field. However, the solution space of dilaton equation does not show any

conformal symmetry, which is in agreement with previously observation of no contribution

of non-gravitational fields to the central charges of dual CFT in the extremal case [16].

Inspired by the existence of different CFT pictures for the four-dimensional non-extremal

rotating charged Kerr-Newman black hole, we investigate the CFT results in a general picture

and so the possibility of finding the CFT results in φ′ and χ′ pictures for the generic non-

extremal Kerr-Sen black hole. In this regard, we consider the equation of motion for a charged

scalar field in the background of Kerr-Sen black hole and look for the hidden conformal

symmetry in the general picture. The charge of the scalar field appears to be crucial in

determining the existence of the general picture, hence we cannot consider the wave equation

of a neutral scalar field as in [29]. We then discuss the absorption of scalar fields in the

near region of a non-extremal Kerr-Sen black hole. In addition, we find an extended version

of hidden conformal generators [36] that involves one parameter for the class of Kerr-Sen

solutions. These conformal generators in the appropriate limits, provide a completely new

set of conformal symmetry generators for the charged Gibbons-Maeda-Garfinkle-Horowitz-

Strominger black hole, which is the charged black hole solution known in string theory.

The discussion of hidden conformal symmetry for Kerr-Sen black holes is extended to the

extremal case also. Interestingly, the deformed version of hidden conformal generators [36]

can be found in the Kerr-Newman black holes studies. Here we deform the low energy and
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near region scalar wave equation in Kerr-Newman background. We find the links between

the conformal symmetries of black holes in Einstein-Maxwell theory, which cannot be seen by

using the hidden conformal symmetry with no deformation for Kerr-Newman black holes. We

find that our studies give us a new method in distinguishing the Kerr-Newman and Kerr-Sen

black holes. We know that the Kerr-Newman and Kerr-Sen black holes are characterized by

the same physical parameters, i.e. M , J , and Q.

Almost for all generic rotating black holes, the hidden conformal symmetry has been found

by looking at the symmetry of the solution space of a scalar test particle. Yet, the higher spin

test particles in Kerr/CFT correspondence also were considered recently in [37, 21], though

the higher spin test particles in the background of black holes had been considered before

[38, 39, 40] with different techniques. Quite recently the authors of [41] found the two-point

function of spinor fields in Kerr/CFT correspondence by variation of boundary action for

spin-1/2 particles. They determined an appropriate boundary term for the spinors in NHEK

geometry and used it to calculate the two-point function of spinors. Moreover, they found

a relation between spinors in the four-dimensional bulk and the boundary spinors living in

two dimensions. The two-point function of spinor fields is in agreement with the correlation

function of a two-dimensional CFT. The variational method in [41] for spinors in NHEK

geometry is in the same spirit for spinors in the context of AdS/CFT correspondence [42]. In

reference [37], the authors show that the two-point function of an operator at left and right

temperatures (TL, TR) and with conformal dimensions (hL, hR), is

G ∼ (−1)hL+hR

(
πTL

sinh (πTLt−)

)2hL
(

πTR
sinh (πTRt+)

)2hR

(1.0.2)

that will be useful later in this thesis.

The outline of this thesis is as follows. Chapter 2 contains some reviews on general

relativity and black holes. In this section we discuss the Einstein-Hilbert action, from which

the vacuum Einstein equations can be obtained. Then we show quite thoroughly how to

get the Kerr solution, starting from a general metric with the axial symmetry. Since the

purpose of this thesis is to show that black holes could be studied holographically by using

CFT2, we study in details some properties of Schwarzschild and Kerr black holes. Finally,

the thermodynamical aspects of Kerr black holes are given.
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Chapter 3 is divided into two parts, the review of CFT and AdS/CFT. On the CFT

part, we give a review on some basics in conformal field theory. We discuss the symmetry of

conformal field theory, and pay more attention to the two dimensional conformal field theory.

After deriving the partition function for the CFT2 defined on a torus, the Cardy formula

which is the entropy formula in CFT2 can be obtained. Furthermore, we also discuss the

scattering computation in CFT2. In AdS/CFT part, we discuss the prescription by Witten

for computing the two point function for scalars and vectors. The AdS/CFT computations

in the vector case become a warming up for the study of the Kerr/CFT correspondence using

the massless vector fields.

In chapter 4, we review the Kerr/CFT correspondence idea. Here we show how to get

the central charge for the Kerr black holes starting from the symmetry of a spacetime in the

near horizon of an extremal Kerr black hole. It turns out that we can recover the Bekenstein-

Hawking entropy for the Kerr black holes by using the Cardy formula in CFT2. In the

Cardy formula, i.e. the entropy formula in CFT2, we use the central charge associated to

the near horizon of extremal Kerr (NHEK) spacetime and the temperature that is measured

by an observer near the black hole’s event horizon. In this chapter we also review the

proposal by Becker et al [18] on the appropriate bulk-to-boundary propagator in Kerr/CFT

correspondence. Furthermore, we also review the hidden conformal symmetry of Kerr black

holes which was first proposed in [28], which would lead us the Kerr/CFT correspondence

for non-extremal Kerr black holes.

In chapter 5, we consider the wave equation of a massless charged scalar field in the

background of Kerr-Sen and Kerr-Newman spacetimes. We show in some appropriate limits of

parameters and using the general SL(2,Z) modular transformation, the equations of motion

can be simplified in the near region of these black holes. Then we show that the radial part

of wave equation in the near region can be rewritten as the SL(2,R)L × SL(2,R)R squared

Casimir operators in φ′ picture. In addition, we find the microscopic entropy of the dual CFT

for both black holes and compare them to their macroscopic Bekenstein-Hawking entropies.

We also compute the absorption cross section of scalars in the near region of Kerr-Sen black

hole and show explicitly that the result is in perfect agreement with the finite temperature

absorption cross section for a two-dimensional conformal field theory. Then we introduce the
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deformed equation of motion for the test field and find explicitly two classes of generators that

generate a generalized hidden conformal symmetry for the Kerr-Newman and Kerr-Sen black

holes. In Kerr-Sen case, the generators obtained in the deformed case can be used to find the

hidden conformal symmetry for the charged Gibbons-Maeda-Garfinkle-Horowitz-Strominger

black hole. In this chapter, we also study the hidden conformal symmetry of extremal Kerr-

Sen black holes and discuss their absorption cross section. As we have mentioned previously,

Kerr-Newman black holes also have the deformed hidden symmetry. We will show that the

hidden conformal symmetry generators with κ parameter for the Kerr-Newman black holes

can approach to the hidden conformal symmetry generators for Reissner-Nordstrom black

holes after setting an appropriate value for κ. Furthermore, these generators can be used to

get the conformal hidden symmetry generators for a Schwarzschild black hole after setting

the black hole’s charge to be zero.

In chapter 6, inspired by Becker et al [41], we derive the two-point function for Maxwell

fields in Kerr spacetime by varying the corresponding boundary action. Unlike the analysis

of spin-1/2 particles where there is no gauge condition, one needs to perform a more careful

treatment for the gauge fields where they are subjected to the gauge condition. In this regard,

we use the wave equation for spin-1 objects in Kerr background given in [46]. We note that

in [46], Teukolsky derived a set of wave equations for spin-0, 1/2, 1, and 2 field perturbations

in Kerr background. Furthermore, Chandrasekhar derived the solutions for Maxwell fields

in Kerr spacetime in term of Teukolsky radial and angular wave functions [47]. The gauge

condition that is used in [47] to get the spin-1 field solutions in Kerr background is quite com-

plicated which encumbers the derivation of the two-dimensional CFT correlators of vector

fields. However, we can use (1.0.2) to justify that gauge-independent part of two-point func-

tion for Maxwell fields in NHEK geometry is dual to the thermal CFT correlators. We start

with the Maxwell action in four-dimensional Kerr background where all four components of

Maxwell fields are taken into account. After explicitly calculating the appropriate boundary

action for the Maxwell fields, the leading terms in the boundary action contain only the

boundary fields corresponding to At and Aφ. Interestingly enough, this result provides the

correct number of degrees of freedom for the boundary fields and yields the corresponding

two-point function of spin-1 fields. Both the dimensionless Hawking temperature τH and the
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boundary value of the metric function ∆ = (r − r+)(r − r−) are small numbers that play

an important role to get the appropriate number of Maxwell fields on the boundary. The

smallness of these quantities is a result of considering the near horizon and near extremal

limits of Kerr geometry. All the results of this chapter support the Kerr/CFT correspondence

where the four-dimensional rotating black hole physics is dual to two-dimensional CFT on

the boundary. Finally in chapter 7, we wrap up where some concluding remarks and future

possible research problems.
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Chapter 2

Black Holes in Einstein gravity

John Wheeler, in the mid 1960s, was the first person who coined the name black hole for

a dead star. Before that, this object was known as the collapsed star according to English

literature and the frozen one in Russian. The two later names give us a better picture

about the origin of black hole. When stars run out their nuclear fuel, there is no more

thermal pressure produced by the nuclear reaction inside of a star which balances out the

gravitational attraction toward the center of mass. With a sufficient initial amount of mass,

this “dead” star cannot withstand to collapse into a singularity. At the singularity, a black

hole with a finite mass ceases to fill a volume, therefore the density of mass would become

extremely large.

Without general relativity, the concept of black holes can also be understood from the

Newtonian gravity. The “escape velocity” ve in Newtonian gravity is defined as the velocity

for an object to escape the orbit of a planet or star and reach a point at infinity. The escape

velocity is given by

ve =

√
2M

r
, (2.0.1)

where M is the mass of planet or star, and r is the distance from the object to the center

of mass of a planet or star. In equation (2.0.1) we use the natural unit where G = c = 1.

We will use this convention for the rest of this thesis unless we need to restore these units.

In general, the mass M and radius r may vary, and for r = 2M the velocity (2.0.1) becomes

the speed of light. Therefore, when r = 2M , only light rays that can escape. We know

that there is nothing that moves faster than light except for the hypothetical object tachyon.

Nevertheless, we do not consider tachyon as a physical object in this thesis, hence the further

contraction of the planet or star beyond the critical radius r = 2M creates an eternal prison

for any physical objects that fall into it.
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The history of black holes’ prediction begins when Pierre Laplace predicted the invisible

stars. By using the concept of escape velocity in Newtonian gravity, he concluded that a

very dense star does not allow any of its rays to radiate which yields the star to be invisible.

A quite similar argument in predicting the existence of black holes was also given by British

priest and geologist John Michell. Not only a star that may end as a black hole, even our

earth would become one if it is contracted into a size where the corresponding escape velocity

is larger than the speed of light. However, the problem is the huge amount of external energy

that is needed to perform such contraction. For stars with sufficient initial mass, the story is

different. When these stars run out of their nuclear fuel, there is no more thermal pressure

that balances the gravitational attraction towards the center of stars, hence the only dominant

force in these stars is gravity. It is gravity that shrinks these dead stars which finally end at

a singular point.

We understand that the prediction of black holes by using Newtonian gravity would not be

quite comprehensive. Einstein gave us a better theoretical framework regarding gravitational

interaction, namely the general theory of relativity. This theory is built from a very revolu-

tionary paradigm and provides us with some predictions that survive experimental tests so

far. This theory gives a more accurate prediction while Newtonian one fails. Therefore it is

natural to expect that prediction of black holes’ existence by using Newtonian gravity gets

some corrections from the general theory of relativity. Surprisingly, for a collapsing static and

electrically neutral massive object, the critical radius where the light rays will be trapped

forever is just the same as the one given from Newtonian calculation, i.e. r = 2M . All

objects that enter the surface with this radius will never get escape, hence one can imagine

this surface as a one way membrane.

In this chapter, we briefly review the Einstein theory of general relativity. Then we will

show step by step how to obtain the rotating solution of the vacuum Einstein equations,

namely Kerr solution, starting from a general form of axial symmetric solution. Subse-

quently, we review some properties of the static and rotating black holes, and discuss their

thermodynamics. The main references in this chapter are [43, 44, 45].
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2.1 A brief review on Einstein’s gravity

2.1.1 Metric tensor and isometries

In relativity, the spacetime metric or the metric for short, i.e. ds2, is a squared distance

between two spacetime points, say xµ = (t, x, y, z) and xµ+dxµ = (t+dt, x+dx, y+dy, z+dz).

For example, the four dimensional flat metric can be written as

ds2 = −dt2 + dx2 + dy2 + dz2 , (2.1.2)

where we have used the natural unit c = 1. The metric (2.1.2) is also known as the Minkowski

metric, named after mathematician Hermann Minkowski who was the first to formulate

the four dimensional spacetime which suits the Einstein’s special theory of relativity. The

formula (2.1.2) can be written in a more compact expression by using the Einstein summation

convention 1,

ds2 = ηµνdx
µdxν , (2.1.3)

where the tensor ηµν is known as the Minkowski metric tensor. As a matrix, the metric tensor

ηµν can be read

η =


η00 η01 η02 η03

η10 η11 η12 η13

η20 η21 η22 η23

η30 η31 η32 η33

 =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (2.1.4)

As we have mentioned before, the Minkowski metric (2.1.3) describes a flat spacetime

where the associated coordinates are three Cartesian spatial dimensions x, y, z, and one time

dimension t. It is clear that the metric tensor components will vary as we change the coor-

dinate system to describe the spacetime. As an example, if we prefer to use the spherical

coordinates {r, θ, φ} instead of the Cartesian ones {x, y, z}, then the metric (2.1.2) becomes

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2 . (2.1.5)

1The repeated indices are implicitly summed over, aµa
µ =

∑
µ
aµa

µ.
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There is no change for the time component in the metric, hence a matrix expression of the

metric tensor ηµν associated with the metric (2.1.5) is
−1 0 0 0

0 1 0 0

0 0 r2 0

0 0 0 r2 sin2 θ

 . (2.1.6)

When gravity is considered, the special theory of relativity is inadequate. To explain gravity,

Einstein introduced his other masterpiece, namely the general theory of relativity. According

to Einstein’s general relativity, the spacetime is curved by the presence of matter or energy.

Indeed, the concept of metric ds2 is still used in the case of curved spacetime, but in a more

general form compared to (2.1.3). We notice that the non-vanishing entries in (2.1.4) are

only in the diagonal parts, and the terms that couple to dt2 and dr2 are just some constants2.

It is a natural guess that for a curved spacetime, the corresponding metric tensor contains

several (if not all) non-vanishing off-diagonal entries.

Figure 2.1 illustrates this idea: the curved membrane cartoon represents a slice of curved

spacetime as a result of the presence of matter on it. We denote the metric tensor for

the curved spacetime by gµν . The components of gµν in general depend on the spacetime

coordinates, i.e. gµν = gµν (x), which can be obtained by solving the Einstein equations. The

metric in a curved spacetime then can be read as

ds2 = gµνdx
µdxν . (2.1.7)

An important concept that would be useful in the latter discussion is the symmetry of

spacetime. It is possible to perform a coordinate transformation, xµ → x′µ, that leaves the

metric tensor gµν invariant. Such transformation is called an isometry. Accordingly, the

infinitesimal coordinate transformation that keeps gµν invariant is known as the infinitesimal

isometry. Consider an infinitesimal coordinate transformation,

xµ → x′µ = xµ + εξµ (x) , (2.1.8)

2Later we will see that in curved spacetime, the functions in front of dt2 and dr2 are coordinate dependent.
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Figure 2.1: The illustration of curved spacetime by the presence of matter.

where ε is an arbitrary small constant and ξµ is an arbitrary vector. In general, the vector

ξµ depends on the spacetime coordinates xµ. Under the coordinate transformation (2.1.8),

the metric tensor gµν changes as

gµν (x)→ gµν (x) + εLξgµν +O
(
ε2
)
, (2.1.9)

where

Lξgµν = ξα∂αgµν + gµβ∂νξ
β + gνβ∂µξ

β . (2.1.10)

Equation (2.1.10) is known as the Lie derivative of gµν with respect to ξ. Neglecting the

O (ε2) term in (2.1.9), the vanishing of Lie derivative (2.1.10) yields the metric tensor gµν to

be invariant under the transformation (2.1.8). The Lie derivative Lξgµν can also be rewritten

in terms of covariant derivative operator ∇µ,

Lξgµν = ∇µξν +∇νξµ . (2.1.11)

When Lξgµν vanishes, we get the equations

∇µξν +∇νξµ = 0 , (2.1.12)

which is known as the Killing equation. The vector ξµ which satisfies (2.1.12) is called the

Killing vector. In equation (2.1.12), we have used the covariant derivative ∇µ for ξµ that is

given by

∇µξν = ∂µξν − Γανµξα . (2.1.13)
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The followings are some other operations of ∇µ to some arbitrary scalars and tensors

∇µφ = ∂µφ ,

∇µT
ν = ∂µT

ν + ΓνµαT
α ,

∇µT
αβ = ∂µT

αβ + ΓαµνT
νβ + ΓβµνT

αν ,

∇µTαβ = ∂µTαβ − ΓνµαTνβ − ΓνµβTαν ,

∇µT
α
β = ∂µT

α
β + ΓαδµT

δ
β − ΓδβµT

α
δ , (2.1.14)

which is the generalization of ∂µ in flat spacetime. Christoffel symbol of the second kind,

Γαδχ, is given in (2.1.31).

In general, the Lie derivative of a tensor metric (2.1.11) is not zero. We call the following

mapping

gµν → gµν + hµν , (2.1.15)

where

hµν = Lξgµν . (2.1.16)

as the diffeomorphism of gµν with the diffeomorphism parameter ξ. In deriving the central

charge for NHEK spacetime discussed in section 4.1, we use the diffeomorphism formula

(2.1.16).

2.1.2 Einstein-Hilbert action

An action is found to be a powerful framework in theoretical physics. From an action, a set of

equation of motions that describes the dynamics of each fields in the theory can be obtained

by using the least action principle. In fact, from an action we can explore the symmetries of

the system under consideration.

Before we discuss an action that describes the gravity according to Einstein, let us review

the action for free scalar fields in curved spacetime. Let us start by writing an action

S =

∫
R
L(Φ(x), ∂µΦ(x))d4x , (2.1.17)

where L is the Lagrangian density. In the action (2.1.17), we consider the Lagrangian density

is a function of the field Φ(x) and its first derivative, ∂µΦ(x). The integration in (2.1.17) is
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Figure 2.2: The illustration of spacetime R with coordinates x and the boundary ∂R
with coordinates y. To get y, we fix one of the coordinates in x which in the illustration
is the radial coordinate, i.e. r is fixed to be r0.

over some four dimensional spacetime region R. We consider Φ and ∂µΦ as two independent

variables, hence the variation of the action (2.1.17) can be written as

δS =

∫
R

(
∂L
∂Φ

δΦ +
∂L

∂ (∂µΦ)
∂µ (δΦ)

)
d4x . (2.1.18)

In the last equation, we have assumed that the operators ∂µ and δ commute with each other.

Furthermore, by using the Leibniz rule, we can rewrite the integrand of (2.1.18) as

δS =

∫
R

(∂L∂Φ
− ∂µ

(
∂L

∂ (∂µΦ)

))
δΦ + ∂µ

(
∂L

∂ (∂µΦ)
δΦ

)
︸ ︷︷ ︸

surface term

 d4x . (2.1.19)

The variation of the field, δΦ, vanishes on the boundary of integration region, ∂R. Thus we

can get rid of the surface term in (2.1.19) after applying the divergence theorem,∫
R
∂µ

(
∂L

∂ (∂µΦ)
δΦ

)
d4x =

∫
∂R

(
nµ

∂L
∂ (∂µΦ)

δΦ

)
d3y . (2.1.20)

In the last equation, nµ is a normal vector to the boundary ∂R, and y represents the boundary

coordinates, which is illustrated in figure 2.2.

Now the variation of action (2.1.19) becomes

δS =

∫
R

((
∂L
∂Φ
− ∂µ

(
∂L

∂ (∂µΦ)

))
δΦ

)
d4x . (2.1.21)
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The principle of least action, or stationary action principle, tells us that the action (2.1.21)

must vanish, δS = 0. It can be fulfilled by the condition

∂L
∂Φ
− ∂µ

(
∂L

∂ (∂µΦ)

)
= 0 . (2.1.22)

Equation (2.1.22) is known as the Euler-Lagrange equation for the field Φ. When the La-

grangian density depends on the field differentiations up to the second order, i.e. L =

L(Φ, ∂µΦ, ∂µ∂νΦ), we can generalize the procedure as shown in (2.1.18) - (2.1.22),

δS =

∫
R

(
∂L
∂Φ

δΦ +
∂L

∂ (∂µΦ)
∂µ (δΦ) +

∂L
∂ (∂µ∂νΦ)

∂µ∂ν (δΦ)

)
d4x

=

∫
R

(
∂L
∂Φ

δΦ + ∂µ

(
∂L

∂ (∂µΦ)
δΦ

)
−
(
∂µ

(
∂L

∂ (∂µΦ)

))
δΦ + ∂ν

(
∂L

∂ (∂µ∂νΦ)
∂µ (δΦ)

)
−
(
∂ν

(
∂L

∂ (∂µ∂νΦ)

))
∂µ (δΦ)

)
d4x

=

∫
R

(
∂L
∂Φ

δΦ + ∂µ

(
∂L

∂ (∂µΦ)
δΦ

)
−
(
∂µ

(
∂L

∂ (∂µΦ)

))
δΦ + ∂ν

(
∂L

∂ (∂µ∂νΦ)
∂µ (δΦ)

)
−∂µ

((
∂ν

(
∂L

∂ (∂µ∂νΦ)

))
δΦ

)
+

(
∂µ∂ν

(
∂L

∂ (∂µ∂νΦ)

))
δΦ

)
d4x . (2.1.23)

We consider that the field’s variation δΦ together with its first derivative with respect to

spacetime coordinates ∂µδΦ vanish at the boundary. Hence the vanishing of δS built from

the Lagrangian density L (Φ, ∂µΦ, ∂µ∂νΦ) is given by the condition

∂L
∂Φ
− ∂µ

(
∂L

∂ (∂µΦ)

)
+ ∂µ∂ν

(
∂L

∂ (∂µ∂νΦ)

)
= 0 . (2.1.24)

It is clear that the last equation reduces to (2.1.22) if the Lagrangian density L does not

depend on ∂µ∂νφ.

As an explicit example, consider the action for free massless scalar in curved space

S =

∫
d4x
√
−g∂µΦ∂µΦ . (2.1.25)

Here g is the determinant of covariant metric tensor gµν . The corresponding Lagrangian

density for this action is

L =
√
−g∂µΦ∂µΦ . (2.1.26)

The Euler-Lagrange equation (2.1.22) for this Lagrangian density gives an equation of motion

for massless scalar fields in a curved spacetime

∂µ
(√
−g∂µΦ

)
= ∂µ

(√
−ggµν∂νΦ

)
= 0 . (2.1.27)
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This massless scalar equation is discussed quite extensively in chapters 4 and 5.

It is interesting to note that one can build an equivalent action by adding a total derivative

term, ∂µZ
µ, to the Lagrangian density

L′ = L+ ∂νZ
ν (Φ, ∂µΦ) . (2.1.28)

As long as δΦ and ∂µδΦ vanish at the boundary, the divergence theorem again tells us that the

extra terms that comes from ∂µZ
µ (Φ, ∂µΦ) give no contribution to the variation of action. In

this sense, we can conclude that the old action S =
∫
R Ld

4x and the new one S ′ =
∫
R L

′d4x

are equivalent.

We now can discuss an action that produces the Einstein equations for gravity. To

avoid some complications, let us restrict to the vacuum case first, i.e. there is no matter or

energy outside of the massive body which curves the spacetime. In this case, the Einstein

gravitational equations can be read as

Rµν −
1

2
gµνR = 0 . (2.1.29)

The tensor Rµν is known as Ricci tensor, defined as

Rαβ = ∂ρΓ
ρ
αβ − ∂βΓραρ + ΓσαβΓρρσ − ΓσαρΓ

ρ
βσ , (2.1.30)

where Γαµν is known as Christoffel symbol of the second kind3,

Γαµν =
1

2
gαβ (∂µgβν + ∂νgβµ − ∂βgµν) . (2.1.31)

The Ricci tensor is symmetric under the permutation of its indices, i.e. Rαβ = Rβα. The

Christoffel symbol Γαµν is symmetric under the permutation of lower indices,

Γαµν = Γανµ . (2.1.32)

The action that produces the vacuum Einstein equations (2.1.29) after using the station-

ary action principle is known as the Einstein-Hilbert action,

SEH =
1

16π

∫
R
√
−gd4x . (2.1.33)

3There are two kinds of Christoffel symbol, the first kind and the second kind. Christoffel symbol of the
first kind is denoted by Γαβγ , while the second kind has one upper index, Γγαβ . Both of these Christoffel

symbols are related each other by a contraction with the tensor metric, Γαβγ = gγρΓ
ρ
αβ .
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The action (2.1.33) was first proposed by the German mathematician David Hilbert in 1915.

The scalar R in Einstein-Hilbert action (2.1.33) is called the Ricci scalar, given by R = Rµ
µ =

gµνRµν . The variation of (2.1.33) can be written as

δSEH =
1

16π

∫ (√
−gδR +Rδ

√
−g
)
d4x . (2.1.34)

Now our goal is to factor out the variation of metric tensor, δgµν , from the integrand (2.1.34)

to get the vacuum Einstein equations (2.1.29) with lower indices.

The variation of Ricci scalar can be examined in the following way,

δR = δ (gµνRµν) = gµνδRµν +Rµνδg
µν . (2.1.35)

Before we show the expression for δRµν , it is useful first to discuss the geodesic coordinate

system. In the geodesic coordinate system, one can find a point where all components of

Christoffel symbol Γαµν are vanishing. To do so, let us consider that originally the Christoffel

symbol has some non-zero components at a point x̃ in a coordinate system, Γαµν(x̃) 6= 0. Then

we perform the following transformation,

x′α = xα − x̃α +
1

2
Γαµν (x̃) (xµ − x̃µ) (xν − x̃ν) . (2.1.36)

Now by using the relation
∂x′µ

∂xν
= δµν

where δµν is the Kronecker delta function

δνµ =

 1 if µ = ν

0 if µ 6= ν
, (2.1.37)

we can verify following results for the transformation (2.1.36),

∂2x′α

∂xµ∂xν

∣∣∣∣
x=x̃

= −Γαµν (x̃) . (2.1.38)

In the geodesic coordinate system x′α, we can show the transformed Christoffel symbol

vanishes at x̃. The transformation of a Christoffel symbol between two different coordinate

system, say from xµ to x′µ, is

Γ′
α
µν =

∂x′α

∂xβ
∂xρ

∂x′µ
∂xσ

∂x′ν
Γβρσ︸ ︷︷ ︸

1st

+
∂x′α

∂xβ
∂2xβ

∂x′µ∂x′ν︸ ︷︷ ︸
2nd

. (2.1.39)
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We know that the Christoffel symbol is not a tensor, because it is not transformed in the

way a tensor is. The non-tensorial behaviour of Christoffel symbol can be seen from the

appearance of the second term in the last equation. If only the second term in (2.1.39) did not

appear, then the Christoffel symbol fulfills the requirement to be a tensor. Now we evaluate

the transformation of Christoffel symbol at x̃ according to the coordinate transformation

(2.1.36),

Γ′
α
µν(x̃) = δαβ δ

ρ
µδ

σ
νΓβρσ(x̃)− δαβΓβµν(x̃) = 0 . (2.1.40)

The result in (2.1.40) can be extended to all points of a curve in the geodesic coordinate

system.

We now compute the variation of Ricci tensor. To make it simple, let us perform the

calculation in the geodesic coordinate system first, where the Christoffel symbol Γµαβ vanishes,

but not its derivative. From the definition of Ricci tensor (2.1.30), one can compute

δRµν = ∇α(δΓαµν)−∇ν(δΓ
α
µα) , (2.1.41)

which is known as the Palatini identity. The last expression is a tensor relation, there-

fore it should be valid in any coordinate system. By using the equation (2.1.41), the term
√
−ggµνδRµν in the variation of Ricci scalar (2.1.35) can be written as a total derivative of

a vector,
√
−ggµνδRµν = ∂αV

α , (2.1.42)

where

V α =
√
−g
(
gµνδΓ

α
µν − gαµδΓτµτ

)
. (2.1.43)

The total derivative ∂αV
α gives no contribution to the variation of action. Consequently, we

can remove the total derivative term (2.1.42) from the variation of Einstein-Hilbert action.

Therefore, the only term that contributes to the variation of Ricci scalar (2.1.35) is Rµνδg
µν ,

δR = Rµνδg
µν . (2.1.44)

Since g is the determinant of tensor metric gµν , one can show that

δg

δgµν
= ggµν . (2.1.45)

20



Accordingly, by using gµσg
σν = δνµ, we can write

δgµν = −gµαgνβδgαβ . (2.1.46)

Hence, the equation (2.1.45) equivalently can be written as

δg = −ggµνδgµν . (2.1.47)

Furthermore, we have

δ
√
−g = −1

2

√
−ggµνδgµν . (2.1.48)

By combining the results in (2.1.44) and (2.1.47), we can show the variation of Einstein-

Hilbert action as

δSEH =
1

16π

∫ √
−g
(
Rµν −

1

2
gµνR

)
δgµνd4x . (2.1.49)

By looking at the integrand of the last equation, we can see that the vacuum Einstein

equations (2.1.29) ensures the Einstein-Hilbert action (2.1.33) is stationary.

2.1.3 Schwarzschild Black Holes

In order to get some insights about black holes in general, first we review some properties of

static black holes described by the Schwarzschild metric,

ds2 = gµνdx
µdxν = −

(
1− 2M

r

)
dt2
(

1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (2.1.50)

Accordingly, the non-zero components of the Schwarzschild metric tensor gµν are

gtt = −1 +
2M

r
, grr =

(
1− 2M

r

)−1

, gθθ = r2 , gφφ = r2 sin2 θ . (2.1.51)

The Schwarzschild metric becomes singular at two points, r = 0 and r = 2M . It turns

out that the singularity at r = 2M is just the incapability of the coordinate system that is

being used to be smooth everywhere except at the origin, i.e. r = 0. One can perform some

coordinate transformations to remove the singularity at r = 2M . However, the singularity

at r = 0 is special, and there is no coordinate transformation that can sweep away this

singularity. The singularity at r = 2M is called the coordinate singularity, due to the fact

that it depends on the choice of coordinates. The singularity at r = 0 is called the physical

or curvature singularity, since it always appear in any coordinate system.
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There is analytic way to distinguish the singularity at r = 0 and r = 2M . The Riemann

tensor

Rδ
αβχ = ∂βΓδαχ − ∂χΓδαβ + ΓεαχΓδεβ − ΓεαβΓδεχ , (2.1.52)

which is also called as curvature tensor, reflects the curvature of spacetime. According to our

tensor notation, the Riemann tensor expressed in (2.1.52) is a (1, 3) type tensor4. To have

the (0, 4) type Riemann tensor, we just to lower one of its indices by using the covariant5

metric tensor gµν ,

Rµαβχ = gµδR
δ
αβχ = gµδ

(
∂βΓδαχ − ∂χΓδαβ + ΓεαχΓδεβ − ΓεαβΓδεχ

)
. (2.1.53)

The vanishing of all components of Rµαβχ everywhere is the signature of a flat spacetime. If

the Riemann tensor of a spacetime contains nonzero components, it means that this spacetime

is curved. From the Riemann tensor, we can build some scalar quantities, for example the

Ricci scalar

R = gµνRµν = gµνRα
µαν , (2.1.54)

and the Kretschmann scalar

R2 = RµνρσR
µνρσ . (2.1.55)

The reason we look at these scalars is because a scalar quantity is unaffected by any coordinate

transformation, while tensors in general change as the coordinates are transformed. We know

already that Schwarzschild metric is a solution of the vacuum Einstein field equation Rµν = 0,

which means the associated Ricci scalar is also zero. Hence, there would be no difference

between the Ricci scalars at r = 0 and r = 2M .

The nonzero components of the Riemann tensor for the Schwarzschild spacetime are

Rtrtr =
2M

r3
, Rtθtθ = −(r − 2M)M

r2
, Rtφtφ = −(r − 2M)M sin2 θ

r2
,

Rrθrθ =
M

r − 2M
, Rrφrφ =

M sin2 θ

r − 2M
, Rθφθφ = −2rM sin2 θ . (2.1.56)

4This tensor has an upper index and three lower ones. In general, a (p, q) type tensor has p upper indices
and q lower ones.

5A covariant tensor has all of its indices as the lower ones, while a contravariant tensor has all of its indices
as the upper ones.

22



Then by using the contravariant Schwarzschild metric tensor

gtt = −
(

1− 2M

r

)−1

, grr =

(
1− 2M

r

)
, gθθ = r−2 , gφφ = r−2 sin−2 θ , (2.1.57)

one can compute the contravariant Riemann tensor

Rαβχδ = gακgβλgχµgδνRκλµν , (2.1.58)

as follows

Rtrtr =
2M

r3
, Rtθtθ = − 1

r4 (r − 2M)
, Rtφtφ = − M

r4 (r − 2M) sin2 θ
,

Rrθrθ =
(r − 2M)M

r6
, Rrφrφ =

(r − 2M)M

r6 sin2 θ
, Rθφθφ = − 2M

r7 sin2 θ
. (2.1.59)

The Kretschmann scalar for Schwarzschild spacetime can be computed using the formula

(2.1.55), which is

R2 =
48M2

r6
. (2.1.60)

In deriving (2.1.60), we have used the identities

Rκλµν = −Rλκµν = −Rκλνµ , Rκλµν = Rµνκλ . (2.1.61)

We can see the Kretschmann scalar (2.1.60) is singular for r = 0, but remains finite at

r = 2M . This result supports the statement that for Schwarzschild black holes, r = 0 is the

physical singularity while r = 2M is just a coordinate singularity.

Therefore, the surface r = 2M which is called the event horizon for Schwarzschild plays

an important role in black hole physics. Previously, by using the Newtonian gravity, we

have shown light rays can’t escape from the black hole’s horizon. Now, in the framework of

Eintein’s general relativity, this fact is supported by studying the behavior of light cones in

the Schwarzschild geometry.

Using a light cone as depicted in figure 2.3, we can distinguish the timelike (i), null or

lightlike (ii), and the spacelike (iii) trajectories. A particle has a timelike path if it moves

slower than light. Light propagates in the null or lightlike path, and an object that moves

faster than light has a spacelike path which lies outside of the light cone. Definitely the

latter case has no physical significance in our present discussion, i.e. we have not observed

any object that moves with speed faster than that of light in the laboratory.

23



Figure 2.3: (a) Light cone diagram in (2+1) dimensions: (i) inside of the light cone,
(ii) on the light cone, (iii) outside of the light cone. (b) “out” and “in” null paths
represent the outgoing and ingoing photon in (1+1) dimensions light cone diagram.

In Schwarzschild spacetime, in the case of light rays are moving radially we can set

ds2 = dθ = dφ = 0 . (2.1.62)

Hence the Schwarzschild metric (2.1.50) becomes

±dt =

(
r

r − 2M

)
dr . (2.1.63)

The equation (2.1.63) with (+) sign refers to the outgoing beam of light moving away radially

from the black hole, while the other one with (−) sign refers to the ingoing beam of light

towards the black hole. For the equation with (+) sign, the solution for equation (2.1.63) is

t = r + 2M ln |r − 2M |+ constant . (2.1.64)

Originally, the solution of (2.1.63) does not contain the absolute sign | | as what appears

in the last expression. Without this absolute sign, we understand that this solution applies

only to the region outside the horizon r = 2M , otherwise we would get a complex value for

t which is not physical. The role of the absolute sign in (2.1.64) is to extend the validity of

solution to the region r < 2M . Next for the equation (2.1.63) with minus sign in front of dt,

one can find the solution to be

−t = r + 2M ln |r − 2M |+ constant . (2.1.65)
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Figure 2.4: The structure of lightcones in Schwarzschild spacetime. The dashed lines
represent ingoing photon and the solid lines represent the outgoing one. The shaded
triangles represent the two dimensional light cones.

The curves given by these two functions, (2.1.64) and (2.1.65), represent the outgoing and

ingoing photon respectively, in the sense of “out” and “in” paths in figure 2.3 (b).

Figure 2.4 tells us that the curves representing the ingoing and outgoing photons are

asymptotic at r = 2M , which can be understood from the beginning since the coordinate

system that we choose in the Schwarzschild metric (2.1.50) fails to be smooth at r = 2M .

However, applying the Eddington-Finkelstein coordinates transformation

t = v − r − 2M ln
∣∣∣ r
2M
− 1
∣∣∣ , (2.1.66)

to the metric (2.1.50) gives us a new metric

ds2 = −
(

1− 2M

r

)
dv2 + 2dvdr + r2

(
dθ2 + sin2 θdφ2

)
, (2.1.67)

which is known as the Eddington-Finklestein metric. In the transformation (2.1.66), v is

called as the advanced time parameter. The Eddington-Finklestein metric (2.1.67) is free

from r = 2M pathology, i.e. it is not singular at r = 2M . Furthermore, the significance of

r = 2M surface can be studied in more details by using the equation (2.1.67). We observe
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Figure 2.5: Lightcones in Eddington-Finklestein spacetime.

that, even though the Eddington-Finklestein metric (2.1.67) does not diverge at r = 2M , we

still find that light rays are trapped once they enter the r = 2M surface.

Figure 2.5 is the diagram for the light cones in Eddington-Finkelstein coordinates, where

the diagram tells us the behavior of light rays moving in the radial motion,

ds2 = dθ = dφ = 0 . (2.1.68)

After employing (2.1.68), the metric (2.1.67) becomes an equation

2dvdr = (1− 2M

r
)dv2 , (2.1.69)

which has two general solutions. The first one is the constant v, which yields dv = 0. When

v is constant, equation (2.1.66) tells us that r decreases as t increases. Therefore, the straight

dash line (a) in figure 2.5 which represents the solution describe the ingoing light rays.

The second general solution for the equation (2.1.69) is when dv 6= 0, where we have

dv =
2r

r − 2M
dr . (2.1.70)

Upon integration in (2.1.70), we obtain

v = constant + 2
(
r + 2M ln

∣∣∣ r
2M
− 1
∣∣∣) , (2.1.71)
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which solves (2.1.69). The solution (2.1.71) diverges at r = 2M , which is interpreted as

the situation where light will stay forever on the horizon. The lightcone (ii) in figure 2.5

describes the outgoing null path of light rays which coincides with the the curve r = 2M .

In this sense, sometime horizon is viewed as a null surface, i.e. a surface where the radial

light rays neither can escape to infinity or fall into the physical singularity. For the inside

and outside of horizon regions, the solution (2.1.71) describes the ingoing and outgoing light

rays respectively as illustrated by the curved lines (c) and (b) in figure 2.5.

2.2 Black Hole in Kerr Spacetime and Its Thermody-

namics

2.2.1 Kerr Solution

In this subsection, we show how to obtain the Kerr solution starting from a general form of ax-

ially symmetric metric. We have seen that the non-vanishing components for the Minkoswki

and Schwarzschild metric tensors are the diagonal entries only. In fact, the term

r2(dθ2 + sin2 θdφ2) (2.2.72)

that appears in Schwarzschild metric (2.1.50) as well as in flat spacetime (2.1.5) shows that

these spacetimes are spherically symmetric6. In turns out that the metric for Kerr spacetime

in the Boyer-Lindquist coordinates7 does not contain (2.2.72), which indicates that the Kerr

spacetime is no longer spherical symmetric.

Attempts to obtain a solution of the vacuum Einstein equations (2.1.29) which describes

an empty spacetime outside a spinning massive object had been started since the discovery

of Schwarzschild solution in 1916. In fact, it was Kerr in 1963 [48] who first derived an

asymptotically flat solution of vacuum Einstein field equation outside of a spinning massive

object. It is such a quite straightforward idea to generalize the static spacetime solution

to the spinning one. It took about fifty years to achieve an acceptable solution to describe

6All spherical symmetric spacetime solutions in four dimension must have this term [8].
7Kerr metric in Boyer-Lindquist coordinates reduces to the Schwarzschild metric (2.1.50) after turning off

the rotational parameter.
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Figure 2.6: (a) oblate spheroid, (b) rotation in φ direction.

the empty spacetime outside of a spinning massive body. The problem was that the solution

must be asymptotically flat, i.e. the spacetime must be flat at infinity. This constraint comes

from the physical necessity that an observer should not feel gravity when he is very far from

a gravitational source. In this section, we show in details how to obtain the Kerr solution.

Let us start with a general metric proposed by Lewis [49],

ds2 = −V dt2 + 2Wdtdφ+ ((eY dx1)2 + eZ(dx2)2) +Xdφ2 . (2.2.73)

The functions V,W,X, Y, and Z are in general x1 and x2 dependent. Unlike the Schwarzschild space-

time which enjoys the spherical symmetry and contain no cross terms8 in their metric, we

observe a cross term in the Lewis metric (2.2.73), i.e. 2Wdtdφ. The cross term appears as

the off-diagonal components of the metric tensor, i.e. gtφ = gφt = W . The existence of this

off-diagonal component signs the lost of spherical symmetry in the spacetime (2.2.73). The

metric (2.2.73) was first proposed by Lewis in his effort to find a more general solution of

vacuum Einstein field equation which describes an axial symmetric and time independent

spacetime. An axial symmetry is expected to be possessed by a spacetime outside of a spin-

ning object. In fact, from a simple mechanical picture, we understand that a spinning object

will evolve to have an oblate spheroid configuration provided by its rotation about the minor

axis as depicted in 2.6 (a).

Since the rotation is denoted by the rate of φ angle as depicted in figure 2.6 (b), the

stationary and axially symmetric properties of the metric (2.2.73) can be seen by its t and φ

8The cross term we are mentioning here is f(x)dxµdxν where µ 6= ν and f(x) is the corresponding metric
component.
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independence. As a matrix, the metric tensor for the metric (2.2.73) can be rewritten as

gµν =


−V 0 0 W

0 eY 0 0

0 0 eZ 0

W 0 0 X

 . (2.2.74)

It follows from (2.2.74) that the contravariant version of (2.2.74) can be read as

gµν =


− X
VX+W 2 0 0 W

VX+W 2

0 e−Y 0 0

0 0 e−Z 0

W
VX+W 2 0 0 V

V X+W 2

 . (2.2.75)

We can verify that the covariant metric (2.2.74) and its contravariant version (2.2.75) obey

gµαg
αν = δνµ and gµνg

µν = 4 . (2.2.76)

Since we are hunting the solution for an empty spacetime outside of a massive rotating

body, the explicit expression of each functions V,W,X, Y, and Z in the metric (2.2.74) is

dictated by the vacuum Einstein equations (2.1.29). By performing a little bit algebra, the

vacuum Einstein equations (2.1.29) can be written as

Rµν = 0 . (2.2.77)

Therefore, the functions V,W,X, Y, and Z can be obtained by solving the equation (2.2.77).

In fact, this task is not easy to be performed. After computing all components of the Ricci

tensor for the metric (2.2.73), one realizes finding these functions by solving (2.2.77) is a

complicated task9. However, some tricks can be performed to reduce the complexities.

Previously, we have discussed the Einstein-Hilbert action where the Lagrangian density

is

L =
√
−gR . (2.2.78)

In detail, this Lagrangian density can be written as

L =
√
−ggµν

(
∂αΓαµν − ∂νΓαµα + ΓαµνΓ

β
αβ − ΓαµβΓβνα

)
. (2.2.79)

9We provide the components of Ricci tensor for the metric (2.2.73) in appendix A.
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Interestingly, the Lagrangian density

L′ = 1

2

(
Γαβα∂γ

(√
−ggβγ

)
− Γαβγ∂α

(√
−ggβγ

))
(2.2.80)

is equivalent to (2.2.79), in the sense that both (2.2.79) and (2.2.80) give the same equations

of motion after employing the principle of least action. This is due to the fact that the two

Lagrangian densities (2.2.80) and (2.2.79) differ by a divergence term,

L = L′ − ∂α
(√
−g
(
gαµΓχµχ − gµνΓαµν

))
. (2.2.81)

Therefore, both (2.2.79) and (2.2.80) produce the same vacuum Einstein equations after using

the Euler-Lagrange equations.

For the metric (2.2.73), the Lagrangian density (2.2.80) can be written as

L′ = e−(Y−Z)/2

2χ

(
∂1V ∂1X + (∂1W )2 + 2χ∂1χ∂1Z + ∂2V ∂2X + (∂2W )2 + 2χ∂2χ∂2Y

)
.

(2.2.82)

Here χ2 = V X + W 2 and we use the notation ∂k ≡ ∂
/
∂xk for k = 1, 2. The determinant

of metric tensor (2.2.74) is g = −χ2eY+Z . The Lagrangian density L′ in (2.2.82) gives the

Euler-Lagrange equations for gµν

∂L′

∂gαβ
− ∂γ

∂L′

∂ (∂γgαβ)
= 0 , (2.2.83)

as

2∂2
1χ+(∂1χ∂1Y − ∂2χ∂2Z)+

1

2

((
∂1V ∂1X + (∂1W )2)− (∂2V ∂2X + (∂2W )2)) = 0 , (2.2.84)

2∂2
2χ−(∂1χ∂1Y − ∂2χ∂2Z)− 1

2

((
∂1V ∂1X + (∂1W )2)− (∂2V ∂2X + (∂2W )2)) = 0 , (2.2.85)

∂1

(
∂1V

χ

)
+ ∂2

(
∂2V

χ

)
+
V

2χ
F = 0 , (2.2.86)

∂1

(
∂1X

χ

)
+ ∂2

(
∂2X

χ

)
+
X

2χ
F = 0 , (2.2.87)

and

∂1

(
∂1W

χ

)
+ ∂2

(
∂2W

χ

)
+
W

2χ
F = 0 , (2.2.88)

where

F ≡ (∂1V ) (∂1X) + (∂2V ) (∂2X) + (∂1W )2 + (∂2W )2

χ2
+ ∇̃2 (Y + Z) . (2.2.89)
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The equations (2.2.84) and (2.2.85) are obtained from (2.2.83) for g22 = eZ and g11 = eY

respectively. The operator ∇̃2 is the two dimensional Laplace operator, ∇̃2 ≡ ∂2
1 + ∂2

2 .

Adding (2.2.84) and (2.2.85) shows that the function χ must satisfy the two dimensional

Laplace equation,

∇̃2χ = 0 . (2.2.90)

Furthermore, equation (2.2.90) says that χ must be a harmonic function of x1 and x2. We

now assign x2 to be the axis of rotation z as depicted in Figure 2.6 (b), and x1 is the function

χ itself.

Subsequently we multiply equation (2.2.86) by X, equation (2.2.87) by V , and equation

(2.2.88) by 2W , then add all of these three equations to obtain

∂χ

(
1

χ
∂χχ

2

)
+ ∂z

(
1

χ
∂zχ

2

)
= χF . (2.2.91)

Since the left hand side of (2.2.91) is zero, the last equation can be rewritten as

−2χ2∇̃2Y = ∂χV ∂χX + (∂χW )2 + ∂zV ∂zX + (∂zW )2 , (2.2.92)

where we have considered Z = Y . By using the last equation, (2.2.86) and (2.2.88) can be

simplified to

∂2
χV + ∂2

zV + χ−1∂χV = −χ−2V
(
∂χV ∂χX + (∂χW )2 + ∂ZV ∂zX + (∂zW )2) , (2.2.93)

and

∂2
χW + ∂2

zW + χ−1∂χW = −χ−2W
(
∂χV ∂χX + (∂χW )2 + ∂ZV ∂zX + (∂zW )2) . (2.2.94)

We now can use a trick to reduce the number of functions that should be handled. We

have introduced χ which is defined as

χ =
√
V X +W 2 (2.2.95)

which can be considered as a constraint equation for V , X, and W . Therefore, only two out

of three functions V , X, and W that are really “free”. Accordingly, we could redefine V , X,

and W as

V = f , W = fω , and X = f−1χ2 − fω2 . (2.2.96)
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which satisfy (2.2.95). We now see, instead of dealing with three functions X, V , and W , we

are left with two functions f and ω which are really “free”.

Plugging the equations in (2.2.96) into the metric (2.2.73), we find

ds2 = f (dt− ωdφ)2 − f−1e2U
(
dχ2 + dz2

)
+ f−1χ2dφ2 , (2.2.97)

where Y = − ln f + 2U . From (2.2.93) and (2.2.94) we can have

f
(
∂2
χf + ∂2

zf + χ−1∂χf
)

=
(
(∂χf)2 + (∂zf)2)+ f 4χ−2

(
(∂χω)2 + (∂zω)2) , (2.2.98)

and

f 2
(
∂2
χω + ∂2

zω − χ−1∂χf
)

+ 2f (∂χf∂χω + ∂zf∂zω) = 0 . (2.2.99)

Interestingly, the last two equations can be rewritten in terms of ∇ operator in the flat three

dimensional cylindrical coordinates, where

∇ = êχ∂χ + êz∂z + êφχ
−1∂φ , (2.2.100)

∇2 = ∂2
χ + ∂2

z + χ−1∂χ + χ−2∂2
φ , (2.2.101)

∇ · ~A = χ−1∂χ (χAχ) + ∂zAz , (2.2.102)

for ~A = êχAχ + êzAz.

We can rewrite (2.2.98) and (2.2.99) as

f∇2f − ~∇f · ∇f − χ−2f 4∇ω · ∇ω = 0 , (2.2.103)

and

∇ ·
(
χ−2f 2∇ω

)
= 0 . (2.2.104)

Following Ernts [50], the equations (2.2.103) and (2.2.104) can be derived by using the Euler-

Lagrange equation with the Lagrangian density

L = −1

2

(
χf−2∇f · ∇f − χ−1f 2∇ω · ∇ω

)
. (2.2.105)

Performing the Euler-Lagrange equation for fields f and ω from the Lagrangian density

(2.2.105) gives the equations (2.2.103) and (2.2.104) respectively. In this sense, one can say

that the equation (2.2.105) is an effective Lagrangian density to get the equations (2.2.103)
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Figure 2.7: The illustration of the unit vectors in cylindrical coordinates related to
the operator 2.2.100.

and (2.2.104). Unfortunately, from the Lagrangian density (2.2.105), we are unable to get

any information about the dynamics of U with respect to χ and z. However, using equations

(2.2.84) and (2.2.85) we can get

2∂χU − f−1∂χf = (4χ)−1 [f−2χ2
(
(∂χf)2 − (∂zf)2)− 2ω (∂χω∂χf − ∂zω∂zf)

− (f∂χω + ω∂χf)2 + (f∂zω + ω∂zf)2] , (2.2.106)

and

2∂zU − f−1∂zf = (2χ)−1 [f−2χ2∂χf∂zf + ω (∂zω∂χf − ∂χω∂zf)

− (f∂χω + ω∂χf) (f∂zω + ω∂zf)] . (2.2.107)

which show how U changes with respect to χ and z coordinates.

Equation (2.2.104) shows the existence of a vector ~A which obeys

χ−2f 2∇ω = ∇× ~A . (2.2.108)

Since ω is not a function of φ, then the vector ∇ω will be orthogonal to the unit vector êφ

as illustrated in figure 2.7. Hence, from equation (2.2.108) we can get

(∇× ~A) · êφ = 0 . (2.2.109)

We shall now find that

∇× ~A = χ−1 (∂χAz − ∂z (χAz)) êχ+χ−1 (∂χ (χAφ)− ∂φAχ) êz+(∂χAz − ∂zAχ) êφ . (2.2.110)
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Also it follows from (2.2.109) that we must have

∂χAz = ∂zAχ . (2.2.111)

Consequently, in term of a function F , we can write the component of ~A as

Aχ = ∂χF , Az = ∂zF . (2.2.112)

Now we introduce the twist potential

Φ = ∂φF − χAφ . (2.2.113)

Hence, the curl of ~A in (2.2.110) can be rewritten as

∇× ~A = χ−1 (êχ∂zΦ− êz∂χΦ) . (2.2.114)

Furthermore, the last equation finally can be read

∇× ~A = χ−1êφ ×∇Φ . (2.2.115)

In [50], Ernst considered that the function Φ is φ independent, i.e.

∂φΦ = 0 . (2.2.116)

To guarantee that Φ does not depend on φ, the F function must satisfy

∂2
φF = χ∂φAφ . (2.2.117)

In addition, using the vector relation

~A×
(
~B × ~C

)
=
(
~A · ~C

)
~B −

(
~A · ~B

)
~C (2.2.118)

one can verify that

êφ × (êφ ×∇Φ) = −∇Φ . (2.2.119)

Plugging the result (2.2.115) to (2.2.108) yields

χ−1f 2∇ω = êφ ×∇Φ , (2.2.120)
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from which it follows that

−χ−1êφ ×∇ω = f−2∇Φ . (2.2.121)

We have used (2.2.119) to get the last equation. In fact, from the relation (2.2.115) we can

write

∇ · (χ−1êφ ×∇Φ) = 0 (2.2.122)

which can be seen easily from an identity in vector calculus, ∇ ·
(
∇× ~A

)
= 0. Furthermore

the last equation also implies

∇ · (f−2∇Φ) = 0 . (2.2.123)

The last equation gives some benefits later in deriving the Ernst equation, from which the

solution for the vacuum Einstein equations (2.1.29) can be obtained.

We now arrive at an important step. Following Ernst [50], we introduce a complex

potential E in term of f and the twist potential Φ,

E = f + iΦ . (2.2.124)

Recall that f is just the metric component gtt in (2.2.97). Using this complex potential

(2.2.124), we can verify that the equations (2.2.103) and (2.2.104) are equivalent to

Re (E)∇2E = ∇E · ∇E . (2.2.125)

Proving the last equation is quite simple. First we need to recall that ∇ω is orthogonal to

the unit vector in azimuth direction êφ. Consequently, by using the vector product identity(
~A× ~B

)
·
(
~A× ~B

)
=
(
~A · ~A

)(
~B · ~B

)
−
(
~A · ~B

)2

, we can have

f∇2f = ∇f · ∇f −∇Φ · ∇Φ . (2.2.126)

We have plugged ∇ω in (2.2.120) to (2.2.103) to get the last equation. Therefore, by using

the definition of complex potential (2.2.124), we can rewrite (2.2.126) as

f∇2f + 2i∇f · ∇Φ = ∇E · ∇E . (2.2.127)

From the equation (2.2.123), we can show that

2∇f.∇Φ = f∇2Φ . (2.2.128)
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By plugging the last formula into (2.2.127), we finally recover (2.2.125).

We may rewrite a new complex potential E as [50]

E =
ξ − 1

ξ + 1
. (2.2.129)

Related to (2.2.129), the following identities

Re

(
ξ − 1

ξ + 1

)
=

ξξ∗ − 1

(ξ + 1) (ξ∗ + 1)
, (2.2.130)

∇
(
ξ − 1

ξ + 1

)
· ∇
(
ξ − 1

ξ + 1

)
=

4

(ξ + 1)4 (∇ξ · ∇ξ) , (2.2.131)

and

∇2

(
ξ − 1

ξ + 1

)
=

2

(ξ + 1)2

(
∇2ξ − 2

(ξ + 1)
∇ξ · ∇ξ

)
. (2.2.132)

can be obtained, and are found to be useful in writing the Ernst equation later. Here we

need to recall that ξ is also independent of φ. By using the last three equations, it is easy to

show that the equation (2.2.125) can be rewritten in terms of ξ as

(ξξ∗ − 1)∇2ξ = 2ξ∇ξ · ∇ξ , (2.2.133)

which is known as the Ernst equation. This equation is quite important in general relativity.

From this equation we can derive some solutions of the vacuum Einstein equations [45]. In

terms of ξ, we can show several equations related to the functions in the metric (2.2.97)

f = Re

(
ξ − 1

ξ + 1

)
, (2.2.134)

∇ω =
2χ

(ξξ∗ − 1)2 Im
(
(ξ∗ + 1)2 êφ ×∇ξ

)
, (2.2.135)

∂U

∂χ
=

χ

(ξξ∗ − 1)2

(
∂ξ

∂χ

∂ξ∗

∂χ
− ∂ξ

∂z

∂ξ∗

∂z

)
, (2.2.136)

and
∂U

∂z
=

2χ

(ξξ∗ − 1)2 Re

(
∂ξ

∂χ

∂ξ∗

∂z

)
. (2.2.137)

It is clear that the relation (2.2.129) gives us (2.2.134), and the equation (2.2.135) is related

to the result in (2.2.120). The last two equations, (2.2.136) and (2.2.137), are obtained from

(2.2.106) and (2.2.107).
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For the latter benefits, it is useful to introduce the prolate spheroidal coordinates {x, y}

where the transformation can be read as

χ = k
√

(x2 − 1) (1− y2) , (2.2.138)

and

z = kxy , (2.2.139)

where |y| < 1 < |x| and k is a constant scale factor. The variables x and y in terms of k, z,

and χ obtained from (2.2.138) and (2.2.139) are

x =
1

2k

(√
(z + k)2 + χ2 +

√
(z − k)2 + χ2

)
, (2.2.140)

and

y =
1

2k

(√
(z + k)2 + χ2 −

√
(z − k)2 + χ2

)
. (2.2.141)

In the x and y coordinates, the Ernst equation (2.2.133) can be read as

(ξξ∗ − 1)
[
∂x
((
x2 − 1

)
∂xξ
)

+ ∂y
((

1− y2
)
∂yξ
)]

= 2ξ∗
((
x2 − 1

)
(∂xξ)

2 +
(
1− y2

)
(∂yξ)

2) .
(2.2.142)

The next step is solving the equation (2.2.142) for the complex scalar ξ. Once we get the

solution for ξ, the next step is finding the functions f, ω, and U in terms of this complex

scalar. Working out the functions f and ω is quite straightforward, but dealing with U is quite

delicate since this function is dictated by the two coupled equations (2.2.106) and (2.2.107).

Here we get the benefit of working out the Ernst equation in the prolate spheroid coordinate.

In this coordinate, equations (2.2.106) and (2.2.107) can be respectively rewritten as

∂U

∂x
=

(1− y2)(
|ξ|2 − 1

)
(x2 − y2)

[
(x− 1)2

(
x

∣∣∣∣∂ξ∂x
∣∣∣∣2 − y(∂ξ∂x ∂ξ∗∂y +

∂ξ∗

∂x

∂ξ

∂y

))

−x
(
1− y2

) ∣∣∣∣∂ξ∂y
∣∣∣∣2
]
, (2.2.143)

and

∂U

∂y
=

(x2 − 1)(
|ξ|2 − 1

)
(x2 − y2)

[(
x2 − 1

)
y

∣∣∣∣∂ξ∂x
∣∣∣∣2

−
(
1− y2

)(
y

∣∣∣∣∂ξ∂y
∣∣∣∣2 + x

(
∂ξ

∂x

∂ξ∗

∂y
+
∂ξ∗

∂x

∂ξ

∂y

))]
. (2.2.144)
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Later we find out that the real part of ξ is coupled linearly to x while the imaginary part is

coupled linearly to y. Therefore, we can restrict the case where ∂ξ
∂x

is completely real and ∂ξ
∂x

is completely imaginary. Now, in general we can write the complex potential ξ as

ξ =
u+ iv

m+ in
. (2.2.145)

Hence the equations (2.2.143) and (2.2.144) become

∂U

∂x
=

x (1− y2)

A2 (x2 − y2)

[(
x2 − 1

)(∂u
∂x
m− ∂v

∂x
n− y∂m

∂x
+ v

∂n

∂x

)2

−
(
1− y2

)(∂u
∂y
n− ∂v

∂y
m− u∂n

∂y
− v∂m

∂y

)2
]
, (2.2.146)

and
∂U

∂y
=

y (x2 − 1)

A2 (x2 − y2)

[(
x2 − 1

)(∂u
∂x
m− ∂v

∂x
n− u∂m

∂x
+ v

∂n

∂x

)2

−
(
1− y2

)(∂u
∂y
n+

∂v

∂y
m− u∂n

∂y
− v∂m

∂y

)2
]
, (2.2.147)

where A = u2 + v2 −m2 − n2. The solution for Z after integration of the last two equations

are

U =
1

2
ln

(
CA

(x2 − y2)α

)
. (2.2.148)

Here, C is an integration constant, and the boundary condition e2U → 1 as x→∞ determines

both C and α in equation (2.2.148).

Following Ernst, if the new complex scalar ξ is expressed in a linear combination

ξ = px− iqy , (2.2.149)

the equation (2.2.142) can be solved exactly when

p2 + q2 = 1 . (2.2.150)

By using this solution for ξ, we have the explicit expression of each functions in the metric

(2.2.97)

f =
p2x2 + q2y2 − 1

q2y2 + (px+ 1)2 , (2.2.151)

ω = −2q (1− y2) (px+ 1)

q2y2 + p2x2 − 1
, (2.2.152)
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and

U =
1

2
ln

(
p2x2 + q2y2 − 1

(x2 − y2) p2

)
. (2.2.153)

Finally, using the solutions (2.2.151), (2.2.152), and (2.2.153), as well as the transformations

(2.2.140) and (2.2.141), the reading of metric (2.2.97) becomes

ds2 = k2

(
− p2x2 + q2y2 − 1

(px+ 1)2 + q2y2

(
dt− 2q (1− y2) (px+ 1)

p2x2 + q2y2 − 1
dφ

)2

+
(
(px+ 1)2 + q2y2

)( dx2

p2 (x2 − 1)
+

dy2

p2 (1− y2)
+

(x2 − 1) (1− y2) dφ2

p2x2 + q2y2 − 1

))
.(2.2.154)

The metric (2.2.154) is not in the form as originally proposed by Kerr in [48], but we

can map it to the original form by using some transformations. The original form Kerr

metric proposed in [48] is less popular in the literature due to the fact it has no close ap-

pearance to the Schwarzschild metric. The more familiar one is the metric derived by Boyer

and Lindquist which is also the rotating solution of vacuum Einstein equations (2.2.77).

The Boyer-Lindquist metric is used more frequently since it has an appearance like the

Schwarzschild metric. To get the Boyer-Lindquist form from the metric (2.2.154), we need

to perform the following transformations

x =
r −M√
M2 − a2

, y = cos θ , (2.2.155)

where φ and t are unchanged, as well as to set the parameters

p =
k

M
, q =

a

M
, k2 = M2 − a2 . (2.2.156)

The resulting metric now can be read as

ds2 = −dt2 + %2

(
dθ2 +

dr2

∆

)
+
(
r2 + a2

)
sin2 θdφ2 +

2Mr

%2

(
dt− a sin2 θdφ

)2
(2.2.157)

where % = r2 + cos2 θ and ∆ = r2 − 2Mr+ a2. The mass of black hole is M , and its angular

momentum J is given by J = Ma where a is called as the rotational parameter. Taking

a = 0 in (2.2.157), we recover the Schwarzschild metric (2.1.50) as we have mentioned at the

beginning.
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2.2.2 Kerr Black Holes

In subsection 2.1.3, we studied some aspects of static black holes by using the Schwarzschild met-

ric (2.1.50). A more general case for black holes which are still in the framework of the vac-

uum Einstein gravitational system is the rotating black holes described by the Kerr solution

(2.2.157) in Boyer-Lindquist coordinate,

ds2 = −
(
∆− a2 sin2 θ

)
%2

dt2 − 4Mar sin2 θ

%2
dtdφ+

%2

∆
dr2 + %2dθ2 +

Σ2 sin2 θ

%2
dφ2 , (2.2.158)

where

∆ = r2 − 2Mr + a2 , %2 = r2 + a2 cos2 θ , Σ2 =
(
r2 + a2

)2 − a2∆ sin2 θ . (2.2.159)

The components of metric tensor gµν associated to the metric (2.2.158) are

gtt = −∆− a2 sin2 θ

ρ2
, gtφ = gφt = −2Mar

ρ2
sin2 θ ,

grr =
ρ2

∆
, gθθ = ρ2 , gφφ =

Σ2 sin2 θ

ρ2
, (2.2.160)

and the contravariant version are

gtt = −(r2 + a2)
2 − a2 sin2 θ

∆ρ2
, gφt = gtφ = −2Mar

∆ρ2
,

grr =
∆

ρ2
, gθθ =

1

ρ2
, gφφ =

∆− a2 sin2 θ

∆ρ2 sin2 θ
. (2.2.161)

Solving ∆ = 0 gives the locations of event horizons of Kerr black holes, which are

r± = M ±
√
M2 − a2 . (2.2.162)

The radius r+ and r− are called the outer and inner event horizons respectively, since r+ > r−.

When the rotation of black hole stops, the inner horizon vanishes and the outer one becomes

2M which is the location of Schwarzschild black hole’s event horizon. In fact, only the outer

horizon which behaves like the event horizon of Schwarzschild black holes. The area of Kerr

black holes is the surface at r = r+, which can be computed by an integration over proper

lengths
√
|gθθ|dθ and

√
|gφφ|dφ,

AH = ΣH

π∫
0

dθ sin θ

2π∫
0

dφ = 8πMr+ . (2.2.163)
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Here ΣH is the Σ in (2.2.159) evaluated at the event horizon radius r+.

When a2 > M2, the outer and inner horizons (2.2.162) become complex functions, which

are considered to be non-physical. In such situation, the naked singularity is created, i.e.

there is not event horizon that covers the physical singularity of black hole. We exclude the

existence of the black hole’s naked singularity, hence there is a constraint for the maximum

value of rotational parameter, i.e. a ≤M . When a Kerr black hole is rotating with the rota-

tional parameter a = M , the black hole is said to be in the extremal condition. Furthermore,

in the extremal case, the inner and outer horizons of Kerr black holes coincide, r+ = r− = M .

In classical mechanics, we are familiar with some constants of motion associated to the

dynamics of particles such as the energy and momentum. In general relativity, we also can

find the constants of motion related to the dynamics of a particle in curved space. In section

2.1.1, we have discussed the Killing vectors ξµ which obey the Killing equation (2.1.12). For

Kerr spacetime, the associated Killing vectors are ξt and ξφ. These vectors indicate that the

Kerr spacetime is stationary and invariant under φ angle rotation. In other words, an observer

sees no difference when he moves from a point (t1, r1, θ1, φ1) to another one at (t2, r1, θ1, φ2).

The stationary behavior of Kerr spacetime is obvious from the fact that the metric tensor

components describing it are time dependent.

Let us consider a particle which is moving along the path xµ(τ), where τ is the proper

time10. The tangent vector to this path is uµ = dxµ/dτ . Suppose that the path xµ is a

geodesic, thus this path obeys the geodesic equation

duµ

dτ
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0 . (2.2.164)

Therefore, the tangent vector uµ satisfies

uα∇αu
µ = 0 . (2.2.165)

Moreover, we consider the scalar uµξ
µ. In the uα direction, the rate of change uµξ

µ is

uα∇α (uµξ
µ) = ξµuα∇αuµ +

1

2
uαuµ (∇αξµ +∇µξα) . (2.2.166)

10By restoring the speed of light c in the metric, the proper time can be understood from the equation
ds2 = c2dτ2.
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It is clear that the right hand side of the last equation vanishes provided by the geodesic

equation (2.2.165) and the Killing equation (2.1.12).

We now examine the scalar uµξ
µ for Schwarzschild and Kerr spacetimes. Recall that

both Kerr and Schwarzschild spacetimes have the ξt Killing vector. Let us focus on the

Schwarzschild spacetime first. A particle that is moving along a geodesic path in Schwarzschild

spacetime has a constant energy,

ξtu
t = gttξ

tut = gttu
t = E = const , (2.2.167)

where we have used ξt = (1, 0, 0, 0). Furthermore, from (2.2.167) we can write

ut = E . (2.2.168)

We now show the constant of motion associated to the Killing vector ξφ. For Schwarzschild

spacetime, whose all off-diagonal components in the metric are vanishing, the contraction of

the Killing vector ξφ and uφ can be read as

ξφu
φ = gφφξ

φuφ = gφφu
φ = L = constant . (2.2.169)

From the last equation we may write

uφ = L . (2.2.170)

Consider a particle which is orbiting around a Schwarzschild black hole on the xy-plane as

illustrated in figure 2.8. Hence, the particle’s rotation is about the z-axis. Since the particle

is moving on the xy-plane where the associated θ angle would be π/2, by using uφ = dφ/dτ

we can get from (2.2.169) that asymptotically

r2dφ

dτ
= L (2.2.171)

after plugging gφφ = r2 sin2 θ.

Equation (2.2.171) reminds us the angular momentum in classical mechanics, m~r × ~v.

This fact leads us to the interpretation uφ as the angular momentum per unit mass of a

test particle observed at infinity. From the results (2.2.168) and (2.2.170) we learn that the

constants of motion in Schwarzschild spacetime related to the Killing vectors ξt and ξφ are

the energy ut and angular momentum per unit mass uφ respectively.
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Figure 2.8: An illustration of an orbiting particle on the xy-pane in
Schwarzschild spacetime.

We now turn to the problem in identifying the constants of motion in the Kerr spacetime

by employing the similar prescriptions that we have performed in the Schwarzschild case.

The Killing vectors for Kerr spacetime are ξt and ξφ, just like in the Schwarzschild case.

Hence, ut and uφ would be the constants of motion for Kerr spacetime. In fact, there is a

slight difference for Kerr spacetime related to the presence of gtφ in the corresponding metric

tensor. Related to the axial symmetry of Kerr spacetime, the constant of motion associated

to the Killing vector ξφ would be

uφ = Lz (2.2.172)

where Lz is the projection of angular momentum per unit mass with respect to the rotational

axis, i.e. z-axis. The existence of the off-diagonal metric components gtφ = gφt leads to

dφ

dτ
= uφ = gφtut + gφφuφ . (2.2.173)

Interestingly, from the last equation we observe that it is possible for a distant observer to

measure a vanishing angular momentum per unit mass uφ for a freely falling test particle

while uφ is not zero. This is interpreted as the frame dragging effect, where a particle with

initial zero angular momentum acquires some angular velocities as it gets closer to the Kerr

black hole. Such effect doesn’t exist in the Schwarzschild spacetime. The illustration of this

process is given in the figure 2.9.
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Figure 2.9: (a) Radially falling photon into a static black hole, (b) Dragging effect
for photons which initially fall radially into a rotating black hole.

2.2.3 Surface gravity of Kerr black holes

Surface gravity of a black hole is the gravitational strength at the horizon measured by an

observer at infinity. It is constant everywhere on the surface of black hole’s horizon. This

behavior resembles the temperature in thermodynamics, which is also constant at all points

of a body in thermal equilibrium. It turns out that the surface gravity and temperature of

radiating black holes are closely related.

In this subsection, we review the computation of Kerr black holes’s surface gravity by

studying the four-velocity and four-acceleration of an observer with zero angular momentum

observed from infinity, i.e. uφ = 0. This observer sits at a fixed radial position outside of the

black hole, and also at a fixed θ coordinate. Recall that this observer may feel the dragging

effect as we have showed in the previous subsection.

Using the rule of lowering indices for a vector in general relativity, we have

uφ = gφφu
φ + gtφu

t . (2.2.174)

It can be seen if only gtφ = 0, as in the case of Schwarzschild spacetime, then the zero angular

momentum observer in Kerr background will really have no angular speed. The vanishing of

uφ in (2.2.174) gives us

uφ = − gtφ
gφφ

ut . (2.2.175)
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For the Kerr spacetime, one can verify the identity

gtφ
gφφ

= −g
tφ

gtt
(2.2.176)

which is obvious from the relation gµαg
να = δνµ. Furthermore, we can define the angular

speed of observer as

Ω =
pφ

pt
. (2.2.177)

Again, by using the rule of raising indices we can do some algebraic manipulations

pφ = gφµpµ = gφtpt + gφφpφ (2.2.178)

and

pt = gtµpµ = gttpt + gtφpφ . (2.2.179)

However, since pφ = 0, it follows that

Ω =
gtφ

gtt
. (2.2.180)

The last formula is clearly related the frame dragging effect in the Kerr spacetime. Consider

a test particle that approaches a Kerr black hole from infinity with an initial zero angular

momentum. As the particle gets closer to the black hole horizon, it is dragged in the direction

of black hole’s rotation with the angular velocity is given in (2.2.180).

Explicitly, inserting the components of contravariant metric tensor for Kerr spacetime in

(2.2.161) to the formula (2.2.180) yields the reading of angular velocity (2.2.180) as

Ω (r, θ) =
2Mar

(∆ + 2Mr)2 − a2∆ sin2 θ
. (2.2.181)

The last equation agrees with our physical intuition. Taking the limit r → ∞, this angular

velocity vanishes, which means an observer does not feel the dragging effect at this distance.

Indeed, the vanishing of this angular velocity at infinity is also due to the asymptotically

flatness of Kerr solution. In fact, the increasing of Ω as the radius r gets smaller agrees with

our classical mechanics picture on the conservation of angular momentum. Finally, at the

event horizon, the angular velocity (2.2.180) becomes

ΩH =
a

2Mr+

. (2.2.182)
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Plugging (2.2.181) to (2.2.175) gives uφ = Ωut.

For ut, the lowering indices rule reads

ut = gttu
t + gφtu

φ =

(
gtt −

(gφt)
2

gφφ

)
ut . (2.2.183)

Therefore, from the fact that uµ is normalized as uµuµ = 1, we can compute explicitly ut,

ut =

(
gφφ

gttgφφ − (gφt)
2

)1
2

. (2.2.184)

Accordingly, combining the results in (2.2.184) and (2.2.175), the four-velocity describing the

zero angular momentum observer being discussed in this subsection reads

uα =
(
ut, ur, uθ, uφ

)
=
(
ut, ur, uθ,Ωut

)
=

(
gφφ

gttgφφ − (gφt)
2

) 1
2

(1, 0, 0,Ω) . (2.2.185)

We now need to verify whether the four-velocity we just derived in (2.2.185) is normal to

a surface of constant time t or not. The displacement on the “constant time” surface can be

read as

dx̃α = (0, dr, dθ, dφ) . (2.2.186)

Accordingly, the covariant counterpart of the displacement (2.2.186) is

dx̃α = (gtφdφ, grrdr, gθθdθ, gφφdφ) . (2.2.187)

The contraction between the displacement (2.2.187) and the four velocity (2.2.185) can be

computed as

dx̃αu
α =

(
gtφu

t + gtφu
φ
)
dφ

= (gtφ + gtφΩ)utdφ

=

(
gtφ + gtφ

gtφ

gtt

)
utdφ

=

(
gtφ + gtφ

(
− gtφ
gφφ

))
utdφ

= 0 , (2.2.188)

which leads us to the conclusion that uα is normal to the surface with constant time.
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We now turn to the discussion to obtain the four-acceleration which is related to the

four-velocity (2.2.185),

aα = uν
(
∂νu

α + Γαµνu
µ
)
. (2.2.189)

From the last equation, one can obtain the only non-zero component of four-acceleration,

which is

ar =
(
ut
)2 (

Γrtt + 2ΓrtφΩ + ΓrφφΩ2
)

(2.2.190)

where Ω is given in (2.2.181). Each of the second kind Christoffel symbols which appear in

the last equation are

Γrtt = −g
rrM

ρ4

(
r2 − a2 cos2 θ

)
, (2.2.191)

Γrφt =
grrM

ρ4
a sin2 θ

(
r2 − a2 cos2 θ

)
, (2.2.192)

and

Γrφφ =
grrM

2ρ4
sin2 θ

(
ρ2∂Σ

∂r
− 2Σr

)
. (2.2.193)

We know that the proper acceleration is given by

g(r)2 = aµa
µ = gµνa

µaν = grr (ar)2 . (2.2.194)

Plugging the last formula to (2.2.190) gives us

g(r) =
MZ

ρ7∆1/2Σ
(2.2.195)

where

Z =
(
Σ2 − 4ΣMa2r sin2 θ

) (
r2 − a2 cos2 θ

)
− 2Ma2r2 sin2 θ

(
ρ2∂Σ

∂r
− 2rΣ

)
. (2.2.196)

We know in Newtonian gravity, there is a relation between the potential energy E and

gravitational acceleration g for a particle with mass m from the center of gravitational at-

traction with distance h,

E = mgh . (2.2.197)

It follows from the last equation we can find the ratio of the gravitational acceleration at a

finite radius from the center of black hole g(r) to the gravitational acceleration at infinity

g(∞).
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Consider the following gedanken experiment. Let an observer at infinity is pulling a

particle with unit mass away from a black hole. Initially this particle is sitting somewhere

at the radius r from the center of the black hole. The observer at infinity is using an non-

extensible massless rope and pulls the particle with a distance dr. For the particle, this

pulling yields an increasing local potential energy as

dE(r) = g(r)dr . (2.2.198)

In doing this work, the observer at infinity must provide some energy, that is

dE(∞) = g(∞)dr . (2.2.199)

Equating the last two equations gives

g (∞) =
E (∞)

E (r)
g (r) . (2.2.200)

We understand, for the unit mass particle we are discussing here, the associated energy is

the “t” component of uµ given in (2.2.185). Hence, the ratio E(r)/E(∞) reads

E (r)

E (∞)
=

√
Σ

ρ2∆
. (2.2.201)

Plugging (2.2.195) and (2.2.201) into (2.2.200) gives the acceleration observed at infinity

as

g(∞) =
MZ

ρ6Σ3/2
, (2.2.202)

where for r = r+ explicitly reads

g(∞) =
r+ − r−
4Mr+

≡ κ . (2.2.203)

after we make use of the following equations,

Σ (r = r+) = 4M2r2
+ , (2.2.204)

and
∂Σ

∂r

∣∣∣∣
r=r+

= 8Mr2
+ − 2a2 (r+ −M) sin2 θ . (2.2.205)

The result (2.2.203) is called the surface gravity, i.e. the gravitational acceleration on the

event horizon measured by an observer at infinity. The derivation of surface gravity given
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here is less sophisticated compared to the one performed in [51] which needs some differential

geometry knowledge. In fact, the result (2.2.203) agrees with that which is derived in [51],

and also we find that the method that we use in this subsection is more intuitive.

2.2.4 Eddington-Finklestein coordinates for Kerr

The Kerr black holes have two event horizons instead of one as a Schwarzschild black hole has.

The two horizons, r+ and r−, again show the incapability of coordinate system we are using

to allow the non-divergent metric (2.2.157) at all points except r = 0. Again, computing the

Kretschmann scalar for Kerr spacetime is an analytic way to make sure that there are no

singularities in the Kerr spacetime at r+ and r−.

Using all non-vanishing components of the covariant and contravariant Riemann tensor,

as given in the appendix B to the formula

K = RκλµνR
κλµν , (2.2.206)

one can get the Kretschmann scalar for Kerr spacetime, which reads

K =
48M2 (r2 − a2 cos θ) (%4 − 16r2a2 cos2 θ)

%12
. (2.2.207)

The Kretschmann scalar for Kerr (2.2.207) reduces to the one for Schwarzschild (2.1.60) when

a = 0 as it should. The finite values of Kretschmann scalar (2.2.207) at r+ and r− show that

the singularities we encountered in the metric (2.2.157) is just some coordinate singularities,

the consequences of coordinate system we choose in expressing (2.2.157). Interestingly, the

physical singularity provided by K → ∞ is given by two situations at once, r = 0 and

θ = π/2.

It turns out that the singularity for Kerr spacetime has a form as a circle rather than

a point as in Schwarzschild case. It can be seen from the mapping between the Kerr met-

ric in Boyer-Lindquist coordinates {t, r, θ, φ} and the Kerr metric in Cartesian coordinates

{t, x, y, z}. To get the mapping in a simple way, we can write down the Kerr metric (2.2.157)

at the limit M → 0,

ds2 = −dt2 +
%2

r2 + a2
dr2 + %2dθ2 +

(
r2 + a2

)
sin2 θdφ2 (2.2.208)
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where %2 = r2 + a2 cos2 θ. The metric (2.2.208) is just the flat Minkowski metric

ds2 = −dt2 + dx2 + dy2 + dz2 (2.2.209)

in “oblate spheroidal” coordinates. The mapping between the spatial components in (2.2.208)

and (2.2.209) are

x =
√
r2 + a2 sin θ cosφ ,

y =
√
r2 + a2 sin θ sinφ ,

z = r cos θ .

(2.2.210)

Setting r = 0 and θ = π/2 in (2.2.210) gives us the relation

x2 + y2 = a2 , (2.2.211)

which is just the equation for a circle with radius a on the xy plane of Cartesian coordinate.

The Kretschmann scalar for kerr (2.2.207) diverges along this circle which indicates that

the singularity for Kerr spacetime has a form as a ring with the radius a, which yields the

singularity for Kerr spacetime is called ring singularity.

To show that there is no singularities at r+ and r−, again we can use the Eddington-

Finkelstein coordinate transformation. The Eddington-Finkelstein transformation for the

Kerr spacetime can be read as

dv = dt+
r2 + a2

∆
dr , (2.2.212)

dφ̃ = dφ+
a

∆
dr . (2.2.213)

From equations (2.2.212) and (2.2.213), we can show that

dt2 = dv2 +

(
r2 + a2

∆

)2

dr2 − 2

(
r2 + a2

∆

)
dvdr , (2.2.214)

and

dφ2 = dφ̃2 +
a2

∆2
dr2 − 2

a

∆
drdφ̃ . (2.2.215)

Inserting the last two expressions into (2.2.157) yields the reading of Kerr spacetime becomes

ds2 =

(
1− 2Mr

ρ2

)
dv2 − 2dvdr + ρ2dθ2 +

(
4Mra

ρ2
dv + 2adr

)
sin2 θdφ̃− Σ

ρ2
sin2 θdφ̃2 .

(2.2.216)

50



Figure 2.10: Illustration of an outgoing particle along the rotational axis.

The last equation is known as the Eddington-Finkelstein metric for Kerr spacetime, which is

regular at r+ and r−.

We now analyze the light cones behavior in the spacetime (2.2.216). In contrast to the

Schwarzschild case, the dragging effect of Kerr black holes yields only the particle that moves

along the rotational axis which is not affected by the black hole’s rotation. We understand

that the dragging effect of Kerr black holes is due to the off-diagonal terms in Kerr metric,

gtφ = gφt = −Σ sin2 θ

ρ2
. (2.2.217)

At θ = 0, gtφ vanishes, thus there is no dragging effect along the θ = 0 trajectory, which

coincides with the axis of black hole’s rotation. Therefore, the situation is simpler when

discuss the ingoing light rays along the black hole’s rotational axis. In such case, we can set

dθ = dφ = 0. We would like to see the difference between the inner and outer horizons by

studying the phenomena of light around these two horizons.

Consider the purely radial lightlike trajectories, dθ = dφ = 0, where the metric (2.2.216)

reduces to an equation

dv (∆dv − 2 (∆− 2Mr) dr) = 0 . (2.2.218)

There are two general solutions to this equation. The first one is dv = 0, and the second one

can be obtained after solving

∆dv − 2 (∆− 2Mr) dr = 0 . (2.2.219)
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Figure 2.11: (a) The sketch of solution (2.2.221) with numerical value setups r+ = 4
and r− = 2. (b) Lightcones behavior in Kerr spacetime.

The last equation enables one to write an integration

v =

∫ (
2 +

4Mr

(r − r+) (r − r−)

)
dr , (2.2.220)

which yields to the solution

v = 2r +
4Mr+ ln |r − r+|

r+ − r−
− 4Mr− ln |r − r−|

r+ − r−
+ constant . (2.2.221)

Figure 2.11 (a) illustrates the solution (2.2.221). Combining the first and second solution for

v gives us an illustration on how light rays behave in a spacetime that contains a Kerr black

hole, as sketched in figure 2.11 (b). From figure 2.11 (b), we understand that only the outer

horizon of Kerr black hole that behaves just like the event horizon of Schwarzschild black

hole. Outside the outer horizon, light rays propagate to the infinity, which is also the case in

the Schwarzschild case. Once the light rays touch or enter the outer horizon, they will never

escape from the black hole. However, the light rays will be infinitely red shifted when they

approach the inner horizon. That is why only the outer horizon of Kerr black hole which

behaves as a one way membrane, analogously to the event horizon of Schwarzschild black

hole.
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Figure 2.12: Schematic of Kerr black holes.

Schematically, some regions of Kerr black holes are described in figure 2.12. Some new

terminologies appear in this figure. They are the ergoregion, inner ergosurface, and outer

ergosurface. To discuss these new three objects, let’s start with a question: are there any

points in Kerr spacetime where it is impossible for a timelike object to stand still?

Suppose that this object is trying to keep its position at

Xµ = (t, r0, θ0, φ0) (2.2.222)

where r0, θ0, and φ0 are some fixed r, θ and φ in the Boyer-Lindquist coordinate system.

Hence, the corresponding tangent vector to the position (2.2.222) is

Uµ =
dXµ

dt
= (1, 0, 0, 0) . (2.2.223)

Since we are using the metric convention (−,+,+,+), the following timelike condition for

the tangent vector must be satisfied,

gµνU
µUν < 0 . (2.2.224)

Plugging the vector (2.2.223) into the last equation gives us an inequality gtt < 0 which yields

∆− a2 sin2 θ > 0 . (2.2.225)
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Here we have used the gtt from the metric (2.2.160). Nevertheless, this inequality is violated

when

r2 + a2 cos2 θ − 2Mr < 0 . (2.2.226)

From the last inequality, one can tell that between the radius

M −
√
M2 − a2 cos2 θ < r < M +

√
M2 − a2 cos2 θ , (2.2.227)

it is not possible for a physical object to stand still. The lower and upper bounds in the

expression (2.2.227), M −
√
M2 − a2 cos2 θ and M +

√
M2 − a2 cos2 θ, are the inner and

outer ergosurfaces as depicted in figure 2.12. In the region between the inner and outer

ergosurfaces, a physical object must be co-rotating with the black holes. Note that as long as

the object is still outside the outer horizon, it is still possible for this object to escape from

the black hole’s gravitational attraction, including if it has entered the outer ergosurface. The

fact that the black hole “forces” a particle, once it enters the outer ergosurface, to co-rotates

with the black hole becomes a mechanism of the particle to acquire energy from the black

hole. Therefore the region between the outer ergosurface and the outer horizon,

M +
√
M2 − a2 < r < M +

√
M2 − a2 cos2 θ , (2.2.228)

is called the ergoregion. The word ergo is a derivative from the Greek word Ergon which

means work. A particle that can escape from the ergoregion may get some extra energy from

the black hole, i.e. the final energy of particle is larger compared to the initial one.

2.3 Thermodynamics of Kerr black holes

2.3.1 Black Holes Mechanics and Thermodynamics

The area of a Kerr black hole is given in equation (2.2.163)

ABH = 8πMr+ . (2.3.229)
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Varying the area (2.3.229) with respect to the changes in black hole mass δM and rotation

δa gives

δABH = 8π (r+δM +Mδr+)

= 8π

((
M +

√
M2 − a2

)
δM +M

(
δM +

MδM − aδa√
M2 − a2

))
=

8π√
M2 − a2

(√
M2 − a2

(
M +

√
M2 − a2

)
δM +

√
M2 − a2MδM +M2δM − aMδa

)
=

8π√
M2 − a2

(
2M

(
M +

√
M2 − a2

)
δM − a2δM − aMδa

)
=

8π√
M2 − a2

(
2Mr+δM − a2δM − aMδa

)
. (2.3.230)

From the definition a = J/M , we have δJ = aδM +Mδa. The angular velocity of the black

hole at the horizon is ΩH = a/(2Mr+). Consequently, we now can rewrite the variation of

black hole area as

δABH =
32πMr+

r+ − r−
(δM − ΩHδJ) , (2.3.231)

or equivalently

δM =
κ

8π
δABH + ΩHδJ . (2.3.232)

In the formula above, the surface gravity κ is defined in (2.2.203), and as usual r+ and r−

are the outer and inner horizons of Kerr black hole respectively.

Related to the black hole area ABH , there is a theorem proposed by Hawking which says

that the area of black holes cannot decrease classically,

δABH > 0 . (2.3.233)

For Schwarzschild black hole, it is easy to figure that, classically, this black hole is a perfect

absorber but completely does not emit. When a particle falls into a Schwarzschild black hole,

this black hole acquires mass and consequently it yields the increasing area of the black hole.

The relation between the variation of mass and area of Schwarzschild black holes is given by

δABH =
8πδM

κ
. (2.3.234)

Equation (2.3.233) applies for all classical stationary black holes. Classically, there is no

mechanism for a black hole to release some parts of its mass. Since the Kerr black holes are
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Figure 2.13: Penrose process.

also stationary, they obey the theorem (2.3.234). Let us collect several important facts about

Kerr black holes:

• The surface gravity κ is constant on the horizon.

• The conservation of energy, δM = (κ/8π)δAH + ΩHδJ .

• The non-decreasing area of black holes, δABH > 0.

However, it is not so easy to see the non-decreasing area theorem works for Kerr black

holes whose changes in area is given in (2.3.231). The negative sign in front of the angular

momentum variation gives a possibility of the the Kerr black hole’s area to decrease. Penrose

proposed a gendaken experiment, namely the Penrose process, which may help to understand

how Kerr black holes obey the non-decreasing of area theorem (2.3.233). The Penrose process,

which is illustrated in figure 2.13, can be described as follows. A particle inside of the

ergosphere with intial energy E0 decays into a particle with positive energy E+ and a particle

with negative energy E−. The particle with positive energy escapes to infinity and the one

with negative energy falls into the black holes.

We now show that in the Kerr spacetime, the particle with postive energy has a neg-

ative angular momentum, while the particle with negative energy has a positive angular
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momentum. Let us start by considering the normalized four-velocity,

uµu
µ = gµνuµuν = 1 . (2.3.235)

Plugging the corresponding gµν for Kerr spacetime, the last equation reads

gtt (ut)
2 + 2gtφutuφ + grr (ur)

2 + gθθ (uθ)
2 + gφφ (uφ)2 − 1 = 0 . (2.3.236)

Furthermore, one may consider (2.3.236) as a quadratic equation for ut, whose solutions are

ut = −Ωuφ ±
1

gtt

√
(gtφuφ)2 −

(
grr (ur)

2 + gθθ (uθ)
2 + gφφ (uφ)2 − 1

)
. (2.3.237)

In the last equation we have used Ω = gtφ/gtt. Recall that the constants of motion in Kerr

spacetime are ut = E and uφ = Lz. Interestingly the factor (gtt)−1 in the formula (2.3.237)

vanishes at the event horizon. Hence we may rewrite (2.3.237) as

E± = −ΩHLz± . (2.3.238)

We understand the subscripts + and − in the equation above stand for the particle with

positive and negative energy respectively.

It follows from the last equation that

E± − ΩLz± ≤ 0 , (2.3.239)

since outside the outer event horizon, ΩH ≥ Ω. Moreover, for a particle on the horizon with

negative energy E = − |E−| and Lz = |Lz−|, (2.3.239) becomes

|E−| ≥ ΩH |Lz−| , (2.3.240)

and accordingly

|δM | ≥ ΩH |δJ | . . (2.3.241)

Plugging the last inequality into (2.3.234) leads us to a proof that the area of a classical Kerr

black hole cannot decrease,

δABH =
8π

κ
(δM − ΩHδJ) ≥ 0 . (2.3.242)
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Figure 2.14: The relations between some variables of black holes and thermodynamical
systems in equilibrium.

Figure 2.14 illustrates the connections between some physical aspects of Kerr black holes

and some quantities in thermodynamics. The constancy of temperature for equilibrium ther-

modynamics systems is analogous to the constant surface gravity κ on the black hole horizon.

The conservation of black hole energy is clearly related to the first law of thermodynamics.

The relation becomes clear when we identify the exact relation between the surface gravity of

black holes and the black hole temperature, and also the black hole area and entropy. Lastly,

the non-decreasing of black hole area, which turns out later to become the non-decreasing of

black hole entropy, is in agreement with the second law of thermodynamics.

To be more specific, the justification that a black hole should radiate at some temperatures

comes from an analogy between the first law of black hole mechanics (2.3.232) and the first

law of thermodynamics,

δE = TδS − PδV . (2.3.243)

The work part PdV in (2.3.243) is clearly related to the angular momentum of black holes,

thus the part TδS must be related to κδABH/8π. Consequently, the following relations must

valid,

TH = η
κ

8π
, SBH =

ABH
η

. (2.3.244)

The constant η above is a free parameter to be determined.

Nevertheless, these nice analogies between black hole mechanics and thermodynamics

still have one issue. We have learned that black holes are perfect absorbers, but they do not
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radiate. It is a problem, how can an object that does not radiate can have a temperature?

The black body object in thermodynamics is a perfect absorber as well as a perfect emitter.

Therefore, a black hole must radiate somehow. This is the motivation of Hawking back in

1970s [5, 6] to search a mechanism for black hole’s radiation. Therefore, the concept of a black

hole as an active thermodynamical object is complete. The next two subsections discuss the

derivation of black hole’s temperature by using some quantum mechanical techniques.

2.3.2 Unruh and Hawking temperatures

So far, the discussions about black holes have not included quantum mechanics yet. Hawk-

ing’s works [5, 6] show that incorporating quantum mechanics in the study of black holes

can give us a mechanism for black hole to radiate. Thus, black hole can behave like a black

body; it absorbs and also emits. There are several quantum mechanical ways in showing the

black hole’s radiation, which convince us more that black holes do radiate. Treating black

hole’s radiation semiclassically, i.e. half classical and half quantum, leads one to derive an

explicit temperature TH of black holes as guessed in (2.3.244). This temperature is called as

Hawking temperature, and the mechanism for black holes to radiate is called the Hawking

process.

In this subsection, we review the derivation of Hawking temperature by obtaining the

Unruh temperature first. Unruh temperature is the temperature measured by an accelerated

observer in flat space. This temperature later can be related to the Hawking temperature

by using the equivalence principle: an observer at rest in an environment with gravitation

feels the same thing with an accelerated observer in a spacetime with no gravity. In the

next subsection, the Hawking process from tunneling picture is given, to convince the reader

that black holes do radiate. There are other several mechanisms for black holes radiations,

interested reader can read [52].

Our starting equation is the massless relativistic scalar field equation in the (1 + 1)

Minkowski space,

∂2Φ

∂t2
=
∂2Φ

∂x2
. (2.3.245)

Here (1 + 1) means one time and one spatial dimensions. Equation (2.3.245) can be solved
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by using the following separable functions

Φ (t, x) =

 f
(−)
ω (t, x) ∼ exp (±iω (x− t)) ,

f
(+)
ω (t, x) ∼ exp (±iω (x+ t)) ,

(2.3.246)

where the frequency ω is always non-zero positive, i.e. ω > 0. The function Φ (t, x) is a

quantum mechanical wave function associated with a specific energy and momentum.

It follows from (2.3.246) that one can write

i~
∂f

(±)
ω

∂t
= ±~ωf (±)

ω . (2.3.247)

Consequently, the dependence on time in the wave function is

f (±)
ω ∼ exp (∓iωt) . (2.3.248)

Since we are discussing the vacuum for an inertial observer, Φ(t, x) represents a system where

initially there is no any particle at all. Nevertheless, the uncertainty principle allows the field

fluctuations to occur which yields a possibility for the vacuum to have the positive and

negative energy particles excitation. The full expression for a wave function for the particle

with negative energy is

f (−)
ω =

exp (iω (t− x))

2
√
πω

, (2.3.249)

where the factor 2
√
πω is a normalization factor.

To get the wave equation for an accelerated observer, one can perform the coordinate

transformation

t = ρ sinh (aτ) , x = ρ cosh (aτ) (2.3.250)

to the equation (2.3.245). Consequently, the resulting metric after using the transformation

(2.3.250) to the (1 + 1) Minkowski space reads

ds2 = −a2ρ2dτ 2 + dρ2 . (2.3.251)

The spacetime (2.3.251) is known as the two dimensional Rindler spacetime. Writing the

wave equation (2.3.245) in the two dimensional Rindler spacetime reads

1

a2ρ2

∂2Φ

∂τ 2
=

1

ρ

∂Φ

∂ρ
+
∂2Φ

∂ρ2
. (2.3.252)
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The functions

F (±)
ω =

exp (∓iωτ)

2
√
πω

ρiω/a (2.3.253)

solve (2.3.252), where F
(+)
ω is the solution with positive energy and F

(−)
ω is associated with

the negative energy.

The wave solution for negative energy (2.3.249) can be constructed from the superposition

of the complete set of positive and negative energies wave functions (2.3.253),

f (−)
ω (t, x) =

∫ (
aω′ (ω)F

(+)
ω′ (τ, ρ) + bω′ (ω)F

(−)
ω′ (τ, ρ)

)
dω′ . (2.3.254)

The probability amplitude of a particle with positive energy in the state F
(+)
ω′ measured by an

accelerated observer is the coefficient aω′ . Moreover, the number of particles with frequency

ω′ from all the vacuum modes in the inertial frame with frequency ω is given by

N (ω′) =

∫
|aω′ (ω)|2 dω . (2.3.255)

The coefficient aω′ can be obtained by integrating∫ (
F

(+)
ω′′

)∗
f (−)
ω

dρ

aρ
(2.3.256)

and by employing the orthogonality between
(
F

(+)
ω′′

)∗
and F

(+)
ω′ . The calculation is∫ (

F
(+)
ω′′

)∗
f (−)
ω

dρ

aρ
=

∫ (
aω′F

(+)
ω′

(
F

(+)
ω′′

)∗
+ bω′F

(−)
ω′

(
F

(+)
ω′′

)∗)
dω′

dρ

aρ
=
aω′

2ω′
.

Hence we can have

aω′ =
1

2π

√
ω′

ω

∫
exp (iω′ (τ + t− x)) ρ−iω

′/adρ

aρ
. (2.3.257)

The last formula is obtained after plugging the wave solution (2.3.249) in Minkowski space-

time {t, x} and the wave solution with positive energy in (2.3.253) in Rindler spacetime

{τ, ρ}.

The Rindler spacetime itself is time-independent, thus allow us to choose any convenient

time to get aω′ . In such consideration, we set t = τ = 0, then equation (2.3.257) becomes

aω′ =
1

2π

√
ω′

ω

∫
exp (−iω′ρ) ρ−1−iω′/adρ

a
. (2.3.258)
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In the formula above, we have replaced x to ρ in the exponential. Recall that at τ = 0 from

the relation x = ρ sinh(aτ) we have dx = dρ. To simplify (2.3.258), we can get some benefits

by setting z = iωρ/a and recall that −i = exp(−iπ/2). Finally the coefficient aω′ is found to

be

aω′ =
1

2π

√
ω′

ω
exp

(
−πω′

2a

)
A (ω′) , (2.3.259)

where

A (ω′) =

∫
exp (−za) (za)−1−iω′/a ω−1+iω′/adz . (2.3.260)

Accordingly, the number of particle with the energy ω′ is given by

N (ω′) = |aω′ (ω)|2 =
exp (−πω′/a)

4π2

(
ω′

ω

)
|A (ω′)|2 , (2.3.261)

while for the negative energy −ω′ we have

N (−ω′) = |a−ω′ (ω)|2 = −exp (πω′/a)

4π2

(
ω′

ω

)
|A (ω′)|2 . (2.3.262)

It is clear that |A (ω′)|2 = |A (−ω′)|2, hence now one can establish a relation between N (ω′)

and N (−ω′),

N (−ω′) = − exp (2πω′/a)N (ω′) . (2.3.263)

A function for N (ω′) which satisfies the last equation is

N (ω′) =
1

exp (2πω′/a)− 1
. (2.3.264)

Consequently we can write

N (ω′) dω′ =
dω′

exp (2πω′/a)− 1
(2.3.265)

which has a very close form with the Plank distribution in one spatial dimension,

N (ν) dν =
2πdν

exp (hν/kT )− 1
. (2.3.266)

By matching the last two equations, we arrive at a conclusion that the observers with accel-

eration in flat space feel a thermal distribution or thermal bath of particles at temperature

TU =
~a

2πkc
. (2.3.267)
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In the natural units, the Unruh temperature (2.3.267) reads TU = a/2π. The superscript U

in this temperature stands for Unruh, who is the first person to propose this temperature.

Temperature (2.3.267) is known as the Unruh temperature.

We now use the equivalence principle to “connect” the Unruh temperature and the tem-

perature measured by a static observer sitting in an environment with gravity [53]. Near the

horizon of Kerr black hole, the Boyer-Lindquist metric for Kerr can be written as

ds2
H = ρ2

H

(
−κ2x2dt2 + dx2 + dθ2

)
+

Σ2
H

ρ2
H

sin2 θdφ̃2 . (2.3.268)

The metric (2.3.268) is obtained after employing the transformation

x2 =
r − r+

κMr+

. (2.3.269)

In the metric (2.3.268) we have used

Σ2
H = 4M2r2

+ , ρ2
H = r2

+ + a2 cos2 θ , (2.3.270)

and dφ̃ = dt− ΩHdφ.

To match the discussion with Unruh temperature derivation, we need to keep only one

spatial dimension in metric (2.3.268). Hence we choose dθ = dφ = 0 and θ = 0 to avoid the

dragging effect. Let us now consider the conformal transformation

g̃µν = ρ−2
H gµν , (2.3.271)

hence the metric (2.3.268) becomes

ds2
H = −κ2x2dt2 + dx2 . (2.3.272)

One can see that the metric (2.3.272) is just the Rindler metric (2.3.251) after the identifi-

cations a → κ, τ → t, and ρ → x. Therefore, the temperature associated with the gravity

near the black hole horizon can be read as

TH =
κ

2π
=
r+ − r−
8πMr+

(2.3.273)

where we have replaced the acceleration a in Unruh temperature (2.3.267) with the surface

gravity κ and use the result (2.2.203). Recall that the surface gravity is an acceleration at the
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horizon measured by an observer at infinity. From the equivalent principle, replacing a with κ

is based on the fact that an accelerated observer in flat space whose acceleration is a will feel

a thermal bath just like a static observer in gravitational environment with surface gravity

κ. Hence, both of these observers will measure the same temperature. A more sophisticated

calculation to derive the Hawking temperature can be done by some basic understandings in

quantum mechanics and complex analysis, for example the original Hawking derivation [6].

After having an exact expression for the Hawking temperature, now we have the value of

η = 4 in (2.3.244). Thus the black hole entropy is given by the formula

SBH =
ABH

4
. (2.3.274)

Consequently, by using the are formula (2.2.163), the Bekenstein-Hawking entropy for Kerr

black hole can be read as

SBH = 2πMr+ . (2.3.275)

2.3.3 Hawking radiation in the tunneling method

The derivation of Hawking temperature as performed in the previous subsection is one among

several ways in deriving the Hawking temperature for black holes. There is a new method

proposed quite recently which is easier to be digested from the physical and mathematical

aspects, namely the tunneling method. In this method, Hawking radiation is described as a

tunneling of quantum particle through a potential barrier at the horizon.

Let us start by writing the metric

ds2 = −f (r) dt2 + g (r)−1 dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (2.3.276)

We then consider a massless particle 11 in the spacetime (2.3.276) whose dynamics are gov-

erned by the Klein-Gordon equation (2.1.27).

The general metric (2.3.276) is clearly spherically symmetric, and we consider the incom-

ing and outgoing particles across the horizon would be in the radial direction only. Hence,

we could simplify our discussion from (3 + 1) gravity to (1 + 1) case. This can be done by

11The method is also valid for massive case, shown earlier [54] that ultimately the final expressions match.
Therefore for the sake of simplicity we consider the massless case only.
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taking dθ and dφ to be zero, thus only dr and dt sectors of the metric (2.3.276) which are

left. The appropriate semiclassical wave functions that correspond to this scheme is

φ(r, t) = e−iS(r,t) . (2.3.277)

Expanding S(r, t) in a powers of ~, we find

S(r, t) = S0(r, t) + ~S1(r, t) + ~2S2(r, t) + ...

= S0(r, t) +
∑
i

~iSi(r, t) . (2.3.278)

In this expansion the terms from O(~) onwards are treated as quantum corrections over the

semiclassical value S0. The equation that we want to solve can be obtained by plugging

(2.3.278) to the Klein-Gordon equation (2.1.27) where only gtt and grr which matter.

We do not include the quantum correction in our discussion here, as done in [55], so we

neglect all terms in the equation which couple to ~. Hence the equation that we need to solve

is (
∂S0

∂t

)2

= f (r) g (r)

(
∂S0

∂r

)2

. (2.3.279)

Since the metric (2.3.276) is stationary, it has a timelike Killing vector. Hence we look for

solutions of (2.3.279) which behave as

S0 = ωt+ S̃0(r) , (2.3.280)

where ω is the energy of particle. The solution is

S(r, t) = ωt± ω
∫ rout

rin

dr√
f(r)g(r)

(2.3.281)

where rin = rH − ε and rout = rH + ε. The +(−) sign in front of the integral indicates the

corresponding solution of ingoing (outgoing) particle. In (2.3.281), the integration over r is

a complex one, where we perform an integration over a semicircle contour in the upper half

complex plane where the pole is at horizon radius rH . The nature of both t and r coordinates

as complex variables can be understood from the exchange of metric coefficient’s sign for dt2

and dr2 components when we go from outside to inside of a black hole’s horizon. In fact,

the authors of [56] show that one need to do some transformations which involve complex
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variables to relate the Kruskal-Szekeres coordinates in the region of exterior and interior of

a Schwarzschild black hole.

Therefore the ingoing and outgoing solutions of the Klein-Gordon equation (2.1.27) under

the background metric (2.3.276) is given by exploiting (2.3.277) and (2.3.281)

φ± = exp

−iω
t± rout∫

rin

dr√
f (r) g (r)

 , (2.3.282)

where φ+ is the ingoing wave function and φ− is the outgoing one. Therefore the correspond-

ing ingoing and outgoing probabilities of the particle, P+ and P− respectively, are given

by12

P± = |φ±|2 = exp
[
2ω
(

Im t± Im

∫ r

0

dr√
f(r)g(r)

)]
. (2.3.283)

Since in the classical limit, i.e. ~ → 0, everything falls into the black hole, the ingoing

probability P+ has to be unity. Thus (2.3.283) leads to

Im t = −Im

∫ rout

rin

dr√
f(r)g(r)

. (2.3.284)

From (2.3.284) one can easily find that Im t = −2πM for the Schwarzschild spacetime which

is precisely the imaginary part of the transformation t → t − 2iπM when one connects the

outside and inside regions of a horizon as shown in [56]. Therefore the probability of the

outgoing particle is

P− = exp
[
− 4ωIm

∫ rout

rin

dr√
f(r)g(r)

]
. (2.3.285)

Now using the relation between the emission (outgoing) and absorption (ingoing) probabilities

[54, 58, 59]

P− = exp
(
− ω

TH

)
P+ = exp

(
− ω

TH

)
(2.3.286)

we obtain the temperature of the black hole as

TH =
~
4

(
Im

∫ rout

rin

dr√
f(r)g(r)

)−1

. (2.3.287)

12This complex paths method had been discussed by Landau [57] to describe tunnelling processes.
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Using this expression and knowing the metric coefficients f(r) and g(r), one can easily find

out the temperature of the corresponding black hole.

In the Kerr black hole discussion, again to avoid the dragging effect we restrict the angle

θ = 0, thus we have

f(r) = g(r) =
((r − r+)(r − r−)

r2 + a2

)
. (2.3.288)

Plugging this to the formula (2.3.287) recovers the Hawking temperature for Kerr black holes

(2.3.273).

2.4 Waves Scattering from Black Holes

2.4.1 Schwarzschild Case

Approaching the quantum theory of black holes can be done by studying the scattered waves

by a black hole semiclassically. One can be start the discussion from the simplest case, i.e.

the massless scalar Φ(t, r, θ, φ), whose dynamics are governed by the equation

1√
−g

∂µ
(√
−ggµν∂νΦ

)
= 0 . (2.4.289)

Plugging the corresponding gµν for Schwarzschild spacetime yields the last equation changes

to

∂Φ

∂t2
− 2

r

(
1− M

r

)(
1− 2M

r

)
∂Φ

∂r
−
(

1− 2M

r

)2
∂2Φ

∂r2

−
(

1− 2M

r

)
1

r2 sin2 θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
−
(

1− 2M

r

)
∂2Φ

∂φ2
= 0 . (2.4.290)

The ansatz of separable solution

Φ (t, r, θ, φ) = e−iωtR (r)Ylm (θ, φ) (2.4.291)

solves equation (2.4.290), if the radial part of (2.4.291) satisfies(
1− 2M

r

)2
∂2R

∂r2
+

2

r

(
1− M

r

)(
1− 2M

r

)
∂R

∂r
+

(
ω2 −

(
1− 2M

r

)
l (l + 1)

r2

)
R = 0 .

(2.4.292)
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We now introduce a new function

U (r) = rR (r) , (2.4.293)

and a new coordinate which is called the “tortoise” coordinate

r∗ = r + 2M log
( r

2M
− 1
)
. (2.4.294)

Consequently, the radial equation (2.4.292) transforms to(
d2

dr2
∗

+ ω2 − Veff (r)

)
U = 0 . (2.4.295)

The last equation is known as the Regge-Wheeler equation. The effective potential Veff in

the above equation is given by

Veff =

(
1− 2M

r

)(
l (l + 1)

r2
+

2M

r3

)
. (2.4.296)

Related to this “tortoise coordinate” r∗, one can check that

d

dr
=

d

dr∗
. (2.4.297)

Moreover, one can verify that the new coordinate r∗ covers the exterior of black holes only,

r∗ → +∞ as r → +∞ , (2.4.298)

r∗ → −∞ as r → 2M . (2.4.299)

Interestingly, the effective potential Veff goes to zero at r = +∞ and r = 2M . Therefore, at

r = +∞ and r = 2M , the solution of (2.4.295) is

U ∼ exp(±iωr∗) . (2.4.300)

Now consider the ingoing mode of (2.4.300) at r∗ → −∞ where there is no another waves

emerge from the black hole, where the related wave function can be read as

U ∼ exp(−iωr∗) . (2.4.301)

As in the case of one dimensional wave scattering, knowing the condition of the wave at

r∗ → −∞ allows us to tell the form of the wave solution at r∗ → +∞ from the wave
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equation. A portion of the ingoing wave (2.4.301) will be absorbed by the black hole, whose

amplitude is denoted by Ain, and another portion will be reflected back to infinity with an

amplitude Aout

U ∼ Aine
−iωr∗ + Aoute

iωr∗ as r∗ → +∞ . (2.4.302)

It is shown in appendix C that the ingoing and outgoing amplitudes satisfy

∣∣A2
in

∣∣ = 1 +
∣∣A2

out

∣∣ . (2.4.303)

Furthermore, we can define the coefficients of reflection and transmission as

R =
Aout
Ain

and T =
1

Ain
(2.4.304)

respectively which allow us to rewrite the equation (2.4.303) as

1 = |T |2 + |R|2 . (2.4.305)

Numerical computations can give us the values of |T | and |R|. In the special case when

the frequency of Φ is very high, i.e. Mω � 1, we can see that the ω2 term in the Regge-

Wheeler equation (2.4.295) will be the dominant term in the vicinity of black hole r = 2M .

In this situation, the effective potential Veff can be neglected, hence we can conclude that

the appearance of black holes does not really affect the propagation of a wave with very high

frequencies. In the other hand, when the wave has a very low frequency, i.e. Mω � 1, this

wave is almost scattered back by the black hole potential barrier entirely.

2.4.2 Kerr case

In this subsection, we generalize the analysis that we have performed previously on the

wave scattering of Schwarzschild black holes. After plugging the Kerr tensor metric gµν into

(2.4.289), we have(
(r2 + a2)

2

∆
− a2 sin2 θ

)
∂Φ

∂t2
− ∂

∂r

(
∆
∂Φ

∂r

)
− 1

sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

2Mar

∆

∂2Φ

∂t∂φ
+

(
a2

∆
− 1

sin2 θ

)
∂2Φ

∂φ2
= 0 . (2.4.306)
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The ansatz in solving this equation is quite different compared to the one we have used in

Schwarzschild case. We know that the Kerr geometry has an axial symmetry, rather than the

spherical symmetry as in the Schwarzschild discussions. Consider that we fix the rotation

about the z-axis. Hence, the eigenvalue of operator Lz = −i∂z to the spherical harmonics

eigenfunction Ylm(θ, φ) is m,

−i ∂
∂φ
Ylm(θ, φ) = mYlm(θ, φ) . (2.4.307)

A general solution for the last equation is

Ylm(θ, φ) = eimφSlm(θ) . (2.4.308)

The purely θ dependent function Slm will satisfy the angular equation derived from (2.4.306).

This line of thought yields the proper ansatz for wave function Φ to solve (2.4.307) is

Φ(t, r, θ, φ) = e−iωt+imφR(r)S(θ) (2.4.309)

where the superscripts l and m for S(θ) have been suppressed since these two variables are

not the spacetime coordinates. These indices simply mean that the solution S(θ) has the

m and l components, and clearly this function will be a function of l and m. The “tortoise

coordinate” for Kerr spacetime is expected to give13

d

dr∗
=

∆

r2 + a2

d

dr
. (2.4.310)

Up to an integration constant, the following transformation satisfies (2.4.310)

r∗ = r +M log ∆ +
2M2arctan

(
(r−M)√
a2−M2

)
√
a2 −M2

. (2.4.311)

Analogous to the new function (2.4.293), for Kerr spacetime we introduce

U(r) =
√
r2 + a2R(r) . (2.4.312)

It follows from (2.4.310) and (2.4.312) that the radial equation in Kerr spacetime can be

written as

d2U

dr2
∗
− d

dr∗

(
r∆U

(r2 + a2)2

)
−

{
r2∆2

(r2 + a2)4 +
∆ (l (l + 1) + 2amω − a2ω2)

(r2 + a2)2

}
U

+
((r2 + a2)ω − am)

2

(r2 + a2)2 U = 0 . (2.4.313)

13For a technical reason to simplify the equation of motion.
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Taking the limit r → r+ in (2.4.311). Hence, at the vicinity of Kerr black holes, i.e. r → r+,

we may write the equation (2.4.313) approximately

d2U

dr2
∗

+

(
ω − am

2Mr+

)
= 0 . (2.4.314)

Obtaining the last equation can be done simply by setting ∆ → 0 approximation in the

equation (2.4.313). Consequently, we have the solution

U ∼ ei±(ω−mΩH)r∗ as r → r+ (2.4.315)

where the angular velocity of the black hole is ΩH = a/2Mr+. A novel feature obtained here

is the relation between coefficients of reflection and transmission is given by

1− |R|2 =
ω −mΩH

ω
|T |2 . (2.4.316)

Equation (2.4.316), whose derivation is given in appendix C, reduces to the one we have

in Schwarzschild black hole discussion (2.4.305) when ΩH = 0, i.e. the non-rotating case.

An interesting outcome from the last formula can be stated as follows. Consider that the

ingoing wave modes are ω < mΩH , hence R > 1. In the other words, the reflected outgoing

amplitude exceeds that of the incoming one. This wave is amplified by the scattering from

black holes, and it mines some energy from the scattering process. This amplification is

called the superradiance effect. This effect is not an exclusive property of scalar wave only,

it also applies to higher spins wave scattering from a Kerr black hole.
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Chapter 3

Conformal Field Theory and AdS/CFT

In early of its development, conformal field theory (CFT) was used in attempts to describe

the critical behavior of systems at second order phase transitions. These systems possess a

unique behavior where near the critical points they are invariant under the scale transfor-

mation, x → λx. It was found in many aspects that these systems at critical points have

one-to-one correspondence with a two dimensional Euclidean quantum field theory. Polyakov

in his seminal work [60] realized the importance of conformal invariance in understanding

the critical behavior. This idea was developed later in [62] where it is shown that in two

dimensions, the conformal algebra contains an infinite number of generators.

Conformal field theory in two dimensions (CFT2) has become one of the main topics in

theoretical high energy physics due to the fact that it is closely related to the string theory;

the most promising candidate for the theory of everything. The development of CFT2 started

much earlier before the rise of string theories, mostly related to the model constructions in

statistical mechanics. CFT2 is established in [62] where some main ideas were found by

Polyakov in [60]. Since then, CFT2 are continuing to develop and new discoveries on the

connections between CFT2 and other aspects of theoretical physics are constantly found.

Related to our interest on gravity in this thesis, a very close relation between CFT2 and

gravity is found by Brown and Henneaux [63] and after several decades it becomes a specific

branch of studies in quantum gravity [66].

In this section, we review some concepts in CFT, and concentrate on CFT2. We derive

the Cardy formula for entropy of a system described by CFT2, which plays important role

in chapter 4. The application of CFT is given in the context of holography, by showing the

AdS/CFT calculations for scalars and vectors two point functions. The main references for

this chapter are [64, 65].
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3.1 Quantum Field Theory and Poincare Symmetry

3.1.1 Fields and Poincare symmetry

In particle physics, a particle is defined as a quantum excitation associated with a field. The

field is an entity that is defined over all spacetime. Electromagnetic field is the most familiar

example. It is created by an electric charge, extends all over the space-time, and the quanta

related to this field are known as the photon. The electromagnetic field is static when the

charge as a source of this field is not moving. When this charge is vibrating, it produces

an electromagnetic wave. Historically, Planck proposed that the blackbody radiation is a

collection of countable quanta of this electromagnetic fields, namely photons. This is the

origin of quantum theory.

In 19th century physics, waves can only be transmitted by using such a vibrating medium.

Before the advent of relativity, people believed that electromagnetic fields are transmitted

trough a medium which was called the ether. The second postulate of special relativity

ruled out the prediction of the ether, and people began to consider that the vacuum has

the property of producing all kinds of fields, whose excitations are observed as quanta or

particles. Studying the particles and fields in this direction is a branch of theoretical physics

known as quantum field theory (QFT). Quantum Field Theory (QFT) is the mathematical

and conceptual framework for contemporary elementary particle physics. In a rather informal

sense, QFT is an extension of quantum mechanics combined with special relativity. QFT

deals with particles and fields, i.e. systems with an infinite number of degrees of freedom.

An example of QFT, and the most successful one, is quantum electrodynamics (QED).

QED is the quantum theory of electromagnetism. The final and complete form of QED was

proposed by Feynman, Schwinger, and Tomonaga independently, and gave them the 1965

physics Nobel prize. QED explains how matters interact with electromagnetic fields from

the relativistic point of view. One of the successes of QED, for example, is the accurate
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prediction of the g-factor1 of muon [61],(
g − 2

2

)
µ

= (116584718.10± 0.16)× 10−11 . (3.1.1)

This number is supported by the experimental verification [61],(
g − 2

2

)
µ

= (116592080± 54)× 10−11 . (3.1.2)

This is one example, among many others, that QFT gives us a picture on how the universe

works in a great accuracy.

Symmetry is an ingredient in constructing a QFT. Symmetry is the cornerstone of contem-

porary physics. It plays an important role in understanding the fundamental interactions. As

a QFT, QED possesses the Poincare symmetry, i.e. the translation and Lorentz symmetries.

A theory which consists of field φ(x) is said to have the translation symmetry

xα′ = xα + aα , (3.1.3)

which leads to a field transformation

φ′(x) = U(a)φ(x) , (3.1.4)

leaves the theory to be invariant. The operator U(a) = exp(iaµpµ) is an unitary operator for

a finite translation, and the momentum operator pµ = −i∂µ. To verify this operator, assume

that the translation (3.1.3) is infinitesimal, i.e. a � 1, hence the translation operator U(a)

can be approximated up to the first order in a,

U(a) = 1 + aµ∂µ . (3.1.5)

Applying this operator to xν gives us

Ũ (a)xν = (1 + aµ∂µ)xν = xν + aν = xν ′ , (3.1.6)

which is the translation operation.

1Without taking the relativistic effect into account, g-factor is given by the formula g = 2mωL/qB, where
ωL is Larmor frequency, B is magnetic field, m is mass of particle, and q is particle’s electric charge [61].
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Lorentz transformation deals with an anti-symmetric tensor ωµν as the transformation

parameter,

xµ → xµ′ = xµ + ωµνx
ν . (3.1.7)

The field transformation related to the coordinate change in (3.1.7) is

exp

(
i

2
ωµνJµν

)
(3.1.8)

where

Jµν = i (xµ∂ν − xν∂µ) . (3.1.9)

Hence we have

δxα =
i

2
ωµν (Jµν)αβ x

β . (3.1.10)

Now we would like to see the generators associated with this kind of transformation. Up

to the first order of δx, the variation of the fields can be read as

δφ = φ′ (x′ − δx)− φ (x) = −δxα∂αφ (x) . (3.1.11)

Plugging the “shift” of position (3.1.10) into the last equation, we have

δφ =
i

2
ωµν (Jµν)αβ x

β∂αφ (x) ≡ i

2
ωµνL

µνφ (x) , (3.1.12)

where

Lµν = − (Jµν)αβ x
β∂α = (xµpν − xνpµ) . (3.1.13)

The operator pµ above is the momentum operator, pµ = −i∂µ. One can check that the the

operator (3.1.13) satisfies so(3, 1) Lie algebra,

[Lµν , Lρσ] = i (ηνρLµσ − ηµρLνσ − ηνσLµρ + ηµσLνρ) . (3.1.14)

The numbers 3 and 1 in the parentheses of this group’s name are related to the signature

of the spacetime under consideration, (−,+,+,+), i.e. 3 positives and 1 negative. If only

we are working in the four dimensional Euclidean space, so instead of using the Minkowski

metric ηµν in (3.1.13) we have the delta Kronecker δµν , then the group symmetry is SO(4).
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3.1.2 Squared Casimirs in Poincare group

We have understood that the Poincare group is built of momentum and Lorentz generators,

pµ and Lµν respectively. In quantum mechanics we know that a quantity which is invariant

under a transformation commutes with the generator of the corresponding transformation.

For example the Heisenberg equation of motion,

i
dO
dt

= [O, H]

where H is Hamiltonian of a system, and O is a quantum mechanical operator. We un-

derstand that the Hamiltonian H is the generator of translation in time direction. The

commutativity between O and H reflects that O is a conserved or invariant quantity in time

evolution.

In Poincare group, the generators are responsible not only for the translation in time,

but also the translations in space, and the rotational and boosts transformations as well.

A quantity that commutes with all Poincare group generators is invariant under all of the

transformations contained in the Poincare group.

A squared Casimir operator, or squared Casimir for short, of a group is constructed by the

group’s generators and commutes with all generators in the group. For Poincare group, there

are two squared Casimirs. The first one is squared momentum, p2 = pµpµ. It is easy to check

that [p2, pµ] = 0. The commutation between p2 and the generator of Lorentz transformation

Lµν = i(xµ∂ν − xν∂µ) can be computed as

[
p2, Lµν

]
= −i [∂α∂α, (xµ∂ν − xν∂µ)] = −i [∂α, (xµ∂ν − xν∂µ)] ∂α − i∂α [∂α, (xµ∂ν − xν∂µ)]

= −i [(ηαµ∂ν − ηαν∂µ) ∂α + ∂α (ηαµ∂ν − ηαν∂µ)] = 0 .

For massive scalars, the invariance of p2 under all Poincare transformations can be understood

as the invariance of mass since the eigenvalue of p2 for the scalar wave function φ(x) is m2.

The second squared Casimir in Poincare group is the squared Pauli-Lubanski operator,

W 2 = W µWµ, where the Pauli-Lubanski operator is defined as

W µ =
1

2
εµνρσpνLρσ . (3.1.15)
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For massive particle at rest, the eigenvalue of this squared Pauli-Lubanski operator is−m2s(s+

1). We notice from this operator, one can identify the mass and spin properties of a parti-

cle. Furthermore, these two properties are expected to be invariant under translations and

Lorentz transformations. Algebraically it means this squared Pauli-Lubanski operator must

commute with all generators in Poincare group.

3.2 CFT in D dimensions

3.2.1 Conformal Group and Algebra

Conformal field theory can be considered as a class of quantum field theory with conformal

symmetry. The conformal symmetry preserves the form of the metric tensor to an arbitrary

scale factor Λ (x)

gµν (x)→ Λ2 (x) gµν (x) , (3.2.16)

where µ and ν indices run from 0 to (D−1). We assign µ, ν = 0 to represent time coordinate.

The set of transformations that preserves (3.2.16) in Minkowski spacetime2 are

Translation : xµ → xµ + aµ , (3.2.17)

Rotation : xµ →Mµ
ν x

ν , (3.2.18)

Dilation : xµ → λxµ , (3.2.19)

Special Conformal Transformation (SCT) : xµ → xµ − bµx2

1− 2b · x+ b2x2 ,
(3.2.20)

where aµ and bµ are constant vectors, λ is a scaling parameter, and Mµ
ν is the Lorentz

transformation matrix. We notice that (3.2.17) together with (3.2.18) are just the Poincare

transformation. We are already familiar with this transformation in the discussions of rel-

ativistic field theory. The expression (3.2.19) is the dilation transformation, which is also

known as the scaling transformation. This kind of transformation is not too bizarre, since

we can check that the free Maxwell equations3

∇2 ~E =
∂2 ~E

∂t2
and ∇2 ~B =

∂2 ~B

∂t2
(3.2.21)

2Minkowski spacetime is associated with metric tensor ηµν = diag (−1, 1, 1, 1).
3In the absence of electric charge and current.
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Figure 3.1: The illustration of a special conformal transformation (3.2.20).

are invariant under the dilation transformation (3.2.19). The vector fields ~E and ~B in the

last equation are the electric and magnetic fields respectively. Perhaps, the most peculiar

transformation that build the conformal symmetries is the equation (3.2.20). Figure 3.1

shows how this special conformal transformation works. Transformation (3.2.20) shifts the

point xµ to x′µ where between these two points there are two inversions and one translation.

For each of the transformations in conformal symmetry, there is an associated generator.

The followings are the generators of the symmetries in conformal field theory,

Translation : Pµ = −i∂µ, (3.2.22)

Rotation : Lµν = i (xµ∂ν − xν∂µ) , (3.2.23)

Dilation : D = −ix · ∂, (3.2.24)

SCT : Kµ = −i
(
2xµx · ∂ − x2∂µ

)
. (3.2.25)

We have seen how the generators for translation and Lorentz transformation work in the

previous section. Now we will verify the dilation and SCT generators. We set that the dilation

parameter is α, hence the corresponding finite dilation transformation can be performed by

using the operator

UD = exp(iαD) , (3.2.26)
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hence for the infinitesimal α we can expand the exponentiation above up to the first order,

UDx
σ ≈ (1 + αx · ∂)xσ = (1 + α)xσ = λxσ . (3.2.27)

In the last equation, the dilation parameter λ has been identified as α+ 1. Hence, we can see

that D in (3.2.24) is really an operator that generates dilation. The generator for SCT can

be verified by using similar way, where the finite SCT can be written as an exponentiation,

USCT = exp(ib ·K). Here bµ is the SCT parameter. The infinitesimal SCT then can be read

as

USCTx
σ ≈ (1 + ibµKµ)xσ = xσ + bµ

(
2xµx

ν∂ν − x2∂µ
)
xσ

= xσ + 2bµxµx
σ − x2bσ . (3.2.28)

An algebra of a group is represented by the commutation relations between each of the

group generators. The conformal group generators are given in (3.2.22) - (3.2.25), hence

the algebra of conformal group basically will be constructed by all of these generators. The

commutations between generators in (3.2.22) - (3.2.25) are

[D,Pµ] = iPµ , [D,Kµ] = −iKµ , (3.2.29)

[Kµ,Pν ] = 2i (ηµνD− Lµν) , (3.2.30)

[Kσ,Lµν ] = 2i (ησµKν − ησνKµ) , (3.2.31)

[Pσ,Lµν ] = 2i (ησµPν − ησνPµ) , (3.2.32)

[Lµν ,Lρσ] = i (ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ) . (3.2.33)

It is not easy to see what kind of group algebra associated with conformal group by looking

at (3.2.29) - (3.2.33). However, in four dimensional Minskowski spacetime, we know that the

equation (3.2.33) is just the so(3, 1) algebra.

Nevertheless, to see what kind of the algebra for conformal group in D dimension, we may

define generators JAB which is antisymmetric in A and B, i.e. JAB = −JBA. The indices A

and B have two extra numbers compared to µ or ν, i.e. A,B = − 2,−1, 0, 1, ..., (D − 1).

The relations between JAB with the generators in (3.2.22) - (3.2.25) can be written as

J−2,−1 ≡ D , J−1,µ ≡
1

2
(Pµ + Kµ) , J−2,µ ≡ (Pµ −Kµ) , Jµν ≡ Lµν . (3.2.34)
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Thus from the algebra that we already have in (3.2.29) - (3.2.33), we can show the corre-

sponding algebra for JAB is

[JAB,JCD] = i (ηADJBC + ηBCJAD − ηACJBD − ηBDJAC) . (3.2.35)

We observe that the equation (3.2.35) is very similar to (3.2.33). This signs that they are

the same type of group algebra, but different in “size”. We know that (3.2.33) is just the

Lorentz group which in D = 4 is isomorphic to SO (3, 1). Therefore the algebra (3.2.35) is

so (D + 1, 1) for the metric tensor ηAB = diag (−1,+1, ...,+1).

After discussing the group algebra in conformal symmetry, we would like to see the

infinitesimal coordinate transformation associated with this symmetry. Let us start with a

local4 infinitesimal transformation,

xµ → x′µ = xµ + εµ (x) . (3.2.36)

We will see that the conformal transformation in D dimensions can constrain the general

form of εµ (x). Under (3.2.36), a metric tensor gµν transforms as

gµν → g′µν = gµν + ∂µεν (x) + ∂νεµ (x) . (3.2.37)

Subsequently, from (3.2.16) we can write

∂µεν (x) + ∂νεµ (x) = β (x) gµν , (3.2.38)

which yields the relation Λ2 (x) = 1+β (x). The equation (3.2.38) can be simplified by taking

the trace on both side. This is done by multiplying both side with gµν which yields

2

D
∂ · ε = β (x) . (3.2.39)

In the last equation we have used the relation gµνg
µν = D where D is the number of spacetime

dimensions.

Consider the Euclidean spacetime flat spacetime in D dimensions, then the corresponding

metric tensor has the form gµν = diag (1, ..., 1)︸ ︷︷ ︸
D−entries

which is simply the Kronecker delta δµν . In

this case we have

∂µεν + ∂νεµ =
2

D
∂ · εδµν , (3.2.40)

4Here local means coordinate dependent.
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and furthermore after applying ∂µ and ∂µ successively to (3.2.40) and exchanging the indices

µ and ν, we can obtain

((D − 2) ∂µ∂ν + δµν�) ∂ · ε = 0 . (3.2.41)

The last expression is quite important since it tells us that εµ (x) depends on x at most in

quadratic term. The number of generators that build a conformal group in D dimension can

be calculated as

N =
(D + 1) (D + 2)

2
. (3.2.42)

3.2.2 Energy-Momentum Tensor in CFT

Related to the coordinate transformation (3.2.36), the tensor energy momentum T µν can be

defined as

δS =

∫
dDxT µν∂µεν =

1

2

∫
dDxT µν (∂µεν + ∂νεµ) . (3.2.43)

The symmetric behavior of energy-momentum tensor Tµν under its index permutation allow

us to perform the last step in (3.2.43) where the factor half appears. The integrand of (3.2.43)

can be manipulated by using (3.2.40) to be

1

2
T µν (∂µεν + ∂νεµ) =

1

D
T µνgµν (∂ · ε) =

1

D
T µµ (∂ · ε) .

The invariance of action, δS = 0, for the non-trivial ε yields the tensor energy momentum

T µν must be traceless. This property will play an important role in the next sections.

3.3 Conformal Field Theory in Two Dimesions (CFT2)

3.3.1 Conformal group in 2 dimension

CFT in two dimensions are special. They have an infinite numbers of symmetry generators

[62]. In this subsection we discuss in detail the coformal transformation for 2 dimensional

spacetime. From (3.2.40) where the indices µ and ν run only from 0 to 1, we have

∂0ε0 = ∂1ε1 , ∂0ε1 = −∂1ε0 . (3.3.44)
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The two equations in (3.3.44) remind us on the Cauchy-Riemann equations in complex anal-

ysis. Hence we could introduce the following identifications

z = x0 + ix1 , z̄ = x0 − ix1, (3.3.45)

together with the corresponding partial derivatives

∂1 = (∂z + ∂z̄) , ∂2 = i (∂z − ∂z̄) . (3.3.46)

In this complex coordinates z and z̄, the conformal transformations are

z → z′ = f (z) and z̄ → z̄′ = f̄ (z̄) . (3.3.47)

Furthermore one can check under transformation (3.3.47) the metric changes as

ds2 = dzdz̄ → df

dz

df̄

dz̄
dzdz̄ =

∣∣∣∣dfdz
∣∣∣∣2 dzdz̄ . (3.3.48)

According to (3.2.42), for D = 2 there should be only six generators for a conformal group

in 2 dimensions. Nevertheless, it turns out not to be that simple. We already know that in

the original x coordinates, the expansion of ε in term of x can be at most in quadratic form.

The existence of (3.3.44) in 2 dimensional conformal transformation allows us to perform the

following expansion

ε (z) =
∞∑

n=−∞

εn
(
−zn+1

)
and ε̄ (z̄) =

∞∑
n=−∞

ε̄n
(
−z̄n+1

)
(3.3.49)

which is known as Taylor-Laurent expansion of ε (z) at the origin. Then to the first order in

ε, the difference of a scalar function φ (z, z̄) before and after transformation is

φ (z′, z̄′)− φ (z, z̄) =
(
ε (z) ∂ + ε̄ (z̄) ∂̄

)
φ (z, z̄) =

∞∑
n=−∞

(
εnln + ε̄nl̄n

)
φ (z, z̄) . (3.3.50)

In getting the last expression we have defined the generators

ln = −zn+1∂ , l̄n = −z̄n+1∂̄ , (3.3.51)

with ∂ ≡ ∂z and ∂̄ ≡ ∂z̄. One can check that the generators in (3.3.51) obey the following

commutation relations

[ln, lm] = (n−m) ln+m ,
[
l̄n, l̄m

]
= (n−m) l̄n+m ,

[
ln, l̄m

]
= 0 . (3.3.52)
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The first commutation relation in (3.3.52) is one copy of the Witt algebra, where the

second one is clearly another copy. At this point a question may arise, how can the confor-

mal transformations in two dimensions are constructed by an infinite number of symmetry

generators instead of six as it should be from the formula (3.2.42). Now let us just examine a

copy of the Witt algebra generators {ln}. It is easy to notice that there are some singular ln’s

at z = 0. We can check that the collection of ln’s which are singular are those for n ≤ −1.

Furthermore by performing coordinate changing z = −w−1, we have

ln = −
(
− 1

w

)n−1

∂w (3.3.53)

which is not singular for n ≤ +1. Therefore, we conclude that the two dimensional conformal

transformations are globally defined only for the symmetry generators {l−1, l0, l+1}. The Witt

algebra for these three generators is nothing but the sl (2,C) algebra

[l±1, l0] = ∓l±1 , [l+, l−] = 2l0 . (3.3.54)

That is why the presence of SL (2,C) symmetry, or its subgroup SL (2,R), hints the existence

of two dimensional conformal symmetry.

3.3.2 Primary fields and correlation functions in CFT2

A primary field φ (x) in 2 dimensional spacetime with planar spin s and conformal dimension

∆, under conformal transformations z → w (z) and z̄ → w̄ (z̄), transforms as

φ (z, z̄)→ φ′ (w, w̄) =

∣∣∣∣∂w∂z
∣∣∣∣−h ∣∣∣∣∂w̄∂z̄

∣∣∣∣−h̄ φ (z, z̄) . (3.3.55)

In (3.3.55) we have defined the holomorphic (right) and antiholomorphic (left) conformal

dimensions5

h =
1

2
(∆ + s) , h̄ =

1

2
(∆− s) . (3.3.56)

If the fields φ transform as in (3.3.55) only for w (z) ∈ SL (2,C)/Z2, then we name this type

of φ as quasi-primary fields. We may notice that all primary fields are quasi-primary ones,

but not vice versa.

5In the next chapter, the holomorphic and antiholomorphic conformal dimensions are also called the left
and right conformal dimensions respectively.
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Now we will determine the 2-point and 3-point functions in 2 dimensional CFT solely

driven by the conformal symmetry itself. From the scale invariance z → λz we have6

〈φ1 (z1)φ2 (z2)〉 = λh1+h2 〈φ1 (λz1)φ2 (λz2)〉 . (3.3.57)

Dicatated by translation and rotating symmetries, the 2-point function must be in the form

〈φ1 (z1)φ2 (z2)〉 = f (|z1 − z2|) . (3.3.58)

Furthermore by combining the conditions in (3.3.57) and (3.3.58), we could write the 2-point

function as

〈φ1 (z1)φ2 (z2)〉 =
C12

|z1 − z2|h1+h2
. (3.3.59)

This result for 2-point function can be extended to the D dimensional case,

〈φ1 (x1)φ2 (x2)〉 =
C12

|x1 − x2|h1+h2
, (3.3.60)

where x1 and x2 denote the two points in D dimensional spacetime.

Since the special conformal transformation is simply an inversion that is followed by a

translation, then the last constraint that can fix our 2-point function is the necessity to

be invariant under an inversion z → −z−1. Finally the 2-point function for 2 dimensional

conformal field theory can be shown to have the following form

〈φ1 (z1)φ2 (z2)〉 =

 C12 |z1 − z2|−2h1 for h1 = h2

0 for h1 6= h2

. (3.3.61)

In the case of φ depends on both z and z̄, it would be straightforward to find the corresponding

2-point function as

〈φ1 (z1, z̄1)φ2 (z2, z̄2)〉 = C12 |z1 − z2|−2h |z̄1 − z̄2|−2h̄ if

 h1 = h2 = h

h̄1 = h̄2 = h̄
. (3.3.62)

Previously we have encountered the Witt algebra (3.3.52), which is the commutation

relations between generators of conformal transformations in 2 dimensions. Furthermore this

algebra can be extended by introducing the central charge quantity. This extended algebra

6Consider that we are dealing with holomorphic dependent field only. Nevertheless the discussion will be
the same for the anti holomorphic dependence where in addition to h we also have to add h̄.
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is called the Virasoro algebra and will reduce to the Witt algebra for the vanishing central

charge. There is a tricky way of deriving the Virasoro algebra, which is by looking at some

constraints given by the generator’s indices and the Jacobi identity between generators. The

general form of the Virasoro algebra can be expressed in the following way:

[Lm, Ln] = (m− n)Lm+n + cp (m,n) , (3.3.63)

where p (m,n) is a function that depends on indices m and n ∈ Z. We could notice from

(3.3.63) that p (m,n) must be antisymmetric in m and n exchange, i.e. p (m,n) = −p (n,m).

Then one can manage such that p (1,−1) = 0 and p (n, 0) = 0. This can be seen by

redefining

L̃n ≡ Ln +
cp (n, 0)

n
for n 6= 0 , L̃0 ≡ L0 +

cp (1,−1)

2
. (3.3.64)

The next two steps to determine the exact form of p (m,n) are checking the following

Jacobi identities

[[Lm, Ln] , L0] + [[Ln, L0] , Lm] + [[L0, Lm] , Ln] = 0 , (3.3.65)

[[L−n+1, Ln] , L−1] + [[Ln, L−1] , L−n+1] + [[L−1, L−n+1] , Ln] = 0 . (3.3.66)

From (3.3.65) we can see that only if n 6= −m which provides a non-vanishing p (n,m). Then

by combining this fact with the previous ones that are supported by (3.3.64), we conclude

that p (m,−m) will be non-zero only for |m| ≥ 2. Finally, by normalizing7 p (2,−2) = 1/2,

(3.3.66) gives us

p (m,−m) =
1

2

 m+ 1

3

 =
m (m2 − 1)

12
. (3.3.67)

Finally the Virasoro algebra can be written explicitly as

[Lm, Ln] = (m− n)Lm+n +
c

12

(
m3 −m

)
δm+n,0 . (3.3.68)

3.3.3 Energy-momentum tensor for CFT2

As a tensor, the covariant (lower indices) energy-momentum tensor is transformed as

T ′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
Tαβ , (3.3.69)

7This normalisation is taken to provide us the central charge of free boson to be unity.
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for the coordinated change from xµ to x′µ. We focus on the two dimensional CFT, and

switch from the two dimensional Euclidean coordinate x0 and x1 to a complex plane with

the coordinates z and z̄, where the relation between these coordinates are

x0 =
1

2
(z + z̄) , x1 = − i

2
(z − z̄) . (3.3.70)

Hence, the energy momentum tensor components in Euclidean and complex plane has rela-

tions

Tzz =
∂x0

∂z

∂x0

∂z
T00 + 2

∂x0

∂z

∂x1

∂z
T01 +

∂x1

∂z

∂x1

∂z
T11 =

1

4
(T00 − 2iT01 − T11) , (3.3.71)

Tz̄z̄ =
∂x0

∂z̄

∂x0

∂z̄
T00 + 2

∂x0

∂z̄

∂x1

∂z̄
T01 +

∂x1

∂z̄

∂x1

∂z̄
T11 =

1

4
(T00 + 2iT01 − T11) , (3.3.72)

Tzz̄ = Tz̄z =
∂x0

∂z̄

∂x0

∂z
T00 +

∂x0

∂z̄

∂x1

∂z
T01 +

∂x0

∂z

∂x1

∂z̄
T01 +

∂x1

∂z̄

∂x1

∂z
T11 =

1

4
(T00 + T11) = 0 .

(3.3.73)

The last equation is understood to be vanished due to the fact that the energy-momentum

tensor in CFT has a vanishing trace. From this last equation we can also conclude that

T00 = −T11, thus from (3.3.71) and (3.3.72) we can obtain

Tzz =
1

2
(T00 − iT10) , Tz̄z̄ =

1

2
(T00 + iT10) . (3.3.74)

The condition ∂µTµν = 0 obtained from translational invariance can be read in more detail

∂T00

∂x0
= −∂T10

∂x1
,
∂T01

∂x0
= −∂T11

∂x1
. (3.3.75)

Now we would like to see the dependence of Tzz(z, z̄) and Tz̄z̄(z, z̄) with respect to z and z̄.

At the moment, we consider that both functions depend on z and z̄. One can verify that

∂Tzz
∂z
6= 0 ,

∂Tz̄z̄
∂z̄
6= 0 . (3.3.76)

However, it is interesting to find that

∂Tzz
∂z̄

=
1

4

(
∂

∂x0
+ i

∂

∂x1

)
(T00 − iT10) =

1

4

(
∂T00

∂x0
+ i

∂T00

∂x1
− i∂T10

∂x0
+
∂T10

∂x1

)

=
1

4

∂T00

∂x0
+
∂T01

∂x1︸ ︷︷ ︸
∂µTµ0=0

−i

∂T10

∂x0
+
∂T11

∂x1︸ ︷︷ ︸
∂µTµ1=0


 = 0 . (3.3.77)
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∂Tz̄z̄
∂z

=
1

4

(
∂

∂x0
− i ∂

∂x1

)
(T00 + iT10) =

1

4

(
∂T00

∂x0
− i∂T00

∂x1
+ i

∂T10

∂x0
+
∂T10

∂x1

)

=
1

4

∂T00

∂x0
+
∂T01

∂x1︸ ︷︷ ︸
∂µTµ0=0

+i

∂T10

∂x0
+
∂T11

∂x1︸ ︷︷ ︸
∂µTµ1=0


 = 0 . (3.3.78)

Therefore, from the last two results (3.3.77) and (3.3.78) we can conclude that Tzz is holo-

morphic function, and Tz̄z̄ is anti-holomorphic function,

Tzz(z, z̄) ≡ T (z) , Tz̄z̄(z, z̄) ≡ T̄ (z̄) . (3.3.79)

3.3.4 CFT on the torus and Partition Function

Before we discuss some properties of a CFT on the torus, we analyze some behaviors of a

CFT on an infinite cylinder. Recall that we are working on the CFT2 where the coordinates

are x0 (time) and x1 (space). Let us now define w as the coordinate on a cylinder

w = x0 + ix1 , (3.3.80)

with identification

w ∼ w + 2iπ . (3.3.81)

Let the time coordinate x0 has an infinite range. The identification (3.3.81) can be viewed

as a gluing of the spatial coordinate edges in our infinite strip as illustrated in figure 3.2.

The mapping between a cylinder with coordinate w and a complex plane with coordinate

z is given by

z = ew = ex
0+ix1

. (3.3.82)

The initial time translation x0 → x0 + a in our new complex plane is identified as a complex

dilation z → eaz, while the initial space translation x1 → x1 + b becomes a rotation z →

(cos b+ i sin b)z. The illustration of this mapping is given in figure 3.3.

Under the mapping (3.3), a primary field transforms as

φcyl. (w, w̄) =

(
∂w

∂z

)−h(
∂w̄

∂z̄

)−h̄
φ (z, z̄) = z−hz̄−h̄φ (z, z̄) . (3.3.83)
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Figure 3.2: A cartoon illustration to construct a cylinder from a two dimensional
strip. In the figure we have considered that the edges of our x1 coordinate are x1 = 0
and x1 = 2π.

Figure 3.3: An ilustration for the cylinder to complex plane mapping.
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Here we assign φcyl. (w, w̄) as the fields defined on the cylinder and φ (z, z̄) as the fields defined

on the complex plane. To be simple, we can focus on the holomorphic part only, i.e. there is

no dependence on z̄, which gives us

φcyl. (w) =

(
∂w

∂z

)h
φ (z) = zh

∑
n

φnz
−h−n =

∑
n

φnz
−n =

∑
n

φne
−nw . (3.3.84)

Next we study the transformation of the energy-momentum tensor T (z) dictated by the

mapping (3.3.82). In general, the energy-momentum tensor is not a primary field. The

transformation of the energy-momentum tensor under a general mapping z → f(z) is given

by

T (z) =

(
∂f

∂z

)2

T (f) +
c

12
S (f, z) , (3.3.85)

where

S (z, w) =

(
∂z

∂w

)−2
(
∂z

∂w

∂3z

∂w3
− 3

2

(
∂2z

∂w2

)2
)

(3.3.86)

is called as the Schwarzian derivative. In (3.3.85) one may observe that the energy-momentum

tensor becomes a primary field with the conformal dimension h = 2 when the theory under

consideration is centerless, i.e. c = 0. For z = ew, the corresponding Schwarzian derivative

is S (z, w) = −1/2. Hence the formula (3.3.85) gives us the energy-momentum tensor on the

cylinder

Tcyl. =

(
∂z

∂w

)2

T (z) +
c

12
S (z, w) = z2T (z)− c

24
. (3.3.87)

By plugging the Laurent expansion for this energy-momentum tensor

T (z) =
∑
n∈Z

z−n−2Ln (3.3.88)

where

Ln =
1

2πi

∮
dzzn+1T (z) (3.3.89)

the reading of (3.3.87) becomes

Tcyl. =
∑
n∈Z

Lnz
−n − c

24
=
∑
n∈Z

(
Ln −

c

24
δn,0

)
z−n =

∑
n∈Z

(Lcyl.)n z
−n , (3.3.90)

where

(Lcyl.)n =
(
Ln −

c

24
δn,0

)
. (3.3.91)
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Figure 3.4: Cartoon description of a torus.

The zero mode of Laurent expansion coefficient above is shifted due to the presence of central

charge,

(Lcyl.)0 = L0 −
c

24
. (3.3.92)

After discussing some CFT properties on an infinite cylinder, now we perform an analysis

for a CFT on a torus.

To make a torus from an infinite cylinder, we need to cut the cylinder and glue its

edges together. In the complex plane, as depicted in figure 3.5, we can construct a torus

by identifications of each points which differ by a linear combination of the two basic lattice

vectors. Nevertheless, it is possible that our torus gets twisted before gluing, which is reflected

by the presence of real part of modular parameter τ in the figure 3.5. Hence the modular

parameter which is defined as

τ = τ1 + iτ2 (3.3.93)

describes the shape of the torus.

We now derive the proper partition function for CFT on the torus. The path integral over

all paths x(t) with an Euclidean action SE(x), subject to the boundary condition x(0) = x(β),

gives us a partition function reads

Z =

∫
Dx exp (−SE (x)) = Tr exp (−βH) . (3.3.94)

As usual H in the last formula stands for the Hamiltonian of the system, and β is the inverse

of temperature T , β = 1/kBT .
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Figure 3.5: Lattice of a torus.

The Hamiltonian H in (3.3.94) is a generator of time translation. On the torus, the CFT

evolves with respect to the complex parameter τ , whose real part is considered as spatial and

the imaginary part is (Euclidean) time. Therefore, in the absence of translation in the real

part of τ , then the partition function on the torus can be read as8

Z = Tr exp (−2πτ2H) . (3.3.95)

When the torus gets twisted, i.e. the real part of τ presents, the corresponding partition

function now reads

Z = Tr exp (−2π(τ2H − iτ1P )) . (3.3.96)

In the field theory, we already know that the T00 component of energy-momentum tensor

is the energy density, and the T0k is the momentum density related to the translation along

spatial dimension xk. In regard to the CFT on the torus, we can get the corresponding

energy-momentum tensor obtained from the one defined on cylinder (3.3.91). Hence the

Hamiltonian and momentum operator can be obtained as

H =
1

2π

∫
dx1T00 =

1

2π

∮ (
Tcyl. (z) dz + T̄cyl. (z̄) dz̄

)
, (3.3.97)

P =
1

2π

∫
dx1T01 =

i

2π

∮ (
Tcyl. (z) dz − T̄cyl. (z̄) dz̄

)
, (3.3.98)

8The 2π factor appearing in the partition function is the periodicity of the coordinate, and the factor “i”
comes from the fact we are working in Euclidean time.
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respectively. It follows that, on the torus, one can write the Hamiltonian operator as

H = L0 −
c

24
+ L̄0 −

c̄

24
, (3.3.99)

and the momentum operator as

P = L0 −
c

24
− L̄0 +

c̄

24
. (3.3.100)

This yields the reading of the partition function on a torus becomes

Z (τ, τ̄) = Trq(L0− c
24)τ q̄(L̄0− c̄

24)τ̄ , (3.3.101)

where q = exp (2iπ) and q̄ = exp (−2iπ).

3.3.5 Cardy Formula for Entropy in CFT2

In a general treatment, the modular parameter τ can be shown to be transformed as

τ → aτ + b

cτ + d
, (3.3.102)

where  a b

c d

 ∈ SL (2,Z)/Z2 . (3.3.103)

This transformation is known as the modular transformation. In particular, a modular

transformation that has a specific form

τ → −1/τ , (3.3.104)

is known as the modular S-transformation. Pictorially, we can depict this mapping as in figure

3.6. The shaded areas in the figures (a) and (b) describe the unit lattice of the same torus.

The invariance of torus with respect to this S-modular transformation restricts the partition

function for a CFT on the torus (3.3.101) to be invariant under the same transformation, i.e.

Z(τ) = Z(−1/τ). The partition function on the torus of modulus τ , in the absence of the

central charge, reads

Z̃(τ, τ̄) = Tr e2πiτL0e−2πiτ̄ L̄0 =
∑
h,h̄

ρ(h, h̄)e2πihτe−2πih̄τ̄ . (3.3.105)
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Figure 3.6: Lattice of a torus.

In writing the last formula, we have used the eigen equations

L0

∣∣h, h̄〉 = h
∣∣h, h̄〉 , L̄0

∣∣h, h̄〉 = h̄
∣∣h, h̄〉 , (3.3.106)

and ρ(h, h̄) is the density of states with eigenvalues h and h̄.

To simplify the discussion, we treat τ and τ̄ as two independent complex variables. Hence,

q = e2πiτ and q̄ = e−2πiτ̄ are also independent each other. Computing the density of state

ρ(h, h̄) can be done by performing the integration,

ρ(h, h̄) =
1

(2πi)2

∫
dq

qh+1

dq̄

q̄h̄+1
Z(q, q̄) . (3.3.107)

Another simplification can be performed by considering that the partition function that

depends only on q for a while, and restore apply the result as if it depends on q̄ also at the

end. From (3.3.105) we can do the following trick,

Z̃(τ) = e
2πic
24

τZ(τ) . (3.3.108)

Now we employ the S-modular invariance for the partition function,

Z̃(τ) = e
2πic
24

τZ(−1/τ) = e
2πic
24

τe
2πic
24

1
τ Z̃(−1/τ) , (3.3.109)

which gives us the integration to get the density matrix

ρ(h) =

∫
dτ e−2πihτe

2πic
24

τe
2πic
24

1
τZ(−1/τ) . (3.3.110)
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In evaluating (3.3.110), we can apply the saddle point approximation, i.e. separating the

integrand into a rapidly varying phase and a slowly varying prefactor. In the original proposal

by Cardy where he discusses the CFT2 on an infinite long strip, the lowest energy of the

system depends linearly on the length of the strip, i.e. E0 ∼ l where l is the strip’s length.

Accordingly, we are allowed to consider the case of asymptotic h, since we know in the

absence of L̄0 in the theory, the Hamiltonian of the system is just L0. Hence for large h, the

extremum of exponent in (3.3.110) is obtained when

τ ≈ i
√
c/24h . (3.3.111)

Substituting the result (3.3.111) back into the integral (3.3.110), we obtain

ρ(L0) ≈ exp

{
2π

√
cL0

6

}
, (3.3.112)

which is known as the Cardy formula. Accordingly, by taking into account the contribution

of anti holomorphic part in the theory, the Cardy formula for entropy can be read as

SCardy = 2π

(√
cLL0

6
+

√
cRL̄0

6

)
. (3.3.113)

Sometime the holomorphic part is called as the left mover version of the theory, where the

associated central charge is cL, and the anti holomorphic part is called as the right mover

one, where the corresponding central charge is cR. Alternatively, since we know that the

Eigenvalue of L0 is energy E, hence the reading of this Cardy formula can also be

SCardy = 2π

(√
cLEL

6
+

√
cRER

6

)
. (3.3.114)

In the last formula, quantities with subscript “L” which stands for “left” come from the

holomorphic side of the theory. The subscript “R” which stands for “right” represents the

anti holomorphic contribution. These “left” and “right” terminologies are analogous to the

left and right moving of the traveling waves, y = A sin(kx + ωt) and y = A sin(kx − ωt)

respectively. Writing x0 = kx and x1 = −iωt allows us to rewrite the left moving wave

solution as a holomorphic function, y = A sin (z), and the right moving wave as an anti

holomorphic one, y = A sin (z̄).
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In fact, there is a relation between entropy, energy, and temperature,

∂S

∂E
=

1

T
, (3.3.115)

which allow us to rewrite the formula (3.3.114) as

SCardy =
π2

3
(cLTL + cRTR) . (3.3.116)

The form of Cardy formula for the entropy of a two dimensional CFT as expressed in the

last equation is the one which is widely used in the discussion of Kerr/CFT correspondence,

which is the main topic of this thesis.

3.3.6 CFT2 scattering cross section

An amplitude responsible for the emission of a particle with frequency ω is written as [67]

M∼
∫
dt 〈f | O (t) |i〉 e−iωt . (3.3.117)

Using this amplitude, the rate of emission can be obtained by squaring and summing over

all final states ∑
f

|M |2 ∼
∫
dtdt′ 〈i| O† (t)O (t′) |i〉 e−iω(t−t′) , (3.3.118)

where the sum over all final states has given us the identity matrix. We observe that this

rate is proportional to the correlation function∫
dt
〈
O† (0)O (t)

〉
e−iωt , (3.3.119)

where the initial state |i〉 has been taken to be a vacuum |0〉 and the intial time t′ = 0.

Field theory on a cylinder has been used as a model in describing a system with finite

temperature. Previously, we have discussed in details about the CFT on a cylinder. Here

we will apply it to discuss a thermal system. The temperature is introduced as an inverse of

the circumference of the cylinder. A specific mapping between an infinite flat plane with the

coordinate z to a cylinder with the coordinate w is given by

w =
L

2π
ln z , z = exp

2πw

L
. (3.3.120)
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Hence the transformation of two point function 〈O(z)O(z′)〉 where O(z) is a local operator

with conformal dimension h can be read

〈O (w1)O (w2)〉 =

(
dz

dw

)h
w=w1

(
dz

dw

)h
w=w2

〈O (z1)O (z2)〉 . (3.3.121)

Using the transformation (3.3.120) and the two point function constrained by the conformal

symmetry (3.3.59) gives us

〈O (w1)O (w2)〉 =

(
2π exp (π (w1 − w2)/L)

(z1 − z2)/L

)2h

(3.3.122)

from the equation (3.3.121). As we are discussing the finite temperature case, inserting the

temperature T to the formula can be done by considering that the cylinder circumference

is proportional to the inverse of temperature T , i.e. L ∼ 1/T . By using the formula of

hyperbolic sine

sinh(x) =
exp(x)− exp(−x)

2
, (3.3.123)

we can perform some algebraic manipulations on (3.3.122) which gives us

〈
O† (0)O (t)

〉
∼
(

πT

sinh (πTt)

)2h

. (3.3.124)

Our next task is to compute (3.3.119) by using the last equation. Using some complex

analysis, the authors of [67] obtain the result as

1/T∫
0

dt

(
πT

sinh (πTt)

)2h

e−iω(t−iε) ∼ (T )2h−1 e−ω/2T
∣∣∣Γ(h+ i

ω

2πT

)∣∣∣2 . (3.3.125)

This rate is important later in establishing the microscopic dual calculation for absorption

cross section.

3.4 AdS/CFT proposal

3.4.1 Introduction

In 1993, ’t Hooft [10] proposed the holographic world idea, which was pushed further by

Susskind with some more concrete examples [11]. An important finding in this holographic
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world studies is the conclusion where the number of microstates of matter (quantum theory)

in two spatial dimensions (area) is equal with the number of microstates of black holes (grav-

itational theory) in three spatial dimensions (volume). Our best understanding of matter

comes from quantum theory. In the other side, a black hole is an object in a gravitational

theory. The gravitational theory could be the Einstein theory or beyond. This relation

between the numbers of microstates in quantum and gravitational theories, in different di-

mensions of spacetime they are living, becomes a remarkable hint in the search of quantum

gravity theories afterwards.

The AdS/CFT correspondence, or AdS/CFT duality, relates a quantum field theory

(QFT) in D− 1 dimensions and a quantum gravity theory in D dimensions. The AdS/CFT

duality is a concrete realization of the holographic world proposal. This duality says, in

some limits, that a string theory on the manifold AdSD+1 ×M is equivalent to a specific

D-dimensional conformal field theory living on the boundary of AdSD+1. Here M is the

compactification manifold. This proposal was given by Maldacena in his celebrated paper

[9]. Yet, he did not specify how exactly these two distinguished theories are mapped each

other. A detailed proposal on how the quantum field theory is mapped to the gravity theory

in supporting Maldacena’s idea was given by Gubser, Klebanov, and Polyakov [68] and by

Witten [69].

The AdS/CFT duality is a discovery in the context of superstring theory. Superstring

theory itself needs some extra dimensions. Consequently, it is quite natural to suspect in the

context of holography, a quantum field theories that is holographically dual to the gravity

according to superstring theory would live on the hypersurface embedded in a higher di-

mensional space where the superstring theory lives. In the development of this AdS/CFT

duality, studies of this subject has been expanded to several domains. They include the

studies of quantum field theories at the strong coupling, physics of black holes, relativistic

fluid dynamics, and even some applications in condensed matter physics [70, 71, 72, 73, 74].

This reflects how remarkable this idea is.

Witten’s prescription of the precise mapping between a gravity theory in the bulk and a

conformal field theory on the boundary related to the AdS/CFT correspondence [69] has a

close relation to the Kadanoff-Wilson renormalization group approach in the study of lattice
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systems. Let us consider a system where there is no gravity in a lattice with the lattice

spacing a and the Hamiltonian

H =
∑
x,i

Ji(x, a) Oi(x) . (3.4.126)

In the Hamiltonian (3.4.126), the variable x denotes the lattice sites and the operators Oi

is coupled to the sources (could be coupling constants) Ji(x, a) at the point x of the lattice.

We include the argument a associated with Ji, to stress the point that Ji corresponds to

a lattice spacing a. In the renormalization group approach, we coarse grain the lattice by

expanding the lattice spacing and by replacing multiple sites by a single site. In this process,

the Hamiltonian (3.4.126) does not change, but different operators are weighed differently.

Accordingly, in each steps of coarse grain, the couplings Ji(x, a) change. Suppose that we

double the lattice spacing in each steps, it will affect the couplings Ji as

Ji(x, a)⇒ Ji(x, 2a)⇒ Ji(x, 4a)⇒ Ji(x, 8a)⇒ · · · . (3.4.127)

In this process we observe the dependence of sources with respect to the scaling which allow

us to write the sources as Ji(x, u), where u = (a, 2a, 4a, · · · ) is the length scale of a system

under consideration. The evolution of the couplings with the scale is determined by flow

equations

u
∂

∂u
Ji(x, u) = βi

(
Jj(x, u), u

)
, (3.4.128)

where βi is the so-called β-function associated with source Ji. At weak coupling, the βi-

functions can be determined by using perturbation theory.

According to the AdS/CFT proposal, we consider u as an extra dimension. In this point

of view, the succession of lattices at different sizes, i.e. different values of u, are considered

as layers of a new higher-dimensional space. In addition, the sources Ji(x, u) are regarded as

fields in a space with the extra dimension u,

Ji(x, u) = φi(x, u) . (3.4.129)

The dynamical equations for the sources φi’s will be dictated by some action. Specifically

in the AdS/CFT duality, the dynamics of the φi’s is coming from some gravity theories.

Consequently, we can consider this AdS/CFT duality as a geometrization of the quantum
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Figure 3.7: Ilustration of the gravity theory lives in the bulk and field theory lives on
the boundary according to the AdS/CFT correspondence.

dynamics described by the renormalization group. The microscopic couplings or sources of

the field theory can be identified to be the values of the bulk fields living at the boundary

of the space with extra dimensions. That is why we mentioned that the field theory lives on

the boundary of the higher-dimensional space, which we call as the bulk, where the gravity

theory lives. Figure 3.7 illustrates this idea.

The same tensor structure must be shown by the associated field theory operator and

quantities in the gavity theory. Therefore, a “bulk” scalar field will be dual to a scalar oper-

ator on the boundary, a “bulk” vector field Aµ will be dual to a current Jµ on the boundary,

and a “bulk” graviton field gµν with spin-two will be dual to a symmetric second-rank tensor

Tµν on the boundary. This Tµν will be naturally identified as the energy-momentum tensor

Tµν of the boundary field theory. In the next two subsections, we show how to verify this

AdS/CFT correspondence by matching the two point functions on each sides of the duality,

for scalar and vector fields.

3.4.2 AdS/CFT two point function for scalar fields

In this section, based on [69, 75], we will review the gravitational two point function for

free massless scalars in AdSD+1 background, and match this two point function from the
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prediction of CFTD. Let us start by writing an action for scalar fields in AdSD+1,

S (φ) =
1

2

∫
dD+1x

√
|g|∂µφ∂µφ . (3.4.130)

In the action above, and in the rest of this AdS/CFT computation, we will use the measure√
|g| instead of

√
−g, due to the fact that one can use the Lorentzian or Euclidean version

of the AdS spacetime. In the case of Euclidean, as the one that we will use in this and next

subsection, all signatures in the spacetime will be positive, hence we do not need the negative

sign inside of the square root. In the case of Lorentzian, as we use in the other sections which

are related to the Schwarzschild and Kerr spacetimes, the negative sign is needed to make

sure the quantity inside of the square root will be positive. The corresponding equation of

motion for φ from this action is

1√
|g|
∂µ

(√
|g|∂µφ

)
= 0 . (3.4.131)

The field φ(x) has a definite value φ0(x′) on the boundary, where x ∈ AdSD+1 and x′ ∈ ED.

Here ED is the D dimensional Euclidean flat spacetime. The spacetime metric for an AdSD+1

spacetime reads

ds2 =
(
x0
)−2

D∑
k=0

(
dxk
)2
. (3.4.132)

Now, we would like to find the Green function solution to the equation (3.4.131),

1√
|g|
∂µ

(√
|g|∂µK (x, x′)

)
= 0 . (3.4.133)

In the AdS/CFT discussion, the Green function or propagator K(x, x′) is called as the bulk-

to-boundary propagator. Once we get the solution for this propagator, the solution for scalar

fields can be written as

φ (x) =

∫
ED

dDx′K (x, x′)φ0 (x′) . (3.4.134)

Following Witten [69], the integrand in (3.4.134) is evaluated in Euclidean space (3.4.132).

The coordinate xk for k = 1, ..., D are coordinates of the boundary, ED, and the boundary

is placed at x0 = 0. The component of metric tensor for this spacetime then can be read as

gµν = (x0)−2δµν ,
√
|g| = (x0)−(D+1) , gµν = (x0)2δµν . (3.4.135)
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The solution for K(x, x′) is given as [69]

K
(
x0, ~x; ~x′

)
= C

(
x0

(x0)2 + |~x − ~x ′|2

)D
, (3.4.136)

where C is some constants. This propagator solution satisfies the Laplace equation (3.4.131)

for x0 6= 0 and ~x 6= ~x′.

Witten used a trick to derive the propagator solution (3.4.136). Initially, we could discuss

the equation (3.4.131) at x0 = ∞. Therefore, only the coordinate x0 which matters in this

consideration, and the corresponding equation is

∂0

(√
|g|∂0K

(
x0
))

= 0 . (3.4.137)

Furthermore, since ∂0 = g00∂0, and the propagator K is a function of x0 only, we can rewrite

the last equation as
d

dx0

((
x0
)−D+1 d

dx0
K
(
x0
))

= 0 . (3.4.138)

We can try the ansatz K (x0) = C (x0)
P

to solve equation (3.4.138), where C is just some

constants. We can find that this ansatz solves the equation (3.4.138) with P are the roots of

P (P −D) = 0 . (3.4.139)

The solution P = 0 cannot fulfill our boundary condition at x0 = 0, where we are expecting

K(x, x′) reduces to a delta function at the boundary x0 = 0. Therefore, the accepted solution

is

K
(
x0, ~x;∞

)
= C

(
x0
)D

. (3.4.140)

We add the argument ∞ inside of the K function’s dependence to show that this solution is

obtained for the condition x0 =∞.

However, the boundary where the field theory lives is taken at x0 = 0. Therefore we need

to map the solution (3.4.140) from x0 =∞ to x0 = 0. As can be seen from the appendix D,

the appropriate mapping is

x0 → x0

(x0)2 + |~x |2
. (3.4.141)

Hence, under this mapping, the propagator solution (3.4.140) transforms to

K
(
x0, ~x;∞

)
→ K

(
x0, ~x; 0

)
= C

(
x0

(x0)2 + |~x |2

)D
. (3.4.142)
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The classical solution (3.4.134) now can be read in detail as

φ
(
x0, ~x

)
= c

∫
dDx′

(
x0

(x0)2 + |~x − ~x ′|2

)D
φ0 (~x′) . (3.4.143)

According to Witten [69], the precise statement of AdS/CFT is〈
exp

∫
ED

φ0O
〉
CFT

= Zgrav (φ0) , (3.4.144)

where

Zgrav (φ0) = exp (−S (φ)) . (3.4.145)

Inserting the solution (3.4.143) into the classical action (3.4.130), we have

S (φ) = −CD
2

∫
dDxdDx′

φ0 (~x′)φ0 (~x)

|~x − ~x ′|2D
. (3.4.146)

Plugging the action (3.4.146) into the formula (3.4.144), and using the quantum field theoretic

prescription to obtain the two point function from a generating functional yield

〈O (~x)O (~x′)〉 ∼ δ2Zgrav (φ0)

δφ0 (~x) δφ0 (~x′)

∣∣∣∣
φ0=0

=
δ2S (φ)

δφ0 (~x) δφ0 (~x′)
(3.4.147)

we have

〈O (~x)O (~x′)〉 ∼ 1

|~x − ~x ′|2D
, (3.4.148)

which is what we expect for a two point function in a CFT (3.3.60) with the conformal

dimension D.

3.4.3 AdS/CFT two point function for gauge fields

We now turn our discussion to the gauge field case, where the mapping between the theories

in the bulk and on the boundary is the “vectorial” version of (3.4.144)〈
exp

∫
ED

A0J

〉
CFT

= Zgrav (A0) . (3.4.149)

We restrict our problem to the massless Abelian gauge field Aµ case only. In general, it

can be extended to the massive non-Abelian case, where the associated gauge fields are Aaµ.

In the formula (3.4.149), J is a vector operator in a CFT. The associated source free field

equation for massless Abelian gauge fields in a curved spacetime is

∂µ

(√
|g|F µν

)
= 0 . (3.4.150)
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Figure 3.8: The illustration of the gauge fields on the boundary.

As usual, the field strength tensor Fµν is

F µν = ∂µAν − ∂νAµ . (3.4.151)

We continue to follow Witten [69] and Petersen [75] in discussing the gauge fields in AdS

space. The equation (3.4.150) is known as the free Maxwell equation in curved space. In the

same spirit with the previous discussion for scalar fields, the first step here is to seek a way

in constructing a propagator which reduces to a delta function on the boundary, i.e. has the

form δ (~x− ~x′) at x0 = 0. The gauge fields in the bulk can be written as a 1-form9, we expect

the propagator solution for equation (3.4.150) is also a 1-form. We are looking for a solution

in the form

A(x0, ~x ) = ai(~x )dxi . (3.4.152)

Here we also use the trick as we performed before, getting the propagator first when the

boundary is placed at infinity, x0 →∞. In such case, the propagator will be ~x independent.

Since the gauge field Aµ is expressed in a 1-form, the same will apply to the propagator

solution that we are looking right now, i.e. the propagator is a 1-form also.

Hence, as the boundary is placed at infinity (the illustration is given in fugure 3.8 (b)),

we are looking for the 1-form propagator solution Ã = Ãidx
i where Ãi = f(x0) and i ≥ 1.

9A brief discussions on forms is given in appendix E.
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In general, the bulk 1-form gauge field is A = Aµdx
µ, where µ ≥ 0. However, since we

are discussing the dynamics of the fields at x0 = ∞, we have turned off the degree of

freedom along ~x. Consequently, the corresponding field strength tensor F̃µν associated with

the propagator Ã on this boundary is

F̃0i =
df(x0)

dx0
= −F̃i0 ,

F̃ 0i = (x0)4df(x0)

dx0√
|g|F̃ 0i = (x0)−n+3df(x0)

dx0
. (3.4.153)

Since Ãi is x0 dependent only, then all components of F̃µν except F̃0i or F̃i0 are zero. Then

the equation of motion (3.4.150) gives us

d

dx0
(
√
gF̃ 0i) =

d

dx0

((
x0
)3−D df (x0)

dx0

)
= 0 . (3.4.154)

The function f(x0) which solves this equation is

f(x0) = const. (x0)(D−2) (3.4.155)

which yields a possible solution for Ã as

Ã =
D − 1

D − 2
(x0)(D−2)dxi . (3.4.156)

We have set the constant in (3.4.155) to be (D − 1)/(D − 2) for the latter convenient.

The solution Ã in (3.4.156) applies at x0 = ∞. To map this solution to the boundary

x0 = 0, we can use the mapping (3.4.141), which gives

Ã =
D − 1

D − 2

(
x0

(x0)2 + |~x |2

)D−2

d

(
xi

(x0)2 + |~x |2

)
. (3.4.157)

It turns out that a nice result will be obtained if we remove the “pure gauge” part,(
D

D − 2

)
d

(
(x0)D−2xi

((x0)2 + |~x |2)D−1

)
(3.4.158)

from the solution for A in (3.4.157). Recall that in the discussion of free Maxwell fields, we

can perform a pure gauge transformation for the field solution

A→ A′ = A + da (3.4.159)
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which yields A′ is also a solution. The proof is very simple, since F = dA, then F′ = dA′ =

dA which is clearly coming from the fact that d(da) = 0. Subtracting the “pure gauge” part

from the solution (3.4.157) yields

Ã =
D − 1

D − 2

(
x0

(x0)2 + |~x |2

)D−2

d

(
xi

(x0)2 + |~x |2

)
− 1

D − 2
d

(
(x0)D−2xi

((x0)2 + |~x |2)D−1

)
=

1

D − 2

{
(D − 1)(x0)D−2 xi

((x0)2 + |~x |2)D−2
d

(
1

(x0)2 + |~x |2

)
+ (D − 1)

(x0)D−2

((x0)2 + |~x |2)D−1
dxi − d

(
(x0)D−2xi

((x0)2 + |~x |2)D−1

)}
=

1

D − 2

{
(x0)D−2xid

(
1

((x0)2 + |~x |2)D−1

)
+ (D − 1)

(x0)D−2

((x0)2 + |~x |2)D−1
dxi

− d
(

(x0)D−2xi

((x0)2 + |~x |2)D−1

)}
=

1

D − 2

{
− 1

((x0)2 + |~x |2)D−1
d
(
(x0)D−2xi

)
+ (D − 1)

(x0)D−2

((x0)2 + |~x |2)D−1
dxi
}

=
1

((x0)2 + |~x |2)D−1

{
−(x0)D−3dx0xi + (x0)D−2dxi

}
. (3.4.160)

Therefore, the solution Ãµ can be read from the last equation as

Ã0 = − (x0)
D−3

xi(
(x0)2 + |~x |2

)D−1
, Ãi =

(x0)
D−2(

(x0)2 + |~x |2
)D−1

. (3.4.161)

After applying the the transformation ~x→ ~x− ~x′, we now have

Ã0 = − (x0)
D−3

(x− x′)i(
(x0)2 + |~x − ~x ′|2

)D−1
, Ãi =

(x0)
D−2(

(x0)2 + |~x − ~x ′|2
)D−1

. (3.4.162)

Now we arrive at the key point in the AdS/CFT prescription. The bulk field A(x0, ~x) can

be written in terms of the boundary fields ai(~x) by using the bulk-to-boundary propagator

Ã(x0, ~x; ~x′) constructed from the solutions (3.4.162),

A(x0, ~x ) =

∫
dDx′Ã(x0, ~x ; ~x ′)ai(~x

′)

=

∫
dDx′

{
(x0)D−2

((x0)2 + |~x − ~x ′|2)D−1
ai(~x

′)dxi

−(x0)D−3dx0 (x− x′)iai(~x ′)
((x0)2 + |~x − ~x ′|2)D−1

}
. (3.4.163)

One way to express the delta function is [76]

δ (x) = lim
q→∞

q

π (1 + q2x2)
. (3.4.164)
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By changing p→ 1/ε, the delta function (3.4.164) transforms to

δ (x) = lim
ε→0

ε

π (ε2 + x2)
, (3.4.165)

which can be generalized to

δ (x) = lim
ε→0

εβ

(ε2 + |~x |2)α
(3.4.166)

for 2α − D = β > 0. The last formula is singular at ~x2 = 0 and vanishing elsewhere. As

we take the limit x0 → 0, the first term in the equation (3.4.163), i.e. the term that couples

to dxi, contains the delta function (3.4.166). Therefore, after the integrating over dx′, we

get the result ai(~x)dxi. The second term in equation (3.4.163), the term that couples to

dx0, vanishes as x0 → 0. This is not too obvious, but we can see this by considering the

contribution of (~x−~x′) term after a delta function δ(~x−~x′) applies to it, and Taylor expand

ai(~x
′) around ~x. Hence, the field (3.4.163) will reduce to (3.4.152) as x0 → 0.

We are now instructed to evaluate the classical action for the classical solution (3.4.163).

An action for the free Maxwell fields in the form language can be read as

S(A) =
1

2

∫
AdSD+1

F ∧ ∗F (3.4.167)

where F = dA and the associated equation of motion is dF = 0. By using the Stokes

theorem, this action can be read as

S(A) =
1

2

∫
AdSD+1

dA ∧ ∗F =
1

2

∫
AdSD+1

d(A ∧ ∗F) =
1

2

∫
∂AdSD+1

A ∧ ∗F . (3.4.168)

Hence, the action at the boundary of AdSD+1, denoted by ∂AdSD+1, can be read as

S(A) ∼
∫
dDx
√
hA`n0F0` . (3.4.169)

In the integrand of boundary action above, n0 is the normal vector of this boundary and h

is the determinant of boundary metric tensor

hij =
1

(x0)2
δij, i, j = 1, ..., D . (3.4.170)

We have the liberty to take

nµ = (− 1

x0
, 0, ..., 0); nµ = (−x0, 0, ..., 0) (3.4.171)
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and
√
h = (x0)−D. Furthermore, the 2-form F = dA can be computed from (3.4.163),

F = (D − 2)(x0)D−3dx0 ∧
∫
dDx′

ai(x
′)dxi

((x0)2 + |~x − ~x ′|2)D−1

−2(D − 1)(x0)D−1dx0 ∧
∫
dDx′

ai(x
′)dxi

((x0)2 + |~x − ~x ′|2)D

+2(D − 1)(x0)D−3dx` ∧ dx0

∫
dDx′

(x` − (x′)`)ai(x
′)(xi − (x′)i)

((x0)2 + |~x − ~x ′|2)D

−(x0)D−3dxi ∧ dx0

∫
dDx′

ai(x
′)

((x0)2 + |~x − ~x ′|2)D−1
+ · · · (3.4.172)

The dots in the last line of (3.4.172) represents the terms that are not needed in computing

the action (3.4.169). In fact, by using the relation dx0 ∧ dxi = −dxi ∧ dx0, we can get

F = (D − 1)(x0)D−3dx0 ∧
∫
dDx′

ai(x
′)dxi

((x0)2 + |~x − ~x ′|2)D−1

−2(D − 1)(x0)D−1dx0 ∧
∫
dDx′

ai(x
′)dxi

((x0)2 + |~x − ~x ′|2)D

−2(D − 1)(x0)D−3dx0 ∧
∫
dDx′

|~x − ~x ′| · d~x ai(x′)(xi − (x′)i)

((x0)2 + |~x − ~x ′|2)D
+ · · ·(3.4.173)

The boundary action (3.4.169) can be rewritten as

S(A) ∼
∫
dDx′(x0)−D+3Ai(x

0, ~x ′)F0i(x
0, ~x ′) . (3.4.174)

Therefore, the components of Fµν that we need to compute the action above are F0i,

F0i(x
0, ~x ) = (x0)D−3

{
(D − 1)

∫
dDx′

ai(x
′)

((x0)2 + |~x − ~x ′|2)D−1

−2(D − 1)

∫
dDx′(xi − x′i)

ak(x
′)(xk − (x′)k)

((x0)2 + |~x − ~x ′|2)D

}
+O((x0)D−1) , (3.4.175)

which is the result in (3.4.173). Only the term with (x0)D−3 survives for x0 → 0, and we find

S(A) =

∫
dDxdDx′ai(~x )aj(~x

′)

(
δij

|~x − ~x ′|2D−2
− 2(x− x′)i(x− x′)j

|~x − ~x ′|2D

)
. (3.4.176)

The corresponding two point from CFT is

〈Ji(~x )Jj(~x
′)〉 ∼ 1

|~x − ~x ′|2(D−1)

{
δij −

2(xi − x′i)(xj − x′j)
|~x − ~x ′|2

}
, (3.4.177)
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which can be obtained by taking

〈Ji(~x )Jj(~x
′)〉 ∼ δ2Zgrav (A)

δai(~x )δaj(~x ′)

∣∣∣∣
ai=0

=
δ2S (A)

δai(~x )δaj(~x ′)
. (3.4.178)

Hence, we arrive at a conclusion that the AdS/CFT conjecture works for free massless gauge

fields also.
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Chapter 4

Kerr/CFT Correspondence

In the previous section, we have discussed briefly the AdS/CFT correspondence. Apart

from the fact that it has changed the direction of researches in theoretical high energy physics

in the last seventeen years, it seems this duality proposal has no contact to the real black

holes phenomenon yet. In 2008, the AdS/CFT correspondence idea was extended to the case

of extremal rotating black holes, namely the Kerr/CFT correspondence [12]. This correspon-

dence may explain the real world since astronomical data supports the existence of the near

extremal rotating black holes [13].

In the same spirit with AdS/CFT, according to this Kerr/CFT correspondence, a lower di-

mensional field theory defined on the boundary of the near horizon of extremal Kerr (NHEK)

can read “holographically” the semiclassical dynamics related to the Kerr black holes. In this

section, we will review the Kerr/CFT correspondence. We will start with the extremal case,

where we can obtain a central charge associated to the extremal Kerr black holes. This

central charge is derived in the same fashion as Brown and Hannaeux did for AdS3 space

in 80’s [63]. The derivation of central charge for extremal Kerr black holes in this chapter

follows the method in [77]. It is natural to expect that the Kerr/CFT correspondence is not

an exclusive property of extremal or near extremal Kerr black holes. It must be the property

of generic or non-extremal Kerr black holes as well. However, one cannot show the conformal

symmetries of the near horizon of generic Kerr black holes. It turns out that the conformal

symmetry can be seen from the radial wave equation by using the low energy scalar probe in

the near region of black holes, as we will see also in this chapter.
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4.1 Extremal and near-Extremal Kerr/CFT

4.1.1 The NHEK geometry

The study of near horizon geometry [14] of extremal Kerr black holes, in many respects, shows

that a “small portion” of the spacetime in this region is similar to AdS2 × S2. The “AdS”

structure that appears in this region of (extremal) Kerr spacetime is the signal for the possi-

bility in showing the conformal property of the near horizon of extremal Kerr (NHEK). Fur-

thermore, this conformal property motivates Guica et al [12] to calculate the corresponding

central charge of NHEK, by using the similar procedure performed by Brown and Henneaux

[63] in getting the central charge of AdS3 spacetime.

In this section we will use the notations (t̂, r̂, θ, φ̂) to represent the time, radius, azimuth,

and altitude coordinates of Kerr (2.2.158), to distinguish with those that represent NHEK,

(t, r, θ, φ). Hence the Kerr metric can be read as

ds2 = −∆

ρ

(
dt̂− a sin2 θdφ̂

)2

+
sin2 θ

ρ2

((
r̂2 + a2

)
dφ̂− adt̂

)2

+
ρ2

∆
dr̂2 + ρ2dθ2 , (4.1.1)

where now ∆ ≡ r̂2 − 2Mr̂ + a2 and ρ2 ≡ r̂2 + a2 cos2 θ.

In getting the NHEK geometry, Bardeen and Horowitz introduce the transformation[14],

t =
λt̂

2M
, y =

λM

r̂ −M
, φ = φ̂− t̂

2M
, (4.1.2)

where λ→ 0 while (t, y, φ, θ) are kept to be fixed. The resulting metric after performing this

transformation is

ds2 = 2GJΩ2

(
−dt2 + dy2

y2
+ dθ2 + Λ2

(
dφ+

dt

y

)2
)

(4.1.3)

which is known as the NHEK spacetime, where

Ω2 ≡ 1 + cos2 θ

2
, Λ ≡ 2 sin θ

1 + cos2 θ
. (4.1.4)

This NHEK geometry is not asymptotically flat, i.e. taking y → ∞ of (4.1.3) does not

produce the Minkowski spacetime (2.1.5). One can see this easily from the fact that at the

limit λ → 0, the “time” coordinate is restricted only t → 0. We expect that a well defined
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global time coordinate will span −∞ ≤ t ≤ ∞. To get a set of global coordinates (r, τ, ϕ),

we can do the following transformations

y =
(

cos τ
√

1 + r2 + r
)−1

, (4.1.5)

t = y sin τ
√

1 + r2 , (4.1.6)

φ = ϕ+ ln

(
cos τ + r sin τ

1 + sin τ
√

1 + r2

)
. (4.1.7)

This transformations yields the metric (4.1.3) becomes

ds̄2 = 2GJΩ2

(
−(1 + r2)dτ 2 +

dr2

1 + r2
+ dθ2 + Λ2(dϕ+ rdτ)2

)
. (4.1.8)

As it is mentioned in [14], the NHEK geometry has an enhanched symmetries compared

to the original (extremal) Kerr spacetime. We know already that a Kerr spacetime, whether

it is extremal or not, possesses a spacetime symmetry shown by two Killing vectors ξt and ξφ.

The NHEK geometry, instead of having just two Killing vectors, it has four which turn out

to be the representation of SL(2,R)×U(1) isometry group. The U(1) symmetry is generated

by

ζ0 = −∂ϕ . (4.1.9)

and the SL(2,R) isometry group is generated by the Killing vectors

J̃0 = 2∂τ , (4.1.10)

J̃1 = 2 sin τ
r√

1 + r2
∂τ − 2 cos τ

√
1 + r2∂r +

2 sin τ√
1 + r2

∂ϕ , (4.1.11)

J̃2 = −2 cos τ
r√

1 + r2
∂τ − 2 sin τ

√
1 + r2∂r −

2 cos τ√
1 + r2

∂ϕ . (4.1.12)

4.1.2 The Asymptotic Symmetry Group and Diffeomorphism Gen-

erators

In [63], it is shown that by adopting an appropriate boundary conditions for AdS3 spacetime

at spatial infinity, we can get a central term in the Poisson bracket algebra of diffeomorphism

charges. The corresponding central charge for AdS3 spacetime is obtained after using the

classical to quantum transition prescription {, }PB to [, ] for the Possion bracket algebra of
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AdS3 diffeomorphism charges at infinity where finally one can get the corresponding Virasoro

algebra for AdS3,

c =
3l

2G
(4.1.13)

where the cosmological constant Λ = l−2 and we have restored the Newton Gravitational

constant G. One of the important steps in getting this AdS3 central charge is setting an ap-

propriate asymptotically boundary conditions for the metric components of AdS3 spacetime.

It is allowed to set some boundary conditions or fall-off conditions for such spacetime due to

the fact that this spacetime is not flat at infinity.

The lacking of asymptotically flatness of NHEK allows us to use a set of fall-off conditions

that is appropriate in giving us a non-trivial central charge after performing the Asymptotic

Symmetry Group (ASG) method. The ASG method is defined as the set of allowed diffeo-

morphism modulo the set of trivial diffeomorphism,

ASG =
Allowed Symmetry Transformations

Trivial Symmetry Transformations
. (4.1.14)

Here “allowed” means the transformation that is consistent with the specified boundary

conditions, and “trivial” means the generator of transformations which vanishes after we

have implemented the constraints and reduced it to a boundary integral.

To determine the allowed difeomorphisms, we need to specify a boundary condition by

assigning the appropriate p ∈ Z in each components of NHEK deviation metric hµν = O(rp).

We choose the boundary conditions
hττ = O(r2) hτϕ = O(1) hτθ = O(1

r
) hτr = O( 1

r2 )

hϕτ = hτϕ hϕϕ = O(1) hϕθ = O(1
r
) hϕr = O(1

r
)

hθτ = hτθ hθϕ = hϕθ hθθ = O(1
r
) hθr = O( 1

r2 )

hrτ = hτr hrϕ = hϕr hrθ = hθr hrr = O( 1
r3 )

 . (4.1.15)

The diffeomorphisms which preserve the boundary conditions (4.1.15) are of the form

ζ = [−rε′(ϕ) +O(1)]∂r + [C +O(
1

r3
)]∂τ + [ε(ϕ) +O(

1

r2
)]∂ϕ +O(

1

r
)∂θ , (4.1.16)

where ε(ϕ) is an arbitrary smooth function, and C is an arbitrary constant. The subleading

terms in (4.1.15) are considered as the trivial diffeomorphisms, and the leading terms

ζε = ε(ϕ)∂ϕ − r
∂ε(ϕ)

∂ϕ
∂r (4.1.17)
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is then the ASG of NHEK. By the periodicity ϕ ∼ ϕ+ 2π, it is convenient to define εn(ϕ) =

−e−inϕ and ζn = ζ(εn). Therefore the vector (4.1.17) can be read now as

ζn = −e−inφ∂φ − inre−inφ∂r . (4.1.18)

It is clear that there is an infinite number of boundary condition that can be assigned, but

using different conditions may lead to the different physics. Under the Lie brackets, the

symmetry generators (4.1.18) obey the Virasoro algebra

i[ζm, ζn]L.B. = (m− n)ζm+n . (4.1.19)

The diffeomorphism ζ is generated by a conserved charge Qζ [g] [12]. The Poisson bracket

between this conserved charges, say Qζ [g] and Qξ[g], is found to be the conserved charge of

commutation between two isomorphisms, Q[ζ,ξ][g], plus a central term,

{Qζ , Qξ}P.B. = Q[ζ,ξ] +K [ζ, ξ] , (4.1.20)

where the central term K [ζ, ξ] is given by

K [ζ, ξ] =

∮
kζ (ḡ,Lξḡ) . (4.1.21)

The detail of 2-form kζ can be read as

kζ (ḡµν ,Lξḡµν) =
kµν

32π
εµναβdx

α ∧ dxβ , (4.1.22)

where

kµν = ζν∇µh− ζν∇ρh
µρ +

h

2
∇νζµ − hνρ∇ρζ

µ + ζρ∇νhµρ

−
(
ζµ∇νh− ζµ∇ρh

νρ +
h

2
∇µζν − hµρ∇ρζ

ν + ζρ∇µhνρ
)
. (4.1.23)

In the last formula, the metric tensor hµν is the variation of ḡµν with the deformation param-

eter ξ, i.e. hµν = Lξḡµν . A detail discussion in getting this central term is given in appendix

F.

113



4.1.3 Central Charge

As we have seen in the previous subsection, we will need the Lie derivative of NHEK metric

tensor with the diffeomeorphism parameter is given in (4.1.15). To obtain a central charge

from the central term (4.1.21), let us start by writing the non-vanishing metric elements of

(4.1.8) are

ḡττ = −2GJΩ2((1 + r2)− Λ2r2) , ḡϕt = ḡtϕ = 2GJΩ2Λ2r ,

ḡϕϕ = 2GJΩ2Λ2 , ḡθθ = 2GJΩ2 , ḡrr =
2GJΩ2

1 + r2
. (4.1.24)

Accordingly, the contravariant version of these non-vanishing metric components can be read

as

ḡtt = − 1

2GJΩ2(1 + r2)
, ḡϕt = ḡta =

r

2GJΩ2(1 + r2)
,

ḡϕϕ =
1

2GJΩ2Λ2
− r2

2GJΩ2(1 + r2)
, ḡθθ =

1

2GJΩ2
, ḡrr =

1 + r2

2GJΩ2
. (4.1.25)

In performing the computation of central charge, we need the following Christoffel symbols

Γtrϕ = − Λ2

2(1 + r2)
, Γtrt =

r

1 + r2
− Λ2r

2(1 + r2)
, Γrrr = − r

1 + r2
,

Γϕrϕ =
Λ2r

2(1 + r2)
, Γθrθ = 0 , Γtrr = 0 , Γϕrt =

1− r2

2(1 + r2)
+

Λ2r2

2(1 + r2)
. (4.1.26)

Using the diffeomorphism parameter (4.1.18), the Lie derivative of NHEK metric tensor

hµν = Lξn ḡµν = ∇µξnν +∇νξnµ (4.1.27)

which equivalently can be read as

Lξn ḡµν = ξρn∂ρḡµν + ḡµρ∂νξ
ρ
n + ḡρν∂µξ

ρ
n . (4.1.28)

Therefore, the Lie derivative = Lξn ḡµν = hµν can be obtained as

hrr = ξrn∂rḡrr + 2ḡrr∂rξ
r
n = −4ine−inϕGJΩ2

(1 + r2)2
,

hrϕ = ḡrr∂ϕξ
r
n = −2n2re−inϕGJΩ2

1 + r2
,

hττ = ξrn∂rḡtt = 4inr2e−inϕGJΩ2(1− Λ2) ,

hϕϕ = 2ḡϕϕ∂ϕξ
ϕ
n = −4ine−inϕGJΩ2Λ2 . (4.1.29)
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The contravariant version of the tensor metric components above are

hrr = ḡrrḡrrhrr = −2ine−inϕ

2GJΩ2
,

hrϕ = ḡrrḡϕϕhrϕ = −n
2re−inϕ

2GJΩ2

( 1

Λ2
− r2

1 + r2

)
,

hrt = ḡrrḡtϕhrϕ = − n2r2e−inϕ

2GJΩ2(1 + r2)
,

htt = ḡttḡtthtt + 2ḡttḡtϕhtϕ + ḡtϕḡtϕhϕϕ =
2inr2e−inϕ

2GJΩ2(1 + r2)2
,

htϕ = ḡttḡϕthtt + (ḡttḡϕϕ + ḡtϕḡϕt)htϕ + ḡtϕḡϕϕhϕϕ =
inre−inϕ

GJΩ2(1 + r2)2
,

hϕϕ = ḡϕtḡϕthtt + 2ḡϕtḡϕϕhtϕ + ḡϕϕḡϕϕhϕϕ =
ine−inϕ

GJΩ2

(
1

Λ2
− r2 (2 + r2)

1 + r2

)
.(4.1.30)

The component of 2-form in the central term (4.1.21) that survives after performing the θ

integration and taking asymptotic r is

krt = ξtm∇rh− ξtm∇ρh
rρ +

h

2
∇tξrm − htρ∇ρξ

r
m + ξmρ∇thrρ

−ξrm∇th+ ξrm∇ρh
tρ − h

2
∇rξtm + hrρ∇ρξ

t
m − ξmρ∇rhtρ . (4.1.31)

In the last equation, we have replaced the diffeomorphism parameter ζ to ξm in the tensor

kµν which is given in (4.1.23). It is related to the case that we are dealing where rather than

having two different diffeomorphism parameters ζ and ξ, we are discussing the central term

that depends on the diffeomorphism parameters which differ in their modes, i.e. K[ξm, ξn].

The fact that α is a free parameter in (4.1.38) allow us just to take the term that couple

to m3 only after setting m + n = 0 in our krt calculation. The reason is the terms that

coupled to m can be swept away by choosing an appropriate value of α. Hence each terms

in krt above can be computed as follows

ξrm∇ρh
tρ = ξrm(∂ρh

tρ + Γtρσh
σρ + Γρρσh

tσ) = ξrm(∂ϕh
tϕ + ∂rh

tr + 2Γtrϕh
rϕ + 2Γtrth

rt + Γρρrh
tr) ,

∼ imn2r2(r2 − 1)e−i(m+n)ϕ

2GJΩ2(1 + r2)2
,

−htρ∇ρξ
r
m = −htρ(∂ρξrm + Γrρσξ

σ
m) = −htϕ∂ϕξrm − htr(∂rξrm + Γrrrξ

r
m)

∼ imn2r2e−i(m+n)ϕ

2GJΩ2(1 + r2)2

(2m

n
− 1
)
,
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hrρ∇ρξ
t
m = hrρ(∂ρξ

t
m + Γtρσξ

σ
m) = (hrϕΓtϕr + hrtΓttr)ξ

r
m

∼ imn2r2(r2 − 1)e−i(m+n)ϕ

4GJΩ2(1 + r2)2
,

ξmρ∇thrρ = ξρmḡ
rr(ḡtt∇thrρ + ḡta∇ahrρ)

= ξρmḡ
rrḡtt(∂thrρ − Γσtrhσρ − Γσtρhrσ) + ξρmḡ

rrḡta(∂ahrρ − Γσϕrhσρ − Γσϕρhrσ)

= ξrmḡ
rrḡtt(−Γϕtrhϕr − Γϕtrhrϕ) + ξϕmḡ

rrḡtϕ∂ϕhrϕ + ξrmḡ
rrḡtϕ∂ϕhrr

+ξrmḡ
rrḡtϕ(−Γϕϕrhϕr − Γϕϕrhrϕ)

∼ imn2r2e−i(m+n)ϕ

r2 − 1(1 + r2)

(3− r2

1 + r2
− n

m

)
,

−ξmρ∇rhtρ = −ξmρḡrr(∂rhtρ + Γtrσh
σρ + Γρrσh

tσ) = −ξmrḡrr(∂rhtr + Γtrth
tr + Γtrϕh

ϕr + Γrrrh
tr)

∼ imn2r2e−i(m+n)ϕ

4GJΩ2(1 + r2)

(
1− 4

1 + r2

)
, (4.1.32)

where at the final result of each terms above, we keep only those which give m3 contributions.

However, the condition m = −n is not applied yet at the moment. As we take the limit of

r →∞, many terms above vanish, where finally we have

krt =
i(m− n)n2e−i(m+n)ϕ

2GJΩ2
. (4.1.33)

From (F.0.40) and (F.0.52), we get∮
(d2x)µνk

µν =

∮
2(d2x)rtk

rt, (4.1.34)

and explicitly one can show

(d2x)rt = 2(GJΩ2)2Λ2dθdϕ . (4.1.35)

Consequently, the central term (4.1.21) is obtained as

K[ξm, ξn] = −i(m− n)n2

16π

∮
2JGΩ2Λ2e−i(m+n)ϕdθdϕ

(4.1.36)

= −i(m− n)n2J

2
δm+n . (4.1.37)

The classical version of the charge Qξm associated to the diffeomorphism parameter ξm is

defined in (F.0.36). Before proceeding to the classical to quantum transition prescription,

i.e. {, }P.B → i [, ] transition, we redefine

Qξm = Lm − αδm , (4.1.38)
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where α is some constants. From equations (F.0.36) and (F.0.52), it is easy to see that if

ξm is scaled by a factor, the right hand side of (4.1.38) also needs to be scaled by the same

factor. Specifically, one has

Q[ξm,ξn] = Q−i(m−n)ξm+n = −i(m− n)
(
Lm+n − αδm+n

)
. (4.1.39)

Note that we have used the relation (4.1.19) in writing the last equation. Accordingly, from

equation (F.0.38), we can write

[Lm , Ln] = i
{
Qξm , Qξn

}
P.B.

= i
(
Q[ξm,ξn] +K[ξm, ξn]

)
= (m− n)Lm+n − 2mαδm+n + iK[ξm, ξn] . (4.1.40)

Comparing this result with the Virasoro algebra,

[Lm , Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n , (4.1.41)

gives us

K[ξm, ξn] = −i c
12
m
(
m2 − 1 +

24α

c

)
δm+n . (4.1.42)

From the last equation, we understand why the value central charge c is controlled by the

coefficient of m3 in the central term K[ξm, ξn]. It is because we can choose an appropriate α

to remove the contribution of linear m in (4.1.42). Using the result for K[ξm, ξn] as obtained

in (4.1.37), the central charge reads

c = 12J . (4.1.43)

If we restore the units in the calculation, where from the beginning of this computation we

have set that ~ = c = G = kB = 1, the central charge (4.1.43) would be

c =
12J

~
. (4.1.44)

Astronomical data strongly suggests that the astrophysical object GRS 1915+105 is a near-

extremal rotating black hole. It has the rotational parameter bound a ≥ 0.98M [13], where

an extremal black hole has a = M . Therefore, the associated central charge for this object

would be c = (2± 1)× 1079, which is a large number.
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4.1.4 Temperature

The vacuum state near the Kerr black hole horizon is the Frolov-Throne vacuum [78], which

is a generalization of the Hartle-Hawking vacuum for Schwarzschild black hole. The Frolov-

Throne vacuum takes into account the rotation of black holes, from which a correction to the

Hartle-Hawking vacuum comes. To construct the Frolov-Thorne vacuum for generic Kerr,

starts by expanding the quantum fields in eigenmodes of the asymptotic energy ω and angular

momentum m. As an example, we could write an expansion for scalar field Φ as

Φ =
∑
ω,m,l

φωmle
−iωt̂+imφ̂fl(r, θ) . (4.1.45)

After we trace over the region inside the horizon, the vacuum is a diagonal density matrix in

the energy-angular momentum eigenbasis with a Boltzmann weighting factor

e
−~ω−ΩHm

TH . (4.1.46)

In the non-rotating case, ΩH = 0, (4.1.46) reduces to the Hartle-Hawking vacuum.

A procedure to take the limit of the near horizon region and near extremal black hole [19]

allows us to have

e−iωt̂+imφ̂ = e−
i
λ

(2Mω−m)t+imφ = e−inRt+inLφ, (4.1.47)

where

nL ≡ m, nR ≡
1

λ
(2Mω −m) (4.1.48)

are the left and right charges associated to ∂φ and ∂t in the near-horizon region. In terms of

these variables the Boltzmann factor (4.1.46) is

e
−~ω−ΩHm

TH = e
−nL
TL
−nR
TR , (4.1.49)

where the dimensionless left and right temperatures are

TL =
r+ −M

2π(r+ − a)
, TR =

r+ −M
2πλr+

. (4.1.50)

In the case of extremal limit a→M , (4.1.50) reduce to

TL =
1

2π
, TR = 0 . (4.1.51)
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4.1.5 Microscopic origin of the Bekenstein-Hawking-Kerr entropy

In the previous subsection, only one copy of the temperatures which is non-zero, i.e. TL.

Accordingly, the associate central charge cL would be 12J . To get the corresponding black

hole entropy via CFT description, we employ the famous Cardy formula (3.3.116)

SCFT = 2π

√
cLE

6
, (4.1.52)

where E is the energy. Note that the formula (3.3.116) contains both left and right movers

contributions, where in the last formula we have only the left sector. It is related to the fact

that in the extremal case, there is only a single copy of conformal symmetry that we can read

in the NHEK spacetime structure. This conformal structure which leads to the computation

of central charge (4.1.43).

The first law of thermodynamics dictates that dE = TdS, so we could have

dSCFT = 2π

√
cL
6

dE√
E

= 2π

√
cL
6

T

2
√
E
dSCFT (4.1.53)

which provides us

E =
cL
6
π2T 2 . (4.1.54)

Hence we can write the alternative form of Cardy formula as

SCFT =
1

3
π2cLTL , (4.1.55)

after we plug the corresponding TL rather than T in the last expression. Having in our hand

TL = 1/2π then (4.1.55) gives us

SCFT = 2πJ (4.1.56)

which is exactly what we have for Bekenstein-Hawking entropy of Kerr black holes (2.3.275)

after setting r+ = M .

4.1.6 The bulk-to-boundary propagator and the 2-point function

The bulk-to-boundary propagator has an important role in the AdS/CFT correspondence

prescription to the holographic calculation of correlation functions. This prescription may be

119



applied to the Kerr/CFT correspondence discussions. As we have briefly reviewed in section

3.4, the bulk-to-boundary propagator can be found by finding the Green function solutions

to the field’s equation of motion in the bulk with some requirements that must be satisfied on

the boundary. Nevertheless, performing the same prescription in Kerr/CFT discussion seems

to be very hard, due to the equation of motion that corresponds to a test particle in Kerr

background, as well as NHEK or near-NHEK, is much more complicated compared to those

in AdS. That is why, rather than deriving the bulk-to-boundary propagator in Kerr/CFT by

using Green function technique, we could simply dictate the form of this propagator. Indeed,

this way is less elegant compared to the case in AdS/CFT correspondence, but it is found

that this method works properly.

In this subsection we will discuss the bulk to boundary propagator that can be used in

Kerr/CFT correspondence. This propagator is proposed by Becker et al [18] where they dis-

cuss the near-NHEK case and employ the ingoing radial solution of the scalar wave equation

in the far or asymptotically region of Kerr geometry. Before we show the corresponding prop-

agator, let us discuss the near-NHEK geometry first, and get the the corresponding radial

solutions around this region. The near-NHEK spacetime is just a slight modification of the

NHEK geometry as we have discussed in the previous subsection. The modification is we

consider a Kerr black hole which is rotating near to the extremal case. Therefore, in this

case TH → 0 and r̂ → r+, but we keep the dimensionless near-horizon temperature

TR ≡
2MTH
λ

=
τH

4πλ
(4.1.57)

fixed as λ→ 0. Accordingly, at this near extremality condition,

r+ = M + λM2πTR +O(λ2) , (4.1.58)

a = M − 2M(λπTR)2 +O(λ3) . (4.1.59)

In getting the near-NHEK (near horizon of the near extremal Kerr) geometry from the metric

(4.1.1), instead of using the transformation (4.1.2), we employ

t = λ
t̂

2M
, (4.1.60)

r =
r̂ − r+

λr+

, (4.1.61)

φ = φ̂− t̂

2M
, (4.1.62)
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which gives us the metric

ds2 = 2JΓ

(
−r(r + 4πTR)dt2 +

dr2

r(r + 4πTR)
+ dθ2 + Λ2 (dφ+ (r + 2πTR)dt)2

)
. (4.1.63)

The metric (4.1.63) is referred as the near-NHEK metric.

Now we consider a scalar field on near-NHEK Kerr whose modes expansion can be read

as

Φ = e−iωt̂+imφ̂R(r̂)S(θ) . (4.1.64)

We assign the “quantum numbers” nL and nR whose definitions are

nL = m , nR =
1

λ
(2Mω −m) . (4.1.65)

These “quantum numbers” obey

e−inRt+inLφ = e−iωt̂+imφ̂ . (4.1.66)

The Boltzmann factor associated to the Frolov-Thorne vacuum state is e
−ω−mΩH

TH . Identifying

the “Boltzmann factor” that comes from the microscopic one (left and right movers CFT)

and the macroscopic theory (semiclassical gravity), we may write

e
−ω−mΩH

TH = e
−nL
TL
−nR
TR . (4.1.67)

The last equation gives us the definition of the temperatures in left and right movers CFT,

or the left and right temperatures for short

TL =
r+ −M

2π(r+ − a)
, TR =

r+ −M
2πλr+

. (4.1.68)

In this near extremal limit, TR and nR are kept to be fixed as TH → 0 and λ→ 0. From the

definition of near horizon quantum number nR in (4.1.65), as λ→ 0 we have

m ≈ 2Mω . (4.1.69)

In the other hand, the near extremal condition also tells us the angular velocity at the horizon

may be approximated as

ΩH ≈
1

2M
. (4.1.70)
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Therefore, we can see only the near superradiant wave modes m−mΩH → 0 which survive

the near extremal limit.

The radial equation of scalar wave in Kerr geometry (4.1.1),

∆∂2
r̂R + 2(r̂ −M)∂r̂R +

(
[(r̂2 + a2)ω − am]2

∆
+ 2amω −K`

)
R = 0 . (4.1.71)

By using the dimensionless redefinition

x =
r̂ − r+

r+

, (4.1.72)

the radial equation (4.1.71) reduces to

x(x+ τH)R′′ + (2x+ τH)R′ + (V −K`)R = 0 . (4.1.73)

In the equation above, the prime stands for ∂x, and the “potential” V is given by

V = m2 +
[x(x+ 2)m+ τH(m+ nR

2πTR
)]2

4x(x+ τH)
. (4.1.74)

If we consider the far region, x� τH , the radial wave equation (4.1.73) becomes

x2R′′ + 2xR′ +

(
1

4
m2(2 + x)2 +m2 −K`

)
R = 0 . (4.1.75)

The function

Rfar = N

[
Ae−

1
2
imxx−

1
2

+β
1F1(

1

2
+ β + im, 1 + 2β, imx)

+Be−
1
2
imxx−

1
2
−β

1F1(
1

2
− β + im, 1− 2β, imx)

]
(4.1.76)

solves the equation (4.1.75), where A,B are constant coefficients, and N is the overall nor-

malization to be determined later for convenience. The function 1Fa(a; b; z) is known as the

confluent hypergeometric function of the first kind whose integral representation can be read

as

1F1 (a; b; z) =
Γ (b)

Γ (b− a) Γ (a)

1∫
0

eztta−1 (1− t)b−a−1 dt . (4.1.77)

The parameter β in solution (4.1.76) is defined as

β2 = K` − 2m2 +
1

4
. (4.1.78)
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Next we consider the near region, given by x � 1. The corresponding wave equation

obtained from (4.1.73) is

x(x+ τH)R′′ + (2x+ τH)R′ +


(
τHnR
2πTR

+m(2x+ τH)
)2

4x(x+ τH)
+m2 −K`

R = 0 . (4.1.79)

The solutions to this near region equation are

Rin
near = Nx

− i
2

(m+
nR

2πTR
)

(
x

τH
+ 1

)− i
2

(m− nR
2πTR

)

×2 F1

(
1

2
+ β − im, 1

2
− β − im; 1− i(m+

nR
2πTR

);− x

τH

)
,

Rout
near = Nx

i
2

(m+
nR

2πTR
)

(
x

τH
+ 1

)− i
2

(m− nR
2πTR

)

× 2F1

(
1

2
+ β + i

nR
2πTR

,
1

2
− β + i

nR
2πTR

; 1 + i(m+
nR

2πTR
);− x

τH

)
. (4.1.80)

The integral representation of hypergeometric function that we used in the solutions above

is given by

2F1 (a, b; c; z) =
Γ (c)

Γ (c− b) Γ (b)

1∫
0

tb−1 (1− t)c−b−1

(1− tz)a
dt . (4.1.81)

These near and far regions coincide in an area, namely matching region. Therefore, the near

and far solutions will also coincide. In this matching region, the far solution reduces to

Rfar → N
(
Ax−

1
2

+β +Bx−
1
2
−β
)

(4.1.82)

which is obtained after taking the limit x� 1 of the far solution (4.1.76). Taking this limit

to the far solution can be considered as the approximation of the far solution to the outer

part of the near region. In the other hand, taking the far limit of near solution can be done

by setting x� τH of the solutions (4.1.80), which is

Rin
near → Nτ

1
2
− i

2

(
m+

nR
2πTR

)
H n (4.1.83)

×

 Γ (−2β) Γ
(

1− im− i nR
2πTR

)
τβH

Γ
(

1
2
− β − im

)
Γ
(

1
2
− β − i nR

2πTR

) +
Γ (2β) Γ

(
1− im− i nR

2πTR

)
τ−βH

Γ
(

1
2

+ β − im
)

Γ
(

1
2

+ β − i nR
2πTR

)
 .

We only consider the ingoing one since we are discussing the wave that will penetrate to

the near-NHEK region. To get the coefficients A and B in (4.1.82), we can match solutions
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(4.1.82) and (4.1.83), which gives us

A =
Γ(2β)Γ(1− im− i nR

2πTR
)

Γ(1
2

+ β − im)Γ(1
2

+ β − i nR
2πTR

)
τ

1
2
−β− i

2
(m+

nR
2πTR

)

H ,

B =
Γ(−2β)Γ(1− im− i nR

2πTR
)

Γ(1
2
− β − im)Γ(1

2
− β − i nR

2πTR
)
τ

1
2

+β− i
2

(m+
nR

2πTR
)

H . (4.1.84)

A form of the bulk-to-boundary propagator for scalar fields in Kerr/CFT correspondence

is given [18]

K(r, t′, φ′; t, φ) =

∫
dm

∫
dω Rin

asymp. e
−im(φ−φ′)eiω(t−t′) , (4.1.85)

where Rin
asymp. is the asymptotic expansion of the ingoing radial solution in near region (4.1.80)

Rin
asymp.(r,m, ω) ∼ N

[
A
(
r−

1
2

+β +O(r−3/2+β)
)

+B
(
r−

1
2
−β +O(r−3/2−β)

)]
.(4.1.86)

Here, the normalization N is chosen to be A−1. Consequently, the propagator can be read as

K(φ, t, r;φ′, t′) =

∫
dmdω

(
r−

1
2

+β +
B(nL, nR)

A(nL, nR)
r−

1
2
−β
)
e−im(φ−φ′)+iω(t−t′) + . . .

≈ r−
1
2

+β δ(φ− φ′) δ(t− t′) + r−
1
2
−β
∫
dmdω

B(nL, nR)

A(nL, nR)
e−im(φ−φ′)+iω(t−t′)

+ . . .

The leading behavior of the propagator

K(φ, t, r;φ′, t′)→ r−
1
2

+β δ(φ− φ′) δ(t− t′) (4.1.87)

is exactly what we expect from a bulk-to-boundary propagator, up to a scale factor to the

scalar field. Inserting the bulk-to-boundary propagator into

〈O(t1, φ1)O(t2, φ2)〉 ∼
∫

dφ dt
√
−ggrr K̄(r, t, φ; t1, φ1) ∂rK(r, t, φ; t2φ2)

∣∣∣∣
r=rB

,(4.1.88)

with rB is the radius of boundary, one can extract the two-point function behavior appropriate

for the retarded Green’s function:

〈O(t1, φ1)O(t2, φ2)〉 ∼ contact term + β

∫
dm dω

B(nL, nR)

A(nL, nR)
e−im(φ2−φ1)+iω(t2−t1) + . . .

(4.1.89)

Therefore, after performing the regularization, the retarded Green’s function can be read-off

directly from (4.1.89), and is

GR ∼
B(nL, nR)

A(nL, nR)
, (4.1.90)

in agreement with the prescription in AdS/CFT [79].
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4.2 Non-Extremal Kerr/CFT

4.2.1 Wave equation and SL(2,R) squared Casimir

We start by writing a general form of our scalar wave solution which can be decomposed as

Φ(t, r, θ, φ) = e−iωt+imφR(r)S(θ) . (4.2.91)

Plugging this ansatz into the massive Klein-Gordon equation

1√
−g

∂µ
(√
−ggµν∂νΦ

)
+ µ2Φ = 0 (4.2.92)

gives us

1

S (θ) sin θ
∂θ (sin θ∂θS (θ))−

(
∆− a2 sin2 θ

)
m2

∆ sin2 θ
+

2a (∆− (r2 + a2))mω

∆

+

(
r2 + a2 −∆a2 sin2 θ

)
ω2

∆
−
(
r2 + a2 cos2 θ

)
µ2 =

1

R (r)
∂r (∆∂rR (r)) . (4.2.93)

Initially, it was not expected that the scalar wave equation in Kerr spacetime is separable.

It was Teukolsky [80] who first showed that the wave equation for field perturbations in

the Kerr background are separable. Interestingly, this fact does not apply only for scalar

perturbation, but also for spins 1/2, 1, and 2. For the massive scalar perturbation equation

(4.2.93), the angular part of the equation is[
1

sin θ
∂θ(sin θ∂θ)−

m2

sin2 θ
+ (ω2 − µ2)a2 cos2 θ

]
S(θ) = −KlS(θ) . (4.2.94)

The corresponding radial one can be read as[
∂r(∆∂r) +

(2Mr+ω − am)2

(r − r+)(r+ − r−)
− (2Mr−ω − am)2

(r − r−)(r+ − r−)
+ (r2 + 2M(r + 2M))ω2 − µ2r2

]
R(r)

= KlR(r) . (4.2.95)

The constants Kl are the corresponding eigen values on a sphere. Both of the two equations

(4.2.94) and (4.2.95) can be solved by using the Heun functions.

However, we can restrict our discussion to the low frequencies only, i.e. Mω � 1, hence

the last term in the square bracket of (4.2.95) can be neglected. Then the spacetime in our

discussion can be divided into 2 regions,

“Near” : r � 1

ω
, (4.2.96)
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“Far” : r �M . (4.2.97)

Expression (4.2.96) means that the wavelength of our test particle is very large compared to

the radius of curvature, and (4.2.97) indicates the very far region from black hole horizon,

i.e. a large number multiple of M . This two regions overlap in the matching region

M � r � ω−1 . (4.2.98)

The wave equation (4.2.95) can be solved both in the near and far regions by using some

special functions. In addition, to get a full solution, one need to match the obtained solutions

in the near and far regions along a surface in the matching region (4.2.98).

In the near region, the angular equation (4.2.94) for the low frequency of scalar field

reduces to[
1

sin θ
∂θ (sin θ∂θ)−

m2

sin2 θ

]
S (θ) = −KlS (θ) , l = −m, ...,+m. (4.2.99)

This is just the standard Laplacian on 2-sphere, where the separation constant is Kl =

l (l + 1). Moreover, the radial one (4.2.95) becomes[
∂r(∆∂r) +

(2Mr+ω − am)2

(r − r+)(r+ − r−)
− (2Mr−ω − am)2

(r − r−)(r+ − r−)

]
R(r) = l(l + 1)R(r) , (4.2.100)

which can be solved analytically and the solutions are hypergeometric functions. We know

that an equation that is solved by the hypergeometic functions possesses SL (2,R) symmetry.

This hints us the hidden conformal symmetry that we will explore in the next subsection.

4.2.2 Hidden Conformal Symmetry

To show the SL (2,R) symmetry of the solution space for radial equation (4.2.100), first we

introduce the following coordinates

w+ =

√
r − r+

r − r−
e2πTRφ ,

w− =

√
r − r+

r − r−
e2πTLφ−t/2M , (4.2.101)

y =

√
r − r+

r − r−
eπ(TR+TL)φ−t/4M ,
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where

TL =
r+ + r−

4πa
, TR =

r+ − r−
4πa

. (4.2.102)

Accordingly, we can define the vector fields

H1 = i∂+ ,

H0 = i

(
w+∂+ +

1

2
y∂y

)
,

H−1 = i
((
w+
)2
∂+ + w+y∂y − y2∂−

)
, (4.2.103)

which obey the algebra of SL(2,R) group

[H0, H±1] = ∓iH±1, [H−1, H1] = −2iH0 , (4.2.104)

and similarly for H̄0 and H̄±1. It turns out the following vectors

H̄1 = i∂− ,

H̄0 = i

(
w−∂− +

1

2
y∂y

)
,

H̄−1 = i
((
w−
)2
∂− + w−y∂y − y2∂+

)
, (4.2.105)

are also the SL(2,R) generators, where they satisfy the algebra

[H̄0, H̄±1] = ∓iH̄±1, [H̄−1, H̄1] = −2iH̄0 , (4.2.106)

Writing the vectors above in {t, r, θ, φ} coordinates, we can have

H±1 = ie∓2πTRφ

(
±∆1/2∂r +

1

2πTR

(
r −M
∆1/2

)
∂φ +

2TL
TR

(
Mr − a2

∆1/2

)
∂t

)
,

H0 =
i

2πTR
∂φ + 2iM

TL
TR
∂t ,

(4.2.107)

and

H̄±1 = ie∓2πTLφ+ t
2M

(
±∆1/2∂r −

a

∆1/2
∂φ − 2M

r

∆1/2
∂t

)
,

H̄0 = 2iM∂t .

(4.2.108)

In group theory we learn about the squared Casimir, i.e. operator that commutes with all

generators of the group. In subsection 3.1.1, we have seen that p2 is a squared Casimir in the

Poincare group. This squared Casimir, applied to the massive scalar wave, has the eigenvalue
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the squared mass of the scalar, m2. This mass is invariant under all fields transformation in

the Poincare group, which is the characteristic of squared Casimir eigenvalue.

The squared Casimir in the sl(2,R) algebra, constructed by the vectors in (4.2.103) is

H2 = −H2
0 + (H1H−1 +H−1H1)

=
1

4

(
y2∂2

y − y∂y
)

+ y2∂+∂− . (4.2.109)

This squared Casimir commutes with all generators in (4.2.103),

[
H2, H+

]
= 0 ,

[
H2, H−

]
= 0 ,

[
H2, H0

]
= 0 . (4.2.110)

From the other copy of SL(2,R) group, built from the generators (4.2.105), the corresponding

squared Casimir can be found to be

H̄2 = −H̄2
0 +

(
H̄1H̄−1 + H̄−1H̄1

)
=

1

4

(
y2∂2

y − y∂y
)

+ y2∂+∂− . (4.2.111)

As the squared Casimir of the group formed by the generators (4.2.105), H̄2 will commute

with those generators,

[
H̄2, H̄+

]
= 0 ,

[
H̄2, H̄−

]
= 0 ,

[
H̄2, H̄0

]
= 0 . (4.2.112)

As we can observe, the expressions of H2 and H̄2 in terms of {y, w+, w−} coordinates are

just the same, which means these two squared Casimir will have the same eigenvalue when

it applies to a corresponding eigen function. It turns out that writing these squared Casimir

in (t, r, θ, φ) coordinates, we can get

H2 = H̄2 = ∂r(∆∂r) +
(2Mr+ω − am)2

(r − r+)(r+ − r−)
− (2Mr−ω − am)2

(r − r−)(r+ − r−)
, (4.2.113)

which is just the operator that applies to R(r) in the left hand side of equation (4.2.100).

The eigenvalue of this operator is l(l + 1),

H2Φ = H̄2Φ = l(l + 1)Φ , (4.2.114)

which is clearly the conserved quantum number in this system. In this sense, we have shown

the hidden conformal symmetry for the generic Kerr spacetime which is read by putting a
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low frequency scalar probe in the near region of this spacetime. It is hidden since we cannot

directly see this conformal symmetry from the spacetime structure as the way we did for the

extremal Kerr case, i.e. we study the near horizon of extremal Kerr that can be shown to

have a conformal structure in subsection 4.1.1. To be more precise, unlike in the extremal

case where we have only a copy of SL(2,R) symmetry, in the non-extremal or generic case

we have two copies of this symmetry, denoted by SL(2,R)L × SL(2,R)R. These two copies

of SL(2,R) symmetry are generated by the vectors (4.2.103) and (4.2.105). The symmetry

group SL(2,R)L×SL(2,R)R is acting on the solution space of the wave equation, not in the

background geometry.

However, the vectors (4.2.107) and (4.2.108) is not periodic under the identification

φ ∼ φ+ 2π . (4.2.115)

This can be interpreted as the spontaneously symmetry breaking of SL(2,R)L × SL(2,R)R

by (4.2.115). Hence, under (4.2.115) the conformal coordinates behave as

w+ ∼ e4π2TRw+ , w− ∼ e4π2TLw− , y ∼ e2π2(TR+TL)y . (4.2.116)

The identification (4.2.116) is generated by the element of SL(2,R)L × SL(2,R)R group

g = e−4π2iTRH0−4π2iTLH̄0 (4.2.117)

which is the identification for a CFT partition function at finite temperature (TL, TR). So

the SL(2,R)L × SL(2,R)R symmetry is spontaneously broken into U(1)L ×U(1)R subgroup

generated by (H̄0, H0) for φ ∼ φ+ 2π.

4.2.3 CFT temperature and entropy

At a fixed radius, from (4.2.101) we can write the relation between the conformal coordinates

{w+, w−} and Boyer-Lindquist coordianates {φ, t} is

w± = e±t
±
, (4.2.118)

where

t+ = 2πTRφ ,

t− =
t

2M
− 2πTLφ .

(4.2.119)

129



This is precisely the relation between Minkowski (w±) and Rindler (t±) coordinates.

Under the periodic identification of φ ∼ φ + 2π, the Rindler coordinates will have the

identifications

t+ ∼ t+ + 4π2TR , t− ∼ t− − 4π2TL . (4.2.120)

Observing from Minkowski vacuum by tracing over the quantum state, we will get a thermal

density matrix at temperature (TL, TR). Hence Kerr black holes should be dual to a finite

temperature (TL, TR) mixed state in the dual CFT.

From the extremal Kerr discussion, we have obtain the value of central charge is 12J .

Assuming this central charge can also be used in general Kerr black holes, so we have cL =

cR = 12J . Thus by using Cardy formula

SCFT =
π2

3
(cLTL + cRTR) , (4.2.121)

together with the CFT left and right temperatures (4.2.102), the CFT entropy is

SCFT = 2πMr+ = SBH . (4.2.122)

4.2.4 Scalar absorption

In the near region, i.e. ωr << 1, the ingoing solution of equation (4.2.100) is

Rin(r) =

(
r − r+

r − r−

)−i (ω−mΩH )

4πTH

(r − r−)−1−` (4.2.123)

×F
(

1 + `− i4M
2 − 2Q2

r+ − r−
ω + i

mΩH

2πTH
, 1 + `− i2Mω; 1− i(ω −mΩH)

2πTH
;
r − r−
r − r+

)
,

where the Hawking temperature for Kerr black hole is given by

TH =
1

8π

r+ − r−
Mr+

. (4.2.124)

The outgoing one can be obtained by taking the complex conjugate of the above solution,

Rout(r) = R∗in(r). The function F (a, b; c; z) in (4.2.123) stands for the hypergeometric func-

tion and ΩH = a(2Mr+)−1 is the angular velocity at the horizon. In the matching region, a

region where the far and near regions intersect, the ingoing wave behaves as

Rin(r �M) ∼ Ar` (4.2.125)
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with

A =
Γ(1− iω−mΩH

2πTH
)Γ(1 + 2`)

Γ(1 + `− i2Mω) Γ(1 + `− i 4M2

r+−r−ω + i
2πTH

mΩH)
. (4.2.126)

Accordingly, the absorption cross section can be written as1

σabs ∼ |A|−2

∼ sinh

(
ω −mΩ

2TH

)
|Γ (1 + `− i2Mω)|2

∣∣∣∣Γ(1 + `− i 4M2

r+ − r−
ω +

i

2πTH
mΩH

)∣∣∣∣2 .
To compare the absorption cross section of a near-region scalar field in the Kerr black hole

background with the finite-temperature absorption cross section for the corresponding 2

dimensional CFT, we need explore the first law of black hole thermodynamics

THδS = δM − ΩHδJ , (4.2.127)

where

S = 2Mr+ , (4.2.128)

is the entropy of generic Kerr black hole. We identify ω = δM and m = δJ . Then we look

for the conjugate charges δER and δEL such that

δS =
δEL
TL

+
δER
TR

(4.2.129)

which again the left and right temperatures are given in (4.2.102). The solutions are

δEL =
2M3

J
δM ,

δER =
2M3

J
δM − δJ ,

(4.2.130)

which allow us to identify the left and right moving frequencies

ωL ≡ δEL =
2M3

J
ω ,

ωR ≡ δER =
2M3

J
ω −m.

(4.2.131)

1The formula where σabs ∼ |A|−2 is obtained after taking the ratio between the absorption flux as a
function of near region ingoing radial solution to the incoming flux as a function of far region ingoing radial

solution, σabs =
Fabs(Rin

near)
Fin(Rin

far)
.
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By using of the above formula, we can rewrite the absorption cross section as

σabs ∼ T 2hL−1
L T 2hR−1

R sinh

(
ωL
2TL

+
ωR
2TR

) ∣∣∣∣Γ(hL + i
ωL

2πTL
)

∣∣∣∣2 ∣∣∣∣Γ(hR + i
ωR

2πTR
)

∣∣∣∣2 , (4.2.132)

which is precisely the finite-temperature absorption cross section for a two dimensional CFT

in (3.3.125). In the last formula, we have left and right sector since the generic Kerr black

hole is conjectured to be dual to both left and right movers of CFT2. That is why we have

the product of these two CFT’s in the absorption rate formula above.
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Chapter 5

Hidden Conformal Symmetries of Charged

Rotating Black Holes

The Kerr/CFT correspondence for generic Kerr black holes is established by showing the

hidden conformal symmetry of the system first. We learned in section 4.2 that the hidden

conformal symmetry appears in the radial part of scalar wave equation in the Kerr back-

ground. The scalar probe must be in the low energy condition and sitting in the near region.

In such case, the radial wave equation can be rewritten as the SL(2,R) squared Casimir eigen

equation. Subsequently, the Kerr/CFT correspondence in non-extremal case is established

by showing the matching of microscopic and macroscopic entropy, and also the agreement

between the absorption cross section computations from microscopic and macroscopic point

of views.

In this chapter, we extend the hidden conformal symmetry discussions to the charged

black holes, namely the Kerr-Newman and Kerr-Sen black holes. We also apply the idea of

deformed hidden conformal symmetry [36] to these charged black holes. For Kerr-Sen black

holes, the discussion of hidden conformal symmetry is extended to the extremal case, but

without the deformation consideration. It is because the deformation procedure works only

in the non-extremal condition. We also show an alternative derivation for the central charge

of Kerr-Sen black holes, where the result matches that of [16]. The materials in this chapter

are based on the paper [90] and preprint [111].
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5.1 Generalized Hidden Conformal Symmetry for Kerr-

Sen Black Holes

5.1.1 Twisted Classical Solution in Heterotic String Theory

Black hole solutions are contained not only in the general relativity theory, but also in the

low energy effective field theory describing string theories, for example the heterotic string

theory. In this subsection, we derive the spacetime solution in the low energy effective field

theory of heterotic string theory. The black hole solutions in the string theory framework may

have some properties which are qualitatively different from the ones that appear in ordinary

Einstein gravity. They may have more charges and fields, associated with the Yang-Mills

fields or the antisymmetric tensor gauge field, and a non-trivial dilaton field as well. When

all of these charges or extra fields vanish, the solutions reduce to the ones known in standard

Einstein gravity.

In [35], Sen constructed an exact classical solution in the low energy effective field theory

describing the heterotic string theory. His solution describes a black hole carrying finite

amount of charge and angular momentum. He used the twisting procedure, which generates

inequivalent classical solutions starting from a given classical solution of string theory. It is

found that the electrically neutral rotating black hole solution in string theory matches the

expression of Kerr solution. Therefore, the twisting procedure can be used to get the rotating

charged black hole solution in the low energy effective field theory of heterotic string theory

starting from the Kerr solution. In this subsection, we show as detail as possible on how Sen

obtained this rotating charged black hole solution in the low energy limit of heterotic string

theory.

Let us start by writing the low energy effective action of heterotic string theory,

S =

∫
d4x
√
−ge−Φ

(
R− 1

8
FµνF

µν + gµν∂µΦ∂νΦ−
1

12
HκλµH

κλµ

)
. (5.1.1)

Here g is the determinant of metric tensor gµν , R is the Ricci scalar, Fµν = ∂µAν − ∂νAµ is

the Maxwell field strength tensor for the vector fields Aµ, the dilaton field is denoted by Φ,
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and the tensor field with three indices Hκµν is defined as

Hκµν = ∂κBµν + ∂νBκµ + ∂µBνκ −
1

4
(AκFµν + AνFκµ + AµFνκ) , (5.1.2)

where Bµν is an antisymmetric second rank tensor field. The term in (5.1.2) that contains Aµ

fields is called the gauge Chern-Simons term. In the other literature, the dilaton field may

be rescaled Φ→ 2Φ, together with another field rescaling Aµ → 2
√

2Aµ and Bµν → 8Bµν to

give the same equation of motion [81].

In [82], Hassan and Sen show that a set of “new” fields
{
g′µν , B

′
µν , A

′
µ,Φ

′} will satisfy the

same equation of motions derived from the action (5.1.1) if the relation between the “new”

and “old” fields are

M′ = ΩMΩT , Φ′ = Φ + ln
det g′

det g
, (5.1.3)

and each field contained in (5.1.3) is time independent. The matrices M and Ω are given by

M =


(
KT−η

)
g−1 (K− η)

(
KT−η

)
g−1 (K + η) −

(
KT−η

)
g−1A(

KT+η
)

g−1 (K− η)
(
KT+η

)
g−1 (K + η) −

(
KT+η

)
g−1A

−ATg−1 (K− η) −ATg−1 (K + η) ATg−1A

 , (5.1.4)

and

Ω =


I7×7 ... ...

... coshα sinhα

... sinhα coshα

 . (5.1.5)

The dots in (5.1.5) represent zero components in the matrix, and I7×7 is the 7 × 7 identity

matrix. The superscript T in the formula above denotes the matrix transposition. Each

of the matrices K, g−1, and η are the matrix expressions of the tensors Kµν , g
µν , and ηµν

respectively. Sen shows the flat tensor metric ηµν quite differently; the time component is

put at the right bottom corner instead of at the left top as usual,

η =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 . (5.1.6)
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It follows that, the matrix K in such convention will have the form

K =


Krr Krθ Krφ Krt

Kθr Kθθ Kθφ Kθt

Kφr Kφθ Kφφ Kφt

Ktr Ktθ Ktφ Ktt

 , (5.1.7)

whose components are given by

Kµν = −Bµν − gµν −
1

4
AµAν . (5.1.8)

The associated column vector A, which contains the components of gauge fields Aµ, is written

as

A =


Ar

Aθ

Aφ

At

 . (5.1.9)

The fields
{
g′µν , B

′
µν , A

′
µ,Φ

′} and {gµν , Bµν , Aµ,Φ} that are obtained from (5.1.3) satisfy

the same equation of motions derived from the action (5.1.1). One can simply understand

the idea behind Sen’s work [35] as follows. We know that the low energy effective action

of heterotic string theory in four dimensions (5.1.1) reduces to the Einstein-Hilbert action

(2.1.33) when all the non-gravitational fields are turned off. It means that the solution to

the vacuum Einstein equations is also a solution to a set of equations of motion derived

from (5.1.1). Hence, by using equation (5.1.3) we may get a set of new solution where the

non-gravitational fields are not vanishing.

Since the Kerr metric (2.2.157) solves the vacuum Einstein equations, this metric is also

a solution of equations of motion derived from the action (5.1.1). To avoid the confusion

among the readers, in regard to our needs in this subsection, we rewrite the metric (2.2.157)

where the black hole mass is denoted by “m” instead of M ,

ds2 = −dt2 + %2

(
dθ2 +

dr2

∆

)
+
(
r2 + a2

)
sin2 θdφ2 +

2mr

%2

(
dt− a sin2 θdφ

)2
, (5.1.10)

where % = r2 + cos2 θ and ∆ = r2 − 2mr + a2. Sen showed from the Kerr solution (5.1.10),

one can use the equation (5.1.3) to get a new solution which contains more fields that appear

in the theory. In the followings, we will show in detail how this works.

136



Starting from a set of fields where all the non-gravitational fields are vanishing, and the

gravitational one is described by the Kerr metric, the non-vanishing components of matrix

M in (5.1.3) can be read as

M11 =
(grr + 1)2

grr
, M15 =

grr
2 − 1

grr
, M22 =

(gθθ + 1)2

gθθ
, M26 =

gθθ
2 − 1

gθθ
,

M33 =
−gφφ2gtt − 2 gφφ gtt − gtt + gtφ

2gφφ + 2 gtφ
2

−gφφ gtt + gtφ2
, M34 =

gtφ (−gφφ gtt + gtφ
2 − 1)

−gφφ gtt + gtφ2
,

M37 =
−gφφ2gtt + gtt + gtφ

2gφφ
−gφφ gtt + gtφ2

, M38 = M47
gtφ (−gφφ gtt + gtφ

2 + 1)

−gφφ gtt + gtφ2
,

M43 = M78 =
gtφ (−gφφ gtt + gtφ

2 − 1)

−gφφ gtt + gtφ2
, M44 =

−2 gtφ
2 + gtφ

2gtt − gφφ gtt2 + 2 gφφ gtt − gφφ
−gφφ gtt + gtφ2

,

M48 =
gtφ

2gtt − gφφ gtt2 + gφφ
−gφφ gtt + gtφ2

, M55 =
(grr − 1)2

grr
, M66 =

(gθθ − 1)2

gθθ
,

M77 =
(gφφ − 1)2 gtt + gtφ

2 (gφφ − 2)

−gφφ gtt + gtφ2
, M88 =

gtφ
2 (2 + gtt)− gφφ (gtt + 1)2

−gφφ gtt + gtφ2
. (5.1.11)

We have used the notation Mjk, where the indices i and j run from 1 to 9, to denote the

j-th row and k-th column component of matrix M. Since the matrix M depends only on the

tensor metric for Kerr spacetime gµν , and we know that the metric tensor is symmetric under

its indices permutation, the tensorial notation Mjk of the matrix M is also symmetric under

j and k permutation.

The non-vanishing components of the transformed matrix M ′ which obey the equation

(5.1.3) are

M ′
11 = M11 , M

′
15 = M15 , M

′
22 = M22 , M

′
26 = M26 ,

M ′
33 = M33 , M

′
34 = M34 ,M

′
37 = M37 , M38 =

gtφ (−gφφ gtt + gtφ
2 + 1) coshα

−gφφ gtt + gtφ2
,

M ′
39 =

gtφ sinhα (−gφφ gtt + gtφ
2 + 1)

−gφφ gtt + gtφ2
, M ′

44 = M44 , M
′
47 = M47 ,

M ′
48 =

(gtφ
2gtt − gφφ gtt2 + gφφ) coshα

−gφφ gtt + gtφ2
, M ′

49 =
(gtφ

2gtt − gφφ gtt2 + gφφ) coshα

−gφφ gtt + gtφ2
,

M ′
55 = M55 , M

′
66 = M66 , M

′
77 = M77 , M

′
78 =

cosh (a) gtφ (−1 + gtφ
2 − gφφ gtt)

−gφφ gtt + gtφ2
,

M ′
79 =

sinh (a) gtφ (−1 + gtφ
2 − gφφ gtt)

−gφφ gtt + gtφ2
,
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M ′
88 =

cosh2 α (2 gtφ
2 + gtφ

2gtt − gφφ gtt2 − 2 gφφ gtt − gφφ)

−gφφ gtt + gtφ2
,

M ′
89 =

coshα (2 gtφ
2 + gtφ

2gtt − gφφ gtt2 − 2 gφφ gtt − gφφ) sinhα

−gφφ gtt + gtφ2
,

M ′
99 =

sinh2 α (2 gtφ
2 + gtφ

2gtt − gφφ gtt2 − 2 gφφ gtt − gφφ)

−gφφ gtt + gtφ2
, (5.1.12)

and we find that M ′
jk = M ′

kj. We now proceed to get the solutions of each fields g′µν , A
′
µ, B

′
µν

and Φ′ from the transformed matrix M′ above. An explicit expression of M′ in terms of

A, K, g and η is

M′ =


(

K′T−η
)

g′−1 (K′ − η)
(

K′T−η
)

g′−1 (K′ + η) −
(

K′T−η
)

g′−1A′(
K′T+η

)
g′−1 (K′ − η)

(
K′T+η

)
g′−1 (K′ + η) −

(
K′T+η

)
g′−1A′

−ATg′−1 (K′ − η) −ATg′−1 (K′ + η) A′Tg′−1A′

 , (5.1.13)

where the matrices g′ and A′ are the matrix expressions of the new metric tensor g′µν and

vector A′µ respectively, and the matrix K′ is the matrix expression of

K ′µν = −B′µν − g′µν −
1

4
A′µA

′
ν . (5.1.14)

First, we would like to solve the tensor metric g′µν . The only assumption that we need to

make, as also mentioned in the original paper by Sen [35] where he is looking for an axially

symmetric spacetime, is that the only non-vanishing off-diagonal metric component is g′tφ.

Hence, we are looking for a new metric, provided by the formula (5.1.3), in the form

g′ =


g′rr 0 0 0

0 g′θθ 0 0

0 0 g′φφ g′φt

0 0 g′tφ g′tt

 . (5.1.15)

It is quite tricky to get the solution for g′. Since in general the matrix M′ contains not only

g′µν , but also A′µ and B′µν , we need to perform some operations to this matrix where finally

we can get a set of equations which consists of graviton g′µν only. In this regard, it would be

useful to show that the matrix M′ is composed by several block matrices, i.e.

M′ =


A B C

D E F

G H I

 , (5.1.16)
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where from (5.1.13) it is understood that

A ≡
(

K′
T−η

)
g′
−1

(K′ − η) , B ≡
(

K′
T−η

)
g′
−1

(K′ + η) , C ≡ −
(

K′
T−η

)
g′
−1

A′ ,

D ≡
(

K′
T

+η
)

g′
−1

(K′ − η) , E ≡
(

K′
T

+η
)

g′
−1

(K′ + η) , F ≡ −
(

K′
T

+η
)

g′
−1

A′ ,

G ≡ −A′
T

g′
−1

(K′ − η) , H ≡ −A′
T

g′
−1

(K′ + η) , I ≡ A′
T

g′
−1

A′ . (5.1.17)

The components of g′ can be obtained using the following equation,

A+ E − B −D = 4ηg′
−1
η . (5.1.18)

Explicitly, the right hand side of equation (5.1.18) can be expressed as

4ηg′
−1
η =



4
g′rr

0 0 0

0 4
g′θθ

0 0

0 0 − 4g′tt
g′φφg

′
tt+g

′2
tφ
− 4g′tφ
g′φφg

′
tt+g

′2
tφ

0 0 − 4g′tφ
g′φφg

′
tt+g

′2
tφ
− 4g′φφ
g′φφg

′
tt+g

′2
tφ

 . (5.1.19)

Plugging each components of M′ from the results in (5.1.12) into the left hand side of equation

(5.1.18), we get a set of equations for g′µν , whose solutions can be written as

g′tφ = −
2mra cosh2 α

2
sin2 θ

ρ2 + 2mr sinh2 α
2

, g′rr =
ρ2 + 2mr sinh2 α

2

r2 − 2mr + a2
, g′θθ = ρ2 + 2mr sinh2 α

2
,

g′φφ =

(
(r2 + a2) ρ2 + 2mra2 sin2 θ + 4mr (r2 + a2) sinh2 α

2
+ 4m2r2 sinh4 α

2

ρ2 + 2mr sinh2 α
2

)
sin2 θ ,

g′tt = − ρ2 − 2mr

ρ2 + 2mr sinh2 α
2

. (5.1.20)

After having all the components of g′µν in our hand, the next job is to get the gauge field

A′µ. It can be done by subtracting G and H which gives us a set of equations for A′,

G −H = 2A′
T

g′
−1
η . (5.1.21)
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Inserting the components of M′ in (5.1.12) into the last equation yields

2A′r
g′rr

= 0 ,
2A′θ
g′θθ

= 0 , (5.1.22)

−A′φg′tt + A′tg
′
tφ

−g′φφg′tt + g′2tφ
= − mra sinhα(

ρ2 (r2 + a2)− 2r3m− 2a2mr
(
1 + sin2 θ

)) ,
−A′φg′tφ + A′tg

′
φφ

−g′φφg′tt + g′2tφ
=

m2ra sinhα
(
coshα

(
a2r + r3 − ra2 sin2 θ

))
ρ2
(
ρ2 (r2 + a2)− 2r3m− 2a2mr

(
1 + sin2 θ

))
+
m2ra sinhα

(
ra2 sin2 θ +m−1 (ρ2 −mr) (r2 + a2)

)
ρ2
(
ρ2 (r2 + a2)− 2r3m− 2a2mr

(
1 + sin2 θ

)) .

The solutions to the last four equations for the gauge field A′µ can be obtained as
A′r

A′θ

A′φ

A′t

 =


0

0

−2mra sinhα sin2 θ
ρ2+2mr sinh2 α

2

2mr sinhα
ρ2+2mr sinh2 α

2

 . (5.1.23)

Now the only unknown fields contained in M′ is the antisymetric tensor fields B′µν . Obtaining

the B′µν fields can be done by solving the following matrix equation,

D + E − A− B = 4ηg′−1K′ . (5.1.24)

It turns out that the only non-vanishing component of B′µν is

B′tφ = −B′φt =
2mra sinh2 α

2
sin2 θ

ρ2 + 2mr sinh2 α
2

. (5.1.25)

Finally, the dilaton field Φ′ is given by the formula (5.1.3)

Φ′ = − ln
ρ2 + 2mr sinh2 α

2

ρ2
. (5.1.26)

It is a common believe that a theory describes the real world if it is written in the Einstein

frame. The action (5.1.1) is still in the string frame, which is noticed from the coupling

between Riemann tensor and the exponentiation of dilaton, i.e. e−ΦR. The Einstein frame

version of (5.1.1) can be achieved by performing the Weyl rescaling of the tensor metric,

g′
E
µν ≡ e−Φ′g′µν , (5.1.27)
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where g′Eµν is the metric in Einstein frame, and g′µν is the metric solution (5.1.20). Plugging

the dilaton solution (5.1.26) into the Weyl rescaling (5.1.27), one can obtain the metric

ds′
2
E = − ρ2 − 2mr

ρ2 + 2mr sinh2 α
2

dt2 +
ρ2 + 2mr sinh2 α

2

r2 + a2 − 2mr
dr2 +

(
ρ2 + 2mr sinh2 α

2

)
dθ2

−
4mra cosh2 α

2
sin2 θ

ρ2 + 2mr sinh2 α
2

dtdφ+
((
r2 + a2

)
ρ2 + 2mra2 sin2 θ + 4mr

(
r2 + a2

)
sinh2 α

2

+4m2r2 sinh4 α

2

) sin2 θ

ρ2 + 2mr sinh2 α
2

dφ2 , (5.1.28)

where we have understood that ds′2E = g′Eµνdx
µdxν . The metric (5.1.28) describes a black

hole solution with mass M , electric charge Q, and angular momentum J after we redefine

m = M − Q2

2M
, eα =

2M +
√

2Q

2M −
√

2Q
. (5.1.29)

The rotational parameter a definition as the ratio of black hole angular momentum J with

respect to the black hole mass M is still unchanged. Hence, in terms of M and Q, the metric

(5.1.28) can be rewritten as

ds′
2
E = −(1− 2Mr

ρKS2
)dt2 + ρKS

2(
dr2

∆KS

+ dθ2)

− 4Mra

ρKS2
sin2 θdtdφ+ {r(r + 2b) + a2 +

2Mra2 sin2 θ

ρKS2
} sin2 θdφ2, (5.1.30)

where

ρKS
2 = r(r + 2b) + a2 cos2 θ , (5.1.31)

∆KS = r(r + 2b)− 2Mr + a2 , (5.1.32)

and b = Q2/2M . Furthermore, the non-gravitational fields can be also rewritten as

Φ′ = −1

2
ln
r(r + 2b) + a2 cos2 θ

r2 + a2 cos2 θ
, (5.1.33)

A′t =
−rQ
ρ′2

, (5.1.34)

A′φ =
rQa sin2 θ

ρ′2
, (5.1.35)

B′tφ =
bra sin2 θ

ρ′2
. (5.1.36)
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The outer horizon of black hole is located at r+ = M − b +
√

(M − b)2 − a2, while the

Hawking temperature, angular velocity of horizon and electrostatic potential are given by

TH =

√
(2M2 −Q2)2 − 4J2

4πM(2M2 −Q2 +
√

(2M2 −Q2)2 − 4J2)
, (5.1.37)

ΩH =
J

M(2M2 −Q2 +
√

(2M2 −Q2)2 − 4J2)
, (5.1.38)

VH = Q/2M . (5.1.39)

For b = 0, all non-gravitational fields (3.2.19)-(5.1.36) vanish and metric (5.1.30) changes

simply to the metric of Kerr black hole. For generic non-zero b, the Kerr-Sen solution

(5.1.30) (along with the non-gravitational fields (3.2.19)-(5.1.36)) is an interesting gravita-

tional system in the context of string theory; quite different from Kerr solution in general

relativity. The Kerr-Sen black hole (5.1.30) approaches to the metric of charged Gibbons-

Maeda-Garfinkle-Horowitz-Strominger (GMGHS) black hole, which is a charged black hole

in string theory [83, 84]. The metric that describes this GMGHS spacetime is

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r

(
r − Q2

M

)(
dθ2 + sin2 dφ2

)
, (5.1.40)

where we have turned off the dilaton field. The Kerr-Sen metric (5.1.28) reduces to the

GMGHS metric (5.1.40) by setting the rotational parameter a→ 0 followed by a coordinate

transformation r → r − Q2/M . It is clear that setting Q = 0 in this GMGHS metric, we

obtain the Schwarzschild solution (2.1.50). Consequently, for the low energy limit of heterotic

string theory, we can conclude that it contains a family of black holes which is tabulated in

table 5.1.

Table 5.1: Black holes families in the low energy limit of heterotic string theory

J = 0 J 6= 0

Q = 0 Schwarzschild Kerr

Q 6= 0 GMGHS Kerr-Sen

It is interesting to note that two out of four members of this family are just the same

as the members of black holes in Einstein-Maxwell theory at the same physical conditions,

static neutral and rotating neutral cases. This may be understood from the fact where in
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the absence of electric charge Q in this low energy limit of heterotic string theory, all non-

gravitational fields are vanishing, which yields the theory is indistinguishable to the vacuum

Einstein theory. The same fact applies to the Einstein-Maxwell theory, when Q = 0 this

theory reduces to the vacuum Einstein’s gravity.

5.1.2 Central charge for extremal Kerr-Sen from the stretched

horizon technique

In this subsection, we derive the central charge associated with the extremal Kerr-Sen black

holes via stretched horizon technique developed in [85, 24]. Quite recently the authors of

[87] extend this stretched horizon technique to work better in non-extremal case. Our result

here is in agreement with the work in [16]. Let us begin with the extremal Kerr-Sen metric

in Boyer-Lindquist coordinates, written in ADM form as

ds2 = −N2dt2 + qij(dx
i +N idt)(dxj +N jdt)

= −N2dt2 +
Σ

∆′KS
dr2 +

Ξ sin2 θ

Σ

(
dφ+Nφdt

)2
+ Σ dθ2 , (5.1.41)

where qij denotes the spatial metric on a constant time slice, and

Ξ = (r(r + 2b) + r+
2)2 − (r − r+)2r+

2 sin2 θ ,

∆′KS = (r − r+)2, Σ = r(r + 2b) + r+
2 cos2 θ ,

N =

√
Σ∆′KS

Ξ
, Nφ =

2Mrr+

Ξ
, r+ = 2(M − b) , (5.1.42)

where the outer horizon1 is r+ = M − b, M is black hole mass, and Q is black hole electric

charge.

The only nonvanishing component of the canonical momentum is

πrφ =

√
q

2N
qrr∂rN

φ , (5.1.43)

πθφ =

√
q

2N
qθθ∂θN

φ . (5.1.44)

1Note that the extremal limit of Kerr-Sen black holes is when a = M − b. The Outer horizon for generic
case is r+ = M − b+

√
(M − b)2 − a2.
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Near the horizon, the shift vector Nφ can be expanded as Nφ ≈ −ΩH + ε, where ΩH is the

horizon angular velocity and the small parameter ε is given by

ε = (r − r+)∂rN
φ
∣∣
r=r+

= − (r − r+)

2r+(r+ + b)
. (5.1.45)

Under a diffeomorphism generated by a vector field ξµ, the metric transforms as [85]

δξN = ∂̄tξ
⊥ + ξ̂i∂iN ,

δξN
i = ∂̄tξ̂

i −Nqij∂jξ⊥ + qik∂kNξ
⊥ + ξ̂j∂jN

i ,

δξqij = qik

(
∂j ξ̂

k − ∂jN
k

N
ξ⊥
)

+ qjk

(
∂iξ̂

k − ∂iN
k

N
ξ⊥
)

+
1

N
ξ⊥∂̄tqij + ξ̂k∂kqij , (5.1.46)

where

∂̄t = ∂t −N i∂i = ∂t + ΩH∂φ − ε∂φ (5.1.47)

is a convective derivative, and the quantities (ξ⊥, ξ̂i) are the “surface deformation parame-

ters”. These surface deformation parameters are related to diffeomorphism parameters ξµ

as

ξ⊥ = Nξt , ξ̂i = ξi +N iξt . (5.1.48)

One can observe that qrr is not well defined at the horizon H, as well as the vanishing

N there. As it is suggested in [85], we set a set of boundary conditions at the stretched

horizon Hs first, i.e. a surface near the horizon, and then take the limit Hs → H. Carlip

[85] mentioned that there is not only one way to stretch the horizon. One way to do so

is choosing the surface with constant angular velocity. This choice is the one that close to

NHEK boundary condition applied in [12]. It can be understood from the fact that the

only metric components that deviate at the boundary of NHEK (fall off conditions) after

performing diffeomorphism in [12] are hrr and hφφ. It needs δξN
φ to be vanishing which in

turn gives us

∂̄tξ̂
φ −N2qφφ∂φξ

t + ξ̂r∂rN
φ = 0 (5.1.49)

where a possible solution can be written as

ξ̂r = (r − r+)∂φξ̂
φ, ξt = O(r − r+) . (5.1.50)
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The symmetries in canonical general relativity are generated by the quantity

H[ξ⊥, ξ̂i] =

∫
d3x

(
ξ⊥H + ξ̂iHi

)
(5.1.51)

where

H =
1
√
q

(
πijπij − π2

)
−√q (3)R, Hi = −2Djπ

ij (5.1.52)

and qij is the spatial metric, πij is the canonical momentum, Dj is the spatial covariant

derivative compatible with qij,
(3)R is spatial curvature scalar related to the constant time

slice spacetime denoted by metric tensor qij, H is the Hamiltonian, and Hi is the momentum

constraints. After introducing a boundary term2 B[ξ],

H̄[ξ] = H[ξ] +B[ξ], (5.1.53)

we have a Poisson bracket between two generators as

{
H̄[ξ], H̄[η]

}
= H̄[{ξ, η}SD ] +K[ξ, η] . (5.1.54)

The surface deformations {ξ, η}SD are [86]

{ξ, η}⊥SD = ξ̂iDiη
⊥ − η̂iDiξ

⊥

{ξ, η}iSD = ξ̂kDkη̂
i − η̂kDkξ̂

i + qik
(
ξ⊥Dkη

⊥ − η⊥Dkξ
⊥) . (5.1.55)

Bringing expression (5.1.54) into a “Virasoro algebra” form gives us a the central charge

c = 12K[ξ, η] where from the diffeomorphism (5.1.50) we can have the nonvanishing K[ξ, η]

as [85]

K[ξ, η] = − 1

8πG

∫
∂Σ

d2x

√
σ
√
q
nk(η̂kπ

mnDmξ̂n − ξ̂kπmnDmη̂n)

= − 1

8πG

∫
Hs
d2x
√
σ

(
nrqrrξ̂

r

(
1

2N
qrr∂rN

φ

)
qrr∂φη̂

r

− nrqrrη̂
r

(
1

2N
qrr∂rN

φ

)
qrr∂φξ̂

r

)
= − 1

16πG

∫
Hs
d2x
√
σ
nr
N
∂rN

φ(r − r+)2
(
∂φξ̂

φ∂2
φη̂

φ − ∂φη̂φ∂2
φξ̂

φ
)
, (5.1.56)

2In the canonical general relativity discussions, a boundary term B[ξ] must be introduced to cancel the
boundary term coming from the variation of H[ξ].
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where σ is the determinant of metric tensor for the manifold ∂Σ. At the near horizon we

have

nr
N

=

√
Ξ

∆′KS
≈ r(r + 2b) + r+

2

(r − r+)2
, ∂rN

φ ≈ − 1

2r+(r+ + b)
, (5.1.57)

thus we can evaluate

K[ξ, η] =
1

16πG

∫
Hs
d2x
√
σ
(
∂φξ̂

φ∂2
φη̂

φ − ∂φη̂φ∂2
φξ̂

φ
)

=
1

16πG

AH
2π

∫
dφ
(
∂φξ̂

φ∂2
φη̂

φ − ∂φη̂φ∂2
φξ̂

φ
)
, (5.1.58)

where AH =
∫
d2x
√
σ = 8πr+

2 is the horizon area.

Finally we have the central charge

c = 48π
1

16πG

AH
2π

=
3AH
2πG

= 12J , (5.1.59)

and by using the Cardy formula to obtain the entropy

S =
π2

3
cT = 2πJ =

AH
4G

, (5.1.60)

which matches the Bekenstein-Hawking entropy for Kerr-Sen black holes [16]. In (5.1.60) we

have used Frolov-Thorne temperature for Kerr-Sen black holes

T =
1

2π
. (5.1.61)

5.1.3 The Charged Scalar Field in Background of Kerr-Sen Space-

times

We consider a massless scalar field Φ with charge e as a probe in background (5.1.30). The

minimally coupled Klein-Gordon equation for the massless scalar field Φ is

(∇µ − ieAµ) (∇µ − ieAµ) Φ = 0 , (5.1.62)

where Aµ is given by (5.1.34) and (5.1.35). We separate the coordinates in scalar wave

function as

Φ (r, t, θ, φ) = exp (imφ− iωt)S (θ)R (r) , (5.1.63)
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where the radial and angular functions R(r) and S(θ) are solutions to the radial equation

∂r (∆KS∂rR (r)) +

(
(γr −ma)2

∆KS

+ ω2∆KS + 2δr − σ

)
R (r) = 0 , (5.1.64)

and angular equation

1

sin θ
∂θ ((sin θ) ∂θS (θ)) +

(
σ − m2

sin2 θ
− ω2a2 sin2 θ

)
S (θ) = 0 , (5.1.65)

respectively. In equation (5.1.64), γ = 2Mω− eQ, δ = γω, σ is the separation constant, and

∆KS is given in (5.1.32). We notice the radial equation (5.1.64) can be rearranged to(
∂r (∆KS∂r) +

(2Mωr+ − eQr+ −ma)2

(r − r+) (r+ − r−)
− (2Mωr− − eQr− −ma)2

(r − r−) (r+ − r−)

)
R (r)

= (σ − f (r))R (r) , (5.1.66)

where f (r) = (∆KS + 4M (M + r))ω2 − (2M + r) 2eQω + e2Q2, and the inner horizon of

black hole is r− = M − b−
√

(M − b)2 − a2. To simplify the equation of motion (5.1.66), we

consider the low frequency scalar field ω << 1/M and so in the near region geometry defined

by r << 1/ω and with assumption that electric charge of scalar field satisfies eQ << 13, we

can neglect f(r) in the right hand side of (5.1.66).

As we notice, the electric charge of scalar field e couples to the black hole charge Q in

the radial equation (5.1.66). The existence of eQ term in radial equation is necessary to

investigate the dual CFTs in general picture. The lack of eQ term in the radial equation of

neutral scalar field (as in reference [29]) hinders the general picture of Kerr-Sen geometry.

In fact, the Kerr/CFT correspondence calculation in the general picture shows the electric

charge of Kerr-Newman black hole as well as the angular momentum of black hole enters in the

CFT quantities such as the central charges and the hidden conformal symmetry generators

[34]. Indeed to realize the (hidden) conformal symmetry of charged rotating black holes in

the general picture, one must consider a charged scalar field. An immediate result of CFT

calculations in the general picture is that by looking at the dual CFT quantities, one can

observe the presence of electric charge (hair) of the black hole. The authors in [34] proposed

that each macroscopic hair of black holes, may be associated to a dual CFT.

3From the definition of γ, we can acknowledge that eQ has the same dimension as Mω.
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In the general picture, we consider the SL(2,Z) transformation for the torus generated

by φ and χ coordinates, given by [23] transformation φ′

χ′

 =

 α β

η τ

 φ

χ

 , (5.1.67)

where the two U(1) symmetries of black hole are associated with φ and χ coordinates. The

first symmetry is simply the rotational symmetry of the black hole along φ direction. The

second symmetry is associated to the rotational symmetry of the uplifted black hole into five-

dimensions (the fifth coordinate is χ) and in fact this symmetry is equivalent to the original

gauge symmetry of the four-dimensional charged rotating black hole. Such a transformation

doesn’t change the phase of the charged scalar field (6.1.19) with electric charge e; eimφ+ieχ =

eim
′φ′+ie′χ′ which yields m = αm′ + ηe′, e = βm′ + τe′. Consequently, in φ′ picture, the

radial equation (5.1.66) for low frequency massless charged scalar field in the near region of

Kerr-Sen spacetime can be rewritten as

∂r (∆KS∂rR (r)) +

(
(2Mr+ω − (Qr+β + aα)m′)2

(r − r+) (r+ − r−)
− (2Mr−ω − (Qr−β + aα)m′)2

(r − r−) (r+ − r−)

)
R (r)

= l (l + 1)R (r) , (5.1.68)

where we have chosen the separation constant σ = l (l + 1). To get the χ′ picture, we should

turn off the momentum along φ′ coordinate. In this case, the radial equation (5.1.66) for low

frequency massless charged scalar field in the near region of Kerr-Sen becomes the same as

equation (5.1.68) by replacing α, β and m′ to η, τ and e′ respectively,

∂r (∆KS∂rR (r)) +

(
(2Mr+ω − (Qr+τ + aη) e′)2

(r − r+) (r+ − r−)
− (2Mr−ω − (Qr−τ + aη) e′)2

(r − r−) (r+ − r−)

)
R (r)

= l (l + 1)R (r) . (5.1.69)

5.1.4 Hidden Conformal Symmetry of Kerr-Sen Geometry in Gen-

eral Picture

In this section, we find the hidden conformal symmetry of the radial equation (5.1.68) for

the massless charged scalar field in the near region of Kerr-Sen black hole in general picture.
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We define ω+, ω− and y as the conformal coordinates in terms of coordinates t, r and φ′ by

ω+ =

√
r − r+

r − r−
exp(2πTRφ

′ + 2nRt), (5.1.70)

ω− =

√
r − r+

r − r−
exp(2πTLφ

′ + 2nLt), (5.1.71)

y =

√
r+ − r−
r − r−

exp(π(TR + TL)φ′ + (nR + nL)t) . (5.1.72)

In terms of conformal coordinates, we also define the right and left moving vector fields

H1 = i∂+ , H0 = i(ω+∂+ +
1

2
y∂y) , H−1 = i((ω+)2∂+ + ω+y∂y − y2∂−) , (5.1.73)

and

H̄1 = i∂− , H̄0 = i(ω−∂− +
1

2
y∂y) , H̄−1 = i((ω−)2∂− + ω−y∂y − y2∂+) , (5.1.74)

respectively.

The vectors ∂+, ∂−, and ∂y in terms of coordinates t, r and φ′, can be written as

∂+ = e−(2πTRφ
′+2nRt)

(
∆KS

1/2∂r + Zφ+∂φ′ − Zt+∂t
)
, (5.1.75)

∂y = e−(π(TL+TR)φ′+(nR+nL)t) (Zry∂r + Zφy∂φ′ − Zty∂t) , (5.1.76)

∂− = e−(2πTLφ
′+2nLt)

(
∆KS

1/2∂r + Zφ−∂φ′ − Zt−∂t
)
. (5.1.77)

where

Zφ+ =
(nR (r+ − r−)− nL (r+ + r−) + 2nLr)

4π∆KS
1/2 (nLTR − nRTL)

,

Zt+ =
(TR (r+ − r−)− TL (r+ + r−) + 2TLr)

4∆KS
1/2 (nLTR − nRTL)

,

Zry = − 2∆KS√
(r − r−) (r+ − r−)

,

Zφy =

√
r+ − r−
r − r−

(nL − nR)

2π (nLTR − nRTL)
,

Zty =

√
r+ − r−
r − r−

(TL − TR)

2 (nLTR − nRTL)
,

Zφ− =
(nR (r+ + r−)− nL (r+ − r−)− 2nLr)

4π∆KS
1/2 (nLTR − nRTL)

,
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and

Zt− =
(TR (r+ + r−)− TL (r+ − r−)− 2TRr)

4∆KS
1/2 (nLTR − nRTL)

.

The vector fields (5.1.73) satisfy the sl(2,R) algebra

[H0, H±1] = ∓iH±1 , [H−1, H1] = −2iH0 , (5.1.78)

and similarly for H̄1, H̄0 and H̄−1. The squared Casimir of SL(2,R)R and SL(2,R)L groups

with generators H±1, H0 and H̄±1, H̄0 respectively, are equal and in conformal coordinates

are given by

H2 = −H2
0 +

1

2
(H1H−1 +H−1H1)

=
1

4
(y2∂2

y − y∂y) + y2∂+∂−. (5.1.79)

In terms of r, t and φ′ coordinates, the H2 can be written as

H2 = ∂r(r − r+)(r − r−)∂r −
(r+ − r−)[π(TL + TR)∂t − (nL + nR)∂φ]2

16π2(TLnR − TRnL)2(r − r+)

(5.1.80)

+
(r+ − r−)[π(TL − TR)∂t − (nL − nR)∂φ]2

16π2(TLnR − TRnL)2(r − r−)
. (5.1.81)

The “bar” version of this squared Casimir is

H̄2 = −H̄2
0 +

1

2
(H̄1H̄−1 + H̄−1H̄1) (5.1.82)

which turns out to have the same expression H2 in terms of r, t and φ′ coordinates.

The squared Casimirs (5.1.79) and (5.1.82) reduce simply to the radial equation (5.1.68)

in φ′ picture,

H2R(r) = H̄2R(r) = l(l + 1)R(r), (5.1.83)

after choosing the right and left temperatures TR and TL

TR =
r+ − r−
4πaα

, TL =
r+ + r−
4πaα

, (5.1.84)

and

nR = −(r+ − r−) βQ

8αaM
, nL = −(2aα + (r+ + r−) βQ)

8αaM
, (5.1.85)

where α and β are the parameters of SL(2,Z) modular transformation (5.1.67).
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As we notice, the temperatures of CFT dual to Kerr-Sen black hole in φ′ picture depend

only on α, while nL and nR depend on both α and β. The dependence of CFT temperatures

on SL(2,Z) parameters for Kerr-Sen is different than Kerr-Newman black hole. In the latter

case, the CFT temperatures in φ′ picture depend on both parameters α and β. The CFT

temperatures (5.1.84), nL and nR (5.1.85) reduce to the results in J picture when α = 1 and

β = 0 [29].

In χ′ picture, the radial equation is given by equation (5.1.68) where one replaces α, β and

m′ to η, τ and e′ respectively. After changing to the conformal coordinates (5.1.70)-(5.1.72)

(with replacing φ′ to χ′), we find the squared Casimir of SL(2,R)R and SL(2,R)L reduce to

the radial equation in χ′ picture by choosing the right and left temperatures TR and TL as

TR =
r+ − r−

4πaη
, TL =

r+ + r−
4πaη

, (5.1.86)

and

nR = −(r+ − r−) τQ

8ηaM
, nL = −(2aη + (r+ + r−) τQ)

8ηaM
, (5.1.87)

where η and τ are the parameters of SL(2,Z) modular transformation (5.1.67). We notice

for unit element of SL(2,Z) where η = 0 and τ = 1, the temperatures are not finite that

indicates the Q picture for the Kerr-Sen geometry is not well defined. The same type of

calculation for Kerr-Newman black hole in χ′ picture shows taking η = 0 and τ = 1 leads to

the well defined Q picture for the Kerr-Newman black hole [34]. The non-existent Q picture

for the Kerr-Sen geometry hinders uplifting the black hole into five dimensional spacetime,

in contrast to Kerr-Newman black hole.

We note that equation (5.1.83) signals the existence of SL(2,R)L × SL(2,R)R hidden

conformal symmetry in φ′ picture for the Kerr-Sen black hole. We should emphasize that

SL(2,R)L × SL(2,R)R is only a local hidden conformal symmetry for the solution space

of massless charged scalar field in near region of Kerr-Sen geometry. The local symmetry

is generated by the vector fields (5.1.73),(5.1.74). The reason is these vectors in φ′ picture

are not periodic under φ′ ∼ φ′ + 2απ identification, so they can’t be defined globally. We

may conclude the existence of local SL(2,R)L × SL(2,R)R hidden conformal symmetry in

φ′ picture, suggests that we assume the dynamics of the near region can be described by a

dual CFT. To verify this assumption, we try to find the microscopic entropy of the dual CFT
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which according to the Cardy formula, is given by

SCFT = π2

3
(cLTL + cRTR) , (5.1.88)

where TR and TL are the CFT temperatures in φ picture, given by (5.1.84). The central

charges of dual CFT for extremal Kerr-Sen black holes were obtained in [16] based on analysis

of the asymptotic symmetry group. For the case of non-extremal black hole, we assume that

the conformal symmetry connects smoothly to that of the extremal case; so we consider the

central charges given by

cR = cL = 12αJ . (5.1.89)

We notice in the case of α = 1, (5.1.89) reduces to 12J which is the central charge in the J

picture. The central charges (5.1.89) and temperatures (5.1.84) yield the microscopic entropy

of CFT (5.1.88) in φ′ picture as

SCFT = 2πMr+ , (5.1.90)

which is in complete agreement with the macroscopic Bekenstein-Hawking entropy of Kerr-

Sen spacetime. The macroscopic Bekenstein-Hawking entropy of Kerr-Sen black hole is given

by [16, 88]

S = π

(
2M2 −Q2 +

√
(2M2 −Q2)2 − 4J2

)
, (5.1.91)

which is equal to SCFT upon substitution r+ = M − b +
√

(M − b)2 − a2, J = aM , and

b = Q2/2M .

5.1.5 Absorption Cross Section of Near Region Scalars in φ′ Pic-

ture

In this section, to further show that the dynamics of the near region can be described by

a dual CFT in φ′ picture, we consider the absorption cross section of scalars in the near

region of Kerr-Sen spacetime. We find that the absorption cross section could be reproduced

correctly by dual CFT. In this regard, we introduce the new coordinate p, given by [67]

p =
r − r+

r − r−
. (5.1.92)
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By using the following relation that is obtained from (5.1.92),

∆KS∂r = (r+ − r−) p∂p , (5.1.93)

one can rewrite the radial part of Klein-Gordon equation (5.1.64) in terms of new coordinate

p as

p (1− p) ∂2
pR (p) + (1− p) ∂pR (p) +

(
C2

1

p
− C2

2 −
C3

1− p

)
R (p) = 0 , (5.1.94)

where the constants C1, C2 and C3 are

C1 =

(
2Mr+ω − (Qr+β + aα)m′

r+ − r−

)
, (5.1.95)

C2 =

(
2Mr−ω − (Qr−β + aα)m′

r+ − r−

)
, (5.1.96)

C3 = l (l + 1) . (5.1.97)

The in-going solution for the equation (5.2.267) is

Rin (r) = Cp−iC1 (p− 1)−l 2F1 (−l − i (C1 − C2) ,−l − i (C1 + C2) ; 1− 2iC1; p) , (5.1.98)

where C is a constant of integration and 2F1 is the hypergeometric function. The in-going

solution (5.2.269) on the outer boundary of the matching region where r �M behaves as,

Rin ∼ Arl , (5.1.99)

where A = 2F1 (−l − i (C1 − C2) ,−l − i (C1 + C2) ; 1− 2iC1; 1). We should mention in find-

ing the in-going solution, we consider the low frequency condition, ω � 1/M in near region,

r � 1/ω, along with the assumption of small probe eQ � 1. Using the Gauss’ theorem for

Gamma functions, we can rewrite the factor A in equation (5.1.99) as

A =
Γ (1− 2iC1) Γ (2l + 1)

Γ

(
l + 1− i(2Mω−mβQ(1−β))(r++r−)−2mβaβ

r+−r−

)
Γ (l + 1 + i (2Mω −mβQ (1− β)))

.

(5.1.100)

Hence, we find the absorption cross section, given by

Pabs ∼ |A|−2 = sinh (2πC1)
|Γ (l + 1− iB1)|2 |Γ (l + 1− iB2)|2

2πC1 (Γ (2l + 1))2 , (5.1.101)
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where

B1 =
(2Mω −m′Qβ) (r+ + r−)− 2m′aα

r+ − r−
, (5.1.102)

B2 = (2Mω −m′Qβ) , (5.1.103)

and C1 and C2 are given by (5.1.95) and (5.1.95), respectively. To find the possible agreement

between macroscopic cross section Pabs and the microscopic cross section of dual CFT, we

need to identify some parameters of the theories. In this regard, we consider the first law of

thermodynamics for the charged rotating black holes which can be written as

THδSBH = δM − ΩHδJ − VHδQ , (5.1.104)

where TH and Ω are given by (5.1.37) and (5.1.38), and VH is the electrostatic potential.

In the case of neutral rotating black holes, δJ can be identified as m and δM as ω [28]. In

addition to these identifications, for charged black holes we identify δQ as e.

To find the conjugate charges, we calculate the variation of entropy from gravitational

point of view, δSBH as well as the variation of entropy from CFT, δSCFT . These two variations

should be equal, so we find

δM − ΩHδJ − VHδQ
TH

=
δEL
TL

+
δER
TR

, (5.1.105)

where ΩH and VH are given by (5.1.38) and (5.1.39) respectively. The absorption cross section

(5.1.101) can be written as a thermal CFT absorption cross section if we identify δEL = ω̃L

and δER = ω̃R where

ω̃L =
(2Mω −m′Qβ) (r+ + r−)

2aα
, (5.1.106)

and

ω̃R =
(2Mω −m′Qβ) (r+ + r−)

2aα
−m′ . (5.1.107)

The variables ω̃R and ω̃L are introduced somehow to accommodate three sets of CFT param-

eters: the frequencies ωL,R, the charges qL,R, and the chemical potentials4 µL,R. The relations

between these variables are written as

ω̃L,R = ωL,R − qL,RµL,R , (5.1.108)

4This chemical potential is just an analogy with the similar terminology that we have in thermodynamics.
A brief introduction to the chemical potential in thermodynamics context is given in the appendix G.
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where

ωL =
2Mω (r+ + r−)

2aα
, ωR = ωL −m′ , (5.1.109)

µL = µR =
Qβ (r+ + r−)

2aα
, (5.1.110)

and qL = qR = m′. We also notice that for β = 0, i.e. the absence of left and right chemical

potential, and α = 1, the left and right frequencies (5.1.106) and (5.1.107) reduce to standard

left and right frequencies for Kerr-Sen geometry with an electrically neutral test field [29]. In

fact, by equation (5.1.107), (5.1.106), and (5.1.84), the macroscopic cross section (5.1.101)

can be expressed as

Pabs ∼ T 2hL−1
L T 2hR−1

R sinh

(
ωL
2TL

+
ωR
2TR

) ∣∣∣∣Γ(hL + i
ωL

2πTL

)∣∣∣∣2 ∣∣∣∣Γ(hR + i
ωR

2πTR

)∣∣∣∣2 ,
(5.1.111)

where we set hL = hR = l + 1. Equation (5.1.111) is the well known finite temperature

absorption cross section for a 2D CFT [28].

5.1.6 Generalized Hidden Conformal Symmetry with Deformation

Parameter

In sections (5.1.4) and (5.1.5), we considered the propagation of a scalar field in the back-

ground of a generic non-extremal Kerr-Sen black hole and found evidences for a hidden

conformal field theory in φ′ picture. The metric function of Kerr-Sen black hole has two

roots r+ and r− where the scalar wave equation (5.1.66) have poles in both locations. We

may deform the wave equation (5.1.66) near the inner horizon r− since for the non-extremal

Kerr-Sen black hole we can consider r to be far enough from r− such that the linear and

quadratic terms in frequency which are coming from the expansion near the inner horizon

can be dropped [36]. In this regard we consider the deformation of radial equation (5.1.68)

for the massless scalar filed by deformation parameter κ as[
∂r (∆KS∂r) +

(2Mr+ω − a1m
′)2

(r − r+) (r+ − r−)
− (2Mκr+ω − a2m

′)2

(r − r−) (r+ − r−)

]
R (r) = l (l + 1)R (r) , (5.1.112)

where a1 = Qr+β+aα and a2 = Qκr+β+aα. The deformation parameter κ and r−r− should

satisfy κM2a2m
′ω � 2

√
(M − b)2 − a2(r − r−) as well as κ2M4ω2 � 2

√
(M − b)2 − a2(r −
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r−) to drop the linear and quadratic terms in frequency from the expansion near the inner

horizon pole while we still keep the near region geometry and low frequency scalar field as

an electrically charged probe. We look now to a new set of vector fields that make sl(2,R)

algebra in such a way that the squared Casimir of the algebra represents the deformed radial

equation (5.1.112) of the scalar field. We consider the set of vector fields L± and L0 given by

L± = e±ρt±σφ
(
∓
√

∆KS∂r +
C2 −∆KSr√

∆KS

∂φ′ +
C1 − γr√

∆KS

∂t

)
, (5.1.113)

L0 = γ∂t + δ∂φ′ , (5.1.114)

which should satisy [L+, L−] = 2L0 , [L±, L0] = ±L0 as well as making the squared Casimir

L2
0 −

1

2
(L+L− + L−L+) = ∂r (∆KS∂r) +

(2Mr+ω − a1m
′)2

(r − r+) (r+ − r−)
− (2Mκr+ω − a2m

′)2

(r − r−) (r+ − r−)
.

(5.1.115)

The coefficients of ∂r and ∂2
r in (5.2.231) gives two equations

ρC1 + σC2 +M = 0 , (5.1.116)

and

1 + ργ + σδ = 0 . (5.1.117)

In addition, the coefficient of ∂2
φ′ and ∂2

t yield

−δ2 (r − r+) (r − r−) + C2
2 − 2C2δr + δ2r2 = a2

1

r − r−
r+ − r−

− a2
2

r − r+

r+ − r−
, (5.1.118)

and

C2
1 − γ2 (r − r+) (r − r−)− 2C1γr + γ2r2 =

4M2r2
+

(r+ − r−)

(
(r − r−)− κ2 (r − r+)

)
. (5.1.119)

The last possible term in (5.2.231) that is proportional to the mixed derivative ∂φ∂t is

−C2C1 + δrC1 − δr2γ + γ (r − r+) (r − r−) δ + C2γr

= − 2Mr+

(r+ − r−)
(a1 (r − r−)− κa2 (r − r+)) . (5.1.120)
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The two different classes of solutions to equation (5.1.155) (that we show by subscripts a and

b are,

δa =
a1 + a2

r+ − r−
, C2a =

a1r− + a2r+

r+ − r−
, (5.1.121)

δb =
a2 − a1

r+ − r−
, C2b =

a2r+ − a1r−
r+ − r−

. (5.1.122)

These solutions substituted into equations (5.1.119) and (5.2.237) give the corresponding C1

and γ, that are given by

γa =
2Mr+ (κ+ 1)

r+ − r−
, C1a =

2Mr+ (κr+ + r−)

r+ − r−
, (5.1.123)

γb =
2Mr+ (κ− 1)

r+ − r−
, C1b =

2Mr+ (κr+ − r−)

r+ − r−
. (5.1.124)

So, the generators of SL(2,R) for a−solutions are

L±a = e±ρ1t∓( b(1+κ)
aα(1−κ)

+2πTR)φ
[
∓
√

∆KS∂r +

(
Qβ

r+ (r− + κr+ − r (1 + κ))

r+ − r−
(5.1.125)

− αΩH

2πTH
(r − (M − b))

)
∂φ′√
∆KS

+

(
r − r+

2πΩHα (TL + TR)
− r − (M − b)

2πTH

)
∂t√
∆KS

]
,

and

L0a =

(
1

2πTH
− 1

2πΩHα (TL + TR)

)
∂t +

(
Qβ (1 + κ)

8πMTH
+

ΩHα

2πTH

)
∂φ′ , (5.1.126)

where

ρ1 ≡
b

Mr+(1− κ)
+

Qβ

2Maα (1− κ)
(M (1 + κ)− κr+ − r−) .

For the second class of solutions, we find

L±b = e±ρ2t∓( b
aα

+2πTL)φ
[
∓
√

∆KS∂r +

(
2Mr+ΩHα +

Qβr+ (κr+ − r− + r − κr)
r+ − r−

)
∂φ′√
∆KS

+

(
2Mr+ +

(r − r+)

2παΩH (TL + TR)

)
∂t√
∆KS

]
, (5.1.127)

and

L0b =

(
−1

2παΩH (TL + TR)

)
∂t +

(
Qβ (κ− 1)

8πTHM

)
∂φ′ , (5.1.128)
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where

ρ2 ≡
Qβ (r+ (r− − κr+) +Mr+ (κ− 1))

2Mr+aα (κ− 1)
+ 2παΩH (TR + TL) .

As we notice, the generators (5.1.125), (5.1.126), (5.1.127) and (5.1.128) of SL(2,R) ×

SL(2,R) reduce exactly to the generators of generalized hidden conformal symmetry of Kerr

black hole [36], in the limit where α = 1 and b = 0. The left and right temperatures are

given by TL = TR
1+κ
1−κ and TR = r+−r−

4παa
respectively. This means the right temperature of

generalized hidden CFT doesn’t get any contribution from the deformation parameter κ and

so is the same as the right temperature of hidden CFT while the left temperature is affected

by the deformation parameter κ. Demanding the agreement of microscopic entropy of CFT

given by (5.1.88) to the Bekenstein-Hawking entropy of Kerr-Sen black hole (5.1.91) requires

the central charges are given by

cL = cR =
6 (1− κ) aαMr+√

(M − b)2 − a2

. (5.1.129)

These central charges reduce to central charges of generalized hidden CFT of Kerr black hole

where α = 1 and b = 0. As we mentioned earlier, the charged Gibbons-Maeda-Garfinkle-

Horowitz-Strominger black hole is a special case of Kerr-Sen black hole when the rotational

parameter is zero. In this limit, one can show the solutions to equations (5.1.116) and

(5.1.117) exist only for special values of parameter κ. In the b-branch, the solutions are

σ = 0 along with we get

ρ =
M − 2b

4M (M − b)
, κ = − M

M − 2b
. (5.1.130)

Consequently, the generators of SL(2,R) for b-solutions (5.1.127),(5.1.128) reduce to

L±b = e±( M−2b
4M(M−b))

(
∓
√

∆GM∂r − 2
Qβ (M − r) (M − b)

(M − 2b)
√

∆GM

∂φ − 4
M (M − r) (M − b)

(M − 2b)
√

∆GM

∂t

)
,

(5.1.131)

L0b = −4
M (M − b)
M − 2b

∂t − 2
βQ (M − b)
M − 2b

∂φ , (5.1.132)

where ∆GM = r(r − 2(M − b)). So, these are the generators of SL(2,R) for the Gibbons-

Maeda-Garfinkle-Horowitz-Strominger black hole. The generators (5.1.125) and (5.1.126)

of SL(2,R) for a-solutions with κ = M (M − 2b)−1 give the same copy of generators as

in (5.1.131) and (5.1.132) with renaming the generators by L± → −L∓, L0 → −L0. We
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also note that generators (5.1.131) and (5.1.132) in the special case of Q = 0 reduce to the

generators of SL(2,R)Sch for Schwarzschild black hole [89].

5.1.7 Hidden conformal symmetry for extremal Kerr-Sen

In this subsection we show the hidden conformal symmetry of extremal Kerr-Sen black holes,

following the method developed in ref. [31]. In the previous subsection, we find that the non-

extremal Kerr-Sen black holes do not posses the Q picture. In the extremal case, the same

outcome is obtained, where there is also no Q picture for the hidden symmetry of Kerr-Sen

black holes.

Let us start by taking the extremal limit of radial equation (5.1.64), which reads

∂r (∆′KS∂rR (r)) + (λ− f (r))R (r) (5.1.133)

= −

(
(2Mωr+ − eQr+ −ma)2

(r − r+)2 +
2 (2Mω − eQ) (2Mωr+ − eQr+ −ma)

r − r+

)
R (r) ,

where

f (r) = (∆′KS + 4M (M + r))ω2 − (2M + r) 2eQω + e2Q2 , (5.1.134)

and ∆′KS = (r − r+)2. Again, the near region, low frequency, and weakly couple limits

rω � 1 , ωM � 1 , eQ� 1 , (5.1.135)

are used here, hence we are able to neglect the function f(r) in (5.1.134). Hence, for example

when we consider the J picture, i.e. by setting e = 0, (5.1.134) reduces to(
∂r (∆′KS∂r) +

(2Mωr+ −ma)2

(r − r+)2 +
2 (2Mω − eQ) (2Mωr+ −ma)

r − r+

)
R (r) = λR (r) .

(5.1.136)

The corresponding black hole entropy, angular velocity at the horizon, as well as the

electrostatic potential can be written as

SBH = 2πMa , (5.1.137)

ΩH =
1

2M
, (5.1.138)

ΦH =
Q

2M
, (5.1.139)
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respectively. Rewriting (5.1.134) in the φ′ picture gives us(
∂r (∆′KS∂r) +

(2Mωr+ −m′(αa+ βQr+))2

(r − r+)2

+
2 (2Mω −m′βQ) (2Mωr+ −m′(αa+ βQr+))

r − r+

)
R (r) = λR (r) . (5.1.140)

We observe that the set of “conformal coordinates” (5.1.72) doesn’t work properly in extremal

case, i.e. when r+ = r−. In regard to this problem, the authors of [31] introduce a set of

“conformal coordinates”, ω± and y which suits the extremal case discussion. Adopting the

“coformal coordinates” in [31] to the φ′ picture provides

ω+ =

(
φ′

a
− 1

r − r+

)
,

ω− =
1

2

(
e2πTLφ

′+2nLt − 2

γ1

)
, (5.1.141)

y =

√
γ1

2(r − r+)
eπTLφ

′+nLt . (5.1.142)

The vectors (5.1.73) and (5.1.74) for the “conformal coordinates” (5.1.141) in terms of t, r

and φ′ coordinates can be read as

H+ = i
2

Q
(2πTL∂t − 2nL∂φ′) ,

H0 = i

(
−(r − r+)∂r −

φ′

2nL
(2πTL∂t − 2nL∂φ′)

)
,

H− = i

{
−β1φ

′(r − r+)∂r −
∂t

(r − r+)nL

+

(
(β1φ

′)2 +
4

(r − r+)2

)
1

2Q
(2πTL∂t − 2nL∂φ′)

}
, (5.1.143)

and

H̄+ = 2ie−2πTLφ
′−2nLt

(
(r − r+)∂r +

∂t
2nL
− 4(πTL∂t − nL∂φ′)

(r − r+)Q

)
,

H̄0 = i

(
−e−2πTLφ

′−2nLt(r − r+)∂r + (1− e−2πTLφ
′−2nLt)

∂t
2nL

+
2e−2πTLφ

′−2nLt

(r − r+)Q
(2πTL∂t − 2nL∂φ′)

)
,

(5.1.144)
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H̄− = i

{
−1

2

(
e2πTLφ

′+2nLt − e−2πTLφ
′−2nLt

)
(r − r+)∂r

+
(
e2πTLφ

′+2nLt − 2 + e−2πTLφ
′−2nLt

) ∂t
4nL

+
(
e2πTLφ

′+2nLt + e−2πTLφ
′−2nLt

) (2πTL∂t − 2nL∂φ′)

(r − r+)Q

}
. (5.1.145)

where Q = −2nLβ1. The squared Casimir

H2 = H̄2 = −H2
0 +

1

2
(H1H−1 +H−1H1) =

1

4
(y2∂2

y − y∂y) + y2∂+∂− (5.1.146)

constructed from the vectors in (5.1.143) and (5.1.145) reads

H2 = ∂r(∆
′
KS∂r)−

(
(4πTL∂t − 4nL∂φ′)

(r − r+)Q

)2

− (8πTL∂t − 8nL∂φ′)β1∂t
(r − r+)Q2

. (5.1.147)

Equation (5.1.147) matches (5.1.140) if we identify

nL = −αa+ βQr+

4aαM
, β1 =

2

αa
, TL =

1

2π
. (5.1.148)

The identification of TL and nL are in agreement with the previous results in (5.1.86) and

(5.1.87) for the J picture setting and after taking the extremal limit. Note that in the extremal

limit TR and nR in (5.1.86) and (5.1.87) become zero, which reflects the lacking of right mover

dual CFT2 for the system. The absence of TR and nR in this hidden conformal symmetry for

Kerr-Sen black holes is in agreement with the extremal Kerr/CFT correspondence proposal,

which is reviewed in section 4.1, where only the left mover of CFT2 which is dual to the

extremal Kerr black holes. The fact that we have two copies of SL(2,R) does not mean

that we have left and right movers CFT that dual to the extremal Kerr-Sen black holes, but

rather that they are just the different representations of SL(2,R) symmetry that are belong

to the same CFT2, i.e. the left mover one.

Finding that (5.1.147) matches (5.1.140) reflects that we we can also find the hidden

conformal symmetry for extremal Kerr-Sen black holes. In other words, the hidden conformal

symmetry is not an exclusive property of the non-extremal Kerr-Sen black holes only, though

we had such feeling before when we notice that the mapping (5.1.72) is not well behaved

when we take the extremal limit.

In [113], the authors show the hidden conformal symmetry of extremal Kerr-Sen in J

picture only. In contrast to the work we performed in this thesis, the authors of [113] discuss
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the neutral scalar test particle in the Kerr-Sen background. By doing so, there is no basis

to judge the lack of Q picture for the hidden conformal symmetry of Kerr-Sen black holes.

From (5.1.148), aiming to obtain Q picture results by setting α = 0 doesn’t work, from which

we can state that the extremal Kerr-Sen black hole doesn’t have Q picture hidden conformal

symmetry. The situation for extremal Kerr-Newman black holes is different. The authors

of [23] show that the extremal Kerr-Newman black holes possess both the J and Q picture

hidden conformal symmetries.

Setting β = 0 and α = 1 of the results in (5.1.148) gives the hidden conformal symmetry

generators in J picture, which from (5.1.143) and (5.1.145) one can derive the corresponding

generators as the followings

H+ = i2Ma

(
∂t +

1

2M
∂φ

)
,

H0 = i

(
− (r − r+) ∂r + 2Mφ

(
∂t +

1

2M
∂φ

))
, (5.1.149)

H− = i

(
−2

a
φ (r − r+) ∂r +

4M

(r − r+)
∂t + 2Ma

((
φ

a

)2

+

(
1

r − r+

)2
)(

∂t +
1

2M
∂φ

))
,

and

H̄+ = 2ie−φ+ t
2M

(
(r − r+) ∂r − 2M∂t −

2Ma

(r − r+)

(
∂t +

1

2M
∂φ

))
,

H̄0 = i

(
−e−φ+ t

2M (r − r+) ∂r − 2M
(

1− e−φ+ t
2M

)
∂t +

2Mae−φ+ t
2M

(r − r+)

(
∂t +

1

2M
∂φ

))
,

H̄− = i

(
−1

2

(
eφ−

t
2M − e−φ+ t

2M

)
(r − r+) ∂r − 2M

(
eφ−

t
2M − 2 + 2e−φ+ t

2M

)
∂t

− Ma

(r − r+)

(
eφ−

t
2M + e−φ+ t

2M

)(
∂t +

1

2M
∂φ

))
. (5.1.150)

The squared Casimir (5.1.146) constructed from the vectors in (5.1.149) and (5.1.150) is just

the left hand side of equation (5.1.136). It means that these vectors are the generators of

hidden conformal symmetry of the extremal Kerr-Sen black holes in J picture.

5.1.8 An alternative to construct the hidden symmetry

In subsection 5.1.6, we have applied the method by Lowe et al [36] in constructing the

deformed hidden conformal symmetry generators for the non-extremal Kerr-Sen black holes.
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Here, we would like to show that the method proposed by Lowe et al [36] can be used to get

a set of hidden conformal symmetry generators for the extremal Kerr-Sen black holes. Note

that we do not deform the equation of motion, since the deformation technique works only

for the non-extremal case, i.e. we are allowed to consider the case of back holes which are

far from the extremal condition.

As we have seen before, the first step is defining a set of general generators

L± = e±ρt±σφ

(
∓
√

∆′KS∂r +
C1 − γr√

∆′KS
∂t +

C2 − δr√
∆′KS

∂φ

)
L0 = γ∂t + δ∂φ , (5.1.151)

where the sl(2,R) algebra [L±, L0] = ±L± and [L+, L−] = 2L0 are satisfied. We now focus

on the J picture only, where the equation of motion that we are considering is (5.1.134) with

e = 0. In this consideration, the squared Casimir of generators (5.1.151) should match the

left hand side of equation (5.1.136), i.e.

L2
0−

1

2
(L+L− + L−L+) = ∂r (∆′KS∂r)R (r)+

(
(2Mωr+ −ma)2

(r − r+)2 +
2 (2Mω) (2Mωr+ −ma)

r − r+

)
.

(5.1.152)

Matching the coefficients of ∂r and ∂2
r from the left and right hand sides of equation (5.1.152)

gives

ρC1 + σC2 +M = 0 , (5.1.153)

and

1 + ργ + σδ = 0 . (5.1.154)

Furthermore, from the coefficients of ∂2
φ and ∂2

t in (5.1.152) we can have

2C2δr + 2δ2rr+ − δ2r2
+ + C2

2 = a2 , (5.1.155)

and

−2C1γr + 2γ2rr+ − γ2r2
+ + C2

1 = 4M2r+ (2r − r+) . (5.1.156)

Finally, the mixed derivative ∂φ∂t in (5.1.152) gives us

2C2C1 + 4γδrr+ − 2γδr2
+ − 2δrC1 − 2C2γr = 4Mar . (5.1.157)
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By using (5.1.153), (5.1.154), (5.1.155), (5.1.156), and (5.1.157), we obtain two set of solutions

of C1, C C2, δ, γ, σ and ρ as tabulated in table 5.2.

Table 5.2: Solutions in J picture

(+) (−)

δ 0 0

C2 a −a

C1 0 0

γ −2M 2M

ρ 1
2M

− 1
2M

σ −M
a

M
a

Consider the generators (5.1.151) constructed from the (+) family coefficients as the L+
± and

L+
0 , and the (−) family coefficients as the L−± and L−0 . We can show that there is a mapping

between the two set of generators,

L+
± = −L−∓ , L+

0 = −L−0 . (5.1.158)

It is just a reflection of the invariance of squared Casimir

L2
0 −

1

2
(L+L− + L−L+) (5.1.159)

by the transformation

L0 → −L0 , L± → −L∓ . (5.1.160)

Interestingly, in extremal case the generators (5.1.151) can reveal only a single copy of

SL(2,R) symmetry of the system. It agrees the previous conclusion that there is only a

single dual CFT for extremal Kerr-Sen black holes. Explicitly, these generators (5.1.151) for

extremal Kerr-Sen can be read as

L+
± = e±

t
2M
∓Mφ

a

(
∓
√

∆′KS∂r + 2Mr√
∆′KS

∂t + a√
∆′KS

∂φ

)
,

L+
0 = −2M∂t .

(5.1.161)

It is not easy to see how the generators (5.1.161) can be mapped to those in (5.1.149) or

(5.1.150). Nevertheless, the mapping should exist since the generators in (5.1.161), (5.1.149),

and (5.1.150) describes a single copy of the conformal symmetry that is hidden in the equation

(5.1.136).
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5.1.9 Macroscopic absorption cross section

The radial equation can be written as

∂r∆
′
KS∂rR(r) +

K2
1

(r − r+)2
R(r) +

K2

r − r+

R(r) = λR(r) , (5.1.162)

where

K1 = 2Mωr+ − eQr+ −ma ,

K2 = 2 (2Mω − eQ) (2Mωr+ − eQr+ −ma) .
(5.1.163)

Introducing z = −2iK1

r−r+ , we get the Whittaker equation

R
′′
(z) + (−1

4
+
k

z
+

1
4
−m2

z2
)R(z) = 0 , (5.1.164)

where

k = i(2Mω − eQ), m2 =
1

4
+ λ . (5.1.165)

This equation has the solution

R(z) = C1R+(z) + C2R−(z) , (5.1.166)

where

R±(z) = e−
z
2 z

1
2
±mF (

1

2
±m− k, 1± 2m, z) (5.1.167)

are two linearly independent solution.

At the near horizon where we have a very large z, the Kummer function F (α, γ, z) in

(5.1.167) could be expanded asymptotically as

F (α, γ, z) ∼ Γ(γ)

Γ(γ − α)
e−iαπz−α +

Γ(γ)

Γ(α)
ezzα−γ . (5.1.168)

To cancel the outgoing mode in the solutions, we need to have

C1 = − Γ(1− 2m)

Γ(1
2
−m− k)

C, C2 =
Γ(1 + 2m)

Γ(1
2

+m− k)
C (5.1.169)

to thus the ingoing modes only that left.

When r goes asymptotically to infinity, z → 0, F (α, γ, z)→ 1, the solution has asymptotic

behavior

R ∼ C1r
−h + C2r

1−h , (5.1.170)
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where h is the conformal weight of the scalar

h =
1

2
+m =

1

2
+

√
1

4
+ λ . (5.1.171)

The retarded Green’s function could be read directly [79]

GR ∼
C1

C2

∝ Γ(1− 2h)Γ(h− k)

Γ(2h− 1)Γ(1− h− k)
. (5.1.172)

5.1.10 Microscopic point of view

As it is mentioned in the original extremal Kerr/CFT proposal [12], only one copy of CFT2

that dual to the black hole at the near horizon. It is surprising that by using prescription

by authors of [31], that we still can uncover the SL(2,R)L × SL(2,R)R hidden conformal

symmetry for extremal black holes which was discussed in section 5.1.8. The discussions

in section 5.1.9 seems to be more natural in describing extremal black holes, because it is

consistent with what we expect that only a copy of SL(2,R) exists. However, at the end we

still have one CFT temperature left, i.e. TL. Now by using the Cardy formula (3.3.116) we

can obtain the entropy of extremal Kerr-Sen black holes

S =
π2

3
cLTL = 2πJ , (5.1.173)

which is in agreement with the macroscopic Bekenstein-Hawking entropy.

The first law of thermodynamics tells us

δS =
δM − ΩHδJ − ΦδQ

TH
(5.1.174)

which in [28] can be used to match the microscopic and macroscopic parameters. At extremal

condition, we know that

TH → 0

as well as

δM − ΩHδJ − ΦδQ→ 0.

A little bit work on this equation gives us a separation in δS,

δS = 2π(2MδM −QδQ) + 4π
(2M2 −Q2)δM − aδJ −QMδQ

2
√
M2 − a2 −Q2

, (5.1.175)
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where the second term in (5.1.175) vanishes when M − b = a, which also means 2MδM −

QδQ = δJ that would be useful to show

δS = 2π(2MδM −QδQ) . (5.1.176)

Then we find that the identifications

δQ = e, δM = ω, δEL = ωL − qLµL , (5.1.177)

with

ωL = 2Mω, µL = Q, qL = e , (5.1.178)

yield the equation (5.1.137) can be rewritten as

δS =
δEL
TL

=
ωL − qLµL

TL
. (5.1.179)

The retarded charged scalar Green’s function in the extremal Kerr-Sen black hole could be

rewritten as

GR ∼ Γ(1− 2h)Γ(h− i(2Mω − eQ))

Γ(2h− 1)Γ(1− h− i(2Mω − eQ))

(5.1.180)

=
Γ(1− 2h)

Γ(2h− 1)

Γ
(
h− iωL−qLµL

2πTL

)
Γ
(

1− h− iωL−qLµL
2πTL

) , (5.1.181)

where the conformal wight is given in (5.1.171).

In a two-dimensional conformal field theory, the two-point functions of the primary op-

erators are determined by the conformal invariance. The retarded correlator GR(ωL, ωR) is

analytic on the upper half complex ωL,R plane and its value along the positive imaginary

ωL,R axis gives the Euclidean correlator:

GE(ωL,E, ωR,E) = GR(iωL,E, iωR,E), ωL,E, ωR,E > 0 . (5.1.182)

At finite temperature, ωL,E and ωR,E take discrete values of the Matsubara frequencies

ωL,E = 2πmLTL, ωR,E = 2πmRTR , (5.1.183)
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where mL,mR are integers for bosonic modes and are half integers for fermionic modes. For

an operator of dimensions (hL, hR), charges (qL, qR) at temperatures (TL, TR) and chemical

potentials (µL, µR), the momentum space Euclidean correlator is given by[67]

GE ∼ T 2hL−1
L eiω̃L,E/2TLΓ

(
hL −

ω̃L,E
2πTL

)
Γ

(
hL +

ω̃L,E
2πTL

)
, (5.1.184)

with the Euclidean frequency

ω̃L,E = ωL,E − iqLµL, ωL,E = iωL . (5.1.185)

The absorption cross section can be read from the retarded Green’s function

σ ∼ ImGR ∝ sinh

(
ω̃L
2TL

) ∣∣∣∣Γ(hL + i
ω̃L

2πTL
)

∣∣∣∣2 , (5.1.186)

which agrees with the finite temperature absorption cross section for a 2D chiral CFT

σ ∼ T 2hL−1
L sinh

(
ω̃L
2TL

) ∣∣∣∣Γ(hL + i
ω̃L

2πTL
)

∣∣∣∣2 . (5.1.187)

Unlike the absorption cross section in the non extremal case, we have only a copy of CFT

represented in the last result. The reason is, as it appears also in the computing the central

charge for extremal black holes, one of SL(2,R) symmetry breaks when the system in extreme

case.

5.2 Deformed Hidden Conformal Symmetry for Kerr-

Newman Black Holes

5.2.1 Einstein-Maxwell Theory

We discussed the vacuum Einstein gravitational system in section 2.1. In such system, a mass

curves the spacetime where the spacetime outside of the mass is literally empty, i.e. not even

electromagnetic radiations exist. Nevertheless, we know that the gravitational interaction

is not the only long range interaction in the universe. Since our discussion is still classical,

the interactions that we need to consider are the long range type, i.e. the gravitational

and electromagnetic interactions. Taking into account the electromagnetism in the Einstein
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gravitational theory framework can be done by adding a term in the Einstein-Hilbert action

(2.1.33) which represents the electromagnetic contribution, which can be written as

SEM =
1

16π

∫
d4x
√
−g
(
R− 1

4
F 2

)
. (5.2.188)

The superscript “EM” in action above stands for Einstein-Maxwell, not to be confused with

Electro-Magnetic. A theory that is described by (5.2.188) is called the Einstein-Maxwell

theory.

We observe the presence of F 2 term in (5.2.188),

F 2 = FµνF
µν = gµαgνβFµνFαβ , (5.2.189)

that represents the contribution of the electric field ~E and magnetic field ~B in the theory,

Fµν =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

 . (5.2.190)

In terms of the gauge fields Aµ, the field strength tensor Fµν in a curved spacetime is given

by

Fµν = ∇µAν −∇νAµ . (5.2.191)

However, since Christoffel symbol of the second kind Γσµν contained in the covariant deriva-

tive ∇µ,

∇µAν = ∂µAν − ΓσµνAσ , (5.2.192)

is symmetric in its lower indices permutation, the reading of the field strength tensor Fµν in

a curved spacetime would be just like the one in the flat spacetime,

Fµν = ∂µAν − ∂νAµ. (5.2.193)

The field strength tensor Fµν is invariant under the gauge transformation

A′µ = Aµ + ∂µΛ , (5.2.194)

where scalar function Λ is called the gauge parameter.
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In the form language, one can reformulate the Maxwell theory in such a more elegant

way. The gauge fields can be expressed as a 1-form,

A = Aµdx
µ . (5.2.195)

Accordingly, the gauge transformation (5.2.194) can be rewritten as

A′ = A + dΛ , (5.2.196)

and the corresponding field strength tensor Fµν is replaced by a 2-form F which is defined

by

F = dA . (5.2.197)

Clearly the last formula reminds us a relation in the form language where one can obtain a

2-form by performing an exterior derivative “d” to a 1-form. Furthermore, by using the form

language, the action for Maxwell fields in curved spacetime can be read as

SM =
1

2

∫
F ∧ ∗F . (5.2.198)

As one can see from the action (5.2.188), there are two kinds of fields in the Einstein-

Maxwell theory, i.e. the graviton gµν and the gauge field Aµ. Performing the variations of

the Einstein-Maxwell action with respect to each of these fields yield a set of equations of

motion which rule the dynamics of gµν and Aµ. Using the identities,

δR = Rµνδg
µν and δg = −ggµνδgµν , (5.2.199)

the variation of Einstein-Maxwell action (5.2.188) with respect to gµν can be written as

δSEM
δgµν

=
1

16π

∫
d4x

{(
δ
√
−g

δgµν

)(
R− 1

4
F 2

)
+
√
−g

δ
(
R− 1

4
gµαgνβFµνFαβ

)
δgµν

}

=
1

16π

∫
d4x

{
−1

2

√
−ggµν

(
R− 1

4
F 2

)
+
√
−g
(
Rµν −

1

2
FµαF

α
ν

)}
.(5.2.200)

The principle of least action requires that the integrand in the last formula vanishes, hence

we have an equation

Rµν −
1

2
gµνR =

1

2
Tµν (5.2.201)

170



where the energy momentum tensor Tµν is given by

Tµν = FµαF
α
ν −

1

4
gµνF

2 . (5.2.202)

The nonzero of right hand side in equation (5.2.201) signals the non vacuum property of the

spacetime in Einstein-Maxwell theory. The energy momentum tensor Tµν does not appear in

the vacuum Einstein gravitational system.

The variation of the Einstein-Maxwell action (5.2.188) with respect to the gauge field Aµ

gives another equation of motion in the theory. Since the gauge field appears in the action in

its first order derivative, it would more convenient to perform the Euler-Lagrange equation

in deriving the equation of motion for Aµ. The associated Lagrangian density is

L =

√
−g

16π

(
R− 1

4
F 2

)
. (5.2.203)

It follows from the Lagrangian density (5.2.203) that

∂L
∂Aµ

= 0 . (5.2.204)

Therefore, the Euler-Lagrange equation with the Lagrangian density (5.2.203) becomes

∇µ
∂L

∂ (∇µAν)
= 0 . (5.2.205)

Using the equation (5.2.191), from (5.2.205) one can show that

∇µ

(√
−gF µν

)
= 0 (5.2.206)

which is known as the free Maxwell equation in the curved spacetime.

At this point we have obtained two equations, i.e. (5.2.201) and (5.2.206), which describe

the behavior of graviton and gauge field in Einstein-Maxwell system. In subsection 2.2.1 we

have encountered a quite tedious derivation to rediscover the Kerr solution. Indeed, we will

face some more complexities in deriving the tensor metric together with the corresponding

gauge fields which obey the equations (5.2.201) and (5.2.206). Therefore, we just write down

the solution, which was first found by Ezra Newman [91, 92]. The solution for gµν in the

Einstein-Maxwell theory is

ds2 = −∆KN − a2 sin2 θ

%

[
dt+

(2Mr−Q2)a sin2 θ

∆KN − a2 sin2 θ
dφ

]2

+%
dr2

∆KN

+%dθ2 +
%∆KN sin2 θ

∆KN − a2 sin2 θ
dφ2 ,

(5.2.207)
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where

% = r2 + a2 cos2 θ , (5.2.208)

∆KN = r2 − 2Mr + a2 +Q2 . (5.2.209)

The metric (5.2.207) is known as the Kerr-Newman solution, which describes the spacetime

outside of an electrically charged rotating massive object. The gauge field associated to the

solution (5.2.207) is

A = −Qr
%

(
dt− a sin2 θdφ

)
. (5.2.210)

In the limit of a = 0, the Kerr-Newman metric (5.2.207) reduces to the Reissner-

Nordstrom solution,

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (5.2.211)

which describes the spacetime outside of a static and electrically charged massive object.

The associated gauge field to the Reissner-Nordstrom solution is

A = −Qr
%
dt , (5.2.212)

which is the a→ 0 limit of (5.2.210). Furthermore, taking Q = 0 from the equation (5.2.211),

we recover the Schwarzschild spacetime (2.1.50). It is clear that in the limit of Q = 0, the

gauge field Aµ does not present.

In the Einstein-Maxwell theory, we have seen some solutions which are connected each

other, i.e. the Kerr-Newman, Reissner-Nordstrom , and Schwarzschild solutions, and all of

them may describe black holes. It shows the existence of a family of black holes in the

Einstein-Maxwell theory, which is tabulated in the table 5.3.

Table 5.3: Black holes families in Einstein-Maxwell theory

J = 0 J 6= 0

Q = 0 Schwarzschild Kerr

Q 6= 0 Reissner-Nordstrom Kerr-Newman
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5.2.2 The hidden conformal symmetries for Kerr-Newman black

holes

The inner and outer horizons, r− and r+ respectively, can be expressed as

r± = M ±
√
M2 − a2 −Q2 . (5.2.213)

For the extremal Kerr-Newman black holes, M2 = a2 +Q2 which provides r+ = r− = M .

The Bekenstein-Hawking entropy, Hawking temperature, angular velocity and the electric

potential at the horizon of the black hole (5.2.207) can be read as

SBH = π(r2
+ + a2) , (5.2.214)

TH =
r+ − r−

4π(r2
+ + a2)

, (5.2.215)

ΩH =
a

r2
+ + a2

, (5.2.216)

ΦH =
Qr+

r2
+ + a2

, (5.2.217)

respectively.

We consider a massless charged test scalar field in the background of the Kerr-Newman

black hole. The minimally coupled equation of motion for the scalar field is

(∇α − ieAα)(∇α − ieAα)Φ = 0 , (5.2.218)

where e is the electric charge of scalar field. There are two Killing vectors ∂t and ∂φ for the

Kerr-Newman black holes (5.2.207). We separate the coordinates in the solutions to equation

(5.2.218) as

Φ(t, r, θ, φ) = e−iωt+imφR(r)S(θ) . (5.2.219)

Using (5.2.219) in equation (5.2.218) leads to two differential equations for angular function

S(θ) and the radial function R(r),

1

sin θ
∂θ(sin θ ∂θS(θ))−

[
a2ω2 sin2 θ +

m2

sin2 θ
−Kl

]
S(θ) = 0 , (5.2.220)

∂r(∆KN∂rR(r)) +

[
[(r2 + a2)ω − eQr −ma]2

∆KN

+ 2maω −Kl

]
R(r) = 0 , (5.2.221)
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where Kl is the separation constant. Furthermore, the radial equation (5.2.221) can be

rewritten as

∂r(∆KN∂rR(r))+

[[
(r2

++a2)ω − am−Qr+q
]2

(r − r+)(r+ − r−)
−
[
(r2
−+a2)ω − am−Qr−q

]2
(r − r−)(r+ − r−)

]
R(r)

+f(r)R(r) = KlR(r) , (5.2.222)

where f(r) = ω2r2 + 2(ωM − eQ)ωr + ω2a2 − ω2Q2 + (2ωM − eQ)2. To simplify the radial

equation (5.2.222) and find the hidden conformal symmetry, we consider the low frequency

scalar field ωM � 1 where the non-extremal condition guarantees ωa � 1 and ωQ � 1.

Moreover, we assume small electric charge for the scalar field eQ � 1. These conditions in

the near region geometry ωr � 1, lead to neglect the function f(r) in the radial equation

(5.2.222). So, we find

∂r(∆KN∂rR(r))+

[
[(2Mr+ −Q2)ω − am−Qr+e]

2

(r − r+)(r+ − r−)
− [(2Mr− −Q2)ω − am−Qr−e]2

(r − r−)(r+ − r−)

]
R(r)

= l(l + 1)R(r) , (5.2.223)

where we set the separation constant Kl = l(l + 1).

Considering a charged probe in the background of a rotating charge black hole in Kerr/CFT

correspondence leads to new features that are quite distinct for rotating charged black holes

[34, 90] . As the first example, there are two different individual CFT2 that are holographi-

cally dual to the Kerr-Newman black hole. The twofold hidden conformal symmetries are in

J picture where the charge of probe is neglected and in Q picture where the probe co-rotates

with the horizon. In J picture the electric charge of probe is set to be zero while in Q picture

the scalar wave expansion is restricted to be in the m = 0 mode. Each of the two pictures

provides the hidden conformal symmetry and so establishes the correspondence to the CFT2

[34].

Therefore, one may expect the twofold hidden conformal symmetries must exist for other

four-dimensional rotating charged black holes. However, the Kerr-Sen black hole which is a

rotating charged black hole in four-dimensions doesn’t possess the twofold hidden conformal

symmetries. More specifically, the four-dimensional Kerr-Sen black hole as the solutions to

the low energy limit of heterotic string theory don’t have the hidden conformal symmetry
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in a well defined Q picture [90]. One may consider the absence of Q picture for the Kerr-

Sen black hole as a counterexample to the “microscopic hair conjecture” that only exists in

Einstein-Maxwell theory [34].

In revealing the twofold picture of hidden conformal symmetries for the Kerr-Newman

black holes, the scalar wave function can be expanded as

Φ = e−ωt+imφ+ieχR(r)S(θ) , (5.2.224)

where the internal dimension χ has the same U(1) symmetry as the coordinate φ. The ex-

istence of two coordinates with U(1) symmetry leads the twofold hidden symmetries for the

Kerr-Newman black holes. We note that the twofold hidden conformal symmetries of the

Kerr-Newman suggest the unique central charge in each picture. In J picture, the central

charge depends only on the angular momentum J while in Q picture, the central charge

depends only on the black holes charge Q. In both pictures, all the results for microscopic

entropy, absorption cross section, and real time correlators are in favor of Kerr/CFT corre-

spondence. In the next following sections, we confirm that the deformed hidden conformal

symmetry for Kerr-Newman black hole exists in both J and Q pictures, as well as finally can

be collected in a single picture namely general picture [23].

5.2.3 Deformed hidden conformal symmetry in J picture

The radial equation (5.2.223) has two poles on outer horizon r+ and inner horizon r− where

the Kerr-Newman metric function ∆KN (5.2.209) vanishes. For the Kerr-Newman black holes

far from the extremality, we note that r is far enough from r−. As a result of this, we can

drop the linear and quadratic terms in frequency [90, 36]. These terms are coming from the

expansion near the inner horizon. So we deform the radial equation (5.2.223) near the inner

horizon r− by deformation parameter κ as[
[(2Mr+ −Q2)ω − am−Qr+e]

2

(r − r+)(r+ − r−)
− [(2Mκr+ −Q2)ω − am−Qκr+e]

2

(r − r−)(r+ − r−)

]
R(r)

= −∂r(∆KN∂rR(r)) + l(l + 1)R(r) . (5.2.225)

where κ satisfies

(2M2κ−Q2)amω � 2
√
M2 − a2 −Q2(r − r−) (5.2.226)
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as well as

(2M2κ−Q2)2ω2 � 2
√
M2 − a2 −Q2(r − r−) . (5.2.227)

These two constraints on κ guarantee that equation (5.2.225) is still in low frequency

limit and so one can neglect the linear and quadratic terms in frequency that come from the

expansion near the inner horizon. Moreover, the constraints do not change drastically the

near region geometry of the black hole. We note that physical justification for the deformation

in the radial equation near the inner horizon is related to the fact that the solutions to

the exact radial equation (5.2.222) (before going to the near region and considering the

low frequency limit and small electric charge for the scalar field) are singular at the inner

horizon. However, it is shown that the back-reaction of the field on the internal geometry of

black hole replaces the inner Cauchy horizon by a null curvature spacelike singularity that

covers the inner horizon of the black hole [93, 94, 95]. As a result, the region behind the null

spacelike singularity that includes the inner horizon is not the physical region of interest in the

solutions of the radial equation (5.2.223). In other words, one can consider the deformation

of the radial equation near the inner horizon only, given by (5.2.225), as the radial equation

describes the dynamics of the test field outside of the null spacelike singularity. The other

interesting feature of deformation of the inner horizon is that it doesn’t change the location

of other singularities of the radial equation (5.2.223) that are located on the outer horizon

and far infinity.

Let us consider first the deformed equation (5.2.225) in the J picture that can be written

as

∂r(∆KN∂rR(r))+

[
[(2Mr+ −Q2)ω − am]

2

(r − r+)(r+ − r−)
− [(2Mκr+ −Q2)ω − am]

2

(r − r−)(r+ − r−)

]
R(r) = l(l+1)R(r) .

(5.2.228)

We consider the following vector fields

L± = e±ρt±σφ
(
∓
√

∆KN∂r +
C1 − γr√

∆KN

∂t +
C2 − δr√

∆KN

∂φ

)
, (5.2.229)

L0 = γ∂t + δ∂φ , (5.2.230)

that make the sl(2,R) algebra given by [L±, L0] = ±L± and [L+, L−] = 2L0 [90, 36]. Further-

more, we require the squared Casimir of SL(2,R) represents the deformed radial equation
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(5.2.228). Hence we find

L2
0 −

1

2
(L+L− + L−L+)

= ∂r (∆KN∂r) +
((2Mr+ −Q2)ω − am)

2

(r − r+) (r+ − r−)
− ((2Mκr+ −Q2)ω − am)

2

(r − r−) (r+ − r−)
. (5.2.231)

We notice that the following automorphism for the generators L± and L0,

L± → −L± , L0 → L0 , (5.2.232)

does not change the sl(2,R) algebra and so the squared Casimir is invariant.

We get the following two equations for the coefficients of ∂r and ∂2
r in (5.2.231)

ρC1 + σC2 +M = 0 , (5.2.233)

and

1 + ργ + σδ = 0 . (5.2.234)

In addition, the coefficients of ∂2
φ and ∂2

t in (5.2.231) give two other equations as

−δ2 (r − r+) (r − r−) + C2
2 − 2C2δr + δ2r2 = a2 , (5.2.235)

and

C2
1 − γ2 (r − r+) (r − r−)− 2C1γr + γ2r2 =

(2Mr+ −Q2)2

(r+ − r−)

(
(r − r−)− κ2 (r − r+)

)
−

− 4MQ2r+

(r+ − r−)
(r − r− − κ (r − r+)) +Q4 . (5.2.236)

Finally, we get the following equation which is the coefficient of ∂φ∂t in (5.2.231)

−C2C1 + δrC1 − δr2γ + γ (r − r+) (r − r−) δ + C2γr =

= − 2Mr+a

(r+ − r−)
((r − r−)− κ (r − r+)) + 2aQ2 . (5.2.237)

From equation (5.2.235), we find two classes of solutions,

δJa =
2a

r+ − r−
, CJ

2a =
a(r+ + r−)

r+ − r−
, (5.2.238)

δJb = 0 , CJ
2b = a . (5.2.239)
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Substituting (5.2.238) and (5.2.239) into equations (5.2.236) and (5.2.237), we find C1 and γ

that are given by

γJa =
2Mr+ (κ+ 1)− 2Q2

r+ − r−
, CJ

1a =
2Mr+ (κr+ + r−)

r+ − r−
−Q2

(
r+ + r−
r+ − r−

)
,(5.2.240)

γJb =
2Mr+ (κ− 1)

r+ − r−
, CJ

1b =
2Mr+ (κr+ − r−)

r+ − r−
−Q2 . (5.2.241)

Solving (5.2.233) and (5.2.234) for σ and ρ gives all the conformal generators (5.2.229) and

(5.2.230) where all the constants are given in table 5.4.

Table 5.4: Solutions for deformed conformal generators in J picture

branch a branch b

δ 2a
r+−r− 0

γ 2Mr+(κ+1)−2Q2

r+−r−
2Mr+(κ−1)
r+−r−

C1
2Mr+(κr++r−)

r+−r− −Q2
(
r++r−
r+−r−

)
2Mr+(κr+−r−)

r+−r− −Q2

C2
a(r++r−)
r+−r− a

ρ 0 − r+−r−
2(κ−1)Mr+

σ (r−−r+)
2a

2Mr+(κr+−r−−M(κ−1))−Q2(r+−r−)
2aMr+(κ−1)

We note that multiplying all the coefficients in table 5.4 with −1 also are solutions to equa-

tions (5.2.233), (5.2.234), (5.2.235), (5.2.236) and (5.2.237). However, these solutions corre-

spond to the invariance of the squared Casmir L2
0− 1

2
(L+L−+L−L+) by renaming the vector

fields as

L0 → −L0 , L± → −L∓ . (5.2.242)

We also note that in the limit of Q = 0, the vector fields in the J picture reduce correctly to

the generators of deformed conformal symmetry for the Kerr black holes [36].

Furnished by the explicit expressions for the deformed conformal generators in branch a

La± = e∓2πTRφ
[
∓
√

∆KN∂r − 1
2πTH

r−M√
∆KN

(ΩH∂φ + ∂t) + 1
2πΩH(TL+TR)

r−r+√
∆KN

∂t

]
,

La0 =
1

2πTH
(ΩH∂φ + ∂t)−

1

2πΩH(TL + TR)
∂t , (5.2.243)

and branch b

Lb± = e±2πΩ(TL+TR)t∓2πTLφ
[
∓
√

∆KN∂r + 2Mr+−Q2
√

∆KN
(Ω∂φ + ∂t) + 1

2πΩH(TL+TR)
r−r+√
∆KN

∂t

]
,

Lb0 = − 1

2πΩH(TL + TR)
∂t , (5.2.244)
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where TH and ΩH are defined in (5.2.215) and (5.2.216) and the left and right moving CFT

temperatures are given by

TR =
r+ − r−

4πa
, TL =

TR(1 + κ)

1− κ
− Q2TR
Mr+(1− κ)

. (5.2.245)

One can verify that taking the left and right central charges

cR = cL =
6aMr+(1− κ)√
M2 − a2 −Q2

, (5.2.246)

leads to the exact Bekenstein-Hawking entropy for Kerr-Newman black holes (5.2.214), if we

use the Cardy formula

SCardy =
π2

3
(cRTR + cLTL) . (5.2.247)

We notice that for the special case of deformation parameter given by κ = r+/r−, we find

the generators of hidden conformal symmetry for the Kerr-Newman black holes [34]. In fact,

for κ = r+/r−, the deformed generators La± and La0 (up to automorphisms (5.2.232)) reduce

to conformal generators H± and H0 in [34] according to

Lak = −iHk , (5.2.248)

where k = +,−, 0. The generators in branch b for κ = r+/r− reduce to the other copy of

conformal generators H̄k in [34] by the mapping

Lbk = iH̄k . (5.2.249)

The left and right temperatures (5.2.245) as well as central charge (5.2.246) reduce to the

corresponding results in [34] after setting κ = r−/r+. An interesting open question is to

derive the deformed central charges by using either ASG or stretched horizon techniques.

5.2.4 Deformed hidden conformal symmetry in Q picture

The deformed radial equation (5.2.225) in the Q picture is

∂r(∆KN∂rR(r)) +

[
[(2Mr+ −Q2)ω −Qr+e]

2

(r − r+)(r+ − r−)
− [(2Mκr+ −Q2)ω −Qκr+e]

2

(r − r−)(r+ − r−)

]
R(r)

= l(l + 1)R(r) . (5.2.250)
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Matching the squared Casimir of sl(2,R) algebra to Laplacian in equation (5.2.250) gives

the same equations (5.2.233) and (5.2.234) for the coefficients of ∂r and ∂2
r in J picture.

However, the other equations are different and their solutions again provide two branches.

The solutions are represented in table 5.5.

Table 5.5: Solutions for conformal generators in Q picture

branch a branch b

δ Qr+(1+κ)
r+−r−

Qr+(κ−1)
r+−r−

γ 2Mr+(κ+1)−2Q2

r+−r−
2Mr+(κ−1)
r+−r−

C1
2Mr+(κr++r−)

r+−r− −Q2
(
r++r−
r+−r−

)
2Mr+(κr+−r−)

r+−r− −Q2

C2
Qr+(κr++r−)

r+−r−
Qr+(κr+−r−)

r+−r−

ρ r+−r−
2Q2

M(κ−1)−κr++r−
Q2(κ−1)

σ −M(r+−r−)
Q3

(r+−r−)(Mr+(κ+1)−Q2)
r+(κ−1)Q3

In fact, we note that multiplying all the solutions in table 5.5 by −1 also satisfy the full set

of equations. It is similar to what happens in the J picture case, these solutions correspond

to invariance of the squared Casimir under renaming (5.2.242). Considering the right and

left temperatures to be proportional to σ in branches a and b as

TR =
M(r+ − r−)

2πQ3
, TL = TR

(1 + κ)

(1− κ)
− TRQ

2

Mr+(1− κ)
, (5.2.251)

one can produce the correct Bekenstein-Hawking entropy of the Kerr-Newman black holes

using the Cardy formula by the central charges

cL = cR =
3Q3r+(1− κ)√
M2 − a2 −Q2

. (5.2.252)

We note that the dependence of TL in (5.2.251) to TR has exactly the same form as the

left temperature in J picture (5.2.245). We notice that for special value of κ = r−/r+, the

mappings (5.2.248) and (5.2.249) show that deformed conformal generators correctly reduce

to conformal generators of the Kerr-Newman black hole. The temperatures (5.2.251) and

the central charges (5.2.252) reduce to the left and right temperatures and the central charge

of CFT dual to Kerr-Newman black hole [34]. We note that in Q picture in which the

coefficients of conformal generators are given in table 5.5, the deformed hidden conformal
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symmetry generators are (5.2.229) and (5.2.230), replacing the coordinate φ with the internal

coordinate χ.

5.2.5 Deformed hidden conformal symmetry in general picture

As it was mentioned in introduction, the Kerr-Newman black holes have two conformal

pictures as φ′ and χ′ pictures. These pictures correspond respectively to two separated

U(1) symmetries with respect to coordinates φ and χ. The third conformal picture (general

picture) can be obtained by using the modular group SL(2,Z) of the torus (φ, χ). In this

picture, the SL(2,Z) transformation for the torus is given by [24, 23] φ′

χ′

 =

 α β

η τ

 φ

χ

 , (5.2.253)

where

 α β

η τ

 is any SL(2,Z) group element. Under transformation (5.2.253), the phase

factor of the charged scalar field (5.2.219) with the electric charge e is invariant; eimφ+ieχ =

eim
′φ′+ie′χ′ which yields

m = αm′ + ηe′ , e = βm′ + τe′ . (5.2.254)

In φ′ picture, we set e′ = 0, hence the deformed radial equation is

∂r (∆KN∂rR (r))

+

(
((2Mr+ −Q2)ω − (Qr+β + aα)m′)

2

(r − r+) (r+ − r−)
− ((2Mκr+ −Q2)ω − (Qκr+β + aα)m′)

2

(r − r−) (r+ − r−)

)
R (r)

= l (l + 1)R (r) , (5.2.255)

Similar to J and Q pictures, we match the squared Casimir of SL(2,R) to the left hand side

of equation (5.2.255) and solve for the coefficients of the vector fields (5.2.229) and (5.2.230).

We find there are two classes of solutions for δ, γ, C1, and C2 that are given by

δGa =
a1 + a2

r+ − r−
, CG

2a =
a1r− + a2r+

r+ − r−
, (5.2.256)

δGb =
a2 − a1

r+ − r−
, CG

2b =
a2r+ − a1r−
r+ − r−

, (5.2.257)
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γGa =
2Mr+ (κ+ 1)− 2Q2

r+ − r−
, CG

1a =
2Mr+ (κr+ + r−)

r+ − r−
−Q2

(
r+ + r−
r+ − r−

)
,(5.2.258)

γGb =
2Mr+ (κ− 1)

r+ − r−
, CG

1b =
2Mr+ (κr+ − r−)

r+ − r−
−Q2 , (5.2.259)

where

a1 = Qr+β + aα , a2 = Qκr+β + aα . (5.2.260)

Table 5.6 shows the full set of solutions for branch a and b.

Table 5.6: Solutions for conformal generators in general picture

branch a branch b

δ 2αa+(κ+1)βQr+
r+−r−

(κ−1)βQr+
r+−r−

γ 2Mr+(κ+1)−2Q2

r+−r−
2Mr+(κ−1)
r+−r−

C1
2Mr+(κr++r−)

r+−r− −Q2
(
r++r−
r+−r−

)
2Mr+(κr+−r−)

r+−r− −Q2

C2
Qβr+(κr++r−)+aα(r++r−)

r+−r−
Qβr+(κr+−r−)+aα(r+−r−)

r+−r−

ρ Qβ(r+−r−)
2(2Maα+Q3β)

−αa(r+−r−)−Qβr+(M(κ−1)−κr++r−)
(κ−1)r+(2Maα+Q3β)

σ − M(r+−r−)
(2Maα+Q3β)

(r+−r−)((κ+1)Mr+−Q2)
(κ−1)r+(2Maα+Q3β)

In this picture, the left and right CFT temperatures are given by

TR =
M(r+ − r−)

2π(2Maα +Q3β)
, TL = TR

(1 + κ)

(1− κ)
− TRQ

2

Mr+(1− κ)
. (5.2.261)

The agreement between microscopic CFT entropy and the Hawking-Bekenstein entropy re-

quires that the central charges are

cL = cR =
3(1− κ)r+(2Maα +Qβ)√

M2 − a2 −Q2
. (5.2.262)

We note that the right temperature of generalized CFT is independent of deformation param-

eter κ. However, the left temperature non-trivially depends on the deformation parameter

κ. Moreover, we should note that the deformed hidden conformal symmetry generators in

general φ′ picture are given by (5.2.229) and (5.2.230), replacing the coordinate φ by φ′. The

solutions for coefficients (tabulated in table 5.6) reduce to the corresponding coefficients in

table 5.4 in J picture where we set α = 1, β = 0, and reduce to the coefficients in table 5.5

in Q picture where α = 0, β = 1. As a result the generators in the φ′ picture reduce to the

corresponding generators in J and Q pictures respectively.
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5.2.6 Scattering of charged scalars in the Kerr-Newman back-

ground based on deformed radial equation

In this section, we consider the absorption cross section of the scalar fields in the background

of Kerr-Newman black holes in different pictures.

5.2.7 J picture

We rewrite the deformed equation in J picture (5.2.225) as

∂r (∆KN∂rR (r)) +

(
(gJ+)2 (r+ − r−)

(r − r+)
−

(gJ−)2 (r+ − r−)

(r − r−)
−Kl

)
R (r) = 0 (5.2.263)

where

gJ+ =
(2Mr+ −Q2)ω − am

r+ − r−
, (5.2.264)

gJ− =
(2Mκr+ −Q2)ω − am

r+ − r−
. (5.2.265)

We define the new coordinate [67]

p =
r − r+

r − r−
, (5.2.266)

and so the deformed equation (5.2.263) becomes

p (1− p) ∂2
pR (p) + (1− p) ∂pR (p) +

(
gJ+
p
− gJ− −

Kl

1− p

)
R (p) = 0 , (5.2.267)

where we used the following identity

∆KN∂r = (r+ − r−) p∂p . (5.2.268)

The in-going solution for the equation (5.2.267) is

Rin (r) = Const.p−ig
J
+ (p− 1)−l 2F1

(
−l − i

(
gJ+ − gJ−

)
,−l − i

(
gJ+ + gJ−

)
; 1− 2igJ+; p

)
,

(5.2.269)

where 2F1 is the hypergeometric function. The in-going solution (5.2.269) on the outer

boundary of the matching region where r >> M behaves as,

Rin ∼ Arl , (5.2.270)
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where A = 2F1

(
−l − i

(
gJ+ − gJ−

)
,−l − i

(
gJ+ + gJ−

)
; 1− 2igJ+; 1

)
. We should mention in find-

ing the in-going solution, we consider the low frequency condition, ω << 1/M in near region,

r << 1/ω. Using the Gauss’ theorem for hypergeometric functions, we can rewrite the factor

A in equation (5.1.99) as

A =
Γ
(
1− 2igJ+

)
Γ (2l + 1)

Γ
(
l + 1− 2i

(
(Mr+(1+κ)−Q2)ω−am

r+−r−

))
Γ
(
l + 1− 2i

(
Mr+(1−κ)ω
r+−r−

)) . (5.2.271)

Hence, we find the absorption cross section, given by

Pabs ∼ |A|−2 = sinh
(
2πgJ+

) |Γ (l + 1− iB1)|2 |Γ (l + 1− iB2)|2

2πgJ+ (Γ (2l + 1))2 , (5.2.272)

where

B1 = 2

(
(Mr+ (1 + κ)−Q2)ω − am

r+ − r−

)
, (5.2.273)

B2 = 2

(
Mr+ (1− κ)ω

r+ − r−

)
. (5.2.274)

In supporting the Kerr/CFT duality in this scattering process, we need to associate the

absorption cross section (5.2.272) with the results from 2D CFT. In other words, we want

to match the absorption cross section (5.2.272) computed from gravitational side to the

corresponding cross section in the dual 2D CFT in J picture,

Pabs ∼ T JL
2hL−1

T JR
2hR−1

sinh

(
ωJL

2T JL
+

ωJR
2T JR

) ∣∣∣∣Γ(hL + i
ωJL

2πT JL

)∣∣∣∣2 ∣∣∣∣Γ(hR + i
ωJR

2πT JR

)∣∣∣∣2
(5.2.275)

which is known as the finite temperature absorption cross section in a 2D CFT [67]. To

match and find the possible agreement between (5.2.275) and (5.2.272), we consider the first

law of thermodynamics for the charged rotating black holes

THδSBH = δM − ΩHδJ − ΦHδQ . (5.2.276)

where TH ,ΩH and ΦH are given by (5.2.215), (5.2.216) and (5.2.217). For a 2D CFT with

the Cardy entropy [96]

SCFT = 2π

(√
cLEL

6
+

√
cRER

6

)
, (5.2.277)
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the variation of entropy can be read as

δSCFT =
δEL
TL

+
δER
TR

. (5.2.278)

Matching the variations of entropy (5.2.276) and CFT entropy (5.2.278) gives

δM − ΩHδJ − ΦHδQ

TH
=
δEJ

L

T JL
+
δEJ

R

T JR
. (5.2.279)

In the last equation and also in (5.2.275), the superscripts J show the corresponding quantities

in the J picture. We can identify δM as ω, δJ as m, δQ as e, δEJ
R,L = ωJR,L in (5.2.279).

Therefore a set of left and right frequencies that satisfy the equation (5.2.279) are

ωJL =
ω (Mr+ (κ+ 1)−Q2)

a
, ωJR = ωJL −m. (5.2.280)

For κ = r−/r+, these left and right frequencies definitely reduce to the left and right frequen-

cies in J picture for the Kerr-Newman black hole [34]. The fact which supports the existence

of dual 2D CFT for the deformed Kerr-Newman/CFT correspondence is the agreement be-

tween (5.2.275) with (5.2.272) if the ωJL,R are as in (5.2.280). In the formula (5.2.275), the left

and right conformal weights hL,R are equal to l + 1. We notice that these conformal weights

are the same in the other Q and general pictures that we discuss in next two subsections.

5.2.8 Q picture

In Q picture, the charged test particle is co-rotating with the black hole horizon, thus we can

turn off the rotational parameter a. The absorption cross section and the deformed radial

equation are given by (5.2.272) and (5.2.263) with replacing gJ to gQ where

gQ+ =
(2Mr+ −Q2)ω −Qr+e

r+ − r−
, (5.2.281)

gQ− =
(2Mκr+ −Q2)ω −Qκr+e

r+ − r−
. (5.2.282)

Thus we find the corresponding absorption cross section, given by

Pabs ∼ |A|−2 = sinh
(
2πgJ+

) ∣∣∣Γ(l + 1− iBQ
1

)∣∣∣2 ∣∣∣Γ(l + 1− iBQ
2

)∣∣∣2
2πgJ+ (Γ (2l + 1))2 , (5.2.283)
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where

BQ
1 =

(
(2Mr+ (1 + κ)− 2Q2)ω −Q(1 + κ)r+e

r+ − r−

)
, (5.2.284)

BQ
2 =

(
2Mr+ (1− κ)ω −Q(1− κ)r+e

r+ − r−

)
. (5.2.285)

In this picture, to match and find the possible agreement between the cross section (5.2.283)

and the finite temperature absorption cross section of CFT, we again consider the first law

of thermodynamics for the charged rotating black holes. The matching of microscopic and

macroscopic entropy variations in Q picture now can be read as

δM − ΩHδJ − ΦHδQ

TH
=
δEQ

L

TQL
+
δEQ

R

TQR
. (5.2.286)

We identify δEL,R with the left and right frequencies ω̃QL,R that are related to three quantities;

the left and right frequencies ωQL,R, charges qL,R, and chemical potentials µL,R where

ωQR = ωQL =
2Mω

Q3

(
Mr+ (1 + κ)−Q2

)
, (5.2.287)

µR = µL + 1 =
Mr+ (1 + κ)

Q2
. (5.2.288)

The frequencies ω̃L,R are given by

ω̃QL,R = ωQL,R − qL,RµL,R , (5.2.289)

where the charges qL,R = e. Substituting equations (5.2.287), (5.2.288) and (5.2.289) into

the 2D CFT absorption cross section

Pabs ∼ TQL
2hL−1

TQR
2hR−1

sinh

(
ω̃QL
2TL

+
ω̃QR

2TQR

)∣∣∣∣∣Γ
(
hL + i

ω̃QL
2πTQL

)∣∣∣∣∣
2 ∣∣∣∣∣Γ

(
hR + i

ω̃QR
2πTQR

)∣∣∣∣∣
2

,

(5.2.290)

shows that the CFT2 cross section agrees with the absorption cross section which is derived

from gravitational point of view in Q picture (5.2.283). Also as it is expected, when κ =

r−/r+, the left and right frequencies for the deformed CFT2 as well as the chemical potential

reduce to the corresponding quantities in [34].
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5.2.9 General picture

The SL(2,Z) transformation between (φ, χ) and (φ′, χ′) yields the relations (5.2.254). The

φ′ picture under consideration is given by setting e′ = 0. The deformed radial equation

(5.2.255) in φ′ picture can be rewritten as,

∂r (∆KN∂rR (r)) +

(
(gG+)2 (r+ − r−)

(r − r+)
−

(gG−)2 (r+ − r−)

(r − r−)
−Kl

)
R (r) = 0 , (5.2.291)

where gG+ and gG− are

gG+ =
(2Mr+ −Q2)ω − (Qr+β + aα)m′

r+ − r−
, (5.2.292)

gG− =
(2Mκr+ −Q2)ω − (Qκr+β + aα)m′

r+ − r−
. (5.2.293)

The absorption cross section is given by

Pabs ∼ |A|−2 = sinh
(
2πgG+

) ∣∣Γ (l + 1− iBG
1

)∣∣2 ∣∣Γ (l + 1− iBG
2

)∣∣2
2πgG+ (Γ (2l + 1))2 , (5.2.294)

where

BG
1 =

(
(2Mr+ (1 + κ)− 2Q2)ω − (Q(1 + κ)r+β + 2aα)m′

r+ − r−

)
, (5.2.295)

BG
2 =

(
2Mr+ (1− κ)ω −Q(1− κ)r+βm

′

r+ − r−

)
. (5.2.296)

Matching the macroscopic and microscopic entropy requires that we introduce the gen-

eralized frequencies ω̃GL,R in terms of three quantities; frequencies ωGL,R, charges qGL,R, and

chemical potentials µGL,R,

ω̃GL,R = ωGL,R − qGL,RµGL,R . (5.2.297)

In (5.2.297),

ωGL,R =
2Mω (Mr+ (1 + κ)−Q2)

2αMa+ βQ3
, (5.2.298)

µGR =
M (2αa+ βQr+ (1 + κ))

2αMa+ βQ3
, µGL =

βQ (Mr+ (1 + κ)−Q2)

2αMa+ βQ3
, (5.2.299)

and qGL,R = m′. Substituting the relevant quantities in the CFT absorption cross section

Pabs ∼ TGL
2hL−1

TGR
2hR−1

sinh

(
ω̃GL
2TL

+
ω̃GR

2TGR

) ∣∣∣∣Γ(hL + i
ω̃GL

2πTGL

)∣∣∣∣2 ∣∣∣∣Γ(hR + i
ω̃GR

2πTGR

)∣∣∣∣2
(5.2.300)

shows exact agreement between the CFT absorption cross section (5.2.300) and the corre-

sponding cross section from gravitational side (5.2.294).
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5.2.10 The (deformed) hidden conformal symmetries of Kerr and

Reissner-Nordstrom

We notice that the deformed conformal generators La,bn , n = +,−, 0 in (5.2.243) and (5.2.244)

reduce to the deformed conformal generators Ln, n = +,−, 0 for the Kerr black holes when

we set Q = 0 [36]. Furthermore, setting the rotation parameter a = 0 with special value of

deformation parameter κ, we find the conformal generators of Schwarzschild black holes in

agreement with [36] and [89].

Plugging the results for C1, C2, δ, γ, ρ and σ for branch a from table 5.5 in Q picture along

with a = 0, we find the deformed hidden conformal generators for Reissner-Nordstrom black

holes as

La± = e
±
(
πQTR
M

)
t∓(2πTR)χ

(
+

r+

Q22πTR
(κr+ − r− − r (1 + κ)) ∂χ (5.2.301)

∓
√

∆RN∂r +

(
M

2πr+

(κr+ + r− − r (1 + κ)) +
Q2

4πr2
+

(2r − r+ − r−)

)
∂t

)
,

La0 =
2M

2πQ3TR

(
Mr+ (κ+ 1)−Q2

)
∂t +

Mr+ (κ+ 1)

2πQ2TR
∂χ , (5.2.302)

where ∆RN = r2 − 2Mr +Q2. The right temperature TR is given by

TR =
(r+ − r−)M

2πQ3
. (5.2.303)

Solving ∆RN = 0 gives the outer and inner Reissner-Nordstrom black holes horizons are

r+ = M +
√
M2 −Q2 and r− = M −

√
M2 −Q2 respectively. This right temperature TR

in (5.2.303) matches the right temperature in [97] after considering the unit length for the

uplifted extra dimension.

The second copy of deformed hidden conformal symmetry generators for the Reissner-

Nordstrom black hole can be obtained from the branch b generators for the Kerr-Newman

black hole in appropriate limit of a = 0. We notice that σ = −2πTL and so the deformed

hidden conformal generators for the Reissner-Nordstrom read as,

Lb± = e
±
(

(1+κ)πQTR
(1−κ)M

)
t∓(2πTL)χ

(
+

Mr+

Q22πTR
(κr+ − r− − r (κ− 1)) ∂χ (5.2.304)

∓
√

∆RN∂r +

(
M

2πr+

(κr+ − r− + r (1− κ))− Q2

4πr2
+

(r+ − r−)

)
∂t

)
,

Lb0 =
M2r+ (κ− 1)

πQ3TR
∂t +

Mr+ (κ− 1)

2πQ2TR
∂χ . (5.2.305)
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We also note that for the special value of deformation parameter κ = r−/r+, the previously

obtained generators (5.2.301), (5.2.302), (5.2.304) and (5.2.305) reduce to the hidden confor-

mal generators for the Reissner-Nordstrom black hole [97] after setting the unit length for

the uplifted extra dimension.

Nevertheless, we notice that the hidden conformal generators (5.2.301), (5.2.302), (5.2.304)

and (5.2.305) with κ = r+/r− for the Reissner-Nordstrom black holes do not simply reduce

to the conformal generators for Schwarzschild black holes [89] by setting Q = 0. In this limit,

as it is clear from table 5.5 , the coefficients ρ and σ do not have any finite values, though

the other four coefficients are well-defined. The situation is similar in reduction of hidden

conformal generators of Kerr-Sen black holes to hidden conformal generators of Gibbons-

Maeda-Garfinkle-Horowitz-Strominger black holes [90] or reduction of conformal generators

for Kerr black holes [28] to Schwarzschild black holes by setting a = 0. To overcome this

problem, as it was noticed in [90, 36], we set σ = 0 for the neutral black holes and so the

equations (5.2.233) and (5.2.234) become

ρC1 +M = 0 , 1 + ργ = 0 . (5.2.306)

We note that ρ, C1, and γ contain the free deformation parameter κ. In branch b, we choose

κ = −1 and our deformed conformal generators reduce exactly to those derived in [89] by

the mapping

Lb0 = −iH0 , Lb± = iH± . (5.2.307)
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Chapter 6

Vector Fields in Kerr/CFT

The materials in this chapter are based on our paper [112]. In this chapter, the discussions

are based on the wave equation for spin-1 objects in Kerr background given in [46] together

with their solutions by Chandrasekhar [47]. After reviewing the equations and solutions of

vector fields in Kerr spacetime, we will show the appropriate boundary action for the Maxwell

fields in this spacetime. From this boundary action, we derive the two point function for

vector fields by borrowing the AdS/CFT prescription (3.4.144). We will show that the non

gauge dependent part of the two point function computed in gravitational theory and CFT

sides agree each other, which support the Kerr/CFT correspondence proposal.

6.1 Spin-1 fields in the background of Kerr black holes

6.1.1 Construction of solutions in Newman-Penrose formalism

In this section, we briefly review the derivation of solutions to Maxwell equations in the

background of Kerr black hole [47] and fix the notation in the article 1. In Boyer-Lindquist

coordinate, the Kerr metric read as

ds2 = −∆

ρ2

(
dt− a sin2 θdφ

)2
+
ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2

(
adt−

(
r2 + a2

)
dφ
)2
, (6.1.1)

where ρ2 = r2 + a2 cos2 θ and ∆ = r2 + a2 − 2Mr. For later convenience, the corresponding

contravariant components of the metric tensor for (6.1.1) are given by

grr =
∆

ρ2
, gθθ =

1

ρ2
, gtt =

(
∆a2 sin2 θ − (r2 + a2)

2
)

∆ρ2
, (6.1.2)

1There is a slight difference on some notations in constructing the solutions to Maxwell’s equations in the
background of Kerr black hole in literature such as [98] and [47]. In this chapter, we mainly follow [47].
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gtφ =
−2Mra

∆ρ2
, gφφ =

(
∆− a2 sin2 θ

)
∆ρ2 sin2 θ

. (6.1.3)

Stationary and axisymmetric properties of the Kerr black hole suggest that the solution to

Maxwell equations in this spacetime can be written as a superposition of waves with different

frequencies ω and different periods 2mπ, m = 0, 1, 2, ... for coordinate φ. Thus, the existence

of Killing vectors ∂t and ∂φ for Kerr spacetime (6.1.1) enable us to write down the dependence

of spin-1 field solutions to t and φ coordinates as e−iωt+imφ.

In his seminal work [46], Teukolsky showed that the equations of motions for the fields

(with different spin weights) in Kerr background are separable in radial and angular direc-

tions. In Newman-Penrose (NP) formalism, the real null-vectors lµ and nµ and the complex

null-vector mµ for Kerr spacetime (6.1.1) are given by [47]

lµ = ∆−1
(
r2 + a2,∆, 0, a

)
, (6.1.4)

nµ =
1

2ρ2

(
r2 + a2,−∆, 0, a

)
, (6.1.5)

mµ =
1

ρ̄
√

2

(
ia sin θ, 0, 1,

i

sin θ

)
, (6.1.6)

in (t, r, θ, φ) coordinate system where ρ̄ = r + ia cos θ and ρ̄∗ = r − ia cos θ. Contracting the

vectors lµ, nµ and mµ by ∂µ, we get the following differential operators

l = D0 , n = − ∆

2ρ2
D†0 , (6.1.7)

m =
1

ρ̄
√

2
L†0 . (6.1.8)

We also consider the operator

m̄ =
1

ρ̄∗
√

2
L0 . (6.1.9)

The differential operators (6.1.7), (6.1.8) and (6.1.9) act on any function that its dependence

on coordinates t and φ is given by e−iωt+imφ. The operators D0, D†0, L0 and L†0 are special

cases of

Dn =
∂

∂r
+
iK

∆
+ 2n

(
r −M

∆

)
, D†n =

∂

∂r
− iK

∆
+ 2n

(
r −M

∆

)
, (6.1.10)

Ln =
∂

∂θ
+Q+ n cot θ , L†n =

∂

∂θ
−Q+ n cot θ , (6.1.11)
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where K and Q are given by

K = −
(
r2 + a2

)
ω + am , (6.1.12)

and

Q = −aω sin θ +m (sin θ)−1 , (6.1.13)

and n ∈ Z. As we notice, the operators Dn and D†n are purely radial dependent operators,

whereas Ln and L†n are purely angular dependent operators.

Contracting the field-strength tensor Fµν with the basis vectors (6.1.4) - (6.1.6) yield three

complex scalars Φ0, Φ1 and Φ2 which can be read as

Φ0 = Fµνl
µmν , (6.1.14)

Φ1 =
ρ̄∗√

2
Fµν (lµnν + m̄µmν) , (6.1.15)

and

Φ2 = 2 (ρ̄∗)2 Fµνm̄
µnν . (6.1.16)

The Maxwell’s equations in the background (6.1.1) are given by

gµν∇νFµρ = 0 , (6.1.17)

along with the Bianchi identity

∇µFνρ +∇ρFµν +∇νFρµ = 0 . (6.1.18)

Equation (6.1.18) indicates that there is no source for Maxwell fields in the gravitational back-

ground (6.1.1). Inserting all the spin coefficients and directional derivatives into Maxwell’s

equations gives a set of four equations in NP formalism(
L1 −

ia sin θ

ρ̄∗

)
Φ0 =

(
D0 +

1

ρ̄∗

)
Φ1 , (6.1.19)

(
L0 +

ia sin θ

ρ̄∗

)
Φ1 =

(
D0 −

1

ρ̄∗

)
Φ2 , (6.1.20)
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(
L†1 −

ia sin θ

ρ̄∗

)
Φ2 = −∆

(
D†0 +

1

ρ̄∗

)
Φ1 , (6.1.21)

and (
L†0 +

ia sin θ

ρ̄∗

)
Φ1 = −∆

(
D†1 −

1

ρ̄∗

)
Φ0 . (6.1.22)

The equations (6.1.19) - (5.1.65) can be decoupled to two differential equations for Φ0 and

Φ2 by noticing that two operators

Ym = D +m (ρ̄∗)−1 , (6.1.23)

Zm = L+ ima sin θ (ρ̄∗)−1 , (6.1.24)

commute, i.e. [Ym, Zn] = 0. In (6.1.23) and (6.1.24), D can be either Dn or D†n and L can be

either Ln or L†n respectively. The two decoupled differential equations for Φ0 and Φ2 are[(
L†0 +

ia sin θ

ρ̄∗

)(
L1 −

ia sin θ

ρ̄∗

)
+ ∆

(
D1 +

1

ρ̄∗

)(
D†1 −

1

ρ̄∗

)]
Φ0 = 0 , (6.1.25)

and [(
L0 +

ia sin θ

ρ̄∗

)(
L†1 −

ia sin θ

ρ̄∗

)
+ ∆

(
D0 +

1

ρ̄∗

)(
D0 −

1

ρ̄∗

)]
Φ2 = 0 . (6.1.26)

We notice that to obtain equation (6.1.25), we have used the identity D0∆ = ∆D1. Using

the identities,

∆

(
D1 +

1

ρ̄∗

)(
D†1 −

1

ρ̄∗

)
= ∆D1D†1 −

2iK

ρ̄∗
, (6.1.27)(

L†0 +
ia sin θ

ρ̄∗

)(
L1 −

ia sin θ

ρ̄∗

)
= L†0L1 +

2iQa sin θ

ρ̄∗
, (6.1.28)

and

∆

(
D†0 +

1

ρ̄∗

)(
D0 −

1

ρ̄∗

)
= ∆D†0D0 +

2iK

ρ̄∗
, (6.1.29)(

L0 +
ia sin θ

ρ̄∗

)(
L†1 −

ia sin θ

ρ̄∗

)
= L0L†1 −

2iQa sin θ

ρ̄∗
, (6.1.30)

where K and Q are given by (6.1.12) and (6.1.13) respectively, we can simplify equations

(6.1.25) and (6.1.26) to(
∆D1D†1 + L†0L1 + 2iω (r + ia cos θ)

)
Φ0 = 0 , (6.1.31)
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and (
∆D†0D0 + L0L†1 − 2iω (r + ia cos θ)

)
Φ2 = 0 . (6.1.32)

The equations (6.1.31) and (6.1.32) are clearly separable in r and θ and called the Teukolsky

equations for the massless particles with spin weight 1. For convenience, we set

Φ0 = Ψ+, Φ2 = Ψ− , (6.1.33)

where Ψ± ≡ S± (θ)R±(r) and R± (r) and S± (θ) are functions of r and θ only, respectively.

The functions Ψ± contain the r and θ dependence of Teukolsky wave functions Ψ̃± for Maxwell

field perturbation with spin weights ±1

Ψ̃± = e−iωt+imφR± (r)S± (θ) ≡ e−iωt+imφΨ± . (6.1.34)

Plugging (6.1.33) into equations (6.1.31) and (6.1.32) we obtain a set of equations(
∆D1D†1 + 2iωr

)
R+ = λR+ , (6.1.35)

(
L†0L1 − 2aω cos θ

)
S+ = −λS+ , (6.1.36)

and (
∆D0D†0 − 2iωr

)
R− = λR− , (6.1.37)

(
L0L†1 + 2aω cos θ

)
S− = −λS− , (6.1.38)

for the radial R± and angular S± functions where λ is the separation constant.

The radial solutions to Teukolsky equations have been found in reference [99]. The radial

solutions also have been obtained for near horizon near extremal Kerr in reference [37] by

taking near and far region limits of a generic Teukolsky equation [46]. Applying the operator

(L0 + iaρ̄∗−1 sin θ) to (6.1.19) and (D0 + ρ̄∗−1) to (5.1.63) and adding them up, we find(
L0 +

ia sin θ

ρ̄∗

)(
L1 −

ia sin θ

ρ̄∗

)
Φ0 =

(
D0 +

1

ρ̄∗

)(
D0 −

1

ρ̄∗

)
Φ2 . (6.1.39)
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Furthermore equation (6.1.39) simplifies to

L0L1Φ0 = D2
0Φ2 . (6.1.40)

As we notice from (6.1.33) and (6.1.34), the complex scalars Φ0 and Φ2 are separable functions

in terms of coordinates r and θ. Plugging the identifications (6.1.33) into equation (6.1.40),

we get the equation

L0L1S+

S−
=

∆D2
0R−

∆R+

, (6.1.41)

that leads to

D2
0R− = CR+ , (6.1.42)

which is one of the Teukolsky - Starobinsky identities [47].

The proof of this identity can be given in the following way. We apply the operator D2
0

to the left hand side of equation (6.1.37),

D2
0

(
∆D†0D0R−

)
− 2iωD2

0 (rR−) = D2
0 (∆D0 − 2iK)D0R− − 2iωrD2

0R− − 4iωD0R−

= D0∆D1D2
0R− − 2iD0

(
KD2

0R− − 2ωrD0R−
)

−2iωrD2
0R− − 4iωD0R−

= D0

(
∆D†1 + 2iK

)
D2

0R− − 2iD0

(
KD2

0R−
)

+ 2iωrD2
0R−

=
(

∆D1D†1 + 2iωr
)
D2

0R− . (6.1.43)

In the first line of equation above, we have used the relation between D0 and D†0, derived

from the definitions of both operators in (6.1.10),

∆D†n = ∆Dn − 2iK , (6.1.44)

and

∆Dn+1 = Dn∆ . (6.1.45)

The same operator D2
0 must be applied also to the right hand side of equation (6.1.37), which

finally gives us an equation (
∆D1D†1 + 2iωr

)
D2

0R− = λD2
0R− . (6.1.46)
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Interestingly, from the equation (6.1.35), we observe thatD2
0R− obeys the same eigen equation

as R+. This allows us to write equation (6.1.42), i.e. D2
0R− is a constant multiple of R+. By

performing this analysis, we have obtained an identity,

D2
0

(
∆D†0D0 − 2iωr

)
=
(

∆D1D†1 + 2iωr
)
D2

0 . (6.1.47)

It is interesting to note that ∆R+ and R− are a complex conjugate pair. This can be

seen by adding a ∆ on both sides of equation (6.1.35) and apply the identity (6.1.45), where

we can get (
∆D0D†0 + 2iωr

)
∆R+ = λ∆R+ . (6.1.48)

Hence, by using this fact, the complex conjugate version of (6.1.42) can be shown. This can

be pursued by applying the operator ∆
(
D†0
)2

to the both side of equation (6.1.48), i.e.

λ∆
(
D†0
)2

∆R+ = ∆
(
D†0
)2 (

∆D0D†0∆R+

)
+ 2iω∆

(
D†0
)2

(r∆R+)

= ∆
(
D†0
)2 (

∆D†0 + 2iK
)
D†0∆R+ + 2iωr∆

(
D†0
)2

R− + 4iω∆D†0∆R+

= ∆D†0∆D†1
(
D†0
)2

∆R+ + 2i∆D†0
(
K
(
D†0
)2

∆R+ − 2ωrD†0∆R+

)
+2iωr∆

(
D†0
)2

∆R+ + 4iω∆D†0∆R+

= ∆D†0 (∆D1 − 2iK)
(
D†0
)2

∆R+

+2i∆D†0
(
K
(
D†0
)2

∆R+

)
− 2iωr∆

(
D†0
)2

∆R+

= ∆
(

∆D†1D1 − 2iωr
)(
D†0
)2

∆R+

=
(
D†0D0 − 2iωr

)
∆
(
D†0
)2

∆R+ . (6.1.49)

From the last computation, we find that ∆
(
D†0
)2

∆R+ satisfies the same eigen equation as

R−, hence we can say that ∆
(
D†0
)2

∆R+ is a constant multiple of R−, i.e.

∆
(
D†0
)2

∆R+ = C∗R− . (6.1.50)

From equation (6.1.49), it is easy to show that

λ
(
D†0
)2

∆R+ =
(

∆D†1D1 − 2iωr
)(
D†0
)2

∆R+ , (6.1.51)
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from which, by matching this equation to (6.1.48), we can have an identity(
D†0
)2 (

∆D0D†0 + 2iωr
)

=
(

∆D†1D1 − 2iωr
)(
D†0
)2

. (6.1.52)

It turns out that the last identity is just the complex conjugate of (6.1.47).

In (6.1.42), C is the Starobinsky constant which in general can be complex valued,

|C|2 = λ2 − 4α2ω2, (6.1.53)

and α is defined as

α2 = a2 − am

ω
. (6.1.54)

The relation (6.1.53) can be proven by using the results (6.1.42) and (6.1.50). First let us

apply the operator ∆(D†0)2 to the equation (6.1.42),

∆
(
D†0
)2

∆D2
0R− = C∆

(
D†0
)2

∆R+ . (6.1.55)

Replacing the term ∆
(
D†0
)2

∆R+ in the last equation by using the relation (6.1.50) we can

have

∆
(
D†0
)2

∆D2
0R− = |C|2R− . (6.1.56)

Therefore, related to R−, we have a new identity

∆
(
D†0
)2

∆D2
0 = |C|2 , (6.1.57)

as long as the following equation is satisfied

∆D†0D0 = 2iωr + λ . (6.1.58)

In fact, one can verify that

D†0∆D0 =

(
∂r −

iK

∆

)
∆

(
∂r −

iK

∆

)
=

(
∂r +

iK

∆

)
∆

(
∂r −

iK

∆

)
− 2iK

(
∂r +

iK

∆

)
+

(
∂r +

iK

∆

)
2iK

= D0∆D†0 − 2iK∂r + 2i∂rK

= D0∆D†0 − 4iωr . (6.1.59)
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Let us perform some algebraic manipulations on the left hand side of equation (6.1.57) by

sing the results in (6.1.57) and (6.1.59).

∆
(
D†0
)2

∆D2
0 = ∆D†0

(
D0∆D†0 − 4iωr

)
D0

= ∆D†0D0

(
∆D†0D0

)
− 4iω∆D†0D0 − 4iω∆D0

= ∆D†0D0 (λ+ 2iωr)− 4iω∆D†0D0 − 4iω∆D0 . (6.1.60)

It is easy to see that

∆D†0D0r = ∆D†0 (rD0 + 1)

= r∆D†0D0 + ∆
(
D0 +D†0

)
= r∆D†0D0 + 2∆D0 − 2iK , (6.1.61)

hence the result in (6.1.60) can be simplified to be

∆
(
D†0
)2

∆D2
0 = (λ− 2iωr) ∆D†0D0 + 4ωK

= (λ− 2iωr) (λ+ 2iωr) + 4ω
(
am−

(
r2 + a2

)
ω
)

= λ2 − 4a2ω2 + 4amω = |C|2 , (6.1.62)

which proves equation (6.1.53). For later convenience, we consider the angular functions S+

and S− normalized to unity

π∫
0

S2
+ sin θdθ =

π∫
0

S2
− sin θdθ = 1 . (6.1.63)

6.1.2 Chandrasekhar’s solutions for Maxwell fields in Kerr back-

ground

In this section, we derive in detail the solutions to Maxwell’s equations in Kerr background

by using the three complex scalars (6.1.14), (6.1.15) and (6.1.16) that are related to Maxwell

field strength tensor Fµν = ∂µAν − ∂νAµ. We consider the gauge field Aµ as (At, Ar, Aθ, Aφ)

in spherical coordinates. The complex scalars Φ0 and Φ2 given by (6.1.14) and (6.1.16), can
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be written as

Φ0 =
1

ρ̄
√

2

(
L†0
(
r2 + a2

∆
At + Ar +

a

∆
Aφ

)
−D0

(
iaAt sin θ + Aθ +

iAφ
sin θ

))
, (6.1.64)

Φ2 = − 1

ρ̄
√

2

(
∆D†0

(
−iaAt sin θ + Aθ −

iaAφ
sin θ

)
+ L0

(
−∆Ar +

(
r2 + a2

)
At + aAφ

))
.

(6.1.65)

To simplify some expressions that will be handled hereafter, we define the following functions

∆F+ =
(
r2 + a2

)
At + ∆Ar + aAφ , ∆F− =

(
r2 + a2

)
At −∆Ar + aAφ , (6.1.66)

G+ = iaAt sin θ + Aθ + i
Aφ

sin θ
, G− = −iaAt sin θ + Aθ − i

Aφ
sin θ

. (6.1.67)

In addition, the following definitions would also be helpful [47]

ξ+ (r) = C−1 (rD0 − 1)R− , ξ− (r) = C−1
(
rD†0 − 1

)
(∆R+) , (6.1.68)

ζ+ (θ) = C−1
(

cos θL†1 + sin θ
)
S− , ζ− (θ) = C−1 (cos θL1 + sin θ)S+ , (6.1.69)

where C is the Starobinksy constant (6.1.53).

One can easily verify that the r-dependent functions ξ± and θ-dependent functions ζ±

satisfy the following differential equations

D0ξ+ = rR+, ∆D†0ξ− = rR− , (6.1.70)

L†0ζ+ = S+ cos θ, L0ζ− = cos θS− . (6.1.71)

The differential equation (6.1.31) combined with (6.1.64) yields the following equation

∆L†0F+ −∆D0G+ =
√

2
(
ia∆R+L†0ζ+ + S+∆D0ξ+

)
, (6.1.72)

where we have used the definitions in (6.1.66), (6.1.67), (6.1.68) and (6.1.69). In a similar way,

the differential equation (6.1.32) along with equation (6.1.65) yields the following relation

∆D†0G− + L0∆F− = −
√

2
(

∆D†0S−ξ− + iaL0R−ζ−

)
. (6.1.73)
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We can solve (6.1.72) and (6.1.73) to find F± and G± in terms of R±, S±, ζ± and ξ±. The

solutions are given by

F+ =
√

2 (iaR+ζ+ +D0H+) , (6.1.74)

F− =
√

2
(
−iaR−ζ− +D†0H−

)
, (6.1.75)

G+ =
√

2
(
−ξ+S+ + L†0H+

)
, (6.1.76)

and

G− =
√

2 (−ξ−S− + L0H−) , (6.1.77)

where H± are any two arbitrary functions that depend on both r and θ coordinates. The

presence of arbitrary functions H± in the solutions (6.1.74)-(6.1.77) is the result of identity

[D0,L†0] = 0. These functions show the freedom of Maxwell fields Aµ in the Kerr background.

Plugging (6.1.74) - (6.1.77) back to (6.1.66) and (6.1.67) provides us the general set of explicit

solutions for Aµ which includes the arbitrary functions H±. As we notice to find the solutions

for Aµ, we have used only the equations (6.1.14) and (6.1.16) for the complex scalars Φ0 and

Φ2. The gauge condition is the remaining equation (6.1.15) for Φ1. Using equations (6.1.19)

- (5.1.65), one can find the following equation

(lµnν + m̄µmν) (∂µAν − ∂νAµ)

= −
√

2

(ρ̄∗)2

[(
ζ+L1S+ − ζ−L†1S−

)
− ia

(
ξ−D0R− − ξ+D†0(∆R+)

)]
. (6.1.78)

Plugging the known results for Aµ in equation (6.1.15) (that we call it as the Chan-

drasekhar gauge) and comparing the result with equation (6.1.78) yields the following equa-

tion that the arbitrary functions H± must satisfy

D†0
∆D0H+

(ρ̄∗)2 + L1
L†0H+

(ρ̄∗)2 −D0
∆D†0H−

(ρ̄∗)2 − L†1
L0H−

(ρ̄∗)2 = 0 . (6.1.79)

The equation (6.1.79) imposes a constraint on the choices for the arbitrary functions H±. We

very roughly can compare the Chandrasekhar gauge with the well known Lorentz gauge for
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the Maxwell fields in Minkowski spacetime. The Maxwell’s equations in Minkowski spacetime

are invariant under the gauge transformation Aµ(x) → Aµ(x) + ∂µΛ(x) where Λ(x) is an

arbitrary function. The Lorentz gauge ∂µA
µ = 0 restricts the arbitrary function Λ(x) to

a function that satisfies the wave equation �Λ(x) = 0. The Chandrasekhar gauge (6.1.15)

resembles the Lorentz gauge. The constraint equation (6.1.79) for H± resembles to the wave

equation �Λ(x) = 0 for Λ(x), where the arbitrary functions H± play the role of Λ(x). The

full solutions for Maxwell fields in Kerr spacetime that include the gauge functions H±, are

given by [47],

At =
ia√
2ρ2

((∆R+ζ+ −R−ζ−)− (ξ+S+ − ξ−S−) sin θ)

+
1√
2ρ2

(
∆
(
D0H+ −D†0H−

)
+ ia

(
L†0H+ − L0H−

)
sin θ

)
, (6.1.80)

Ar =
ia√
2∆

(∆R+ζ+ +R−ζ−) +
∆√

2

(
D0H+ +D†0H−

)
, (6.1.81)

Aθ = − 1√
2

(ξ+S+ + ξ−S−) +
1√
2

(
L†0H+ + L0H−

)
, (6.1.82)

and

Aφ = − i√
2ρ2

(
a2 (∆R+ζ+ −R−ζ−) sin2 θ −

(
r2 + a2

)
(ξ+S+ − ξ−S−) sin θ

)
− 1√

2

(
a∆
(
D0H+ −D†0H−

)
sin2 θ + i

(
r2 + a2

) (
L†0H+ − L0H−

)
sin θ

)
.(6.1.83)

Choosing both H± to be zero gives the simplest solutions to the second order differential

equation (6.1.79). Using this choice and comparing equations (6.1.74), (6.1.75), (6.1.76) and

(6.1.77) with equations (6.1.66) and (6.1.67), we get the Maxwell fields as

At =
ia

ρ2
√

2
(∆R+ζ+ −R−ζ− − sin θ (ξ+S+ − ξ−S−)) , (6.1.84)

Ar =
ia√

2

(
R+ζ+ +

R−ζ−
∆

)
, (6.1.85)

Aθ = − 1√
2

(ξ+S+ + ξ−S−) , (6.1.86)

and

Aφ =
−i
ρ2
√

2

(
a2 sin2 θ (∆R+ζ+ −R−ζ−)− sin θ

(
r2 + a2

)
(ξ+S+ − ξ−S−)

)
, (6.1.87)
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where the functions ζ± and ξ±, given by (6.1.68) and (6.1.69) can be rewritten as

ξ+ =
1

2CK

((
irλ+ 2α2ω

)
R− − irC∆R+

)
, (6.1.88)

ξ− =
1

2CK

(
−
(
irλ− 2α2ω

)
∆R+ + irCR−

)
, (6.1.89)

ζ+ =
1

2CQ

((
−λ cos θ − 2α2ω

a

)
S− − CS+ cos θ

)
, (6.1.90)

ζ− =
1

2CQ

((
λ cos θ − 2α2ω

a

)
S+ + CS− cos θ

)
. (6.1.91)

The functions K, Q, and α are given in (6.1.12), (6.1.13), and (6.1.54) respectively. As a

consistency check, we substitute the equations (6.1.84)-(6.1.87) for the different components

of Maxwell fields into equation (6.1.64) and find Φ0 = R+(r)S+(θ) in perfect agreement with

what was considered in equation (6.1.33) for Φ0. A similar calculation shows substituting

the equations (6.1.84)-(6.1.87) into equation (6.1.65) yields Φ2 = R−(r)S−(θ) that is again

in agreement with equation (6.1.33) for Φ2

6.2 Boundary action for Maxwell fields in the back-

ground of Kerr black hole

The action for the Maxwell fields in gravitational background gµν with no current is

S =
1

4

∫
d4x
√
−gF∗µνFµν + c.c. (6.2.92)

that leads to the Maxwell’s equations (6.1.18) and (6.1.17). The c.c. term should be added

in (6.2.92) to ensure that the action is real valued as we notice that the Chandrasekhar

solutions for the Maxwell fields in Kerr spacetime (6.1.84) - (6.1.87) are basically complex

quantities. The existence of ∂t and ∂φ Killing vectors in Kerr geometry leads to write down

the dependence of Maxwell fields A on coordinates t and φ as

A =


At

Ar

Aθ

Aφ

 = e−iωt+imφ


At

Ar

Aθ

Aφ

 , (6.2.93)
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where Aµ’s are given by (6.1.84) - (6.1.87). We note that in (6.2.92), Fµν = ∂µAν − ∂νAµ

and so we can write S = 2S0 where

S0 =
1

4

∫
d4x
√
−g (∂µA

∗
ν) Fµν + c.c. . (6.2.94)

The integrand of S0 can be written as the difference of a total derivative term and one

other term which is, in fact, proportional to the Maxwell’s equations (6.1.17). Taking a

spherical boundary with radius rB that is the boundary of near-NHEK geometry of Kerr

black hole, we can convert the total derivative term to a boundary term, given by

SB =
1

2

∫
d3x
√
−gA∗νFrν

∣∣
r=rB

+ c.c. , (6.2.95)

where d3x stands for dtdφdθ. In getting (6.2.95) from (6.2.94), we have done the following

steps. First recall that the contraction of the field strength tensor Fµν can be written as

FµνF
µν =

(
∇µA

∗
ν −∇νA

∗
µ

)
Fµν

= 2 (∇µA
∗
ν) Fµν (6.2.96)

= 2
(
∂µA

∗
ν − ΓαµνA

∗
α

)
Fµν

= 2
{

(∂µA
∗
ν) Fµν − ΓαµνA

∗
αF

µν
}

= 2
{
∂µ (A∗νF

µν)−A∗ν∂µF
µν − ΓαµνA

∗
αF

µν
}

= 2
{
∇µ (A∗νF

µν)− ΓµµαA
∗
νF

αν −A∗ν∂µF
µν − ΓαµνA

∗
αF

µν
}

= 2∇µ (A∗νF
µν)− 2A∗µ [∂νF

νµ + ΓνναF
αµ + ΓµανF

αν ]

= 2∇µ (A∗νF
µν)− 2A∗µ∇νF

νµ . (6.2.97)

Note that the last term inside of the square bracket in the last second line of equation

(6.2.96) does not give the exact definition of covariant derivative of Fµν , i.e. it should be

ΓµανF
να instead of ΓµανF

αν . However, both of these “right” and “wrong” terms are vanished,

due to the fact where contraction between symmetric and antisymmetric tensors is zero.

Therefore, we can get the last line of equation (6.2.96). Furthermore, since we are discussing

the case of free Maxwell fields in curved space, the last equation reduces to

FµνF
µν = 2∇µ (A∗νF

µν) , (6.2.98)
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since

∇νF
νµ = 0 . (6.2.99)

By using the Gauss’ theorem2 we can get the expression (6.2.95) from (6.2.94) where the

quantity Kr in the appendix H is replaced by A∗νF
rν .

The field strength tensor components

Frν = grrgνβFrβ = grrgνβ (∂rAβ − ∂βAr) , (6.2.100)

can be written simply as F = ΞA where

Ξ = grr


gtt∂r −

(
gtt∂t + gtφ∂φ

)
0 gtφ∂r

0 0 0 0

0 −gθθ∂θ gθθ∂r 0

gφt∂r −
(
gφt∂t + gφφ∂φ

)
0 gφφ∂r

 . (6.2.101)

Using the above expressions, we can rewrite the boundary action (6.2.95) accordingly as

SB =
1

2

∫
d3x
√
−gA†ΞA

∣∣
r=rB

+ c.c., (6.2.102)

where

A†ΞA = grr
(
gtt (A∗t∂rAt − iωA∗tAr) + gtφ (A∗t∂rAφ + imA∗tAr)− gθθ (A∗θ∂θAr − A∗θ∂rAθ)

+gφt
(
A∗φ∂rAt − iωA∗φAr

)
+ gφφ

(
A∗φ∂rAφ + imA∗φAr

))
. (6.2.103)

6.3 Approximations for Maxwell fields in the near hori-

zon limit

The solutions for Maxwell fields in Kerr background that are given in (6.1.84) - (6.1.87)

contain the radial Teukolsky functions R±(r). In [37], the authors find the exact solutions to

the radial Teukolsky equations for spin weight ±1 in the corresponding “near” region x� 1

and “far” region x� τH where

x =
r − r+

r+

, (6.3.104)

2See appendix H for a brief review.
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where τH = r+−r−
r+

is the dimensionless Hawking temperature [37, 41] which is related to the

Hawking temperature TH of the Kerr black holes by

TH =
τH

8πM
. (6.3.105)

As we are discussing the near extremal rotating black holes, thus the dimensionless Hawk-

ing temperature τH would be very small number. This fact would play an important role later

in getting the dominant terms of the action that describe the Maxwell fields in near horizon

of near extremal Kerr black holes. To get the solutions everywhere, the incomplete solutions

from “near” and “far” regions should match in the “matching” region. We elaborate this

prescription as follows. The R±(r) and S±(θ) in Teukolsky wave function (6.1.34) satisfy the

equations,

∂r (∆±1+1∂rR±)

∆±1

(
H2 ∓ 2i (r −M)H

∆
± 4iωr + 2amω + 1± 1−Kl

)
R± = 0 , (6.3.106)

which is known as the radial Teukolsky equation, and

1

sin θ
∂θ (sin θ∂θS± (θ))−

(
m (m± 2 cos θ) + 1

sin2 θ
+ a2ω2 sin2 θ ± 2aω cos θ −Kl

)
S± (θ) = 0 ,

(6.3.107)

which is the corresponding angular one for spin ±1. Kl is the separation constant and

H = ω(r2 + a2) − am. Following [37], for x = (r − r+)/r+, the radial equation for spin ±1

can be written as

x (x+ τH) ∂r (∂rR±) + (1± 1) (2x+ τH) ∂rR± + V±R± = 0 , (6.3.108)

where

V± =

(
r+ωx

2 + 2r+ωx+ 1
2
nτH

)2 ∓ i (2x+ τH)
(
r+ωx

2 + 2r+ωx+ 1
2
nτH

)
x (x+ τH)

±4ir+ω (1 + x) + 2amω + 1± 1−Kl . (6.3.109)

The solutions for “near” region are given in [37] as

Rnear
± =

(
x

τH
+ 1

)i(n2−m)∓1

x−
in
2
∓1

2F1

(
1

2
+ β ∓ 1− im, 1

2
− β ∓ 1− im, 1∓ 1− in,− x

τH

)
,

(6.3.110)
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where β is given in (6.3.119). Considering only real and positive valued β in (6.3.119) plays

a role in deriving the corresponding two-point function from the variation of the boundary

action (6.4.194).

In the “far” region, i.e. x� τH , the approximation to the radial equation is

x2R′′± + (1± 1)2xR′± + V far
± R± = 0 (6.3.111)

with

V far
± = −K` +m2 +

m2

4
(x+ 2)2±imx+ 1±1 . (6.3.112)

The solution is

Rfar
± = A±x−

1
2

+β∓1e−imx/2 1F1

(
1

2
+ β ∓ 1 + im, 1 + 2β, imx

)
+B±x−

1
2
−β∓1e−imx/2 1F1

(
1

2
− β ∓ 1 + im, 1− 2β, imx

)
. (6.3.113)

In the matching region τH � x� 1, the far and near solutions must be coincide, hence the

coefficient A± and B± can be fixed

Rmatch
± → A±x−

1
2

+β∓1τ
1
2
−in

2
−β

H + B±x−
1
2
−β∓1τ

1
2
−in

2
+β

H , (6.3.114)

where

A± =
Γ(2β)Γ(1∓ 1− in)

Γ(1
2

+ β − i(n−m))Γ(1
2

+ β ∓ 1− im)
, (6.3.115)

B± =
Γ(−2β)Γ(1∓ 1− in)

Γ(1
2
− β − i(n−m))Γ(1

2
− β ∓ 1− im)

. (6.3.116)

Considering the smallness of τH (asymptotic solutions), the solutions to Teukolsky radial

equations (6.1.35) and (6.1.37) in the matching region can be read as [37]

R+ = N+τ
−1−in/2
H

(
A+

(
r

τH

)β−3/2

+ B+

(
r

τH

)−β−3/2
)

+ ... , (6.3.117)

R− = N−τ
1−in/2
H

(
A−
(
r

τH

)β+1/2

+ B−
(
r

τH

)−β+1/2
)

+ ... , (6.3.118)

where β is given by

β2 =
1

4
+Kl − 2m2 . (6.3.119)
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The parameter Kl is related to λ in equations (6.1.35)-(6.1.38) by Kl = λ + 2amω and we

consider Kl ≥ 2m2 − 1/4 and so β is a real number. The “quantum number” n contained in

the solutions above is given by

n =
ω −mΩH

2πTH
, (6.3.120)

and ΩH = a
r2
++a2 is the angular velocity of the horizon. We notice that since τH is a very

small number and n is a finite number, so the equation (6.3.120) implies ω ∼ mΩH . This

means we consider only the Maxwell fields with frequency that is around the superradiant

bound. The coefficients N+ and N− are the normalization constants that their ratio can be

fixed (by using equation (6.1.42)) to

N−
N+

= −
Klr2

+

n (n+ i)
. (6.3.121)

where Kl =
√
K2
l +m2(m2 + 1− 2Kl). In deriving the ratio (6.3.121), we considered the

near horizon limit r → r+. As we notice from (6.2.103), we need to find the derivative of

the gauge fields with respect to the coordinate r. From equations (6.3.117) and (6.3.118), we

find the following equations

∂rR+ =

(
β − 3/2

r

)
R+ −Q+, ∂rR− =

(
β + 1/2

r

)
R− −Q− , (6.3.122)

where

Q+ ≡
2βB+

r
τ
−1−in/2
H

(
r

τH

)−β−3/2

, Q− ≡
2βB−
r

τ
1−in/2
H

(
r

τH

)−β+1/2

. (6.3.123)

As we notice from expressions (6.1.84) and (6.1.87), the gauge field components At and

Aφ depend on coordinates r and θ in a non-separable way, due to the presence of function

ρ =
√
r2 + a2 cos2 θ. As a result, performing the integration over the boundary in (6.2.95)

becomes almost impossible. We can separate the dependence of gauge fields (6.1.84) and

(6.1.87) on r and θ by making an approximation. The approximation is to set the coordinate

r equal to the boundary radius rB in all ρ and ∆ that appear in (6.1.84) - (6.1.87). In this

approximation, ∆B = ∆(r = rB) = (rB − r+)(rB − r−) approaches to zero as the boundary
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radius rB → r+. So, we can write the Maxwell fields on the boundary as

At = e−iωt+imφ ((f1S− + f2S+)R+∆B + (f3S− + f4S+)R−) , (6.3.124)

Ar = e−iωt+imφ
(
(f5S− + f6S+)R+ + (f7S− + f8S+)R−∆−1

B

)
, (6.3.125)

Aθ = e−iωt+imφ ((f9S− + f10S+)R+∆B + (f11S− + f12S+)R−) , (6.3.126)

Aφ = e−iωt+imφ ((f13S− + f14S+)R+∆B + (f15S− + f16S+)R−) , (6.3.127)

where fi’s (i = 1, ..., 16) depend only on θ and are given by

f1 =
ia
√

2(−λ cos θ − 2α2ωa−1)

4ρ2
BC
(
−aω sin θ +m (sin θ)−1) − ia

√
2 sin θ(irBλ− 2α2ω)

4C (am− ω (r2
B + a2)) ρ2

B

, (6.3.128)

f2 = − ia
√

2 cos θ

4ρ2
B

(
−aω sin θ +m (sin θ)−1) − arB

√
2 sin θ

4 (am− ω (r2
B + a2)) ρ2

B

, (6.3.129)

f3 = − ia
√

2 cos θ

4ρ2
B

(
−aω sin θ +m (sin θ)−1) − arB

√
2 sin θ

4 (am− ω (r2
B + a2)) ρ2

B

, (6.3.130)

f4 = − ia
√

2 (λ cos θ − 2α2ωa−1)

4ρ2
BC
(
−aω sin θ +m (sin θ)−1) − ia

√
2 sin θ (irBλ+ 2α2ω)

4C (am− ω (r2
B + a2)) ρ2

B

, (6.3.131)

f5 =
ia
√

2 (−λ cos θ − 2α2ωa−1)

4C
(
−aω sin θ +m (sin θ)−1) , (6.3.132)

f6 = − ia
√

2 cos θ

4
(
−aω sin θ +m (sin θ)−1) , (6.3.133)

f7 =
ia
√

2 cos θ

4
(
−aω sin θ +m (sin θ)−1) , (6.3.134)

f8 =
ia
√

2 (λ cos θ − 2α2ωa−1)

4C
(
−aω sin θ +m (sin θ)−1) , (6.3.135)

f9 =

√
2 (irBλ− 2α2ω)

4C (am− ω (r2
B + a2))

, (6.3.136)

f10 =
irB
√

2

4 (am− ω (r2
B + a2))

, (6.3.137)

f11 = − irB
√

2

4 (am− ω (r2
B + a2))

, (6.3.138)

f12 = −
√

2 (irBλ− 2α2ω)

4C (am− ω (r2
B + a2))

, (6.3.139)

208



f13 =
ia2
√

2 (λ cos θ + 2α2ωa−1) sin2 θ

4ρ2
BC
(
−aω sin θ +m (sin θ)−1) +

i (r2
B + a2)

√
2 sin θ (irBλ− 2α2ω)

4C (am− ω (r2
B + a2)) ρ2

B

, (6.3.140)

f14 =
ia2
√

2 cos θ sin2 θ

4ρ2
B

(
−aω sin θ +m (sin θ)−1) +

rB (r2
B + a2)

√
2 sin θ

4 (am− ω (r2
B + a2)) ρ2

B

, (6.3.141)

f15 =
ia2
√

2 cos θ sin2 θ

4ρ2
B

(
−aω sin θ +m (sin θ)−1) +

rB (r2
B + a2)

√
2 sin θ

4 (am− ω (r2
B + a2)) ρ2

B

, (6.3.142)

f16 =
ia2
√

2 (λ cos θ − 2α2ωa−1) sin2 θ

4ρ2
BC
(
−aω sin θ +m (sin θ)−1) +

i (r2
B + a2)

√
2 sin θ (irBλ− 2α2ω)

4C (am− ω (r2
B + a2)) ρ2

B

. (6.3.143)

In (6.3.128) - (6.3.143),

ρB = r2
B + a2 cos2 θ. (6.3.144)

We note that for the near extremal Kerr black holes ΩH ' 1
2a

and so ω ∼ m
2a

. As a result

for rB → r+, all fi’s (except f5, · · · , f8 that appear in radial component (6.3.125) of Maxwell

field) become very large. In fact, due to the smallness of ∆B in the near horizon limit of near

extremal black hole, all components of Maxwell fields in the near horizon of near extremal

Kerr background become very large. We consider the difference between am and ω(r2
B + a2)

in near horizon near extremal Kerr black hole to be the same order of ∆B.

6.4 Two-point function of vector fields

In this section we explicitly calculate the boundary action (6.2.95) and find the two-point

function of the vector fields. We rewrite the components of the Maxwell field (6.3.124) -

(6.3.127) in a matrix form as

A = e−iωt+imφ(R+Kv+ +R−Lv−) , (6.4.145)

where the matrices K and L are

K =


∆Bf1 0 0 ∆Bf2

f5 κ1 0 f6

∆Bf9 0 κ2 ∆Bf10

∆Bf13 0 0 ∆Bf14

 , L =


κ3 f3 f4 0

0 f7∆−1
B f8∆−1

B 0

0 f11 f12 0

0 f15 f16 κ4

 , (6.4.146)

and

v+ =
(
S− 0 0 S+

)T
, v− =

(
0 S− S+ 0

)T
. (6.4.147)
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For later convenience, we show the first and the second term of (6.4.145) by A+ and A−,

respectively. We notice the matrices K and L as well as vectors v± depend only on angular

coordinate θ, according to Teukolsky equations (6.1.36), (6.1.38) and equations (6.3.128)

- (6.3.143) for fi. The arbitrary constants κi, i = 1, 2, 3, 4 in (6.4.146) are introduced to

provide the invertibility for matrices K and L. We notice that κi → 0 to reduce the Maxwell

fields (6.4.145) to the solutions (6.3.124) - (6.3.127) and we perform this limit at the end of

calculation wherever κi’s appear. We may find that due to the gauge choice (6.1.15), there

is a relation between the vectors v+ and v− as v− = χv+ where the matrix χ is given by

χ =


0 0 0 0

1 0 0 0

0 0 0 1

0 0 0 0

 . (6.4.148)

Denoting the Maxwell fields and the Teukolsky functions on the boundary by AB
± and RB

±

respectively, we get
AB

+

RB
+

= e−iωt+imφKv+ , (6.4.149)

and
AB
−

RB
−

= e−iωt+imφLv− . (6.4.150)

As we notice, equations (6.4.149) and (6.4.150) enable us to consider the non-radial dependent

parts of Maxwell fields as the ratio of boundary Maxwell fields to the boundary Teukolsky

radial solutions. Using the relation between v+ and v−, we have

A = (R+K +R−Lχ) e−iωt+imφv+ =
(
R+ +R−LχK−1

) (AB
+)

RB+
, (6.4.151)

or

A† =

(
AB

+

)†
(RB

+)
∗

(
R∗+ +R∗−

(
LχK−1

)†)
. (6.4.152)

We calculate the integrand A†ΞA of the boundary action (6.2.95) now. We notice that

though the matrix Ξ in (6.2.101) has real entries, but after acting on A, the result is a

complex-valued vector. We decompose the operator Ξ as

Ξ = grr (Π + Θ) , (6.4.153)
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where

Π =


gtt∂r 0 0 gtφ∂r

0 0 0 0

0 0 gθθ∂r 0

gφt∂r 0 0 gφφ∂r

 , (6.4.154)

contains only the derivatives with respect to r and

Θ =


0 −

(
gtt∂t + gtφ∂φ

)
0 0

0 0 0 0

0 −gθθ∂θ 0 0

0 −
(
gφt∂t + gφφ∂φ

)
0 0

 , (6.4.155)

contains the derivatives with respect to t and φ. The reason for performing this decomposition

is due to the fact that the radial dependence of the Maxwell fields (6.3.124) - (6.3.127) are

in terms of functions R±, while the non-radial dependence are in
AB

+

RB+
or

AB
−

RB−
(according to

(6.4.149) and (6.4.150)). We find A†ΞA is given by

A†ΞA = grr
(
AB

+

)†
(RB

+)
∗
(
R+ +R−LχK−1

)†
(Π + Θ)

(
R+ +R−LχK−1

) AB
+

RB
+

= grr
(
AB

+

)†
(RB

+)
∗ R
∗
+ (ΠR+ +R+Θ)

AB
+

RB
+

+ grr
(
AB

+

)†
(RB

+)
∗ R
∗
+ (ΠR− +R−Θ) LχK−1 AB

+

RB
+

+ grr
(
AB

+

)†
(RB

+)
∗
(
R−LχK−1

)†
(ΠR+ +R+Θ)

AB
+

RB
+

+ grr
(
AB

+

)†
(RB

+)
∗
(
R−LχK−1

)†
(ΠR− +R−Θ) LχK−1 AB

+

RB
+

. (6.4.156)

As the matrix Π contains the differential operator ∂r, it would be helpful to split ΠR+,

ΠR+ =


gtt∂rR+ 0 0 gtφ∂rR+

0 0 0 0

0 0 gθθ∂rR+ 0

gφt∂rR+ 0 0 gφφ∂rR+


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=


gtt
((

β−3/2
r

)
R+ −Q+

)
0 0 gtφ

((
β−3/2
r

)
R+ −Q+

)
0 0 0 0

0 0 gθθ
((

β−3/2
r

)
R+ −Q+

)
0

gφt
((

β−3/2
r

)
R+ −Q+

)
0 0 gφφ

((
β−3/2
r

)
R+ −Q+

)
,

 ,

(6.4.157)

to two terms, given by

ΠR+ = R+Π1 −Q+Π2 . (6.4.158)

In (6.4.158), the matrix Π2 is given by

Π2 =


gtt 0 0 gtφ

0 0 0 0

0 0 gθθ 0

gφt 0 0 gφφ

 , (6.4.159)

and Π1 = β−3/2
r

Π2. A similar calculation shows that we can split ΠR− to two terms, as

ΠR− = R−Π3 −Q−Π4 , (6.4.160)

where Π3 = β+1/2
r

Π2 and Π4 = Π2. So, in terms of Π1, Π2, Π3 and Π4, we get the following

expression for (6.4.156)

A†ΞA = grr
(
AB

+

)†
(RB

+)
∗ R
∗
+ (R+(Π1 + Θ)−Q+Π2)

AB
+

RB
+

+ grr
(
AB

+

)†
(RB

+)
∗ R
∗
+ (R−(Π3 + Θ)−Q−Π4) LχK−1 AB

+

RB
+

+ grr
(
AB

+

)†
(RB

+)
∗
(
R−LχK−1

)†
(R+(Π1 + Θ)−Q+Π2)

AB
+

RB
+

+ grr
(
AB

+

)†
(RB

+)
∗
(
R−LχK−1

)†
(R−(Π3 + Θ)−Q−Π4) LχK−1 AB

+

RB
+

. (6.4.161)

Comparing the functions Q± in (6.3.123) to the leading terms of R± in (6.3.117) and (6.3.118),

we find Q± ∼ τ 2β
H R±. So, we can neglect the terms that are proportional to Q± compared

to the terms that are proportional to R± in (6.4.161). This yields the equation (6.4.162)
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transforms to

A†ΞA = grr
(
AB

+

)†
(RB

+)
∗ R
∗
+ (R+(Π1 + Θ))

AB
+

RB
+

+ grr
(
AB

+

)†
(RB

+)
∗ R
∗
+ (R−(Π3 + Θ)) LχK−1 AB

+

RB
+

+ grr
(
AB

+

)†
(RB

+)
∗
(
R−LχK−1

)†
(R+(Π1 + Θ))

AB
+

RB
+

+ grr
(
AB

+

)†
(RB

+)
∗
(
R−LχK−1

)†
(R−(Π3 + Θ)) LχK−1 AB

+

RB
+

, (6.4.162)

which is obtained after dropping the terms proportional to Q±. One can show that the

components of AB
+ are

ABt+ = e−iωt+imφ (f1S− + f2S+)RB
+∆B ,

ABr+ = e−iωt+imφ (f5S− + f6S+)RB
+ ,

ABθ+ = e−iωt+imφ (f9S− + f10S+)RB
+∆B ,

ABφ+ = e−iωt+imφ (f13S− + f14S+)RB
+∆B . (6.4.163)

Therefore, each term of (6.4.162) can be rewritten as

grr
(
AB

+

)†
(RB

+)
∗ R
∗
+ (R+Π1)

AB
+

RB
+

= grr
R∗+R+

(RB
+)
∗
RB

+

πij1 A
B∗
i+A

B
j+ , (6.4.164)

grr
(
AB

+

)†
(RB

+)
∗ R
∗
+ (R+Θ)

AB
+

RB
+

= grr
R∗+R+

(RB
+)
∗
RB

+

θij1 A
B∗
i+A

B
j+ , (6.4.165)

grr
(
AB

+

)†
(RB

+)
∗ R
∗
+ (R−Π3) LχK−1 AB

+

RB
+

= grr
R∗+R−

(RB
+)
∗
RB

+

πij2 A
B∗
i+A

B
j+ , (6.4.166)

grr
(
AB

+

)†
(RB

+)
∗ R
∗
+ (R−Θ) LχK−1 AB

+

RB
+

= grr
R∗+R−

(RB
+)
∗
RB

+

θij2 A
B∗
i+A

B
j+ , (6.4.167)

grr
(
AB

+

)†
(RB

+)
∗
(
R−LχK−1

)†
(R+Π1)

AB
+

RB
+

= grr
R∗−R+

(RB
+)
∗
RB

+

πij3 A
B∗
i+A

B
j+ , (6.4.168)

grr
(
AB

+

)†
(RB

+)
∗
(
R−LχK−1

)†
(R+Θ)

AB
+

RB
+

= grr
R∗−R+

(RB
+)
∗
RB

+

θij3 A
B∗
i+A

B
j+ , (6.4.169)
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grr
(
AB

+

)†
(RB

+)
∗
(
R−LχK−1

)†
(R−Π3) LχK−1 AB

+

RB
+

= grr
R∗−R−

(RB
+)
∗
RB

+

πij4 A
B∗
i+A

B
j+ , (6.4.170)

grr
(
AB

+

)†
(RB

+)
∗
(
R−LχK−1

)†
(R−Θ) LχK−1 AB

+

RB
+

= grr
R∗−R−

(RB
+)
∗
RB

+

θij4 A
B∗
i+A

B
j+ , (6.4.171)

where

πij1 A
B∗
i+A

B
j+ =

(
gttAB∗t+ + gtφAB∗φ+

)
ABt +

(
gtφAB∗t+ + gφφAB∗φ+

)
ABφ , (6.4.172)

θij1 A
B∗
i+A

B
j+ = −

((
−iωgφt + imgφφ

)
AB∗φ+ +

(
−iωgtt + imgtφ

)
AB∗t+

)
ABr , (6.4.173)

πij2 A
B∗
i+A

B
j+ =

−1

∆B (f13f2 − f1f14)

(
ABt+A

B∗
t+

(
gtt (f4f13 − f3f14) + gtφ (f16f13 − f15f14)

)
+ ABt+A

B∗
φ+

(
gtφ (f4f13 − f3f14) + gφφ (f16f13 − f15f14)

)
+ ABφ+A

B∗
t+

(
gtt (f3f2 − f4f1) + gtφ (f15f2 − f16f1)

)
+ ABφ+A

B∗
φ+

(
gtφ (f3f2 − f4f1) + gφφ (f15f2 − f16f1)

))
, (6.4.174)

θij2 A
B∗
i+A

B
j+ =

(
ABt+ (f8f13 − f7f14) + ABφ+ (f7f2 − f8f1)

)
∆2
B (f1f14 − f13f2)

×
(
AB∗t+

(
−iωgtt + imgtφ

)
+ AB∗φ+

(
−iωgtφ + imgφφ

))
, (6.4.175)

πij3 A
B∗
i+A

B
j+ =

−(β − 3/2)

∆BrB (f ∗1 f
∗
14 − f13f2)

(
ABt+A

B∗
t+

(
gtt (f ∗3 f

∗
14 − f ∗4 f ∗13) + gtφ (f ∗5 f

∗
14 − f ∗6 f ∗13)

)
+ ABt+A

B∗
φ+

(
gtt (f ∗4 f

∗
1 − f ∗3 f ∗2 ) + gtφ (f ∗16f

∗
1 − f ∗15f

∗
2 )
)

+ ABφ+A
B∗
t+

(
gtφ (f ∗3 f

∗
14 − f ∗4 f ∗13) + gtφ (f ∗15f

∗
14 − f ∗16f

∗
13)
)

+ ABφ+A
B∗
φ+

(
gtt (f ∗4 f

∗
1 − f ∗3 f ∗2 ) + gtφ (f ∗16f

∗
1 − f ∗15f

∗
2 )
))
, (6.4.176)

θij3 A
B∗
i+A

B
j+ =

−1

∆B (f ∗1 f
∗
14 − f13f2)

(
ABr+A

B∗
t+

(
−iωgtt (f ∗4 f

∗
13 − f ∗3 f ∗14) + imgφφ (f ∗16f

∗
3 − f ∗15f

∗
14)

+ gtφ (−iω (f ∗16f
∗
3 − f ∗15f

∗
14) + im (f ∗4 f

∗
13 − f ∗3 f ∗14))

)
+ ABr+A

B∗
φ+

(
−iωgtt (f ∗3 f

∗
2 − f ∗4 f ∗1 ) + imgφφ (f ∗15f

∗
2 − f ∗6 f ∗1 )

+ gtφ (−iω (f ∗15f
∗
2 − f ∗16f

∗
1 ) + im (f ∗3 f

∗
2 − f ∗4 f ∗1 ))

)
, (6.4.177)
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πij4 A
B∗
i+A

B
j+ =

−(β + 1/2)

∆2
BrB |f1f14 − f13f2|2

×
(
ABφ+A

B∗
φ+

(
gtt (f ∗3 f

∗
2 f4f1 − f ∗3 f ∗2 f3f2 − f ∗4 f ∗1 f4f1 + f ∗4 f

∗
1 f3f2)

+ gφφ (f ∗15f
∗
2 f16f1 + f ∗16f

∗
1 f15f2 − f ∗15f

∗
2 f15f2 − f ∗16f

∗
1 f16f1)

+ gtφ (f ∗16f
∗
1 f3f2 − f ∗4 f ∗1 f16f1 + f ∗3 f

∗
2 f16f1 − f ∗16f

∗
1 f4f1

− f ∗3 f
∗
2 f15f2 − f ∗15f

∗
2 f3f2 + f ∗4 f

∗
1 f15f2 + f ∗15f

∗
2 f4f1)

+ ABφ+A
B∗
t+

(
gtt (f ∗4 f

∗
13f4f1 + f ∗3 f

∗
14f3f2 − f ∗3 f ∗14f4f1 − f ∗4 f ∗13f3f2)

+ gφφ (f ∗15f
∗
14f15f2 + f ∗16f

∗
13f16f1 − f ∗15f

∗
14f16f1 − f ∗16f

∗
13f15f2)

+ gtφ (f ∗15f
∗
14f3f2 − f ∗15f

∗
14f4f1 − f ∗4 f ∗13f15f2 + f ∗16f

∗
13f4f1

+ f ∗3 f
∗
14f15f2 − f ∗16f

∗
13f3f2 − f ∗3 f ∗14f16f1 + f ∗4 f

∗
13f16f1)

+ ABt+A
B∗
t+

(
gtt (f ∗3 f

∗
14f4f13 + f ∗4 f

∗
13f3f14 − f ∗3 f ∗14f3f14 − f ∗4 f ∗13f4f13)

+ gφφ (f ∗16f
∗
13f15f14 + f ∗15f

∗
14f16f13 − f ∗16f

∗
13f16f13 − f ∗15f

∗
14f15f14)

+ gtφ (f ∗15f
∗
14f4f13 − f ∗3 f ∗14f15f14 − f ∗15f

∗
14f3f14 + f ∗4 f

∗
13f15f14

+ f ∗16f
∗
13f3f14 − f ∗16f

∗
13f4f13 + f ∗3 f

∗
14f16f13 − f ∗4 f ∗13f16f13)

+ ABt+A
B∗
φ+

(
gtt (f ∗3 f

∗
2 f3f14 + f ∗4 f

∗
1 f4f13 − f ∗4 f ∗1 f3f14 − f ∗3 f ∗2 f4f13)

+ gφφ (f ∗15f
∗
2 f15f14 − f ∗15f

∗
2 f16f13 + f ∗16f

∗
1 f16f13 − f ∗16f

∗
1 f15f14)

+ gtφ (f ∗15f
∗
2 f3f14 − f ∗16f

∗
1 f3f14 − f ∗15f

∗
2 f4f13 − f ∗4 f ∗1 f15f14

+ f ∗4 f
∗
1 f16f13 + f ∗16f

∗
1 f4f13 − f ∗3 f ∗2 f16f13 + f ∗3 f

∗
2 f15f14))) , (6.4.178)

θij4 A
B∗
i+A

B
j+ =

1

∆3
B |f1f14 − f13f2|2

×
(
AB∗t+A

B
t+ (f7f14 − f8f13)

(
im
(
(f ∗16f

∗
13 − f ∗15f

∗
14) gφφ + (f ∗4 f

∗
13 − f ∗3 f ∗14) gtφ

)
− iω

(
(f ∗16f

∗
13 − f ∗15f

∗
14) gφt − (f ∗4 f

∗
13 − f ∗3 f ∗14) gtt

))
+ AB∗t+A

B
φ+ (f7f14 − f8f13)

×
(
im
(
(f ∗15f

∗
2 − f ∗16f

∗
1 ) gφφ + (f ∗3 f

∗
2 − f ∗4 f ∗1 ) gtφ

)
−iω

(
(f ∗15f

∗
2 − f ∗16f

∗
1 ) gφt − (f ∗4 f

∗
1 − f ∗3 f ∗2 ) gtt

))
+AB∗φ+A

B
t+ (f8f1 − f2f7)

(
im
(
(f ∗16f

∗
13 − f ∗15f

∗
14) gφφ + (f ∗4 f

∗
13 − f ∗3 f ∗14) gtφ

)
− iω

(
(f ∗16f

∗
13 − f ∗15f

∗
14) gφt − (f ∗4 f

∗
13 − f ∗3 f ∗14) gtt

))
+ AB∗φ+A

B
φ+

× (f8f1 − f2f7)
(
im
(
(f ∗15f

∗
2 − f ∗16f

∗
1 ) gφφ + (f ∗3 f

∗
2 − f ∗4 f ∗1 ) gtφ

)
− iω

(
(f ∗15f

∗
2 − f ∗16f

∗
1 ) gφt − (f ∗4 f

∗
1 − f ∗3 f ∗2 ) gtt

)))
. (6.4.179)
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To obtain (6.4.172) - (6.4.179), we consider only the terms that couple to gtt, gtφ and

gφφ because they are the leading order terms compared to the terms that couple to grr or

gθθ. This fact can be seen from equations (6.1.2) and (6.1.3) where ∆ = ∆B is a very small

number. A simple analysis of eight equations (6.4.172) - (6.4.179) shows that πij4 and θij4 are

the dominant terms in (6.4.162). Both terms are in order of ∆−3
B compared to π2, θ2, π3 and

θ3 that are in order of ∆−2
B and π1 and θ1 are in order of ∆−1

B . We show the summation of

the dominant terms πij4 and θij4 by

θ̃ij4 = πij4 + θij4 . (6.4.180)

We calculate explicitly and present all the terms of (6.4.162) in the near region limit

where ∆B � 1. We find that the leading terms in (6.4.161) (or (6.4.162)) are the terms that

contain
(
LχK−1

)†
Π3LχK−1 and

(
LχK−1

)†
ΘLχK−1 respectively. Both terms are in the

order of ∆−3
B as the contravariant components of the metric tensor, gtt , gtφ and gφφ, are in

order of ∆−1
B . Using the results in (6.4.172) - (6.4.179), the boundary action (6.2.102) turns

out to be

SB =
1

2

∫
dtdθdφ

√
−gBgrr(rB)

(RB
−)∗RB

−

(RB
+)
∗
RB

+

θ̃ij4 (θ)AB∗i+ (t, θ, φ)ABj+(t, θ, φ) + c.c. . (6.4.181)

where θ̃ij4 is given by (6.4.180). We show the (t, φ)-dependence of the boundary gauge fields

ABi+ by aBi+ according to

ABi+ = aBi+(t, φ)θ̃i(θ) , (6.4.182)

where

aBi+ = e−iωt+imφRB
+∆B , (6.4.183)

for i = t, θ, φ and

aBr+ = e−iωt+imφRB
+ . (6.4.184)

The θ-dependent functions θ̃i(θ) are given by

θ̃t = f1S− + f2S+ ,

θ̃r = f5S− + f6S+ ,

θ̃θ = f9S− + f10S+ ,

θ̃φ = f13S− + f14S+ .

(6.4.185)
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Now we will borrow the prescription in AdS/CFT, where the connection between gravity

and quantum field theories is given by

ZCFT = Zgrav. , (6.4.186)

where in our case the gravitational theory partition function is given by

Zgrav = exp(−SB(aBi+)) . (6.4.187)

In this discussion, the field aBi+ or a rescaled of it plays a role as the source on the boundary.

It is clear that the vanishing of this field yields the boundary action to be vanished as well.

Therefore, the following formula is valid,

δZ

δaBi+

∣∣∣∣
aBi+=0

= −
δSB(aBi+)

δaBi+
exp

(
−SB(aBi+)

)∣∣∣∣
aBi+=0

= −
δSB(aBi+)

δaBi+
. (6.4.188)

For the later convenient, instead of using aBi+ as the source, we will used the real part of the

rescaled one,

ABi+ =
<(aBi+)

rβ−2
B ∆

3/2
B

. (6.4.189)

Taking the functional derivative of (6.4.181) twice with respect to ABi+, we can get the

two-point function as 3

δ2SB
δABi+δABj+

= r2β−4
B

(
RB
−
)∗
RB
−

(RB
+)
∗
RB

+

Z ij , (6.4.190)

where

Z ij =

∫ π

0

dθ sin(θ){θ̃ij4 θ̃iθ̃∗j + θ̃∗ij4 θ̃∗i θ̃j}n.s. . (6.4.191)

In (6.4.191), n.s. means there is no summation over indices i and j. Moreover, we note from

the results in (6.4.172) - (6.4.179) that the leading terms in (6.4.190) correspond to indices i

and j to be t and φ only.

This is an interesting result that confirms the dual CFT to four-dimensional Kerr black

hole is a two-dimensional theory, in contrast to AdS/CFT correspondence that the dimension

of dual CFT always is one dimension less than the dimension of the bulk theory. Although

it looks very unlikely to perform the integration in (6.4.191) and find an exact analytical

3The rescaling of the boundary gauge fields is quite similar to the rescaling of the boundary gauge fields
in the context of AdS/CFT correspondence [42].
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expression for Z ij, however we can find the retarded Green’s function for the spin-1 fields

from the factor
(RB−)

∗
RB−

(RB+)
∗
RB+

in (6.4.190). The term
(RB−)

∗
RB−

(RB+)
∗
RB+

can be calculated explicitly by using

the equations (6.3.117) and (6.3.118) as(
RB
−
)∗
RB
−

(RB
+)
∗
RB

+

=

∣∣∣∣N−N+

∣∣∣∣2 r4
B

A+A∗+

(
A−A∗− +

(
τH
rB

)2β (
A−B∗− + B−A∗−

)
+

(
τH
rB

)4β

B−B∗−

)
,

(6.4.192)

and so the two-point function (6.4.190) becomes

δ2SB
δABi+δABj+

= Z ij
N−N

∗
−r

2β
B

N+N∗+

(∣∣∣∣A−A+

∣∣∣∣2 +

(
τH
rB

)2β (A−B∗−
A+A∗+

+
B−A∗−
A+A∗+

)
+

(
τH
rB

)4β

B−B∗−

)

= Z ijr2β
B

(
M4 +

N−N
∗
−

N+N∗+
(
τH
rB

)2β A−B∗−
A+A∗+

+
N−N

∗
−

N+N∗+
(
τH
rB

)2β B−A∗−
A+A∗+

+
N−N

∗
−

N+N∗+
(
τH
rB

)4βB−B∗−
)
. (6.4.193)

We have used equations (6.3.115), (6.3.116), and (6.3.121) to simplify the first term of

(6.4.193). Plugging for the ratios N∗−/N
∗
+ and B∗−/A∗+ that appear in the second term of

(6.4.193) as well as the ratios N−/N+ and B−/A+ in the third term from equations (6.3.115),

(6.3.116) and (6.3.121), we find

δ2SB
δABi+δABj+

= Z ijr2β
B

(
M4 +

(
KlM2

n (n− i)

)
r−2β
B

N−A−
N+A+

G∗R

+

(
KlM2

n (n+ i)

)
r−2β
B

N∗−A∗−
N∗+A∗+

GR +
N−N

∗
−

N+N∗+

τ 4β
H

r4β
B

B−B∗−

)
. (6.4.194)

In (6.4.194), GR stands for

GR(nL, nR) = −n (i+ n)T 2β
R

Γ (−2β)

Γ (2β)

Γ
(
β + 1

2
− inR

)
Γ
(
β − 1

2
− inL

)
Γ
(

1
2
− β − inR

)
Γ
(

3
2
− β − inL

) , (6.4.195)

where nL and nR are related to m and ω by m = nL, and n = nL + nR and we have

considered the normalization (6.3.121) as well as the relation between dimensionless Hawking

temperature τH with the right temperature TR

TR =
τH

4Mλ
, (6.4.196)

where λ → 0. The first term in bracket in (6.4.194) clearly is a constant term compared to

the other terms. The second term in (6.4.194) is the complex conjugate of the third term. In
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fact, we can ignore the fourth term of (6.4.194) compared to the other terms, as this term is

proportional to τ 4β
H . Dropping the complex conjugate term in (6.4.194) according to [41, 79]

, we find that the field theoretical two-point function (6.4.190) is equal to GRZ ij up to a

multiplicative factor that depends on momentum and is not a part of the retarded Green’s

function. The existence of multiplicative factor has also been found for the field theoretical

two-point function of spinors [41]. We note that GR(nL, nR) (given in (6.4.195)) is in exact

agreement with the proposed retarded Green’s function for the spin-1 fields in reference

[21]. Using the optical theorem for the obtained retarded Green’s function (6.4.195), we get

exactly the absorption cross section of spin-1 fields scattered off of the Kerr black hole [19].

Interestingly enough, as we mentioned before, the boundary vector field components that

contribute to the leading term of two-point function are only ABt+ and ABφ+. This fact is in

agreement with the statement of Kerr/CFT correspondence that the dual boundary theory

is a two-dimensional CFT. The two-point function (6.4.190) is a function of ω and m which

are the conjugate momenta in t and φ directions, respectively.

6.5 Two-point function of the vector fields in CFT2

According to Kerr/CFT correspondence [12, 28], the four-dimensional physics of rotating

black holes is holographic to two-dimensional CFT. The Green’s functions for field perturba-

tions with different spins have been proposed in [37, 21]. In [41], the authors found that the

spin-1/2 Green’s function can be obtained from the field theoretical technique by varying the

boundary action with respect to the spinor fields. They also found that the field theoretical

result is in agreement with what is expected from CFT calculation. The correlation function

for the spinor operators in CFT is widely known from AdS/CFT correspondence [42]. The

correlation function of conformal vector fields in Lorentz gauge has been obtained in the con-

text of AdSd+1/CFTd correspondence in [42, 100] and in covariant gauge in [101]. One crucial

point is that the correlator vanishes for d = 2 in Lorentz gauge [42, 100, 101]. However, we

expect that the correlator of conformal vector operators must not vanish in Chandrasekhar

gauge (6.1.78). The reason is that we know the semiclassical absorption cross section of spin-

1 fields in Kerr background is not zero [37, 21]. Moreover, the correlation functions definitely
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depend on the gauge condition [102]. In fact, the general form for the correlator of conformal

vector operators Oi (with conformal weight ∆) read as

〈Oi(x)Oj(y)〉 =
C

|x− y|2∆
(ηij + fij (x, y)) , (6.5.197)

where C is a constant that depends on the number of dimensions of spacetime and the

functions fij depend on the gauge condition. Although the explicit form of functions fij is

known in Lorentz gauge [42] or covariant gauge [101], however it is very unlikely to find fij’s

in Chandrasekhar gauge (6.1.78) due to the complicated structure of (6.1.78). Nevertheless,

inspired by the fact that the two-point function (6.4.190) factorizes as GRZ ij to two factors

(GR which is not sensitive to vector indices and Z ij which depends on vector indices), we

may associate the former factor to C
|x−y|2∆ and the latter to ηij + fij (x, y). In this regard, we

consider the finite temperature correlation function on a torus with circumferences 1/TL and

1/TR [41]

〈OO〉 ∼

(
πTR

sinh
(
πTRt

+
12

))2hR
(

πTL

sinh
(
πTLt

−
12

))2hL

. (6.5.198)

We note that one can obtain the two-point function of scalars [37, 21] and spin-1/2 fermions

[41] just by plugging the suitable left and right conformal weights hR = hL = β + 1/2 and

hR = β + 1/2, hL = β in (6.5.198), respectively.

Analytic continuing t to it and assuming the integer frequencies ω = 2πkT [41], the

Fourier transform of two-point function (6.5.198) becomes

〈̃OO〉 ∼
1/TR∫
0

dt+12e
iωRt

+
12

(
πTR

sin
(
πTRt

+
12

))2hR 1/TL∫
0

dt−12e
iωLt

−
12

(
πTL

sin
(
πTLt

−
12

))2hL

(6.5.199)

∼ TR
2β Γ (1− 2hR) Γ (1− 2hL)

Γ
(

1− hR + ωR
2πTR

)
Γ
(

1− hR − ωR
2πTR

)
Γ
(

1− hL + ωL
2πTL

)
Γ
(

1− hR − ωL
2πTL

) .
In computing the Fourier transform (6.5.200), we have used the formula

1/T∫
0

eiωt
(

πT

sin (πTt)

)2h

dt =
(πT )2h−1 22heiω/2TΓ (1− 2h)

Γ
(
1− h+ ω

2πT

)
Γ
(
1− h− ω

2πT

) . (6.5.200)

Identifying the frequencies as

ωR
2πTR

= −inR,
ωL

2πTL
= −inL , (6.5.201)
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and the conformal weights as

hR = β + 1/2, hL = β − 1/2 , (6.5.202)

and plugging into (6.5.200) yields the two-point function

〈̃OO〉 ∼ T 2β
R

Γ (−2β) Γ
(
β + 1

2
− inR

)
Γ
(
β − 1

2
− inL

)
sin (2πβ) Γ (2β) Γ

(
3
2
− β − inL

)
Γ
(

1
2
− β − inR

) , (6.5.203)

which is in agreement with (6.4.195) that was obtained by using the variational method. We

note that to get (6.5.203), we absorb some terms of (6.5.200) in the other part of two-point

function that is associated to ηij + fij (x, y).
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Chapter 7

Summary

The first three chapters of this thesis are the reviews on black holes in Einstein gravity,

CFT together with the AdS/CFT correspondence, and the Kerr/CFT correspondence. The

review on black holes is started with the introductions to some basic concepts in Einstein’s

general relativity. In the review, we restrict the discussion to the vacuum case only, where

the corresponding action is known as the Einstein-Hilbert action (2.1.33) from which one

can derive the vacuum Einstein gravitational equation (2.1.29). However, in chapter 5, the

system under consideration is not vacuum anymore. In the vacuum case, there are two famous

solutions to the Einstein equation. They are the Schwarzschild and Kerr spacetime solutions.

The Schwarzschild solution describes the vacuum spacetime outside of a static mass. When

the mass gets rotated, we use the Kerr solution to describe the spacetime outside of this

mass. Both Schwarzschild and Kerr spacetimes contain the black hole solution. The black

hole is formed when the mass, either in the static case or with some rotation, is contracted

by the gravity and reaches the final state as a singularity covered by the event horizon. The

blackness of a black hole comes from the fact that nothing can escape from the inside of the

black hole’s event horizon, not even light rays.

Discussing black holes only by using the Einstein’s general relativity leads to an image

that black holes are “dead” thermodynamical objects, i.e. they don’t have the entropy.

Nevertheless, Hawking’s work in the 1970s show that incorporating quantum mechanics in

understanding some physical aspects of black holes allows the radiation process to happen for

black holes. Therefore, a black hole would behave like a normal object in thermodynamics

where it absorbs and emits, thus it has entropy. It turns out that the entropy of a black hole

is a large quantity, and yet there is still no clear picture of the general theory of relativity on

how a black hole may have such large number of degrees of freedom. In fact, the entropy of
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a black hole is found to be a function of the black hole’s area, instead of the volume, which

is somehow against normal intuition. It is the deep insights of Bekenstein and Hawking in

showing the dependence of a black hole’s entropy on it’s area, which lays the foundations of

the holographic principle proposed by ’t Hooft and Susskind [10, 11].

The holographic principle asserts that the number of possible states of a spacetime re-

gion is the same as that of a system with binary degrees of freedom, such as up and down

spins, distributed on the boundary of the region. The number of such degrees of freedom

is bounded by the number of Planck area which fits the region, hence it is not infinitely

large. A realization of this principle, which is to date still the famous one, is the AdS/CFT

correspondence proposed by Maldacena in 1997 [9]. In [9], he shows the equivalence between

a gravitational theory in D + 1 dimensions and a non-gravitational theory in D dimensions.

The relation between these two distinguished theories which live in the different spacetimes,

one in the bulk and the other in the boundary illustrated in figure 3.7, is very much like

a “hologram”. To be more specific, in his famous paper [9] Maldacena proposed that the

type IIB superstring theory in AdS5 × S5 manifold describing gravity is equivalent to the

four dimensional N = 4 supersymmetric Yang-Mills theory living on the boundary of AdS5

manifold. Note that the N = 4 supersymmetric Yang-Mills theory is a conformal field theory

(CFT), from which the acronym of AdS/CFT comes.

Before the birth of AdS/CFT correspondence, conformal field theories have been used

quite extensively at least in the three different areas of theoretical physics, i.e. statistical

mechanics, interacting quantum field theory, and string theory. The discovery of AdS/CFT

even attracts more attention on the researches in conformal field theories. Even though the

AdS/CFT correspondence has been studied in many directions, it seems the real application

of this idea is still quite far from satisfaction for at least two reasons. The first one is that the

AdS background, where the gravitational system is defined in the AdS/CFT correspondence,

is not the type of the spacetime on which we are living nowadays. The second reason is

if one considers a four dimensional CFT, which somehow we can connect to real particle

phenomena, as an “image” of a gravitational theory living in the higher dimensions, the

concept of our universe which consists of more than four dimensions is still under question.

However, the ideas and deep insights in AdS/CFT correspondence are found to be very
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fruitful. Noticing that the near horizon geometry of extremal Kerr black holes (NHEK) has

the AdS-like structure, the authors of [12] proposed the Kerr/CFT correspondence which

claims that the extremal Kerr black holes have a holographic relation to the conformal field

theory in two dimensions. Extremal Kerr black holes, or at least the near extremal ones,

are very likely to exist in the universe. The Bekenstein-Hawking entropy for extremal Kerr

black holes, SBH = 2πJ , can be recovered by using the Cardy formula known in CFT2,

SCardy = π2cT/3. The central charge c is computed for the NHEK spacetime, i.e. a slice

of the spacetime near the extremal Kerr black holes, while the temperature T is the Frolov-

Thorne temperature. Quite astonishing that the formula in CFT2 can retrieve the result from

gravitational theory, but at the same time it is a quite convincing evidence that Kerr/CFT

correspondence may work in nature. Another clue for the Kerr/CFT correspondence comes

from the agreement between the absorption cross sections computed from the gravitational

theory and the CFT2. As the Kerr/CFT correspondence is still a growing subject, the last

two chapters are devoted to add more evidence of its existence.

A preliminary hint of the possibility of a system which may be holographic to a CFT2 is

the conformal symmetry possessed by the system. In the extremal case, the conformal sym-

metry can be seen directly in the spacetime structure of the near horizon of extremal Kerr

black holes. In fact, when the black holes are not in the extremal case, the conformal struc-

ture can’t be seen in the near horizon geometry, but it is hidden in the scalar wave equation

for a low energy test particle in the near region. As it is reviewed in section 4.2, after show-

ing the hidden conformal symmetry of Kerr black holes, one can establish the Kerr/CFT

correspondence in the non-extremal condition. Inspired by the study of Kerr/CFT corre-

spondence in non-extremal case [28], where the gravitational object is the electrically neutral

rotating black hole, we broaden the discussion to the electrically charged rotating black holes.

We study two black hole solutions, the Kerr-Sen black hole solution obtained in heterotic

string theory, and Kerr-Newman black hole solution which is the solution in Eintein-Maxwell

theory. Both of these black hole solutions are quite similar in their physical properties: they

both have an electric charge, rotation, and mass. However, they are different, and the results

in this thesis somehow can be used to distinguish these two black hole solutions.

In chapter 5, we find an extended family of the hidden conformal symmetry for Kerr-
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Newman and Kerr-Sen black holes, which are characterized by a deformation parameter κ.

We start by reviewing the derivation of Kerr-Sen black hole solution using the formula (5.1.3).

A detail computation in obtaining the Kerr-Sen metric, which is the spacetime solution in the

low energy limit of field theory describing heterotic string in four dimensions, is given starting

from the Kerr solution. The Kerr-Sen solution contains black holes descriptions, which occur

when the mass which is also carrying the electric charge collapses into a singularity covered

by the critical radius r+ = M − b+
√

(M2 − b2)− a2. The dynamics of scalar probes outside

of a Kerr-Sen black hole can be studied from the Klein-Gordon equation defined in the Kerr-

Sen spacetime with r > r+. Therefore, the study of hidden conformal symmetry as reviewed

in section 4.2 can also be performed in the near region of Kerr-Sen black holes. In addition

to the “near region” and “low frequency” limits applied to the scalar probe in studying the

hidden conformal symmetry for Kerr black holes, for Kerr-Sen black hole case we also need

to consider the “weakly interacting” condition, i.e. eQ � 1, where e and Q are the electric

charges of probe and black hole respectively.

The hidden conformal symmetries for Kerr-Sen black holes are worked out in both ex-

tremal and non-extremal cases. The results obtained in these works point to the conjecture of

Kerr-Sen/CFT correspondence, i.e. a duality between CFT2 and Kerr-Sen black holes. More-

over, it supports the duality between a CFT2 and rotating charged black holes, where now we

have one more example in addition to the Kerr-Newman/CFT correspondence [23, 34]. The

authors of [34] show that the hidden conformal symmetry for non-extremal Kerr-Newman

black holes have two pictures, namely J and Q pictures. In [23], the discussion for Kerr-

Newman/CFT correspondence is pushed further, where it is shown that the Kerr-Newman

black holes in extremal and non-extremal conditions have the hidden conformal symmetry,

and the J and Q pictures hidden conformal symmetries can be combined by using a SL(2,Z)

modular transformation. The SL(2,Z) modular transformation performed in the hidden

conformal symmetry discussion produces the equal φ′ and χ′ pictures, which are also called

as the general picture, depending on which parameters in the corresponding SL(2,Z) matrix

that are set to be zero.

Both Kerr-Newman and Kerr-Sen black holes are characterized by the angular momentum

J , electric charge Q, and mass M . Therefore, when we consider the charged scalar field in
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the background of Kerr-Sen spacetime, we expect to find the hidden conformal symmetries

in J picture and Q picture as a Kerr-Neman black hole possesses. However, we are unable

to show the hidden conformal symmetry for Kerr-Sen black holes in Q picture, i.e. only in

J picture where we can observe the hidden conformal symmetry. Nevertheless, we still can

construct the hidden conformal symmetry in general picture for Kerr-Sen black holes, though

the lacking of Q picture is still contained. It can be noticed from the failure of obtaining the

Q picture results from the hidden conformal symmetry generators of Kerr-Sen black holes in

general picture.

The absence of Q picture hidden conformal symmetry for a Kerr-Sen black hole can

be considered as one of the distinctions between Kerr-Sen and Kerr-Newman black holes.

This may be understood from the fact that the Kerr-Sen geometries are not obtained from

Einstein-Maxwell theory. Therefore, the “microscopic no hair conjecture” proposed in [34],

which states that each of the macroscopic hair parameters besides the mass of black holes is

associated to a holographic CFT2 dual description, applies exclusively only in the Einstein-

Maxwell theory. Moreover, the equation of motion for the dilaton in Kerr-Sen geometry

is different from the equation of motion for the Klein-Gordon field and this renders the

possibility of writing the equation in terms of squared Casimir (5.1.79) of SL(2,R)L and

SL(2,R)R. This observation is in agreement with the fact that the non-gravitational fields

don’t contribute to the central charge of conformal field theory [16].

As we know, there is only a single copy of conformal symmetry for an extremal Kerr-Sen

black hole that can be read in the near horizon of this black hole [16]. To be explicit, the

isometry group for the near horizon of extremal Kerr-Sen black hole is SL(2,R)×U(1), from

which the single conformal symmetry is obvious. In fact, in the near region1 of extremal

Kerr-Sen black holes, we can obtain several sets of generators for the conformal symmetry

of the system that are “hidden” in the low frequencies scalar wave equation. It resembles

the situation in the non-extremal case where the symmetry is SL(2,R)L × SL(2,R)R, i.e.

the generators are {H± , H0} and
{
H̄±, H̄0

}
. However, the existence of several sets of hidden

conformal symmetry generators for extremal Kerr-Sen black holes should not be associated

to the multiple copies of SL(2,R) symmetry of the system. These generators represent a

1One can verify that the near horizon consideration satisfies the near region condition.
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single copy of the spacetime conformal symmetry at the near horizon. Finding the exact

mapping between the sets of hidden conformal symmetry generators for Kerr or Kerr-Sen

black holes would be an interesting future work.

In chapter 5, we also extend the discussion of hidden conformal symmetry for Kerr-

Newman black holes in the case with deformation parameter κ. An advantage that we can

get from the deformation case, which cannot be obtained in the case with no deformation

[12, 23], is an ability in approaching the Schwarzschild limit from the results for Kerr black

holes [36], or the Schwarzschild limit from the results for Reissner-Nordstrom black holes

as shown in this thesis. The deformed hidden conformal generators for Kerr-Newman black

holes are constructed explicitly in several different pictures, namely the φ′, J , and Q pictures.

The obtained deformed hidden conformal symmetry generators in the φ′ picture reduces

to the hidden conformal symmetry of the Kerr-Newman black holes in J and Q pictures

[34], where the deformation parameter κ is set r−/r+. Setting Q = 0 in the J picture

generators of the deformed hidden conformal symmetry for Kerr-Newman black hole provides

the deformed hidden conformal symmetry generators for Kerr black hole as given in [36].

Obtaining the deformed hidden conformal symmetry generators for Reissner-Nordstrom black

holes by setting a = 0 in the Q picture deformed hidden conformal symmetry generators

of Kerr-Newman black hole [111] is a novel work presented in this thesis. The resulting

deformed hidden conformal symmetry generators for Reissner-Nordstrom black holes agree

with those obtained in [97] after setting κ = r−/r+. Furthermore, we can get the generators

for Schwarzschild black holes [89] from the deformed hidden conformal symmetry generators

of Reissner-Nordstrom black holes by setting Q = 0 after using a particular prescription,

which can’t be performed without the deformation scheme.

We also support the deformed Kerr-Newman/CFT correspondence by finding the absorp-

tion cross section of charged scalars in the Kerr-Newman background. We find a perfect

agreement between the gravitational absorption cross section and CFT2 cross section in

three different conformal pictures for the Kerr-Newman black holes. Kerr and Reissner-

Nordstrom black holes are members of the black hole family in Einstein-Maxwell theory.

These black holes can be obtained by setting the physical parameters Q = 0 and a = 0 re-

spectively from the Kerr-Newman black hole solution. Accordingly, the deformed Kerr/CFT
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and Reissner-Nordstrom /CFT correspondences observed by matching the absorption cross

section formulas from gravitational and CFT2 sides are the special cases of such analysis in

the deformed Kerr-Newman/CFT correspondence, where the limits Q = 0 and a = 0 are

taken respectively.

In chapter 6, we obtain the two-point function for the vector fields on the near horizon

of near extremal Kerr black holes [112]. We borrow the famous AdS/CFT correspondence

formula (3.4.144) where the gravitational action is an action for the vector fields in Kerr

spacetime. We then consider the appropriate boundary action for the vector fields with

respect to the boundary vector fields. One can verify the Kerr/CFT correspondence using the

vector fields by following the prescription in the AdS/CFT correspondence, i.e. deriving the

two point function for vector fields from the gravitational partition function and comparing

the result with the vectorial two point function in CFT2.

An interesting result that emerges from the explicit calculation of the boundary action

is that the degrees of freedom of boundary vector fields (which is two) supports the original

idea of Kerr/CFT correspondence that the dual theory to the four-dimensional Kerr black

hole is a two-dimensional CFT. This is in contrast to the well known AdSd+1/CFTd result

that the dimension of bulk theory is exactly one more than the dimension of dual CFT. In

fact, the two-point function for the vector fields factorizes into two terms. The first term is

not sensitive to the vector indices while the second term depends on vector indices as well

as the gauge condition. The structure of the two-point function is exactly in agreement with

the correlator of vector operators in a CFT. In deriving the two-point function of the vector

fields, we have used some approximations and considered the leading terms of the boundary

action. It is interesting to investigate the subleading terms of the boundary action to find

their contributions to the two-point function and to their dual quantities in CFT. Moreover,

deriving the correlator of conformal vector operators in Chandrasekhar gauge is another

interesting task. The dependence of Kerr/CFT correspondence on the gauge condition is the

other open question. We address these issues in future works.
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Appendix A

Ricci Tensor for Lewis metric

The component of Ricci tensor for the metric (2.2.73) are

Rtt = e−Y
(
∂2

1Ξ + (∂1Ξ) ∂1

(
Ξ +
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2
lnX
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Rt1 = Rφ1 = Rt2 = Rφ2 = 0 , (A.0.7)

where the Ricci scalar R is
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and the function Ξ is defined as

Ξ =
ln(V −W 2/X)

2
. (A.0.9)
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Appendix B

Riemann Tensor for Kerr Spacetime

To compute the Kretschmann scalar for Kerr spacetime, we need to find all the com-
ponents of the corresponding Riemann tensor. For the metric (2.2.157), the corresponding
nonzero covariant Riemann tensor (2.1.53) components are

Rrθrθ = −Mrσ

∆%2
, Rrθφt =

σ̃Ma sin θ cos θ

%4
, Rφtφt =

Mr∆ sin2 θσ

%6
,

Rrφrφ = −
sin2 θMrσ

(
r4 + 2r2a2

(
1 + sin2 θ

)
− 4Mra2 sin2 θ + a4

(
1 + 2 sin2 θ

))
∆%6

,

Rrφrt =
Maσr (3 r2 − 4Mr + 3 a2) sin2 θ

∆%6
, Rrφθφ =

3 a2σ̃ (r2 + a2)M cos θ sin3 θ

%6
,

Rrφθt = −
aM sin θ cos θ

(
r2 + a2

(
1 + 2 sin2 θ

))
σ̃

%6
, Rrtrt = −

Mr
(
2∆ + a2 sin2 θ

)
σ

∆%6
,
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aM sin θ cos θ

(
2r2 + 2a2 + a2 sin2 θ

)
σ̃

%6
, Rrtθt =

3 a2Mσ̃ cos θ sin θ

%6
,

Rθφθφ =
Mrσ (−a2∆ cos2 θ + 2 r4 + 5 a2r2 − 2 ra2M + 3 a4) sin2 θ

%6
,

Rθφθt = −raMσ (3 r2 − 2Mr + 3 a2) sin2 θ

%6
, Rθtθt = −

Mrσ
(
∆ + 2 a2 sin2 θ

)
%6

. (B.0.1)

In the results above, we have used the notations ∆ = r2 − 2Mr + a2, %2 = r2 + a2 cos2 θ,
σ = r2 − 3a2 cos2 θ, and σ̃ = 3r2 − a2 cos2 θ. In addition, the nonzero contravariant Riemann
tensor for Kerr spacetime are

Rrθrθ =
Mr∆σ

%10
, Rrφθφ =

3a2 cos θMσ̃

%10 sin θ
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,
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%10
,
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%10
,
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Ma cos θ

(
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)
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sin θ%10
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,
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Rθφθφ =
Mr (%)
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2∆ + a2 sin2 θ

)
sin2 θ%10∆

, Rθφθt =
aMrσ (3∆ + 2Mr)

%10∆
,
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Appendix C

Flux and Scattering Amplitudes

One can check that the function

F =
dU

dr∗
U∗ − dU∗

dr∗
U (C.0.1)

is conserved, i.e. dF/dr∗ = 0, where U is the solution of Regge-Wheeler equation (2.4.295).
Hence, this function is called the probability flux or flux for short related to the Regge-
Wheeler equation. The conservation of this flux can be used to show the relation between
the ingoing and outgoing amplitudes contained in the wave solutions.

First let us discuss the Schwarzschild case, where the solutions for the near horizon and
asymptotically flat regions are given in (2.4.301) and (2.4.302) respectively. From this solu-
tions, we can compute

F(r∗ → −∞) = −2iω (C.0.2)

which is the flux near the horizon, and

F(r∗ → +∞) =
(
Aoutiωe

iωr∗ − Ainiωe−iωr∗
) (
A∗oute

−iωr∗ + A∗ine
iωr∗
)

+
(
A∗outiωe

−iωr∗ − A∗iniωeiωr∗
) (
Aoute

iωr∗ + Aine
−iωr∗

)
= 2iω

(
|Aout|2 − |Ain|2

)
(C.0.3)

which is the flux at spatial infinity. The conservation of flux requires the last two equations
to be equal, hence

|Ain|2 = |Aout|2 + 1 . (C.0.4)

Now we extend our discussion to the Kerr black hole. At spatial infinity, the solution U
for Kerr spacetime behaves just like in the Schwarzschild spacetime. Therefore, the flux F
at infinity for Kerr spacetime is also

F(r → −∞) = −2iω
(
|Aout|2 − |Ain|2

)
. (C.0.5)

The ingoing solution for U at the near horizon of Kerr black holes is

U ∼ e(ω−mΩH)r∗ . (C.0.6)

hence the associated flux in this region is

F(r∗ → −∞) = −2i (ω −mΩH) . (C.0.7)

Making the equations (C.0.5) and (C.0.7) due to the flux conservation gives us

|Ain|2 − |Aout|2 =
ω −mΩH

ω
. (C.0.8)

By plugging T = 1/Ain and R = Aout/Ain in the last equation, we can get the formula
(2.4.316) which hints the superradiant effect of Kerr black holes.

243



Appendix D

Isometry transformation in AdSD+1

Isometry transformation is defined as a transformation that preserves the form of the
metric, ds2 = ds′2. Related to the metric we are using to compute the wave equations in
AdSD+1 spacetime in section 3.4, which can be read as

ds2 = dxµdx
µ =

(
x0
)−2

D∑
α=0

(dxα)2 , (D.0.1)

we will see that the mapping

xµ → yµ =
xµ

(x0)2 + (~x)2 (D.0.2)

is an isometry mapping, i.e.
dy2

(y0)2 =
dx2

(x0)2 . (D.0.3)

From the mapping (D.0.2), we have

dyµ =
dxµ

(
(x0)

2
+ (~x)2

)
− xµ (2x0dx0 + 2~xd~x)(

(x0)2 + (~x)2)2

=
x2dxµ − 2xµx · dx

(x2)2 . (D.0.4)

Here we have used the dot “·” notation in showing the contraction between two vectors. Recall
that in this AdSD+1 spacetime denoted by the metric (D.0.1), the contravariant and covariant
vectors are just the same, xµ = xµ. Therefore, the similarity between the contravariant and
covariant vectors also applies to the transformed coordianates yµ, i.e. dyµ = dyµ. It yields
the reading of the metric in terms of the transformed coordinates as

ds′2 = dyµdy
µ =

dx2

x4
. (D.0.5)

From the last equation, it is easy to check that

dy2

(y0)2 =
dx2

(x0)2 , (D.0.6)

which is just (D.0.3). In the last equation we have used

y0 =
x0

(x0)2 + (~x)2 (D.0.7)

from the mapping (D.0.2).
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Appendix E

Forms

This appendix contains a brief review of forms. An n-form F in terms of its components
can be written as

F =
1

n!
Fµ1...µndx

µ1 ∧ · · · ∧ dxµn (E.0.1)

Its Hodge-∗ dual is defined by (note |ε···| =
√
|g|)

∗F = F µ1···µp 1

p!(n− p)!
εµ1···µpν1···νn−pdx

ν1 ∧ · · · ∧ dxνn−p . (E.0.2)

One can also write it as

∗F = (dn−px)µ1···µpF
µ1···µp , (E.0.3)

(dn−px)µ1···µp =
1

p!(n− p)!
εµ1···µpν1···νn−pdx

ν1 ∧ · · · ∧ dxνn−p . (E.0.4)

With this, Stokes’s theorem
∫

Σ
d ∗ F =

∮
∂Σ
∗F can be written as∫

Σ

(dn−p+1x)µ2···µp∇µ1F
µ1µ2···µp =

∮
∂Σ

(dn−px)µ2···µpµ1F
µ1µ2···µp . (E.0.5)

A self-dual tensor satisfies the relations

∗F = F ,

and consequently
F = ∗ ∗ F .
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Appendix F

Nother Charges and Central Term in Ein-

stein Gravity

In [103], Iyer and Wald show that a diffeomorphism invariant 4-form Lagrangian1 L
can be written “manifestly covariant” form. Associated to the infinitesimal diffeomorphism
transformation of this Lagrangian, we can find the corresponding 3-form Noether current J,
and the 2-from Noether charge as well Q. Iyer and Wald use this analysis to prove the first
law of black hole mechanics for arbitrary perturbations of a stationary black hole.

It turns out the method proposed by Iyer and Wald [103], known as the covariant phase
space method, provides us a convenient way in studying the asymptotic symmetries of a
spacetime. Asymptotic symmetries are defined as the transformations that yield the metric
to be invariant up to what is allowed by the given boundary conditions. Carlip was the first
one to calculate the central charge associated to the conformal symmetries related to a black
hole horizon in [104]. Since then, there appear a lot of further developments, for example in
[104, 106, 107, 108, 109, 110]. The materials in this appendix are based on [77].

Discussing the covariant phase method in Einstein theory of gravity is quite complicated.
Therefore, to motivate the reader what is the essential of this method, we could start with
the classical mechanics case. Consider the Lagrangian L = L(q, q̇), where q = q(t) describes
the classical trajectory of a particle. The variation of this type Lagrangian with respect to
the small variation of the path is

δL =
∂L

∂q
δq +

∂L

∂q̇
δq̇

=
(∂L
∂q
− d

dt

∂L

∂q̇

)
δq +

d

dt

(∂L
∂q̇
δq
)
. (F.0.1)

where q̇ ≡ dq
dt

. The corresponding equation of motion is

G =
∂L

∂q
− d

dt

∂L

∂q̇
= 0 . (F.0.2)

In this case, the equation of motion G is expressed as a scalar. In a more general case, it
could be any arbitrary n-rank tensor depending on the tensor rank of the dynamical fields
and conjugate momenta under consideration. The variation of this equation of motion G can

1Since we are discussing the four dimensional theory, then we limit our discussion to 4-form Lagrangian
only. In general, as it is shown in [103], we can extend the discussions to the n-dimensional case.
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be read as

δG = δ

(
∂L

∂q

)
− δ

(
d

dt

∂L

∂q̇

)
=

∂2L

∂q2
δq +

∂2L

∂q̇∂q
δq̇ − δṗ

= 0 , (F.0.3)

where the momentum can be written as

p =
∂L

∂q̇
. (F.0.4)

The second term in (F.0.1) can be rewritten as

dΘ(q, δ)

dt
(F.0.5)

where Θ(q, δ) ≡ pδq. Furthermore, we can define

Ω(q; δ1, δ2) = δ1Θ(q, δ2)− δ2Θ(q, δ1)

= δ1pδ2q − δ2pδ1q , (F.0.6)

where δ1 and δ2 are the variations with respect to independent variables, say q1 and q2, where
they do not depend each other, hence δ1 and δ2 are two independent variations. The time
independence of Ω(q; δ1, δ2) is guaranteed if both δ1q and δ2q fulfill (F.0.3),

dΩ(q; δ1, δ2)

dt
= δ1ṗδ2q + δ1pδ2q̇ − δ2ṗδ1q − δ2pδ1q̇ = 0 . (F.0.7)

A Hamiltonian associated to the Lagrangian L(q, q̇) is

H = pq̇ − L (F.0.8)

whose variation can be read as

δH = Ω
(
q; δ,

d

dt

)
= δΘ

(
q,
d

dt

)
− d

dt
Θ(q, δ) = δpq̇ − ṗδq . (F.0.9)

The operator δ has been generalized to any possible operators including d/dt. Later, when
we discuss the dynamics in Einstein theory of gravity, we might use the Lie derivative Lξ as
an explicit form of operator δ. From equation (F.0.9), we can get the Hamilton equations

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (F.0.10)

Now we use the generalized coordinates, φa = {q, p} , a = 1, 2, hence we can write

Ω(φa; δ1, δ2) = Ωabδ1φ
aδ2φ

b , (F.0.11)
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where the corresponding matrix Ωab is

Ωab =

(
0 −1
1 0

)
(F.0.12)

and its inverse

Ωab =

(
0 1
−1 0

)
. (F.0.13)

By using this Ωab matrix, we can write the Poisson bracket of any two functions f(q, p) and
g(q, p)as {

f , g
}
P.B.

=
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
= Ωab∂af∂bg . (F.0.14)

We know that the Hamiltonian is the generator for time translation. For f = f(q, p), the
evolution of this function f with respect to time is

df

dt
=
∂f

∂q
q̇ +

∂f

∂p
ṗ =

∂f

∂q

∂H

∂p
− ∂f

∂p

∂H

∂q
=
{
f , H

}
P.B.

. (F.0.15)

Furthermore, the last equation tells us that the conserved quantity, or charge, related to the
time translational symmetry is the energy or Hamiltonian of the system.

We can generalize the discussion when there appear more coordinates to be handled. The
corresponding Ωab to be dealt would be more complicated, and in analogy to (F.0.9), one can
try to construct a charge Qξ related to any symmetric transformation δξ,

δQξ = Ω(φa; δ, δξ) = Ωabδφ
aδξφ

b . (F.0.16)

The Poisson bracket between two charges as defined in (F.0.16) is{
Qξ , Qζ

}
P.B.

= Ωab δQξ

δφa
δQζ

δφb
= Ω(φa; δζ , δξ) . (F.0.17)

In the followings, we will generalize the last formula by using a more complex treatment, i.e.
in the form language.

Now consider a system with an action

S =

∫
M

L , (F.0.18)

where the 4-form Lagrangian
L = L ∗ 1 . (F.0.19)

The corresponding Lagrangian density in general is L = L(φa, ∂µφ
a, ∂µ∂νφ

a, · · · ) and ∗1 =√
|g|dx1 ∧ dx2 ∧ dx3 ∧ dx4. We then consider a transformation

δεL = dMε , (F.0.20)

that leaves the Lagrangian L to be invariant or up to a total derivative which vanishes after
integration,

δS =

∫
M
dMε =

∮
∂M

Mε = 0 . (F.0.21)
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Knowing L is a 4-form, we understand that Mε would be a 3-form. On the other hand, if we
vary the dynamical fields φa, the variation of the Lagrangian can always be shown to have
the form [103]

δεL = Gaδεφ
a ∗ 1 + dΘ(φa, δε) . (F.0.22)

We notice that Ga = 0 is the equation of motion that is satisfied by φa. From the equations
(F.0.21) and (F.0.22), a Noether current can be defined as

Jε = Θ(φa, δε)−Mε . (F.0.23)

This current becomes a closed form when the equations of motion are fulfilled, dJε = −Ga ·
δεφ

a ∗1. Furthermore, when the Euler-Lagrange equation Ga = 0 is satisfied, we should have
a 2-form Qε whose relation to the 3-form current is Jε = dQε. This leads us to a definition
of a conserved charge

Qε =

∫
V
dQε =

∮
∂V

Qε , (F.0.24)

where V is a space-like slice of the spacetime manifold M and some appropriate boundary
conditions have been applied.

No we consider a transformation that is generated by the Lie derivative δξφ
a = Lξφa,

δξL = Ga · Lξφa ∗ 1 + dΘ(φa,Lξ)
= LξL = d(ξ · L) . (F.0.25)

where ξ · L means a contraction between ξ and L, i.e. we perform the Einstein summation
between the index of ξ and the first tensorial index of L. Accordingly, the Noether current
(F.0.23) is [103]

Jξ = Θ(φa,Lξ)− ξ · L . (F.0.26)

At this point, by an analogy to (F.0.6), we can define

Ω(φa; δ1, δ2) = −
∫
V

w(φa; δ1, δ2) , (F.0.27)

w(φa; δ1, δ2) = −δ1Θ(φa, δ2) + δ2Θ(φa, δ1) . (F.0.28)

The conservation of Ω(φa; δ1, δ2) is guaranteed if

dw(φa; δ1, δ2) = 0 , (F.0.29)

which yields ∮
∂M

w =

∫
M
dw = 0. (F.0.30)

Again, by an analogy to (F.0.9), we can construct a charge that corresponds to the transfor-
mation δξ = Lξ

δQξ = Ω(φa; δ,Lξ) = −
∫
V

w(φa; δ,Lξ) . (F.0.31)

In the other hand, the variation of the Noether current (F.0.26) can be read as

δJξ = δΘ(φa,Lξ)− ξ · δL

= δΘ(φa,Lξ)− LξΘ(φa, δ) + d
[
ξ ·Θ(φa, δ)

]
. (F.0.32)
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The second line of the last equation is obtained when the equation of motion Ga = 0 is
satisfied. Furthermore we can have

w(φa; δ,Lξ) = δΘ(φa,Lξ)− LξΘ(φa, δ) = dkξ(φ
a, δ) , (F.0.33)

and consequently

δQξ = −
∮
∂V

kξ(φ
a, δ) . (F.0.34)

The 2-form kξ above is defined as

kξ(φ
a, δ) = δQξ − ξ ·Θ(φa, δ) . (F.0.35)

From equation (F.0.34) we can define the charge as

Qξ(φ) =

∫ φ

φ̄

δQξ +Qξ(φ̄) = −
∫ φ

φ̄

∮
∂V

kξ(φ
a, δ) +Qξ(φ̄) . (F.0.36)

To become a physically accepted charge, Qξ(φ) which is given in the integration (F.0.50) must
be finite. The charge Qξ(φ̄) above is the value of charge in a specific background. Hence, by
an analogy to (F.0.17), the Poisson bracket between two charges Qξ and Qζ is{

Qξ , Qζ

}
P.B.

= Ω(φa;Lζ ,Lξ) = −
∮
∂V

kξ(φ
a,Lζ) . (F.0.37)

The works by Brown and Hanneaux [63] show that, with some appropriate boundary condi-
tions, the Poisson bracket between Qξ and Qζ can be written as{

Qξ , Qζ

}
P.B.

= Q[ξ,ζ] +K[ξ, ζ] . (F.0.38)

It is K[ξ, ζ] which will play an important role in getting the central charge for NHEK for
specific boundary conditions. This term is called as the central term. Moreover, Brown and
Hanneaux [63] show that a constant shift in the charges,

Qξ → Qξ + α (F.0.39)

will not change the expression of the central term K[ξ, ζ]. A benefit obtained from this fact
is we are allowed to shift the charges and choose the background which finally leaves only
the central term in the Poisson bracket (F.0.38),

K[ξ, ζ] =
{
Qξ , Qζ

}
P.B.

= −
∮
∂V

kξ(φ̄
a,Lζ) . (F.0.40)

We now discuss the application of this covariant phase method for Einstein theory of
gravity in vacuum. The 4-form Lagrangian can be read as

L =
R

16π
∗ 1 . (F.0.41)
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The Einstein tensor is

Gµν = Rµν −
R

2
gµν , (F.0.42)

and the equation of motion in the vacuum case is denoted by the vanishing of this tensor.
When the variation of the metric is denoted by hµν , i.e. δgµν = hµν , and the raising as well
as lowering indices are performed by using the metric tensor gµν , the variation of Einstein
tensor (F.0.42) is

δGµν =
1

2

[
∇ρ(∇µhνρ +∇νhµρ)− ∂ρ∂ρhµν −∇µ∇νh

]
−1

2

[
∇µ∇νh

µν − ∂ρ∂ρh−Rρσhρσ

]
gµν −

R

2
hµν . (F.0.43)

The 3-form Θ in (F.0.25) related to the variation of Lagrangian in (F.0.41) is

Θ(gµν , δ) =
1

16π
(d3x)µ

[
∇νh

µν −∇µh
]
, (F.0.44)

and consequently we have

ξ ·Θ(gµν , δ) = − 1

16π
(d2x)µν(I

µν
Θξ

) , (F.0.45)

with
IµνΘξ

= ξµ∇ρh
νρ − ξν∇ρh

µρ + ξν∇µh− ξµ∇νh . (F.0.46)

Therefore, the Noether current given in (F.0.26) associated with this Θ(gµν , δ) transforma-
tions is

Jξ =
1

16π
(d3x)µ

[
∇ν∇µξν + ∂ρ∂ρξ

µ − 2∇µ∇νξν −Rξµ
]

= − 1

16π
(d3x)µ∇ν

[
∇µξν −∇νξµ

]
. (F.0.47)

The 2-form charge that can give the above current is

Qξ = − 1

16π
(d2x)µν(∇µξν −∇νξµ) . (F.0.48)

In getting the charge in the last equation, we has used the fact that the Einstein tensor
is vanished. The variation of the charge in (F.0.48) can be obtained as

δQξ =
1

16π
(d2x)µνI

µν
Qξ
, (F.0.49)

where

IµνQξ = −h
2

(∇µξν −∇νξµ) + hµρ∇ρξ
ν − hνρ∇ρξ

µ − (∇µhνρ −∇νhµρ)ξρ . (F.0.50)

Then finally, from equation (F.0.35), we can get the 2-form

kξ(gµν , δ) =
1

16π
(d2x)µνk

µν , (F.0.51)
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with

kµν = IµνQξ + IµνΘξ
= ξν∇µh− ξν∇ρh

µρ +
h

2
∇νξµ − hνρ∇ρξ

µ + ξρ∇νhµρ

−
(
ξµ∇νh− ξµ∇ρh

νρ +
h

2
∇µξν − hµρ∇ρξ

ν + ξρ∇µhνρ
)
,(F.0.52)

and

(dn−px)µ1···µp =
1

p!(n− p)!
εµ1···µpν1···νn−pdx

ν1 ∧ · · · ∧ dxνn−p . (F.0.53)
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Appendix G

Chemical Potential

This appendix is a very brief introduction to the chemical potential that can be found
in the discussion of a system with variable mass. Suppose that the number of moles N of
substance in our system increases by dN at constant temperature T and pressure P . Let
the internal energy, entropy, and and volume of our N moles of substance are U, S and V
respectively. The corresponding quantities referred to one mole would be u, s and v, i.e.

u =
U

N
, s =

S

N
, v =

V

N
. (G.0.1)

Changes in u, s and v where the mass is kept fixed can be read as

du = Tds− Pdv . (G.0.2)

However, equation (G.0.1) tells us

du =
dU

N
− UdN

N2
,

ds =
dS

N
− SdN

N2
,

dv =
dV

N
− V dN

N2
. (G.0.3)

From (G.0.2) and (G.0.3) we can get

dU = TdS − PdV + (U − TS + PdV )
dN

N
. (G.0.4)

The coefficient of dN in equation above is the Gibbs free energy per mole, which for a one
component system is called the chemical potential µ. Hence we can rewrite equation (G.0.4)
as

dU = TdS − PdV + µdN . (G.0.5)

When we have more than one substance, i.e. each substances has Ni moles, then the last
formula can be generalized to

dU = TdS − PdV + µidNi . (G.0.6)

Then µi is the free Gibbs energy per mole for each components we have. Consequently, we
can write

µi = −T
(
∂S

∂Ni

)∣∣∣∣
U,V

. (G.0.7)
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Appendix H

Gauss’ Theorem in Curved Space

In vector calculus, we are familiar with Gauss’ theorem∫
V

(
∇ · ~K

)
dV =

∮
S

(
~n · ~K

)
dS (H.0.1)

which says the integration over a volume V of a divergence of a vector ~F is equal to an
integration over a closed surface of a scalar product between the vector ~F and a unit vector
~n that normal to the closed surface under consideration. See figure H.1 for an illustration.
The curved spacetime version of equation (H.0.1) is∫

V

√
−g∇µK

µd4x =

∮
∂V

KµdSµ. (H.0.2)

To prove the equation (H.0.2), first let us construct the spacetime we are discussing. The
spacetime V is four dimensional manifold with metric tensor gµν in spherical coordinates
t, r, θ and φ. The boundary ∂V is taken by setting the radius r to be fixed, say the boundary
radius rB, and described by three coordinates t, θ and φ. The center of volume V here is
denoted by a dot in the middle of the left side picture in the figure H.2. Each of layers
represented by the dashed closed curve has the same and fixed radius, and this layer grows
radially outward from the center and finally reach the boundary with radius rB. The points
where the layer starts to grow and stop will be used later as the range of integration.

Now we can do some algebraic manipulation on (H.0.2),∫
V

√
−g∇µK

µd4x =

∫
V

∂µ
(√
−gKµ

)
d4x

=

∫
dr

∮
∂r
(√
−gKr

)
d3x+

∫
dr

∮
∂k
(√
−gKk

)
d3x

=

∫
dr

∂

∂r

∮ √
−gKrd3x

=

∮ √
−gKrd3x

∣∣∣∣r=rB
r=0

=

∮ (√
−gKr

)∣∣∣∣
r=rB

d3y . (H.0.3)

The index k in the second line of equation above represents component of boundary coordi-
nates, which are time angular coordinates θ and φ. The boundary ∂V is described by the
coordinates y, and it is assumed the value of integrand in the last line of equation above
vanishes at r = 0.
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Figure H.1: An illustration of the volume and surface related to the Gauss’ theorem.

Figure H.2: A sketch of Gauss’ theorem proof.
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