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Abstract 

 

      Wireless sensor networks offer the advantages of low cost, flexible measurement of 

phenomenon in a wide variety of applications, and easy deployment. Since sensor nodes 

are typically battery powered, energy efficiency is an important objective in designing 

sensor network algorithms. These algorithms are often application-specific, owing to the 

need to carefully optimize energy usage, and since deployments usually support a single 

or very few applications.  

      This thesis concerns applications in which the sensors monitor a continuous scalar 

field, such as temperature, and addresses the problem of determining the location of a 

contour line in this scalar field, in response to a query, and communicating this 

information to a designated sink node. An energy-efficient solution to this problem is 

proposed and evaluated. This solution includes new contour detection and query 

propagation algorithms, in-network-processing algorithms, and routing algorithms. Only 

a small fraction of network nodes may be adjacent to the desired contour line, and the 

contour detection and query propagation algorithms attempt to minimize processing and 

communication by the other network nodes. The in-network processing algorithms 

reduce communication volume through suppression, compression and aggregation 

techniques. Finally, the routing algorithms attempt to route the contour information to the 

sink as efficiently as possible, while meshing with the other algorithms. Simulation 

results show that the proposed algorithms yield significant improvements in data and 

message volumes compared to baseline models, while maintaining the integrity of the 

contour representation.   
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CHAPTER 1 

INTRODUCTION 
 

Recent years have witnessed tremendous growth in Wireless Sensor Network (WSN) 

research. Various applications that involve sensing, monitoring, tracking and detection of 

a phenomenon make use of the WSNs to complete their tasks. This thesis focuses on 

design and performance issues for WSN applications in which the sensors monitor a 

continuous scalar field, such as temperature, and in where the primary task is to 

determine contour line locations in this field. Given a query asking for location of a 

particular contour line (for example, 20 degree temperature), the objective of the 

algorithms in this thesis is to detect the contour in an efficient and reliable manner, 

perform in-network processing to remove the redundant contour data and route the 

contour data to the destination sink node using an energy-efficient path.  

 

The remainder of this chapter is organized as follows. Section 1.1 gives an overview of 

WSNs and the wide range of applications that make use of them. Important 

considerations in WSN design are discussed in Section 1.2. Contour-based WSN 

applications are discussed in Section 1.3. Section 1.4 summarizes the contributions of the 

thesis to the design and performance study of algorithms for contour-based WSN 

applications. Section 1.5 lays out the structure of the remainder of the thesis.   

 

1.1 Wireless Sensor Networks  
 

WSN applications involve sensing, tracking, and monitoring external phenomena. A 

WSN is an ad hoc network consisting of a collection of sensor nodes that are deployed 

within some region of interest. Figure 1.1 shows the clustered WSN topology that is used 

in thesis simulation experiments. Each node in a cluster is assigned a role and the node’s 
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functionality is based on this role. Cluster Head (CH), Cluster Member (CM) and 

Gateway Node (GN) are the standard roles assigned within clusters discussed in this 

thesis. The CH carries out control, coordination and cluster processing functions such as 

propagation of a query within the cluster and aggregating member data before forwarding 

the data to the destination. Each GN acts as a bridge between two different clusters for 

forwarding messages and data between the clusters. Each CM carries the messages and 

data between the GNs and the CH. Aggregated data at each CH is forwarded to the sink 

using an efficient path.  

 

 

                                        Figure 1.1: Clustered network topology  

                                                      

Each sensor node is comprised of a sensing unit, a processing unit, a transceiver unit and 

a power unit as shown in Figure 1.2. The sensing unit consists of sensors and analog to 

digital converters. The processing unit performs the information processing that allows 

the sensor node to collaborate with the other nodes to carry out the assigned sensing 
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tasks. The transceiver unit is responsible for the transmission and reception of data from 

the wireless medium. The power unit is used to hold the batteries to supply energy for the 

node to function. Since the nodes depend on batteries for their power supply, energy is a 

major constraint in these networks. Therefore it is desirable to provide an energy efficient 

solution to a WSN application that increases network longevity by reducing the amount 

of data transmission and reception by the nodes and yet provides accurate results.   

 

 

                                         Figure 1.2: Sensor node block diagram [1]   

  

WSNs have been gaining popularity due to their low maintenance cost, unattended 

operation, easy deployment and low hardware cost. Most of the data collection solutions 

in WSNs are application specific, because the potential energy savings of an application 

specific data collection solution outweigh the drawbacks of additional development. 

Also, deployments typically serve a single application only (rather than multiple 
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applications concurrently as does a computer system). WSNs are very broadly applicable, 

and can be used for detection, tracking, monitoring and controlling. These sensor 

applications can be typically classified as either event-driven or demand-driven. In an 

event-driven application, when a sensor node detects a particular event it informs the 

sink. For example, in case of a volcanic eruption, the nodes inform the sink on detecting 

the event. On the other hand, in demand-driven applications, sensors respond only if they 

receive a query from the sink. For example, consider a contour-based sensor application 

in which the location of a 10 degree temperature contour is needed. On receiving the 

query from the sink, nodes interact with each other to find if a 10 degree contour is 

detected in their vicinity. If so, the nodes that have detected the contour inform the sink. 

Spatio-temporal event monitoring, residual energy monitoring, faulty sensor detection 

and tracking targets such as animal, human, vehicle movements are some examples of 

different contour-based applications [2, 3]. A real-world coal mine surveillance 

application is used for detecting events using contours [4]. For the safety of the workers, 

the application detects two classes of events by deploying hundreds of sensors along the 

channels of the mine.  One class of events is to detect gas, dust and water leakage. The 

other class of events monitors high and low oxygen density regions in the mine to ensure 

atmospheric quality.  

 

1.2 Considerations in WSN Design  
 

There are many challenges involved in designing algorithms for WSNs. It is not possible 

to find a single optimal design for all possible applications. WSNs are influenced by 

many factors, such as fault tolerance, scalability, resource constraints, topology control, 

transmission media and quality of service [5].   

 

Fault tolerance: Nodes may fail due to loss of power, physical damage or environmental 

interference. The failure of a single sensor node should not compromise the overall task 
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of the WSN. Fault tolerance should be considered in schemes where node failures might 

hamper the completion of the required task, such as intrusion detection. 

 

Scalability: Hundreds or thousands of nodes may be deployed in a single network. The 

performance of the protocols shouldn’t deteriorate as network size increases.  

 

Resource constraints: Power is used by the node for sensing, communication and data 

processing. Of these, data communication usually consumes more power than processing 

of the data locally and is proportional to the amount of data transmitted or received.  The 

lifetime of a sensor network depends on the power resources of the nodes, which is 

constrained by the size of the nodes. Moreover, in remote deployments it is not feasible 

to replace the power sources present at the nodes. To avoid power depletion and increase 

the longevity of the network energy efficient algorithms should be employed.  

 

Topology control: A node’s transmission can be received by its neighbours. The number 

of nodes receiving this transmission is proportional to the node’s transmission power. 

Greater power results in the node’s transmission being received by neighbours that are 

further away and in some cases these received transmissions may be deemed unnecessary 

and discarded, wasting the sending node’s power. Similarly, if the transmission power is 

too low, the node’s transmissions may not be received by the nodes that should receive 

them. To avoid these problems, topology control schemes should be used to control each 

node’s transmission power levels, implement network hierarchies and turn off 

unnecessary nodes.   

 

Transmission media: In WSNs nodes usually communicate wirelessly using radio, 

infrared or optical signals that might encounter error prone channels and interference. To 

avoid these problems robust coding and modulation schemes should be used while 

transmitting the data.   
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Quality of Service: There is no fixed set of requirements that a sensor application must 

meet as the requirements vary from one application to another. In some applications, data 

reliability is a must for the application to work efficiently while for others it may be less 

critical. Similarly, some applications are tolerant to delay while delay may render the data 

useless in others.  

 

These problems and challenges make WSNs an interesting research field, as there are 

ample opportunities for the development of efficient solutions. As explained before, 

solutions to a problem in WSNs are application specific. In this thesis a scalable, energy-

efficient solution is described for contour-based WSN applications, by providing 

improvements in contour detection, query request propagation, in-network processing 

and query response routing. 

 

1.3 Contour-based WSN Application   
 

A contour-based application gives an overview of the phenomenon across a sensor field 

by constructing contour lines from the sensor readings. A contour line or isoline is a 

curve that connects points of similar value. Natural contours are generally continuous and 

smooth. Moreover, these contours are not uniformly spread throughout the network and 

pass close to only a subset of nodes. Contour line is a generic term used for any kind of 

phenomenon whose value can be described by a real number at different points in space 

and/or time. However, based on the monitored phenomenon, the term can be made 

specific. For example, isotherm is a line that connects points on a map with the same 

temperature.   

 

For a node to detect the presence of a contour in its vicinity, it has to receive the sensed 

readings from the neighbouring nodes. On receiving the readings, the node can compare 

its sensed reading to that of the readings received from its neighbours. If these readings 

lie on either side of the contour value defining the contour line, then the presence of a 
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contour is detected by the node. For example, consider a query in which the sink is 

interested in a 10 degree temperature contour. If a node’s sensed temperature is 9 degrees 

and that of a neighbour node is 11 degrees then a 10 degree contour exists between these 

nodes.  

 

This thesis considers specifically contour-based applications in which queries for the 

current location of a particular contour line are issued by the sink node. Flooding is one 

method to propagate the query into the network and it results in the query being 

propagated through the entire network. Since a contour line is typically not present 

throughout the entire network, this approach can be inefficient. Random walk, gradient 

routing or contour trees can be used instead. Random walk and gradient routing schemes 

route the query greedily based on local information [30-34]. Contour tree schemes, on the 

other hand, preprocess the signal field and construct a contour tree based on the contour 

values enabling the query to be routed along the tree efficiently [3].  

 

In a sensor field, spatial and temporal correlations in data exist. Forwarding the raw 

contour data without performing in-network processing results in unnecessary resource 

wastage. Moreover, the sink may not be interested in all of the received correlated data. 

In-network processing techniques such as data aggregation and data compression can be 

performed to remove the redundant data [6]. Data aggregation uses various aggregation 

functions such as MAX, MIN or AVG or application-level parameters to suppress the 

redundant data. Even after aggregation is performed the actual data that is being 

transmitted can be further compressed using various encoding techniques. These 

processing schemes can be applied locally at the node level or globally in a distributed 

manner while the contour data is propagated to the sink. Forwarding of the processed 

contour data to the destination is usually done along the reverse path of the query, or the 

shortest path using an aggregation tree or independently. An aggregation tree is a 

minimum spanning tree with the sink or destination as its root, on which data aggregation 

takes place while the data is being propagated to the sink.  
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Existing research mainly focuses only on particular aspects like contour detection, query 

propagation, in-network processing or data routing to improve the efficiency of a 

contour-based WSN application [2-4, 31-41]. There are a number of problems with the 

current schemes. In some of the current approaches, efficient distributed in-network 

processing and routing of the contour data to the destination using an aggregation tree can 

be done only when the query is flooded in the network. However, the gain obtained due 

to efficient in-network processing and data routing may be small compared to the cost of   

flooding the network to propagate the query. To avoid flooding some approaches use an 

efficient algorithm to propagate the query such as random walk, gradient routing or 

contour trees to detect the contour and then route the data in the reverse path of the query 

or shortest path after aggregating along the contour. These techniques do not guarantee 

that the data is routed to the destination in an efficient manner. Reverse paths to the 

destination are not always the shortest paths and any hop in the reverse path that is not on 

the shortest path to the sink may result in resource wastage. Similarly, aggregating the 

contour data along the contour and routing the overall data to the sink in the shortest path 

is also expensive. The cost of routing may exceed the query flooding cost due to the large 

data payload if the route is suboptimal. In this thesis, all these problems are addressed      

in detail and an overall efficient end-to-end solution for contour-based WSN applications    

is proposed.  

 

1.4 Thesis Contributions  
 

This thesis focuses on providing a novel overall efficient solution for contour-based 

sensor applications. The proposed solution includes a method of propagating and 

processing a query so as to find a point on the requested contour, an efficient and reliable 

manner of propagating the query along the contour, efficient in-network processing so as 

to remove redundant contour data, and data routing along an efficient path. Moreover, the 

proposed approach provides the flexibility to incorporate other distributed in-network 

processing schemes. The main contributions of this thesis are:  
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·  Methods for query routing and processing that find a point on the requested 

contour and then propagate the query along the contour in a reliable and     

efficient manner.   

·  In-network processing techniques using both aggregation and compression 

algorithms to remove and reduce the redundant data while propagating the data    

to the sink.  

·  Data routing algorithms that work well with the proposed contour detection, query 

propagation, and in-network processing schemes and route the contour data to the 

sink in an efficient manner.   

 

1.5 Thesis Organization  
 

The remainder of the thesis is organized as follows. Chapter 2 gives an overview of 

various basic WSN techniques which are used by the proposed algorithms. Chapter 3 

describes related research on contour-based WSN applications. Chapter 4 describes the 

design of the algorithms in detail. Chapter 5 discusses the simulation methodology        

for performance evaluation. Chapter 6 presents results from the simulation experiments 

that are carried out. Chapter 7 summarizes the thesis and outlines possible areas for   

future work.  
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CHAPTER 2 

BACKGROUND  
 

WSNs provide the capability of monitoring a particular phenomenon without significant 

human intervention. The flexibility they provide creates various problems and challenges, 

as explained in the previous chapter. Moreover, the solutions to these challenges are 

mostly application specific. This chapter presents background concerning WSNs that is 

relevant to the work in this thesis. Section 2.1 gives an overview of different network 

topologies in WSNs. Interest propagation by the sink using different queries is explained 

in section 2.2. Section 2.3 explains different in-network processing techniques to remove 

redundant data. Section 2.4 describes different routing techniques to route the 

information in WSNs.  

 

2.1 Network Topology 
 

In WSNs, issues like signal interference, multiple transmission routes to the destination 

and reconstruction of routes in case of node failure are known. These problems can be 

overcome to a certain extent by topology control schemes. A topology scheme provides 

reliability, high throughput, connectivity, energy efficiency and potentially mobility by 

controlling each node’s transmission power level or through careful selection of those 

nodes within transmission range that will be used for packet forwarding (i.e., will be 

neighbours in the network routing topology). Most commonly, topologies are formed by 

either controlling the transmission power or by imposing a hierarchy onto the network.  
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2.1.1 Network Hierarchies   
 

In hierarchical topologies, the emphasis is on selecting a set of nodes which are assigned 

special coordination, control, and for routing responsibilities compared to the rest of the 

nodes present in the network. This can be achieved either by clustering or backbone-

based techniques.  

 

2.1.1.1 Backbone-Based   
 

A subset of nodes which form the backbone are selected such that the each other node is 

connected to at least one of these backbone nodes and the backbone is connected to the 

sink. This is an example of the Connected Dominating Set (CDS) problem. The backbone 

is created by constructing trees, connecting independent sets and/or by pruning 

techniques. Trees can be constructed using centralized or distributed approaches. Prim’s 

algorithm [7] is used for constructing a minimum spanning tree in a centralized manner. 

On the other hand, the A3 protocol proposed by Wightman and Labrador [8] constructs a 

tree in a distributed manner using node energy and distance information. In the second 

approach, independent sets are created and then connected to form the backbone. An 

independent set consists of nodes that don’t have any edges between them. These 

independent sets might not be connected, so in the later stage a minimum set of nodes are 

selected to connect these sets. The Energy Efficient Connected Dominating Set (EECDS) 

algorithm proposed by Zeng et al. [9] uses this approach. The final approach uses pruning 

techniques to reduce unnecessary nodes selected in the backbone and yet maintain the 

connectivity. It can be used with the other techniques mentioned to get the initial set of 

nodes and later prune them accordingly. The Connected Dominating Set under Rule K 

(CDS-Rule-K) algorithm proposed by Wu and Dai [10], and Wu and Li [11] makes use 

of this approach.  

 

 



 
 

12 

2.1.1.2 Clustering 
 

The network is partitioned can be partitioned into several clusters. The nodes within each 

cluster may be assigned different roles. For example, in the topology assumed in this 

thesis each cluster consists of Gateway Nodes (GNs), Cluster Members (CMs) and a 

Cluster Head (CH), which may be dynamically determined or statically configured. The 

members perform the sensing operations and transmit the sensed data to the CH; the CH 

may perform data aggregation before routing the data via the neighbouring clusters to the 

sink. Routing to the neighbouring clusters is done by a GN. Use of a hierarchical 

topology can save node energy and prolong the network lifetime because nodes do not 

transmit data individually to the sink. However, if no aggregation occurs, the additional 

overhead can reduce efficiency. Gerald and Tsai [12] have proposed a clustering 

approach based on the highest degree heuristic. In this approach, a node is selected as a 

CH if it has the highest number of neighbours. Baker and Nephritides [13] have proposed 

a clustering approach that uses lowest node ID heuristic in CH decision making. Hein 

Zelman et al. [14] have proposed a clustering algorithm called Low Energy Adaptive 

Clustering Hierarchy (LEACH). In LEACH a sensor node chooses a random number 

between 0 and 1. If the number is less than a threshold value then the node becomes a CH 

for the current round. Chattered et al. [15] have introduced a Weighted Clustering 

Algorithm (WCA) which heuristically combines several attributes such as battery power, 

node degree, transmission power, and node mobility into a single weight parameter, 

which is used in the election process for choosing a CH.  

 

2.1.1.3 Controlling the Transmission Power  
 

The objective of transmission power control is to build a reduced topology while 

maintaining an overall connected network.  Location, direction and/or neighbour count 

information can be used to set the transmission range in a distributed manner. The Local 

Minimum Spanning Tree (LMST) protocol proposed by Li et al. [16] is a distributed 

location-based topology control scheme in which each node creates a Euclidean 

Minimum Spanning Tree (EMST) from the location information of the neighbouring 
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nodes. Later, it sets a transmission range that allows it to reach its farthest neighbour in 

the EMST. Directional information can also be used for controlling the range. The 

direction of the incoming angle of the signal can be detected if the node has a directional 

antenna and the distance using various techniques like the Received Signal Strength 

Indicator or Time of Arrival. The Yao Graph algorithm proposed by Yao [17] is a 

directional-based topology control scheme which woks in two phases. In the first phase, 

the original network is partitioned into a sub-network based on the MST and in the final 

phase it is pruned. The final technique is based on the node’s neighbours. The goal is to 

connect a node with a minimum number of neighbours and minimum power and yet 

maintain the network connectivity. The K-Neighbour protocol proposed by Blough et al. 

[18] ensures that each node is connected by the number of neighbours specified by the 

parameter K.  

 

In CDAR, algorithms are built on a statically configured two-hop cluster-based 

hierarchical topology control scheme which ensures better network connectivity. In a 

two-hop cluster the maximum hop distance between the CH and any node on the cluster 

boundary is utmost two-hops. However, the proposed algorithms can be extended to 

multi-hop clusters also. As explained in the clustering section, each of the nodes is 

assigned certain roles to perform within a cluster and the assignment of these roles is 

done through an election process. However, in the algorithms we assume the roles of the 

nodes within the cluster are also pre-configured. Moreover, maintenance or fault 

tolerance of the clusters is not addressed, as it is outside the scope of the thesis. However, 

any geographically aware clustering scheme could be integrated with the              

proposed algorithms.  

 

2.2 Queries  
 

In contour-based applications, preprogramming the nodes with some specific contour 

values makes it difficult for the user to change them to different values at a later point of 
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time. To avoid this problem, the sink can specify these values in a query and propagate 

the query into the network. For contour applications, apart from specifying the contour 

value in the query, other parameters for performing in-network processing may also be 

specified. Most of the sensor nodes store the data received from their neighbours in the 

form of records in a table. Parsing of these records can be done using queries in 

Structured Query Language (SQL) or using application specific programming languages. 

A query template in the SQL language was suggested by Yao and Gherkin [19] :  

 
SELECT {aggregates (attributes)} 

FROM {Sensor data S} 
WHERE {predicate} 

GROUP BY {attributes} 
HAVING {predicate} 

DURATION time interval 
EVERY time span e 

 

The SELECT clause is used to extract data and represent it in a user friendly manner as 

specified by the attributes and aggregates. These aggregates are functions like MAX, 

MIN and AVG which specify the form of performing in-network processing. The FROM 

clause is always followed by the SELECT clause and specifies the table from which the 

data is to be retrieved. The WHERE clause is optional, when specified it always follows a 

FROM clause and is used to filter the data from the table based on the predicate. More 

than one condition can be specified in the WHERE clause using the logical expressions 

like AND, OR, LESS THAN or GREATER THAN. The GROUP BY clause is used 

together by the aggregate functions to group the retrieved data. The HAVING clause can 

be used with a SELECT clause to specify a search condition for a group or aggregate. It 

behaves like a WHERE clause, but is applicable to groups.  The DURATION clause 

specifies the life time of the query beyond which the query expires. The EVERY clause 

specifies the interval after which the node should sense the external phenomenon, if the 

query is periodic.  
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Different Query Types  

 

Based on the applications, different queries can be disseminated into the sensor network. 

Different query types and examples from Madden et al. [20] are explained in detail 

below. Periodic queries are executed at regular intervals for a specific duration. For 

example, the following query indicates the node to sense the temperature every 5 seconds 

for the next 100 seconds and report the sensed data to the sink. 

  

                                                SELECT Temperature 
                                                   FROM SensorTable 
                                           DURATION (now, now +100) 
                                                   EVERY 5 seconds 
   

These types of queries are useful in environmental monitoring applications. These 

applications require the status of the monitoring phenomenon to be reported at regular 

intervals, so that the decisions can be made accordingly. The STOP ON EVENT clause 

can be used to stop a periodic query when a specified event is triggered based on satisfied 

condition.  

 

Event-based queries are executed only when the predefined conditions are satisfied. 

These queries are useful in tracking or detection applications. For example, the following 

query indicates the node to sense the surrounding temperature only when the node’s 

pressure sensor detects a pressure of greater than 30 Pa.   

 

                                               ON EVENT Pressure > 30 
                                                  SELECT Temperature 
                                                     FROM SensorTable 
 

Life-time based queries are similar to the periodic queries, but the sampling rate is based 

on the remaining power available, so that the condition specified in the LIFETIME clause 

is achieved. For example, the following query indicates the node to sense the temperature 
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for a month and report the sensed data to the sink. The node changes its sensing period 

based on the power available, so that it can sense and report the data for a month.  

  

                                                    SELECT Temperature 
                                                      FROM SensorTable 
                                                      LIFETIME 1 month 
 

Exploratory queries indicate the nodes to monitor the external phenomenon only once. 

The ONCE clause is used to achieve this functionality. For example, the following query 

indicates the network to sense the temperature once and report the data to the sink.   

   

                                                   SELECT Temperature 
                                                      FROM SensorTable 
                                                              ONCE 
 

Actuation queries are used to turn on some components in the sensor if the condition in 

the query is met. For example, the following query indicates the node to sense the 

temperature every 5 seconds for the next 100 seconds and report the sensed data to the 

sink only if the temperature is greater than 40 degrees. In addition to reporting the data, 

the node turns on the fan.  

   

                                                SELECT Temperature 
                                                   FROM SensorTable 
                                           WHERE Temperature > 40 degree 
                                            OUTPUT ACTION turnOn (fan) 
                                             DURATION (now, now +100) 
                                                    EVERY 5 seconds 
 

As explained above, queries are a means of encapsulating the interest of the sink in a 

message and propagating it through the network. In the algorithms, an exploratory query 

is used to propagate the query from the sink pertaining to the contour through the 

network. However, the proposed algorithms are extensible to periodic or lifetime queries. 

Once the exploratory routing algorithms are established, periodic and lifetime queries can 
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be implemented with existing techniques. Moreover, an application specific 

programming language can be used to encode the query.  

 

2.3 In-network Processing 
 

Forwarding sensor data to the sink is costly, as it consumes significant energy per byte 

sent. Performing in-network processing at intermediate nodes while transmitting the 

sensor data to the destination increases the network lifetime by reducing the total number 

of bytes sent. Aggregation and compression are the most common in-network processing 

techniques. Aggregation is a primary concern in the proposed algorithms. In this section, 

general aggregation approaches are presented and specific contour aggregation 

approaches are presented in section 3.2.  

 

Aggregation  

 

Aggregation is a technique used to suppress or combine individual sensor data at 

intermediate nodes while transmitting the data to the destination. It can be performed by 

applying general aggregation functions on the sensor data or by applying application 

specific parameters set by the sink. The sensor data packet header overhead can also be 

reduced by aggregating different sensor data packets into a single packet, and in the 

process multiple packet headers can be removed. Most of the hierarchical topology 

schemes discussed in section 2.1.1.2 are good candidates for performing data 

aggregation. Aggregation functions are generally specified in the queries by a controlling 

node or sink in dense hierarchical networks where the data is often correlated. For 

example, readings taken of a temperature field are often spatially correlated. MIN, MAX, 

AVG, COUNT and SUM are some of the basic aggregate functions that can be used to 

perform aggregation as described by Madden et al. [20]  If an intermediate node receives 

two partial state records <a> and <b> from different nodes, an aggregation function 

computes a new state record, <c> = f (<a>, <b>). A partial state record is a tuple 
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exchanged between the nodes. He et al. [21] have proposed an Adaptive Application-

Independent Data Aggregation (AIDA) approach in which payloads are concatenated 

resulting in header transmission savings.  

 

Data Compression 

  

At times it is not possible to reduce the size of the sensor data using aggregation. For 

example, consider content-sensitive data like fixed-width histograms as explained in 

Madden et al. [20] which can’t be reduced using normal aggregation without losing 

information. As explained in the previous section, aggregation reduces the sensor data at 

intermediate nodes. However, the content-sensitive data and aggregated data can be 

compressed at the intermediate nodes using standard lossless data compression 

algorithms before transmitting, if correlations are present in the sensor field.                   

S. S. Pradhan et al. [22] have proposed a distributed source coding framework for 

efficient compression in a WSN. Hellerstein et al. [6] have proposed a compression 

scheme to encode wavelet histograms in WSNs.  

 

In CDAR, suppression of redundant sensor data is performed at the cluster-level using 

contour application-specific parameters specified by the sink. At the cluster-level, data 

suppression is performed at the GNs, CMs and CH before transmitting the data to the 

destination. Finally, the response data packet headers are suppressed by aggregating 

different response data packets into a single packet at the intermediate nodes as in [21].  

 

2.4 Routing 
 

In WSNs, nodes that sense the data may not transmit the sensed data directly to the 

destination, due to network size and transmission energy constraints. These source nodes 

rely on the intermediate nodes to route the sensed data to the destination. Routing tables 
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are used to forward the sensed data to an appropriate neighbour before it can reach the 

destination. Apart from routing the data to the destination, construction and maintenance 

of the routing tables are the primary responsibilities of a routing protocol. Data 

transmission and routing table construction and maintenance between the nodes is done 

by unicast, broadcast or multicast. Unicast transmits the data from the source node only 

to the destination node. Broadcast transmits the data to all the nodes in the vicinity of the 

source node. Multicast transmits the data to a subset of nodes in the vicinity of the         

source node.  

  

Network topology and application dependence play important roles in routing. 

Depending on the network structure routing protocols can be divided in to flat routing, 

hierarchical routing and location-based routing schemes. Similarly, based on the protocol 

operation, the routing protocols can be multi-path based, query-based and negotiation-

based. All of these protocols, irrespective of the network topology or protocol function, 

fall in two main categories: reactive and proactive routing protocols [23]. Reactive 

protocols find routes to the destination only when needed, whereas proactive protocols 

find the routes beforehand. Proactive protocols have a large signaling overhead compared 

to reactive protocols because periodic and event based route updates are required to 

update routing tables. However, proactive protocols have a low latency as the routes are 

already known to the destinations. The main goal of any routing protocol is to prolong the 

network life time, reduce the signaling overhead and therefore reduce the energy 

consumption. Our algorithms require proactive protocols to be effective.  

 

2.4.1 Network Topology  
 

Routing protocols are classified into flat routing, hierarchical routing and location-based 

routing. In a flat routing technique, all the nodes perform a similar functionality. 

Destination Sequenced Distance Vector (DSDV) routing proposed by Perkins and 

Bhagwat [24] is a flat proactive routing approach based on modifications to the    
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Bellman-Ford algorithm. Dynamic Source Routing (DSR) proposed by Johnson et al. 

[25] is a reactive routing approach. Route discovery is performed to the destination on 

demand if a route doesn’t exist in the node’s table while transmitting the data. In 

hierarchical routing schemes, nodes are assigned different tasks to perform. Low Energy 

Adaptive Clustering Hierarchy (LEACH) proposed by Heinzelman et al. [14], 

implements hierarchical routing. Geographic routing schemes address the nodes based on 

their position. Takagi and Kleinrock [26] have proposed the Most Forward within R 

(MFR) algorithm in which a source node forwards a packet to the neighbouring node 

within its transmission range and whose position is closest to the destination. 

 

2.4.2 Application Dependence 
 

Some routing protocols are specific to WSN applications. If an application demands fault 

tolerance in the network then multiple paths should be established between the source 

and destination in the network. Furthermore, establishment of multiple paths to the 

destination helps maintain uniform energy consumption along different network paths. 

Chang and Tassiulas [27] have proposed an approach in which the nodes use the path that 

contains the largest energy. If the energy of this path falls below any of the existing 

multiple paths than the next highest energy path is selected to route the data. In some 

applications, the destination may be interested in different kinds of data from the 

network. If a source node senses the external phenomenon and finds that it has the data 

that is required by the destination, then the node routes the data along the route through 

which it has received the query. Intanagonwiwat et al. [28] have proposed a data centric 

paradigm called Directed Diffusion. An interest is disseminated through the network and 

gradients are setup matching the interest. Data flows through the gradients along multiple 

paths to the initiators of the interest. In-network aggregation is performed along these 

paths eliminating data redundancy and prolonging the network life. In certain 

applications, negotiations between nodes are performed regarding various resource 

attributes in order to increase the energy efficiency of the network. Kulik et al. [29] have 

proposed Sensor Protocols for Information via Negotiation (SPIN) which disseminates 
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information among sensors in an energy efficient manner through data negotiation. Nodes 

that have new data disseminate by advertising about the data to their neighbours. 

Neighbours may request for the data or ignore the advertisement. On receiving requests, 

the advertised node forwards the data to the nodes that have requested for the data. In this 

manner, any new data gets propagated to all the nodes present in the network. User can 

query any node in the network to get the required information. 

 

In CDAR, routing tables are statically configured for a two-hop cluster-based hierarchical 

topology. Nodes contain routes to the sink, their own CH and the neighbouring CHs in 

the node’s vicinity. Route maintenance is outside the scope of the thesis. A hierarchical 

cluster-based routing scheme is used for routing the query from the sink to                     

the phenomenon. For routing the sensed data from the network back to the sink                       

a novel combination of hierarchical cluster-based routing and tree-based routing   

schemes are used.  
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CHAPTER 3 

RELATED WORK 
 

The thesis focuses on providing an overall efficient solution for query-based contour 

sensing WSN applications. Most contour-based applications perform contour detection, 

query propagation, in-network processing and data routing. Though these phases are 

common to many WSN applications there are significant improvements that can be made 

to these phases for a contour application. These improvements are based on the simple 

fact that contours are not spread uniformly throughout the field and are usually 

continuous and smooth. Moreover, exploiting the spatial and temporal correlations 

between the nodes along the contour helps to improve the performance. There are three 

major areas of study in contour-based WSN applications. First, contour detection and 

query propagation techniques used for detecting the contour and propagating the query 

are studied; second, in-network processing schemes used for removing redundant contour 

data are studied; third, routing of the sensed contour data to the destination is presented.  

 

3.1 Contour Detection and Query Propagation Mechanisms 
  

Contours are generally not spread uniformly throughout the network. Exploiting this fact 

and propagating the query only along the nodes that have detected the phenomenon 

avoids unnecessary query propagation overhead. A number of query propagation 

mechanisms have been proposed in the literature to efficiently route the query for 

different WSN applications, not limited to contour-based applications.  

 

Intanagonwiwat et al. [28] have proposed a publish-subscribe and application-aware 

paradigm which uses diffusion to achieve energy savings by setting up gradients between 

the source and the sink. This enables the sink to propagate the query to certain parts of 
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the network where the interest may be present. This approach is suitable for persistent 

queries which are used to monitor a phenomenon that doesn’t change over a period of 

time. In certain environmental monitoring applications, the node that has detected an 

event floods the network with the event establishing energy efficient gradients towards 

the event. Event flooding is advantageous if the number of events generated by the 

network is small and the scope of these events is small. Rumor routing proposed by 

Braginsky and Estrin [30] provides a cut off value under which rumor routing provides an 

energy-efficient solution compared to flooding. A node that has detected an event 

establishes the event paths by forwarding the information about the event to the nodes 

based on a specified threshold. If the number of events increases, there is an overhead in 

maintaining the events at each node and the propagation of the event information to the 

neighbours also increases. 

 

Sadagopan et al. [31] proposed a technique for querying sensor networks called ACtive 

QUery forwarding In sensoR nEtworks (ACQUIRE). In this approach, the node forwards 

the query from one node to another using random walk based on the event information 

until the query has been fulfilled. The algorithm uses a look-ahead parameter which 

specifies the neighbouring nodes from which the node can request the updates to resolve 

the query. Both the query and response phases are performed in a single step. As the 

query is propagated, the partial results generated by the nodes are aggregated. Finally on 

resolving the query, the data is forwarded to the destination using the shortest path or the 

reverse path. Chu et al. [32] have proposed information-driven sensor querying (IDSQ) 

and constrained anisotropic diffusion routing (CADR) routing techniques which are 

based on the directed diffusion. These techniques use information gain and 

communication cost to perform energy efficient routing. 

 

Liu et al. [33] proposed an information-directed multiple-step look-ahead approach to 

route the query to the event. It generalizes the CADR approach. This approach allows a 

node to search a path with maximum aggregation from the available paths within the 

look-ahead range. Selecting a proper look-ahead parameter value allows the nodes to 
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avoid sensor holes while query routing. A sensor hole occurs in a WSN when 

neighbouring nodes fail, and is defined as the region containing these failed nodes.  

Faruque and Helmy [34] have proposed a distributed scheme called RoUting on 

finGerprint Gradients in sEnsor Networks (RUGGED) which uses the natural gradient in 

routing the query without much overhead.  It uses multiple paths to find a route to the 

event and it controls these multiple paths using a probabilistic function. It uses two 

modes of operation: flat region and gradient region. In the flat mode, all the neighbouring 

nodes are queried for the gradient information. If a gradient is detected, then the node 

switches to the gradient mode and uses a greedy approach to route the query. If there is 

not sufficient information gain using the gradient mode, then probabilistic forwarding is 

performed. Sarkar et al. [35] have proposed an approach that guarantees delivery of the 

query for a static contour field. This is done by pre-processing the field and constructing 

a contour tree and routing the query in a gradient-based manner along the tree. A contour 

tree is a tree on all the critical points of the signal field and captures all the contours.    

Zhu et al. [3] have proposed a light-weight distributed algorithm for contour tracking and 

repair of broken contours locally as they deform. It is feasible for signal fields which 

don’t deform rapidly and is suitable for periodic queries.  

 

3.2 Contour In-network Processing Schemes 
 

Nodes that have the sensed contour data perform in-network processing before routing 

the data to the sink. In-network processing helps in removing data that the sink might not 

require. Processing of the data can be done at the node level before it is transmitted the 

sink or at the intermediate nodes while the data is being transmitted to the sink or at both.  

 

Hellerstein et al. [6] have proposed an approach for constructing a contour map within 

the network through identification of contiguous regions (termed "isobars" in this work) 

in which the sensors have approximately the same value. A comparison is performed 

between the naive, in-network and lossy approaches. The naive approach constructs the 
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contour map outside the network; in-network approach constructs the contour map within 

the network using aggregate functions; and the lossy approach restricts the vertices used 

to define the bounding polygon of each isobar by a parameter. Of all these approaches, 

the lossy approach reduces the data significantly.  

 

Zhao et al. [36] proposed residual energy scan (eScan) which uses in-network 

aggregation to indicate the remaining energy levels of sensor nodes in the network. It 

uses a polygon-based aggregation technique to aggregate the eScan reports generated by 

nodes while transmitting the reports to the destination using an aggregation tree.  

Buragohain et al. [37] proposed an Adaptive-Group-Merge polygon-based aggregation 

technique that constructs a k-vertex polygon for a given parameter k.  

 

Xue et al. [4] have proposed an in-network map construction using a partial map 

aggregation technique, hop-by-hop in a bottom up manner. A partial map generated by a 

node consists of disjoint contour regions. On receiving partial maps from its children, the 

node includes its own partial map with the received ones and tries to merge the adjacent 

contour regions and generates a final partial map which is transmitted to its parent. In 

order to reduce the transmission size of the final partial map, compression and packet 

snooping is performed at the node. Incremental map updates also reduce the size of these 

transmitted maps considerably. In all these schemes, the overhead due to message 

transmission is high because all the nodes transmit the messages. Moreover, the polygon-

based aggregation schemes need to encode the location information of the nodes which is 

costly. Sometimes, aggregation of spatially correlated readings of adjacent nodes cannot 

immediately be performed using an aggregation tree, unless they have a common parent, 

resulting in a significant overhead. Every node in the network must be powerful enough 

to process the sensed data as it is transmitted to the sink.  

 

To avoid unnecessary transmissions by all the nodes, Solis and Obraczka [38] have 

proposed an approach called isoline aggregation which creates a contour map at the sink 
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from the reports generated by the isoline nodes rather than aggregating readings from all 

the nodes in the network. These isolines are detected from the local neighbour 

information using the neighbour-to-neighbour protocol. A node is said to be an isoline 

node if its sensing value and its neighbour’s value are on either side of the isolevel 

specified in the query. Only nodes that detect the isoline report to the sink. These reports 

consist of the node ID and the neighbour node ID which help in detecting the contour. 

The sink reconstructs the contour map based on the node information received. Liu and 

Li [39] have proposed a similar approach called the isomap approach to create a contour 

map at the sink. Isoline nodes perform linear regression on the values received from the 

neighbours and find a gradient direction which is used by the sink for contour map 

construction. Li and Liu [40] have used angular separation and distance separation to 

suppress the responses spatially at the intermediate nodes.  

 

Meng et al. [2] have proposed distributed spatial and temporal data suppression, multi-

hop local suppression and contour construction at the sink using interpolation and 

smoothing. Contour readings generated are generally spatially and temporally correlated 

resulting in redundant transmissions. A node suppresses its transmission if the difference 

between the average reading values of the neighbouring nodes is within the threshold 

value. On the other hand, temporal suppression controls the node’s transmission rate. 

This approach reduces the data overhead by suppression. However, the accuracy of the 

contour map approximation at the sink is dependent on the amount of suppression 

performed in the network.  

 

Singh et al. [41] have proposed a technique for constructing the contour map in a 

distributed manner using divide and conquer approach in a cluster-based topology. The 

CHs on receiving the data from their members aggregates the data locally. In the first 

round, within each block of 2x2 CHs, one CH is elected as a leader and merges the data 

received from the other three CHs. In the next round, the block leaders organize 

themselves into 2x2 blocks and a leader is elected among them and merging of data is 
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performed. In this manner, merging of the data is performed recursively constructing the 

contour map.  

 

Yoon and Shahabi [42] proposed Clustered Aggregation (CAG) algorithm which exploits 

the spatial correlations among the members in a cluster and suppresses the locally within 

a cluster before sending just only one value per cluster up the aggregation tree.               

In-network aggregation is performed along the aggregation tree using various aggregation 

functions at the intermediate nodes while the data is being propagated to the sink.    

Pattem et al. [43] have shown that a static clustering scheme provides an optimal 

performance for a range of spatial correlations compared to suppression of spatial 

correlated data while routing. The performance of the latter is dependent on the level of 

correlations present in the data.  

 

3.3 Contour Data Routing Techniques 
 

Nodes that have the sensed data must forward the data to the destination over the shortest 

possible path in order to avoid unnecessary energy loss. Intermediate nodes may or may 

not perform in-network processing on the raw data while the data is being transmitted to 

the sink. Performing in-network processing at the intermediate nodes helps by removing 

unnecessary data that the sink might not require and hence save the transmission cost. 

Most of the applications that use query propagation schemes like random walk, contour 

trees or gradient routing to propagate the query in an efficient manner either route the 

contour data back to the destination using the reverse or shortest paths [31-35].  

 

3.4 Contour Applications Research Problems 
  

Contour detection using random walk or gradient routing may result in the contour query 

getting trapped at the saddle point, local minima or local maxima because they use 
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information gain and communication cost to route the query. Moreover, these approaches 

are not feasible for finding all the contours present in the network. Contour trees avoid 

this problem of query getting stalled because of saddle point, local maxima or minima by 

pre-processing the field before the query is propagated. However, for a dynamic contour 

field where the field changes constantly, the contour tree approach is not feasible, as the 

overhead for tree construction and reconstruction is high. In contour-based WSN 

applications, nodes need to know their location and indicate the location to the sink for it 

to construct the contour map. Based on this requirement, the proposed contour detection 

algorithms use the propagation pattern and look-ahead range in detecting a contour. The 

propagation pattern in the query contains details of how and where the query needs to be 

routed. This can prevent the query from being stalled because of saddle point, local 

maxima or minima if a blind or geometric route is specified. Once the query is 

propagated according to the pattern, the look-ahead parameter is used to search for a 

contour in the vicinity of the pattern. This flexibility is difficult to achieve when random 

walk or gradient routing is employed because the query propagation path is not known to 

the sink. If multiple contours must be found or for large networks, multiple propagation 

patterns can be included in the query for the nodes to route the query to different 

locations based on the specified patterns.  

 

On finding a node near the contour, the current schemes propagate the query randomly or 

greedily based on information gain. To avoid this effect clustering is used, helping that 

the CH can make a reliable decision based on all the received member readings. Our 

work is similar to IDSQ routing proposed by Chu et al. [32] which uses cluster-based 

information gain to propagate the query. However, they do not explain how the query 

propagation takes place between clusters. In CDAR, the propagation technique to 

propagate the query efficiently and reliably along the contour using clusters is explicit. 

Moreover, contour tracking is done accurately using a look-ahead range rather than using 

a greedy approach. The min-hop routing algorithm proposed by Liu et al. [33] also uses a 

look-ahead parameter to avoid the query getting trapped in saddle points, local maxima or 

minima. However, their approach increases the neighbourhood size resulting in 
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unnecessary communication overhead. In CDAR, the look-ahead range adjusts 

automatically depending on whether the contour is detected, reducing the overhead.  

 

Global distributed in-network processing schemes like polygon-based aggregation require 

the nodes to encode their location information in order to perform aggregation which is 

costly. Sometimes, aggregation of spatially correlated readings of adjacent nodes cannot 

be performed using an aggregation tree, because the common parent occurs many hops 

up the tree. To avoid these problems, a localized cluster-based in-network processing 

technique is proposed which uses data aggregation and compression for removing 

redundant contour data in an efficient manner. Pattem et al. [43] have shown that a 

clustered topology with optimal cluster size would perform well for a wide range of 

spatial correlations. Yoon and Shahabi [42] proposed Clustered Aggregation (CAG) 

which uses a similar outline to perform aggregation, but the aggregation proposed in 

CDAR is completely different. CAG is a lossy approach; only the CHs perform the in-

network processing using aggregation functions and each cluster reports a single value. 

Moreover, the clusters are created each time based on the threshold in the propagated 

query. In CDAR, clusters don’t change with the query and the nodes in the cluster that 

detect the contour perform different levels of in-network processing internally within the 

cluster while propagating the data to the CH. Further processing of the received member 

data is done at the CH before the data is routed to the destination. In addition to the        

in-network data processing, the number of intra-cluster control message transmissions     

is also reduced.  

  

Meng et al. [2] perform suppression of spatially correlated data using a constant reading 

value set by the sink. However, the accuracy of the contour map approximation at the 

sink is completely dependent on the amount of suppression performed in the network. 

The proposed suppression scheme is based on a minimum contour threshold distance 

parameter set by the sink which indicates the minimum distance between any two points 

on the contour that the sink is interested in. Any contour points between these minimum 

distance contour points on the contour are suppressed. This gives the user the flexibility 
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to control the amount of suppression by varying the threshold parameter and yet construct 

a contour map accurately. Furthermore, efficient compression techniques are provided to 

reduce the size of the encoded payload data.  Li and Liu [40] use angular separation and 

distance separation to spatially suppress the reports which is similar to the proposed       

in-network spatial suppression schemes in this thesis. However, the approach proposed 

by them requires transmission of node location to perform suppression at the intermediate 

nodes which is expensive. If the distance separation is smaller then a lot of responses are 

not suppressed even if they are close, resulting in a greater overhead because of the 

location encoded in these responses.  Moreover, there is a chance that these responses can 

take different paths up the aggregation tree and might get aggregated at the higher nodes, 

wasting resources. By taking into account smoothness and continuity of the contours, 

local in-network spatial suppression schemes are proposed which avoid transmission of 

location information in the responses, reducing the unnecessary overhead. 

 

Most of the applications that use efficient query propagation schemes either route the 

contour data back to the destination using the reverse path or the shortest path. 

Aggregating and routing the data back to the destination in the reverse path after the 

query is resolved may result in significant wastage because of the potentially large 

payloads in contour applications, as the reverse path is not always the shortest path. 

Similarly, aggregating the data along the contour and finally propagating the aggregated 

data to the destination in the shortest path is also costly. Moreover, routing each node’s 

contour information to the sink individually is expensive if the network is not clustered. 

Additional overhead due to the individual packet headers for every data point is incurred. 

In these approaches, all the savings obtained by propagating the query efficiently are 

compensated by inefficient data routing techniques. The novel data routing algorithms 

proposed in CDAR help in routing the data in an energy-efficient manner to the 

destination and while allowing efficient query propagation and in-network processing. 
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CHAPTER 4 

PROTOCOL FRAMEWORK 
 

This chapter presents the design of the energy efficient end-to-end CDAR protocol 

framework for contour detection, query propagation, in-network data processing and 

routing of the contour data to the sink. All the proposed algorithms are designed 

specifically for contour-based WSN applications by taking the natural properties of the 

contours like smoothness, continuity and correlations into consideration. Apart from the 

proposed algorithms, some well known algorithms are also presented in this chapter      

because they are used in the results section as points of comparison.  

  

4.1 Assumptions 
 

For the CDAR protocol to work efficiently a few basic assumptions have been made 

about the network and node levels of hierarchy.  

1. Clustered topology. Within each cluster there is a CH, one or more CMs, and one 

or more GNs, as in Figure 1.1. 

2. Nodes deployed in the network are homogenous and have a unique ID.  

3. Node positions are static and known a priori. The sink knows the locations of all 

the nodes in the network. Members know the locations of their neighbours. The 

CH knows the location of all the members within the cluster.  

4. A single sink is present in the network and its location is fixed.  

5. CHs can broadcast their data to their two-hop neighbours and unicast the data to 

their immediate neighbours. CMs can broadcast and unicast their data only to 

their immediate neighbours. 

6. CMs can communicate with their neighbouring GNs and the CH, whereas the 

GNs can communicate directly only with their neighbouring GNs and CMs (using 

multihop routing to reach the CH).  
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7. Network size and the approximate number of clusters formed in the network 

should be known to the sink for timer synchronizations, so that the sink can 

transmit the parameters accordingly in the queries.  

8. Network information is not collected and it is assumed that the parameters such as 

routing tables, cluster topology and node locations are established prior                

to any query.  

 

4.2 General Solution  
 

CDAR provides an end-to-end solution from contour detection and routing contour data 

to the sink after tracking the contour and performing in-network processing.           

Pattern-based contour detection is used to detect the contour. It provides the sink with the 

flexibility to repeat the detection process at a different location if the contour is not 

detected using the previous pattern. On detecting the contour, a cluster-based query 

propagation scheme is used to track the contour efficiently. The cluster-based scheme 

helps in making robust decisions from the member responses to track the contour and 

avoid erroneous readings. The cluster-based in-network processing schemes proposed 

help remove and reduce the redundant contour information. Finally, the contour 

information is routed to the sink in an efficient manner using the one of the proposed 

routing algorithms.  

 

4.3 Querying Techniques   
 

The important parameters transmitted in the query are the query ID, the contour value the 

sink is looking for, the pattern for contour detection, a minimum contour suppression 

threshold, look-ahead values for increasing the contour search area and also for finding 

broken contours and timer values for performing data routing to the destination. Some of 

these parameters are optional depending on the algorithm employed. For example, if the 
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suppression is disabled, then the suppression threshold is not transmitted in the query. 

The most common query propagation technique used in WSNs is flooding. However, 

flooding results in unnecessary wastage if the phenomenon is not uniformly spread 

throughout the network. Contour-based applications fall into this category. In this section, 

different query propagation techniques used for propagating the query in sensor based 

contour applications are explained in detail. Each of these techniques has its own 

advantages and disadvantages depending on the mission and network.  

                                

 

                                      Figure 4.1: Overview of query techniques 

 

There are two different phases in querying. The initial phase focuses on pattern-based 

contour detection techniques which detect the contour using a particular pattern. Single 

ray-based contour detection is shown in Figure 4.1. Detection techniques are associated 

with a detection look-ahead parameter which in this case indicates the number of clusters 

to look for perpendicular to the ray to query. The final phase deals with the actual query 
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propagation along the contour using cluster-based query propagation techniques. If the 

ray intersects the contour then the query is propagated along the contour in both the 

directions as shown in Figure 4.1. When queries propagated in opposite directions meet, 

the query propagation along the contour stops. To detect broken contours or natural 

contour ends, a propagation look-ahead parameter is used which indicate the number of 

clusters to look ahead before deciding if the contour is broken or terminated. In this 

section, known techniques are discussed for comparison along with new techniques 

which are part of the thesis contribution. Extensions to the new techniques for future 

work are also presented to establish the design extensibility. 

 

4.3.1 Contour Detection Techniques 
 

Contour detection is the initial phase of the querying technique. The main goal of these 

techniques is to route the query to detect a point on the contour in an efficient manner. As 

explained in the previous chapter, there are different contour detection techniques such as 

random walk, gradient routing and contour trees that can be used. All these approaches 

use information gain and communication cost to detect the contour efficiently. However, 

using these metrics may result in the query getting stuck at a saddle point, local minima 

or local maxima before the contour is detected. Moreover, the path traversed by these 

queries is not known at the sink, so the sink cannot efficiently re-transmit the query to a 

different location in the network, if a contour is not detected. In the detection techniques 

proposed, the query propagates along a geometrically specified pattern. The query is 

propagated as specified by the sink allowing retransmission of the query using a different 

pattern, if the contour is not detected.  

 

4.3.1.1 Flooding  
 

Flooding is the simplest and best known contour detection technique which propagates 

the query through the entire network. It guarantees detection of contours because every 
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node is visited. Flooding is presented here for a comparison with the proposed models. In 

flooding, a node that receives a query broadcasts it to all its neighbours. Nodes that 

receive the broadcast query further re-broadcast the query to their neighbours, if the 

query was not already received. In this manner, query is propagated through the network. 

In this thesis, flooding is performed to propagate the query through the network in a 

controlled manner. The sink transmits the request to the nearest CH which in turn 

broadcasts the request to its members indicating a set of GNs to forward it to the 

neighbouring CHs. None of the members broadcast the query request within the cluster 

other than the CH. Neighbouring CHs, on receiving the query, forward it to their 

members. CMs and GNs discard any queries received from neighbouring clusters if they 

have already received a query from their CH. In this manner, the query is propagated 

through the entire network. A detailed description of the cluster-based flooding algorithm 

is provided in Figure 4.2.  

        

                                           
 

1. CH:  
2. On receiving a CH query request: 
3.      if request has already been received then  
4.           discard the request             
5.      else  
6.           set request received to true 
7.           broadcast the request to the members with the CH reading and GN ID list     
8.           start a timer and wait for the query responses from the CMs/GNs  
9.      end if 
 
10. CM: 
11. On receiving a CH query request: 
12.      if request has already been received from CH then  
13.           discard the request                  
14.      else if request is received from GN then 
15.            forward the request to the CH 
16.      else  
17.            set query request received to true 
18.            process the request 
19.      end if 
 
20. GN: 
21. On receiving a CH query request: 
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22.      if request has already been received from CH then  
23.           discard the request                  
24.      else if request is received from neighbouring GN then 
25.           forward the request to the CH 
26.      else  
27.           set query request received to true 
28.           if current node ID is in the GN ID list then 
29.                forward the request to all the neighbouring CHs   
30.           end if 
31.           process the request           
32.      end if 
 

Figure 4.2: Flooding algorithm 

                        

Flooding is helpful if the phenomenon that the sink is interested in is spread uniformly 

throughout the network. For example, if the user is interested in the global maximum 

value, all the nodes must be queried. However, if the phenomenon is present in only a 

subset of nodes in the network then flooding is not efficient. For example, in contour 

applications the contour passes through a subset of nodes. Therefore, flooding propagates 

the request to the nodes with no relevant data, wasting system resources. Flooding is 

appropriate when there is unlimited power, a global solution requirement and if local 

information cannot constrain query space.  

 

4.3.1.2 Single Pattern-Based Contour Detection 
 

As seen in the previous section, flooding can be wasteful in contour-based WSN 

applications because the sensor nodes have limited power and the solution is a subset of 

the space. Some intelligent contour detection schemes are proposed which take the 

properties of the phenomenon into consideration and the WSNs constraints to provide an 

efficient solution. In the technique proposed, a pattern and detection look-ahead 

parameter is used in the query to detect the contour. The pattern in the query consists of 

the geographical location and the pattern shape. The geographical location in the query 

indicates from where the contour detection should start and the shape of the pattern tells 

how the routing needs be performed to detect the contour. A ray-based query pattern is 
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used to route the query to detect the contour in all the experiments for simplicity. 

However, other more complicated patterns can be used. The detection look-ahead 

parameter indicates the number of clusters on the either side of the pattern the query 

should be forwarded to broaden the contour detection area. There are three different kinds 

of query requests that are used by the algorithms to detect the contour. Initially, the sink 

query request is used by the sink to transmit a particular pattern. Clusters that lie on the 

pattern receive the sink query request and the CHs in these clusters broadcast the sink 

query request to their members, instructing the GNs forward the request to neighbouring 

clusters along the pattern. Next, the forward CH query request is broadcasted by the CHs 

that lie on the pattern to their members to propagate the query to their neighbouring 

clusters according to the detection-look ahead. CMs discard the received forward CH 

query request, but the selected GNs change the packet type to the CH query request and 

forward the request to the neighbouring clusters. The neighbouring clusters that lie on 

either sides of the pattern, on receiving the CH query request packet broadcast the request 

to their members. On member query response timer expiry, the CHs decrement the 

detection look-ahead and if it is valid, broadcast the forward CH query request and the 

procedure is repeated. For additional information regarding the query request packet 

structures, refer to the appendix.  

 

This algorithm operates in two phases. In the initial phase, the query is routed along the 

clusters in a ray-based pattern using the direction contained in the query. Finally, the 

clusters that have received the query forward it to the neighbouring clusters in their 

vicinity based on the detection look-ahead parameter irrespective of whether they have 

detected a contour or not. The proposed ray-based contour detection algorithm assumes 

that the detection start location is from the sink as shown in Figure 4.3.  However, the 

start of the detection can be set to any location in the network. A detailed description of 

the ray-based contour detection algorithm is provided in Figure 4.4. 
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                                   Figure 4.3: Single ray-based contour detection 

                                                                      

 
 

1. CH:  
2. On receiving a sink/CH query request: 
3.      if request has already been received then  
4.           discard the request             
5.      else  
6.           set request received to true 
7.           if  sink query request then 
8.                set the detection look-ahead parameter to the user specified value 
9.                broadcast the sink query request with the CH’s reading and the GN ID   

                           list that needs to propagate the request to neighbouring CHs on the ray  
10.           else  
11.                broadcast the CH query request to the members with the CH’s reading 
12.           end if  
13.           start a timer and wait for the query responses from the CMs/GNs      
14.      end if  
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15. On query response timer expiry:  
16.      if detection look-ahead is valid then 
17.           broadcast the forward CH query request with the GN ID list 
18.           decrement the detection look-ahead parameter value 
19.      end if 
 
20. CM:  
21. On receiving a sink/CH query request: 
22.      if request has already been received from the CH then 
23.           discard the request    
24.      else if request is received from GN then 
25.            forward the request to the CH 
26.      else  
27.            set request received to true 
28.            process the request 
29.      end if 
 
30. On receiving a forward CH query request: 
31.      discard the request    
 
32. GN:          
33. On receiving a sink/CH query request: 
34.      if request has already been received from the CH then  
35.           discard the query request    
36.      else if query request is received from neighbouring GN then 
37.           forward the request to the CH 
38.      else  
39.           set query request received to true 
40.           if  sink query request then 
41.                if current node ID is in the GN ID list then 
42.                     forward the sink query request to the CHs on the ray if the GN  
                          hasn’t received any readings or responses from those clusters                   
43.                end if  
44.           end if  
45.           process the query request 
46.      end if 
 
47. On receiving a forward CH query request: 
48.      if current node ID is in the GN ID list then 
49.           change the forward query request to CH query request and forward the  

                      request to all those CHs that are in GNs vicinity from which the GN  
                      hasn’t received any readings or responses  

50.      end if       
 

                            Figure 4.4: Ray-based contour detection algorithm 
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If some a priori estimate of the contour location is known, this approach can be effective 

in detecting the contour. In general, the contour location changes with time and the 

amount of change depends on the type of phenomenon being monitored. Taking these 

factors into consideration for selecting a proper pattern and look-ahead value helps in 

detecting the contour even if the contour location changes. If a contour is not found and 

the sink times out without a response from the network then a different pattern can be re-

transmitted efficiently, as the path traversed by the previous pattern is known.  

 

4.3.1.3 Multiple Pattern-Based Contour Detection 
 

To address the obvious criticisms of single pattern-based contour detection two 

alternative scenarios are provided as extensions to the algorithm for cases when the 

approximate contour location is not known a priori. These algorithms are presented only, 

and are not implemented or characterized. The first of these algorithms is similar to the 

single pattern-based contour detection with the only difference being that the sink uses 

multiple patterns with different detection look-ahead values for these patterns in an 

attempt to intersect multiple contours or a single small contour with limited span across 

the network. These multiple patterns could be included in the same query or multiple 

queries can be used for each pattern. Multiple ray-based patterns using multiple queries 

for contour detection is shown in Figure 4.5. Ray2 and ray3 propagated by the sink have 

detected the presence of different disjoint contours, whereas ray1 doesn’t detect any. 

Using this approach, there is still a chance of missing the contour if the contour is small 

and lies in between the rays. Where detecting contours of arbitrarily small size is 

involved, more exhaustive techniques must be employed by subdividing the space into 

sections smaller than the minimum allowed in the contour.  



 
 

41 

              

 

                            Figure 4.5: Multiple pattern-based contour detection 

 

4.3.1.4 Raster Scan-Based Query Propagation  
 

The raster scan-based propagation technique is used to exhaustively detect if a particular 

contour is present in the network. This technique is slightly different from the above two 

techniques in detecting the contour. It doesn’t require any a priori knowledge of the 

contours in the network to perform detection. It uses a ray-based horizontal or vertical 

trace pattern to route the query among the clusters, as shown in Figure 4.6 for contour 

detection. Furthermore, detection look-ahead parameter is not used and the query is 

routed only among the clusters that lie on the pattern specified. This is to reduce the 

unnecessary communication overhead as the query is going to be propagated through the 

clusters until a contour is found. If the required contour is not present in the network, then 

it might be equivalent to or even better than flooding. But, if the contour is present in the 
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network then there can be considerable saving in propagating the query in this manner. 

Moreover, clustering ensures that the query doesn’t get stuck by providing reliability 

from erroneous node readings and fault tolerance from single node failures.  

               

                              

                               Figure 4.6: Raster scan-based contour detection 

 

4.3.2 Query Propagation Technique  
 

The query propagation phase is initiated once a point on the contour is detected using one 

of the proposed contour detection schemes described in the previous section. In this 

phase, the goal is to propagate the query in a reliable and efficient manner along the 

contour. Information gain and a propagation look-ahead parameter are used to propagate 

the query. Information gain at a particular node is based on the readings received from 



 
 

43 

the neighbouring nodes. A greater information gain helps make reliable decisions in 

choosing the nodes that should further propagate the query. The propagation look-ahead 

parameter is different from the detection look-ahead parameter, but provides similar 

functionality. In this section, cluster-based query propagation is explained in detail. 

 

4.3.2.1 Cluster-based Query Propagation  
 

The cluster-based query propagation technique is proposed to propagate the query along 

the contour on detecting a point on the contour as shown in Figure 4.7. The query 

propagation is done in both directions along the contour from the point of contour 

detection. A cluster-based scheme offers various benefits over the non-clustered schemes 

in propagating the query. In a non-clustered paradigm, there is no centralized entity to 

process the information and make decisions. The decision to select a node to propagate 

the query further is based on the information received from neighbouring nodes. These 

decisions may be incorrect if erroneous information is received from the neighbours. To 

avoid this problem, a cluster-based query propagation scheme is proposed where the 

decision making is performed at the CH based on the received member information. If a 

CH finds that a contour passes through the cluster, then a decision should be made in 

selecting the neighbouring cluster that has to further propagate the query.  

 

To avoid this problem, the CH that has detected a contour propagates the query to all its 

immediate neighbouring clusters other than the originator of the query. Query 

propagation to the immediate neighbouring clusters increases the chance of tracking the 

contour accurately. The forward CH query request is used by the CH that has detected the 

presence of a contour in its cluster to propagate the query to the neighbouring clusters 

along the contour. Neighbouring cluster GNs on receiving the query check if they have 

already received a query from their CH. If so, they discard the received query otherwise 

they forward the query to their CH, which later broadcasts the CH query request to the 

cluster. In the querying phase, contour data is not propagated along the contour with the 

query because the path along the contour may not be the shortest path to the sink.  
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 Figure 4.7: Query propagation along the contour after contour detection  

 

Occasionally a contour can’t be detected by the immediate neighbouring clusters. 

Moreover, detecting a natural contour termination is also important. To address all these 

problems and make the query propagation robust, a propagation look-ahead parameter is 

used, which broadens the search area by propagating the query to other clusters that are 

not the immediate neighbours of the current cluster. Based on the direction from which 

the query request was received, the current CH that has detected a contour indicates one 

of its immediate neighbouring clusters use the look-ahead and broaden the search, only if 

it doesn’t detect any contour. If a closer look is taken into how the look-ahead parameter 

is used, it clearly shows that the parameter is not constant and varies depending on 

whether a contour is found or not. If a contour is found by the immediate neighbouring 

cluster, then the propagation look-ahead is zero. Otherwise, the search is broadened based 
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on the value set by this parameter. A detailed description of the cluster-based query 

propagation algorithm is provided in Figure 4.8. 

 

 
                       

1. CH:  
2. On receiving a sink/CH query request: 
3.      if request has already been received then  
4.           discard the request             
5.      else  
6.           set request received to true 
7.           if  sink query request then 
8.                broadcast the sink query request with the CH’s reading and the GN ID   

                           list that needs to propagate the request to neighbouring CHs on the ray  
9.           else  
10.                broadcast the CH query request to the members with the CH’s reading 
11.           end if  
12.           start a timer and wait for the query responses from the CMs/GNs      
13.      end if  
 
14. On query response timer expiry:  
15.      if query responses are present then 
16.           set the propagation look-ahead parameter to the user specified value 
17.           indicate the CH ID that is in the contour direction to further propagate the 
                query to its adjacent CHs, if a contour isn’t detected                      
18.           broadcast the forward CH query request with the GN ID list  
19.      else  
20.           if CH ID in the CH query request is same as the CH ID then 
21.                if propagation look-ahead value is valid then 
22.                     decrement the propagation look-ahead value 
23.                end if 
24.                broadcast the forward query request with the GN list ID 
25.          end if 
26.     end if 
 
27. CM:  
28. On receiving a sink/CH query request: 
29.      if request has already been received from the CH then 
30.           discard the request    
31.      else if request is received from GN then 
32.            forward the request to the CH 
33.      else  
34.            set request received to true 
35.            process the request 
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36.      end if 
 
37. On receiving a forward CH query request: 
38.      discard the request    
 
39. GN:          
40. On receiving a sink/CH query request: 
41.      if request has already been received from the CH then  
42.           discard the query request    
43.      else if query request is received from neighbouring GN then 
44.           forward the request to the CH 
45.      else  
46.           set query request received to true 
47.           if  sink query request then 
48.                if current node ID is in the GN ID list then 
49.                     forward the sink query request to the CHs on the ray if the GN  
                          hasn’t received any readings or responses from those clusters                   
50.                end if  
51.           end if  
52.           process the query request 
53.      end if 
 
54. On receiving a forward CH query request: 
55.      if current node ID is in the GN ID list then 
56.            change the forward CH query request to CH query request and forward  
                 the request to all those CHs that are in GNs vicinity from which the GN  

                       hasn’t received any readings or responses  
57.      end if 

 

Figure 4.8: Cluster-based query propagation algorithm 

 

4.4 In-network Processing Techniques 
 

In sensor networks, the data is usually spatially and temporarily correlated. For most 

sensor applications, transmitting the raw data to the sink without in-network processing 

leads to wasted energy and can adversely impact the longevity of the network. To avoid 

redundant data being transmitted to the sink, spatially and temporarily correlated data is 

suppressed by in-network processing, allowing only the necessary data required by the 

sink to be transmitted. In-network processing can be done using aggregation and 
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compression techniques. Aggregation deals with removing redundant data using 

aggregate functions, suppression and response packet fusion. On other hand, compression 

reduces the size of the data that is to be transmitted by applying data encoding and 

decoding techniques. Even after performing aggregation and removing the redundant 

data, compression can be performed on the data to reduce the size of the data that is being 

transmitted.  A combination of both these techniques provides an efficient in-network 

processing solution. In this section, various novel compression and suppression 

techniques proposed are discussed in detail and extensions to these techniques for future 

work are presented to establish design extensibility. 

 

4.4.1 Compression Techniques 
 

Compression techniques are used to efficiently encode the contour readings stored at a 

particular node as contour data in the query response payload. For example, transmission 

of contour location information to the sink can result in large data payload overhead and 

increases the energy cost in transmitting this information. The main focus of these 

compression techniques is to reduce the payload size by encoding only the appropriate 

information required by the sink to reconstruct the contour. As explained in the previous 

sections, suppression techniques only deal with suppressing the contour readings at a 

particular node and hence help save energy involved in transmitting these redundant 

readings. However, significant savings can also be obtained by applying compression 

techniques to reduce the payload size. The compression techniques proposed can be used 

independent of whether the suppression is enabled or disabled. In this section, detailed 

explanation of spatial compression and an overview of the temporal compression           

are presented.   
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4.4.1.1 Spatial Compression Algorithm 
 

Spatial compression algorithms help in encoding the contour readings stored at a 

particular node efficiently as contour data in the query response payload. Nodes within a 

cluster on receiving the query request sense the external phenomenon and store the 

sensed reading. Later, nodes exchange their sensor readings with their neighbours in 

order to detect the presence of any contour in their vicinity. If a contour is detected from 

any of the received neighbour sensor readings, then the contour readings are populated 

and stored in the node. A contour reading consists of the node ID, neighbour node ID, 

location information and sensor readings. Encoding all these contour parameters 

increases the data overhead. The proposed spatial compression algorithm efficiently 

encodes the contour readings.  

 

Given the assumption that the sink knows the node locations and a node in a cluster 

knows the location information of other members in the cluster, only encoding of the 

node IDs would be sufficient. The neighbour node ID is received in the sensed reading 

broadcast by the neighbour. It can also be used by the node to retrieve the stored 

neighbour node location information. Encoding the node IDs of the current node and its 

neighbour can also increase the data overhead depending on the size of the IDs. To 

reduce this overhead, every node’s neighbour is assigned a relative node ID by the node 

and this information is also assumed to be known to the sink and other members within 

the cluster. Encoding the sensed readings by the nodes can also be costly. To reduce this 

overhead, the sensed readings are parameterized and the node’s proximity to the contour 

is calculated using interpolation. The location parameter gives an approximate distance of 

the contour from the node based on an assumption of linear spatial variation between two 

nodes. For example, two neighbouring nodes of temperature 10 and 9 degrees can detect 

the presence of a 10 degree contour. In this case, the node which has a temperature of 10 

degrees has a parameterized value of 0, whereas the neighbour node’s value is 1. A value 

of 1 means the node is far away from the contour and vice versa. The final encoded data 

of each contour reading consists of the node ID, relative neighbour node ID and the 

node’s proximity to the contour. The sink on receiving the encoded contour data in the 
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response decodes the data and reconstructs the contour map. A detailed description of the 

spatial encoding and decoding algorithms are provided in Figure 4.9 and Figure 4.10. 

           

 

1. CH/CM/GN: 
2. if contour is detected at the node then  
3.      for each contour reading stored at the node do 
4.           proximity  =   required contour value – node sensed reading  × 100% 

                                                neighbour sensed reading – node sensed reading 
5.            encode the node ID, relative neighbour node ID and proximity distance 
6.      end for    
7. end if 

 

Figure 4.9: Spatial encoding algorithm 

 

 
 
1. Sink: 
2. for each decoded contour reading in the response do 
3.      retrieve the neighbour node ID from the relative neighbour node ID   
4.      proximity  = proximity  × 0.01 
5.      if node’s proximity is 0 then  
6.           x = node’s x-coordinate   
7.           y = node’s y-coordinate 
8.      else if node’s proximity is 1 then  
9.           x = neighbour’s x-coordinate   
10.           y = neighbour’s y-coordinate 
11.      else 
12.          d1 = calculate the distance between the node and its neighbour                      
13.          d2 = calculate the adjacent edge distance from the node 
14.          angle =  arccos(d1/d2) 
15.          neighbour’s distance (to the contour point ) = d1 × (1 – proximity) 
16.          x = neighbour’s x-coordinate  + (neighbour’s distance × cos(angle)) 
17.          y = neighbour’s y-coordinate  + (neighbour’s distance × sin(angle)) 
18.     end if 
19.     plot the x and y-coordinates of the contour location  
20. end for  

 

Figure 4.10: Spatial decoding algorithm 
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4.4.1.2 Temporal Compression Algorithm 
 

Certain contour-based applications may require periodical observation of the 

phenomenon. Periodical observation of the phenomenon may result in the estimated 

contour position between two nodes approximately the same as in the previous 

observations. These observations are said to be temporally correlated. The degree of 

correlations between these observations depends on the type of phenomenon being 

monitored and the granularity interval between each successive observation. Temporal 

compression algorithms help in encoding these temporally correlated observations stored 

at a particular node efficiently as query response contour data payload. Details on 

detecting temporal correlations between the consecutive observations are explained in the 

temporal suppression algorithm section. Encoding of temporal data can be done using a 

contour-neighbour array specified by Cheng and Michael [44].  

 

4.4.2 Suppression Techniques 
 

Phenomena like temperature, pressure and humidity fields have high degree of spatial 

and temporal correlations. Contour-based WSN applications may generate highly 

correlated data. Transmission of this correlated data results in wastage of network 

resources. Efficient suppression techniques should remove these correlations in the 

sensed data. Moreover, these techniques should also provide the flexibility to the 

application to control the amount of suppression that is to be done. If this flexibility is not 

provided, then the user might not be interested in the data provided by the network, as it 

might lead to erroneous results. Suppression can be performed locally or globally in a 

distributed manner. Novel spatial and temporal cluster-based suppression algorithms are 

proposed in this section. Spatial suppression algorithms are discussed in detail, whereas 

temporal algorithms are presented for extensibility of the proposed suppression model 

and are part of future work.  
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4.4.2.1 Spatial Suppression Techniques 
 

To provide a proper coverage of the signal field WSNs require dense node deployment. 

Due to high node density spatially proximate nodes have correlated readings. In a dense 

deployment, using spatial suppression techniques and suppressing unnecessary spatial 

correlated data helps in increasing the magnitude of energy savings by cutting down the 

cost involved in transmission of these extra bytes. This applies to contour-based WSN 

applications with dense node deployments where nodes that detect a contour have their 

readings spatially correlated.  Moreover, spatial suppression techniques work efficiently 

with exploratory or one-shot queries. In this section, cluster-based spatial suppression 

algorithms are discussed in detail.  

 

4.4.2.2 Suppression Logic 
 

The proposed suppression logic is used internally by the cluster-based spatial suppression 

algorithm to remove the redundant sensed data. Suppression logic performs manipulation 

on the contour readings to remove redundant correlated data. A contour reading is 

constructed at a node when the node receives a sensed value reading from the neighbour 

and detects a contour between them. It can also be generated by decoding the contour 

data in the received query response from the neighbouring nodes. Contour data in the 

response packet is an encoding of multiple valid contour readings. Encoding of the 

contour data in the responses is described in detail in the compression techniques section. 

Each contour reading contains information about the IDs and locations of the node and its 

neighbour that have sensed the contour. Location information of the nodes is not 

transmitted in any of the messages, as it is costly. Instead, the location information of the 

nodes is retrieved based on node IDs, as the nodes IDs of the neighbours are known a 

priori. Nodes location information plays a crucial role in performing suppression. For 

performing cluster-based spatial suppression, two phases of the suppression logic need to 

be performed. In the first phase, the contour readings stored at the node are suppressed 

using the received query responses from the neighbouring nodes within the cluster. The 

received and buffered neighbour responses are decoded and each reading is compared 
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with the stored current node’s readings. If the contour distance between the node’s 

contour location and the decoded reading’s contour location are within the minimum 

contour suppression threshold range, then the node’s reading is discarded as shown in            

Figure 4.11. A suppression threshold is defined as the distance between the points on the 

contour and its value is propagated in the query to remove redundant correlated sensed 

data. Any records at a finer resolution than the suppression threshold are deemed 

redundant. After performing the suppression, the received neighbour responses are 

discarded unless the node is required to transmit a response to the CH.  

 

In the second phase, the valid contour readings that are stored at the node are compared 

with each other and suppressed accordingly. Prior to performing the suppression, the 

node’s contour readings are sorted based on the proximity between the nodes as shown in   

Figure 4.11.a. Next, the contour location is approximated from the node locations for 

each of the contour readings stored at the node as shown in Figure 4.11.b. Later, the 

contour distance is calculated between the contour location of the valid reading which has 

closest inter-nodal distance and the contour location of other readings as shown in Figure 

4.11.c. Finally, the node’s contour readings are compared with each other and if any of 

these readings lie within the threshold range they are discarded as shown in Figure 

4.11.d. Sorting of the readings is done only once, but the other steps are repeated for the 

valid readings present. The suppression logic can also be extended to perform global 

distributed suppression. In that case, only the second phase of the core suppression logic 

needs be performed. The contour data present in each of the received responses from the 

lower layers is decoded and then all the decoded readings are sorted and compared with 

each other. However, the drawback of the global distributed approach is that the location 

information of the nodes that have detected the contour need to be transmitted with the 

contour data to perform suppression. Encoding the location information of the nodes is 

costly. A detailed description of suppression logic is provided in Figure 4.12. 
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Figure 4.11: Illustration of the Suppression logic. a. Sort the contour readings 
received at a node based on the proximity between the nodes b. Approximate the 
contour location from the nodes for each reading c. Calculate the contour distance 
between the contour location of the reading that has the closest distance between the 
nodes (in this case it is indicated by 1) and the contour location of other readings d. 
Suppress all the readings (indicated by ‘X’) that are within the suppression 
threshold range  

 

                                                   

      Phase 1: 
1. if  query responses are present in the packet buffer and contour readings  

are present in the data buffer then  
2.      for each query response in the packet buffer do  
3.           for each decoded reading1 in the query response do 
4.                for each reading2 in the data buffer do  
5.                     if valid reading2 in the data buffer is within the minimum     
                          contour distance suppression threshold of reading1 then  
6.                          set the reading2 in the data buffer to invalid 
7.                     end if 
8.                end for                      
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9.           end  for 
10.           discard the query response from the packet buffer 
11.      end for 
12. end if 

 
      Phase 2:  

1. if readings are present in the data buffer and packet buffer is empty then 
2.      sort the readings in the buffer based on the closest distance between the nodes 
3.      for each reading1 in the data buffer do  
4.           for each reading2(reading1 + 1) in the data buffer do 
5.                if  valid reading2 in the data buffer is within the minimum  
                     contour distance suppression threshold of reading1 then 
6.                     set the reading2 in the data buffer to invalid 
7.                end if 
8.           end for 
9.      end for 
10. end if 

 

   Figure 4.12: Suppression logic 

 

4.4.2.3 No-Suppression Algorithm 
 

The no-suppression algorithm is a baseline algorithm implemented for comparison with 

the proposed spatial suppression algorithms. It doesn’t perform the actual suppression of 

the contour data or control messages. An understanding of the design and logic of this 

algorithm helps in appreciating how the suppression algorithms work and their impact. 

The proposed suppression and no-suppression algorithms are based on a clustered 

network topology. According to Pattem et al. [43]  a clustered topology with optimal 

cluster size would perform well for a wide range of spatial correlations. These proposed 

suppression and no-suppression algorithms can also be extended to multi-hop clusters of 

size greater or lesser than two hops (the standard size in the experiments) and to 

randomly distributed clustered topologies.  

 

In the proposed no-suppression algorithm, the query request broadcast by the CH is 

assumed to be received by all the members within the cluster, so that the members need 

not re-broadcast the query request internally. To broadcast the query request to all the 
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members, the CH needs greater power and the amount of power needed varies with the 

cluster size. However, the suppression and no-suppression algorithms are not impacted 

even if the CH broadcasts the query request to its one-hop neighbours and they further re-

broadcast it to the other members. In the no-suppression algorithm, member responses are 

aggregated only at the CH before routing the overall aggregate response to the 

destination. Taking the memberships of the nodes in a cluster into consideration, two 

variants of this algorithm is developed. One variant is for the CH and the other for         

the CMs/GNs.  

 

In this approach, the CH on receiving the query request broadcasts the request within the 

cluster with its sensed reading along with the contour information it is looking for as 

shown in Figure 4.13.a. On receiving the request from the CH, CMs that are one-hop 

from the CH check if a contour exists between themselves and the CH. If so, the CMs 

populate the contour reading between themselves and the CH and store the reading. On 

the other hand, GNs and CMs that are more than one-hop away don’t populate any 

contour readings from the received CH query request even if a contour exists because an 

accurate contour location might be difficult to obtain because of the distance. Nodes in 

the cluster start a query response timer on receiving the query. The response timer value 

varies depending on the membership of the node. The CMs/GNs have a similar response 

timer value in the no suppression algorithm and their timer value is less than the CH. 

Later, CMs and GNs within the cluster broadcast their sensed readings to their 

neighbours as shown in Figure 4.13.b. Neighbours on receiving the sensed readings 

check if a contour exists between the node that broadcast the sensed reading and itself. If 

so, a contour reading is generated and stored at the node. On the other hand, even though 

CHs detect a contour between themselves and the broadcast CM sensed reading, they 

don’t populate any contour reading because CMs that are one-hop away would have 

populated the contour readings from the CH sensed reading broadcast in the query 

request. This avoids unnecessary duplication of the contour data at the CH.  

 



 
 

56 

 

Figure 4.13: Illustration of the No-suppression algorithm. a. Query request 
broadcast by the CH to its members b. Sensed readings broadcast by the members 
to their neighbours c. Query responses are unicast by the members (indicated by 
‘Y’) that have detected the contour to their CH d. Overall aggregated members 
response forwarded by the CH to the sink 

 

There are two different scenarios that can occur based on whether a contour passes 

through the cluster or not. In the first scenario, assume that the contour doesn’t pass 

through the cluster. All the members exchange their sensed readings with the neighbours 

on receiving the query request. On response timer expiry, none of the members transmit 

any messages or contour data to the CH. The CH response timer times out and moves to 

idle state confirming that the contour doesn’t pass through the cluster. In the second 

scenario, assume that the contour passes through the cluster. Like the previous scenario, 

the members exchange the sensed readings with each other. Members that have detected 

the contour and have contour readings stored encode the readings in the response as 

contour data and forward the response to the CH independently using unicast as shown in 
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Figure 4.13.c. On response timer expiry, the CH aggregates all the responses into a single 

response and forwards the overall aggregate response to the sink based on the          

routing algorithm.  

 

This approach provides the most complete data about the contour, as the sensed data is 

transmitted without any processing. Even with suppression disabled, the proposed 

algorithm avoids unnecessary transmission of query request and response control 

messages within the cluster. It also provides a mechanism to aggregate all the member 

responses received at the CH into an overall aggregate response and in the process strips 

the individual member response packet headers before routing the overall response to the 

destination. However, the problem with this approach is that the data might be redundant 

for dense networks and may result in unnecessary energy wastage. Moreover, this 

approach doesn’t give the application the flexibility to control the amount of suppression. 

To counteract these problems and provide an efficient suppression of contour data and 

control messages, cluster-based spatial suppression algorithms are proposed in the       

next section. A detailed description of the no-suppression algorithm is provided in           

Figure 4.14. 

 

               

 
1. CH: 
2. On receiving CM/GN query response: 
3.      if response is forwarded to the destination then 
4.           discard the received response  
5.      else  
6.           store the received responses in the packet buffer 
7.      end if 
   
8. On receiving CM/GN sensed reading: 
9.      discard the received reading 
10.  
11. On  query response timer expiry:  
12.      aggregate and encode the readings as contour data in the response 
 
13. CM/GN: 
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14. On receiving sink/CH query request: 
15.      if contour exists between CM (one-hop from CH) and CH then 
16.           populate and store the contour reading in the data buffer 
17.      end if  
18.      broadcast the CM/GN sensed readings  
19.      start a query response timer at the CM/GN and wait for the sensed readings 
 
20. On receiving CM/GN sensed reading: 
21.      if query response is forwarded to the CH then 
22.           discard the received reading 
23.      else if contour exists between CM/GN and received sensed reading then 
24.           populate and store the contour reading in the data buffer 
25.      else  
26.           discard the received reading 
27.      end if 
 
28. On  query response timer expiry:  
29.      aggregate and encode the readings as contour data in the response 
30.      forward the query response to the CH independently 
31.      set the query response sent to true 
 

Figure 4.14:  No-suppression algorithm 

 

4.4.2.4 Cluster-Based Spatial Suppression Algorithm 
 

The cluster-based spatial suppression algorithm is designed to suppress redundant 

contour data. The CH is the central entity within a cluster that takes all the critical 

decisions. In all the proposed suppression algorithms the CH aggregates all the received 

member responses before forwarding the data to the destination. In the no suppression 

algorithm, members within the cluster forward their responses by unicast to the CH 

independently, on response timer expiry. This can result in energy wastage, if the cluster 

size is large. To avoid this waste of energy, the proposed suppression algorithms forward 

the responses to the CH in a controlled manner. Moreover, a minimum contour 

suppression threshold parameter is used to control the amount of suppression that is to be 

performed by a particular member. The value of this parameter is indicated by the sink in 

the query request and a larger value indicates more widespread suppression. More details 

on how this parameter is used to perform suppression are explained in the suppression 

logic section. 
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In the proposed suppression algorithm, the cluster is treated as an aggregation tree with 

the CH as the root of the tree. All the CMs act as intermediate nodes in the aggregation 

tree and the GNs act as the leaf nodes of the tree, as they lie on the cluster boundary. 

Members in the cluster have different response timer values and this value varies 

depending on the hop count to the CH. Those members closer to the CH have a larger 

timer value, as the members move away from the CH the timer value decreases. The 

response timer value of the CH is larger than that of any member’s response timer value. 

There is a slight difference in the way the response timer is set by the CMs. The response 

timer values of the CMs that are on the same hop level and that haven’t detected any 

contour from the broadcast sensor reading in the query request by the CH have a greater 

timer value compared to the CMs that have detected a contour. The reason for the 

response timer value difference between the CMs within the same hop level is because 

CMs exchange their sensed reading with their neighbours only when they detect a 

contour. From these broadcast sensed readings, the neighbour CMs within the same hop 

level can detect the presence of a contour between them and the CM that has broadcast 

the response. On the other hand, all the GNs at a particular hop level have a similar 

response timer value, because all the GNs broadcast their sensed readings to their 

neighbouring nodes separately, unlike the CMs which broadcast their sensed reading in 

the response to the CH. GNs broadcast their sensed readings to their neighbours 

separately in order to enable the neighbouring cluster GNs to suppress their query 

responses. In this case, it is not possible to detect a contour between the GNs and its one-

hop CMs, if the GNs didn’t broadcast their sensed readings or query responses.  

 

 The advantage of using a cluster-based aggregation tree approach is contour readings 

suppression and contour data aggregation can be performed simultaneously at the 

members as the responses propagate towards the CH. Contour readings are populated and 

stored by the members from the broadcast neighbours sensed readings only when a 

contour is detected. These readings are encoded into the query response as contour data 

using the encoding scheme mentioned in the compression techniques section. 
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Suppression of redundant contour readings at a member means that the actual redundant 

contour data is removed. As explained in the suppression logic, a member suppresses the 

contour readings in two phases. These suppressed readings can be inter-cluster or intra-

cluster contour readings. In the first phase, if the members have any received broadcast 

member query responses, they decode the contour data in these responses and each of the 

decoded reading is compared with its stored contour readings, if present. If any of the 

member’s stored readings is within the minimum contour suppression threshold then the 

reading is suppressed. In the second phase, the stored contour readings are sorted based 

on each reading’s proximity between the nodes and compared within themselves. If any 

of these readings are within the minimum threshold limit they are suppressed.  

 

Apart from suppression, efficient contour data aggregation can also be performed using 

the proposed cluster-based aggregation tree approach. A member whose response timer 

expires and that has detected a contour, performs suppression before it broadcasts the 

response to its one-hop neighbours. One of the neighbours is designated to forward the 

data further. On receiving the broadcast query response, members store the received 

query response when their response timer expires. Members that are not designated to 

forward the contour data discard the received query response after performing 

suppression. However, the member that is designated to forward the query response 

aggregates the contour data received to its own stored data and propagates the packet 

further. This process continues until the response reaches the CH. Members that have 

already forwarded the response discard any received responses. By performing 

suppression and aggregation at the intermediate nodes instead of the CH, unnecessary 

redundant data transmissions within the cluster are avoided. On receiving the aggregated 

responses from the members, the CH decodes the contour data present in these responses 

and stores the contour readings. Only the second phase of the member suppression 

algorithm is applied to these stored readings. 

    

The spatial suppression algorithm also suppresses control messages within the cluster. 

Query request message transmissions by the members and broadcasting of the CMs 
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sensed reading are the control messages that can be suppressed. Query request 

suppression by the members is the same as in the no suppression algorithm. In general, 

all the nodes exchange their sensed readings with their neighbours to detect the presence 

of a contour. However, with the spatial suppression algorithm, most of the CMs refrain 

from transmitting their sensed reading to their neighbours even if they detect the contour 

present in their vicinity. The CMs that are one-hop from the CHs or GNs can receive the 

broadcast reading from the CH and the GNs in a multi-hop cluster. From these broadcast 

readings, CMs can detect if a contour exists between themselves and the broadcaster. 

Those CMs that have detected a contour based on the received sensed readings from the 

CH or GNs include their sensor reading in the query response while forwarding the 

response to the CH using broadcasting. On receiving the CM query response, other CMs 

compare their reading with the sensed reading to detect the presence of a contour. If a 

contour is detected, CMs include their reading in the response and broadcast the packet to 

their neighbours.  

 

On receiving a query request, the CH forwards the suppression threshold interval, contour 

value and its sensed readings to the members as shown in Figure 4.15.a. All the members 

on receiving the query request start their query response timers based on whether they 

have detected a contour between themselves and the CH. The GNs broadcast their sensed 

readings to their neighbours on receiving the request as shown in Figure 4.15.b, which 

store them if a contour exists between them and the GN that broadcast the reading. On 

response timer expiry, members broadcast their responses to their one-hop neighbours 

and designate one of the neighbours that are closer to the CH to forward its contour data 

further. On receiving the query response broadcast, members suppress their contour 

readings by applying the suppression logic and discard the received query response if 

they are not designated to propagate the contour data in the response further. The member 

that is designated to propagate the response further as shown in  Figure 4.15.c aggregates 

the received contour data in the response with its contour data and broadcasts the overall 

aggregated response to its neighbours as before. In this manner, the response is 

propagated until the CH receives the data as shown in Figure 4.15.d. At the CH, the final 

level of suppression is performed on all the received data before the readings are 
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aggregated into an overall response and forwarded using one of the schemes described in 

section 4.5.  

 

 

Figure 4.15: Illustration of the Cluster-based spatial suppression algorithm. a. 
Query request broadcast by the CH to its members b. Sensed readings broadcast by 
the GNs to their neighbours c. Query responses broadcast by the GNs (indicated by 
‘Y’) that have detected the contour to their neighbours indicating the forwarding 
CM (indicated by ‘X’) after performing suppression d. Query responses broadcast 
by the CMs (indicated by ‘Y’) that have detected the contour to their neighbours 
after performing suppression.   

 

In one scenario, it is assumed that the contour doesn’t pass through the cluster. In this 

case, only the GNs exchange their sensed readings with the neighbours on receiving the 

query request, whereas none of the CMs broadcast any of their sensed readings. The 

savings is the suppression of CM readings broadcasts. On response timer expiry, none of 

the members transmit any messages or contour data to the CH. In the second scenario, it 
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is assumed that the contour passes through the cluster. Like the previous scenario, the 

GNs exchange their sensed readings with each other and only the CMs that have detected 

the contour broadcast their readings while other CMs are suppressed, saving unnecessary 

broadcasts by the CMs that haven’t detected the contour. Members that have detected the 

contour perform suppression and aggregate all the received responses at each hop while 

propagating the response to the CH. This removes the redundant contour data and saves 

energy by cutting down unnecessary data transmissions. Moreover, the members 

aggregate the responses at each hop and send the overall aggregated response to the CH 

avoiding independent transmission of responses by the members. The amount of 

suppression that is to be performed at a particular member is controlled by the minimum 

contour suppression threshold parameter broadcast in the query.  

 

Another important parameter that can be introduced for performing suppression along the 

contour when the suppression threshold spans more than a cluster is the use of a skip-

ahead parameter. Clusters that have detected a contour forward this parameter in the 

request packet to the neighbouring clusters. On detecting a contour, the neighbouring 

clusters look into the skip-ahead parameter and suppress their responses if they are within 

the threshold limit. This technique is not implemented in the thesis and is part of future 

work. A detailed description of the cluster-based spatial suppression algorithm is 

provided in Figure 4.16. 

 

                                         

1. CH: 
2. On receiving CM query response: 
3.      if response is forwarded to the destination then 
4.           discard the received response  
5.      else  
6.           decode  the contour data and store the contour readings in the data buffer 
7.      end if 
 
8. On receiving CM/GN sensed reading: 
9.      discard the received reading 
 
10. On  query response timer expiry:  
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11.      perform suppression on the stored contour readings using suppression logic 
12.      if valid contour readings are present then  
13.           aggregate and encode the readings as contour data in the response  
14.      end if 
 
15. CM: 
16. On receiving sink/CH query request: 
17.      if contour exists between CM (one-hop from CH) and CH then 
18.           populate and store the contour reading in the data buffer 
19.      end if  
20.      start a query response timer at the CMs based on the hop distance to the CH 
           and detection of a contour  
 
21. On receiving GN sensed reading:      
22.      if contour exists between CM and received sensed reading then 
23.           populate and store the contour reading in the data buffer 
24.      else  
25.           discard the received reading 
26.      end if 
 
27. On receiving CM/GN query response: 
28.      if query response is forwarded to the CH then 
29.           discard the received response 
30.      else  
31.           if contour exists between CM and the sensed reading received in the  
                CM/GN response then 
32.                populate and store the contour reading in the data buffer 
33.           end if 
34.           if CM ID is same as the transmit ID in the response then 
35.               decode  the contour data and store the contour readings in the data buffer 
36.           else  
37.               store the received response in the packet buffer 
38.           end if    
39.      end if      
 
40. On  query response timer expiry:  
41.      perform suppression on the stored contour readings using suppression logic 
42.           if valid contour readings are present then  
43.                aggregate and encode the readings as contour data in the response 
44.                broadcast the response to the neighbours indicating the transmit ID 
                     that needs to further propagate the contour data to the CH and also 
                     the CM’s sensed reading 
45.          end if          
46.      set the query response sent to true 
 
47. GN: 
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48. On receiving sink/CH query request: 
49.      broadcast the GN sensed readings  
50.      start a query response timer at the GNs based on hop distance to the CH 
 
51. On receiving GN sensed reading: 
52.      if contour exists between GN and received sensed reading then 
53.           populate and store the contour reading in the data buffer 
54.      else  
55.           discard the received reading 
56.      end if 
 
57. On receiving GN query response: 
58.      if query response is forwarded to the CH then 
59.           discard the received response 
60.      else 
61.           store the received response in the packet buffer 
62.      end if 
  
63. On  query response timer expiry:  
64.       perform suppression on the stored contour readings using suppression logic 
65.       if valid contour readings are present then  
66.            aggregate and encode the readings as contour data in the response 
67.            broadcast the response to the neighbours indicating the CM transmit ID 
                 that needs to further propagate the contour data to the CH 
68.       end if     
69.       set the query response sent to true      

 
 

Figure 4.16: Cluster-based spatial suppression algorithm 

 

4.4.2.5 Temporal Suppression Techniques 
 

Some contour-based applications may require observing the phenomenon periodically 

and reporting the information to the destination. Periodical observation of the 

phenomenon may result in the estimated contour position between two nodes 

approximately the same as in the previous observations. These observations are said to be 

temporally correlated. In such cases, applying only spatial suppression techniques might 

not be efficient because even after spatial suppression the reported contour data at the 

destination might be redundant due to temporal correlations. To remove redundant 

temporally correlated contour data the proposed cluster-based temporal suppression 
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algorithm can be used. The temporal suppression algorithm presented here is for 

extensibility of the proposed suppression model and is part of future work.  

 

Cluster-Based Temporal Suppression Algorithm  

 

The main focus of cluster-based temporal suppression algorithm is to detect and suppress 

the redundant temporally correlated contour data in contour-based WSN applications 

which require periodical observation of the phenomenon. It can be used in conjunction 

with spatial suppression algorithms. Temporal suppression of correlated data is 

performed at two levels, one level at the members and the other at the CH. Members that 

observe and detect the phenomenon for the first time store their contour readings after 

performing spatial suppression. Similarly, the CH decodes the contour data received in 

the responses from the members and stores the readings after performing spatial 

suppression and forwarding the overall aggregated response to the destination. Temporal 

suppression is not performed for the first time by the CH and members when they 

observe and detect the phenomenon. From the next observation and detection of the 

phenomenon, the members compare their contour readings with those readings stored 

previously, and if any of the observed readings are temporally correlated, then they        

are suppressed. A temporal suppression threshold can be used to control the amount of 

temporal suppression by specifying the correlation degree for suppression. 

 

Temporally correlated contour readings are not suppressed completely by the members 

because the CH has no information on whether the members have actually suppressed 

their contour readings by performing temporal suppression or there was no contour 

passing through the cluster. To avoid this problem, those members that have detected a 

contour and have their readings temporally correlated, encode minimal information in the 

response to the CH. If some contour readings that are detected by the members are 

different from those stored previously, then they are stored by the members along with 

their existing readings. The CH, on receiving the responses from its members, performs 

another level of temporal suppression to remove any further redundant readings. The 



 
 

67 

savings in temporal suppression are obtained by encoding minimal data in the response 

payload while forwarding the response to the CH or to the sink. Each of the stored 

readings at the members and the CH is associated with a time duration for which the 

readings are valid. This duration is indicated in the query request propagated by the sink. 

If the newly observed contour readings are temporally correlated with those stored 

previously in the node then their duration is re-initialized. The duration should be chosen 

based on the frequency the members observe the external phenomenon and the type of 

phenomenon being observed. 

 

4.5 Contour Data Routing Algorithms 
 

Data routing is the final phase of any sensor network application and it involves 

transmitting the information requested in the query to the sink. Efficient data 

transmission to the sink is important in sensor networks because energy is constrained.  

In this section, different data routing techniques used for transmitting the data to the sink 

in contour-based WSN applications are analyzed in detail. Routing of the contour data is 

dependent on the query propagation mechanism. All the proposed routing techniques fall 

in two classes: independent shortest path routing, and tree-based routing. In the shortest 

path routing, the CHs that have the contour information transmit the responses to the sink 

along the shortest path independently. In the tree-based routing, the CHs that have 

contour information transmit the response to the sink along the shortest path along the 

tree. The advantage of the tree-based routing approach is in-network processing can take 

place at the intermediate nodes as the responses propagate the along the tree to the 

destination. All the proposed algorithms use a cluster-based topology. Flooding-based 

Shortest Path Routing (F/SPR) and Information-driven Shortest Path Routing (I/SPR) use 

independent shortest path routing to route the data to the destination. Flooding-based 

Aggregation Tree-based Routing (F/ATR), Information-driven Aggregation Tree-based 

Routing (I/ATR) and Information-driven Contour and Aggregation Tree-based Routing 

(I/CATR) use the tree-based routing to route the responses to the destination. 

Information-driven Contour and Shortest Path Routing (I/CSPR) is an extension routing 
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algorithm presented for the completeness of the design and is part of the future work. 

F/SPR and F/ATR algorithms are the baseline algorithms implemented for comparison. 

I/SPR, I/ATR, I/CATR and I/CSPR are the novel algorithms proposed here. Though 

I/SPR and I/CSPR are present in the literature [31-34], use of clustering as the underlying 

topology makes them different from the existing contour-based data routing algorithms. 

Table 4.1 shows the list of algorithms that are designed and the features on which           

they are based.  

                                              Table 4.1: Algorithms overview 

 Flooding Ray/Contour 

Shortest path F/SPR I/SPR 

Aggregation Tree F/ATR I/ATR 

Contour + Aggregation tree  I/CATR 

Contour + Shortest path  I/CSPR 

                                             

4.5.1 Flooding-based Shortest Path Routing  
 

F/SPR is a baseline shortest path algorithm implemented for comparison with the 

proposed algorithms. F/SPR algorithm is the simplest of all the routing approaches 

described in this thesis. In this algorithm, all the nodes in the network receive the 

propagated query request by the sink. On receiving the query, all the nodes in the 

network sense the external phenomenon and exchange the sensed readings accordingly to 

detect the presence of a contour. Nodes in the cluster that detect the contour inform their 

CH. The member responses received by the CH are aggregated and the overall 

aggregated response is routed to the sink through the shortest path independently as 

shown in Figure 4.17.  

 

The advantage of F/SPR algorithm is there isn’t much delay in routing the response to the 

sink because this approach doesn’t require any synchronization between the clusters. 

Clustering reduces some overhead by aggregating the individual node responses at the 
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CH and allowing only the CHs to transmit the response to the sink. Even with the CHs 

transmitting the data, there is overhead incurred because the individual response headers 

are forwarded at each hop. While F/SPR is the most general approach, it misses several 

opportunities for application-specific data aggregation. Moreover, the query propagation 

through the network using flooding is not efficient for contour-based applications. To 

avoid unnecessary transmission of individual response headers, tree-based approaches 

described in the following sections can be employed.  

 

 

                                Figure 4.17: Illustration of the F/SPR algorithm   

 

4.5.2 Flooding-based Aggregation Tree-based Routing  
 

F/ATR is a baseline tree-based shortest path algorithm implemented for comparison with 

the proposed algorithms. Like in F/SPR, the query needs to be flooded in the network for 
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all the nodes to start the aggregation timers to schedule the propagation of responses from 

lower layers to higher layers. In F/ATR algorithm, the query responses from the lower 

layers get aggregated at the higher layers of the tree while routing the query responses to 

the sink in the shortest path along the tree as shown in Figure 4.18. At every parent, a 

single packet with a variable data load is created from the children’s data and transmitted 

up the tree. While data size increases, header size remains constant and the number of 

packets is reduced, reducing the total number of header bytes transmitted. This is 

equivalent to TAG [20]  with atomic data.  

 

 

                                  Figure 4.18: Illustration of the F/ATR algorithm 

 

One advantage of this algorithm is that distributed in-network processing can be applied 

to the response data during propagation to the sink. Even though contour data is 

aggregated and transmitted to the sink in the shortest path there are possible 
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shortcomings. Consider the different paths in Figure 4.18, there are considerable savings 

of data along path A due to in-network aggregation of different packets while there are no 

savings along remaining paths which are similar to the general routing. The degree of 

savings along a particular route depends on the distribution of data in the network. Non-

uniform data distributions result in suboptimal aggregation savings. This algorithm, like 

the F/SPR, requires the query to be propagated through the entire network which is costly 

and the response propagation to the sink is not efficient. To counteract these problems 

several novel tree-based routing algorithms are proposed in the later sections. A detailed 

description of the F/ATR algorithm is provided in Figure 4.19. 

          

                                    
                

1. propagate the query request through the network as explained in the  
      flooding query propagation technique 
 
2. CH/CM/GN: 
3. On receiving query request: 
4.      start an aggregation sink query response timer based on the node’s hop count 

                 to the sink and wait for the query responses from the lower level nodes 
5.      process the received query request  
 
6. On receiving sink query response: 
7.      if query is processed then 
8.           discard the received response 
9.      else 
10.           store the received query response   
11.      end if 
 
12. On aggregation sink query response timer expiry:  
13.      if responses are present then 
14.           aggregate the received responses 
15.           forward the aggregated sink query response to the higher level nodes  
16.      end if           
17.      set the query processed to true 

 

Figure 4.19: F/ATR algorithm 
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4.5.3 Information-driven Shortest Path Routing  
 

I/SPR algorithm follows the contour and performs shortest path routing of the overall 

aggregated contour data present at each of the CHs to the sink independently. The current 

implementation uses the pattern based contour detection and cluster-based query 

propagation approaches to forward the query request along the contour and uses the 

shortest path routing technique to return the contour data to the sink as shown in       

Figure 4.20. This algorithm is included to help determine the relative impact of the query 

propagation and contour routing techniques. Overall, the query propagation through the 

network is efficient as the query is not flooded. However, routing the contour data to the 

sink is costly because the algorithm uses independent paths.  

 

 

                                 Figure 4.20: Illustration of the I/SPR algorithm 
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4.5.4 Information-driven Aggregation Tree-based Routing  
 

I/ATR algorithm combines contour following to propagate the query and performs tree-

based routing to forward the contour data to the sink. The only difference between 

F/ATR and I/ATR is the query is not flooded through the entire network using the current 

approach. Like in I/SPR algorithm, I/ATR algorithm uses pattern based contour detection 

and a cluster-based query propagation approach to forward the query request along the 

contour. On receiving the request, the CH waits for the responses from its members. If 

the members send their responses to the CH, indicating the presence of a contour, then 

the CH starts the synchronization timer and waits for synchronization with the other 

clusters. The synchronization timer is set sufficiently high to allow the query to propagate 

around the contour. The synchronization timer count is sent in the query request by the 

sink and is based on the network size, approximate number of network clusters or a priori 

knowledge of the contour. After synchronization, the aggregation timer at the CHs that 

detected a contour are set and the responses are propagated to higher layers using 

cascading timers as shown in Figure 4.21. The aggregation timer at the CH is dependent 

on the CH’s hop count to the sink and the CH’s hop count to the farthest node in the 

network. Intermediate nodes start their aggregation timers only after they receive the 

responses from lower layers. The value of the aggregation timer set at the intermediate 

nodes is dependent only on the node’s hop count to the sink.    

 

Overall, request and response propagations are efficient using this algorithm because the 

query request is propagated along the contour and the tree-based routing is used to 

aggregate the query responses and strip the unwanted response headers as the data is 

propagated along the tree to the destination. A detailed description of the I/ATR 

algorithm is explained in Figure 4.22. However, there is one major drawback to the 

aggregation tree for contour-based applications. Some responses can take different paths 

up the tree to the sink and may not get aggregated early enough to generate significant 

savings, which may result in individual headers getting forwarded inefficiently. However, 

this inefficiency can be avoided by exploiting the expected smoothness of the contour.  
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                                  Figure 4.21: Illustration of the I/ATR algorithm 

 
 

  
 

1. propagate the query request through the network as explained in the pattern-based 
contour detection and cluster-based query propagation techniques 

 
2. CH: 
3. On member query response timer expiry: 
4.      if member query responses are present then 
5.           start the synchronization timer at the CH 
6.      end if 
 
7. On synchronization timer expiry: 
8.      start the aggregation sink query response timer expiry  
 
 
9. CH/CM/GN:  
10. On receiving sink query response: 
11.      if query is processed then 
12.           discard the received response 
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13.      else 
14.           if aggregation sink query response is not started then 
15.                 start the aggregation sink query response timer  
16.          end if  
17.           store the received query response   
18.      end if 
 
19. On aggregation sink query response timer expiry:  
20.      if responses are present then 
21.           aggregate the received responses 
22.           forward the aggregated sink query response to the higher level nodes  
23.      end if           
24.      set the query processed to true 
 

Figure 4.22: I/ATR algorithm 

      

4.5.5 Information-driven Contour/Aggregation Tree-based Routing  
 

The I/CATR algorithm propagates the query along the contour and performs routing 

along the contour when necessary along with the tree-based routing to forward the 

contour data to the sink. Contours are natural phenomena which are generally smooth and 

continuous. Under normal network operation, if a cluster detects the contour, there is high 

chance that the neighbouring clusters have also detected the contour. This phenomenon is 

exploited by this algorithm. On detecting a contour, each CH checks if it is feasible to 

forward the overall aggregated response using the aggregation tree or the neighbouring 

CH that also has detected the contour as shown in Figure 4.23. In the I/CATR algorithm, 

the decision of whether to forward to the neighbouring CH or along the tree is made 

based on the hop distance to the sink. This decision is made during the cluster-based 

query propagation along the contour. On detecting a contour, the CH forwards the query 

to the neighbouring clusters in its vicinity to track the contour further and forward the 

query. The CH that initially detects the contour makes a decision to forward the response 

along the aggregation tree, as it has no information of its neighbouring clusters. However, 

this decision can be changed at a later point and a new path can be re-calculated once the 

neighbouring clusters detect the contour. Neighbouring CHs that have detected a contour 

check if it is shorter to forward their responses along the aggregation or to the CH that 
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has forwarded the query request. Similarly, the neighbouring CHs that have detected the 

contour also calculate if it is shorter for the CH that has forwarded the query request to 

forward its response through them. If so, they indentify the CH that forwarded the query 

request to change its forwarding path. Forwarding the overall aggregated CH response to 

the neighbouring CH that has also detected the contour helps in aggregating the responses 

along the contour and avoids individual CHs from forwarding the responses along the 

tree using different paths to the sink because neighbours along the contour are guaranteed 

to have data for aggregation while siblings in the aggregation tree might not. This 

approach further improves the efficiency of response propagation. A detailed description 

of the I/CATR algorithm is explained in Figure 4.24. 

                                               

 

                                   Figure 4.23: Illustration of the I/CATR algorithm 
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1. set the parent ID to the sink ID 
2. propagate the query request through the network as explained in the pattern-based 

contour detection and cluster-based query propagation techniques 
 
3. CH: 
4. On  query response timer expiry at the CH:  
5. if  member query responses are present then 
6.      if parent hop distance to the sink is less than hop distance of the parent    
           to the sink through the current CH and parent is not the sink then 
7.           request the parent CH to route the response through the current CH  
8.      end if         
9.      if current CH hop distance to the sink is less than hop distance of the 
           current CH to the sink through the parent CH then               
10.           set the parent ID to the current CH ID 
11.      end if       
12.      for each neighbouring CH which have also detected the contour do  
13.           if current CH hop distance to the sink through the neighbouring CH 
                is less than hop distance of the parent to the sink then               
14.                set the parent ID to the neighbouring CH ID 
15.           end if 
16.      end for       
17.      start the synchronization timer at the CH 
18. end if 
 
19. On synchronization timer expiry: 
20.      start the aggregation sink query response timer expiry  
 
21. On receiving change parent ID request then 
22.      if parent hop distance to the sink is greater than hop distance of the CH    
           from which the request is received then 
23.           set the parent ID to the CH ID from which the request was received 
24.      end if 
 
25. CH/CM/GN:  
26. On receiving sink query response: 
27.      if query is processed then 
28.           discard the received response 
29.      else 
30.           if aggregation sink query response is not started then 
31.                 start the aggregation sink query response timer  
32.          end if  
33.           store the received query response   
34.      end if 
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35. On aggregation sink query response timer expiry:  
36.      if responses are present then 
37.           aggregate the received responses 
38.           if parent ID is same as the current CH ID or sink ID then 
39.                forward the aggregated sink query response to the sink 
40.           else  
41.                forward the aggregated sink query response to the parent 
42.           end if  
43.      end if           
44.      set the query processed to true 

  

Figure 4.24: I/CATR algorithm 

 

4.5.6 Information-driven Contour and Shortest Path Routing 
 

I/CSPR algorithm is completely different from the contour data routing approaches 

discussed in previous sections because it assumes that the payload size is constant. In this 

algorithm, both the query and response are routed together. This approach is useful for 

aggregate queries such as MAX, MIN, AVG and SUM or for combined queries where a 

single parameter is required along a different contour (max pressure at T = 0). For 

example, consider a contour-based application that wants to find the maximum height on 

a particular temperature contour in a mountainous area. In this case, routing the response 

along the contour is feasible even if moving away from the sink as the contour data only 

contains the maximum height on the contour. Because the data size is constant there is 

little difference between propagating the query and the response. It also prevents clusters 

from forwarding individual responses up the aggregation tree and aggregating the contour 

data while being propagated which can be costly. However, this approach is not feasible 

if the accumulation of data size outweighs the header propagation savings of exclusive 

contour routing.  

             

In this approach, the request is propagated along the contour using the cluster-based 

query approach with a slight modification. The request is propagated reliably along the 

contour with the response piggy-backed to it. On receiving the request, the neighbouring 
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CHs compare the received piggy-backed response with the member responses received 

and propagate the request further until the request can’t be propagated any more as shown 

in Figure 4.25. Finally, CHs that couldn’t further propagate the requests forward the 

responses to the sink using the one of the routing techniques proposed in the previous 

sections. This algorithm is not implemented in section 6 and is a logical extension 

presented for the completeness of the design and is part of the future work.  

 

 

                            Figure 4.25: Illustration of the I/CSPR algorithm 

 

4.6 Summary  
 

F/SPR and F/ATR algorithms are the baseline shortest path and aggregation tree-based 

algorithms described in this thesis for comparison. The current algorithms in the literature 

that use energy efficient query propagation schemes either route the data to the sink by 
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aggregating the data in the reverse path or in the shortest path after aggregating along the 

phenomenon of interest. Moreover, routing each node’s contour data independently to the 

sink using the shortest path is expensive. None of the existing algorithms provide a 

reliable and energy-efficient solution for contour-based applications. I/SPR, I/ATR, 

I/CATR and I/CSPR are novel algorithms proposed in this thesis. All these algorithms 

use the proposed reliable and efficient pattern-based query detection schemes and cluster-

based query propagation schemes to forward the query in the network along the contour. 

The proposed cluster-based spatial and temporal suppression techniques can be used with 

these algorithms to remove redundant data. 

 

The I/SPR algorithm routes the overall aggregated response at each CH to the sink along 

the shortest path independently. Though this is not efficient compared to the other 

proposed schemes, it is better than forwarding individual node data to the sink. The 

I/ATR algorithm uses a tree-based routing technique to route the data efficiently to the 

sink by performing in-network processing at the intermediate nodes. However, some of 

the responses can take different paths up the tree to the sink and may not get aggregated 

early enough to generate significant savings. The I/CATR algorithm provides guaranteed 

aggregation by performing routing along the contour when necessary along with the    

tree-based routing to forward the contour data to the sink. 
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CHAPTER 5 

EXPERIMENTAL METHODOLOGY 
 

In this chapter, the experimental setup for the simulations is described. To study the 

performance and scalability of the proposed algorithms, experiments are simulated using 

the NS-2 network simulator because physical experiments of sufficient scale performed 

are expensive, are difficult to control, are time consuming to setup and maintain and 

produce results that may be difficult to interpret.  

 

5.1 System Modeling Assumptions  
 

Topology  

 

A grid topology is employed in the simulation as a grid topology is efficient in 

optimizing the sensor nodes placement, where the nodes are evenly placed based on their 

transmission and sensing range. The grid topology allows simple generation of routing 

tables, allowing us to test the proposed algorithms without having to implement 

clustering algorithms. Topological side-effects on the results are easier to detect in 

structured topologies, making conclusions more robust. Few truly random static 

deployments exist, making grid-like networks the norm for the problem that is being 

addressed in this thesis. The network is partitioned into two-hop clusters as shown in     

Figure 1.1. Each cluster consists of 17 nodes. Out of these, one node is a CH, eight nodes 

are CMs and the remaining nodes are GNs. The network distance between any two CHs 

is five hops. Nodes are densely deployed between the CHs. The reason for the dense 

deployment is to achieve greater detail in contour measurement and to permit efficient 

contour data suppression. CHs consume more power compared to the other nodes and can 

transmit their messages to their one and two-hop neighbours, whereas the CMs/GNs 

transmit messages only to their one-hop neighbours. CHs/GNs/CMs receive messages 
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only from their one-hop neighbours. CMs and CHs can transmit messages only within the 

cluster. GNs can transmit messages from within the cluster and to neighbouring clusters. 

A single sink is simulated. 

 

Location Information  

 

In many sensor network applications, knowing the spatial location of each node is 

required. Consider a contour application where the sink has requested the location of the 

10 degree contour line. Without any information on the location of the nodes it is 

impossible to reconstruct the contour map without transmitting each nodes location 

individually. In the simulations, nodes don’t transmit their locations to the sink because it 

is assumed that the sink knows the location of the nodes present in   the network. This is a 

reasonable assumption for a static network. 

 

Routing Tables  

 

In sensor networks, the destination node may be one or more hops from the source node. 

In a multi-hop network, nodes need to forward the packets to their intermediate 

neighbours which in turn decide to forward the packet until the packet reaches the 

destination.  For the nodes to forward the packets in an efficient manner, routing tables 

are used. In these simulations it is assumed that the nodes configure their routing tables 

statically before the query is propagated by the sink. Every node in the network knows 

the shortest route to the sink from itself. In addition, each node, based on its cluster 

membership, has additional routing entries to perform intra-cluster and inter-cluster 

routing. Again, these are reasonable assumptions for a static network.  
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5.2 Simulation Platform  
 

NS-2, a discrete event network simulator used for modeling protocols for wired and 

wireless networks [45]. The simulator processes events until there are no events pending. 

NS-2 has a single thread of control, so there are no race conditions or deadlocks. The NS-

2 architecture follows an object-oriented approach and is written in C++ and OTCL 

(Object variant of TCL). Most of the properties like reusability, abstraction, 

encapsulation and inheritance are supported. The core data processing is implemented in 

C++ which forms the back-end of the simulator. OTCL is used in the front-end to 

configure the simulation parameters, trigger actions in a periodic or event-based manner, 

and manipulate C++ objects, allowing changes to the parameters without re-compiling. 

The TCLCL library acts as an interface between C++ and TCLCL allowing them to share 

variables and functions. Both TCLCL and C++ share a class hierarchy. Packet and event 

tracing mechanisms are possible in NS-2. The packet tracing mechanism allows tracking 

of the transmitted, received or dropped packets on all links. The event tracing mechanism 

helps trace all the events that are triggered during the operation. 

  

The Wireless model in NS-2 consists of the mobile node at the core, with additional 

supporting features such as the ability to transmit and receive signals to and from the 

wireless channels that allows simulations of multi-hop ad-hoc networks, wireless LANs 

and wireless sensor networks. Our proposed query propagation techniques, suppression 

algorithms and routing protocols are implemented on top of the mobile node protocol 

stack and makes use of the service provided by the stack. 
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5.3 Implementation of System Model  
 

Topology Generation 

 

The topology generator written in C creates a uniform cluster-based topology. The 

generator takes the length and breadth of the network as parameters and places the nodes 

uniformly as shown in Figure 1.1. The topology can easily be scaled by changing the 

length and breadth of the network. By default, the sink is placed at the top left most 

corner of the network. However, the sink can be relocated to a different location in the 

network by specifying its location in the topology generator. Each node’s distance to the 

sink is also computed by the topology generator which is useful for configuring the routes 

to the sink. 

 

Location Information Generation 

 

Location information is generated from the topology automatically. Each point in the 

generated topology is represented by an X and Y coordinate. These generated node 

locations are used by the TCL script in configuring the mobile nodes in NS-2. Though the 

nodes don’t transmit their location information in the response packets to the sink, the 

node location can be obtained based on their node ID.   

 

Routing Entries Generation 

 

Routing entries for the entire network are also generated based on the topology 

automatically. Every node in the network configures its own routing table from the 

generated routing entries. Each configured routing table consists of multiple routing 

entries. Some of these fields in these routing entries are optional and may be set or unset 
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depending on the node membership in the cluster. The following are the fields in a 

generated routing entry:  

 

·  Source node ID is the ID of the node itself 

·  Destination node ID is the ID of the destination  

·  Next hop node ID is the forwarding node ID 

·  GN ID  is used by CHs to transmit the query request to neighbouring clusters  

·  Destination hop count is the distance to the destination in hops 

·  CH ID is the CH of the node’s cluster 

·  Node membership indicates the role of the node within the cluster   

·  Node location indicates the position of the node 

 

For all CMs/GNs/CHs, the first routing entry in the routing table is its route to the sink. 

The node location in this entry indicates the position of the node. The remaining routing 

entries in the table are either the routes to their CH or neighbours. In these routing entries, 

the node location indicates the destination node’s location. 

 

Scalar Field Generation  

 

A scalar field generator is used for generating different continuous scalar fields. These 

fields are generated using randomly generated parameters about user provided set points 

and are dependant on the topology size. Figure 5.1 shows a generated continuous scalar 

field for an 800x800 meters network topology. Similarly, Figure 5.2 shows an equivalent 

contour map which is reconstructed at the sink from the received network contour data 

for the generated scalar field. Each point in the network has a specific value assigned to 

it. The continuous scalar field values generated are stored in a file. Based on a node’s 

location in the network, a value is assigned. These values, once assigned, don’t change in 

the course of the experiment. The generator is implemented in MATLAB and uses 

sinusoidal functions to generate the continuous field values. The generator takes the 
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network size, number of frequencies and frequency scaling as the input parameters. The 

network size is comprised of the network length and breadth. The number of frequencies 

indicates different random sinusoidal waves that are to be generated and frequency 

scaling determines the scaling of these waves. Random amplitude, phase, frequency and 

offset are generated for each wave from the input parameters. Finally, these waves         

are summed up as shown in the equation which is used to generate the values of             

the scalar field.  

 

     Field = �
=

´´
n

i

yscaleyxscalex
0

O(i)  +  (i))P + (i)/F (FSin   (i))P + (i)/F (FSin   A(i)      

               where n is the number of waves; A is the amplitude; F is the frequency;  

                                           P is the phase and O is the offset.  

   

 

               

                                           Figure 5.1: Continuous scalar field 
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                                                  Figure 5.2: Contour Map 

 

5.4 Simulation Execution  
 

The algorithms in Table 4.1 are implemented in NS-2. Configurations such as the mobile 

node’s protocol stack initialization, duration of the simulation, node’s power settings, and 

node’s location information are specified in the TCL script file, which triggers the start of 

the simulation.  

 

Consider an example of detecting a 10 degree contour in an 800x800 meters network. 

Before the sink can broadcast the request into the network the simulation test-bed needs 

to be set up. First, the topology generator is configured with the 800x800 meters network 

setting. On running the generator, it internally generates a clustered grid topology as 

mentioned in the earlier sections. From this generated topology, node location 

information and routing files are created. Next, an 800x800 meters scalar field is 

generated. Each node’s location information file is loaded by the TCL script files to 
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configure the mobile nodes. Later, when each of the mobile nodes is initialized the 

routing file is read and the routing table is set up based on the node ID.   

 

The scalar field is used by the node to set its value based on the node location only after 

the query request is received from the sink. Nodes detect the presence of a contour 

between them on exchanging these values. To check the scalability of the algorithms 

various simulation experiments can be performed by varying the topology size. Similarly, 

to check the influence of contours on the algorithms experiments can also be performed 

by varying the shapes and sizes of the scalar fields. 
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CHAPTER 6 

SIMULATION EXPERIMENTS 
 

This chapter presents the results from the experiments that were performed. These 

experiments concern a wide range of issues such as the scalability of algorithms with 

network size, the impact of sink location on routing, the effect of suppression on traffic 

volume, query propagation through the network, and contour map reconstruction at the 

sink. In these experiments, the F/SPR, F/ATR, I/SPR, I/ATR and I/CATR algorithms are 

compared and results are plotted.  

 

6.1  Effect of Suppression  
 

In-network processing of data is important in WSNs as most of the data generated is 

spatially correlated and possibly redundant. Transmission of this redundant data in WSNs 

results in wasted network resources. Suppression is an important in-network processing 

technique that removes redundant contour data. This experiment examines the effect of 

cluster-based spatial suppression. In order quantify the gain using suppression, two kinds 

of experiments are performed.  In the first experiment, the F/SPR, F/ATR, I/SPR, I/ATR 

and I/CATR algorithms are compared with and without suppression for a fixed topology 

of 800x800 meters and a single scalar field. In the second experiment, the I/CATR 

algorithm is run over 10 different scalar fields. Each of these scalar fields is generated 

uniquely by varying the amplitude, frequency and phases of the sinusoidal functions as 

explained in section 5.3. Finally, the data and message transmissions are compared for 

each of the protocols with suppression enabled and disabled. A sink is placed at a 

constant location at the upper left corner throughout all the experiments.  

                                

For testing suppression, a query should be propagated in the network by the sink 

pertaining to the phenomenon. In this experiment, the sink is interested in detecting a 40 
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degree contour present in the network. The F/SPR and F/ATR algorithms use flooding to 

propagate the query within the network, whereas the I/SPR, I/ATR and I/CATR 

algorithms use a pattern-based contour detection and cluster-based query propagation. 

For cases with suppression enabled the local suppression threshold set to one unit, which 

dictates the spatial suppression as explained in section 4.4.1.1. Overall, protocols with 

suppression enabled show a significant data and message saving compared to protocols 

with suppression disabled, as shown in Figure 6.1 and Figure 6.2. In the first experiment, 

F/SPR has a reduction of 30.6% in data volume and 22% in messages transmitted with 

suppression enabled. Similarly, I/CATR has a reduction of 35.7% in data volume and 

28% in messages transmitted, clearly indicating that suppression has a significant effect 

in removing redundant contour data irrespective of the algorithm being used.  

 

The second experiment clearly shows that the performance of the I/CATR algorithm with 

suppression is far better than without suppression for different contour shapes and sizes, 

as shown in Figure 6.3 and Figure 6.4. This indicates that suppression performs well for 

the entire class of contours considered.  
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                             Figure 6.1: Effect of cluster-based spatial suppression on contour data  
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      Figure 6.2: Effect of cluster-based spatial suppression on message transmissions 
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Figure 6.3: Effect of cluster-based spatial suppression on data for different contours 
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       Figure 6.4: Effect of spatial suppression on messages for different contours  

 

The primary reason for cluster-based suppression outperforming in all cases is because of 

the suppression of control messages and redundant data. In the two-hop clustered 

topology considered, only the CMs that detect the contour are allowed to broadcast their 

sensed readings along with the query response to the CH while the other CMs are 

restrained from broadcasting their sensed readings. Moreover, significant data savings are 

gained by performing three levels of suppression, one at each node type, to remove the 

redundant data. The GNs perform the suppression of their readings using the minimum 

contour distance suppression threshold parameter. Similarly, CMs perform the 

suppression of their readings using the minimum contour suppression threshold 

parameter and also from the received GNs and CMs query responses. Finally, the CH 

performs the suppression on all the received responses from the members. If members 

have no contour data to transmit after performing suppression, then they do not transmit 

any response messages, saving message transmissions.   
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6.2 Varying the Suppression Threshold     
 

As explained in the previous section, suppression plays a vital role in removing redundant 

data and hence saving energy. The suppression is actually governed by the minimum 

contour distance suppression threshold parameter, which specifies the required spatial 

resolution required by the user. For example, a threshold of 5 units indicates that only 

points on the contour that are 5 meters apart are of interest, so the readings which are 5 

meters apart are reported to the sink while the other readings are discarded. The 

suppression threshold gives the flexibility to tune the amount of suppression that is 

required. This threshold value is propagated to the nodes in the query. The goal of this 

experiment is to determine how the amount of redundant data removed depends on the 

suppression threshold value.                              

                                                                                                                                 

                                         Figure 6.5: 700x700 meters contour map 
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40 Degree Contour Line (Threshold : 8)
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  Figure 6.6: Contour reconstruction at different suppression thresholds 

 

In order to verify that the removed redundant data is proportional to the suppression 

threshold, a fixed topology of 700x700 meters network is considered as shown in      

Figure 6.5. The I/ATR algorithm is run with 6 different suppression thresholds and a 
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single scalar field with cluster-based spatial suppression enabled, as shown in  Figure 6.6. 

Query propagation is performed as explained in the previous sections. The results clearly 

show that the removal of redundant data is proportional to the suppression threshold, as 

shown in Figure 6.7 and Figure 6.8. The percentage reduction in data volume and 

message transmission by varying the suppression thresholds between 1 and 20 is 37.5% 

and 2.5% respectively. The significant data volume reduction is due to the efficient 

spatial suppression performed using the threshold value and the reason for marginal 

message gain is because nodes transmit their responses even if they have only a small 

amount of contour data present. This clearly shows that the efficiency of an algorithm in 

WSNs cannot be judged based solely on message transmissions, but should also consider 

the payload data transmitted in these messages. A closer look at the     results shows that 

as the suppression threshold value increases, the marginal   compression decreases. 
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            Figure 6.7: Effect of suppression threshold on suppression of contour data 

  



 
 

96 

              

I/ATR Algorithm

1533 1521 1507 1505 15051543

0
200
400
600
800

1000
1200
1400
1600
1800

1 5 8 12 16 20

Suppress ion Threshold

M
es

sa
g

es
 

 

Figure 6.8: Effect of suppression threshold on suppression of message transmissions 

 

6.3 Impact of Sink Location    
 

The sink can reside anywhere in the network. Its location has an impact on the data 

volume and message transmissions for various protocols. The farther the sink is from the 

contour, the greater the data volume and message transmission required. The pattern-

based contour detection and cluster-based query propagation are dependent on the 

distance from the contour from the sink. Similarly, the response transmission is also 

dependant on the sink location. To assess the impact of sink location on the F/SPR, 

F/ATR, I/SPR, I/ATR and I/CATR algorithms an 800x800 meters network is considered. 

Each protocol is run for 6 different sink locations and a single scalar field with cluster-

based spatial suppression enabled and the suppression threshold set to one unit.  

 

The I/CATR algorithm outperforms all the algorithms in terms of data and message 

transmissions irrespective of the sink locations, as shown in Figure 6.9 and                   

Figure 6.10. When the sink is placed at 220x25 meters, the data volume reduction of the 

I/CATR algorithm is 42.7% more than with the F/SPR algorithm and 16.5% more than 
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with the I/SPR algorithm. Similarly, when compared to F/ATR and I/ATR algorithms, 

the data volume reduction is 26.4% and 3% respectively. Similarly, for a sink location at 

35x355 meters, the data volume reduction of the I/CATR algorithm over F/SPR and 

I/SPR algorithms is 35.3% and 14.8% respectively. When compared to tree-based 

protocols (the F/ATR and I/ATR algorithms), the data volume reduction is 23.5% and 

6.4% respectively. The results show that with two different sink locations, the data 

volume and message traffic varies depending on the proximity of the contour to the sink. 

However, the ordering of the performance of the protocols is independent of the           

sink location.  

 

              

0

20000

40000

60000

80000

220x25 25x225 25x585 35x355 390x20 585x25

Sink Locations (M) 

D
a

ta
 B

yt
es

I/CATR I/ATR I/SPR F/ATR F/SPR

 

                             Figure 6.9: Impact of sink location on contour data  
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                     Figure 6.10: Impact of sink location on message transmissions 

 

6.4 Contour Dependence 
 

Contours vary in shape and size. For example, a contour which covers the entire network 

requires more data to represent and messages to transmit the data than a smaller contour. 

With flooding, the data and message transmissions are constant and depend on the size of 

the network. However, in the case of pattern-based contour detection and cluster-based 

query propagation the efficiency depends on the size and shape of the contour. Greater 

contour size results in the query being propagated greater distances. Normally, contours 

are smooth and it is unlikely for a contour to pass through all the clusters in large 

networks, and therefore it can be expected that pattern-based contour detection and 

cluster-based query propagation techniques seldom propagate the query to all the clusters 

in the network, unlike flooding. The goal of this experiment is to assess the dependence 

of performance on the shapes and sizes of the contours. 

 

All the protocols were evaluated on a fixed topology of 800x800 meters over 10 different 

scalar fields with cluster-based spatial suppression enabled and suppression threshold set 



 
 

99 

to one unit. Finally, the percentage reduction in data volume and message transmissions 

is calculated for each of the contour algorithm with respect to I/CATR. On obtaining the 

percentage reduction, average, maximum and minimum reduction percentages are 

computed for each of the protocols, as shown in Figure 6.11 and Figure 6.12.  
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               Figure 6.11: Influence of contour shapes and sizes on contour data 
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        Figure 6.12: Influence of contour shapes and sizes on message transmissions 
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Minimum and maximum reduction percentages are represented by the error bars. 

Comparing the F/SPR and I/SPR algorithms with the baseline I/CATR algorithm, the 

average data volume reduction is 40% and 22.75%, maximum data volume reduction is 

50.95% and 31.67% and minimum data volume reduction is 33% and 11.15% 

respectively. The average message transmission reduction is 59% and 41.4%, maximum 

message transmission reduction is 67.6% and 51% and minimum message transmission 

reduction is 52.7% and 35.9%.  

 

In comparison to tree-based protocols, the I/ATR and F/ATR algorithms average data 

volume reduction is 1.81% and 23%, maximum data volume reduction is 3.37% and 

34.34% and minimum data volume reduction is -0.13% and 16.11% respectively. The 

average message transmission reduction is 3.77% and 39.45%, maximum message 

transmission reduction is 7.3% and 48.5% and minimum message transmission reduction 

is -0.05% and 32.4%. The results clearly show that the data and message transmissions of 

the protocols are influenced by the contours shape and size. There are several reasons that 

explain this behavior with respect to query request propagation in the network and 

receiving the response regarding the phenomenon from the network.  In case of query 

flooding, the query request transmissions are constant and vary depending on the network 

size. However, with the proposed energy-efficient contour detection and query 

propagation schemes the message transmissions to detect the contour and propagate the 

query request along the contour depends on the location, shape and size of the contour. 

Similarly, to route back the responses to the sink, the data and message transmissions 

depend on the contour. However, I/ATR and I/CATR algorithms outperform the other 

algorithms in terms of data and message transmissions irrespective of contour location, 

shape and size. 

 

The primary reason for very high byte and message transmission counts in the F/SPR 

algorithm is it floods the network with the query, which is unnecessary for contour-based 

WSN applications. Moreover, the F/SPR algorithm forwards the data to the sink 

independently, resulting in extra packet header overhead, because every cluster transmits 
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its own packet. Though the F/ATR algorithm uses flooding to propagate the query like in 

the F/SPR algorithm it performs better than the F/SPR algorithm because the responses 

get aggregated as they move up the aggregation tree, reducing the packet header 

overhead. The I/SPR algorithm is still similar to the F/ATR because it transmits the 

responses to the sink like in the F/SPR algorithm even though it uses pattern-based 

contour detection and cluster-based query propagation. This response results in extra 

overhead which offsets the gain achieved through efficient query propagation. The I/ATR 

algorithm performs better than most of the algorithms because it uses efficient query 

techniques to detect and propagate along the contour and aggregation tree during the data 

response phase. However, if response packets take different routes up the aggregation 

tree, then aggregation may be less efficient than in I/CATR where aggregation happens 

opportunistically along the contour first.  

 

The I/CATR algorithm aggregates CHs responses along the contour before the responses 

are forwarded up the aggregation tree, resulting in better performance compared to other 

protocols. However, the data response transmissions to the sink in both the I/ATR and 

I/CATR algorithms are similar if I/CATR finds that routing all the responses to the sink 

is feasible only through the aggregation tree rather than using the contour based routing. 

Under these conditions, the overhead in the I/CATR algorithm due to control signaling 

for setting up the parent ID is slightly higher than the I/ATR algorithm. This is clearly 

visible in the results where the minimum data volume reduction percentage of the I/ATR 

algorithm was -0.1% in comparison to the I/CATR algorithm. On an average across 

multiple cases, the I/CATR algorithm performs better as shown in this experiment.  

 

6.5 Network Scalability  
 

WSNs are deployed for monitoring various natural phenomena like temperature, pressure 

and humidity, and vary in size depending on the application. For example, a contour 

application may require a medium to large scale sensor deployment in order to track the 
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contours efficiently over larger areas. Therefore, protocol performance should be scalable 

with network size. Contours may be present away from the sink in large WSNs. In this 

case, query propagation from the sink and response transmissions to the sink depend on 

the network scale. The impact of query request and response packet overhead may not be 

apparent in smaller networks. The goal of this experiment is to assess how scalable the 

proposed algorithms are with respect to network size.  
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                         Figure 6.13: Effect of network scalability on contour data 

 

Five different network topologies of 400x400 meters, 500x500 meters, 600x600 meters, 

700x700 meters and 800x800 meters are considered. The number of nodes range from 

792 to 3032. Ten different scalar fields are generated for each of the topologies for a total 

of 50 scalar fields. Each of the algorithms is run over all topologies and contours. 

Cluster-based spatial suppression is enabled during the experiment and the suppression 

threshold is set to one. Finally, the percentage reduction in terms of data volume and 

message count is calculated for each of the contours run under other protocols with 

respect to the I/CATR algorithm. On obtaining the reduction percentages, average, 

maximum and minimum reduction percentages are computed for each of these protocols 
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in terms of data and message transmissions, as shown in  and Figure 6.14. Minimum and 

maximum reduction percentages are represented by the error bars.  
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                  Figure 6.14: Effect of network scalability on message transmissions 

 

Comparing the F/SPR and I/SPR algorithms with the baseline I/CATR algorithm for an 

800x800 meters network the average data volume reduction is 40.8% and 22.8%, 

maximum data volume reduction is 48.5% and 29% and minimum data volume reduction 

is 32.5% and 14.6% respectively. The average message transmission reduction is 59.8% 

and 43.1%, maximum message transmission reduction is 67.9% and 48% and minimum 

message transmission reduction is 50.4% and 35.7% over the F/SPR and I/SPR 

algorithms. In comparison to tree-based protocols for a 800x800 meters network, for the 

I/ATR and F/ATR algorithms the average data volume reduction is 1.7% and 23.6%, 

maximum data volume reduction is 6.4% and 35% and minimum data volume reduction 

is -0.1% and 13.7% respectively. The average message transmission reduction is 3.6% 

and 39.9%, maximum message transmission reduction is 13.3% and 54.2% and minimum 

message transmission reduction is -0.1% and 26.7%.  
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Overall, results clearly show that the I/CATR algorithm outperforms all the protocols in 

terms of data and message transmissions. The I/CATR algorithm performs better because 

it detects the contour and propagates the query request along the contour independent of 

the network size. Moreover, it uses efficient routing along the contour and the 

aggregation tree to route the responses to the sink by performing in-network processing. 

On the other hand, the F/SPR and F/ATR algorithms use flooding to propagate the query 

in the network resulting in the query request transmissions which vary depending on the 

network size. The F/SPR and I/SPR algorithms cannot perform in-network processing 

because these algorithms route the responses to the destination independently, resulting in 

an increase in response packet header overhead with an increase in network size. The 

F/ATR and I/ATR algorithms use the tree-based approach in routing the packets to the 

destination by performing in-network aggregation, but there are chances that the packets 

take different paths up the tree to the destination and might not get aggregated until the 

packet reaches higher levels in the tree. The levels at which the packets get aggregated 

might increase with the increase in network size. 

 

6.6 Contour Reconstruction   
 

In order to reduce resource wastage the redundant contour readings are removed using 

the proposed cluster-based spatial suppression techniques. Cluster-based suppression uses 

a spatial resolution specified by the sink to suppress the contour readings. Suppression of 

contour readings reduces the number of readings encoded in the response payload. 

However, removing the redundant contour readings using suppression is not sufficient, as 

there is still a chance of resource wastage if all the elements of the valid contour readings 

are encoded into the response as the payload size increases. To avoid this wastage of 

resources, efficient compression techniques are used to reduce the elements that are 

encoded into the payload for each of the contour readings. The elements that are encoded 

after compression are the node ID, relative neighbour node ID and node’s proximity to 

the contour, as explained in section 4.4.1.1.  
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After performing in-network processing the suppressed data is routed efficiently to the 

sink. On receiving the response payload, the sink decodes the payload and reconstructs 

the contour. The goal of this experiment is to demonstrate that the contour reconstructed 

at the sink is similar to the generated contour under observation. In order to verify the 

reconstruction of the contour, a fixed topology of 800x800 meters network is considered. 

The I/CATR algorithm is run with 4 different scalar fields with cluster-based spatial 

suppression enabled and suppression threshold set to one unit. The sink queries for a 

contour value of 40 using the pattern-based contour detection and cluster-based query 

propagation. Finally, the contour points reconstructed from the decoded contour data 

received at the sink from the network are overlapped onto their respective scalar fields, as 

shown in Figure 6.15. This clearly shows that the reconstruction of a contour value of 40 

at the sink from the received network data is accurate. 

 

  

  

Figure 6.15: Reconstructed contour points (‘x’) are overlapped onto the scalar fields  
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6.7 Summary   
 

The accuracy, dependence, performance and scalability of the F/SPR, F/ATR, I/SPR, 

I/ATR and I/CATR algorithms has been analyzed by performing various experiments, the 

results of which are reported in this chapter. The I/CATR algorithm is shown to be 

superior to all the other algorithms in most of the scenarios because it propagates the 

query efficiently along the contour independent of the network size, performs efficient 

cluster-based spatial suppression and routes the responses to the sink in an efficient 

manner along the contour or using an aggregation tree, depending on which is feasible, 

ensuring in-network processing at the intermediate nodes. The spatial suppression 

techniques used to suppress the spatially correlated data performed well compared to the 

no suppression paradigm for all the algorithms.  
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CHAPTER 7 

CONCLUSIONS 
 

Technology advancement in the recent years has enabled use of WSNs to monitor, detect 

and track external phenomenon with little human intervention. One type of WSN 

application, concerned with detecting and tracking contours is considered in this thesis. 

Contour-based WSN applications are applicable in many areas such as diagnosing 

network health, tracking moving vehicles, and tracking changing, spreading or diffusion 

of external phenomenon like temperature, pressure and humidity. These applications give 

an overview of the sensor field by constructing contour maps at the sink from the 

readings received from the network. WSNs are energy-constrained and to increase the 

network longevity the network resources should be used in an efficient manner while 

providing the desired results. This thesis has studied the problem of efficient design of 

contour-based applications in detail and provided an energy-efficient end-to-end    

network solution. 

 

7.1 Thesis Summary 
 

The focus in this thesis is contour-based WSN applications which give an overview of the 

network by constructing contour maps. A contour-based WSN application consists of 

three main components: contour detection and query propagation, in-network processing, 

and response routing to the destination. None of the current approaches have provided an 

overall solution for contour-based applications. Most of the existing research focuses on 

providing solutions for individual components and these solutions provided do not focus 

on co-existence with other components. Moreover, some solutions provided are generic 

for WSNs and may not feasible or efficient for contour-based applications. In this thesis, 

each of these components is examined in detail and an energy-efficient end-to-end 
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solution is provided. Some of the solutions and techniques provided can also be used with 

other WSN applications.  

 

Contour Detection and Query Propagation  

 

Detection and query propagation consider detecting the contour and propagation of the 

query along the contour in an efficient manner after detecting it. Some phenomenon 

being monitored, detected or tracked by a WSN may or may not be spread uniformly 

throughout the network. If the phenomenon is spread throughout uniformly, then flooding 

is the best option to propagate the query. However, if the phenomenon is not uniform, 

then flooding may not be a wise option. The localized phenomenon considered in this 

thesis is contours. To detect the contour a pattern-based contour detection algorithm has 

been proposed. Once the contour has been located an efficient and reliable cluster-based 

query propagation algorithm has been proposed for routing the query along the contour. 

Results clearly show that the contour detection and query propagation approaches are 

scalable and more efficient than query flooding. While this algorithm opens the door to 

several interesting subsequent inquires, these have been left to future work.  

 

In-network Processing  

 

Contour readings generated by the nodes in a WSN are often spatially or temporally 

correlated. Transmitting all these readings to the sink can waste network resources. 

Clever suppression of these readings using in-network processing helps prolong network 

life. In this thesis, two in-network processing schemes are proposed. One is a cluster-

based spatial suppression scheme which suppresses the messages and data within the 

cluster without significant overhead. In this scheme, members belonging to the cluster 

perform efficient suppression based on a spatial resolution threshold. The other scheme is 

used along with suppression to reduce the actual data in the response payload using 

efficient encoding techniques. These techniques intelligently encode minimal data in the 
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payload for each valid contour reading, so that the sink reconstructs the contour with this 

information using interpolation. Results show that the savings due to cluster-based spatial 

suppression is dominant in terms of energy savings and the contour is reconstructed 

accurately at the sink.  

 

Data Routing  

 

Nodes that detect the contour need to route their query responses to the sink to 

reconstruct the contour map of the sensor field. Efficient routing of the query responses 

to the sink helps save network resources. In general, in WSNs, routing to the sink is 

performed by nodes independently using shortest path routing or aggregation trees. 

Routing of the contour data independently using the shortest paths to the sink misses the 

chance of stripping the response packet headers by consolidating the packets at the 

intermediate nodes. This results in unnecessary overhead and results in resource wastage. 

On the other hand, aggregation trees help in consolidation of headers, but the response 

packets may take different paths along the tree and might not get aggregated until the 

data reaches the higher levels in the tree due to the non-uniformity of contours. In some 

information-driven approaches where the query is routed based on the information 

gathered from the surroundings, the response data is either aggregated with the query and 

propagated or aggregated in the reverse path of the query. In these approaches, any hop 

which is not on the shortest path to the sink would be costly as the payload is usually 

much larger than the header in contour applications. This thesis proposed two classes of 

routing protocols for contour-based WSN applications based on shortest path and tree-

based routing. I/SPR algorithm uses shortest path routing to forward the response to the 

sink. However, all the node’s responses are aggregated at the CH before routing the 

overall aggregated response to the sink, reducing individual node transmission cost. 

I/ATR and I/CATR are tree-based routing algorithms. In the I/CATR algorithm, the 

routing is done along the contour or the aggregation tree, depending on which is locally 

more efficient. This approach tries to reduce the frequency with which response packets 
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from neighbouring clusters take different paths up the aggregation tree by aggregating 

along the contour instead.  

 

Evaluation 

Querying, in-network processing and data routing algorithms are evaluated using 

simulations and their performance is analyzed. The scalability of the proposed algorithms 

is evaluated by scaling the network size from 400x400 meters to 800x800 meters. For a 

400x400 meters network of 792 nodes running the F/SPR and F/ATR algorithms, the 

average percentage data increase with respect to the I/CATR algorithm is 27% and 10%. 

Similarly, on scaling the network to 800x800 meters with 3032 nodes the average 

percentage data increase with respect to the I/CATR algorithm is 41% and 24%. This 

clearly shows that the proposed algorithms are scalable with network size. Next, the 

impact of in-network processing is evaluated by enabling and disabling the spatial 

suppression algorithms. For an 800x800 meters network running the I/CATR algorithm 

and with a suppression threshold set to 1 unit, the amount of data reduction percentage is 

35% compared to disabling suppression. Moreover, the threshold value has an impact on 

the amount of data that is being suppressed. For a 700x700 meters network running the 

I/ATR algorithm by varying the suppression threshold from 1 to 20 units the data 

reduction percentage is 38%. Apart from these, the impact of sink location and contour 

dependence on the proposed algorithms is also evaluated. The results clearly show that 

the proposed solutions are efficient and are not dependant on these factors. The reduction 

in data reflects on the node’s battery power which in turn prolongs the network lifetime.  

 

7.2 Discussion  
 

Contours are natural phenomena which are generally continuous and smooth. Moreover, 

contours are not uniformly spread throughout the network. Some contours are dynamic 

and change frequently compared to the others. All these natural properties of the contours 

are helpful in making efficient design decisions which can be seen in all the proposed 



 
 

111 

algorithms. The proposed algorithms are mainly designed for one-shot queries which suit 

dynamic contours. However, these algorithms can be extended to periodic queries which 

require constant monitoring of a phenomenon which changes less frequently. An a priori 

knowledge of the contour helps in improving the efficiency of the pattern-based contour 

detection algorithm in detecting the contours for repeated queries. The continuity and 

smoothness of the contour is exploited in the cluster-based query propagation algorithm 

to propagate the query in an efficient manner independent of the network size. It is 

common for the adjacent nodes to have their readings spatially correlated. These spatial 

correlations are taken into account while designing the cluster-based spatial suppression 

algorithm to efficiently remove redundant spatially correlated contour readings. 

Similarly, for contours that do not change often and are periodically monitored, readings 

might show temporal correlation. This observation is the basis for the temporal 

suppression algorithm. The proposed I/CATR algorithm is the most efficient algorithm 

compared to the other proposed algorithms because it makes use of the contour continuity 

and smoothness to route the data response along the contour or the aggregation tree 

opportunistically depending on the local efficiency. Similarly, I/CSPR algorithm 

combines the response with the request and routes along the contour before routing the 

response to the sink, but can be in applications with constant payload size. 

 

7.3 Thesis Contributions 
 

In summary, the main contributions of this thesis are:  

·  A pattern-based contour detection algorithm which increases in energy-efficiency 

by detecting the required contour in the WSN without flooding the network. This 

algorithm helps in saving the node’s battery power by cutting down unnecessary 

message receptions if the node is away from the contour. In this thesis, two 

classes of pattern-based contour detection algorithms, one for small scale 

networks and the other for large scale networks have been proposed. Single-

pattern-based contour detection uses a single pattern to detect the contour in the 
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network. This approach might not be successful in finding contours in large scale 

networks, so a multi-pattern contour detection scheme has been proposed. A 

simple single ray-based pattern is used to detect the contour in all the experiments 

as a proof-of-concept.  

 

·  Cluster-based spatial suppression algorithms has been proposed to help save 

resources by performing suppression of spatially correlated contour readings 

using spatial resolution set by the user. Spatial suppression is an in-network 

processing technique used to reduce unnecessary message transmissions and 

remove redundant contour information within the cluster before forwarding the 

overall aggregated response to the sink. Compression techniques are also 

proposed to encode minimal data in the response payload to further reduce the 

amount of data transmitted to the sink. Data reduction using the proposed            

in-network processing algorithms helps in saving the node’s battery power by 

avoiding the node from transmitting redundant data. Interpolation techniques are 

proposed for accurately reconstructing the contour from the received response 

payload. All of these in-network processing schemes are implemented in               

a proof-of-concept prototype and their performance is analyzed in the        

simulation experiments. 

 

·  Contour data routing algorithms have been proposed which fall into two 

categories: shortest path routing and aggregation tree-based routing. The I/SPR 

algorithm is a shortest path routing algorithm where the CH aggregates the 

member responses and routes the data to the sink. The I/ATR and I/CATR 

algorithms are tree-based algorithms which route the aggregated responses along 

the aggregation tree to the sink and perform consolidation of response headers at 

the intermediate nodes. Moreover, I/CATR algorithm also routes along the 

contour opportunistically avoiding neighbouring clusters from forwarding contour 

data along different paths up the aggregation tree. Data routing using I/ATR and 

I/CATR algorithms help in transmitting the contour data to the destination in an      

energy-efficient manner. All these routing techniques are implemented in a   
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proof-of-concept prototypes and their performance is evaluated in the experiments 

with the baseline F/SPR and F/ATR algorithms. 

 

7.4 Future Work 
 

Some possible future research directions include:  

 

·  Contour-based WSN applications require monitoring of the external phenomenon 

once, periodically or continuously. Algorithms proposed in this thesis are 

designed for one-shot queries. Extending some of these algorithms for periodic 

queries needs to be studied further.   

 

·  A simple single ray-based query pattern is used to detect the contours in all the 

experiments. This might not be appropriate for all scenarios. Sophisticated 

schemes such as multi-pattern and raster scan based contour detection algorithms 

may need to be used. In the future, these algorithms should be implemented and 

their performance in terms of contour detection, reliability and efficiency 

evaluated.   

 

·  In this thesis, spatial suppression is performed on a uniformly distributed 

hierarchically clustered static topology. The impact of spatial suppression on a 

randomly distributed clustered topology remains to be studied. The effect of 

temporal suppression on energy savings while using periodic contour queries 

should be considered as well. 

 

·  This thesis provides efficient solutions to contour-based sensor applications. 

However, the query propagation, in-network processing and response routing 

algorithms proposed can be used in other WSN applications pertaining to object 

tracking in the network or information retrieval from a particular geographical 
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area in the network. A complete protocol for these types of applications could be 

obtained by extending the current algorithms.   
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A. APPENDIX 
 

A.1 Timer Types  
 

A.1.1 CM/GN Query Response Receive Wait Timer 
 

The CM/GN query response receive wait timer (cstCmGnQryRsRcvWtTmr) is started at 

the CMs/GNs on receiving the query request from their CH. This timer is used by the 

members to transmit their query responses to the CH on expiry. The timer value can be 

set to any arbitrary constant, but should be less than the sink query response receive wait 

timer. All nodes in the network should use the same arbitrary constant timer value which 

can be pre-configured or transmitted in the query. In our case, the timer value is pre-

configured in all the simulations. If suppression is enabled, the timer value set at a 

particular node takes the hop distance to the CH into consideration. The greater the hop 

distance to the CH, the smaller the timer value and vice versa. However, the CMs that 

detect a contour from the broadcasted CH sensed reading have a greater timer value 

compared to the nodes that haven’t detected a contour even if they are at the same hop 

level. The arbitrary constant timer value should be chosen in such a way that the 

difference in timer values between two consecutive hops is large enough to do the 

necessary processing at the nodes. If the suppression is disabled, then all the members set 

the timer to the same value.  

 

A.1.2 Sink Query Response Receive Wait Timer 
 

The sink query response receive wait timer (cstSnkQryRsRcvWtTmr) is started at the CH 

on broadcasting the query request to its members. The timer operation varies depending 

upon the algorithms. In the F/SPR, F/ATR and I/SPR algorithms, the CH transmits the 

aggregated member query responses as sink query response to the sink on timer expiry. 
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On the other hand, in the I/ATR and I/CATR algorithms CHs start the CH aggregate data 

synchronization timer on timer expiry. The timer value can be set to any arbitrary 

constant, but should be greater than CM/GN query response receive timer. All CHs in the 

network should use the same arbitrary constant timer value which can be pre-configured 

or transmitted in the query. In our case, the timer value is pre-configured in all               

the simulations. 

 

A.1.3 CH Aggregate Data Synchronization Timer  
 

The CH aggregate data synchronization timer (cstChAggDataSyncTmr) is used only by 

the I/ATR and I/CATR algorithms. It is started on sink query response receive wait timer 

expiry at the CHs that have detected the presence of a contour in their cluster from the 

member responses. This timer is used for synchronizing the clusters that lay along the 

contour before the CHs aggregate their member responses and forward the sink query 

response to the sink using the aggregation tree. This timer can be any arbitrary constant 

value which is dependant on the transmission time between the clusters and number of 

clusters along the contour. The arbitrary constant timer value can be pre-configured or 

transmitted in the query. In our case, the timer value is pre-configured in all the 

simulations. The transmission delay between clusters is calculated and pre-configured. 

The number of clusters along the contour that need to be synchronized is indicated by the 

synchronization counter and current synchronization counter parameters explained in 

section A.2.1 and section A.2.2. These parameters give user the flexibility to control the 

length of the contour that needs to be tracked.  

 

A.1.4 Aggregate Data Wait Timer  
 

The aggregate data wait timer (cstAggDataWtTmr) is used by the I/ATR and I/CATR 

algorithms. This timer is started on CH aggregate data synchronization timer expiry or 

when a node in the aggregation tree receives the sink query response from its children. 
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The timer value can be set to any arbitrary constant. All nodes in the network should use 

the same arbitrary constant timer value which can be pre-configured or transmitted in the 

query. The arbitrary constant timer value should be chosen in such a way that the 

difference in timer values between two consecutive hops is significant enough to do the 

necessary processing at the nodes. If the timer is started by CH aggregate data 

synchronization timer expiry then the timer value is dependant on the CH’s hop distance 

to the sink and also the hop distance from the CH to the farthest boundary node in the 

WSN. The hop distance of the furthest node in the network to the sink is indicated by the 

maximum hop distance parameter explained in section A.2.1 and section A.2.2. If the 

timer is started at a node in the aggregation tree on receiving the sink query response then 

the timer value is just dependant on the node’s hop distance to the sink. On timer expiry, 

the responses are aggregated in the sink query response and forwarded to the sink using 

the aggregation tree. 

 

A.2 Packet Types 
 

A.2.1 Sink Query Request 

 
The sink query request is used by the sink to propagate the interest into the network. It 

unicasts the request to the neighbouring CH. Depending on the algorithms used the sink 

query request is processed in different ways. In the F/SPR and F/ATR algorithms, the 

sink query request is used as a trigger to initiate flooding of the query request in the 

network. It is propagated between the sink and the neighbouring CH, which on receiving 

the sink query request, changes the packet type to CH query request and initiates the 

flooding process. On the other hand, in the I/SPR, I/ATR and I/CATR algorithms the sink 

query request is used by the pattern-based algorithms to propagate the query request 

along a particular pattern in the network. Any CH that lies on the pattern receives the sink 

query request and on receiving the request broadcasts it within the cluster indicating 

specific GNs to forward the request to the neighbouring clusters along the pattern. The 
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GNs on receiving the sink query request check if they are destined to forward the packet 

to the neighbouring clusters which lie on the specified pattern. Figure A.1 indicates the 

packet format of sink query request.  

 

 

                                          Figure A.1: Sink Query Request 

 

The query ID is unique and identifies a particular query. Packet type indicates the type of 

packet that is being used. Contour value indicates the value that the sink is interested in 

from the network. Suppression threshold is an optional parameter used to indicate the 

spatial suppression resolution and is encoded in the packet only when suppression is 

enabled. Pattern direction specifies the pattern in which the query has to be propagated in 

order to detect the contour and is only encoded when the I/SPR, I/ATR and I/CATR 

algorithms are used. In the experiments, single ray-based pattern is used. The 

synchronization counter is encoded only when the I/ATR and I/CATR algorithms are 

used and is used to synchronize the data among the clusters before they propagate the 

aggregated sink query responses to the sink using the aggregation tree. Detection look-
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ahead is used only by the I/SPR, I/ATR and I/CATR algorithms to increase the detection 

band size along the pattern. Similarly, propagation look-ahead is used by these algorithms 

to increase the propagation band size along the contour as explained in section A.2.2. In 

all the experiments, the detection look-ahead parameter is not encoded in the packet 

because a constant look-ahead of one is considered. Maximum hop distance is used only 

by the I/ATR and I/CATR algorithms to set the constant aggregation data wait timer at 

the CHs which have detected the contour. It gives the maximum node hop distance to the 

sink in the WSN. CH reading value is the reading sensed by the CH and is used by the 

members within the cluster to detect a contour between themselves and the CH. The GN 

ID list is the count of GN IDs that are encoded in the packet. The encoded GN IDs are 

required to forward the sink query request to the neighbouring clusters along the ray.   

   

A.2.2 CH Query Request/ Forward CH Query Request 

 
The CH query request is used by the CH to detect the presence of a contour passing 

through the cluster. The request is broadcast by the CH within the cluster. Irrespective of 

whether a contour is detected within a cluster or not in the F/SPR and F/ATR algorithms 

propagate the CH query request to the neighbouring CHs. On the other hand, the I/SPR, 

I/ATR and I/CATR algorithms broadcast the CH query request within the cluster. Only 

after receiving the query responses from the members indicating the presence of a 

contour does the CH broadcast the query to the neighbouring clusters using forward CH 

query request. GNs on receiving the forward CH query request change the request type to 

CH query request and forward it to the neighbouring CH along the contour. Figure A.2 

indicates the packet format of CH query request/forward CH query request.  
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       Figure A.2: CH query request/ Forward CH query request packet format 

 

In the F/SPR and F/ATR algorithms the synchronization counter, current synchronization 

counter, maximum hop distance and propagation look-ahead are not encoded in the CH 

query request. While using the I/SPR, I/ATR and I/CATR algorithms, excluding the GN 

ID list and the GN IDs all the other parameters included in the F/SPR and F/ATR 

algorithms are encoded in the CH query request (broadcasted within the cluster). In the 

I/ATR and I/CATR algorithms, all the parameters are encoded except the CH reading 

value in the forward CH query request. Similarly in the I/SPR algorithm, CH reading 

value is excluded and propagation look-ahead parameter is included in the forward CH 

query request in addition to all the parameters encoded by F/SPR and F/ATR algorithms. 

Propagation look-ahead is used by I/SPR, I/ATR and I/CATR algorithms to increase the 

propagation band size while propagating request along the contour. The current 

synchronization counter is the running synchronization counter value used by the CHs 

along the contour for synchronization of their aggregated data. GNs on receiving the 

forwarding CH query request remove the GN ID list and the GN IDs from the packet and 
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change the packet type to CH query request before forwarding to the neighbouring CHs 

along the contour.  

 

A.2.3 CM/GN Reading Request 
 

The CM/GN reading request is used by the members within the cluster to exchange their 

sensed readings with the neighbours. CMs/GNs broadcast the reading request to their 

neighbours. Figure A.3 indicates the packet format of CM/GN reading request.  

 

 

                               Figure A.3: CM/GN reading request packet format 

 

A.2.4 CM/GN Query Response 

 
The CM/GN query response is used by the members within the cluster to forward their 

responses to the CH. CMs/GNs broadcast their responses to the neighbours. Figure A.4 

indicates the packet format of CM/GN query response.  
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                             Figure A.4: CM/GN query response packet format 

 

The CM reading value is only used by the CMs to transmit their sensed reading value. 

Transmit CM ID is used only by the GNs to encode the ID of the CM that needs to 

further forward the GN query response to the CH. Neighbour CH ID list is the count of 

neighbouring CH IDs that are encoded in the packet. Neighbour CH IDs are encoded 

only when the I/CATR algorithm is used for the CH to make decisions whether to route 

to along the contour or the aggregation tree to the sink. These IDs are encoded by the 

nodes only when they detect a contour with the nodes in the neighbouring clusters. The 

contour reading counter gives the count of contour readings that are encoded in the 

packet. Contour readings contain the necessary contour information for the sink to 

reconstruct the contour at the sink.  
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A.2.5 Sink Query Response  

 
The sink query response is used by the nodes to forward their response to the sink. Nodes 

forward their response using unicast. Figure A.5 indicates the packet format of sink     

query response.  

 

 

                                   Figure A.5: Sink query response packet format  

 

A.2.6 Change Parent CH ID Request 

 
The change parent CH ID request is used by the I/CATR algorithm for changing the CH 

ID of a parent. This packet is forwarded by using unicast. Figure A.6 indicates the packet 

format of change parent CH ID request.  

 

                        Figure A.6:  Change parent CH ID request packet format 


