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Abstract

In this thesis, we aim to study derivations from `1(Z+) to its dual, `∞(Z+). We first

characterize them as certain closed subspace of `∞(Z+). Then we present a necessary and

sufficient condition, due to M. J. Heath, to make a bounded derivation on `1(Z+) into `∞(Z+),

a compact linear operator.

After that base on the work in [6], we study weakly compact derivations from `1(Z+) to its

dual. We introduce T-sets and TF-sets and then state their relation with weakly compact

operators on `1(Z+). These results are originally due to Y. Choi and M. J. Heath, but we

give simpler proofs.

Finally, we will study certain classes of derivations from L1(R+) to L∞(R+), and give an

elementary proof that they are always mapped into C0(R+).

keywords: Banach algebra, Module action, Compact and weakly compact Derivations,

T-set, TF-set.
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Introduction

One of the very early works on derivation was by Kaplansky on Projections in Banach

Algebras [18]. Moreover, he studied Modules over Operator Algebras and Inner Derivations

on AW-algebras in [17]. Then Singer and Wermer showed in [23] that every bounded deriva-

tion of a commutative Banach algebra maps into the radical that is a very important result

in derivation study. Since then there have seen various studies of different properties of

derivations such as boundedness, compactness, etc.

The problem of determining the weakly compact and compact homomorphisms between var-

ious Banach algebras has been much studied. In this thesis we want to intersect these two

concepts and study weakly compact and compact derivations.

M. J. Heath in his paper [15] has shown that if there are no (weakly) compact derivations

from a commutative Banach algebra, A, into its dual module, then there are no (weakly) com-

pact derivations from A into any symmetric A-bimodule. He also proved similar results for

bounded derivations of finite rank. Then he has described the compact derivations from the

convolution algebra `1(Z+) to its dual and has given an example of a non-compact, bounded

derivation from a uniform algebra A into a symmetric A-bimodule.

In [5] Y. Choi and M. J. Heath have shown that all derivations from the disk algebra to its

dual are compact. Also in [6] they characterized when derivations from `1(Z+) to its dual

are weakly compact with examples that are not compact.

Pedersen followed this in [20] for derivations from weighted convolution algebras L1(ω) on

R+ to their dual spaces.

In this thesis we will give the background needed to understand these results and then we

will present alternative proofs of the main results of Choi and Heath (see Section 2.4).

In the first chapter we will introduce some preliminaries from Banach algebra, derivations

and compactness.
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In Chapter 2, we characterize derivations on `1(Z+) to its dual in Theorem 2.2.6 and com-

pactness and weak compactness of these derivations.

We will study derivations on L1(R+) in Chapter 3.
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Chapter 1

Preliminaries

In this chapter we will review some important concepts and definitions of Banach algebra

theory, and their modules and derivations, that we need. The principal references for this

chapter are [19], [7], and [21].

1.1 Banach Spaces

Definition 1.1.1. Let X be a normed space with the norm ‖·‖. Then X would be Banach

space when it is complete with its norm. In other word, X is a Banach space when every

Cauchy sequence is convergent in (X, ‖·‖).

Definition 1.1.2. Suppose T : X → Y is a linear operator between X, Y . Then we define

norm of T by

‖T‖ = sup{‖T (x)‖ : x ∈ X, ‖x‖ = 1}.

If ‖T‖ <∞, then T is a bounded linear operator.

We can prove that every linear operator T : X → Y is bounded if and only if it is

continuous. The set of all bounded linear operators from X to Y will be denoted by B(X, Y ),

that is a normed space with the norm that we have defined above. In particular, B(X,X),

space of bounded linear operators on normed space X, will be shown by B(X).

Theorem 1.1.3 (Theorem 1.4, [21]). Let X, Y be normed spaces. If Y is a Banach space,

then B(X, Y ) with the norm in Definition 1.1.2 is a Banach space.

Example 1.1.4. The space `1 = {X ∈ CN :
∑∞

n=1 |xn| < ∞} with the norm ‖·‖1 on `1 that

is given by

‖X‖1 =
∞∑
n=1

|xn| (X ∈ `1)
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is a Banach space by using Theorem 2.10, [2]. Similarly the space

`2 = {X ∈ CN : (
∞∑
n=1

|xn|2)
1
2 <∞}

is also a Banach space.

Definition 1.1.5. For a normed space X, B(X,C) is the dual of X and we show it with

X∗.

If X is a locally compact and Hausdorff space, we define

C(X) = {f : X → X : f is a continuous function on X.},

BC(X) = {f ∈ C(X) : f is a bounded function.}

and

Cc(X) = {f ∈ C(X) : Supp(f) is compact},

when Supp(f) = {x : f(x) 6= 0}.

We say that f vanishes at infinity if for any ε > 0, the set {x : |f(x)| ≥ ε} is compact.

Also

C0(X) = {f ∈ C(X) : f vanishes at infinity}.

We can see that Cc(X) ⊆ C0(X) ⊆ BC(X).

Definition 1.1.6. Let X be a normed space. The weak-star topology on X∗ is the weakest

topology for which all x ∈ X, the linear functional x∗ 7→ x∗(x) is continuous on X∗. Also

X∗-topology on X is the weakest topology for which all f ∈ X∗ are continuous. We call this

topology, weak topology on X.

Definition 1.1.7. A net {xα} converges weakly in Banach space X, if for any F ∈ X∗

the net of complex numbers {F (xα)} converges.( [24]) If {xn} is a sequence in X, then xn

converges weakly to x if ϕ(xn) converges to ϕ(x) as n→∞ for all ϕ ∈ X∗

Definition 1.1.8. Let X be a locally compact Hausdorff space and (fi) be a net in c0(X).

(fi) converges pointwise to f if fi(x)→ f(x) for all x ∈ X.

Example 1.1.9. Let (yi) be a bounded net in c0(Z+) and let y ∈ c0(Z+). Then (yi) converges

weakly to y if and only if it converges pointwise to y.
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Proof. Let (yi) converges pointwise to y, we want to show (yi) converges weakly to y, so we

must show for every ϕ ∈ c0(Z+)∗ = `1(Z+),

〈ϕ, yi〉 → 〈ϕ, y〉

Let k = supi ‖yi‖, ε > 0 and N such that g =
∑N

n=0 ϕ(n)δn satisfies

‖ϕ− g‖1 <
ε

3k
.

Now

〈g, yi〉 → 〈g, y〉

since 〈δn, yi〉 ≡ yi(n) that converges to y(n) for every n, by assumption and g is finite linear

combination of δn. So there is an i0 > 0 such that for all i > i0,

|〈g, yi〉 − 〈g, y〉| <
ε

3
.

Then

|〈ϕ, yi〉 − 〈ϕ, y〉| ≤ |〈ϕ− g, yi〉|+ |〈g, yi − y〉|+ |〈ϕ− g, y〉|

<
ε

3
+
ε

3
+
ε

3
= ε.

Conversely, if (yi) converges weakly to y, so for that every ϕ ∈ c0(Z+)∗ = `1(Z+),

〈ϕ, yi〉 → 〈ϕ, y〉.

Specifically, δn ∈ c0(Z+)∗, for every n. So 〈δn, yi〉 ≡ yi(n) converges to y(n) for every n.

Hence (yi) converges pointwise to y.

Now we have a brief review of compact and weakly compact operators.

Definition 1.1.10. A compact operator is a linear operator f from a Banach space X

to another Banach space Y , such that the image of any bounded subset of X under f is a

relatively compact subset of Y . Such an operator is necessarily a bounded operator, and so

continuous.

Definition 1.1.11. An operator T : X → Y between Banach spaces is called weakly com-

pact if the image of any bounded subset of X under T is a relatively weakly compact subset

of T (X).
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Remark 1.1.12. Every compact operator is weakly compact since if T : X → Y is a compact

operator, then T (B) is a compact subset of T (X) when B is a bounded subset of X. By the

fact that weak topology is weaker than norm topology. T (B) is also compact in weak topology,

meaning that T (B) is weakly compact subset of T (X). Hence T is a weakly compact operator.

Also every weakly compact linear operator between Banach spaces is bounded (Propo-

sition 3.5.3, [19]). In addition, we can show that a bounded operator T : X → Y between

Banach spaces is weakly compact if and only if for every bounded sequence (xn) of X, the

sequence (Txn) has a weakly convergent subsequence in Y .(Proposition 3.5.5, [19])

Lemma 1.1.13 (Proposition 3.5.9, [19]). Let (Tm) be a bounded sequence in B(X, Y ) (X, Y

Banach spaces) such that ‖Tm − T‖ → 0 as m→∞. If Tm is weakly compact for all m, then

T is weakly compact.

Definition 1.1.14. An operator between Banach spaces is called a finite-rank operator

when its range is finite-dimensional.

Lemma 1.1.15 (Definition 4.1., [1]). Let S, T are finite rank operators between Banach

spaces, then S + T is also finite rank.

Remark 1.1.16. By induction and from the above lemma we conclude that the sum of finite

numbers of finite rank operators is also a finite rank operator.

We denote K(A,E) as subset of B(A,E) consisting of operators which are compact maps.

It has been shown in (Chapter II, Proposition 4.2, [7]) that K(A,E) is a closed subspace of

B(A,E). Also we denote the subset of B(A,E) consisting finite-rank operators by F(A,E).

You can see by (Proposition 3.4.3, [19])

F(A,E) ⊆ K(A,E)

and so

F(A,E)
‖·‖
⊆ K(A,E)

Lemma 1.1.17. If {Tn : n ∈ N} is a sequence of finite-rank operators, converging to T ,

Then T is compact.

Proof. See the proof of (c→ a), Theorem 4.4, Chapter II, [7].
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Example 1.1.18 (Example 3.4.5., [19]). Define the linear operator T from `2 into itself by

the formula T (δn) = ( δn
n

). So T = diag(1, 1
2
, 1
3
, . . . ). If we consider the sequence (Tk) such

that

Tk(δn) =

T (δn) if n ≤ k

0 if n > k

Then Tk is a finite rank operator for each k. Now for each a =
∑

n anδn ∈ `2,

(T − Tk)(a) =
∑
n>k

(anδn)
1

n
,

means that

T − Tk =



0
. . .

0
1

k+1
1

k+2
. . .


So

‖(T − Tk)(a)‖22 =
∑
n>k

|an|2
1

n2

≤
∑
n>k

|an|2
1

(k + 1)2

≤ ‖a‖22
1

(k + 1)2

then ‖T − Tk‖2 ≤
1

k+1
. So (Tk) converges to T and by Lemma 1.1.17, T is compact. However,

it does not have finite rank, since if it has finite rank dim(Im(T )) = d <∞ for some d. But

δ1, . . . , δd+1 ∈ Im(T ), that is a contradiction. Hence T is an example of a compact operator

that does not have finite rank.

1.2 Banach algebras

Definition 1.2.1. A Banach algebra, A, is a complex Banach space with a product

(x, y) 7→ xy mapping A× A 7→ A so that :

(i) The product is associative, and distributive laws relate addition and product. Moreover,

for x, y ∈ A and λ ∈ C, (λx)y = x(λy) = λ(xy). Thus the product is complex bilinear.
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(ii) A is unital, if it has an identity, meaning there is an e ∈ A (necessarily unique) and

‖e‖ = 1, such that for all x ∈ A :

xe = ex = x

(iii) For all x, y ∈ A:

‖xy‖ ≤ ‖x‖ ‖y‖

If the product is commutative, we call A Abelian.

Example 1.2.2. a) Let G be a locally compact group and f, g be integrable functions on G.

The convolution of f and g on s ∈ G will be defined with:

(f ∗ g)(s) =

∫
G

f(t)g(t−1s)dm(t)

when m is a left Haar measure on G. For every f, g ∈ L1(G), f ∗ g ∈ L1(G) and ‖f ∗ g‖1 ≤
‖f‖1 ‖g‖1. So (L1(G), ∗, ‖·‖1) is a Banach algebra.

b) By the above example (L1(R), ‖·‖ , ∗) is a commutative Banach algebra. Now consider

the Banach space L1(R+), this space would be regarded as a closed subspace of L1(R) by

extending each f ∈ L1(R+) to be equal to 0 on the negative half-line R−• = (−∞, 0). In this

case, the product of two elements f and g of L1(R+) is given by the formula

(f ∗ g)(x) =

∫ x

0

f(x− t)g(t)dt (x ∈ R+);

clearly L1(R+) is a closed subalgebra of L1(R).

c) Let S be a semigroup, that is, S is a non-empty set together with (s, t) 7→ st, S×S → S

such that (rs)t = r(st) (r, s, t ∈ S). We have defined the Banach Space (`1(S), ‖·‖1) in

example 1.1.4. Let f, g ∈ `1(S). Then we set

(f ∗ g)(t) =
∑
{f(r)g(s) : r, s ∈ S, rs = t} (t ∈ S)

where we take (f ∗ g)(t) = 0 when there are no elements r, s ∈ S with rs = t. It is easy

to verify that (`1(S), ‖·‖1 , ∗) is a Banach algebra; it is called the semigroup algebra of S,

and ∗ is the convolution product. A semigroup algebra `1(S) is commutative if and only if S

is Abelian.

d) Let F = C[[X]] be the algebra of all formal sums of the form

∞∑
n=0

αnX
n,

8



where α0, α1, · · · ∈ C and where the product is determined by the rule that Xm ·Xn = Xm+n

for all m,n ∈ Z+. Then F is a commutative algebra with an identity. Indeed, the definition

for the sum and product of a =
∑∞

n=0 αnX
n and b =

∑∞
n=0 βnX

n in F are

a+ b =
∞∑
n=0

(αn + βn)Xn, a ∗ b =
∞∑
n=0

(
n∑
k=0

αkβn−k)X
n;

note that the inner sum in the formula for the product is finite sum, despite the fact that

elements of F are infinite sums, and so the product is well defined. When we set

`1(Z+) = {a =
∞∑
n=0

αnX
n ∈ F : ‖a‖1 =

∞∑
n=0

|αn| <∞}

It can easily be checked that (`1(Z+), ‖·‖1) is a Banach algebra of power series. It is a

semigroup algebra on Z+ by example (c).

Remark 1.2.3. Not that for a set S with discrete topology, c00(S) = {x = (xn) ∈ S : xn 6=
0for finite number of n}.

Theorem 1.2.4. Let S be a set with discrete topology, and let ϕ ∈ c0(S). Then there

is a sequence (ϕ(m))m∈N that for every m, supp(ϕ(m)) is finite and
∥∥ϕ(m) − ϕ

∥∥
∞ → 0 as

m→∞.(In other word c00(S) = c0(S))

Proof. Let ϕ ∈ c0(S). Hence, for every m ∈ N, Sm = {n ∈ N : |ϕn| ≥ 1
m
} is finite. Get

gm = 1 on Sm and gm = 0 outside of Sm and define ϕ(m) = gmϕ. So for every m, ϕ(m) ∈ c00(S)

and
∥∥ϕ(m) − ϕ

∥∥
∞ ≤

1
m

. Hence
∥∥ϕ(m) − ϕ

∥∥
∞ → 0 as m→∞.

1.3 Modules on Banach Algebras and Derivations

Definition 1.3.1. Let A be an algebra on field F and M be a linear space on F. M is a left

A-module, if modular product, A×M −→M with (a,m) 7→ am satisfies:

a) For every constant a ∈ A, mapping α : M →M with α(m) = am be linear on M .

b) For every constant m ∈M , mapping β : A→M with β(a) = am be linear on A.

c) For every a1, a2 ∈ A and every m ∈M ,

a1(a2m) = (a1a2)m.

Similarly, we can define right A-module. M is an A-bimodule, when it is right A-module

and left A-module and a(mb) = (am)b for all a, b ∈ A,m ∈M .

9



When A is a Banach algebra and X is a Banach space that is also left A-module, we call X

a left Banach A-module, when

‖am‖ ≤ ‖a‖ ‖m‖ (a ∈ A,m ∈ X).

Similarly we define right Banach A-module and Banach A-bimodule.

In continuance, we will mention some concepts about derivations, specially bounded

derivations on Banach algebras and their modules.

Definition 1.3.2. If A is a Banach algebra and X is a Banach A-bimodule, a (bounded)

derivation from A to X, is a (bounded) linear map D : A→ X, such that

D(ab) = a ·D(b) +D(a) · b (a, b ∈ A). (1.3.1)

Definition 1.3.3. Let A be a Banach algebra Then:

(i) If X is a left Banach A-module, then X∗ becomes a right Banach A-module through

〈x, ϕ · a〉 := 〈a · x, ϕ〉 (a ∈ A, x ∈ X,ϕ ∈ X∗)

(ii) If X is a right Banach A-module, then X∗ becomes a left Banach A-module through

〈x, a · ϕ〉 := 〈x · a, ϕ〉 (a ∈ A, x ∈ X,ϕ ∈ X∗)

(iii) If X is a Banach A-bimodule, then X∗ equipped with the left and right module actions

of A from (i) and (ii), respectively, is a Banach A-bimodule.

Definition 1.3.4. The Derivation D is called compact if D is a compact operator between

the Banach spaces A and X, and weakly compact if D is a weakly compact operator from

A to X (i.e. D(B1) is relatively weakly compact in X, where B1 is the unit ball of A. [11])

10



Chapter 2

Derivations on `1(Z+)

2.1 Introduction

In this chapter we want to study derivations from a specific Banach algebra to its dual space.

We study the Banach algebra

`1(Z+) := {
∑
n≥0

ant
n :

∑
n≥0

|an| <∞}

that has been introduced at Example 1.2.2 part (d) and derivations on it. In the following,

compact and weakly compact derivations on `1(Z+) will be discussed. Then the concept

of Translation finite sets will be introduced in Definition 2.4.4 and study its relation with

weakly compact operators on `1(Z+) will be studied in Theorem 2.4.13, Corollary 2.4.17 and

Theorem 2.4.19.

2.2 Derivations on `1(Z+)

For a Banach algebra A, derivations on A are mapped into some Banach A-bimodule. (See

Definition 1.3.2). One natural example of a Banach A-bimodule is A itself, where the mod-

ule actions are just the multiplication. Hence one could study derivations from A into A.

However, as we see in the following proposition, this becomes trivial when A = `1(Z+).

Proposition 2.2.1. Let D : `1(Z+) −→ `1(Z+) be a bounded derivation. Then D = 0.

11



Proof. Let h = D(t), then by (Equation 1.3.1) and induction we have

D(tn) = D(tn−1 · t) = D(tn−1) · t+ tn−1 ·D(t)

= D(tn−2) · t2 + 2tn−1 ·D(t)

= . . .

= D(t0) · tn + ntn−1 ·D(t)

= ntn−1D(t) = ntn−1h.

So if h =
∑∞

j=0 bjt
j as an element of `1(Z+), then

‖D(tn)‖1 =
∥∥ntn−1h∥∥

1
=

∥∥∥∥∥ntn−1
∞∑
j=0

bjt
j

∥∥∥∥∥
1

=

∥∥∥∥∥n
∞∑
j=0

bjt
n−1+j

∥∥∥∥∥
1

= n

∥∥∥∥∥
∞∑
j=0

bjt
n−1+j

∥∥∥∥∥
1

= n
∑
j∈Z+

|bj| = n ‖h‖1 .

So ‖h‖1 = 1
n
‖D(tn)‖1 ≤

1
n
‖D‖1, for all n. Hence ‖h‖1 = 0. Then h = 0, means D(tn) = 0,

for all n. Now since the span of all tn is dense in `1(Z+) and D is continuous, we have

D = 0.

Proposition 2.2.1 is a special case of a more general result proved by Singer and Wer-

mer [23].

Another natural example of a Banach bimodule is the dual of the algebra, which in the case

of `1(Z+), is `∞(Z+) as we show below:

Definition 2.2.2. `∞(Z+) becomes a Banach `1(Z+)-module by Definition 1.3.3 through:

〈f, ψ · h〉 := 〈h ∗ f, ψ〉

= 〈
∞∑
n=0

(
n∑
i=0

hifn−i)t
n, ψ〉

=
∞∑
n=0

(
n∑
i=0

hifn−i)ψn (f, h ∈ `1(Z+), ψ ∈ `∞(Z+))

12



when · is the module product of `1 and `∞ but ∗ is the product of `1 as a Banach algebra.

Also for each k ∈ Z+ and
∑
fit

i = tk, fi = 1 when i = k and elsewhere fi = 0. Then we

have

(ψ · h)k = 〈tk, ψ · h〉 = 〈h ∗ tk, ψ〉

= 〈
∞∑
n=0

(
n∑
i=0

hifn−i)t
n, ψ〉

=
∞∑
n=k

hn−kψn

=
∞∑
n=0

hnψn+k

for h ∈ `1(Z+), ψ ∈ `∞(Z+).

Remark 2.2.3. For a function D : A→ A∗, and arbitrary f, g, h ∈ A we say that

D(f · g)(h) = D(f)(g · h) +D(g)(h · f)

is Derivation Identity.

Lemma 2.2.4. Every bounded linear map T : `1(Z+) −→ `∞(Z+) can be identified with

a bounded bilinear form `1(Z+) × `1(Z+) −→ C which sends (f, g) to T (f)(g) and ‖T‖ =

sup{|T (f)(g)| : f, g ∈ `1(Z+), ‖f‖1 ≤ 1, ‖g‖1 ≤ 1}.

Proof. Define the linear mapping Ω : B(`1(Z+), `∞(Z+)) −→ Bil(`1(Z+), `1(Z+);C) with

Ω(T ) = ϕT , for all T ∈ B(`1(Z+), `∞(Z+)) such that ϕT (f, g) = T (f)(g) for all f, g ∈ `1(Z+).

It is isometry since

‖T‖ = sup{‖T (f)‖ : f ∈ `1(Z+), ‖f‖1 ≤ 1}

≤ sup{|T (f)(g)| : f, g ∈ `1(Z+), ‖f‖1 ≤ 1, ‖g‖1 ≤ 1}

≤ sup{|ϕT (f, g)| : f, g ∈ `1(Z+), ‖f‖1 ≤ 1, ‖g‖1 ≤ 1}

≤ ‖ϕT‖∞ .

On the other hand, for f, g ∈ `1(Z+) with ‖f‖1 , ‖g‖1 ≤ 1, we have |ϕT (f, g)| = |T (f)(g)| ≤
sup |T (f)| ≤ ‖T‖. So sup |ϕT (f, g)| ≤ ‖T‖. Then we have ‖ϕT‖∞ ≤ ‖T‖. And hence

‖ϕT‖∞ = ‖T‖.
Also Ω is surjective since if you let ϕ ∈ Bil(`1(Z+), `1(Z+);C), then define Tϕ : `1(Z+) −→
`∞(Z+) such that for all f ∈ `1(Z+),

Tϕ(f) = ϕ(f,−)

13



that is a bounded linear function on `1(Z+) and so it is in `∞(Z+). So for all g ∈ `1(Z+) we

have :

Tϕ(f)(g) = ϕ(f,−)(g) = ϕ(f, g)

and now we show that Ω(Tϕ) = ϕ:

Ω(Tϕ)(f, g) = Tϕ(f)(g) = ϕ(f, g).

So Ω is surjective. In addition, Ω is injective, since it is an isometry between normed vector

spaces.

Theorem 2.2.5. For every bounded derivation D : `1(Z+) −→ `∞(Z+) there is a ψ ∈
`∞(Z+), such that

ψ0 = 0, D(tj)(tk) =
j

j + k
ψj+k (j, k ∈ Z+, j 6= 0)

Proof. By following the definition of a derivation we have D(1) = D(t0) = 0 and

D(tn) = D(t ∗ tn−1)

= t ·D(tn−1) + tn−1 ·D(t)

= t2 ·D(tn−2) + 2tn−1 ·D(t)

= . . .

= ntn−1 ·D(t).

So by Lemma 2.2.4

D(tj)(tk) = (jtj−1 ·D(t))(tk) = D(t)(jtk+j−1).

Hence

D(t)(tk+j−1) =
1

j
D(tj)(tk) (2.2.1)

Now let ψ : `1(Z+) −→ C be the linear functional defined by ψ(f) = D(f)(t0), so ψ0 =

D(t0)(t0) = 0 and

D(tj+k)(t0) = (j + k)D(t)(tj+k−1) =
j + k

j
D(tj)(tk) (j 6= 0).

We used ( 2.2.1) in last equation. Hence

D(tj)(tk) =
j

j + k
D(tj+k)(t0) =

j

j + k
ψ(tj+k).

Finally, |ψ(f)| ≤ ‖D‖ ‖f‖1, for all f ∈ `1(Z+). Hence, ψ ∈ `∞(Z+).
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The set of all derivations from a Banach algebra, A , to its dual, A∗ , is noted by

Der(A,A∗) and we name the set of all members of `∞(Z+), like ψ, that ψ(t0) = 0, set

E = {ψ ∈ `∞(Z+) : ψ(t0) = 0}.

Theorem 2.2.6. There is a bijective linear isometry

B : Der(`1(Z+), `∞(Z+)) −→ E

which defines with B(D) = ψD, where ψD ∈ `∞(Z+) is the associated element defined in

Theorem 2.2.5.

Proof. By the previous theorem this map is well-defined and linear. It is isometry since for

every f, g ∈ `1(Z+), f =
∑

j fjt
j, g =

∑
k gkt

k, j, k ∈ Z+, we have

‖D‖ = sup{‖D(f)‖ : f ∈ `1(Z+), ‖f‖1 ≤ 1}

≤ sup{|D(f)(g)| : f, g ∈ `1(Z+), ‖f‖1 ≤ 1, ‖g‖1 ≤ 1}

= sup{|
∞∑

j,k=0

fjgkD(tj)(tk)| : f, g ∈ `1(Z+), ‖f‖1 ≤ 1, ‖g‖1 ≤ 1}

= sup{|
∑

j,k∈Z+,j,k 6=0

fjgk
j

j + k
ψD(tj+k)| : f, g ∈ `1(Z+), ‖f‖1 ≤ 1, ‖g‖1 ≤ 1}

≤ sup{
∑

j,k∈Z+,j,k 6=0

|fjgk||
j

j + k
ψD(tj+k)| : f, g ∈ `1(Z+), ‖f‖1 ≤ 1, ‖g‖1 ≤ 1}

≤ sup{
∞∑

j,k=0

|fjgk| ‖ψD‖∞ : f, g ∈ `1(Z+), ‖f‖1 ≤ 1, ‖g‖1 ≤ 1}

≤ ‖ψD‖∞ sup{
∞∑

j,k=0

|fjgk| : f, g ∈ `1(Z+), ‖f‖1 ≤ 1, ‖g‖1 ≤ 1}

≤ ‖ψD‖∞ ‖f‖1 ‖g‖1
≤ ‖ψD‖∞ .

On the other hand,

|ψD(tn)| = |D(tn)(t0)| ≤ sup |D(tn)| ≤ ‖D‖

so

sup
n∈Z+

|ψD(tn)| ≤ ‖D‖

then ‖ψD‖∞ ≤ ‖D‖. Hence we can conclude ‖ψD‖∞ = ‖D‖ .
Also B is injective, since if B(D) = 0, then since ‖D‖ = ‖ψD‖∞ = 0, we have ‖D‖ = 0 and
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it means D = 0.

B is surjective since if we let ϕ ∈ E arbitrary, define a function Dϕ by Dϕ(tj)(tk) := j
j+k

ϕj+k,

when j, k ∈ Z+, j + k 6= 0 and define Dϕ(t0)(t0) = 0. For general f, g ∈ `1(Z+) we have

f =
∑∞

j=0 fjt
j and g =

∑∞
k=0 gkt

k. So

Dϕ(f)(g) =
∞∑

j,k=0

fjgkDϕ(tj)(tk).

This is well-defined since (Dϕ(tj))j∈Z+ is a bounded sequence in `∞(Z+) :∥∥Dϕ(tj)
∥∥ = sup{|Dϕ(tj)(tk)| : j, k ∈ Z+, j + k 6= 0}

= sup{| j

j + k
ϕj+k| : j, k ∈ Z+, j + k 6= 0}

≤ sup{|ϕj+k| : j, k ∈ Z+, j + k 6= 0}

≤ ‖ϕ‖∞ <∞

That argument is for j ≥ 1 and note that by definition of Dϕ, Dϕ(t0)(tk) = 0 for all k ∈ Z+.

We now show thatDϕ is bounded. Consider every f, g ∈ `1(Z+), f =
∑

j fjt
j, g =

∑
k gkt

k, j, k ∈
Z+, then:

‖Dϕ‖ = sup{‖Dϕ(f)‖ : f ∈ `1(Z+), ‖f‖1 ≤ 1}

≤ sup{|Dϕ(f)(g)| : f, g ∈ `1(Z+), ‖f‖1 ≤ 1, ‖g‖1 ≤ 1}

= sup{|
∞∑

j,k=0

fjgkDϕ(tj)(tk)| : f, g ∈ `1(Z+), ‖f‖1 ≤ 1, ‖g‖1 ≤ 1}

= sup{|
∑

j,k∈Z+,j,k 6=0

fjgk
j

j + k
ϕj+k| : f, g ∈ `1(Z+), ‖f‖1 ≤ 1, ‖g‖1 ≤ 1}

≤ sup{
∑

j,k∈Z+,j,k 6=0

|fjgk||
j

j + k
ϕj+k| : f, g ∈ `1(Z+), ‖f‖1 ≤ 1, ‖g‖1 ≤ 1}

≤ sup{
∞∑

j,k=0

|fjgk| ‖ϕ‖∞ : f, g ∈ `1(Z+), ‖f‖1 ≤ 1, ‖g‖1 ≤ 1}

≤ ‖ϕ‖∞ sup{
∞∑

j,k=0

|fjgk| : f, g ∈ `1(Z+), ‖f‖1 ≤ 1, ‖g‖1 ≤ 1}

≤ ‖ϕ‖∞ ‖f‖1 ‖g‖1
≤ ‖ϕ‖∞

Now we show Dϕ is a derivation, suppose j, k, ` ∈ N, j + k + ` 6= 0. Then

Dϕ(tj ∗ tk)(t`) = Dϕ(tj+k)(t`) =
j + k

j + k + `
ϕj+k+`
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and

Dϕ(tj)(tk ∗ t`) = Dϕ(tj)(tk+`) =
j

j + k + `
ϕj+k+`

and

Dϕ(tk)(t` ∗ tj) = Dϕ(tk)(tj+`) =
k

j + k + `
ϕj+k+`

So

(Dϕt
j)(tk ∗ t`) + (Dϕt

k)(t` ∗ tj) =
j + k

j + k + `
ϕj+k+` = Dϕ(tj ∗ tk)(t`).

Also when j + k + ` = 0,

Dϕ(t0 ∗ t0)(t0) = 0

and

Dϕ(t0)(t0 ∗ t0) = 0

So this holds for j, k, ` ∈ Z+. Since ` is arbitrary, we have

Dϕ(tj ∗ tk) = (Dϕt
j) · tk + tj · (Dϕt

k) (2.2.2)

Now for arbitrary a, b ∈ `1(Z+) we have a =
∑∞

j=0 ajt
j and b =

∑∞
k=0 bkt

k. So

Dϕ(a ∗ b) =
∞∑

j,k=0

ajbkDϕ(tj ∗ tk)

and

(Dϕa) · b = (
∞∑
j=0

ajDϕ(tj)) ·
∞∑
k=0

bkt
k =

∞∑
j,k=0

ajbkDϕ(tj) · tk

and

a · (Dϕb) = (
∞∑
j=0

ajt
j) · (

∞∑
k=0

bkDϕ(tk)) =
∞∑

j,k=0

ajbkt
j ·Dϕ(tk).

So by ( 2.2.2)
∞∑

j,k=0

ajbkDϕ(tj ∗ tk) =
∞∑

j,k=0

ajbk(Dϕ(tj) · tk + tj ·Dϕ(tk))

and it means for arbitrary a, b ∈ `1(Z+)

Dϕ(a ∗ b) = (Dϕa) · b+ a ·Dϕb

So Dϕ is a derivation from `1(Z+) to `∞(Z+). The last thing is to show B(Dϕ) = ϕ. Let

f = tm for m ∈ Z+ and m 6= 0,

B(Dϕ)(tm) = Dϕ(tm)(t0) =
m

m+ 0
ϕ(tm+0) = ϕ(tm)
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and for m = 0 we have

B(Dϕ)(t0) = Dϕ(t0)(t0) = 0 = ϕ(t0).

This means that B(Dϕ) and ϕ has the same coefficient as the elements of `∞(Z+), so B(Dϕ) =

ϕ and by proving this, B is an isometric isomorphism.

2.3 Compact derivations from `1(Z+) to its dual

Now we are ready to study compact and weakly compact derivations, D : `1(Z+) −→ `∞(Z+).

For convenience we write c0 := c0(N) and `∞ := `∞(N). We also consider c0 and `∞ as closed

linear subspaces of c0(Z+) and `∞(Z+), respectively, consisting of the sequences {an}∞n=0 with

a0 = 0.

By the following theorems we conclude that the space of compact derivations from `1(Z+) to

`∞(Z+) is linearly isomorphic to c0.

Lemma 2.3.1. If ψ = δn (n ≥ 1), then Dψ is a finite-rank linear map.

Proof. We need to show that the linear span of {Dψ(tj) : j ∈ Z+} has a finite dimension.

Let xj := Dψ(tj). Also we know (Dψ(tj))k = Dψ(tj)(tk) = j
j+k

ψj+k when j + k 6= 0 and

Dψ(t0)(t0) = 0, so

(xj)k =


j

j+k
= j

n
if j + k = n

0 if j + k 6= n

Hence, if j > n, xj = 0. So just for finite numbers of j, xj is nonzero and it means that the

linear span of {Dψ(tj) : j ∈ Z+} has finite dimension. Hence Dψ is a finite rank operator.

Theorem 2.3.2. Let ψ ∈ c0. Then the bounded derivation Dψ : `1(Z+) −→ `∞(Z+) is

compact.

Proof. Let ψ ∈ c0, since c0 = c00
‖·‖∞ , there exists a sequence (ψk) ⊂ c00 such that ‖ψk − ψ‖∞ →

0 when k →∞. Now for each k ∈ N, since ψk ∈ c00, we have

ψk =
m∑
n=1

anδn

where a1, a2, . . . , am ∈ C for some m. So by Theorem 2.2.6, B−1(ψk) =
∑m

n=1 anDδn , where

B is the linear map defined in Theorem 2.2.6. Hence by Lemma 2.3.1 and Remark 1.1.16,

Dψk is finite rank for all k ∈ N. Also by Theorem 2.2.5, ‖Dψk −Dψ‖ → 0 as k → ∞, and

18



because the limit of every sequences of finite rank operators is compact by Lemma 1.1.17,

Dψ is a compact derivation.

By the next theorem we prove converse of the above theorem:

Theorem 2.3.3. If the bounded derivation Dψ : `1(Z+) −→ `∞(Z+) is compact, then ψ ∈ c0.

Proof. This argument is based on Heath’s thesis (Proposition 2.6., [15]). Let Dψ : `1(Z+) −→
`∞(Z+) be a compact derivation such that ψ ∈ `∞ \ c0. We should show that the se-

quence (Dψ(tk))k∈N has a subsequence with no convergent sub-subsequence. Without loss

of generality, we assume that ‖Dψ‖ = 1. Since ψ /∈ c0, so there exists ε > 0 such that

{n ∈ N : |ψn| ≥ ε} is infinite. Hence there exist an infinite set S ⊂ N such that for all n ∈ S,

|Dψ(tn)(1)| = | n
n+0

ψn| = |ψn| > ε. Let k, l ∈ N, then by Theorem 2.2.5

|Dψ(tk)(tl)| = k

k + l
|Dψ(tk+l)(1)| ≤ k

k + l
(2.3.3)

Now suppose that k + l ∈ S. Then

|Dψ(tk)(tl)| = |ktk+l−1 ·Dψ(t)(1)|

=
k

k + l
|Dψ(tk+l)(1)| ≥ εk

k + l
(2.3.4)

Let j1 = 1. Suppose j1 < · · · < jk−1 such that for all i, i′ ∈ N with i < i′ ≤ k − 1,

‖Dψ(tji)−Dψ(tji′ )‖ > ε
4
. Now choose N ∈ S with N > 10ε−1jk−1, and let lk = bN

2
c and

jk = N − lk. Then, by ( 2.3.4),

|Dψ(tjk)(tlk)| ≥ εjk
jk + lk

= ε(
N − lk
N

)

= ε(1− lk
N

)

= ε(1−
bN

2
c

N
)

≥ ε(1− 1

2
)

=
ε

2
.
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Also, if m ≤ jk−1, then by ( 2.3.3)

|Dψ(tm)(tlk)| ≤ m

m+ lk
≤ jk−1
jk−1 + lk

=
jk−1

jk−1 + bN
2
c

≤ jk−1

jk−1 + b10ε
−1jk−1

2
c

=
1

1 + b5ε−1c

≤ 1

1 + (5ε−1 − 1)

≤ 1

5ε−1

=
ε

5
.

Thus

|Dψ(tm)(tlk)−Dψ(tjk)(tlk)| > ||Dψ(tm)(tlk)| − |Dψ(tjk)(tlk)||

= ||Dψ(tjk)(tlk)| − |Dψ(tm)(tlk)||

> |ε
2
− ε

5
|

= |3ε
10
|

>
ε

4
.

In particular, if i < k, then ‖Dψ(tji)−Dψ(tjk)‖ > ε
4
. Hence, by induction, we obtain a

sequence, (ji)i∈N, such that, if i, k ∈ N and i 6= k then ‖Dψ(tji)−Dψ(tjk)‖ > ε
4
. Thus

(Dψ(tji))i∈N has no convergent subsequence, and so, Dψ is not compact.

Therefor, by Theorem 2.3.2 and Theorem 2.3.3 we conclude that Dψ is compact if and

only if ψ ∈ c0.

2.4 TF-sets and weakly compact derivations

In this section we introduce concepts “T -set, TF -set and TFc0” and study their relation with

weakly compact operators. Note that, the results of this section were proved by Choi and

Heath [6], but we present different proofs that are based on suggestions of M. Daws (personal

communication with Y. Choi).
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Definition 2.4.1. Let S ⊆ Z+. We say that S is translation set (T-set for short) if, for

all k ∈ Z+, S ∩ (S − k) is finite or empty.

Theorem 2.4.2. Let x1 < x2 < x3 < . . . is a sequence in N, and xn+1−xn →∞ as n→∞.

Then S = {xn : n ∈ N} is a T-set.

Proof. If S is not a T-set, then there is a k ∈ N such that S ∩ (S − k) is infinite. Choose an

increasing subsequence n(1) < n(2) < n(3) < . . . such that {xn(j) : j ∈ N} = S ∩ (S − k).

For each j ∈ N,

xn(j) + k = xm(j) for some m(j).

Then xm(j) − xn(j) = k and 1 + n(j) ≤ m(j), so

xn(j)+1 − xn(j) ≤ xm(j) − xn(j) = k

and this contradicts with the fact that xn(j)+1−xn(j) →∞ for large j. Hence S is a T-set.

Converse of the above theorem is also true:

Theorem 2.4.3. Let x1 < x2 < x3 < . . . be a sequence in N, and S = {xn : n ∈ N} a T-set.

Then xn+1 − xn →∞ as n→∞.

Proof. Suppose that {xn+1 − xn}n∈N does not converge to infinity as n grows. Hence there

is an integer k ∈ N and an infinite subsequence {xni}∞i=1 ⊆ S such that xni+1 − xni ≤ k for

all i ∈ N. Moreover, if we let k to be the minimum positive integer with the above property,

then we can assume that xni+1− xni = k. In particular, xni = xni+1− k ∈ S ∩ (S − k) for all

i ∈ N. Which is impossible since S is a T-set. Thus xn+1 − xn →∞ as n→∞.

Definition 2.4.4. Let S ⊆ Z+. We say that S is translation-finite (TF for short) if, for

every sequence n1 < n2 < . . . in Z+, there exists k such that
⋂k
i=1(S−ni) is finite or empty.

Remark 2.4.5. Note that every T-sets are TF-set. But the converse is not always true (see

Example 2.4.23).

Example 2.4.6. By Theorem 2.4.2 we can see that S = {2n : n ∈ N} is a T-set and so it is

a TF-set.

Example 2.4.7. Z+ is not a TF-set. Since for the sequence 1 < 2 < 3 < . . . ,

Z+ − 1 = {x : x+ 1 ∈ Z+} = Z+

and similarly for every k ∈ Z+, Z+ − k = Z+. So
⋂k
i=1(Z+ − i) = Z+ and this is an infinite

set.
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Definition 2.4.8. Let X and Y be non-empty sets, and let

f : X × Y −→ C

be a function. Then

i) f clusters on X × Y if

lim
m

lim
n
f(xm, yn) = lim

n
lim
m
f(xm, yn)

whenever (xm) and (yn) are sequences in X and Y , respectively, each consisting of distinct

points, and both repeated limits exist;

ii) f 0-clusters on X × Y if

lim
m

lim
n
f(xm, yn) = lim

n
lim
m
f(xm, yn) = 0

whenever (xm) and (yn) are sequences in X and Y , respectively, each consisting of distinct

points, and both repeated limits exist.( See Definition 3.2, [9])

The following proposition is a famous condition that was originally proved by Grothendieck

in 1952 [14].

Proposition 2.4.9. Let E, F be Banach spaces, and suppose T ∈ B(E,F ). Then T is

weakly compact if and only if the function

E × F ∗ −→ C , (x, λ) 7→ 〈Tx, λ〉

clusters on E(1) × F ∗(1), when E(1) and F ∗(1) are respectively closed unit balls of E and F ∗.

Proof. See proposition 3.4, [9].

Now let X and Y be non-empty, locally compact sets and f : X × Y → C be bounded ,

separately continuous function. For y ∈ Y , we set

fy : x 7→ f(x, y) , X −→ C

and we regard fy as an element of CB(X) = C(βX); when βX is the Stone-Čech compacti-

fication of X. We then set

f(x, y) := fy(x) (x ∈ βX, y ∈ Y ).

Also we set F = {fy : y ∈ Y }.
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Theorem 2.4.10 (Proposition 3.3, [9]). Let X and Y be non-empty, locally compact spaces

and f : X×Y → C be a bounded, separately continuous function. Then F is relatively weakly

compact in C(βX) if and only if f clusters on X × Y .

Proposition 2.4.11. Let T : `1(Z+) −→ `∞(Z+) be a bounded linear operator. Then T is

weakly compact if and only if the function f : Z+ × Z+ −→ C with f(x, y) = 〈T (ty), tx〉
clusters on Z+ × Z+.

Proof. By Daws remarks in [10] after Proposition 5.4, T is weakly compact if and only if the

set {T (tj) : j ∈ Z+} is relatively weakly compact, and we know fy(x) := f(x, y) = 〈T (ty), tx〉.
So F = {fy : y ∈ Z+} = {T (tj) : j ∈ Z+}. Then by Theorem 2.4.10, T is weakly compact if

and only if f clusters on Z+ × Z+.

Example 2.4.12. Let D : `1(Z+) −→ `∞(Z+) be a derivation associated to 1N ∈ `∞(Z+),

where 1N is a characteristic function on N (See Theorem 2.2.6). Then D is not weakly

compact.

Proof. By Theorem 2.2.5 and Theorem 2.2.6, D(δj)k = j
j+k

for j, k ∈ Z+ and j + k 6= 0 and

D(δ0) = 0. Now let (jn), (km) be increasing sequences in N. Then

lim
m

lim
n
D(δjn)km = lim

m
lim
n

jn
jn + km

= lim
m

1 = 1

and

lim
n

lim
m
D(δjn)km = lim

n
lim
m

jn
jn + km

= lim
n

0 = 0

So limm limnD(δjn)km and limn limmD(δjn)km both exist but are not equal. Hence by Defi-

nition 2.4.8 and Proposition 2.4.11, D is not weakly compact.

Example 2.4.12 shows that not every derivation from `1(Z+) to `∞(Z+) is weakly compact.

Theorem 2.4.13. Let ψ ∈ `∞(N). Then Dψ is weakly compact if Supp(ψ) is a TF-set.

Proof. Define Dψ : `1(Z+) −→ `∞(Z+) with Dψ(tj)(tk) := j
j+k

ψj+k for j, k ∈ Z+ and j + k 6=
0, and Dψ(t0)(t0) = 0. Let {xn}, {ym} ⊆ Z+ are sequences of distinct points and both

repeated limits

lim
n

lim
m
Dψ(txn)(tym), lim

m
lim
n
Dψ(txn)(tym)

exist. Note that

lim
n

lim
m
Dψ(txn)(tym) = lim

n
lim
m

xn
xn + ym

ψxn+ym = 0.
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So by Proposition 2.4.11, Dψ is weakly compact if

lim
m

lim
n

xn
xn + ym

ψxn+ym = lim
m

lim
n
ψxn+ym = 0.

By contradiction suppose the limit is not zero, so there is increasing subsequences {xn(j)} of

{xn} and {ym(k)} of {ym} in Z+ that

lim
m

lim
n
ψxn+ym = lim

k
(lim
j
ψxn(j)+ym(k)

) = a 6= 0.

So there is an N ∈ N, such that for all k ∈ N, k ≥ N

| lim
j
ψxn(j)+ym(k)

− a| < |a|
2
.

By triangular inequality | limj ψxn(j)+ym(k)
| > |a|

2
. If we fix k ≥ N , then there is a J(k) ∈ N

that for all j ≥ J(k)

|ψxn(j)+ym(k)
| > |a|

4

Since Supp(ψ) = {p ∈ N : |ψp| > 0}, so for all j ≥ J(k), xn(j) + ym(k) ∈ Supp(ψ). Hence for

all j ≥ J(k), xn(j) ∈ Supp(ψ)− ym(k). Given M , consider Supp(ψ)− ym(k+N) for 1 ≤ k ≤M

and let R = max(j(N + 1), j(N + 2), . . . , j(N + M)). Then for every j ≥ R and 1 ≤ k ≤
M , xn(j) ∈ Supp(ψ) − ym(k+N) (See Figure 2.1). Hence

⋂M
k=1(Supp(ψ) − ym(k+N)) contains

{xn(j) : j ≥ R} and this contradicts the fact that
⋂M
k=1(Supp(ψ)−ym(k+N)) is finite or empty

for some M . So Dψ is weakly compact.

Figure 2.1: For all k ≥ N , then there is a J(k) ∈ N that for all j ≥ J(k), xn(j) ∈ Supp(ψ)− ym(k)

In Section 2.3, we showed that compact Dψ is equivalent with ψ ∈ c0 means that for

every ε > 0, the set {n ∈ N : |ψn| ≥ ε} is finite and so is a TF-set. Now we want to show

that if we have only Dψ weakly compact, what is it equivalent with? (See Figure 2.2)
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Definition 2.4.14. We say ψ ∈ TFc0 if

(i) ψ ∈ `∞(N);

(ii) for every ε > 0, the set {n ∈ N : |ψn| ≥ ε} is a TF-set.

Example 2.4.15. Let ψ(n) = 1
n

, so ψ ∈ c0, and by Theorem 2.3.2, Dψ is compact but

Supp(ψ) = N and by Example 2.4.7 it is not TF.

Figure 2.2: Weakening compactness of Dψ to weak compactness, corresponds to changing from ψ ∈ c0 to only ψ ∈
TFc0.

Lemma 2.4.16. Let ψ ∈ TFc0. Then there is a sequence (ψ(m))m∈N, ψ(m) ∈ `∞ for every

m, Supp(ψ(m)) is TF and
∥∥ψ(m) − ψ

∥∥
∞ → 0 as m→∞.

Proof. Let ψ ∈ TFc0, so for every m ∈ N, Sm = {n ∈ N : |ψn| ≥ 1
m
} is TF. Let gm = 1 on

Sm and gm = 0 outside of Sm. Define ψ(m) = gmψ, so ψ(m) ∈ `∞ and Supp(ψ(m)) = Sm and

so it is TF. Also
∥∥ψ(m) − ψ

∥∥
∞ < 1

m
→ 0 as m→∞.

Corollary 2.4.17. Let ψ ∈ TFc0. Then Dψ is weakly compact.

Proof. Let ψ ∈ TFc0, by Lemma 2.4.16 there is a sequence (ψ(m)) ⊆ `∞, such that Supp(ψ(m))

is TF for each m. By Theorem 2.4.13 Dψ(m) is weakly compact for each m. By Theorem 2.2.6

since B : Der(`1(Z+), `∞(Z+)) −→ E is bijective and B(Dψ) = ψ, (Dψ(tj)(t0) = ψ(tj) = ψj),

so ∥∥Dψ(m) −Dψ

∥∥ =
∥∥B(Dψ(m) −Dψ)

∥∥
∞

=
∥∥B(Dψ(m))−B(Dψ)

∥∥
∞

=
∥∥ψ(m) − ψ

∥∥
∞ → 0 as m→∞.
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So by Lemma 1.1.13, Dψ is weakly compact.

Lemma 2.4.18. Let F : N × N → C be a bounded function. Then there are increasing

sequences n(1) < n(2) < n(3) < . . . and m(1) < m(2) < m(3) < . . . such that

lim
k

(lim
j
F (n(j),m(k)))

exists.

Proof. Start with m = 1, (F (n, 1))n≥1 is a bounded sequence, so by Bolzano-Weierstrass

Theorem there is a subsequence p1(1) < p1(2) < p1(3) < . . . such that limj F (p1(j), 1) exists,

call it F(1).

Consider m = 2, (F (p1(j), 2))j≥1 is a bounded sequence, so by Bolzano-Weierstrass Theorem

there is a subsequence p2(1) < p2(2) < p2(3) < . . . such that limj F (p1(p2(j)), 2) exists, call

it F(2). Note limj F (p1(p2(j)), 1) exists and equals F(1).

By induction let limj F (p1(p2(. . . (pm−1(j)) . . . )),m−1) exists and equals F(m−1). Then con-

siderm, (F (p1(p2(. . . (pm−1(j)) . . . )),m))j≥1 is a bounded sequence, so by Bolzano-Weierstrass

Theorem there is a subsequence pm(1) < pm(2) < pm(3) < . . . such that

lim
j
F (p1(p2(. . . (pm(j)) . . . )),m)

exists, call it F(m).Now let

n(1) = p1(1)

n(2) = p1(p2(2))

...

n(m) = p1(p2(. . . (pm(m)) . . . ))

then the sequence

F (n(m),m), F (n(m+ 1),m), F (n(m+ 2),m), . . .

is a subsequence of (F (p1(p2(. . . (pm(j)) . . . )),m))j≥1 which converges for all m. So n(1) <

n(2) < n(3) < . . . is an increasing sequence (since p1(p2(1)) ≥ p1(1) and so p1(p2(2)) > p1(1),

means that n(2) > n(1)) that F (n(j),m) converges for all m to F(m). (See Figure 2.3)

So for every m, limj F (n(j),m) = F(m), and (F(m))m≥1 is a bounded sequence, so by

Bolzano-Weierstrass Theorem there is a subsequence m(1) < m(2) < m(3) < . . . such that

limk F(m(k)) exists and

lim
k
F(m(k)) = lim

k
(lim
j
F (n(j),m(k))).
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Figure 2.3: The Diagonal Argument on pm(j) to get an increasing sequence n(j) that converges for all m.

Next theorem that is the converse of Corollary 2.4.17 was originally proved by Choi and

Heath using a direct but complicated induction [6]. We give a simple proof using repeated

limits (as suggested by M. Daws, see the remarks at the start of Section 2.4).

Theorem 2.4.19. If ψ ∈ `∞, and Dψ is weakly compact then Sε := {n ∈ N : |ψn| > ε} is a

TF-set for each ε > 0.

Proof. Since Dψ is weakly compact by Proposition 2.4.11

lim
m

lim
n
Dψ(txn)(tym) = lim

n
lim
m
Dψ(txn)(tym),

where Dψ(tj)(tk) = j
j+k

ψj+k for j, k ∈ Z+, j + k 6= 0 and (xn), (ym) are sequences in Z+,

consisting distinct points and both repeated limits exist. Also we know

lim
n

lim
m
Dψ(txn)(tym) = lim

n
lim
m

xn
xn + ym

ψxn+ym = 0.

By contradiction suppose Sε is not TF for some ε > 0. Then there is an increasing sequence

(ym) with Xn :=
⋂n
m=1(Sε − ym) is infinite, for all n ∈ N. So

X1 = Sε − y1
X2 = (Sε − y1) ∩ (Sε − y2)

X3 = (Sε − y1) ∩ (Sε − y2) ∩ (Sε − y3)
...

X1 ⊇ X2 ⊇ X3 ⊇ . . .

Pick x1 ∈ X1, x2 ∈ X2 and x2 > x1, x3 ∈ X3 and x3 > x2. So for every n, xn ∈ Xn and

xn > xn−1 (See Figure 2.4). Hence (xn) is an increasing sequence that xn + ym ∈ Sε for every

n ≥ m. Now define F (n,m) := ψxn+ym ∈ C. By Lemma 2.4.18 there are increasing sequences

n(1) < n(2) < n(3) < . . . and m(1) < m(2) < m(3) < . . . such that limk(limj F (n(j),m(k)))
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Figure 2.4: X1 ⊇ X2 ⊇ X3 ⊇ . . . and pick xn ∈ Xn such that xn > xn−1 for every n.

exists and is non-zero.

(Since xn(j) + ym(k) ∈ Sε for every n(j) ≥ m(k) and so |F (n(j),m(k))| > ε means that

|ψxn(j)+ym(k)
| > ε. Then

| lim
j
ψxn(j)+ym(k)

| > ε

2
.

Hence

| lim
k

(lim
j
ψxn(j)+ym(k)

)| > ε

4

for every n(j) ≥ m(k).)

We know limj(limk ψxn(j)+ym(k)
) = 0, so limj(limk ψxn(j)+ym(k)

) and limk(limj ψxn(j)+ym(k)
) both

exist but are not equal. Hence Dψ is not weakly compact, and it is a contradiction. So we

conclude if Dψ is weakly compact then Sε is a TF-set.

Corollary 2.4.20. If ϕ ∈ TFc0 and ψ ∈ TFc0, then ϕ+ ψ ∈ TFc0.

Proof. Let ϕ ∈ TFc0, so by Corollary 2.4.17 Dϕ is weakly compact, also ψ ∈ TFc0 similarly

Dψ is weakly compact. Then by Theorem 2.2.6

Dϕ +Dψ = B−1(ϕ) +B−1(ψ) = B−1(ϕ+ ψ) = Dϕ+ψ

is weakly compact since the set of weakly compact operators is a vector space by Corollary

3.5.10, [19]. So by Theorem 2.4.19 Sε = {n ∈ N : |(ϕ + ψ)n| > ε} is TF for every ε > 0 and

so ϕ+ ψ ∈ TFc0.

Corollary 2.4.21. Let X1, X2 be subsets of N such that X1 and X2 are TF, X1 ∩X2 = ∅,

then X1 ∪X2 is TF.

Proof. Define ϕ with ϕ = 1 on X1 and ϕ = 0 outside X1. So ϕ ∈ TFc0 by definition.

Similarly if we define ψ = 1 on X2 and ψ = 0 outside X2, then ψ ∈ TFc0. By Corollary 2.4.20,
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ϕ+ ψ ∈ TFc0. So Sε = {n ∈ N : |(ϕ+ ψ)n| > ε} is TF for every ε > 0 and

(ϕ+ ψ)n =

1 if n ∈ X1 ∪X2

0 if n /∈ X1 ∪X2

then Sε = X1 ∪X2 and hence X1 ∪X2 is TF.

Remark 2.4.22. If S is a T-set then so is S +m = {x+m : x ∈ S} for any m ∈ N.

Proof. Suppose S + m is not T-set for some m, so there is a k ∈ N that for it (S + m) ∩
(S +m− k) is infinite, so for all y ∈ (S +m) ∩ (S +m− k), y = x+m for some x ∈ S and

y + k ∈ S +m, means (x+ k) +m ∈ S +m, so x+ k ∈ S. Hence x ∈ S − k. It contradicts

that S is T-set. So S +m is T-set.

Example 2.4.23. Let X1 = {2n : n ∈ N}, we know it is a T-set, also X2 = {2n + 1 : n ∈ N}
is a T-set by above remark, and X1 ∩X2 = ∅. So X1 ∪X2 is a TF-set by Corollary 2.4.21,

but it is not a T-set since for k = 1,

(X1 ∪X2) ∩ ((X1 ∪X2)− 1) = (X1 ∪ (X1 + 1)) ∩ ((X1 − 1) ∪X1) ⊇ X1

which is infinite. So X1 ∪X2 is TF but is not T-set.
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Chapter 3

Derivations on L1(R+)

3.1 Introduction

In this chapter we study derivations, D : L1(R+) −→ L∞(R+).

By part (b) of Example 1.2.2, (L1(R+), ‖·‖1 , ∗) is a Banach algebra when for every f ∈ L1(R+)

and µ Lebesgue measure, we define

‖f‖1 =

∫ ∞
0

|f |dµ.

Also (L∞(R+), ‖·‖∞) is a Banach space when for every ϕ ∈ L∞(R+) we have

‖ϕ‖∞ = ess sup |ϕ| = inf{C ≥ 0 : |ϕ(x)| ≤ C for µ-almost every x}.

Given ϕ ∈ L∞(R+), the function L1(R+) −→ C defined by f 7→
∫∞
0
fϕdµ is a bounded linear

map with norm equal to ‖ϕ‖∞. By Example 1.10.2 [19], every element of L1(R+)∗ arises in

this way.

Definition 3.1.1. L∞(R+) becomes a Banach L1(R+)-module by Definition 1.3.3 through

〈f, g · ϕ〉 := 〈f ∗ g, ϕ〉

=

∫ ∞
0

(f ∗ g)(t)ϕ(t)dt

=

∫ ∞
0

∫ t

0

f(t− s)g(s)ϕ(t)dsdt (f, g ∈ L1(R+), ϕ ∈ L∞(R+))

By changing variable t to t+ s, we get

〈f, g · ϕ〉 =

∫ ∞
0

∫ ∞
0

f(t)g(s)ϕ(t+ s)dsdt =

∫ ∞
0

f(t)(

∫ ∞
0

g(s)ϕ(t+ s)ds)dt

It means that the module action of L1(R+) on L∞(R+) is

(g · ϕ)(t) =

∫ ∞
0

g(s)ϕ(t+ s)ds.
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3.2 Derivations from L1(R+) to its dual

Theorem 3.2.1. Let ϕ ∈ L∞(R+). Then

(Dϕf)(t) =

∫ ∞
0

f(s)
s

t+ s
ϕ(t+ s)ds (t ∈ R+, f ∈ L1(R+)) (3.2.1)

defines a continuous derivation from L1(R+) to L∞(R+).

Proof. Firstly, note that Dϕf is a measurable function on R+. To see this, consider

F (t, s) =
s

s+ t
f(s)ϕ(s+ t) (s, t ∈ R+, s+ t 6= 0).

The function F is measurable,and we can assume that F is non-negative. (We can write

F = F1+ iF2, where F1, F2 are real and imaginary parts of F , respectively. Also Fk (k = 1, 2)

can be written as difference of two (measurable) non-negative functions.) Then, by Tonelli’s

Theorem (Theorem 2.37, [12]) the function t 7→
∫
R+
F (t, s)ds is measurable. Thus Dϕ(f) is

measurable. Also we have Dϕf ∈ L∞(R+), since

|Dϕf(t)| = |
∫ ∞
0

s

s+ t
f(s)ϕ(s+ t)ds|

≤
∫ ∞
0

|f(s)|| s

s+ t
ϕ(s+ t)|ds

≤
∫ ∞
0

|f(s)| ‖ϕ‖∞ ds

≤ ‖ϕ‖∞
∫ ∞
0

|f(s)|ds

≤ ‖ϕ‖∞ ‖f‖1 .

So

‖Dϕf‖∞ = inf{C ≥ 0 : |Dϕf(t)| < C for a.e. t} ≤ ‖ϕ‖∞ ‖f‖1 <∞.

So Dϕ(f) ∈ L∞(R+).

Then we prove Dϕ is a bounded linear map on L1(R+).
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It is linear since if f, g ∈ L1(R+) and c be an scalar, then

Dϕ(cf + g)(t) =

∫ ∞
0

(cf + g)(s)
s

s+ t
ϕ(t+ s)ds

=

∫ ∞
0

(cf(s) + g(s))
s

s+ t
ϕ(t+ s)ds

=

∫ ∞
0

cf(s)
s

s+ t
ϕ(t+ s)ds+

∫ ∞
0

g(s)
s

s+ t
ϕ(t+ s)ds

= c

∫ ∞
0

f(s)
s

s+ t
ϕ(t+ s)ds+

∫ ∞
0

g(s)
s

s+ t
ϕ(t+ s)ds

= cDϕ(f)(t) +Dϕ(g)(t).

Now, let f ∈ L1(R+) and ϕ ∈ L∞(R+), so

‖Dϕ‖ = sup{‖Dϕf‖∞ : f ∈ L1(R+), ‖f‖1 ≤ 1}

≤ sup{‖ϕ‖∞ ‖f‖1 : f ∈ L1(R+), ‖f‖1 ≤ 1}

≤ ‖ϕ‖∞ <∞.

Hence Dϕ is bounded.

Then we show Dϕ is a derivation, it means we want to show;

〈Dϕ(f ∗ g), h〉 = 〈Dϕ(f), g ∗ h〉+ 〈Dϕ(g), h ∗ f〉 (∀f, g, h ∈ L1(R+))

Let f, g, h ∈ L1(R+). We have

〈Dϕ(f ∗ g), h〉 =

∫ ∞
0

(Dϕ(f ∗ g))(t)h(t)dt

=

∫ ∞
0

∫ ∞
0

s

s+ t
(f ∗ g)(s)ϕ(t+ s)h(t)dsdt

=

∫ ∞
0

∫ ∞
0

∫ s

0

s

s+ t
f(r)g(s− r)ϕ(s+ t)h(t)drdsdt

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

r + u

r + u+ t
f(r)g(u)ϕ(r + u+ t)h(t)dudrdt
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and similarly

〈Dϕ(f), g ∗ h〉 =

∫ ∞
0

(Dϕ(f))(x)(g ∗ h)(x)dx

=

∫ ∞
0

∫ ∞
0

f(r)
r

x+ r
ϕ(x+ r)(g ∗ h)(x)drdx

=

∫ ∞
0

∫ ∞
0

∫ x

0

r

r + x
f(r)ϕ(x+ r)g(u)h(x− u)dudrdx

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

r

r + u+ t
f(r)g(u)h(t)ϕ(r + u+ t)dudrdt

also,

〈Dϕ(g), h ∗ f〉 =

∫ ∞
0

(Dϕ(g))(x)(h ∗ f)(x)dx

=

∫ ∞
0

∫ ∞
0

g(u)
u

u+ x
ϕ(u+ x)(h ∗ f)(x)dudx

=

∫ ∞
0

∫ ∞
0

∫ x

0

u

u+ x
g(u)ϕ(u+ x)h(t)f(x− t)dudxdt

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

u

r + u+ t
g(u)ϕ(r + u+ t)h(t)f(r)dudrdt.

So by adding these two, we have

〈Dϕ(f), g ∗ h〉+ 〈Dϕ(g), h ∗ f〉 =

∫ ∞
0

∫ ∞
0

∫ ∞
0

r + u

r + u+ t
ϕ(r + u+ t)f(r)g(u)h(t)dudrdt

= 〈Dϕ(f ∗ g), h〉.

So Dϕ is a derivation.

In the rest of this section, we will show that Dϕ(L1(R+)) ⊆ C0(R+). This is a special

case of some known results, but we give an alternative proof which is more elementary.

Remark 3.2.2. We call I[a,b] the characteristic function of the interval [a, b] if

I[a,b](x) =


1 if x ∈ [a, b]

0 if x /∈ [a, b]

Proposition 3.2.3. Let ϕ ∈ L∞(R+) and 0 ≤ a < b. Define f(x) = Dϕ(I[a,b])(x). So

f : R+ → C. Then f is continuous at every point.
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Proof. We have f(t) =
∫ b
a

s
s+t
ϕ(s+ t)ds. We want to show f is continuous. So let

f(t2)− f(t1) =

∫ b

a

s

s+ t2
ϕ(s+ t2)ds−

∫ b

a

s

s+ t1
ϕ(s+ t1)ds

and by changing the variable s to s− t2 in the first integral and changing s to s− t1 in second

integral we will have

f(t2)− f(t1) =

∫ b+t2

a+t2

s− t2
s

ϕ(s)ds−
∫ b+t1

a+t1

s− t1
s

ϕ(s)ds

Without loss of generality we can assume 0 ≤ t1 < t2 with |t2− t1| < |b−a|, so a+ t2 < b+ t1.

Then

f(t2)− f(t1) =

∫ b+t1

a+t2

s− t2
s

ϕ(s)ds+

∫ b+t2

b+t1

s− t2
s

ϕ(s)ds

−
∫ a+t2

a+t1

s− t1
s

ϕ(s)ds−
∫ b+t1

a+t2

s− t1
s

ϕ(s)ds

If we define

g(t1, t2) =

∫ b+t2

b+t1

s− t2
s

ϕ(s)ds−
∫ a+t2

a+t1

s− t1
s

ϕ(s)ds

and

h(t1, t2) =

∫ b+t1

a+t2

s− t2
s

ϕ(s)ds−
∫ b+t1

a+t2

s− t1
s

ϕ(s)ds

then f(t2)− f(t1) = g(t1, t2) + h(t1, t2) and so

|g(t1, t2)| ≤
∫ b+t2

b+t1

s− t2
s
|ϕ(s)|ds+

∫ a+t2

a+t1

s− t1
s
|ϕ(s)|ds

≤
∫ b+t2

b+t1

|ϕ(s)|ds+

∫ a+t2

a+t1

|ϕ(s)|ds

≤ |t2 − t1| ‖ϕ‖∞ + |t2 − t1| ‖ϕ‖∞

= 2|t2 − t1| ‖ϕ‖∞ .

For next step we have

h(t1, t2) =

∫ b+t1

a+t2

s− t2
s

ϕ(s)ds−
∫ b+t1

a+t2

s− t1
s

ϕ(s)ds

=

∫ b+t1

a+t2

t1 − t2
s

ϕ(s)ds.
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So

|h(t1, t2)| ≤ (t2 − t1) ‖ϕ‖∞
∫ b+t1

a+t2

ds

s

= (t2 − t1) ‖ϕ‖∞ log
b+ t1
a+ t2

.

Now fix x0 ≥ 0. Let δ > 0. If x0 = 0, then |h(0, δ)| ≤ δ ‖ϕ‖∞ log b
δ

which converges to zero

as δ → 0+ by the logarithm properties.

If x0 > 0, then provided that δ < x0 and δ < |b− a|, we get

|h(x0, x0 + δ)| ≤ δ ‖ϕ‖∞ log
b+ x0
a+ x0

or

|h(x0 − δ, x0)| ≤ δ ‖ϕ‖∞ log
b+ x0 − δ
a+ x0

which both converges to zero as δ → 0+.

So we showed in all conditions |h(t1, t2)| and |g(t1, t2)| converges to zero as |t2 − t1| → 0.

Hence |f(t2)− f(t1)| converges to zero as |t2 − t1| → 0 and it means f is continuous, and so

Dϕ(I[a,b]) ∈ Cb(R+).

Lemma 3.2.4. Let ϕ ∈ L∞(R+), then Dϕ(I[a,b]) ∈ C0(R+).

Proof. We know Dϕ(I[a,b]) is continuous, we need to show it vanishes at infinity. We have

Dϕ(I[a,b])(t) =
∫ b
a

s
s+t
ϕ(s + t)ds. Let ε > 0 and choose t0 ∈ R+ large enough such that

b
b+t0
‖ϕ‖∞ (b− a) < ε. If t ≥ t0 and s ≤ b then s

s+t
≤ b

b+t
≤ b

b+t0
. So for all t ≥ t0 we have

|Dϕ(I[a,b])(t)| ≤
∫ b

a

b

b+ t0
‖ϕ‖∞ ds =

b

b+ t0
‖ϕ‖∞ (b− a) < ε

So Dϕ(I[a,b]) ∈ C0(R+).

Corollary 3.2.5. Let ϕ ∈ L∞(R+) and f ∈ L1(R+). Then Dϕ(f) ∈ C0(R+).

Proof. By (Theorem 2.26, [12]), we know that V = Span{I[a,b]; 0 ≤ a < b < ∞} is dense

in the Banach space (L1(R+), ‖·‖1). So there is a sequence (fn) ⊆ V that converges to f in

L1(R+). On the other hand, by Lemma 3.2.4, Dϕ(fn) ∈ C0(R+) for all n. Since C0(R+) is

closed in (L∞(R+), ‖·‖∞), hence Dϕ(f) = limnDϕfn ∈ C0(R+).
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Chapter 4

Conclusion

In this thesis we characterized derivations on `1(Z+) in Theorem 2.2.6, then we found a

necessary and sufficient condition to make these kind of derivation compact in Section 2.3.

Also we showed in Theorem 2.4.13, Corollary 2.4.17 and Theorem 2.4.19 that all derivations,

Dψ : `1(Z+) −→ `∞(Z+) is weakly compact, if and only if, ψ ∈ TFc0.

We started study derivations, D : L1(R+) −→ L∞(R+). and we showed they are actually

map into C0(R+). All these results were already known, but we have given alternative proofs

that may be more accessible to future researchers.

One possible future project would be to find the necessary and sufficient condition to make

a derivation, Dψ : L1(R+) −→ L∞(R+) compact or weakly compact.
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