

 CDAR: Contour Detection Aggregation and Routing in Sensor Networks

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Venkat Aveen Reddy Pulimi

 © Copyright Venkat Aveen Reddy Pulimi, April 2010. All rights reserved.

i

Permission To Use

 In presenting this thesis in partial fulfillment of the requirements for a Post-graduate

degree from the University of Saskatchewan, I agree that the Libraries of this University

may make it freely available for inspection. I further agree that permission for copying of

this thesis in any manner, in whole or in part, for scholarly work or, in their absence, by

the Head of the Department or the Dean of the College in which my thesis work was

done. It is understood that any copying or publication or use of this thesis or parts thereof

for financial gain shall not be allowed without my written permission. It is also

understood that due recognition shall be given to me and to the University of

Saskatchewan in any scholarly use which may be made f any material in my thesis.

 Requests for permission to copy or to make other use of material in this thesis in

whole or part should be addressed to:

 Head of the Department of Computer Science

 176 Thorvaldson Building

 110 Science Place

 University of Saskatchewan

 Saskatoon, Saskatchewan, Canada

 S7N 5C9

ii

Abstract

 Wireless sensor networks offer the advantages of low cost, flexible measurement of

phenomenon in a wide variety of applications, and easy deployment. Since sensor nodes

are typically battery powered, energy efficiency is an important objective in designing

sensor network algorithms. These algorithms are often application-specific, owing to the

need to carefully optimize energy usage, and since deployments usually support a single

or very few applications.

 This thesis concerns applications in which the sensors monitor a continuous scalar

field, such as temperature, and addresses the problem of determining the location of a

contour line in this scalar field, in response to a query, and communicating this

information to a designated sink node. An energy-efficient solution to this problem is

proposed and evaluated. This solution includes new contour detection and query

propagation algorithms, in-network-processing algorithms, and routing algorithms. Only

a small fraction of network nodes may be adjacent to the desired contour line, and the

contour detection and query propagation algorithms attempt to minimize processing and

communication by the other network nodes. The in-network processing algorithms

reduce communication volume through suppression, compression and aggregation

techniques. Finally, the routing algorithms attempt to route the contour information to the

sink as efficiently as possible, while meshing with the other algorithms. Simulation

results show that the proposed algorithms yield significant improvements in data and

message volumes compared to baseline models, while maintaining the integrity of the

contour representation.

iii

 Acknowledgements

 I take this opportunity to specially acknowledge and extend my gratitude to the

people who made the successful completion of this thesis possible.

 First and foremost I want to express my sincere appreciation to my supervisors,

Dr. Derek Eager and Dr. Kevin Stanley for their incredible support throughout my thesis.

Dr. Eager encouraged me to work in Wireless Sensor Networks as there was plenty of

scope for improvement in this area, which I found it to be fascinating in course of time.

Dr. Eager and Dr. Stanley steered me in the right path by providing me the necessary

guidance and sharing their valuable knowledge during the meetings and discussions.

They have taught me different ways to approach a problem which in turn helped me to

improve my critical thinking and reasoning skills. I also appreciate the amount of effort

they put in correcting my thesis.

 I gratefully acknowledge my committee members, Dr. Dwight Makaroff, Dr. Mark

Keil and Dr. Eric Salt (external) for their invaluable feedback on my thesis.

 I am grateful to the office and technical staff members in the computer science

department for assisting me in many different ways. In particular, I want to thank

our graduate secretary Jan Thompson for providing timely help whenever needed.

 I wish to thank each and every friend of mine for being on my side during the good

and bad times. I am also very much indebted to the University of Saskatchewan Indian

Student Association for providing me assistance during my initial days at Saskatoon.

 I want to express my heartfelt thanks to Walter Bergen and Luella Bergen for treating

me as a part of their family. The love, care and support they provided me throughout my

time at the University of Saskatchewan made me feel like home away from home.

 Lastly, and most importantly, I wish to sincerely thank my parents, Dinakar Reddy

Pulimi and Sailaja Pulimi and my sister, Asritha Srireddy for their unconditional support

and love which has been my greatest strength all through my life. I dedicate this thesis to

my loving parents and sister.

iv

 Contents

 Permissions To Use i

 Abstract ii

 Acknowledgements iii

 Contents iv

 List of Tables viii

 List of Figures ix

 List of Acronyms xi

CHAPTER 1 ..1

INTRODUCTION ...1

1.1 Wireless Sensor Networks ...1

1.2 Considerations in WSN Design..4

1.3 Contour-based WSN Application...6

1.4 Thesis Contributions..8

1.5 Thesis Organization ...9

CHAPTER 2 ..10

BACKGROUND ...10

2.1 Network Topology...10

2.1.1 Network Hierarchies ..11

2.1.1.1 Backbone-Based ...11

2.1.1.2 Clustering ...12

2.1.1.3 Controlling the Transmission Power ...12

2.2 Queries ..13

2.3 In-network Processing ...17

2.4 Routing..18

2.4.1 Network Topology ...19

2.4.2 Application Dependence ..20

v

CHAPTER 3 ..22

RELATED WORK ..22

3.1 Contour Detection and Query Propagation Mechanisms.......................................22

3.2 Contour In-network Processing Schemes ...24

3.3 Contour Data Routing Techniques ...27

3.4 Contour Applications Research Problems ..27

CHAPTER 4 ..31

PROTOCOL FRAMEWORK ..31

4.1 Assumptions ..31

4.2 General Solution..32

4.3 Querying Techniques...32

4.3.1 Contour Detection Techniques ...34

4.3.1.1 Flooding ...34

4.3.1.2 Single Pattern-Based Contour Detection ...36

4.3.1.3 Multiple Pattern-Based Contour Detection ..40

4.3.1.4 Raster Scan-Based Query Propagation ..41

4.3.2 Query Propagation Technique ..42

4.3.2.1 Cluster-based Query Propagation..43

4.4 In-network Processing Techniques...46

4.4.1 Compression Techniques ...47

4.4.1.1 Spatial Compression Algorithm ..48

4.4.1.2 Temporal Compression Algorithm..50

4.4.2 Suppression Techniques ...50

4.4.2.1 Spatial Suppression Techniques ..51

4.4.2.2 Suppression Logic ..51

4.4.2.3 No-Suppression Algorithm ...54

4.4.2.4 Cluster-Based Spatial Suppression Algorithm...58

4.4.2.5 Temporal Suppression Techniques..65

4.5 Contour Data Routing Algorithms ...67

4.5.1 Flooding-based Shortest Path Routing..68

4.5.2 Flooding-based Aggregation Tree-based Routing69

vi

4.5.3 Information-driven Shortest Path Routing ..72

4.5.4 Information-driven Aggregation Tree-based Routing73

4.5.5 Information-driven Contour/Aggregation Tree-based Routing....................75

4.5.6 Information-driven Contour and Shortest Path Routing78

4.6 Summary ...79

CHAPTER 5 ..81

EXPERIMENTAL METHODOLOGY ..81

5.1 System Modeling Assumptions..81

5.2 Simulation Platform...83

5.3 Implementation of System Model ..84

5.4 Simulation Execution...87

CHAPTER 6 ..89

SIMULATION EXPERIMENTS...89

6.1 Effect of Suppression...89

6.2 Varying the Suppression Threshold ...93

6.3 Impact of Sink Location...96

6.4 Contour Dependence..98

6.5 Network Scalability ...101

6.6 Contour Reconstruction ...104

6.7 Summary ...106

CHAPTER 7 ..107

CONCLUSIONS..107

7.1 Thesis Summary ..107

7.2 Discussion ...110

7.3 Thesis Contributions..111

7.4 Future Work ..113

A. APPENDIX ...120

A.1 Timer Types ..120

A.1.1 CM/GN Query Response Receive Wait Timer ...120

A.1.2 Sink Query Response Receive Wait Timer ...120

A.1.3 CH Aggregate Data Synchronization Timer ...121

vii

A.1.4 Aggregate Data Wait Timer ...121

A.2 Packet Types ...122

A.2.1 Sink Query Request ...122

A.2.2 CH Query Request/ Forward CH Query Request124

A.2.3 CM/GN Reading Request...126

A.2.4 CM/GN Query Response..126

A.2.5 Sink Query Response ...128

A.2.6 Change Parent CH ID Request ...128

viii

List of Tables

4.1 Algorithms overview ..68

ix

List of Figures

 1.1 Clustered network topology ...2�

 1.2 Sensor node block diagram..3�

 4.1 Overview of query techniques..33�

 4.2 Flooding algorithm ..36�

 4.3 Single ray-based contour detection...38�

 4.4 Ray-based contour detection algorithm ..39�

 4.5 Multiple pattern-based contour detection ...41�

 4.6 Raster scan-based contour detection...42�

 4.7 Query propagation along the contour after contour detection44�

 4.8 Cluster-based query propagation algorithm..46�

 4.9 Spatial encoding algorithm ..49�

 4.10 Spatial decoding algorithm ..49�

 4.11 Illustration of the Suppression logic ...53�

 4.12 Suppression logic...54�

 4.13 Illustration of the No-suppression algorithm ..56�

 4.14 No-suppression algorithm..58�

 4.15 Illustration of the Cluster-based spatial suppression algorithm62�

 4.16 Cluster-based spatial suppression algorithm...65�

 4.17 Illustration of the F/SPR algorithm ..69�

 4.18 Illustration of the F/ATR algorithm..70�

 4.19 F/ATR algorithm ...71�

 4.20 Illustration of the I/SPR algorithm ...72�

 4.21 Illustration of the I/ATR algorithm ..74�

 4.22 I/ATR algorithm ..75�

 4.23 Illustration of the I/CATR algorithm..76�

 4.24 I/CATR algorithm..78�

 4.25 Illustration of the I/CSPR algorithm...79�

 5.1 Continuous scalar field ..86�

x

 5.2 Contour Map ...87�

 6.1 Effect of cluster-based spatial suppression on contour data90�

 6.2 Effect of cluster-based spatial suppression on message transmissions91�

 6.3 Effect of cluster-based spatial suppression on data for different contours...............91�

 6.4 Effect of spatial suppression on messages for different contours92�

 6.5 700x700 meters contour map ...93�

 6.6 Contour reconstruction at different suppression thresholds.....................................94�

 6.7 Effect of suppression threshold on suppression of contour data..............................95�

 6.8 Effect of suppression threshold on suppression of message transmissions96�

 6.9 Impact of sink location on contour data..97�

 6.10 Impact of sink location on message transmissions..98�

 6.11 Influence of contour shapes and sizes on contour data..99�

 6.12 Influence of contour shapes and sizes on message transmissions..........................99�

 6.13 Effect of network scalability on contour data ...102�

 6.14 Effect of network scalability on message transmissions......................................103�

 6.15 Contour reconstruction at the sink from the received points105�

 A.1 Sink Query Request ..123�

 A.2 CH query request/ Forward CH query request packet format...............................125�

 A.3 CM/GN reading request packet format..126�

 A.4 CM/GN query response packet format. ...127�

 A.5 Sink query response packet format..128�

 A.6 Change parent CH ID request packet format ...128�

xi

List of Acronyms

WSN – Wireless Sensor Network

CH – Cluster Head

CM – Cluster Member

GN – Gateway Node

F/SPR – Flooding-based Shortest Path Routing

F/ATR – Flooding-based Aggregation Tree-based Routing

I/SPR – Information-driven Shortest Path Routing

I/ATR – Information-driven Aggregation Tree-based Routing

I/CATR – Information-driven Contour/Aggregation Tree-based Routing

I/CSPR – Information-driven Contour/Shortest Path Routing

1

CHAPTER 1

INTRODUCTION

Recent years have witnessed tremendous growth in Wireless Sensor Network (WSN)

research. Various applications that involve sensing, monitoring, tracking and detection of

a phenomenon make use of the WSNs to complete their tasks. This thesis focuses on

design and performance issues for WSN applications in which the sensors monitor a

continuous scalar field, such as temperature, and in where the primary task is to

determine contour line locations in this field. Given a query asking for location of a

particular contour line (for example, 20 degree temperature), the objective of the

algorithms in this thesis is to detect the contour in an efficient and reliable manner,

perform in-network processing to remove the redundant contour data and route the

contour data to the destination sink node using an energy-efficient path.

The remainder of this chapter is organized as follows. Section 1.1 gives an overview of

WSNs and the wide range of applications that make use of them. Important

considerations in WSN design are discussed in Section 1.2. Contour-based WSN

applications are discussed in Section 1.3. Section 1.4 summarizes the contributions of the

thesis to the design and performance study of algorithms for contour-based WSN

applications. Section 1.5 lays out the structure of the remainder of the thesis.

1.1 Wireless Sensor Networks

WSN applications involve sensing, tracking, and monitoring external phenomena. A

WSN is an ad hoc network consisting of a collection of sensor nodes that are deployed

within some region of interest. Figure 1.1 shows the clustered WSN topology that is used

in thesis simulation experiments. Each node in a cluster is assigned a role and the node’s

2

functionality is based on this role. Cluster Head (CH), Cluster Member (CM) and

Gateway Node (GN) are the standard roles assigned within clusters discussed in this

thesis. The CH carries out control, coordination and cluster processing functions such as

propagation of a query within the cluster and aggregating member data before forwarding

the data to the destination. Each GN acts as a bridge between two different clusters for

forwarding messages and data between the clusters. Each CM carries the messages and

data between the GNs and the CH. Aggregated data at each CH is forwarded to the sink

using an efficient path.

 Figure 1.1: Clustered network topology

Each sensor node is comprised of a sensing unit, a processing unit, a transceiver unit and

a power unit as shown in Figure 1.2. The sensing unit consists of sensors and analog to

digital converters. The processing unit performs the information processing that allows

the sensor node to collaborate with the other nodes to carry out the assigned sensing

3

tasks. The transceiver unit is responsible for the transmission and reception of data from

the wireless medium. The power unit is used to hold the batteries to supply energy for the

node to function. Since the nodes depend on batteries for their power supply, energy is a

major constraint in these networks. Therefore it is desirable to provide an energy efficient

solution to a WSN application that increases network longevity by reducing the amount

of data transmission and reception by the nodes and yet provides accurate results.

 Figure 1.2: Sensor node block diagram [1]

WSNs have been gaining popularity due to their low maintenance cost, unattended

operation, easy deployment and low hardware cost. Most of the data collection solutions

in WSNs are application specific, because the potential energy savings of an application

specific data collection solution outweigh the drawbacks of additional development.

Also, deployments typically serve a single application only (rather than multiple

4

applications concurrently as does a computer system). WSNs are very broadly applicable,

and can be used for detection, tracking, monitoring and controlling. These sensor

applications can be typically classified as either event-driven or demand-driven. In an

event-driven application, when a sensor node detects a particular event it informs the

sink. For example, in case of a volcanic eruption, the nodes inform the sink on detecting

the event. On the other hand, in demand-driven applications, sensors respond only if they

receive a query from the sink. For example, consider a contour-based sensor application

in which the location of a 10 degree temperature contour is needed. On receiving the

query from the sink, nodes interact with each other to find if a 10 degree contour is

detected in their vicinity. If so, the nodes that have detected the contour inform the sink.

Spatio-temporal event monitoring, residual energy monitoring, faulty sensor detection

and tracking targets such as animal, human, vehicle movements are some examples of

different contour-based applications [2, 3]. A real-world coal mine surveillance

application is used for detecting events using contours [4]. For the safety of the workers,

the application detects two classes of events by deploying hundreds of sensors along the

channels of the mine. One class of events is to detect gas, dust and water leakage. The

other class of events monitors high and low oxygen density regions in the mine to ensure

atmospheric quality.

1.2 Considerations in WSN Design

There are many challenges involved in designing algorithms for WSNs. It is not possible

to find a single optimal design for all possible applications. WSNs are influenced by

many factors, such as fault tolerance, scalability, resource constraints, topology control,

transmission media and quality of service [5].

Fault tolerance: Nodes may fail due to loss of power, physical damage or environmental

interference. The failure of a single sensor node should not compromise the overall task

5

of the WSN. Fault tolerance should be considered in schemes where node failures might

hamper the completion of the required task, such as intrusion detection.

Scalability: Hundreds or thousands of nodes may be deployed in a single network. The

performance of the protocols shouldn’t deteriorate as network size increases.

Resource constraints: Power is used by the node for sensing, communication and data

processing. Of these, data communication usually consumes more power than processing

of the data locally and is proportional to the amount of data transmitted or received. The

lifetime of a sensor network depends on the power resources of the nodes, which is

constrained by the size of the nodes. Moreover, in remote deployments it is not feasible

to replace the power sources present at the nodes. To avoid power depletion and increase

the longevity of the network energy efficient algorithms should be employed.

Topology control: A node’s transmission can be received by its neighbours. The number

of nodes receiving this transmission is proportional to the node’s transmission power.

Greater power results in the node’s transmission being received by neighbours that are

further away and in some cases these received transmissions may be deemed unnecessary

and discarded, wasting the sending node’s power. Similarly, if the transmission power is

too low, the node’s transmissions may not be received by the nodes that should receive

them. To avoid these problems, topology control schemes should be used to control each

node’s transmission power levels, implement network hierarchies and turn off

unnecessary nodes.

Transmission media: In WSNs nodes usually communicate wirelessly using radio,

infrared or optical signals that might encounter error prone channels and interference. To

avoid these problems robust coding and modulation schemes should be used while

transmitting the data.

6

Quality of Service: There is no fixed set of requirements that a sensor application must

meet as the requirements vary from one application to another. In some applications, data

reliability is a must for the application to work efficiently while for others it may be less

critical. Similarly, some applications are tolerant to delay while delay may render the data

useless in others.

These problems and challenges make WSNs an interesting research field, as there are

ample opportunities for the development of efficient solutions. As explained before,

solutions to a problem in WSNs are application specific. In this thesis a scalable, energy-

efficient solution is described for contour-based WSN applications, by providing

improvements in contour detection, query request propagation, in-network processing

and query response routing.

1.3 Contour-based WSN Application

A contour-based application gives an overview of the phenomenon across a sensor field

by constructing contour lines from the sensor readings. A contour line or isoline is a

curve that connects points of similar value. Natural contours are generally continuous and

smooth. Moreover, these contours are not uniformly spread throughout the network and

pass close to only a subset of nodes. Contour line is a generic term used for any kind of

phenomenon whose value can be described by a real number at different points in space

and/or time. However, based on the monitored phenomenon, the term can be made

specific. For example, isotherm is a line that connects points on a map with the same

temperature.

For a node to detect the presence of a contour in its vicinity, it has to receive the sensed

readings from the neighbouring nodes. On receiving the readings, the node can compare

its sensed reading to that of the readings received from its neighbours. If these readings

lie on either side of the contour value defining the contour line, then the presence of a

7

contour is detected by the node. For example, consider a query in which the sink is

interested in a 10 degree temperature contour. If a node’s sensed temperature is 9 degrees

and that of a neighbour node is 11 degrees then a 10 degree contour exists between these

nodes.

This thesis considers specifically contour-based applications in which queries for the

current location of a particular contour line are issued by the sink node. Flooding is one

method to propagate the query into the network and it results in the query being

propagated through the entire network. Since a contour line is typically not present

throughout the entire network, this approach can be inefficient. Random walk, gradient

routing or contour trees can be used instead. Random walk and gradient routing schemes

route the query greedily based on local information [30-34]. Contour tree schemes, on the

other hand, preprocess the signal field and construct a contour tree based on the contour

values enabling the query to be routed along the tree efficiently [3].

In a sensor field, spatial and temporal correlations in data exist. Forwarding the raw

contour data without performing in-network processing results in unnecessary resource

wastage. Moreover, the sink may not be interested in all of the received correlated data.

In-network processing techniques such as data aggregation and data compression can be

performed to remove the redundant data [6]. Data aggregation uses various aggregation

functions such as MAX, MIN or AVG or application-level parameters to suppress the

redundant data. Even after aggregation is performed the actual data that is being

transmitted can be further compressed using various encoding techniques. These

processing schemes can be applied locally at the node level or globally in a distributed

manner while the contour data is propagated to the sink. Forwarding of the processed

contour data to the destination is usually done along the reverse path of the query, or the

shortest path using an aggregation tree or independently. An aggregation tree is a

minimum spanning tree with the sink or destination as its root, on which data aggregation

takes place while the data is being propagated to the sink.

8

Existing research mainly focuses only on particular aspects like contour detection, query

propagation, in-network processing or data routing to improve the efficiency of a

contour-based WSN application [2-4, 31-41]. There are a number of problems with the

current schemes. In some of the current approaches, efficient distributed in-network

processing and routing of the contour data to the destination using an aggregation tree can

be done only when the query is flooded in the network. However, the gain obtained due

to efficient in-network processing and data routing may be small compared to the cost of

flooding the network to propagate the query. To avoid flooding some approaches use an

efficient algorithm to propagate the query such as random walk, gradient routing or

contour trees to detect the contour and then route the data in the reverse path of the query

or shortest path after aggregating along the contour. These techniques do not guarantee

that the data is routed to the destination in an efficient manner. Reverse paths to the

destination are not always the shortest paths and any hop in the reverse path that is not on

the shortest path to the sink may result in resource wastage. Similarly, aggregating the

contour data along the contour and routing the overall data to the sink in the shortest path

is also expensive. The cost of routing may exceed the query flooding cost due to the large

data payload if the route is suboptimal. In this thesis, all these problems are addressed

in detail and an overall efficient end-to-end solution for contour-based WSN applications

is proposed.

1.4 Thesis Contributions

This thesis focuses on providing a novel overall efficient solution for contour-based

sensor applications. The proposed solution includes a method of propagating and

processing a query so as to find a point on the requested contour, an efficient and reliable

manner of propagating the query along the contour, efficient in-network processing so as

to remove redundant contour data, and data routing along an efficient path. Moreover, the

proposed approach provides the flexibility to incorporate other distributed in-network

processing schemes. The main contributions of this thesis are:

9

· Methods for query routing and processing that find a point on the requested

contour and then propagate the query along the contour in a reliable and

efficient manner.

· In-network processing techniques using both aggregation and compression

algorithms to remove and reduce the redundant data while propagating the data

to the sink.

· Data routing algorithms that work well with the proposed contour detection, query

propagation, and in-network processing schemes and route the contour data to the

sink in an efficient manner.

1.5 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 gives an overview of

various basic WSN techniques which are used by the proposed algorithms. Chapter 3

describes related research on contour-based WSN applications. Chapter 4 describes the

design of the algorithms in detail. Chapter 5 discusses the simulation methodology

for performance evaluation. Chapter 6 presents results from the simulation experiments

that are carried out. Chapter 7 summarizes the thesis and outlines possible areas for

future work.

10

CHAPTER 2

BACKGROUND

WSNs provide the capability of monitoring a particular phenomenon without significant

human intervention. The flexibility they provide creates various problems and challenges,

as explained in the previous chapter. Moreover, the solutions to these challenges are

mostly application specific. This chapter presents background concerning WSNs that is

relevant to the work in this thesis. Section 2.1 gives an overview of different network

topologies in WSNs. Interest propagation by the sink using different queries is explained

in section 2.2. Section 2.3 explains different in-network processing techniques to remove

redundant data. Section 2.4 describes different routing techniques to route the

information in WSNs.

2.1 Network Topology

In WSNs, issues like signal interference, multiple transmission routes to the destination

and reconstruction of routes in case of node failure are known. These problems can be

overcome to a certain extent by topology control schemes. A topology scheme provides

reliability, high throughput, connectivity, energy efficiency and potentially mobility by

controlling each node’s transmission power level or through careful selection of those

nodes within transmission range that will be used for packet forwarding (i.e., will be

neighbours in the network routing topology). Most commonly, topologies are formed by

either controlling the transmission power or by imposing a hierarchy onto the network.

11

2.1.1 Network Hierarchies

In hierarchical topologies, the emphasis is on selecting a set of nodes which are assigned

special coordination, control, and for routing responsibilities compared to the rest of the

nodes present in the network. This can be achieved either by clustering or backbone-

based techniques.

2.1.1.1 Backbone-Based

A subset of nodes which form the backbone are selected such that the each other node is

connected to at least one of these backbone nodes and the backbone is connected to the

sink. This is an example of the Connected Dominating Set (CDS) problem. The backbone

is created by constructing trees, connecting independent sets and/or by pruning

techniques. Trees can be constructed using centralized or distributed approaches. Prim’s

algorithm [7] is used for constructing a minimum spanning tree in a centralized manner.

On the other hand, the A3 protocol proposed by Wightman and Labrador [8] constructs a

tree in a distributed manner using node energy and distance information. In the second

approach, independent sets are created and then connected to form the backbone. An

independent set consists of nodes that don’t have any edges between them. These

independent sets might not be connected, so in the later stage a minimum set of nodes are

selected to connect these sets. The Energy Efficient Connected Dominating Set (EECDS)

algorithm proposed by Zeng et al. [9] uses this approach. The final approach uses pruning

techniques to reduce unnecessary nodes selected in the backbone and yet maintain the

connectivity. It can be used with the other techniques mentioned to get the initial set of

nodes and later prune them accordingly. The Connected Dominating Set under Rule K

(CDS-Rule-K) algorithm proposed by Wu and Dai [10], and Wu and Li [11] makes use

of this approach.

12

2.1.1.2 Clustering

The network is partitioned can be partitioned into several clusters. The nodes within each

cluster may be assigned different roles. For example, in the topology assumed in this

thesis each cluster consists of Gateway Nodes (GNs), Cluster Members (CMs) and a

Cluster Head (CH), which may be dynamically determined or statically configured. The

members perform the sensing operations and transmit the sensed data to the CH; the CH

may perform data aggregation before routing the data via the neighbouring clusters to the

sink. Routing to the neighbouring clusters is done by a GN. Use of a hierarchical

topology can save node energy and prolong the network lifetime because nodes do not

transmit data individually to the sink. However, if no aggregation occurs, the additional

overhead can reduce efficiency. Gerald and Tsai [12] have proposed a clustering

approach based on the highest degree heuristic. In this approach, a node is selected as a

CH if it has the highest number of neighbours. Baker and Nephritides [13] have proposed

a clustering approach that uses lowest node ID heuristic in CH decision making. Hein

Zelman et al. [14] have proposed a clustering algorithm called Low Energy Adaptive

Clustering Hierarchy (LEACH). In LEACH a sensor node chooses a random number

between 0 and 1. If the number is less than a threshold value then the node becomes a CH

for the current round. Chattered et al. [15] have introduced a Weighted Clustering

Algorithm (WCA) which heuristically combines several attributes such as battery power,

node degree, transmission power, and node mobility into a single weight parameter,

which is used in the election process for choosing a CH.

2.1.1.3 Controlling the Transmission Power

The objective of transmission power control is to build a reduced topology while

maintaining an overall connected network. Location, direction and/or neighbour count

information can be used to set the transmission range in a distributed manner. The Local

Minimum Spanning Tree (LMST) protocol proposed by Li et al. [16] is a distributed

location-based topology control scheme in which each node creates a Euclidean

Minimum Spanning Tree (EMST) from the location information of the neighbouring

13

nodes. Later, it sets a transmission range that allows it to reach its farthest neighbour in

the EMST. Directional information can also be used for controlling the range. The

direction of the incoming angle of the signal can be detected if the node has a directional

antenna and the distance using various techniques like the Received Signal Strength

Indicator or Time of Arrival. The Yao Graph algorithm proposed by Yao [17] is a

directional-based topology control scheme which woks in two phases. In the first phase,

the original network is partitioned into a sub-network based on the MST and in the final

phase it is pruned. The final technique is based on the node’s neighbours. The goal is to

connect a node with a minimum number of neighbours and minimum power and yet

maintain the network connectivity. The K-Neighbour protocol proposed by Blough et al.

[18] ensures that each node is connected by the number of neighbours specified by the

parameter K.

In CDAR, algorithms are built on a statically configured two-hop cluster-based

hierarchical topology control scheme which ensures better network connectivity. In a

two-hop cluster the maximum hop distance between the CH and any node on the cluster

boundary is utmost two-hops. However, the proposed algorithms can be extended to

multi-hop clusters also. As explained in the clustering section, each of the nodes is

assigned certain roles to perform within a cluster and the assignment of these roles is

done through an election process. However, in the algorithms we assume the roles of the

nodes within the cluster are also pre-configured. Moreover, maintenance or fault

tolerance of the clusters is not addressed, as it is outside the scope of the thesis. However,

any geographically aware clustering scheme could be integrated with the

proposed algorithms.

2.2 Queries

In contour-based applications, preprogramming the nodes with some specific contour

values makes it difficult for the user to change them to different values at a later point of

14

time. To avoid this problem, the sink can specify these values in a query and propagate

the query into the network. For contour applications, apart from specifying the contour

value in the query, other parameters for performing in-network processing may also be

specified. Most of the sensor nodes store the data received from their neighbours in the

form of records in a table. Parsing of these records can be done using queries in

Structured Query Language (SQL) or using application specific programming languages.

A query template in the SQL language was suggested by Yao and Gherkin [19] :

SELECT {aggregates (attributes)}

FROM {Sensor data S}
WHERE {predicate}

GROUP BY {attributes}
HAVING {predicate}

DURATION time interval
EVERY time span e

The SELECT clause is used to extract data and represent it in a user friendly manner as

specified by the attributes and aggregates. These aggregates are functions like MAX,

MIN and AVG which specify the form of performing in-network processing. The FROM

clause is always followed by the SELECT clause and specifies the table from which the

data is to be retrieved. The WHERE clause is optional, when specified it always follows a

FROM clause and is used to filter the data from the table based on the predicate. More

than one condition can be specified in the WHERE clause using the logical expressions

like AND, OR, LESS THAN or GREATER THAN. The GROUP BY clause is used

together by the aggregate functions to group the retrieved data. The HAVING clause can

be used with a SELECT clause to specify a search condition for a group or aggregate. It

behaves like a WHERE clause, but is applicable to groups. The DURATION clause

specifies the life time of the query beyond which the query expires. The EVERY clause

specifies the interval after which the node should sense the external phenomenon, if the

query is periodic.

15

Different Query Types

Based on the applications, different queries can be disseminated into the sensor network.

Different query types and examples from Madden et al. [20] are explained in detail

below. Periodic queries are executed at regular intervals for a specific duration. For

example, the following query indicates the node to sense the temperature every 5 seconds

for the next 100 seconds and report the sensed data to the sink.

 SELECT Temperature
 FROM SensorTable
 DURATION (now, now +100)
 EVERY 5 seconds

These types of queries are useful in environmental monitoring applications. These

applications require the status of the monitoring phenomenon to be reported at regular

intervals, so that the decisions can be made accordingly. The STOP ON EVENT clause

can be used to stop a periodic query when a specified event is triggered based on satisfied

condition.

Event-based queries are executed only when the predefined conditions are satisfied.

These queries are useful in tracking or detection applications. For example, the following

query indicates the node to sense the surrounding temperature only when the node’s

pressure sensor detects a pressure of greater than 30 Pa.

 ON EVENT Pressure > 30
 SELECT Temperature
 FROM SensorTable

Life-time based queries are similar to the periodic queries, but the sampling rate is based

on the remaining power available, so that the condition specified in the LIFETIME clause

is achieved. For example, the following query indicates the node to sense the temperature

16

for a month and report the sensed data to the sink. The node changes its sensing period

based on the power available, so that it can sense and report the data for a month.

 SELECT Temperature
 FROM SensorTable
 LIFETIME 1 month

Exploratory queries indicate the nodes to monitor the external phenomenon only once.

The ONCE clause is used to achieve this functionality. For example, the following query

indicates the network to sense the temperature once and report the data to the sink.

 SELECT Temperature
 FROM SensorTable
 ONCE

Actuation queries are used to turn on some components in the sensor if the condition in

the query is met. For example, the following query indicates the node to sense the

temperature every 5 seconds for the next 100 seconds and report the sensed data to the

sink only if the temperature is greater than 40 degrees. In addition to reporting the data,

the node turns on the fan.

 SELECT Temperature
 FROM SensorTable
 WHERE Temperature > 40 degree
 OUTPUT ACTION turnOn (fan)
 DURATION (now, now +100)
 EVERY 5 seconds

As explained above, queries are a means of encapsulating the interest of the sink in a

message and propagating it through the network. In the algorithms, an exploratory query

is used to propagate the query from the sink pertaining to the contour through the

network. However, the proposed algorithms are extensible to periodic or lifetime queries.

Once the exploratory routing algorithms are established, periodic and lifetime queries can

17

be implemented with existing techniques. Moreover, an application specific

programming language can be used to encode the query.

2.3 In-network Processing

Forwarding sensor data to the sink is costly, as it consumes significant energy per byte

sent. Performing in-network processing at intermediate nodes while transmitting the

sensor data to the destination increases the network lifetime by reducing the total number

of bytes sent. Aggregation and compression are the most common in-network processing

techniques. Aggregation is a primary concern in the proposed algorithms. In this section,

general aggregation approaches are presented and specific contour aggregation

approaches are presented in section 3.2.

Aggregation

Aggregation is a technique used to suppress or combine individual sensor data at

intermediate nodes while transmitting the data to the destination. It can be performed by

applying general aggregation functions on the sensor data or by applying application

specific parameters set by the sink. The sensor data packet header overhead can also be

reduced by aggregating different sensor data packets into a single packet, and in the

process multiple packet headers can be removed. Most of the hierarchical topology

schemes discussed in section 2.1.1.2 are good candidates for performing data

aggregation. Aggregation functions are generally specified in the queries by a controlling

node or sink in dense hierarchical networks where the data is often correlated. For

example, readings taken of a temperature field are often spatially correlated. MIN, MAX,

AVG, COUNT and SUM are some of the basic aggregate functions that can be used to

perform aggregation as described by Madden et al. [20] If an intermediate node receives

two partial state records <a> and from different nodes, an aggregation function

computes a new state record, <c> = f (<a>,). A partial state record is a tuple

18

exchanged between the nodes. He et al. [21] have proposed an Adaptive Application-

Independent Data Aggregation (AIDA) approach in which payloads are concatenated

resulting in header transmission savings.

Data Compression

At times it is not possible to reduce the size of the sensor data using aggregation. For

example, consider content-sensitive data like fixed-width histograms as explained in

Madden et al. [20] which can’t be reduced using normal aggregation without losing

information. As explained in the previous section, aggregation reduces the sensor data at

intermediate nodes. However, the content-sensitive data and aggregated data can be

compressed at the intermediate nodes using standard lossless data compression

algorithms before transmitting, if correlations are present in the sensor field.

S. S. Pradhan et al. [22] have proposed a distributed source coding framework for

efficient compression in a WSN. Hellerstein et al. [6] have proposed a compression

scheme to encode wavelet histograms in WSNs.

In CDAR, suppression of redundant sensor data is performed at the cluster-level using

contour application-specific parameters specified by the sink. At the cluster-level, data

suppression is performed at the GNs, CMs and CH before transmitting the data to the

destination. Finally, the response data packet headers are suppressed by aggregating

different response data packets into a single packet at the intermediate nodes as in [21].

2.4 Routing

In WSNs, nodes that sense the data may not transmit the sensed data directly to the

destination, due to network size and transmission energy constraints. These source nodes

rely on the intermediate nodes to route the sensed data to the destination. Routing tables

19

are used to forward the sensed data to an appropriate neighbour before it can reach the

destination. Apart from routing the data to the destination, construction and maintenance

of the routing tables are the primary responsibilities of a routing protocol. Data

transmission and routing table construction and maintenance between the nodes is done

by unicast, broadcast or multicast. Unicast transmits the data from the source node only

to the destination node. Broadcast transmits the data to all the nodes in the vicinity of the

source node. Multicast transmits the data to a subset of nodes in the vicinity of the

source node.

Network topology and application dependence play important roles in routing.

Depending on the network structure routing protocols can be divided in to flat routing,

hierarchical routing and location-based routing schemes. Similarly, based on the protocol

operation, the routing protocols can be multi-path based, query-based and negotiation-

based. All of these protocols, irrespective of the network topology or protocol function,

fall in two main categories: reactive and proactive routing protocols [23]. Reactive

protocols find routes to the destination only when needed, whereas proactive protocols

find the routes beforehand. Proactive protocols have a large signaling overhead compared

to reactive protocols because periodic and event based route updates are required to

update routing tables. However, proactive protocols have a low latency as the routes are

already known to the destinations. The main goal of any routing protocol is to prolong the

network life time, reduce the signaling overhead and therefore reduce the energy

consumption. Our algorithms require proactive protocols to be effective.

2.4.1 Network Topology

Routing protocols are classified into flat routing, hierarchical routing and location-based

routing. In a flat routing technique, all the nodes perform a similar functionality.

Destination Sequenced Distance Vector (DSDV) routing proposed by Perkins and

Bhagwat [24] is a flat proactive routing approach based on modifications to the

20

Bellman-Ford algorithm. Dynamic Source Routing (DSR) proposed by Johnson et al.

[25] is a reactive routing approach. Route discovery is performed to the destination on

demand if a route doesn’t exist in the node’s table while transmitting the data. In

hierarchical routing schemes, nodes are assigned different tasks to perform. Low Energy

Adaptive Clustering Hierarchy (LEACH) proposed by Heinzelman et al. [14],

implements hierarchical routing. Geographic routing schemes address the nodes based on

their position. Takagi and Kleinrock [26] have proposed the Most Forward within R

(MFR) algorithm in which a source node forwards a packet to the neighbouring node

within its transmission range and whose position is closest to the destination.

2.4.2 Application Dependence

Some routing protocols are specific to WSN applications. If an application demands fault

tolerance in the network then multiple paths should be established between the source

and destination in the network. Furthermore, establishment of multiple paths to the

destination helps maintain uniform energy consumption along different network paths.

Chang and Tassiulas [27] have proposed an approach in which the nodes use the path that

contains the largest energy. If the energy of this path falls below any of the existing

multiple paths than the next highest energy path is selected to route the data. In some

applications, the destination may be interested in different kinds of data from the

network. If a source node senses the external phenomenon and finds that it has the data

that is required by the destination, then the node routes the data along the route through

which it has received the query. Intanagonwiwat et al. [28] have proposed a data centric

paradigm called Directed Diffusion. An interest is disseminated through the network and

gradients are setup matching the interest. Data flows through the gradients along multiple

paths to the initiators of the interest. In-network aggregation is performed along these

paths eliminating data redundancy and prolonging the network life. In certain

applications, negotiations between nodes are performed regarding various resource

attributes in order to increase the energy efficiency of the network. Kulik et al. [29] have

proposed Sensor Protocols for Information via Negotiation (SPIN) which disseminates

21

information among sensors in an energy efficient manner through data negotiation. Nodes

that have new data disseminate by advertising about the data to their neighbours.

Neighbours may request for the data or ignore the advertisement. On receiving requests,

the advertised node forwards the data to the nodes that have requested for the data. In this

manner, any new data gets propagated to all the nodes present in the network. User can

query any node in the network to get the required information.

In CDAR, routing tables are statically configured for a two-hop cluster-based hierarchical

topology. Nodes contain routes to the sink, their own CH and the neighbouring CHs in

the node’s vicinity. Route maintenance is outside the scope of the thesis. A hierarchical

cluster-based routing scheme is used for routing the query from the sink to

the phenomenon. For routing the sensed data from the network back to the sink

a novel combination of hierarchical cluster-based routing and tree-based routing

schemes are used.

22

CHAPTER 3

RELATED WORK

The thesis focuses on providing an overall efficient solution for query-based contour

sensing WSN applications. Most contour-based applications perform contour detection,

query propagation, in-network processing and data routing. Though these phases are

common to many WSN applications there are significant improvements that can be made

to these phases for a contour application. These improvements are based on the simple

fact that contours are not spread uniformly throughout the field and are usually

continuous and smooth. Moreover, exploiting the spatial and temporal correlations

between the nodes along the contour helps to improve the performance. There are three

major areas of study in contour-based WSN applications. First, contour detection and

query propagation techniques used for detecting the contour and propagating the query

are studied; second, in-network processing schemes used for removing redundant contour

data are studied; third, routing of the sensed contour data to the destination is presented.

3.1 Contour Detection and Query Propagation Mechanisms

Contours are generally not spread uniformly throughout the network. Exploiting this fact

and propagating the query only along the nodes that have detected the phenomenon

avoids unnecessary query propagation overhead. A number of query propagation

mechanisms have been proposed in the literature to efficiently route the query for

different WSN applications, not limited to contour-based applications.

Intanagonwiwat et al. [28] have proposed a publish-subscribe and application-aware

paradigm which uses diffusion to achieve energy savings by setting up gradients between

the source and the sink. This enables the sink to propagate the query to certain parts of

23

the network where the interest may be present. This approach is suitable for persistent

queries which are used to monitor a phenomenon that doesn’t change over a period of

time. In certain environmental monitoring applications, the node that has detected an

event floods the network with the event establishing energy efficient gradients towards

the event. Event flooding is advantageous if the number of events generated by the

network is small and the scope of these events is small. Rumor routing proposed by

Braginsky and Estrin [30] provides a cut off value under which rumor routing provides an

energy-efficient solution compared to flooding. A node that has detected an event

establishes the event paths by forwarding the information about the event to the nodes

based on a specified threshold. If the number of events increases, there is an overhead in

maintaining the events at each node and the propagation of the event information to the

neighbours also increases.

Sadagopan et al. [31] proposed a technique for querying sensor networks called ACtive

QUery forwarding In sensoR nEtworks (ACQUIRE). In this approach, the node forwards

the query from one node to another using random walk based on the event information

until the query has been fulfilled. The algorithm uses a look-ahead parameter which

specifies the neighbouring nodes from which the node can request the updates to resolve

the query. Both the query and response phases are performed in a single step. As the

query is propagated, the partial results generated by the nodes are aggregated. Finally on

resolving the query, the data is forwarded to the destination using the shortest path or the

reverse path. Chu et al. [32] have proposed information-driven sensor querying (IDSQ)

and constrained anisotropic diffusion routing (CADR) routing techniques which are

based on the directed diffusion. These techniques use information gain and

communication cost to perform energy efficient routing.

Liu et al. [33] proposed an information-directed multiple-step look-ahead approach to

route the query to the event. It generalizes the CADR approach. This approach allows a

node to search a path with maximum aggregation from the available paths within the

look-ahead range. Selecting a proper look-ahead parameter value allows the nodes to

24

avoid sensor holes while query routing. A sensor hole occurs in a WSN when

neighbouring nodes fail, and is defined as the region containing these failed nodes.

Faruque and Helmy [34] have proposed a distributed scheme called RoUting on

finGerprint Gradients in sEnsor Networks (RUGGED) which uses the natural gradient in

routing the query without much overhead. It uses multiple paths to find a route to the

event and it controls these multiple paths using a probabilistic function. It uses two

modes of operation: flat region and gradient region. In the flat mode, all the neighbouring

nodes are queried for the gradient information. If a gradient is detected, then the node

switches to the gradient mode and uses a greedy approach to route the query. If there is

not sufficient information gain using the gradient mode, then probabilistic forwarding is

performed. Sarkar et al. [35] have proposed an approach that guarantees delivery of the

query for a static contour field. This is done by pre-processing the field and constructing

a contour tree and routing the query in a gradient-based manner along the tree. A contour

tree is a tree on all the critical points of the signal field and captures all the contours.

Zhu et al. [3] have proposed a light-weight distributed algorithm for contour tracking and

repair of broken contours locally as they deform. It is feasible for signal fields which

don’t deform rapidly and is suitable for periodic queries.

3.2 Contour In-network Processing Schemes

Nodes that have the sensed contour data perform in-network processing before routing

the data to the sink. In-network processing helps in removing data that the sink might not

require. Processing of the data can be done at the node level before it is transmitted the

sink or at the intermediate nodes while the data is being transmitted to the sink or at both.

Hellerstein et al. [6] have proposed an approach for constructing a contour map within

the network through identification of contiguous regions (termed "isobars" in this work)

in which the sensors have approximately the same value. A comparison is performed

between the naive, in-network and lossy approaches. The naive approach constructs the

25

contour map outside the network; in-network approach constructs the contour map within

the network using aggregate functions; and the lossy approach restricts the vertices used

to define the bounding polygon of each isobar by a parameter. Of all these approaches,

the lossy approach reduces the data significantly.

Zhao et al. [36] proposed residual energy scan (eScan) which uses in-network

aggregation to indicate the remaining energy levels of sensor nodes in the network. It

uses a polygon-based aggregation technique to aggregate the eScan reports generated by

nodes while transmitting the reports to the destination using an aggregation tree.

Buragohain et al. [37] proposed an Adaptive-Group-Merge polygon-based aggregation

technique that constructs a k-vertex polygon for a given parameter k.

Xue et al. [4] have proposed an in-network map construction using a partial map

aggregation technique, hop-by-hop in a bottom up manner. A partial map generated by a

node consists of disjoint contour regions. On receiving partial maps from its children, the

node includes its own partial map with the received ones and tries to merge the adjacent

contour regions and generates a final partial map which is transmitted to its parent. In

order to reduce the transmission size of the final partial map, compression and packet

snooping is performed at the node. Incremental map updates also reduce the size of these

transmitted maps considerably. In all these schemes, the overhead due to message

transmission is high because all the nodes transmit the messages. Moreover, the polygon-

based aggregation schemes need to encode the location information of the nodes which is

costly. Sometimes, aggregation of spatially correlated readings of adjacent nodes cannot

immediately be performed using an aggregation tree, unless they have a common parent,

resulting in a significant overhead. Every node in the network must be powerful enough

to process the sensed data as it is transmitted to the sink.

To avoid unnecessary transmissions by all the nodes, Solis and Obraczka [38] have

proposed an approach called isoline aggregation which creates a contour map at the sink

26

from the reports generated by the isoline nodes rather than aggregating readings from all

the nodes in the network. These isolines are detected from the local neighbour

information using the neighbour-to-neighbour protocol. A node is said to be an isoline

node if its sensing value and its neighbour’s value are on either side of the isolevel

specified in the query. Only nodes that detect the isoline report to the sink. These reports

consist of the node ID and the neighbour node ID which help in detecting the contour.

The sink reconstructs the contour map based on the node information received. Liu and

Li [39] have proposed a similar approach called the isomap approach to create a contour

map at the sink. Isoline nodes perform linear regression on the values received from the

neighbours and find a gradient direction which is used by the sink for contour map

construction. Li and Liu [40] have used angular separation and distance separation to

suppress the responses spatially at the intermediate nodes.

Meng et al. [2] have proposed distributed spatial and temporal data suppression, multi-

hop local suppression and contour construction at the sink using interpolation and

smoothing. Contour readings generated are generally spatially and temporally correlated

resulting in redundant transmissions. A node suppresses its transmission if the difference

between the average reading values of the neighbouring nodes is within the threshold

value. On the other hand, temporal suppression controls the node’s transmission rate.

This approach reduces the data overhead by suppression. However, the accuracy of the

contour map approximation at the sink is dependent on the amount of suppression

performed in the network.

Singh et al. [41] have proposed a technique for constructing the contour map in a

distributed manner using divide and conquer approach in a cluster-based topology. The

CHs on receiving the data from their members aggregates the data locally. In the first

round, within each block of 2x2 CHs, one CH is elected as a leader and merges the data

received from the other three CHs. In the next round, the block leaders organize

themselves into 2x2 blocks and a leader is elected among them and merging of data is

27

performed. In this manner, merging of the data is performed recursively constructing the

contour map.

Yoon and Shahabi [42] proposed Clustered Aggregation (CAG) algorithm which exploits

the spatial correlations among the members in a cluster and suppresses the locally within

a cluster before sending just only one value per cluster up the aggregation tree.

In-network aggregation is performed along the aggregation tree using various aggregation

functions at the intermediate nodes while the data is being propagated to the sink.

Pattem et al. [43] have shown that a static clustering scheme provides an optimal

performance for a range of spatial correlations compared to suppression of spatial

correlated data while routing. The performance of the latter is dependent on the level of

correlations present in the data.

3.3 Contour Data Routing Techniques

Nodes that have the sensed data must forward the data to the destination over the shortest

possible path in order to avoid unnecessary energy loss. Intermediate nodes may or may

not perform in-network processing on the raw data while the data is being transmitted to

the sink. Performing in-network processing at the intermediate nodes helps by removing

unnecessary data that the sink might not require and hence save the transmission cost.

Most of the applications that use query propagation schemes like random walk, contour

trees or gradient routing to propagate the query in an efficient manner either route the

contour data back to the destination using the reverse or shortest paths [31-35].

3.4 Contour Applications Research Problems

Contour detection using random walk or gradient routing may result in the contour query

getting trapped at the saddle point, local minima or local maxima because they use

28

information gain and communication cost to route the query. Moreover, these approaches

are not feasible for finding all the contours present in the network. Contour trees avoid

this problem of query getting stalled because of saddle point, local maxima or minima by

pre-processing the field before the query is propagated. However, for a dynamic contour

field where the field changes constantly, the contour tree approach is not feasible, as the

overhead for tree construction and reconstruction is high. In contour-based WSN

applications, nodes need to know their location and indicate the location to the sink for it

to construct the contour map. Based on this requirement, the proposed contour detection

algorithms use the propagation pattern and look-ahead range in detecting a contour. The

propagation pattern in the query contains details of how and where the query needs to be

routed. This can prevent the query from being stalled because of saddle point, local

maxima or minima if a blind or geometric route is specified. Once the query is

propagated according to the pattern, the look-ahead parameter is used to search for a

contour in the vicinity of the pattern. This flexibility is difficult to achieve when random

walk or gradient routing is employed because the query propagation path is not known to

the sink. If multiple contours must be found or for large networks, multiple propagation

patterns can be included in the query for the nodes to route the query to different

locations based on the specified patterns.

On finding a node near the contour, the current schemes propagate the query randomly or

greedily based on information gain. To avoid this effect clustering is used, helping that

the CH can make a reliable decision based on all the received member readings. Our

work is similar to IDSQ routing proposed by Chu et al. [32] which uses cluster-based

information gain to propagate the query. However, they do not explain how the query

propagation takes place between clusters. In CDAR, the propagation technique to

propagate the query efficiently and reliably along the contour using clusters is explicit.

Moreover, contour tracking is done accurately using a look-ahead range rather than using

a greedy approach. The min-hop routing algorithm proposed by Liu et al. [33] also uses a

look-ahead parameter to avoid the query getting trapped in saddle points, local maxima or

minima. However, their approach increases the neighbourhood size resulting in

29

unnecessary communication overhead. In CDAR, the look-ahead range adjusts

automatically depending on whether the contour is detected, reducing the overhead.

Global distributed in-network processing schemes like polygon-based aggregation require

the nodes to encode their location information in order to perform aggregation which is

costly. Sometimes, aggregation of spatially correlated readings of adjacent nodes cannot

be performed using an aggregation tree, because the common parent occurs many hops

up the tree. To avoid these problems, a localized cluster-based in-network processing

technique is proposed which uses data aggregation and compression for removing

redundant contour data in an efficient manner. Pattem et al. [43] have shown that a

clustered topology with optimal cluster size would perform well for a wide range of

spatial correlations. Yoon and Shahabi [42] proposed Clustered Aggregation (CAG)

which uses a similar outline to perform aggregation, but the aggregation proposed in

CDAR is completely different. CAG is a lossy approach; only the CHs perform the in-

network processing using aggregation functions and each cluster reports a single value.

Moreover, the clusters are created each time based on the threshold in the propagated

query. In CDAR, clusters don’t change with the query and the nodes in the cluster that

detect the contour perform different levels of in-network processing internally within the

cluster while propagating the data to the CH. Further processing of the received member

data is done at the CH before the data is routed to the destination. In addition to the

in-network data processing, the number of intra-cluster control message transmissions

is also reduced.

Meng et al. [2] perform suppression of spatially correlated data using a constant reading

value set by the sink. However, the accuracy of the contour map approximation at the

sink is completely dependent on the amount of suppression performed in the network.

The proposed suppression scheme is based on a minimum contour threshold distance

parameter set by the sink which indicates the minimum distance between any two points

on the contour that the sink is interested in. Any contour points between these minimum

distance contour points on the contour are suppressed. This gives the user the flexibility

30

to control the amount of suppression by varying the threshold parameter and yet construct

a contour map accurately. Furthermore, efficient compression techniques are provided to

reduce the size of the encoded payload data. Li and Liu [40] use angular separation and

distance separation to spatially suppress the reports which is similar to the proposed

in-network spatial suppression schemes in this thesis. However, the approach proposed

by them requires transmission of node location to perform suppression at the intermediate

nodes which is expensive. If the distance separation is smaller then a lot of responses are

not suppressed even if they are close, resulting in a greater overhead because of the

location encoded in these responses. Moreover, there is a chance that these responses can

take different paths up the aggregation tree and might get aggregated at the higher nodes,

wasting resources. By taking into account smoothness and continuity of the contours,

local in-network spatial suppression schemes are proposed which avoid transmission of

location information in the responses, reducing the unnecessary overhead.

Most of the applications that use efficient query propagation schemes either route the

contour data back to the destination using the reverse path or the shortest path.

Aggregating and routing the data back to the destination in the reverse path after the

query is resolved may result in significant wastage because of the potentially large

payloads in contour applications, as the reverse path is not always the shortest path.

Similarly, aggregating the data along the contour and finally propagating the aggregated

data to the destination in the shortest path is also costly. Moreover, routing each node’s

contour information to the sink individually is expensive if the network is not clustered.

Additional overhead due to the individual packet headers for every data point is incurred.

In these approaches, all the savings obtained by propagating the query efficiently are

compensated by inefficient data routing techniques. The novel data routing algorithms

proposed in CDAR help in routing the data in an energy-efficient manner to the

destination and while allowing efficient query propagation and in-network processing.

31

CHAPTER 4

PROTOCOL FRAMEWORK

This chapter presents the design of the energy efficient end-to-end CDAR protocol

framework for contour detection, query propagation, in-network data processing and

routing of the contour data to the sink. All the proposed algorithms are designed

specifically for contour-based WSN applications by taking the natural properties of the

contours like smoothness, continuity and correlations into consideration. Apart from the

proposed algorithms, some well known algorithms are also presented in this chapter

because they are used in the results section as points of comparison.

4.1 Assumptions

For the CDAR protocol to work efficiently a few basic assumptions have been made

about the network and node levels of hierarchy.

1. Clustered topology. Within each cluster there is a CH, one or more CMs, and one

or more GNs, as in Figure 1.1.

2. Nodes deployed in the network are homogenous and have a unique ID.

3. Node positions are static and known a priori. The sink knows the locations of all

the nodes in the network. Members know the locations of their neighbours. The

CH knows the location of all the members within the cluster.

4. A single sink is present in the network and its location is fixed.

5. CHs can broadcast their data to their two-hop neighbours and unicast the data to

their immediate neighbours. CMs can broadcast and unicast their data only to

their immediate neighbours.

6. CMs can communicate with their neighbouring GNs and the CH, whereas the

GNs can communicate directly only with their neighbouring GNs and CMs (using

multihop routing to reach the CH).

32

7. Network size and the approximate number of clusters formed in the network

should be known to the sink for timer synchronizations, so that the sink can

transmit the parameters accordingly in the queries.

8. Network information is not collected and it is assumed that the parameters such as

routing tables, cluster topology and node locations are established prior

to any query.

4.2 General Solution

CDAR provides an end-to-end solution from contour detection and routing contour data

to the sink after tracking the contour and performing in-network processing.

Pattern-based contour detection is used to detect the contour. It provides the sink with the

flexibility to repeat the detection process at a different location if the contour is not

detected using the previous pattern. On detecting the contour, a cluster-based query

propagation scheme is used to track the contour efficiently. The cluster-based scheme

helps in making robust decisions from the member responses to track the contour and

avoid erroneous readings. The cluster-based in-network processing schemes proposed

help remove and reduce the redundant contour information. Finally, the contour

information is routed to the sink in an efficient manner using the one of the proposed

routing algorithms.

4.3 Querying Techniques

The important parameters transmitted in the query are the query ID, the contour value the

sink is looking for, the pattern for contour detection, a minimum contour suppression

threshold, look-ahead values for increasing the contour search area and also for finding

broken contours and timer values for performing data routing to the destination. Some of

these parameters are optional depending on the algorithm employed. For example, if the

33

suppression is disabled, then the suppression threshold is not transmitted in the query.

The most common query propagation technique used in WSNs is flooding. However,

flooding results in unnecessary wastage if the phenomenon is not uniformly spread

throughout the network. Contour-based applications fall into this category. In this section,

different query propagation techniques used for propagating the query in sensor based

contour applications are explained in detail. Each of these techniques has its own

advantages and disadvantages depending on the mission and network.

 Figure 4.1: Overview of query techniques

There are two different phases in querying. The initial phase focuses on pattern-based

contour detection techniques which detect the contour using a particular pattern. Single

ray-based contour detection is shown in Figure 4.1. Detection techniques are associated

with a detection look-ahead parameter which in this case indicates the number of clusters

to look for perpendicular to the ray to query. The final phase deals with the actual query

34

propagation along the contour using cluster-based query propagation techniques. If the

ray intersects the contour then the query is propagated along the contour in both the

directions as shown in Figure 4.1. When queries propagated in opposite directions meet,

the query propagation along the contour stops. To detect broken contours or natural

contour ends, a propagation look-ahead parameter is used which indicate the number of

clusters to look ahead before deciding if the contour is broken or terminated. In this

section, known techniques are discussed for comparison along with new techniques

which are part of the thesis contribution. Extensions to the new techniques for future

work are also presented to establish the design extensibility.

4.3.1 Contour Detection Techniques

Contour detection is the initial phase of the querying technique. The main goal of these

techniques is to route the query to detect a point on the contour in an efficient manner. As

explained in the previous chapter, there are different contour detection techniques such as

random walk, gradient routing and contour trees that can be used. All these approaches

use information gain and communication cost to detect the contour efficiently. However,

using these metrics may result in the query getting stuck at a saddle point, local minima

or local maxima before the contour is detected. Moreover, the path traversed by these

queries is not known at the sink, so the sink cannot efficiently re-transmit the query to a

different location in the network, if a contour is not detected. In the detection techniques

proposed, the query propagates along a geometrically specified pattern. The query is

propagated as specified by the sink allowing retransmission of the query using a different

pattern, if the contour is not detected.

4.3.1.1 Flooding

Flooding is the simplest and best known contour detection technique which propagates

the query through the entire network. It guarantees detection of contours because every

35

node is visited. Flooding is presented here for a comparison with the proposed models. In

flooding, a node that receives a query broadcasts it to all its neighbours. Nodes that

receive the broadcast query further re-broadcast the query to their neighbours, if the

query was not already received. In this manner, query is propagated through the network.

In this thesis, flooding is performed to propagate the query through the network in a

controlled manner. The sink transmits the request to the nearest CH which in turn

broadcasts the request to its members indicating a set of GNs to forward it to the

neighbouring CHs. None of the members broadcast the query request within the cluster

other than the CH. Neighbouring CHs, on receiving the query, forward it to their

members. CMs and GNs discard any queries received from neighbouring clusters if they

have already received a query from their CH. In this manner, the query is propagated

through the entire network. A detailed description of the cluster-based flooding algorithm

is provided in Figure 4.2.

1. CH:
2. On receiving a CH query request:
3. if request has already been received then
4. discard the request
5. else
6. set request received to true
7. broadcast the request to the members with the CH reading and GN ID list
8. start a timer and wait for the query responses from the CMs/GNs
9. end if

10. CM:
11. On receiving a CH query request:
12. if request has already been received from CH then
13. discard the request
14. else if request is received from GN then
15. forward the request to the CH
16. else
17. set query request received to true
18. process the request
19. end if

20. GN:
21. On receiving a CH query request:

36

22. if request has already been received from CH then
23. discard the request
24. else if request is received from neighbouring GN then
25. forward the request to the CH
26. else
27. set query request received to true
28. if current node ID is in the GN ID list then
29. forward the request to all the neighbouring CHs
30. end if
31. process the request
32. end if

Figure 4.2: Flooding algorithm

Flooding is helpful if the phenomenon that the sink is interested in is spread uniformly

throughout the network. For example, if the user is interested in the global maximum

value, all the nodes must be queried. However, if the phenomenon is present in only a

subset of nodes in the network then flooding is not efficient. For example, in contour

applications the contour passes through a subset of nodes. Therefore, flooding propagates

the request to the nodes with no relevant data, wasting system resources. Flooding is

appropriate when there is unlimited power, a global solution requirement and if local

information cannot constrain query space.

4.3.1.2 Single Pattern-Based Contour Detection

As seen in the previous section, flooding can be wasteful in contour-based WSN

applications because the sensor nodes have limited power and the solution is a subset of

the space. Some intelligent contour detection schemes are proposed which take the

properties of the phenomenon into consideration and the WSNs constraints to provide an

efficient solution. In the technique proposed, a pattern and detection look-ahead

parameter is used in the query to detect the contour. The pattern in the query consists of

the geographical location and the pattern shape. The geographical location in the query

indicates from where the contour detection should start and the shape of the pattern tells

how the routing needs be performed to detect the contour. A ray-based query pattern is

37

used to route the query to detect the contour in all the experiments for simplicity.

However, other more complicated patterns can be used. The detection look-ahead

parameter indicates the number of clusters on the either side of the pattern the query

should be forwarded to broaden the contour detection area. There are three different kinds

of query requests that are used by the algorithms to detect the contour. Initially, the sink

query request is used by the sink to transmit a particular pattern. Clusters that lie on the

pattern receive the sink query request and the CHs in these clusters broadcast the sink

query request to their members, instructing the GNs forward the request to neighbouring

clusters along the pattern. Next, the forward CH query request is broadcasted by the CHs

that lie on the pattern to their members to propagate the query to their neighbouring

clusters according to the detection-look ahead. CMs discard the received forward CH

query request, but the selected GNs change the packet type to the CH query request and

forward the request to the neighbouring clusters. The neighbouring clusters that lie on

either sides of the pattern, on receiving the CH query request packet broadcast the request

to their members. On member query response timer expiry, the CHs decrement the

detection look-ahead and if it is valid, broadcast the forward CH query request and the

procedure is repeated. For additional information regarding the query request packet

structures, refer to the appendix.

This algorithm operates in two phases. In the initial phase, the query is routed along the

clusters in a ray-based pattern using the direction contained in the query. Finally, the

clusters that have received the query forward it to the neighbouring clusters in their

vicinity based on the detection look-ahead parameter irrespective of whether they have

detected a contour or not. The proposed ray-based contour detection algorithm assumes

that the detection start location is from the sink as shown in Figure 4.3. However, the

start of the detection can be set to any location in the network. A detailed description of

the ray-based contour detection algorithm is provided in Figure 4.4.

38

 Figure 4.3: Single ray-based contour detection

1. CH:
2. On receiving a sink/CH query request:
3. if request has already been received then
4. discard the request
5. else
6. set request received to true
7. if sink query request then
8. set the detection look-ahead parameter to the user specified value
9. broadcast the sink query request with the CH’s reading and the GN ID

 list that needs to propagate the request to neighbouring CHs on the ray
10. else
11. broadcast the CH query request to the members with the CH’s reading
12. end if
13. start a timer and wait for the query responses from the CMs/GNs
14. end if

39

15. On query response timer expiry:
16. if detection look-ahead is valid then
17. broadcast the forward CH query request with the GN ID list
18. decrement the detection look-ahead parameter value
19. end if

20. CM:
21. On receiving a sink/CH query request:
22. if request has already been received from the CH then
23. discard the request
24. else if request is received from GN then
25. forward the request to the CH
26. else
27. set request received to true
28. process the request
29. end if

30. On receiving a forward CH query request:
31. discard the request

32. GN:
33. On receiving a sink/CH query request:
34. if request has already been received from the CH then
35. discard the query request
36. else if query request is received from neighbouring GN then
37. forward the request to the CH
38. else
39. set query request received to true
40. if sink query request then
41. if current node ID is in the GN ID list then
42. forward the sink query request to the CHs on the ray if the GN
 hasn’t received any readings or responses from those clusters
43. end if
44. end if
45. process the query request
46. end if

47. On receiving a forward CH query request:
48. if current node ID is in the GN ID list then
49. change the forward query request to CH query request and forward the

 request to all those CHs that are in GNs vicinity from which the GN
 hasn’t received any readings or responses

50. end if

 Figure 4.4: Ray-based contour detection algorithm

40

If some a priori estimate of the contour location is known, this approach can be effective

in detecting the contour. In general, the contour location changes with time and the

amount of change depends on the type of phenomenon being monitored. Taking these

factors into consideration for selecting a proper pattern and look-ahead value helps in

detecting the contour even if the contour location changes. If a contour is not found and

the sink times out without a response from the network then a different pattern can be re-

transmitted efficiently, as the path traversed by the previous pattern is known.

4.3.1.3 Multiple Pattern-Based Contour Detection

To address the obvious criticisms of single pattern-based contour detection two

alternative scenarios are provided as extensions to the algorithm for cases when the

approximate contour location is not known a priori. These algorithms are presented only,

and are not implemented or characterized. The first of these algorithms is similar to the

single pattern-based contour detection with the only difference being that the sink uses

multiple patterns with different detection look-ahead values for these patterns in an

attempt to intersect multiple contours or a single small contour with limited span across

the network. These multiple patterns could be included in the same query or multiple

queries can be used for each pattern. Multiple ray-based patterns using multiple queries

for contour detection is shown in Figure 4.5. Ray2 and ray3 propagated by the sink have

detected the presence of different disjoint contours, whereas ray1 doesn’t detect any.

Using this approach, there is still a chance of missing the contour if the contour is small

and lies in between the rays. Where detecting contours of arbitrarily small size is

involved, more exhaustive techniques must be employed by subdividing the space into

sections smaller than the minimum allowed in the contour.

41

 Figure 4.5: Multiple pattern-based contour detection

4.3.1.4 Raster Scan-Based Query Propagation

The raster scan-based propagation technique is used to exhaustively detect if a particular

contour is present in the network. This technique is slightly different from the above two

techniques in detecting the contour. It doesn’t require any a priori knowledge of the

contours in the network to perform detection. It uses a ray-based horizontal or vertical

trace pattern to route the query among the clusters, as shown in Figure 4.6 for contour

detection. Furthermore, detection look-ahead parameter is not used and the query is

routed only among the clusters that lie on the pattern specified. This is to reduce the

unnecessary communication overhead as the query is going to be propagated through the

clusters until a contour is found. If the required contour is not present in the network, then

it might be equivalent to or even better than flooding. But, if the contour is present in the

42

network then there can be considerable saving in propagating the query in this manner.

Moreover, clustering ensures that the query doesn’t get stuck by providing reliability

from erroneous node readings and fault tolerance from single node failures.

 Figure 4.6: Raster scan-based contour detection

4.3.2 Query Propagation Technique

The query propagation phase is initiated once a point on the contour is detected using one

of the proposed contour detection schemes described in the previous section. In this

phase, the goal is to propagate the query in a reliable and efficient manner along the

contour. Information gain and a propagation look-ahead parameter are used to propagate

the query. Information gain at a particular node is based on the readings received from

43

the neighbouring nodes. A greater information gain helps make reliable decisions in

choosing the nodes that should further propagate the query. The propagation look-ahead

parameter is different from the detection look-ahead parameter, but provides similar

functionality. In this section, cluster-based query propagation is explained in detail.

4.3.2.1 Cluster-based Query Propagation

The cluster-based query propagation technique is proposed to propagate the query along

the contour on detecting a point on the contour as shown in Figure 4.7. The query

propagation is done in both directions along the contour from the point of contour

detection. A cluster-based scheme offers various benefits over the non-clustered schemes

in propagating the query. In a non-clustered paradigm, there is no centralized entity to

process the information and make decisions. The decision to select a node to propagate

the query further is based on the information received from neighbouring nodes. These

decisions may be incorrect if erroneous information is received from the neighbours. To

avoid this problem, a cluster-based query propagation scheme is proposed where the

decision making is performed at the CH based on the received member information. If a

CH finds that a contour passes through the cluster, then a decision should be made in

selecting the neighbouring cluster that has to further propagate the query.

To avoid this problem, the CH that has detected a contour propagates the query to all its

immediate neighbouring clusters other than the originator of the query. Query

propagation to the immediate neighbouring clusters increases the chance of tracking the

contour accurately. The forward CH query request is used by the CH that has detected the

presence of a contour in its cluster to propagate the query to the neighbouring clusters

along the contour. Neighbouring cluster GNs on receiving the query check if they have

already received a query from their CH. If so, they discard the received query otherwise

they forward the query to their CH, which later broadcasts the CH query request to the

cluster. In the querying phase, contour data is not propagated along the contour with the

query because the path along the contour may not be the shortest path to the sink.

44

 Figure 4.7: Query propagation along the contour after contour detection

Occasionally a contour can’t be detected by the immediate neighbouring clusters.

Moreover, detecting a natural contour termination is also important. To address all these

problems and make the query propagation robust, a propagation look-ahead parameter is

used, which broadens the search area by propagating the query to other clusters that are

not the immediate neighbours of the current cluster. Based on the direction from which

the query request was received, the current CH that has detected a contour indicates one

of its immediate neighbouring clusters use the look-ahead and broaden the search, only if

it doesn’t detect any contour. If a closer look is taken into how the look-ahead parameter

is used, it clearly shows that the parameter is not constant and varies depending on

whether a contour is found or not. If a contour is found by the immediate neighbouring

cluster, then the propagation look-ahead is zero. Otherwise, the search is broadened based

45

on the value set by this parameter. A detailed description of the cluster-based query

propagation algorithm is provided in Figure 4.8.

1. CH:
2. On receiving a sink/CH query request:
3. if request has already been received then
4. discard the request
5. else
6. set request received to true
7. if sink query request then
8. broadcast the sink query request with the CH’s reading and the GN ID

 list that needs to propagate the request to neighbouring CHs on the ray
9. else
10. broadcast the CH query request to the members with the CH’s reading
11. end if
12. start a timer and wait for the query responses from the CMs/GNs
13. end if

14. On query response timer expiry:
15. if query responses are present then
16. set the propagation look-ahead parameter to the user specified value
17. indicate the CH ID that is in the contour direction to further propagate the
 query to its adjacent CHs, if a contour isn’t detected
18. broadcast the forward CH query request with the GN ID list
19. else
20. if CH ID in the CH query request is same as the CH ID then
21. if propagation look-ahead value is valid then
22. decrement the propagation look-ahead value
23. end if
24. broadcast the forward query request with the GN list ID
25. end if
26. end if

27. CM:
28. On receiving a sink/CH query request:
29. if request has already been received from the CH then
30. discard the request
31. else if request is received from GN then
32. forward the request to the CH
33. else
34. set request received to true
35. process the request

46

36. end if

37. On receiving a forward CH query request:
38. discard the request

39. GN:
40. On receiving a sink/CH query request:
41. if request has already been received from the CH then
42. discard the query request
43. else if query request is received from neighbouring GN then
44. forward the request to the CH
45. else
46. set query request received to true
47. if sink query request then
48. if current node ID is in the GN ID list then
49. forward the sink query request to the CHs on the ray if the GN
 hasn’t received any readings or responses from those clusters
50. end if
51. end if
52. process the query request
53. end if

54. On receiving a forward CH query request:
55. if current node ID is in the GN ID list then
56. change the forward CH query request to CH query request and forward
 the request to all those CHs that are in GNs vicinity from which the GN

 hasn’t received any readings or responses
57. end if

Figure 4.8: Cluster-based query propagation algorithm

4.4 In-network Processing Techniques

In sensor networks, the data is usually spatially and temporarily correlated. For most

sensor applications, transmitting the raw data to the sink without in-network processing

leads to wasted energy and can adversely impact the longevity of the network. To avoid

redundant data being transmitted to the sink, spatially and temporarily correlated data is

suppressed by in-network processing, allowing only the necessary data required by the

sink to be transmitted. In-network processing can be done using aggregation and

47

compression techniques. Aggregation deals with removing redundant data using

aggregate functions, suppression and response packet fusion. On other hand, compression

reduces the size of the data that is to be transmitted by applying data encoding and

decoding techniques. Even after performing aggregation and removing the redundant

data, compression can be performed on the data to reduce the size of the data that is being

transmitted. A combination of both these techniques provides an efficient in-network

processing solution. In this section, various novel compression and suppression

techniques proposed are discussed in detail and extensions to these techniques for future

work are presented to establish design extensibility.

4.4.1 Compression Techniques

Compression techniques are used to efficiently encode the contour readings stored at a

particular node as contour data in the query response payload. For example, transmission

of contour location information to the sink can result in large data payload overhead and

increases the energy cost in transmitting this information. The main focus of these

compression techniques is to reduce the payload size by encoding only the appropriate

information required by the sink to reconstruct the contour. As explained in the previous

sections, suppression techniques only deal with suppressing the contour readings at a

particular node and hence help save energy involved in transmitting these redundant

readings. However, significant savings can also be obtained by applying compression

techniques to reduce the payload size. The compression techniques proposed can be used

independent of whether the suppression is enabled or disabled. In this section, detailed

explanation of spatial compression and an overview of the temporal compression

are presented.

48

4.4.1.1 Spatial Compression Algorithm

Spatial compression algorithms help in encoding the contour readings stored at a

particular node efficiently as contour data in the query response payload. Nodes within a

cluster on receiving the query request sense the external phenomenon and store the

sensed reading. Later, nodes exchange their sensor readings with their neighbours in

order to detect the presence of any contour in their vicinity. If a contour is detected from

any of the received neighbour sensor readings, then the contour readings are populated

and stored in the node. A contour reading consists of the node ID, neighbour node ID,

location information and sensor readings. Encoding all these contour parameters

increases the data overhead. The proposed spatial compression algorithm efficiently

encodes the contour readings.

Given the assumption that the sink knows the node locations and a node in a cluster

knows the location information of other members in the cluster, only encoding of the

node IDs would be sufficient. The neighbour node ID is received in the sensed reading

broadcast by the neighbour. It can also be used by the node to retrieve the stored

neighbour node location information. Encoding the node IDs of the current node and its

neighbour can also increase the data overhead depending on the size of the IDs. To

reduce this overhead, every node’s neighbour is assigned a relative node ID by the node

and this information is also assumed to be known to the sink and other members within

the cluster. Encoding the sensed readings by the nodes can also be costly. To reduce this

overhead, the sensed readings are parameterized and the node’s proximity to the contour

is calculated using interpolation. The location parameter gives an approximate distance of

the contour from the node based on an assumption of linear spatial variation between two

nodes. For example, two neighbouring nodes of temperature 10 and 9 degrees can detect

the presence of a 10 degree contour. In this case, the node which has a temperature of 10

degrees has a parameterized value of 0, whereas the neighbour node’s value is 1. A value

of 1 means the node is far away from the contour and vice versa. The final encoded data

of each contour reading consists of the node ID, relative neighbour node ID and the

node’s proximity to the contour. The sink on receiving the encoded contour data in the

49

response decodes the data and reconstructs the contour map. A detailed description of the

spatial encoding and decoding algorithms are provided in Figure 4.9 and Figure 4.10.

1. CH/CM/GN:
2. if contour is detected at the node then
3. for each contour reading stored at the node do
4. proximity = required contour value – node sensed reading × 100%

 neighbour sensed reading – node sensed reading
5. encode the node ID, relative neighbour node ID and proximity distance
6. end for
7. end if

Figure 4.9: Spatial encoding algorithm

1. Sink:
2. for each decoded contour reading in the response do
3. retrieve the neighbour node ID from the relative neighbour node ID
4. proximity = proximity × 0.01
5. if node’s proximity is 0 then
6. x = node’s x-coordinate
7. y = node’s y-coordinate
8. else if node’s proximity is 1 then
9. x = neighbour’s x-coordinate
10. y = neighbour’s y-coordinate
11. else
12. d1 = calculate the distance between the node and its neighbour
13. d2 = calculate the adjacent edge distance from the node
14. angle = arccos(d1/d2)
15. neighbour’s distance (to the contour point) = d1 × (1 – proximity)
16. x = neighbour’s x-coordinate + (neighbour’s distance × cos(angle))
17. y = neighbour’s y-coordinate + (neighbour’s distance × sin(angle))
18. end if
19. plot the x and y-coordinates of the contour location
20. end for

Figure 4.10: Spatial decoding algorithm

50

4.4.1.2 Temporal Compression Algorithm

Certain contour-based applications may require periodical observation of the

phenomenon. Periodical observation of the phenomenon may result in the estimated

contour position between two nodes approximately the same as in the previous

observations. These observations are said to be temporally correlated. The degree of

correlations between these observations depends on the type of phenomenon being

monitored and the granularity interval between each successive observation. Temporal

compression algorithms help in encoding these temporally correlated observations stored

at a particular node efficiently as query response contour data payload. Details on

detecting temporal correlations between the consecutive observations are explained in the

temporal suppression algorithm section. Encoding of temporal data can be done using a

contour-neighbour array specified by Cheng and Michael [44].

4.4.2 Suppression Techniques

Phenomena like temperature, pressure and humidity fields have high degree of spatial

and temporal correlations. Contour-based WSN applications may generate highly

correlated data. Transmission of this correlated data results in wastage of network

resources. Efficient suppression techniques should remove these correlations in the

sensed data. Moreover, these techniques should also provide the flexibility to the

application to control the amount of suppression that is to be done. If this flexibility is not

provided, then the user might not be interested in the data provided by the network, as it

might lead to erroneous results. Suppression can be performed locally or globally in a

distributed manner. Novel spatial and temporal cluster-based suppression algorithms are

proposed in this section. Spatial suppression algorithms are discussed in detail, whereas

temporal algorithms are presented for extensibility of the proposed suppression model

and are part of future work.

51

4.4.2.1 Spatial Suppression Techniques

To provide a proper coverage of the signal field WSNs require dense node deployment.

Due to high node density spatially proximate nodes have correlated readings. In a dense

deployment, using spatial suppression techniques and suppressing unnecessary spatial

correlated data helps in increasing the magnitude of energy savings by cutting down the

cost involved in transmission of these extra bytes. This applies to contour-based WSN

applications with dense node deployments where nodes that detect a contour have their

readings spatially correlated. Moreover, spatial suppression techniques work efficiently

with exploratory or one-shot queries. In this section, cluster-based spatial suppression

algorithms are discussed in detail.

4.4.2.2 Suppression Logic

The proposed suppression logic is used internally by the cluster-based spatial suppression

algorithm to remove the redundant sensed data. Suppression logic performs manipulation

on the contour readings to remove redundant correlated data. A contour reading is

constructed at a node when the node receives a sensed value reading from the neighbour

and detects a contour between them. It can also be generated by decoding the contour

data in the received query response from the neighbouring nodes. Contour data in the

response packet is an encoding of multiple valid contour readings. Encoding of the

contour data in the responses is described in detail in the compression techniques section.

Each contour reading contains information about the IDs and locations of the node and its

neighbour that have sensed the contour. Location information of the nodes is not

transmitted in any of the messages, as it is costly. Instead, the location information of the

nodes is retrieved based on node IDs, as the nodes IDs of the neighbours are known a

priori. Nodes location information plays a crucial role in performing suppression. For

performing cluster-based spatial suppression, two phases of the suppression logic need to

be performed. In the first phase, the contour readings stored at the node are suppressed

using the received query responses from the neighbouring nodes within the cluster. The

received and buffered neighbour responses are decoded and each reading is compared

52

with the stored current node’s readings. If the contour distance between the node’s

contour location and the decoded reading’s contour location are within the minimum

contour suppression threshold range, then the node’s reading is discarded as shown in

Figure 4.11. A suppression threshold is defined as the distance between the points on the

contour and its value is propagated in the query to remove redundant correlated sensed

data. Any records at a finer resolution than the suppression threshold are deemed

redundant. After performing the suppression, the received neighbour responses are

discarded unless the node is required to transmit a response to the CH.

In the second phase, the valid contour readings that are stored at the node are compared

with each other and suppressed accordingly. Prior to performing the suppression, the

node’s contour readings are sorted based on the proximity between the nodes as shown in

Figure 4.11.a. Next, the contour location is approximated from the node locations for

each of the contour readings stored at the node as shown in Figure 4.11.b. Later, the

contour distance is calculated between the contour location of the valid reading which has

closest inter-nodal distance and the contour location of other readings as shown in Figure

4.11.c. Finally, the node’s contour readings are compared with each other and if any of

these readings lie within the threshold range they are discarded as shown in Figure

4.11.d. Sorting of the readings is done only once, but the other steps are repeated for the

valid readings present. The suppression logic can also be extended to perform global

distributed suppression. In that case, only the second phase of the core suppression logic

needs be performed. The contour data present in each of the received responses from the

lower layers is decoded and then all the decoded readings are sorted and compared with

each other. However, the drawback of the global distributed approach is that the location

information of the nodes that have detected the contour need to be transmitted with the

contour data to perform suppression. Encoding the location information of the nodes is

costly. A detailed description of suppression logic is provided in Figure 4.12.

53

Figure 4.11: Illustration of the Suppression logic. a. Sort the contour readings
received at a node based on the proximity between the nodes b. Approximate the
contour location from the nodes for each reading c. Calculate the contour distance
between the contour location of the reading that has the closest distance between the
nodes (in this case it is indicated by 1) and the contour location of other readings d.
Suppress all the readings (indicated by ‘X’) that are within the suppression
threshold range

 Phase 1:
1. if query responses are present in the packet buffer and contour readings

are present in the data buffer then
2. for each query response in the packet buffer do
3. for each decoded reading1 in the query response do
4. for each reading2 in the data buffer do
5. if valid reading2 in the data buffer is within the minimum
 contour distance suppression threshold of reading1 then
6. set the reading2 in the data buffer to invalid
7. end if
8. end for

54

9. end for
10. discard the query response from the packet buffer
11. end for
12. end if

 Phase 2:

1. if readings are present in the data buffer and packet buffer is empty then
2. sort the readings in the buffer based on the closest distance between the nodes
3. for each reading1 in the data buffer do
4. for each reading2(reading1 + 1) in the data buffer do
5. if valid reading2 in the data buffer is within the minimum
 contour distance suppression threshold of reading1 then
6. set the reading2 in the data buffer to invalid
7. end if
8. end for
9. end for
10. end if

 Figure 4.12: Suppression logic

4.4.2.3 No-Suppression Algorithm

The no-suppression algorithm is a baseline algorithm implemented for comparison with

the proposed spatial suppression algorithms. It doesn’t perform the actual suppression of

the contour data or control messages. An understanding of the design and logic of this

algorithm helps in appreciating how the suppression algorithms work and their impact.

The proposed suppression and no-suppression algorithms are based on a clustered

network topology. According to Pattem et al. [43] a clustered topology with optimal

cluster size would perform well for a wide range of spatial correlations. These proposed

suppression and no-suppression algorithms can also be extended to multi-hop clusters of

size greater or lesser than two hops (the standard size in the experiments) and to

randomly distributed clustered topologies.

In the proposed no-suppression algorithm, the query request broadcast by the CH is

assumed to be received by all the members within the cluster, so that the members need

not re-broadcast the query request internally. To broadcast the query request to all the

55

members, the CH needs greater power and the amount of power needed varies with the

cluster size. However, the suppression and no-suppression algorithms are not impacted

even if the CH broadcasts the query request to its one-hop neighbours and they further re-

broadcast it to the other members. In the no-suppression algorithm, member responses are

aggregated only at the CH before routing the overall aggregate response to the

destination. Taking the memberships of the nodes in a cluster into consideration, two

variants of this algorithm is developed. One variant is for the CH and the other for

the CMs/GNs.

In this approach, the CH on receiving the query request broadcasts the request within the

cluster with its sensed reading along with the contour information it is looking for as

shown in Figure 4.13.a. On receiving the request from the CH, CMs that are one-hop

from the CH check if a contour exists between themselves and the CH. If so, the CMs

populate the contour reading between themselves and the CH and store the reading. On

the other hand, GNs and CMs that are more than one-hop away don’t populate any

contour readings from the received CH query request even if a contour exists because an

accurate contour location might be difficult to obtain because of the distance. Nodes in

the cluster start a query response timer on receiving the query. The response timer value

varies depending on the membership of the node. The CMs/GNs have a similar response

timer value in the no suppression algorithm and their timer value is less than the CH.

Later, CMs and GNs within the cluster broadcast their sensed readings to their

neighbours as shown in Figure 4.13.b. Neighbours on receiving the sensed readings

check if a contour exists between the node that broadcast the sensed reading and itself. If

so, a contour reading is generated and stored at the node. On the other hand, even though

CHs detect a contour between themselves and the broadcast CM sensed reading, they

don’t populate any contour reading because CMs that are one-hop away would have

populated the contour readings from the CH sensed reading broadcast in the query

request. This avoids unnecessary duplication of the contour data at the CH.

56

Figure 4.13: Illustration of the No-suppression algorithm. a. Query request
broadcast by the CH to its members b. Sensed readings broadcast by the members
to their neighbours c. Query responses are unicast by the members (indicated by
‘Y’) that have detected the contour to their CH d. Overall aggregated members
response forwarded by the CH to the sink

There are two different scenarios that can occur based on whether a contour passes

through the cluster or not. In the first scenario, assume that the contour doesn’t pass

through the cluster. All the members exchange their sensed readings with the neighbours

on receiving the query request. On response timer expiry, none of the members transmit

any messages or contour data to the CH. The CH response timer times out and moves to

idle state confirming that the contour doesn’t pass through the cluster. In the second

scenario, assume that the contour passes through the cluster. Like the previous scenario,

the members exchange the sensed readings with each other. Members that have detected

the contour and have contour readings stored encode the readings in the response as

contour data and forward the response to the CH independently using unicast as shown in

57

Figure 4.13.c. On response timer expiry, the CH aggregates all the responses into a single

response and forwards the overall aggregate response to the sink based on the

routing algorithm.

This approach provides the most complete data about the contour, as the sensed data is

transmitted without any processing. Even with suppression disabled, the proposed

algorithm avoids unnecessary transmission of query request and response control

messages within the cluster. It also provides a mechanism to aggregate all the member

responses received at the CH into an overall aggregate response and in the process strips

the individual member response packet headers before routing the overall response to the

destination. However, the problem with this approach is that the data might be redundant

for dense networks and may result in unnecessary energy wastage. Moreover, this

approach doesn’t give the application the flexibility to control the amount of suppression.

To counteract these problems and provide an efficient suppression of contour data and

control messages, cluster-based spatial suppression algorithms are proposed in the

next section. A detailed description of the no-suppression algorithm is provided in

Figure 4.14.

1. CH:
2. On receiving CM/GN query response:
3. if response is forwarded to the destination then
4. discard the received response
5. else
6. store the received responses in the packet buffer
7. end if

8. On receiving CM/GN sensed reading:
9. discard the received reading
10.
11. On query response timer expiry:
12. aggregate and encode the readings as contour data in the response

13. CM/GN:

58

14. On receiving sink/CH query request:
15. if contour exists between CM (one-hop from CH) and CH then
16. populate and store the contour reading in the data buffer
17. end if
18. broadcast the CM/GN sensed readings
19. start a query response timer at the CM/GN and wait for the sensed readings

20. On receiving CM/GN sensed reading:
21. if query response is forwarded to the CH then
22. discard the received reading
23. else if contour exists between CM/GN and received sensed reading then
24. populate and store the contour reading in the data buffer
25. else
26. discard the received reading
27. end if

28. On query response timer expiry:
29. aggregate and encode the readings as contour data in the response
30. forward the query response to the CH independently
31. set the query response sent to true

Figure 4.14: No-suppression algorithm

4.4.2.4 Cluster-Based Spatial Suppression Algorithm

The cluster-based spatial suppression algorithm is designed to suppress redundant

contour data. The CH is the central entity within a cluster that takes all the critical

decisions. In all the proposed suppression algorithms the CH aggregates all the received

member responses before forwarding the data to the destination. In the no suppression

algorithm, members within the cluster forward their responses by unicast to the CH

independently, on response timer expiry. This can result in energy wastage, if the cluster

size is large. To avoid this waste of energy, the proposed suppression algorithms forward

the responses to the CH in a controlled manner. Moreover, a minimum contour

suppression threshold parameter is used to control the amount of suppression that is to be

performed by a particular member. The value of this parameter is indicated by the sink in

the query request and a larger value indicates more widespread suppression. More details

on how this parameter is used to perform suppression are explained in the suppression

logic section.

59

In the proposed suppression algorithm, the cluster is treated as an aggregation tree with

the CH as the root of the tree. All the CMs act as intermediate nodes in the aggregation

tree and the GNs act as the leaf nodes of the tree, as they lie on the cluster boundary.

Members in the cluster have different response timer values and this value varies

depending on the hop count to the CH. Those members closer to the CH have a larger

timer value, as the members move away from the CH the timer value decreases. The

response timer value of the CH is larger than that of any member’s response timer value.

There is a slight difference in the way the response timer is set by the CMs. The response

timer values of the CMs that are on the same hop level and that haven’t detected any

contour from the broadcast sensor reading in the query request by the CH have a greater

timer value compared to the CMs that have detected a contour. The reason for the

response timer value difference between the CMs within the same hop level is because

CMs exchange their sensed reading with their neighbours only when they detect a

contour. From these broadcast sensed readings, the neighbour CMs within the same hop

level can detect the presence of a contour between them and the CM that has broadcast

the response. On the other hand, all the GNs at a particular hop level have a similar

response timer value, because all the GNs broadcast their sensed readings to their

neighbouring nodes separately, unlike the CMs which broadcast their sensed reading in

the response to the CH. GNs broadcast their sensed readings to their neighbours

separately in order to enable the neighbouring cluster GNs to suppress their query

responses. In this case, it is not possible to detect a contour between the GNs and its one-

hop CMs, if the GNs didn’t broadcast their sensed readings or query responses.

 The advantage of using a cluster-based aggregation tree approach is contour readings

suppression and contour data aggregation can be performed simultaneously at the

members as the responses propagate towards the CH. Contour readings are populated and

stored by the members from the broadcast neighbours sensed readings only when a

contour is detected. These readings are encoded into the query response as contour data

using the encoding scheme mentioned in the compression techniques section.

60

Suppression of redundant contour readings at a member means that the actual redundant

contour data is removed. As explained in the suppression logic, a member suppresses the

contour readings in two phases. These suppressed readings can be inter-cluster or intra-

cluster contour readings. In the first phase, if the members have any received broadcast

member query responses, they decode the contour data in these responses and each of the

decoded reading is compared with its stored contour readings, if present. If any of the

member’s stored readings is within the minimum contour suppression threshold then the

reading is suppressed. In the second phase, the stored contour readings are sorted based

on each reading’s proximity between the nodes and compared within themselves. If any

of these readings are within the minimum threshold limit they are suppressed.

Apart from suppression, efficient contour data aggregation can also be performed using

the proposed cluster-based aggregation tree approach. A member whose response timer

expires and that has detected a contour, performs suppression before it broadcasts the

response to its one-hop neighbours. One of the neighbours is designated to forward the

data further. On receiving the broadcast query response, members store the received

query response when their response timer expires. Members that are not designated to

forward the contour data discard the received query response after performing

suppression. However, the member that is designated to forward the query response

aggregates the contour data received to its own stored data and propagates the packet

further. This process continues until the response reaches the CH. Members that have

already forwarded the response discard any received responses. By performing

suppression and aggregation at the intermediate nodes instead of the CH, unnecessary

redundant data transmissions within the cluster are avoided. On receiving the aggregated

responses from the members, the CH decodes the contour data present in these responses

and stores the contour readings. Only the second phase of the member suppression

algorithm is applied to these stored readings.

The spatial suppression algorithm also suppresses control messages within the cluster.

Query request message transmissions by the members and broadcasting of the CMs

61

sensed reading are the control messages that can be suppressed. Query request

suppression by the members is the same as in the no suppression algorithm. In general,

all the nodes exchange their sensed readings with their neighbours to detect the presence

of a contour. However, with the spatial suppression algorithm, most of the CMs refrain

from transmitting their sensed reading to their neighbours even if they detect the contour

present in their vicinity. The CMs that are one-hop from the CHs or GNs can receive the

broadcast reading from the CH and the GNs in a multi-hop cluster. From these broadcast

readings, CMs can detect if a contour exists between themselves and the broadcaster.

Those CMs that have detected a contour based on the received sensed readings from the

CH or GNs include their sensor reading in the query response while forwarding the

response to the CH using broadcasting. On receiving the CM query response, other CMs

compare their reading with the sensed reading to detect the presence of a contour. If a

contour is detected, CMs include their reading in the response and broadcast the packet to

their neighbours.

On receiving a query request, the CH forwards the suppression threshold interval, contour

value and its sensed readings to the members as shown in Figure 4.15.a. All the members

on receiving the query request start their query response timers based on whether they

have detected a contour between themselves and the CH. The GNs broadcast their sensed

readings to their neighbours on receiving the request as shown in Figure 4.15.b, which

store them if a contour exists between them and the GN that broadcast the reading. On

response timer expiry, members broadcast their responses to their one-hop neighbours

and designate one of the neighbours that are closer to the CH to forward its contour data

further. On receiving the query response broadcast, members suppress their contour

readings by applying the suppression logic and discard the received query response if

they are not designated to propagate the contour data in the response further. The member

that is designated to propagate the response further as shown in Figure 4.15.c aggregates

the received contour data in the response with its contour data and broadcasts the overall

aggregated response to its neighbours as before. In this manner, the response is

propagated until the CH receives the data as shown in Figure 4.15.d. At the CH, the final

level of suppression is performed on all the received data before the readings are

62

aggregated into an overall response and forwarded using one of the schemes described in

section 4.5.

Figure 4.15: Illustration of the Cluster-based spatial suppression algorithm. a.
Query request broadcast by the CH to its members b. Sensed readings broadcast by
the GNs to their neighbours c. Query responses broadcast by the GNs (indicated by
‘Y’) that have detected the contour to their neighbours indicating the forwarding
CM (indicated by ‘X’) after performing suppression d. Query responses broadcast
by the CMs (indicated by ‘Y’) that have detected the contour to their neighbours
after performing suppression.

In one scenario, it is assumed that the contour doesn’t pass through the cluster. In this

case, only the GNs exchange their sensed readings with the neighbours on receiving the

query request, whereas none of the CMs broadcast any of their sensed readings. The

savings is the suppression of CM readings broadcasts. On response timer expiry, none of

the members transmit any messages or contour data to the CH. In the second scenario, it

63

is assumed that the contour passes through the cluster. Like the previous scenario, the

GNs exchange their sensed readings with each other and only the CMs that have detected

the contour broadcast their readings while other CMs are suppressed, saving unnecessary

broadcasts by the CMs that haven’t detected the contour. Members that have detected the

contour perform suppression and aggregate all the received responses at each hop while

propagating the response to the CH. This removes the redundant contour data and saves

energy by cutting down unnecessary data transmissions. Moreover, the members

aggregate the responses at each hop and send the overall aggregated response to the CH

avoiding independent transmission of responses by the members. The amount of

suppression that is to be performed at a particular member is controlled by the minimum

contour suppression threshold parameter broadcast in the query.

Another important parameter that can be introduced for performing suppression along the

contour when the suppression threshold spans more than a cluster is the use of a skip-

ahead parameter. Clusters that have detected a contour forward this parameter in the

request packet to the neighbouring clusters. On detecting a contour, the neighbouring

clusters look into the skip-ahead parameter and suppress their responses if they are within

the threshold limit. This technique is not implemented in the thesis and is part of future

work. A detailed description of the cluster-based spatial suppression algorithm is

provided in Figure 4.16.

1. CH:
2. On receiving CM query response:
3. if response is forwarded to the destination then
4. discard the received response
5. else
6. decode the contour data and store the contour readings in the data buffer
7. end if

8. On receiving CM/GN sensed reading:
9. discard the received reading

10. On query response timer expiry:

64

11. perform suppression on the stored contour readings using suppression logic
12. if valid contour readings are present then
13. aggregate and encode the readings as contour data in the response
14. end if

15. CM:
16. On receiving sink/CH query request:
17. if contour exists between CM (one-hop from CH) and CH then
18. populate and store the contour reading in the data buffer
19. end if
20. start a query response timer at the CMs based on the hop distance to the CH
 and detection of a contour

21. On receiving GN sensed reading:
22. if contour exists between CM and received sensed reading then
23. populate and store the contour reading in the data buffer
24. else
25. discard the received reading
26. end if

27. On receiving CM/GN query response:
28. if query response is forwarded to the CH then
29. discard the received response
30. else
31. if contour exists between CM and the sensed reading received in the
 CM/GN response then
32. populate and store the contour reading in the data buffer
33. end if
34. if CM ID is same as the transmit ID in the response then
35. decode the contour data and store the contour readings in the data buffer
36. else
37. store the received response in the packet buffer
38. end if
39. end if

40. On query response timer expiry:
41. perform suppression on the stored contour readings using suppression logic
42. if valid contour readings are present then
43. aggregate and encode the readings as contour data in the response
44. broadcast the response to the neighbours indicating the transmit ID
 that needs to further propagate the contour data to the CH and also
 the CM’s sensed reading
45. end if
46. set the query response sent to true

47. GN:

65

48. On receiving sink/CH query request:
49. broadcast the GN sensed readings
50. start a query response timer at the GNs based on hop distance to the CH

51. On receiving GN sensed reading:
52. if contour exists between GN and received sensed reading then
53. populate and store the contour reading in the data buffer
54. else
55. discard the received reading
56. end if

57. On receiving GN query response:
58. if query response is forwarded to the CH then
59. discard the received response
60. else
61. store the received response in the packet buffer
62. end if

63. On query response timer expiry:
64. perform suppression on the stored contour readings using suppression logic
65. if valid contour readings are present then
66. aggregate and encode the readings as contour data in the response
67. broadcast the response to the neighbours indicating the CM transmit ID
 that needs to further propagate the contour data to the CH
68. end if
69. set the query response sent to true

Figure 4.16: Cluster-based spatial suppression algorithm

4.4.2.5 Temporal Suppression Techniques

Some contour-based applications may require observing the phenomenon periodically

and reporting the information to the destination. Periodical observation of the

phenomenon may result in the estimated contour position between two nodes

approximately the same as in the previous observations. These observations are said to be

temporally correlated. In such cases, applying only spatial suppression techniques might

not be efficient because even after spatial suppression the reported contour data at the

destination might be redundant due to temporal correlations. To remove redundant

temporally correlated contour data the proposed cluster-based temporal suppression

66

algorithm can be used. The temporal suppression algorithm presented here is for

extensibility of the proposed suppression model and is part of future work.

Cluster-Based Temporal Suppression Algorithm

The main focus of cluster-based temporal suppression algorithm is to detect and suppress

the redundant temporally correlated contour data in contour-based WSN applications

which require periodical observation of the phenomenon. It can be used in conjunction

with spatial suppression algorithms. Temporal suppression of correlated data is

performed at two levels, one level at the members and the other at the CH. Members that

observe and detect the phenomenon for the first time store their contour readings after

performing spatial suppression. Similarly, the CH decodes the contour data received in

the responses from the members and stores the readings after performing spatial

suppression and forwarding the overall aggregated response to the destination. Temporal

suppression is not performed for the first time by the CH and members when they

observe and detect the phenomenon. From the next observation and detection of the

phenomenon, the members compare their contour readings with those readings stored

previously, and if any of the observed readings are temporally correlated, then they

are suppressed. A temporal suppression threshold can be used to control the amount of

temporal suppression by specifying the correlation degree for suppression.

Temporally correlated contour readings are not suppressed completely by the members

because the CH has no information on whether the members have actually suppressed

their contour readings by performing temporal suppression or there was no contour

passing through the cluster. To avoid this problem, those members that have detected a

contour and have their readings temporally correlated, encode minimal information in the

response to the CH. If some contour readings that are detected by the members are

different from those stored previously, then they are stored by the members along with

their existing readings. The CH, on receiving the responses from its members, performs

another level of temporal suppression to remove any further redundant readings. The

67

savings in temporal suppression are obtained by encoding minimal data in the response

payload while forwarding the response to the CH or to the sink. Each of the stored

readings at the members and the CH is associated with a time duration for which the

readings are valid. This duration is indicated in the query request propagated by the sink.

If the newly observed contour readings are temporally correlated with those stored

previously in the node then their duration is re-initialized. The duration should be chosen

based on the frequency the members observe the external phenomenon and the type of

phenomenon being observed.

4.5 Contour Data Routing Algorithms

Data routing is the final phase of any sensor network application and it involves

transmitting the information requested in the query to the sink. Efficient data

transmission to the sink is important in sensor networks because energy is constrained.

In this section, different data routing techniques used for transmitting the data to the sink

in contour-based WSN applications are analyzed in detail. Routing of the contour data is

dependent on the query propagation mechanism. All the proposed routing techniques fall

in two classes: independent shortest path routing, and tree-based routing. In the shortest

path routing, the CHs that have the contour information transmit the responses to the sink

along the shortest path independently. In the tree-based routing, the CHs that have

contour information transmit the response to the sink along the shortest path along the

tree. The advantage of the tree-based routing approach is in-network processing can take

place at the intermediate nodes as the responses propagate the along the tree to the

destination. All the proposed algorithms use a cluster-based topology. Flooding-based

Shortest Path Routing (F/SPR) and Information-driven Shortest Path Routing (I/SPR) use

independent shortest path routing to route the data to the destination. Flooding-based

Aggregation Tree-based Routing (F/ATR), Information-driven Aggregation Tree-based

Routing (I/ATR) and Information-driven Contour and Aggregation Tree-based Routing

(I/CATR) use the tree-based routing to route the responses to the destination.

Information-driven Contour and Shortest Path Routing (I/CSPR) is an extension routing

68

algorithm presented for the completeness of the design and is part of the future work.

F/SPR and F/ATR algorithms are the baseline algorithms implemented for comparison.

I/SPR, I/ATR, I/CATR and I/CSPR are the novel algorithms proposed here. Though

I/SPR and I/CSPR are present in the literature [31-34], use of clustering as the underlying

topology makes them different from the existing contour-based data routing algorithms.

Table 4.1 shows the list of algorithms that are designed and the features on which

they are based.

 Table 4.1: Algorithms overview

 Flooding Ray/Contour

Shortest path F/SPR I/SPR

Aggregation Tree F/ATR I/ATR

Contour + Aggregation tree I/CATR

Contour + Shortest path I/CSPR

4.5.1 Flooding-based Shortest Path Routing

F/SPR is a baseline shortest path algorithm implemented for comparison with the

proposed algorithms. F/SPR algorithm is the simplest of all the routing approaches

described in this thesis. In this algorithm, all the nodes in the network receive the

propagated query request by the sink. On receiving the query, all the nodes in the

network sense the external phenomenon and exchange the sensed readings accordingly to

detect the presence of a contour. Nodes in the cluster that detect the contour inform their

CH. The member responses received by the CH are aggregated and the overall

aggregated response is routed to the sink through the shortest path independently as

shown in Figure 4.17.

The advantage of F/SPR algorithm is there isn’t much delay in routing the response to the

sink because this approach doesn’t require any synchronization between the clusters.

Clustering reduces some overhead by aggregating the individual node responses at the

69

CH and allowing only the CHs to transmit the response to the sink. Even with the CHs

transmitting the data, there is overhead incurred because the individual response headers

are forwarded at each hop. While F/SPR is the most general approach, it misses several

opportunities for application-specific data aggregation. Moreover, the query propagation

through the network using flooding is not efficient for contour-based applications. To

avoid unnecessary transmission of individual response headers, tree-based approaches

described in the following sections can be employed.

 Figure 4.17: Illustration of the F/SPR algorithm

4.5.2 Flooding-based Aggregation Tree-based Routing

F/ATR is a baseline tree-based shortest path algorithm implemented for comparison with

the proposed algorithms. Like in F/SPR, the query needs to be flooded in the network for

70

all the nodes to start the aggregation timers to schedule the propagation of responses from

lower layers to higher layers. In F/ATR algorithm, the query responses from the lower

layers get aggregated at the higher layers of the tree while routing the query responses to

the sink in the shortest path along the tree as shown in Figure 4.18. At every parent, a

single packet with a variable data load is created from the children’s data and transmitted

up the tree. While data size increases, header size remains constant and the number of

packets is reduced, reducing the total number of header bytes transmitted. This is

equivalent to TAG [20] with atomic data.

 Figure 4.18: Illustration of the F/ATR algorithm

One advantage of this algorithm is that distributed in-network processing can be applied

to the response data during propagation to the sink. Even though contour data is

aggregated and transmitted to the sink in the shortest path there are possible

71

shortcomings. Consider the different paths in Figure 4.18, there are considerable savings

of data along path A due to in-network aggregation of different packets while there are no

savings along remaining paths which are similar to the general routing. The degree of

savings along a particular route depends on the distribution of data in the network. Non-

uniform data distributions result in suboptimal aggregation savings. This algorithm, like

the F/SPR, requires the query to be propagated through the entire network which is costly

and the response propagation to the sink is not efficient. To counteract these problems

several novel tree-based routing algorithms are proposed in the later sections. A detailed

description of the F/ATR algorithm is provided in Figure 4.19.

1. propagate the query request through the network as explained in the
 flooding query propagation technique

2. CH/CM/GN:
3. On receiving query request:
4. start an aggregation sink query response timer based on the node’s hop count

 to the sink and wait for the query responses from the lower level nodes
5. process the received query request

6. On receiving sink query response:
7. if query is processed then
8. discard the received response
9. else
10. store the received query response
11. end if

12. On aggregation sink query response timer expiry:
13. if responses are present then
14. aggregate the received responses
15. forward the aggregated sink query response to the higher level nodes
16. end if
17. set the query processed to true

Figure 4.19: F/ATR algorithm

72

4.5.3 Information-driven Shortest Path Routing

I/SPR algorithm follows the contour and performs shortest path routing of the overall

aggregated contour data present at each of the CHs to the sink independently. The current

implementation uses the pattern based contour detection and cluster-based query

propagation approaches to forward the query request along the contour and uses the

shortest path routing technique to return the contour data to the sink as shown in

Figure 4.20. This algorithm is included to help determine the relative impact of the query

propagation and contour routing techniques. Overall, the query propagation through the

network is efficient as the query is not flooded. However, routing the contour data to the

sink is costly because the algorithm uses independent paths.

 Figure 4.20: Illustration of the I/SPR algorithm

73

4.5.4 Information-driven Aggregation Tree-based Routing

I/ATR algorithm combines contour following to propagate the query and performs tree-

based routing to forward the contour data to the sink. The only difference between

F/ATR and I/ATR is the query is not flooded through the entire network using the current

approach. Like in I/SPR algorithm, I/ATR algorithm uses pattern based contour detection

and a cluster-based query propagation approach to forward the query request along the

contour. On receiving the request, the CH waits for the responses from its members. If

the members send their responses to the CH, indicating the presence of a contour, then

the CH starts the synchronization timer and waits for synchronization with the other

clusters. The synchronization timer is set sufficiently high to allow the query to propagate

around the contour. The synchronization timer count is sent in the query request by the

sink and is based on the network size, approximate number of network clusters or a priori

knowledge of the contour. After synchronization, the aggregation timer at the CHs that

detected a contour are set and the responses are propagated to higher layers using

cascading timers as shown in Figure 4.21. The aggregation timer at the CH is dependent

on the CH’s hop count to the sink and the CH’s hop count to the farthest node in the

network. Intermediate nodes start their aggregation timers only after they receive the

responses from lower layers. The value of the aggregation timer set at the intermediate

nodes is dependent only on the node’s hop count to the sink.

Overall, request and response propagations are efficient using this algorithm because the

query request is propagated along the contour and the tree-based routing is used to

aggregate the query responses and strip the unwanted response headers as the data is

propagated along the tree to the destination. A detailed description of the I/ATR

algorithm is explained in Figure 4.22. However, there is one major drawback to the

aggregation tree for contour-based applications. Some responses can take different paths

up the tree to the sink and may not get aggregated early enough to generate significant

savings, which may result in individual headers getting forwarded inefficiently. However,

this inefficiency can be avoided by exploiting the expected smoothness of the contour.

74

 Figure 4.21: Illustration of the I/ATR algorithm

1. propagate the query request through the network as explained in the pattern-based
contour detection and cluster-based query propagation techniques

2. CH:
3. On member query response timer expiry:
4. if member query responses are present then
5. start the synchronization timer at the CH
6. end if

7. On synchronization timer expiry:
8. start the aggregation sink query response timer expiry

9. CH/CM/GN:
10. On receiving sink query response:
11. if query is processed then
12. discard the received response

75

13. else
14. if aggregation sink query response is not started then
15. start the aggregation sink query response timer
16. end if
17. store the received query response
18. end if

19. On aggregation sink query response timer expiry:
20. if responses are present then
21. aggregate the received responses
22. forward the aggregated sink query response to the higher level nodes
23. end if
24. set the query processed to true

Figure 4.22: I/ATR algorithm

4.5.5 Information-driven Contour/Aggregation Tree-based Routing

The I/CATR algorithm propagates the query along the contour and performs routing

along the contour when necessary along with the tree-based routing to forward the

contour data to the sink. Contours are natural phenomena which are generally smooth and

continuous. Under normal network operation, if a cluster detects the contour, there is high

chance that the neighbouring clusters have also detected the contour. This phenomenon is

exploited by this algorithm. On detecting a contour, each CH checks if it is feasible to

forward the overall aggregated response using the aggregation tree or the neighbouring

CH that also has detected the contour as shown in Figure 4.23. In the I/CATR algorithm,

the decision of whether to forward to the neighbouring CH or along the tree is made

based on the hop distance to the sink. This decision is made during the cluster-based

query propagation along the contour. On detecting a contour, the CH forwards the query

to the neighbouring clusters in its vicinity to track the contour further and forward the

query. The CH that initially detects the contour makes a decision to forward the response

along the aggregation tree, as it has no information of its neighbouring clusters. However,

this decision can be changed at a later point and a new path can be re-calculated once the

neighbouring clusters detect the contour. Neighbouring CHs that have detected a contour

check if it is shorter to forward their responses along the aggregation or to the CH that

76

has forwarded the query request. Similarly, the neighbouring CHs that have detected the

contour also calculate if it is shorter for the CH that has forwarded the query request to

forward its response through them. If so, they indentify the CH that forwarded the query

request to change its forwarding path. Forwarding the overall aggregated CH response to

the neighbouring CH that has also detected the contour helps in aggregating the responses

along the contour and avoids individual CHs from forwarding the responses along the

tree using different paths to the sink because neighbours along the contour are guaranteed

to have data for aggregation while siblings in the aggregation tree might not. This

approach further improves the efficiency of response propagation. A detailed description

of the I/CATR algorithm is explained in Figure 4.24.

 Figure 4.23: Illustration of the I/CATR algorithm

77

1. set the parent ID to the sink ID
2. propagate the query request through the network as explained in the pattern-based

contour detection and cluster-based query propagation techniques

3. CH:
4. On query response timer expiry at the CH:
5. if member query responses are present then
6. if parent hop distance to the sink is less than hop distance of the parent
 to the sink through the current CH and parent is not the sink then
7. request the parent CH to route the response through the current CH
8. end if
9. if current CH hop distance to the sink is less than hop distance of the
 current CH to the sink through the parent CH then
10. set the parent ID to the current CH ID
11. end if
12. for each neighbouring CH which have also detected the contour do
13. if current CH hop distance to the sink through the neighbouring CH
 is less than hop distance of the parent to the sink then
14. set the parent ID to the neighbouring CH ID
15. end if
16. end for
17. start the synchronization timer at the CH
18. end if

19. On synchronization timer expiry:
20. start the aggregation sink query response timer expiry

21. On receiving change parent ID request then
22. if parent hop distance to the sink is greater than hop distance of the CH
 from which the request is received then
23. set the parent ID to the CH ID from which the request was received
24. end if

25. CH/CM/GN:
26. On receiving sink query response:
27. if query is processed then
28. discard the received response
29. else
30. if aggregation sink query response is not started then
31. start the aggregation sink query response timer
32. end if
33. store the received query response
34. end if

78

35. On aggregation sink query response timer expiry:
36. if responses are present then
37. aggregate the received responses
38. if parent ID is same as the current CH ID or sink ID then
39. forward the aggregated sink query response to the sink
40. else
41. forward the aggregated sink query response to the parent
42. end if
43. end if
44. set the query processed to true

Figure 4.24: I/CATR algorithm

4.5.6 Information-driven Contour and Shortest Path Routing

I/CSPR algorithm is completely different from the contour data routing approaches

discussed in previous sections because it assumes that the payload size is constant. In this

algorithm, both the query and response are routed together. This approach is useful for

aggregate queries such as MAX, MIN, AVG and SUM or for combined queries where a

single parameter is required along a different contour (max pressure at T = 0). For

example, consider a contour-based application that wants to find the maximum height on

a particular temperature contour in a mountainous area. In this case, routing the response

along the contour is feasible even if moving away from the sink as the contour data only

contains the maximum height on the contour. Because the data size is constant there is

little difference between propagating the query and the response. It also prevents clusters

from forwarding individual responses up the aggregation tree and aggregating the contour

data while being propagated which can be costly. However, this approach is not feasible

if the accumulation of data size outweighs the header propagation savings of exclusive

contour routing.

In this approach, the request is propagated along the contour using the cluster-based

query approach with a slight modification. The request is propagated reliably along the

contour with the response piggy-backed to it. On receiving the request, the neighbouring

79

CHs compare the received piggy-backed response with the member responses received

and propagate the request further until the request can’t be propagated any more as shown

in Figure 4.25. Finally, CHs that couldn’t further propagate the requests forward the

responses to the sink using the one of the routing techniques proposed in the previous

sections. This algorithm is not implemented in section 6 and is a logical extension

presented for the completeness of the design and is part of the future work.

 Figure 4.25: Illustration of the I/CSPR algorithm

4.6 Summary

F/SPR and F/ATR algorithms are the baseline shortest path and aggregation tree-based

algorithms described in this thesis for comparison. The current algorithms in the literature

that use energy efficient query propagation schemes either route the data to the sink by

80

aggregating the data in the reverse path or in the shortest path after aggregating along the

phenomenon of interest. Moreover, routing each node’s contour data independently to the

sink using the shortest path is expensive. None of the existing algorithms provide a

reliable and energy-efficient solution for contour-based applications. I/SPR, I/ATR,

I/CATR and I/CSPR are novel algorithms proposed in this thesis. All these algorithms

use the proposed reliable and efficient pattern-based query detection schemes and cluster-

based query propagation schemes to forward the query in the network along the contour.

The proposed cluster-based spatial and temporal suppression techniques can be used with

these algorithms to remove redundant data.

The I/SPR algorithm routes the overall aggregated response at each CH to the sink along

the shortest path independently. Though this is not efficient compared to the other

proposed schemes, it is better than forwarding individual node data to the sink. The

I/ATR algorithm uses a tree-based routing technique to route the data efficiently to the

sink by performing in-network processing at the intermediate nodes. However, some of

the responses can take different paths up the tree to the sink and may not get aggregated

early enough to generate significant savings. The I/CATR algorithm provides guaranteed

aggregation by performing routing along the contour when necessary along with the

tree-based routing to forward the contour data to the sink.

81

CHAPTER 5

EXPERIMENTAL METHODOLOGY

In this chapter, the experimental setup for the simulations is described. To study the

performance and scalability of the proposed algorithms, experiments are simulated using

the NS-2 network simulator because physical experiments of sufficient scale performed

are expensive, are difficult to control, are time consuming to setup and maintain and

produce results that may be difficult to interpret.

5.1 System Modeling Assumptions

Topology

A grid topology is employed in the simulation as a grid topology is efficient in

optimizing the sensor nodes placement, where the nodes are evenly placed based on their

transmission and sensing range. The grid topology allows simple generation of routing

tables, allowing us to test the proposed algorithms without having to implement

clustering algorithms. Topological side-effects on the results are easier to detect in

structured topologies, making conclusions more robust. Few truly random static

deployments exist, making grid-like networks the norm for the problem that is being

addressed in this thesis. The network is partitioned into two-hop clusters as shown in

Figure 1.1. Each cluster consists of 17 nodes. Out of these, one node is a CH, eight nodes

are CMs and the remaining nodes are GNs. The network distance between any two CHs

is five hops. Nodes are densely deployed between the CHs. The reason for the dense

deployment is to achieve greater detail in contour measurement and to permit efficient

contour data suppression. CHs consume more power compared to the other nodes and can

transmit their messages to their one and two-hop neighbours, whereas the CMs/GNs

transmit messages only to their one-hop neighbours. CHs/GNs/CMs receive messages

82

only from their one-hop neighbours. CMs and CHs can transmit messages only within the

cluster. GNs can transmit messages from within the cluster and to neighbouring clusters.

A single sink is simulated.

Location Information

In many sensor network applications, knowing the spatial location of each node is

required. Consider a contour application where the sink has requested the location of the

10 degree contour line. Without any information on the location of the nodes it is

impossible to reconstruct the contour map without transmitting each nodes location

individually. In the simulations, nodes don’t transmit their locations to the sink because it

is assumed that the sink knows the location of the nodes present in the network. This is a

reasonable assumption for a static network.

Routing Tables

In sensor networks, the destination node may be one or more hops from the source node.

In a multi-hop network, nodes need to forward the packets to their intermediate

neighbours which in turn decide to forward the packet until the packet reaches the

destination. For the nodes to forward the packets in an efficient manner, routing tables

are used. In these simulations it is assumed that the nodes configure their routing tables

statically before the query is propagated by the sink. Every node in the network knows

the shortest route to the sink from itself. In addition, each node, based on its cluster

membership, has additional routing entries to perform intra-cluster and inter-cluster

routing. Again, these are reasonable assumptions for a static network.

83

5.2 Simulation Platform

NS-2, a discrete event network simulator used for modeling protocols for wired and

wireless networks [45]. The simulator processes events until there are no events pending.

NS-2 has a single thread of control, so there are no race conditions or deadlocks. The NS-

2 architecture follows an object-oriented approach and is written in C++ and OTCL

(Object variant of TCL). Most of the properties like reusability, abstraction,

encapsulation and inheritance are supported. The core data processing is implemented in

C++ which forms the back-end of the simulator. OTCL is used in the front-end to

configure the simulation parameters, trigger actions in a periodic or event-based manner,

and manipulate C++ objects, allowing changes to the parameters without re-compiling.

The TCLCL library acts as an interface between C++ and TCLCL allowing them to share

variables and functions. Both TCLCL and C++ share a class hierarchy. Packet and event

tracing mechanisms are possible in NS-2. The packet tracing mechanism allows tracking

of the transmitted, received or dropped packets on all links. The event tracing mechanism

helps trace all the events that are triggered during the operation.

The Wireless model in NS-2 consists of the mobile node at the core, with additional

supporting features such as the ability to transmit and receive signals to and from the

wireless channels that allows simulations of multi-hop ad-hoc networks, wireless LANs

and wireless sensor networks. Our proposed query propagation techniques, suppression

algorithms and routing protocols are implemented on top of the mobile node protocol

stack and makes use of the service provided by the stack.

84

5.3 Implementation of System Model

Topology Generation

The topology generator written in C creates a uniform cluster-based topology. The

generator takes the length and breadth of the network as parameters and places the nodes

uniformly as shown in Figure 1.1. The topology can easily be scaled by changing the

length and breadth of the network. By default, the sink is placed at the top left most

corner of the network. However, the sink can be relocated to a different location in the

network by specifying its location in the topology generator. Each node’s distance to the

sink is also computed by the topology generator which is useful for configuring the routes

to the sink.

Location Information Generation

Location information is generated from the topology automatically. Each point in the

generated topology is represented by an X and Y coordinate. These generated node

locations are used by the TCL script in configuring the mobile nodes in NS-2. Though the

nodes don’t transmit their location information in the response packets to the sink, the

node location can be obtained based on their node ID.

Routing Entries Generation

Routing entries for the entire network are also generated based on the topology

automatically. Every node in the network configures its own routing table from the

generated routing entries. Each configured routing table consists of multiple routing

entries. Some of these fields in these routing entries are optional and may be set or unset

85

depending on the node membership in the cluster. The following are the fields in a

generated routing entry:

· Source node ID is the ID of the node itself

· Destination node ID is the ID of the destination

· Next hop node ID is the forwarding node ID

· GN ID is used by CHs to transmit the query request to neighbouring clusters

· Destination hop count is the distance to the destination in hops

· CH ID is the CH of the node’s cluster

· Node membership indicates the role of the node within the cluster

· Node location indicates the position of the node

For all CMs/GNs/CHs, the first routing entry in the routing table is its route to the sink.

The node location in this entry indicates the position of the node. The remaining routing

entries in the table are either the routes to their CH or neighbours. In these routing entries,

the node location indicates the destination node’s location.

Scalar Field Generation

A scalar field generator is used for generating different continuous scalar fields. These

fields are generated using randomly generated parameters about user provided set points

and are dependant on the topology size. Figure 5.1 shows a generated continuous scalar

field for an 800x800 meters network topology. Similarly, Figure 5.2 shows an equivalent

contour map which is reconstructed at the sink from the received network contour data

for the generated scalar field. Each point in the network has a specific value assigned to

it. The continuous scalar field values generated are stored in a file. Based on a node’s

location in the network, a value is assigned. These values, once assigned, don’t change in

the course of the experiment. The generator is implemented in MATLAB and uses

sinusoidal functions to generate the continuous field values. The generator takes the

86

network size, number of frequencies and frequency scaling as the input parameters. The

network size is comprised of the network length and breadth. The number of frequencies

indicates different random sinusoidal waves that are to be generated and frequency

scaling determines the scaling of these waves. Random amplitude, phase, frequency and

offset are generated for each wave from the input parameters. Finally, these waves

are summed up as shown in the equation which is used to generate the values of

the scalar field.

 Field = �
=

´´
n

i

yscaleyxscalex
0

O(i) + (i))P + (i)/F (FSin (i))P + (i)/F (FSin A(i)

 where n is the number of waves; A is the amplitude; F is the frequency;

 P is the phase and O is the offset.

 Figure 5.1: Continuous scalar field

87

 Figure 5.2: Contour Map

5.4 Simulation Execution

The algorithms in Table 4.1 are implemented in NS-2. Configurations such as the mobile

node’s protocol stack initialization, duration of the simulation, node’s power settings, and

node’s location information are specified in the TCL script file, which triggers the start of

the simulation.

Consider an example of detecting a 10 degree contour in an 800x800 meters network.

Before the sink can broadcast the request into the network the simulation test-bed needs

to be set up. First, the topology generator is configured with the 800x800 meters network

setting. On running the generator, it internally generates a clustered grid topology as

mentioned in the earlier sections. From this generated topology, node location

information and routing files are created. Next, an 800x800 meters scalar field is

generated. Each node’s location information file is loaded by the TCL script files to

88

configure the mobile nodes. Later, when each of the mobile nodes is initialized the

routing file is read and the routing table is set up based on the node ID.

The scalar field is used by the node to set its value based on the node location only after

the query request is received from the sink. Nodes detect the presence of a contour

between them on exchanging these values. To check the scalability of the algorithms

various simulation experiments can be performed by varying the topology size. Similarly,

to check the influence of contours on the algorithms experiments can also be performed

by varying the shapes and sizes of the scalar fields.

89

CHAPTER 6

SIMULATION EXPERIMENTS

This chapter presents the results from the experiments that were performed. These

experiments concern a wide range of issues such as the scalability of algorithms with

network size, the impact of sink location on routing, the effect of suppression on traffic

volume, query propagation through the network, and contour map reconstruction at the

sink. In these experiments, the F/SPR, F/ATR, I/SPR, I/ATR and I/CATR algorithms are

compared and results are plotted.

6.1 Effect of Suppression

In-network processing of data is important in WSNs as most of the data generated is

spatially correlated and possibly redundant. Transmission of this redundant data in WSNs

results in wasted network resources. Suppression is an important in-network processing

technique that removes redundant contour data. This experiment examines the effect of

cluster-based spatial suppression. In order quantify the gain using suppression, two kinds

of experiments are performed. In the first experiment, the F/SPR, F/ATR, I/SPR, I/ATR

and I/CATR algorithms are compared with and without suppression for a fixed topology

of 800x800 meters and a single scalar field. In the second experiment, the I/CATR

algorithm is run over 10 different scalar fields. Each of these scalar fields is generated

uniquely by varying the amplitude, frequency and phases of the sinusoidal functions as

explained in section 5.3. Finally, the data and message transmissions are compared for

each of the protocols with suppression enabled and disabled. A sink is placed at a

constant location at the upper left corner throughout all the experiments.

For testing suppression, a query should be propagated in the network by the sink

pertaining to the phenomenon. In this experiment, the sink is interested in detecting a 40

90

degree contour present in the network. The F/SPR and F/ATR algorithms use flooding to

propagate the query within the network, whereas the I/SPR, I/ATR and I/CATR

algorithms use a pattern-based contour detection and cluster-based query propagation.

For cases with suppression enabled the local suppression threshold set to one unit, which

dictates the spatial suppression as explained in section 4.4.1.1. Overall, protocols with

suppression enabled show a significant data and message saving compared to protocols

with suppression disabled, as shown in Figure 6.1 and Figure 6.2. In the first experiment,

F/SPR has a reduction of 30.6% in data volume and 22% in messages transmitted with

suppression enabled. Similarly, I/CATR has a reduction of 35.7% in data volume and

28% in messages transmitted, clearly indicating that suppression has a significant effect

in removing redundant contour data irrespective of the algorithm being used.

The second experiment clearly shows that the performance of the I/CATR algorithm with

suppression is far better than without suppression for different contour shapes and sizes,

as shown in Figure 6.3 and Figure 6.4. This indicates that suppression performs well for

the entire class of contours considered.

0

20000

40000

60000

80000

100000

120000

140000

160000

F/SPR I/SPR F/ATR I/ATR I/CATR

Protocol

D
at

a
 b

yt
es

Suppression enabled (Threshold : 1) Suppression disabled

 Figure 6.1: Effect of cluster-based spatial suppression on contour data

91

0

1000

2000

3000

4000

5000

6000

7000

8000

F/SPR I/SPR F/ATR I/ATR I/CATR

Protocol

M
es

sa
g

es

Suppression enabled (Threshold : 1) Suppression disabled

 Figure 6.2: Effect of cluster-based spatial suppression on message transmissions

I/CATR Algorithm

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10

Contour

D
a

ta
 b

yt
es

Suppression enabled (Threshold : 1) Suppression disabled

Figure 6.3: Effect of cluster-based spatial suppression on data for different contours

92

I/CATR Algorithm

0

500

1000

1500
2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10

Contour

M
es

sa
ge

s

Suppression enabled (Threshold : 1) Suppression disabled

 Figure 6.4: Effect of spatial suppression on messages for different contours

The primary reason for cluster-based suppression outperforming in all cases is because of

the suppression of control messages and redundant data. In the two-hop clustered

topology considered, only the CMs that detect the contour are allowed to broadcast their

sensed readings along with the query response to the CH while the other CMs are

restrained from broadcasting their sensed readings. Moreover, significant data savings are

gained by performing three levels of suppression, one at each node type, to remove the

redundant data. The GNs perform the suppression of their readings using the minimum

contour distance suppression threshold parameter. Similarly, CMs perform the

suppression of their readings using the minimum contour suppression threshold

parameter and also from the received GNs and CMs query responses. Finally, the CH

performs the suppression on all the received responses from the members. If members

have no contour data to transmit after performing suppression, then they do not transmit

any response messages, saving message transmissions.

93

6.2 Varying the Suppression Threshold

As explained in the previous section, suppression plays a vital role in removing redundant

data and hence saving energy. The suppression is actually governed by the minimum

contour distance suppression threshold parameter, which specifies the required spatial

resolution required by the user. For example, a threshold of 5 units indicates that only

points on the contour that are 5 meters apart are of interest, so the readings which are 5

meters apart are reported to the sink while the other readings are discarded. The

suppression threshold gives the flexibility to tune the amount of suppression that is

required. This threshold value is propagated to the nodes in the query. The goal of this

experiment is to determine how the amount of redundant data removed depends on the

suppression threshold value.

 Figure 6.5: 700x700 meters contour map

94

40 Degree Contour Line (Threshold : 1)

0

200

400

600

800

0 200 400 600 800

Network Size (Mts)

N
e

tw
o

rk
 S

iz
e

 (M
ts

)

40 Degree Contour Line (Threshold : 5)

0

200

400

600

800

0 200 400 600 800

Network Size (Mts)

N
et

w
o

rk
 S

iz
e

 (M
ts

)

40 Degree Contour Line (Threshold : 8)

0

200

400

600

800

0 200 400 600 800

Network Size (Mts)

N
e

tw
o

rk
 S

iz
e

 (M
ts

)

40 Degree Contour Line (Threshold : 12)

0

200

400

600

800

0 200 400 600 800

Network Size (Mts)

N
e

tw
o

rk
 S

iz
e

(M
ts

)

40 Degree Contour Line (Threshold : 16)

0

200

400

600

800

0 200 400 600 800

Network Size (Mts)

N
et

w
o

rk
 S

iz
e

(M
ts

)

40 Degree Contour Line (Threshold : 20)

0

200

400

600

800

0 200 400 600 800

Network Size (Mts)

N
et

w
o

rk
 S

iz
e

(M
ts

)

 Figure 6.6: Contour reconstruction at different suppression thresholds

In order to verify that the removed redundant data is proportional to the suppression

threshold, a fixed topology of 700x700 meters network is considered as shown in

Figure 6.5. The I/ATR algorithm is run with 6 different suppression thresholds and a

95

single scalar field with cluster-based spatial suppression enabled, as shown in Figure 6.6.

Query propagation is performed as explained in the previous sections. The results clearly

show that the removal of redundant data is proportional to the suppression threshold, as

shown in Figure 6.7 and Figure 6.8. The percentage reduction in data volume and

message transmission by varying the suppression thresholds between 1 and 20 is 37.5%

and 2.5% respectively. The significant data volume reduction is due to the efficient

spatial suppression performed using the threshold value and the reason for marginal

message gain is because nodes transmit their responses even if they have only a small

amount of contour data present. This clearly shows that the efficiency of an algorithm in

WSNs cannot be judged based solely on message transmissions, but should also consider

the payload data transmitted in these messages. A closer look at the results shows that

as the suppression threshold value increases, the marginal compression decreases.

I/ATR Algorithm

38414

31600
27084 24967 24208 23971

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

1 5 8 12 16 20

Suppress ion Threshold

D
a

ta
 b

yt
es

 Figure 6.7: Effect of suppression threshold on suppression of contour data

96

I/ATR Algorithm

1533 1521 1507 1505 15051543

0
200
400
600
800

1000
1200
1400
1600
1800

1 5 8 12 16 20

Suppress ion Threshold

M
es

sa
g

es

Figure 6.8: Effect of suppression threshold on suppression of message transmissions

6.3 Impact of Sink Location

The sink can reside anywhere in the network. Its location has an impact on the data

volume and message transmissions for various protocols. The farther the sink is from the

contour, the greater the data volume and message transmission required. The pattern-

based contour detection and cluster-based query propagation are dependent on the

distance from the contour from the sink. Similarly, the response transmission is also

dependant on the sink location. To assess the impact of sink location on the F/SPR,

F/ATR, I/SPR, I/ATR and I/CATR algorithms an 800x800 meters network is considered.

Each protocol is run for 6 different sink locations and a single scalar field with cluster-

based spatial suppression enabled and the suppression threshold set to one unit.

The I/CATR algorithm outperforms all the algorithms in terms of data and message

transmissions irrespective of the sink locations, as shown in Figure 6.9 and

Figure 6.10. When the sink is placed at 220x25 meters, the data volume reduction of the

I/CATR algorithm is 42.7% more than with the F/SPR algorithm and 16.5% more than

97

with the I/SPR algorithm. Similarly, when compared to F/ATR and I/ATR algorithms,

the data volume reduction is 26.4% and 3% respectively. Similarly, for a sink location at

35x355 meters, the data volume reduction of the I/CATR algorithm over F/SPR and

I/SPR algorithms is 35.3% and 14.8% respectively. When compared to tree-based

protocols (the F/ATR and I/ATR algorithms), the data volume reduction is 23.5% and

6.4% respectively. The results show that with two different sink locations, the data

volume and message traffic varies depending on the proximity of the contour to the sink.

However, the ordering of the performance of the protocols is independent of the

sink location.

0

20000

40000

60000

80000

220x25 25x225 25x585 35x355 390x20 585x25

Sink Locations (M)

D
a

ta
 B

yt
es

I/CATR I/ATR I/SPR F/ATR F/SPR

 Figure 6.9: Impact of sink location on contour data

98

0

1000

2000

3000

4000

5000

220x25 25x225 25x585 35x355 390x20 585x25

Sink Locations (M)

M
es

sa
g

es

I/CATR I/ATR I/SPR F/ATR F/SPR

 Figure 6.10: Impact of sink location on message transmissions

6.4 Contour Dependence

Contours vary in shape and size. For example, a contour which covers the entire network

requires more data to represent and messages to transmit the data than a smaller contour.

With flooding, the data and message transmissions are constant and depend on the size of

the network. However, in the case of pattern-based contour detection and cluster-based

query propagation the efficiency depends on the size and shape of the contour. Greater

contour size results in the query being propagated greater distances. Normally, contours

are smooth and it is unlikely for a contour to pass through all the clusters in large

networks, and therefore it can be expected that pattern-based contour detection and

cluster-based query propagation techniques seldom propagate the query to all the clusters

in the network, unlike flooding. The goal of this experiment is to assess the dependence

of performance on the shapes and sizes of the contours.

All the protocols were evaluated on a fixed topology of 800x800 meters over 10 different

scalar fields with cluster-based spatial suppression enabled and suppression threshold set

99

to one unit. Finally, the percentage reduction in data volume and message transmissions

is calculated for each of the contour algorithm with respect to I/CATR. On obtaining the

percentage reduction, average, maximum and minimum reduction percentages are

computed for each of the protocols, as shown in Figure 6.11 and Figure 6.12.

-10

0

10

20

30

40

50

60

F/SPR I/SPR F/ATR I/ATR

Protocols

A
vg

 D
a

ta
 %

 I
nc

re
a

se
 W

.R
.T

I/

C
A

T
R

 Figure 6.11: Influence of contour shapes and sizes on contour data

-10

0

10

20

30

40

50

60

70

80

F/SPR I/SPR F/ATR I/ATR
Protocols

A
vg

 M
es

sa
g

e
%

 I
nc

re
a

se
 W

.R
.T

I/

C
A

T
R

 Figure 6.12: Influence of contour shapes and sizes on message transmissions

100

Minimum and maximum reduction percentages are represented by the error bars.

Comparing the F/SPR and I/SPR algorithms with the baseline I/CATR algorithm, the

average data volume reduction is 40% and 22.75%, maximum data volume reduction is

50.95% and 31.67% and minimum data volume reduction is 33% and 11.15%

respectively. The average message transmission reduction is 59% and 41.4%, maximum

message transmission reduction is 67.6% and 51% and minimum message transmission

reduction is 52.7% and 35.9%.

In comparison to tree-based protocols, the I/ATR and F/ATR algorithms average data

volume reduction is 1.81% and 23%, maximum data volume reduction is 3.37% and

34.34% and minimum data volume reduction is -0.13% and 16.11% respectively. The

average message transmission reduction is 3.77% and 39.45%, maximum message

transmission reduction is 7.3% and 48.5% and minimum message transmission reduction

is -0.05% and 32.4%. The results clearly show that the data and message transmissions of

the protocols are influenced by the contours shape and size. There are several reasons that

explain this behavior with respect to query request propagation in the network and

receiving the response regarding the phenomenon from the network. In case of query

flooding, the query request transmissions are constant and vary depending on the network

size. However, with the proposed energy-efficient contour detection and query

propagation schemes the message transmissions to detect the contour and propagate the

query request along the contour depends on the location, shape and size of the contour.

Similarly, to route back the responses to the sink, the data and message transmissions

depend on the contour. However, I/ATR and I/CATR algorithms outperform the other

algorithms in terms of data and message transmissions irrespective of contour location,

shape and size.

The primary reason for very high byte and message transmission counts in the F/SPR

algorithm is it floods the network with the query, which is unnecessary for contour-based

WSN applications. Moreover, the F/SPR algorithm forwards the data to the sink

independently, resulting in extra packet header overhead, because every cluster transmits

101

its own packet. Though the F/ATR algorithm uses flooding to propagate the query like in

the F/SPR algorithm it performs better than the F/SPR algorithm because the responses

get aggregated as they move up the aggregation tree, reducing the packet header

overhead. The I/SPR algorithm is still similar to the F/ATR because it transmits the

responses to the sink like in the F/SPR algorithm even though it uses pattern-based

contour detection and cluster-based query propagation. This response results in extra

overhead which offsets the gain achieved through efficient query propagation. The I/ATR

algorithm performs better than most of the algorithms because it uses efficient query

techniques to detect and propagate along the contour and aggregation tree during the data

response phase. However, if response packets take different routes up the aggregation

tree, then aggregation may be less efficient than in I/CATR where aggregation happens

opportunistically along the contour first.

The I/CATR algorithm aggregates CHs responses along the contour before the responses

are forwarded up the aggregation tree, resulting in better performance compared to other

protocols. However, the data response transmissions to the sink in both the I/ATR and

I/CATR algorithms are similar if I/CATR finds that routing all the responses to the sink

is feasible only through the aggregation tree rather than using the contour based routing.

Under these conditions, the overhead in the I/CATR algorithm due to control signaling

for setting up the parent ID is slightly higher than the I/ATR algorithm. This is clearly

visible in the results where the minimum data volume reduction percentage of the I/ATR

algorithm was -0.1% in comparison to the I/CATR algorithm. On an average across

multiple cases, the I/CATR algorithm performs better as shown in this experiment.

6.5 Network Scalability

WSNs are deployed for monitoring various natural phenomena like temperature, pressure

and humidity, and vary in size depending on the application. For example, a contour

application may require a medium to large scale sensor deployment in order to track the

102

contours efficiently over larger areas. Therefore, protocol performance should be scalable

with network size. Contours may be present away from the sink in large WSNs. In this

case, query propagation from the sink and response transmissions to the sink depend on

the network scale. The impact of query request and response packet overhead may not be

apparent in smaller networks. The goal of this experiment is to assess how scalable the

proposed algorithms are with respect to network size.

-10.00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

400x400 500x500 600x600 700x700 800x800

Topology size (M)

A
vg

 D
a

ta
 %

 In
cr

ea
se

 W
.R

.T

I/
C

A
T

R

F/SPR F/ATR I/SPR I/ATR

 Figure 6.13: Effect of network scalability on contour data

Five different network topologies of 400x400 meters, 500x500 meters, 600x600 meters,

700x700 meters and 800x800 meters are considered. The number of nodes range from

792 to 3032. Ten different scalar fields are generated for each of the topologies for a total

of 50 scalar fields. Each of the algorithms is run over all topologies and contours.

Cluster-based spatial suppression is enabled during the experiment and the suppression

threshold is set to one. Finally, the percentage reduction in terms of data volume and

message count is calculated for each of the contours run under other protocols with

respect to the I/CATR algorithm. On obtaining the reduction percentages, average,

maximum and minimum reduction percentages are computed for each of these protocols

103

in terms of data and message transmissions, as shown in and Figure 6.14. Minimum and

maximum reduction percentages are represented by the error bars.

-10.00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

400x400 500x500 600x600 700x700 800x800

Topology size (M)

A
vg

 M
es

sa
ge

%
 In

cr
e

a
se

 W
.R

.T

I/
C

A
T

R

F/SPR F/ATR I/SPR I/ATR

 Figure 6.14: Effect of network scalability on message transmissions

Comparing the F/SPR and I/SPR algorithms with the baseline I/CATR algorithm for an

800x800 meters network the average data volume reduction is 40.8% and 22.8%,

maximum data volume reduction is 48.5% and 29% and minimum data volume reduction

is 32.5% and 14.6% respectively. The average message transmission reduction is 59.8%

and 43.1%, maximum message transmission reduction is 67.9% and 48% and minimum

message transmission reduction is 50.4% and 35.7% over the F/SPR and I/SPR

algorithms. In comparison to tree-based protocols for a 800x800 meters network, for the

I/ATR and F/ATR algorithms the average data volume reduction is 1.7% and 23.6%,

maximum data volume reduction is 6.4% and 35% and minimum data volume reduction

is -0.1% and 13.7% respectively. The average message transmission reduction is 3.6%

and 39.9%, maximum message transmission reduction is 13.3% and 54.2% and minimum

message transmission reduction is -0.1% and 26.7%.

104

Overall, results clearly show that the I/CATR algorithm outperforms all the protocols in

terms of data and message transmissions. The I/CATR algorithm performs better because

it detects the contour and propagates the query request along the contour independent of

the network size. Moreover, it uses efficient routing along the contour and the

aggregation tree to route the responses to the sink by performing in-network processing.

On the other hand, the F/SPR and F/ATR algorithms use flooding to propagate the query

in the network resulting in the query request transmissions which vary depending on the

network size. The F/SPR and I/SPR algorithms cannot perform in-network processing

because these algorithms route the responses to the destination independently, resulting in

an increase in response packet header overhead with an increase in network size. The

F/ATR and I/ATR algorithms use the tree-based approach in routing the packets to the

destination by performing in-network aggregation, but there are chances that the packets

take different paths up the tree to the destination and might not get aggregated until the

packet reaches higher levels in the tree. The levels at which the packets get aggregated

might increase with the increase in network size.

6.6 Contour Reconstruction

In order to reduce resource wastage the redundant contour readings are removed using

the proposed cluster-based spatial suppression techniques. Cluster-based suppression uses

a spatial resolution specified by the sink to suppress the contour readings. Suppression of

contour readings reduces the number of readings encoded in the response payload.

However, removing the redundant contour readings using suppression is not sufficient, as

there is still a chance of resource wastage if all the elements of the valid contour readings

are encoded into the response as the payload size increases. To avoid this wastage of

resources, efficient compression techniques are used to reduce the elements that are

encoded into the payload for each of the contour readings. The elements that are encoded

after compression are the node ID, relative neighbour node ID and node’s proximity to

the contour, as explained in section 4.4.1.1.

105

After performing in-network processing the suppressed data is routed efficiently to the

sink. On receiving the response payload, the sink decodes the payload and reconstructs

the contour. The goal of this experiment is to demonstrate that the contour reconstructed

at the sink is similar to the generated contour under observation. In order to verify the

reconstruction of the contour, a fixed topology of 800x800 meters network is considered.

The I/CATR algorithm is run with 4 different scalar fields with cluster-based spatial

suppression enabled and suppression threshold set to one unit. The sink queries for a

contour value of 40 using the pattern-based contour detection and cluster-based query

propagation. Finally, the contour points reconstructed from the decoded contour data

received at the sink from the network are overlapped onto their respective scalar fields, as

shown in Figure 6.15. This clearly shows that the reconstruction of a contour value of 40

at the sink from the received network data is accurate.

Figure 6.15: Reconstructed contour points (‘x’) are overlapped onto the scalar fields

106

6.7 Summary

The accuracy, dependence, performance and scalability of the F/SPR, F/ATR, I/SPR,

I/ATR and I/CATR algorithms has been analyzed by performing various experiments, the

results of which are reported in this chapter. The I/CATR algorithm is shown to be

superior to all the other algorithms in most of the scenarios because it propagates the

query efficiently along the contour independent of the network size, performs efficient

cluster-based spatial suppression and routes the responses to the sink in an efficient

manner along the contour or using an aggregation tree, depending on which is feasible,

ensuring in-network processing at the intermediate nodes. The spatial suppression

techniques used to suppress the spatially correlated data performed well compared to the

no suppression paradigm for all the algorithms.

107

CHAPTER 7

CONCLUSIONS

Technology advancement in the recent years has enabled use of WSNs to monitor, detect

and track external phenomenon with little human intervention. One type of WSN

application, concerned with detecting and tracking contours is considered in this thesis.

Contour-based WSN applications are applicable in many areas such as diagnosing

network health, tracking moving vehicles, and tracking changing, spreading or diffusion

of external phenomenon like temperature, pressure and humidity. These applications give

an overview of the sensor field by constructing contour maps at the sink from the

readings received from the network. WSNs are energy-constrained and to increase the

network longevity the network resources should be used in an efficient manner while

providing the desired results. This thesis has studied the problem of efficient design of

contour-based applications in detail and provided an energy-efficient end-to-end

network solution.

7.1 Thesis Summary

The focus in this thesis is contour-based WSN applications which give an overview of the

network by constructing contour maps. A contour-based WSN application consists of

three main components: contour detection and query propagation, in-network processing,

and response routing to the destination. None of the current approaches have provided an

overall solution for contour-based applications. Most of the existing research focuses on

providing solutions for individual components and these solutions provided do not focus

on co-existence with other components. Moreover, some solutions provided are generic

for WSNs and may not feasible or efficient for contour-based applications. In this thesis,

each of these components is examined in detail and an energy-efficient end-to-end

108

solution is provided. Some of the solutions and techniques provided can also be used with

other WSN applications.

Contour Detection and Query Propagation

Detection and query propagation consider detecting the contour and propagation of the

query along the contour in an efficient manner after detecting it. Some phenomenon

being monitored, detected or tracked by a WSN may or may not be spread uniformly

throughout the network. If the phenomenon is spread throughout uniformly, then flooding

is the best option to propagate the query. However, if the phenomenon is not uniform,

then flooding may not be a wise option. The localized phenomenon considered in this

thesis is contours. To detect the contour a pattern-based contour detection algorithm has

been proposed. Once the contour has been located an efficient and reliable cluster-based

query propagation algorithm has been proposed for routing the query along the contour.

Results clearly show that the contour detection and query propagation approaches are

scalable and more efficient than query flooding. While this algorithm opens the door to

several interesting subsequent inquires, these have been left to future work.

In-network Processing

Contour readings generated by the nodes in a WSN are often spatially or temporally

correlated. Transmitting all these readings to the sink can waste network resources.

Clever suppression of these readings using in-network processing helps prolong network

life. In this thesis, two in-network processing schemes are proposed. One is a cluster-

based spatial suppression scheme which suppresses the messages and data within the

cluster without significant overhead. In this scheme, members belonging to the cluster

perform efficient suppression based on a spatial resolution threshold. The other scheme is

used along with suppression to reduce the actual data in the response payload using

efficient encoding techniques. These techniques intelligently encode minimal data in the

109

payload for each valid contour reading, so that the sink reconstructs the contour with this

information using interpolation. Results show that the savings due to cluster-based spatial

suppression is dominant in terms of energy savings and the contour is reconstructed

accurately at the sink.

Data Routing

Nodes that detect the contour need to route their query responses to the sink to

reconstruct the contour map of the sensor field. Efficient routing of the query responses

to the sink helps save network resources. In general, in WSNs, routing to the sink is

performed by nodes independently using shortest path routing or aggregation trees.

Routing of the contour data independently using the shortest paths to the sink misses the

chance of stripping the response packet headers by consolidating the packets at the

intermediate nodes. This results in unnecessary overhead and results in resource wastage.

On the other hand, aggregation trees help in consolidation of headers, but the response

packets may take different paths along the tree and might not get aggregated until the

data reaches the higher levels in the tree due to the non-uniformity of contours. In some

information-driven approaches where the query is routed based on the information

gathered from the surroundings, the response data is either aggregated with the query and

propagated or aggregated in the reverse path of the query. In these approaches, any hop

which is not on the shortest path to the sink would be costly as the payload is usually

much larger than the header in contour applications. This thesis proposed two classes of

routing protocols for contour-based WSN applications based on shortest path and tree-

based routing. I/SPR algorithm uses shortest path routing to forward the response to the

sink. However, all the node’s responses are aggregated at the CH before routing the

overall aggregated response to the sink, reducing individual node transmission cost.

I/ATR and I/CATR are tree-based routing algorithms. In the I/CATR algorithm, the

routing is done along the contour or the aggregation tree, depending on which is locally

more efficient. This approach tries to reduce the frequency with which response packets

110

from neighbouring clusters take different paths up the aggregation tree by aggregating

along the contour instead.

Evaluation

Querying, in-network processing and data routing algorithms are evaluated using

simulations and their performance is analyzed. The scalability of the proposed algorithms

is evaluated by scaling the network size from 400x400 meters to 800x800 meters. For a

400x400 meters network of 792 nodes running the F/SPR and F/ATR algorithms, the

average percentage data increase with respect to the I/CATR algorithm is 27% and 10%.

Similarly, on scaling the network to 800x800 meters with 3032 nodes the average

percentage data increase with respect to the I/CATR algorithm is 41% and 24%. This

clearly shows that the proposed algorithms are scalable with network size. Next, the

impact of in-network processing is evaluated by enabling and disabling the spatial

suppression algorithms. For an 800x800 meters network running the I/CATR algorithm

and with a suppression threshold set to 1 unit, the amount of data reduction percentage is

35% compared to disabling suppression. Moreover, the threshold value has an impact on

the amount of data that is being suppressed. For a 700x700 meters network running the

I/ATR algorithm by varying the suppression threshold from 1 to 20 units the data

reduction percentage is 38%. Apart from these, the impact of sink location and contour

dependence on the proposed algorithms is also evaluated. The results clearly show that

the proposed solutions are efficient and are not dependant on these factors. The reduction

in data reflects on the node’s battery power which in turn prolongs the network lifetime.

7.2 Discussion

Contours are natural phenomena which are generally continuous and smooth. Moreover,

contours are not uniformly spread throughout the network. Some contours are dynamic

and change frequently compared to the others. All these natural properties of the contours

are helpful in making efficient design decisions which can be seen in all the proposed

111

algorithms. The proposed algorithms are mainly designed for one-shot queries which suit

dynamic contours. However, these algorithms can be extended to periodic queries which

require constant monitoring of a phenomenon which changes less frequently. An a priori

knowledge of the contour helps in improving the efficiency of the pattern-based contour

detection algorithm in detecting the contours for repeated queries. The continuity and

smoothness of the contour is exploited in the cluster-based query propagation algorithm

to propagate the query in an efficient manner independent of the network size. It is

common for the adjacent nodes to have their readings spatially correlated. These spatial

correlations are taken into account while designing the cluster-based spatial suppression

algorithm to efficiently remove redundant spatially correlated contour readings.

Similarly, for contours that do not change often and are periodically monitored, readings

might show temporal correlation. This observation is the basis for the temporal

suppression algorithm. The proposed I/CATR algorithm is the most efficient algorithm

compared to the other proposed algorithms because it makes use of the contour continuity

and smoothness to route the data response along the contour or the aggregation tree

opportunistically depending on the local efficiency. Similarly, I/CSPR algorithm

combines the response with the request and routes along the contour before routing the

response to the sink, but can be in applications with constant payload size.

7.3 Thesis Contributions

In summary, the main contributions of this thesis are:

· A pattern-based contour detection algorithm which increases in energy-efficiency

by detecting the required contour in the WSN without flooding the network. This

algorithm helps in saving the node’s battery power by cutting down unnecessary

message receptions if the node is away from the contour. In this thesis, two

classes of pattern-based contour detection algorithms, one for small scale

networks and the other for large scale networks have been proposed. Single-

pattern-based contour detection uses a single pattern to detect the contour in the

112

network. This approach might not be successful in finding contours in large scale

networks, so a multi-pattern contour detection scheme has been proposed. A

simple single ray-based pattern is used to detect the contour in all the experiments

as a proof-of-concept.

· Cluster-based spatial suppression algorithms has been proposed to help save

resources by performing suppression of spatially correlated contour readings

using spatial resolution set by the user. Spatial suppression is an in-network

processing technique used to reduce unnecessary message transmissions and

remove redundant contour information within the cluster before forwarding the

overall aggregated response to the sink. Compression techniques are also

proposed to encode minimal data in the response payload to further reduce the

amount of data transmitted to the sink. Data reduction using the proposed

in-network processing algorithms helps in saving the node’s battery power by

avoiding the node from transmitting redundant data. Interpolation techniques are

proposed for accurately reconstructing the contour from the received response

payload. All of these in-network processing schemes are implemented in

a proof-of-concept prototype and their performance is analyzed in the

simulation experiments.

· Contour data routing algorithms have been proposed which fall into two

categories: shortest path routing and aggregation tree-based routing. The I/SPR

algorithm is a shortest path routing algorithm where the CH aggregates the

member responses and routes the data to the sink. The I/ATR and I/CATR

algorithms are tree-based algorithms which route the aggregated responses along

the aggregation tree to the sink and perform consolidation of response headers at

the intermediate nodes. Moreover, I/CATR algorithm also routes along the

contour opportunistically avoiding neighbouring clusters from forwarding contour

data along different paths up the aggregation tree. Data routing using I/ATR and

I/CATR algorithms help in transmitting the contour data to the destination in an

energy-efficient manner. All these routing techniques are implemented in a

113

proof-of-concept prototypes and their performance is evaluated in the experiments

with the baseline F/SPR and F/ATR algorithms.

7.4 Future Work

Some possible future research directions include:

· Contour-based WSN applications require monitoring of the external phenomenon

once, periodically or continuously. Algorithms proposed in this thesis are

designed for one-shot queries. Extending some of these algorithms for periodic

queries needs to be studied further.

· A simple single ray-based query pattern is used to detect the contours in all the

experiments. This might not be appropriate for all scenarios. Sophisticated

schemes such as multi-pattern and raster scan based contour detection algorithms

may need to be used. In the future, these algorithms should be implemented and

their performance in terms of contour detection, reliability and efficiency

evaluated.

· In this thesis, spatial suppression is performed on a uniformly distributed

hierarchically clustered static topology. The impact of spatial suppression on a

randomly distributed clustered topology remains to be studied. The effect of

temporal suppression on energy savings while using periodic contour queries

should be considered as well.

· This thesis provides efficient solutions to contour-based sensor applications.

However, the query propagation, in-network processing and response routing

algorithms proposed can be used in other WSN applications pertaining to object

tracking in the network or information retrieval from a particular geographical

114

area in the network. A complete protocol for these types of applications could be

obtained by extending the current algorithms.

115

 REFERENCES

[1] H. Karl and A. Willig. Protocols and architectures for wireless sensor networks.
John Wiley & Sons, May 2005.

[2] X. Meng, T. Nandagopal, L. Li and S. Lu. Contour maps: monitoring and

diagnosis in sensor networks. International Journal of Computer and
Telecommunications Networking, Vol. 50, No. 15, October 2006, pp. 2820-2838.

[3] X. Zhu, R. Sarkar, J. Gao and J.S.B. Mitchell. Light-weight contour tracking in

wireless sensor networks. IEEE Conference on Computer Communications,
Phoenix, AZ, April 2008, pp. 1175–1183.

[4] W. Xue, Q. Luo, L. Chen, and Y. Liu. Contour map matching for event detection

in sensor networks. In Proceedings of ACM SIGMOD International Conference,
Chicago, IL, June 2006, pp. 145-156.

[5] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci. Wireless sensor

networks: a survey. IEEE. Communications Magazine, Vol. 40 No. 8, 2002,
pp. 102-104.

[6] J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek. Beyond average: toward

sophisticated sensing with queries. In Proceedings of Information Processing in
Sensor Networks, Palo Alto, CA, April 2003, pp. 63–79.

[7] R. C. Prim. Shortest connection networks and some generalizations. Bell System

Technical Journal, Vol. 36, January 1957, pp. 1389-1401.

[8] P. M. Wightman and M. A. Labrador. A3: a topology control algorithm for
wireless sensor networks. In Proceedings of IEEE Global Telecommunications
Conference, New Orleans, LA, November 2008, pp. 346-351.

[9] Y. Zeng, X. Jia and H. Yanxiang. Energy efficient distributed connected

dominating sets construction in wireless sensor networks. In Proceedings of
International Wireless Communications and Mobile Computing Conference,
Vancouver, Canada, July 2006, pp. 797–802.

[10] J. Wu, F. Dai. An extended localized algorithm for connected dominating set

formation in ad hoc wireless networks. IEEE Transactions on Parallel and
Distributed Systems, San Francisco, CA, September 2004, pp. 908-920.

[11] J. Wu, H. Li. On calculating connected dominating set for efficient routing in ad

hoc wireless networks. In Proceedings of ACM International Workshop on

116

Discrete Algorithms and Methods for Mobile Computing and Communications,
Seattle, WA, August 1999, pp. 7–14.

[12] M. Gerla and J. Tsai. Multicluster, mobile, multimedia radio network. ACM

Baltzer Journal of Wireless Networks, Vol. 1, No. 3, October 1995, pp. 255-265.

[13] D. J. Baker and A. Ephremides. A distributed algorithm for organizing mobile

radio telecommunication networks. In Proceedings of International Conference
on Distributed Computer Systems, Paris, France, April 1981, pp. 476-483.

[14] W. Heinzelman, A. Chandrakasan and H. Balakrishnan. Energy-efficient

communication protocol for wireless micro sensor networks. In Proceedings of
International Conference on System Sciences, Maui, Hawaii, January 2000,
pp. 3005-3014.

[15] M. Chatterjee, S. K. Das, and D. Turgut. WCA: a weighted clustering algorithm

for mobile ad hoc networks. IEEE Journal of Cluster Computing, Vol. 5, No. 2,
April 2002, pp. 193-204.

[16] N. Li, J. C. Hou and L. Sha. Design and analysis of an MST-based topology

control algorithm. In Proceedings of IEEE conference on Computer
Communications, San Francisco, CA, March 2003, pp. 1702–1712.

[17] A. C. Yao. On constructing minimum spanning trees in K-dimensional spaces and
related problems. Society for Industrial and Applied Mathematics Journal on
Computing, Vol.11, No. 4, November 1982, pp. 721–736.

[18] D. M. Blough, M. Leoncini, G. Resta and P. Anti. The K-neigh protocol for

symmetric topology control in ad hoc networks. In Proceedings of Mobile Ad Hoc
Networking and Computing, Annapolis, MD, June 2003, pp. 141-152.

[19] Y. Yao and J. Gehrke. Query processing for sensor networks. In Proceedings of
 Conference on Innovative Data Systems Research, Asilomar, CA, January 2003,
 pp. 233-244.

[20] S. R. Madden, M. J. Franklin, J. M. Hellerstein and W. Hong. TinyDB: an

acquisitional query processing system for sensor networks. ACM Transcations on
Database Systems, Vol. 30, No. 1, March 2005, pp. 122-173.

[21] T. He, B. M. Blum, J. A. Stankovic, and T. F. Abdelzaher. AIDA: Application

Independent Data Aggregation in wireless sensor networks. ACM Transactions on
Embedded Computing System, Vol. 3, No. 2, May 2004, pp. 426–457.

[22] S. S. Pradhan, J. Kusuma, and K. Ramchandran. Distributed compression in a

dense microsensor network. IEEE Signal Processing Magazine, Vol. 19, No. 2,
March 2002, pp. 51–60.

117

[23] J. N. Al-Karaki and A. E. Kamal Routing techniques in wireless sensor networks:

a survey. IEEE Wireless Communications, Vol. 11, No. 6, December 2004,
pp. 6-28.

[24] C. E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance-

vector routing for mobile computers. In Proceedings of ACM SIGCOMM
Conference on Communications Architectures, Protocols and Applications,
London, United Kingdom, April 1994, pp. 234–244.

[25] D. Johnson, Y. Hu and D. Maltz. The dynamic source routing for mobile ad hoc

networks for IPv4. Internet RFC 4728, February 2007.

[26] H. Takagi and L. Kleinrock. Optimal transmission ranges for randomly

distributed packet radio terminals. IEEE Transactions on Communications, Vol.
32, No. 3, March 1984, pp. 246-257.

[27] J. H. Chang and L. Tassiulas. Maximum lifetime routing in wireless sensor

networks. IEEE/ACM Transactions on Networking, Vol. 12, No. 4, August 2004,
pp. 609-619.

[28] C. Intanagonwiwat, R. Govindan and D. Estrin. Directed diffusion: a scalable and

robust communication paradigm for sensor networks. In Proceedings of
International Conference on Mobile Computing and Networks, Boston, MA,
August 2000, pp. 56-67.

[29] J. Kulik, W. R. Heinzelman, and H. Balakrishnan. Negotiation-based protocols

for disseminating information in wireless sensor networks. In Transactions on
Wireless Networks, Vol. 8, No. 2-3, March-May 2002, pp. 169-185.

[30] D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. In

Proceedings of ACM International Workshop on Wireless Sensor Networks and
Applications, Atlanta, GA, September 2002, pp. 22-31.

[31] N. Sadagopan, B. Krishnamachari, and A. Helmy. Active query forwarding in

sensor networks. Journal of Ad Hoc Networks, Vol. 3, No. 1, January 2005,
pp. 91-113.

[32] M. Chu, H. Haussecker, and F. Zhao. Scalable information-driven sensor

querying and routing for ad hoc heterogeneous sensor networks. International
Journal of High Performance Computing Applications, Vol. 16, No. 3, August
2002, pp. 293-313.

[33] J. Liu, F. Zhao, and D. Petrovic. Information-directed routing in ad hoc sensor

networks. IEEE Journal on Selected Areas in Communications, Vol. 23, No. 4,
April 2005, pp. 851–861.

118

[34] J. Faruque and A. Helmy. Rugged: routing on fingerprint gradients in sensor
networks. In Proceedings of IEEE/ACS International Conference on Pervasive
Services, Beirut, Lebanon, July 2004, pp. 179-188.

[35] R. Sarkar, X. Zhu, J. Gao, L. J. Guibas and J. S. B. Mitchell. Iso-contour queries

and gradient routing with guaranteed delivery in sensor networks. In Proceedings
of IEEE Conference on Computer Communications, Phoenix, AZ, April 2008,
pp. 1633-1641.

[36] Y. J. Zhao, R. Govindan and D. Estrin. Residual energy scan for monitoring

sensor networks. In Proceedings of IEEE Wireless Communications and
Networking Conference, Orlando, FL, March 2002, pp. 356-362.

[37] C. Buragohain, S. Gandhi, J. Hershberger, and S. Suri. Contour approximation in

sensor networks. In Proceedings of IEEE Distributed Computing in Sensor
Systems, San Francisco, CA, June 2006, pp. 356-371.

[38] I. Solis and K. Obraczka. Efficient continuous mapping in sensor networks using

isolines. In Proceedings of International Conference on Mobile and Ubiquitous
Systems: Networking and Services, San Diego, CA, July 2005, pp. 325-332.

[39] Y. Liu and M. Li. Iso-Map: energy-efficient contour mapping in wireless sensor

networks. In Proceedings of International Conference on Distributed Computing
Systems, Toronto, Canada, June 2007, pp. 311-318.

[40] M. Li, Y. Liu, "Iso-Map: Energy-Efficient Contour Mapping in Wireless Sensor

Networks. IEEE Transactions on Knowledge and Data Engineering, Vol. 22,
No. 5, May 2010, pp. 699-710.

[41] M. Singh, A. Bakshi, and V. K. Prasanna. Constructing topographic maps in

networked sensor systems. In Proceedings of Workshop on Algorithms for
Wireless and Mobile Networks, Boston, MA, August 2004.

[42] S.Yoon, and C.Shahabi. Exploiting spatial correlation towards energy efficient

clustered aggregation technique. In Proceedings of IEEE International
Conference on Communications, Seoul, Korea, May 2005, pp. 3307-3313.

[43] S. Pattem, B. Krishnamachari, and R. Govindan. The impact of spatial correlation

on routing with compression in wireless sensor networks. In Proceedings of
International Symposium on Information Processing in Sensor Networks ,
Berkeley, CA, April 2004, pp. 28-35.

[44] Z. Cheng and W. Michael. Continuous contour mapping in sensor networks. IEEE

Consumer Communications and Networking Conference, Las Vegas, NV, January
2008, pp. 152-156.

119

[45] The Network Simulator –ns-2. http://www.isi.edu/nsnam/ns

120

A. APPENDIX

A.1 Timer Types

A.1.1 CM/GN Query Response Receive Wait Timer

The CM/GN query response receive wait timer (cstCmGnQryRsRcvWtTmr) is started at

the CMs/GNs on receiving the query request from their CH. This timer is used by the

members to transmit their query responses to the CH on expiry. The timer value can be

set to any arbitrary constant, but should be less than the sink query response receive wait

timer. All nodes in the network should use the same arbitrary constant timer value which

can be pre-configured or transmitted in the query. In our case, the timer value is pre-

configured in all the simulations. If suppression is enabled, the timer value set at a

particular node takes the hop distance to the CH into consideration. The greater the hop

distance to the CH, the smaller the timer value and vice versa. However, the CMs that

detect a contour from the broadcasted CH sensed reading have a greater timer value

compared to the nodes that haven’t detected a contour even if they are at the same hop

level. The arbitrary constant timer value should be chosen in such a way that the

difference in timer values between two consecutive hops is large enough to do the

necessary processing at the nodes. If the suppression is disabled, then all the members set

the timer to the same value.

A.1.2 Sink Query Response Receive Wait Timer

The sink query response receive wait timer (cstSnkQryRsRcvWtTmr) is started at the CH

on broadcasting the query request to its members. The timer operation varies depending

upon the algorithms. In the F/SPR, F/ATR and I/SPR algorithms, the CH transmits the

aggregated member query responses as sink query response to the sink on timer expiry.

121

On the other hand, in the I/ATR and I/CATR algorithms CHs start the CH aggregate data

synchronization timer on timer expiry. The timer value can be set to any arbitrary

constant, but should be greater than CM/GN query response receive timer. All CHs in the

network should use the same arbitrary constant timer value which can be pre-configured

or transmitted in the query. In our case, the timer value is pre-configured in all

the simulations.

A.1.3 CH Aggregate Data Synchronization Timer

The CH aggregate data synchronization timer (cstChAggDataSyncTmr) is used only by

the I/ATR and I/CATR algorithms. It is started on sink query response receive wait timer

expiry at the CHs that have detected the presence of a contour in their cluster from the

member responses. This timer is used for synchronizing the clusters that lay along the

contour before the CHs aggregate their member responses and forward the sink query

response to the sink using the aggregation tree. This timer can be any arbitrary constant

value which is dependant on the transmission time between the clusters and number of

clusters along the contour. The arbitrary constant timer value can be pre-configured or

transmitted in the query. In our case, the timer value is pre-configured in all the

simulations. The transmission delay between clusters is calculated and pre-configured.

The number of clusters along the contour that need to be synchronized is indicated by the

synchronization counter and current synchronization counter parameters explained in

section A.2.1 and section A.2.2. These parameters give user the flexibility to control the

length of the contour that needs to be tracked.

A.1.4 Aggregate Data Wait Timer

The aggregate data wait timer (cstAggDataWtTmr) is used by the I/ATR and I/CATR

algorithms. This timer is started on CH aggregate data synchronization timer expiry or

when a node in the aggregation tree receives the sink query response from its children.

122

The timer value can be set to any arbitrary constant. All nodes in the network should use

the same arbitrary constant timer value which can be pre-configured or transmitted in the

query. The arbitrary constant timer value should be chosen in such a way that the

difference in timer values between two consecutive hops is significant enough to do the

necessary processing at the nodes. If the timer is started by CH aggregate data

synchronization timer expiry then the timer value is dependant on the CH’s hop distance

to the sink and also the hop distance from the CH to the farthest boundary node in the

WSN. The hop distance of the furthest node in the network to the sink is indicated by the

maximum hop distance parameter explained in section A.2.1 and section A.2.2. If the

timer is started at a node in the aggregation tree on receiving the sink query response then

the timer value is just dependant on the node’s hop distance to the sink. On timer expiry,

the responses are aggregated in the sink query response and forwarded to the sink using

the aggregation tree.

A.2 Packet Types

A.2.1 Sink Query Request

The sink query request is used by the sink to propagate the interest into the network. It

unicasts the request to the neighbouring CH. Depending on the algorithms used the sink

query request is processed in different ways. In the F/SPR and F/ATR algorithms, the

sink query request is used as a trigger to initiate flooding of the query request in the

network. It is propagated between the sink and the neighbouring CH, which on receiving

the sink query request, changes the packet type to CH query request and initiates the

flooding process. On the other hand, in the I/SPR, I/ATR and I/CATR algorithms the sink

query request is used by the pattern-based algorithms to propagate the query request

along a particular pattern in the network. Any CH that lies on the pattern receives the sink

query request and on receiving the request broadcasts it within the cluster indicating

specific GNs to forward the request to the neighbouring clusters along the pattern. The

123

GNs on receiving the sink query request check if they are destined to forward the packet

to the neighbouring clusters which lie on the specified pattern. Figure A.1 indicates the

packet format of sink query request.

 Figure A.1: Sink Query Request

The query ID is unique and identifies a particular query. Packet type indicates the type of

packet that is being used. Contour value indicates the value that the sink is interested in

from the network. Suppression threshold is an optional parameter used to indicate the

spatial suppression resolution and is encoded in the packet only when suppression is

enabled. Pattern direction specifies the pattern in which the query has to be propagated in

order to detect the contour and is only encoded when the I/SPR, I/ATR and I/CATR

algorithms are used. In the experiments, single ray-based pattern is used. The

synchronization counter is encoded only when the I/ATR and I/CATR algorithms are

used and is used to synchronize the data among the clusters before they propagate the

aggregated sink query responses to the sink using the aggregation tree. Detection look-

124

ahead is used only by the I/SPR, I/ATR and I/CATR algorithms to increase the detection

band size along the pattern. Similarly, propagation look-ahead is used by these algorithms

to increase the propagation band size along the contour as explained in section A.2.2. In

all the experiments, the detection look-ahead parameter is not encoded in the packet

because a constant look-ahead of one is considered. Maximum hop distance is used only

by the I/ATR and I/CATR algorithms to set the constant aggregation data wait timer at

the CHs which have detected the contour. It gives the maximum node hop distance to the

sink in the WSN. CH reading value is the reading sensed by the CH and is used by the

members within the cluster to detect a contour between themselves and the CH. The GN

ID list is the count of GN IDs that are encoded in the packet. The encoded GN IDs are

required to forward the sink query request to the neighbouring clusters along the ray.

A.2.2 CH Query Request/ Forward CH Query Request

The CH query request is used by the CH to detect the presence of a contour passing

through the cluster. The request is broadcast by the CH within the cluster. Irrespective of

whether a contour is detected within a cluster or not in the F/SPR and F/ATR algorithms

propagate the CH query request to the neighbouring CHs. On the other hand, the I/SPR,

I/ATR and I/CATR algorithms broadcast the CH query request within the cluster. Only

after receiving the query responses from the members indicating the presence of a

contour does the CH broadcast the query to the neighbouring clusters using forward CH

query request. GNs on receiving the forward CH query request change the request type to

CH query request and forward it to the neighbouring CH along the contour. Figure A.2

indicates the packet format of CH query request/forward CH query request.

125

 Figure A.2: CH query request/ Forward CH query request packet format

In the F/SPR and F/ATR algorithms the synchronization counter, current synchronization

counter, maximum hop distance and propagation look-ahead are not encoded in the CH

query request. While using the I/SPR, I/ATR and I/CATR algorithms, excluding the GN

ID list and the GN IDs all the other parameters included in the F/SPR and F/ATR

algorithms are encoded in the CH query request (broadcasted within the cluster). In the

I/ATR and I/CATR algorithms, all the parameters are encoded except the CH reading

value in the forward CH query request. Similarly in the I/SPR algorithm, CH reading

value is excluded and propagation look-ahead parameter is included in the forward CH

query request in addition to all the parameters encoded by F/SPR and F/ATR algorithms.

Propagation look-ahead is used by I/SPR, I/ATR and I/CATR algorithms to increase the

propagation band size while propagating request along the contour. The current

synchronization counter is the running synchronization counter value used by the CHs

along the contour for synchronization of their aggregated data. GNs on receiving the

forwarding CH query request remove the GN ID list and the GN IDs from the packet and

126

change the packet type to CH query request before forwarding to the neighbouring CHs

along the contour.

A.2.3 CM/GN Reading Request

The CM/GN reading request is used by the members within the cluster to exchange their

sensed readings with the neighbours. CMs/GNs broadcast the reading request to their

neighbours. Figure A.3 indicates the packet format of CM/GN reading request.

 Figure A.3: CM/GN reading request packet format

A.2.4 CM/GN Query Response

The CM/GN query response is used by the members within the cluster to forward their

responses to the CH. CMs/GNs broadcast their responses to the neighbours. Figure A.4

indicates the packet format of CM/GN query response.

127

 Figure A.4: CM/GN query response packet format

The CM reading value is only used by the CMs to transmit their sensed reading value.

Transmit CM ID is used only by the GNs to encode the ID of the CM that needs to

further forward the GN query response to the CH. Neighbour CH ID list is the count of

neighbouring CH IDs that are encoded in the packet. Neighbour CH IDs are encoded

only when the I/CATR algorithm is used for the CH to make decisions whether to route

to along the contour or the aggregation tree to the sink. These IDs are encoded by the

nodes only when they detect a contour with the nodes in the neighbouring clusters. The

contour reading counter gives the count of contour readings that are encoded in the

packet. Contour readings contain the necessary contour information for the sink to

reconstruct the contour at the sink.

128

A.2.5 Sink Query Response

The sink query response is used by the nodes to forward their response to the sink. Nodes

forward their response using unicast. Figure A.5 indicates the packet format of sink

query response.

 Figure A.5: Sink query response packet format

A.2.6 Change Parent CH ID Request

The change parent CH ID request is used by the I/CATR algorithm for changing the CH

ID of a parent. This packet is forwarded by using unicast. Figure A.6 indicates the packet

format of change parent CH ID request.

 Figure A.6: Change parent CH ID request packet format

