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ABSTRACT 

The thin film transistor appears to have significant 

potential. However, its practical applications are severly 

limited by difficulties which exist with the present device 

which arise from the fact that insufficient information is 

available concerning the T:. The most formidable problem 

is that of the devicets electrical instability. It was the 

aim of this work to provide some of the required information. 

Two distinct forms of instability were observed in the 

TFT; a positive and negative drift. The positive drift eras 

accounted for by a model which invokes mobile insulator ions. 

The observed asymmetrical drift rate observed with an Al-CdSe- 

Si02 system was accounted for by a difference in activation 

energy for the release of ions from insulator interface ionic 

traps. The activation energies were found to be 0.51 ev for 

the Al-Si02 interface, and 0.41 ev for the Si02-CdS'e interface. 

0 0 

The traps widths were found to be 15 A and 13 A respectively. 

The presence of water vapour enhanced the magnitude and rate 
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of the po.s1tiiTe drift, but could not induce it i; it was not 

present. The negative drift was accounted for by the 

presence of electron trapping states. These were found to 

be associated dominantly with the surfaces. H model was 

formulated in whim one component was at the semiconductor -

insulator interface while a second component was in the 

insulator immediately next to the semiconductor. Electrons 

from the semiconductor tunneled into these with a time cons-

tant which was an inverse exponential function of the distance 

of the trap from the interface. 

Due to the dominant surface trapping conduction was 

shown to initiate in -the interior of the semiconductor, at a 

point determined by the relative trap concentrations of the 

two semiconductor surfaces. The effects of surface trapping 

on the enhancement of the conduction with increasing gate 

voltage is discussed in detail. 

Theory and experimental results are presented which 

show that a maximum semiconductor depletion depth phenomenon 

exists in the TFT. This is •used to show what basic relation-

ship exists between semiconductor thickness and current 

saturation of the devices electrical characteristics. A 

novel method for determining the ionized donor concentration, 

the electron mobility, and the back surface deletion region 

thickness is described. It makes use of simultaneous capaci-

tance-voltage and transfer characteristic measurements. 
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1. INTRODUCTION 

1.1 General Introduction 

The mass production of low-cost, microminiature, inte-

grated circuits, incorporating active and passive elements 

in a single unit is expected to revolutionalize electronic 

technology. In recent years, the increasing demand for 

many complex circuits has been accompanied by severe 

restrictions on their permissable size and weight. However, 

with integrated circuits it is possible to achieve a very 

high packing density of extremely small components. An 

additional advantage is that due to the minute size of the 

actual components and the nature of their consruction, 

they promise to be very resistant to extreme physical stresses. 

Circuits whose active and passive components are formed 

within the surface of single crystal silicon are already 

commercially available.  However, due to complex pro-

duction processes which incorporate a number of distinct 

operations such as cycles of oxidation, photoetching, 

diffusion, and epitaxial growth, such circuits, tend to be 

relatively expensive. They are also limited in complexity 

by the electrical properties of the underlying chip of 

silicon. 
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An alternative approach which has received wide atten-

tion is to deposit all components and connections by thin 

film techniques upon an inert insulating substrate.(2) Much 

work has been done on the fabrication of thin film resistors 

and capacitors,(3) so that the techniques here have reached 

a high degree of advancement. The fundamental weakness of 

the thin film approach has been the lack of a suitable 

active device that could be prepared by thin film techniques. 

Research in recent years(2) has produced a device which 

appears to be most promising for the role. It is commonly 

known as the insulated gate thin film transistor (TFT). 

The successful development of such an active device 

could have a profound effect on the electronics industry. 

Integrated circuits could be manufactured with a minimum 

of equipment and production procedure. Since all the 

components of the circuits would undergo the same fabri-

cation process, the production system would lend itself 

easily to automation. This could bring the cost of 

electronics to a very low level. 

1.2 History of the TFT 

1.2.1 The field effect idea 

The earliest reference for amplifying elements having 

a structure with an insulated control electrode is found 

in material patented by J.E. Lilienfeld in l926 '  ) and 

later two succeeding patents filed in 1928(5,6) Lilienfeld 
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described a method controlling the flow of electric current 

in a solid of minute thickness by establishing an "electro-

static influence in the proximity of the current flow." 

His proposed device is seen in Figure 1.1. 

In 1935 another patent application was made by 

0. Heil.(  ) He describes a field effect device with either 

one or two "gate" electrodes for the control of current, as 

shown in Figure 1.1. Hell's idea of a field effect device 

was stated as follows: 

"An electrical amplifier or other control arrangement 
or device wherein one or more thin layers of semi-
conductor transversed by current is or are varied in 
resistance in accordance with control voltage applied 
to one or more control electrodes arranged close to 
and insulated from said semi-conductor layer or 
layers so as to be in electrostatic association 
therewith." 

It is remarkable how these statements made many years ago 

closely describe the field effect transistors including the 

thin film transistors only recently reported in literature. 

1.2.2 Recent work 

A more relevant reference for the thin film transistor 

(TFT) was a note by Shockley. and Pearson(8) entitled 

"Conductivity Modulation" published in 1948.- In their 

experiment, a thin film of germanium was evaporated on one 

side of a mica sheet between laterally spaced contacts. A 

metal film was evaporated on the other side forming the 

field electrode or "gate" as it is now commonly called. By 
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FIGURE 1.1 .arly proposals for field-effect transistors. 
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varying the gate potential it was found that the conductance 

of the germanium film was modulated to. some degree. Although 

the experiment did demonstrate the field effect phenomenon, 

perhaps its most striking feature was the effect of charge 

carrier trapping. It was found that only about 10% of the 

induced charge in the semiconductor contributed to changing 

the conductance; the remaining 90% became trapped in surface 

states which rendered it immobile. As a result of this 

difficulty in achieving a substantial conductance modulation, 

and with the discovery of the point contact and junction 

transistors, interest and work on a field effect modulation 

device appeared to have waned for some time. 

As the idea of integrated circuits became a feasible 

concept and the advantages of a'vacuum deposited active 

device became apparent, interest was again revived in the-

early 1960 1s. A variety of devices have been suggested. 

Some of these are: 

(A) the tunnel-emission triode 

(B) the semi=conductor-metal semiconductor triode 

(C) the analog or "space charge limited" triode 

(D) the bipolar junction transistor 

These are shown in Figure 1.2. Another approach(g) was the 

field effect insulated gate thin film transistor .also shown 

_ (l0,11 ; 12) 
Fi gure Figure 1.2(E). A background of theoretical and 

e.:perimental studies of space chage limited currents in wide 
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bad gap material had indicated that a useful thin film 

triode of this type might be feasible. Ruppel and Smith
(l3)

had demonstrated an analog triode using space charge limited 

currents in a cadmium sulfide crystal. Dresner and 

Shallcross(14) had studied space charge limited currents in 

evaporated cadmium sulfide diodes. 

An early attempt at constructing a space charge limited 

triode was made by embedding an evaporated grid structure of 

tellurium lines in a double layer of cadmium sulfide.
(15)

Another approach was to use a single pair of laterally spaced 

electrodes with an intervening tellurium gate strip in contact 

with cadmium sulfide. Very poor control was obtained in 

these experiments, owing, in part, to the large trap density 

and low mobility in the cadmium sulfide films. 

1.2.3 The insulated gate thin film transistor 

With the introduction of the insulating layer into the 

gate structure an immediate improvement in the performance 

was noted. It appeared that as a result of a positive gate 

bias, the capacitance action between the gate and semi-

conductor caused electrons to be injected into the semicon-

ductor. The electrons in the semiconductor were drawn to 

the semiconductor insulator interface filling the traps and 

establishing a conduction channel. there. 

Insulated gate thin film transistors have now been made 

in many laboratories..(15-23) Excellent modulation of semi-
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conductor conductance has been obtained with transconductances 

of up to 10,000 umhos being reported. 

However, difficulties exist with the present TFT which 

severely limit its use for circuit applications. These 

difficulties arise from the fact that a complete knowledge 

of the thin film transistor is not available. In particular, 

a detailed knowledge of the modulation mechanism is lacking. 

Thus it is often difficult to achieve the desired electrical 

characteristics. In addition the instability exhibited by 

the TFT further retards its present usefulness. The present 

work is largely concerned with these problems. 



9 

2. INTRODUCTION TO THE TFT AND THE THIN 
FILM DIODE 

2.1 General 

Before considering the detailed presentation and dis-

cussion of the TFT's electrical behaviour, a brief description 

of the physical aspects of the device as well as the basic 

modulation theory is presented. The formulae for the static 

electrical characteristics and the small signal parameters 

are derived. Some experimental results also appear in order 

to show some of the areas of.agreement and disagreement 

between the actual electrical characteristics and those 

predicted theoretically. 

In this chapter as throughout the thesis, only negative 

channel devices are considered but it is understood that in 

general the reasoning applies equally well to positive channel 

devices, with appropriate changes of polarity. 

2.2 The Thin Film Transistor 

2.2.1. Basic structure and operation 

The common structure of the thin film transistor is 

similar'to that of a parallel plate capacitor and consists 

of two conducting plates separated by an insulating dielectric. 

In the TFT, one of these plates is a semiconductor and the 
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s other is a metal. By changing the potential difference 

between these plates the charge carrier concentration in 

the semiconductor layer can be altered, thus giving rise 

to a change in the conductance of the semiconductor layer. 

This change in conductance results from the fact that the 

charge carrier concentration for semiconductors is generally 

relatively small compared, for example, to metals. Thus the 

number of charge carriers removed or added to the semicon-

ductor layer by the change in voltage can represent a large 

change in the total charge carrier concentration. 

With electrodes making ohmic contacts with either end 

of the semiconductor, a current flowing through the semi-

conductor by way of the electrodes can be modulated by the 

voltage applied to the metal plate. 

A schematic drawing of a TFT deposited on a substrate 

appears in Figure 2.1.The devices three electrical terminals 

are known as the gate, the source, and the drain. The gate 

electrode forms the metal plate of the TFT capacitor and is 

the control electrode. -The source and drain are the electrical 

contacts to the semiconductor; the source electrode being the 

one which is taken to be at ground potential. Therefore all 

potentials are applied with respect to it. 

A more detailed discussion of the physical aspects of 

the device may be found in Chapter 5. 

r 
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2.2.2 Electrical characteristic 

A basic analysis of the TFT's has been presented by 

P.K. Wiemer. iie has suggested(21F) that the operation of 

the TFT is similar to that of the conventional field effect 

transistor,(25'26) insofar as the observed characteristics 

result from changes in the conductivity of a channel connect-

ing the source and drain electrodes. The analysis assumes a 

homogeneous layer of semiconductor, thin compared to the 

insulator, having constant mobility, and forming ohmic contacts 

with the source and drain electrodes. Only majority carriers 

are considered to exist in the semiconductor. Equation 2.1 is 

an expression for the drain characteristics below the onset 

of current saturation. It is developed in the Appendix accord-

ing to the above assumptions: 

p C (V - V )V - V 2
Id = g g o d 2 , (Vg-VO) > Vd 2.1 

L 

where, Vo = -gNot I -' E . t1 
2.2 

e e 
o x 

and, Id = drain current in amperes 

u 

= drift mobility in cm2/volt-sec 

Cg _ capacitance/unit length across the 

insulator in farad/cm 

L = length of the gap between the source and 

drain electrodes. 
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V O = gate voltage required for the onset of 

drain current 

Vg = applied gates voltage relative to the 

source electrode 

Vd = applied drain voltage relative to the 

source electrode 

q = the electronic charge 

N = the concentration of free electrons in 
0 

tI

Ei

the semiconductor at V g=0, expressed in 

number/c3

= the thickness of the insulator in cm. 

= the component of the electric field at 

the insulator semiconductor interface 

which is not due to applied gate 

voltage, i.e. E = V
g/. 

. I 

The expression for drain current derived here differs 

from that developed by Wiemer in that it makes allowances 

for non-ideal effects which can occur in the insulator 

layer such as slow dielectric relaxation or ion drifts. 

In the same way it facilitates consideration of the possibil-

ity of trapping of free elec~rons in semiconductor. In 

general these effects can be 

change in the electrical fie 

shown to be equivalent to a 

d at the insulator semiconductor 

interface, or a correspondinj~ change in gate voltage. In 

equation 2.2 these effects are accounted for by the term Ei. 
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It is seen from equation 2.1 that two modes of 

operation are possible for a TFT. This depends on the value 

of Vo, the gate voltage required for the onset of drain 

current. If it is positive, the transistor will not "turn-

on" or no significant current will flow from source to drain, 

until the gate voltage exceed.s Vo. This TFT is said to be of 

the enhancement type. If the turn-on voltage is negative, it 

is then possible to achieve modulation with negative gate 

voltages, and the TFT is said. to be of the depletion type. 

An illustration of both types is shown in Figure 2.2. 

Equation 2.1 predicts a maximum in the drain current at 

the point where (Vg-Vo)=Vd. The drain current in the actual 

device saturates at this point, that is it becomes largely 

independent of the drain voltage. Shockley(30) anticipated 

this behaviour, and pointed out that no point in the con-

duction channel of a device, operating in a current satura-

tion mode, does the free carrier density actually become 

zero. This topic of current saturation is discussed more 

extensively in Chapter 7. Figure 2.3 shows the predicted 

behaviour of drain characteristics of an enhancement TFT 

derived from equation 2.1, along with a set of experimental 

drain characteristics of a TFT. A reasonably good similarity 

between the two can be seen here. The theoretical drain 

characteristics have been separated into two regions by a 

dashed line. This line represents the locus of the knee of 
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the curves; the points where saturation occurs. 

With gate voltages for which 

(V -V  )>>V 
g o 

d

equation 2.1 can be reduced to the following form: 

= ,u Cg 
Vd ( Vg-Vo ) 

L 

This equation describes a family of drain characteristics 

(2.3) 

which are straight lines. The device would in fact be acting 

as a voltage controlled variable resistor. This effect is 

illustrated in Figure 2.4. A TFT operating in this fashion 

could be useful for particular applications. 

In the non-saturated mode of operation, the transcon-

ductance is found to have a linear relationship with respect 

to the drain voltage. This is seen by differentiating 

equation 2.1 with respect to the gate voltage. The small 

signal transconductance is therefore: 

gm =  
Cg 

L 
Vd (2.4) 

An experimental result of this type appears in Figure 2.5. 

Although there is some scatter in the experimental points it 

tends to confirm equation 2.4. 

In the saturated mode of operation, equation 2.1 reduced 

to the following form: 
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FIGURE 2®4 Linear portion of drain characteristic 
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Id 
= Cg (V -V

)2 , (V -V
) < Vd 

2L g 
o 

g 
o 

2.5 

Hence, in saturation there is a square law relationship of 

drain current to gate voltage. A consequence of this, is 

that the transconductance is predicted to be proportional 

to the square root of the drain current. This result is. 

obtained by differentiating equation 2.5 with respect to 

Vg and substituting equation 2.5 into the result. In doing 

this we obtain: 

g m = 2ucg
r 

1
/
2 . I 

d 

1/2 
, ( V `l~- o ) < V

d 2.6 
0 - 

Figure 2.6 shows a plot of the square root of drain 

current versus gate voltage for a saturated TFT. The result 

is not quite linear despite the linear relationship predicted 

by equation 2.5. 

Figure 2.7 shows a result which is in accordance with 

equation 2.6. The square root of the transconductance is 

found to be proportional to the current for a TFT operating 

in the saturated mode. 

2.3 The Thin Film Diode 

Another attractive feature of using TFT's for integrated 

circuits is the ready availability of a thin film diode (TFD). 

Such a diode does not require fabrication of anew type of 

device, but can be had by merely connecting the drain and 

gate electrodes of a TFT together. In considering the drain 
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FIGURE 2.6 Experimental result showing the near square law 

dependance of drain current on gate voltage for 

a saturated enhancement TFT 
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characteristics equation of the TFT, this would mean that 

the drain voltage would be equal to the gate voltage. The 

diode equation is then: 

Id =  Cg V d(Vd - 2V o) 
2L 

• (2.7) 

A plot of the diode equation for VO=0.9 volts appears in 

Figure 2.8. An experimental characteristic of a diode with 

Vo=0.9 volts, appears in Figure 2.9. A good similarity 

between the two curves exists. 

A comparison between the thin film diode and the junction 

diode can be made which shows some interesting features of 

the TFD. In general, once current starts to flow, the 

current will not increase as rapidly with voltage in the thin 

film diode,' since it appears to obey a "squared" law, as 

opposed to the exponential voltage law of the junction diode. 

However, the leakage current of the thin film diode in the 

reversed bias state can be extremely small, with reverse bias 

resistances of 107 ohms. In addition, the thin film diode 

can be easily made with a variety of turn-on voltages both 

positive and negative, by slight alteration of the fabrication 

process. 

Still, since the thin film diode is basically a TFT, it 

suffers from the same instability problems. This is normally 

manifested in the diode as a 1time variation of the turn-on 

voltage. 
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FIGURE 2.8 Theoretical thin film diode characteristic for 

which V = 0.9 volts. 
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