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ABSTRACT 

 

Canola (Brassica napus L.), as an important oilseed crop, is widely grown in Canada. In plant 

breeding, there has been great improvement in genetic techniques, but traditional field 

phenotyping methods are a limitation in breeding genotype selection for new cultivar 

development. These conventional phenotyping methods are labour-intensive, time-consuming, 

and can be subjective and destructive. With the development of phenotyping technologies such 

as unoccupied aerial vehicles (UAVs) and multispectral sensors, desirable phenotypic traits 

and seed yield can be estimated digitally. In this thesis, the main objective was to develop an 

efficient and non-destructive method to estimate canola flowering number, flowering layer 

depth, canopy height, and seed yield using UAV-based multispectral imagery collected during 

the entire crop season. Canola field experiments were conducted using 56 diverse Brassica 

genotypes under diverse environments from 2016 to 2018 in central Saskatchewan. A UAV 

mounted with a multispectral sensor was used for imagery collection. In the flowering number 

estimation study, the normalized difference yellowness index (NDYI)-based pixels were 

significantly correlated with actual canola flower numbers with coefficient of determination 

(R2) ranging from 0.54 to 0.95 (p < 0.05). Moreover, seed yield could be estimated using 

cumulative NDYI-based pixels extracted from multi-temporal imagery collected during the 

flowering stage with R2 up to 0.42 (p < 0.05). In the flowering layer depth and canopy height 

estimation study, canopy height and flowering layer depth could be quantified using a crop 

surface model generated from UAV-based imagery with R2 up to 0.90 (p < 0.05) and 0.42 (p < 

0.05), respectively. Furthermore, the cumulative UAV-derived canopy height at the flowering 

stage and the cumulative UAV-derived flowering layer depth were significantly correlated with 

seed yield (R2 up to 0.46 and 0.34, respectively; p < 0.05). In the last seed yield estimation 

study, a machine learning method (i.e., random forest regression model) was used to investigate 

30 digitalized input variables including 28 cumulative vegetation indices and 2 cumulative 

canopy structural phenotypes (i.e., cumulative UAV-derived canopy height at the flowering 

stage and cumulative flowering layer depth) for yield estimation. The ranking of variable 

importance by the random forest model indicated that the cumulative blue normalized 

difference vegetation index at the flowering stage, the cumulative UAV-derived canopy height 

at the flowering stage, and the cumulative normalized difference vegetation index at the 

vegetative stage were the most important indicators to estimate seed yield in canola. Generally, 

all results demonstrated that flowering number and canopy structural feature (i.e., canopy 
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height and flowering layer depth) could be efficiently assessed by UAV-based imagery. The 

digital cumulative phenotypes at the vegetative and flowering stages selected by a random 

forest regression model can assist crop researchers and farmers in early yield estimation and 

crop management decisions.  
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data were considered as the validation dataset. The blue dash line represents 1:1 reference 

line….…………………….………………………….………………………….…………..108 
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CHAPTER 1 INTRODUCTION 

 

1.1 Background 

 

Food security is becoming a global challenge with increasing human population, variable 

climate conditions, and limited natural resources, necessitating an increase in crop productivity 

(Furbank and Tester, 2011; Tilman et al., 2011). Although there has been great progress in 

genotyping technology, plant breeding is currently limited by challenges in field-based 

phenotyping.  

 

Plant phenotype is defined as observable plant characteristics related to structure, morphology, 

and physiology (Granier and Vile, 2014). These crop traits are expressed as the interactions 

between genes and environmental factors (Granier and Vile, 2014). Phenotyping is the process 

of assessing various plant traits (i.e., plant performance under specific environmental 

conditions) (Granier and Vile, 2014). Conventional field phenotyping is difficult because it is 

time consuming and labor intensive in addition to often being destructive and subjective. To 

efficiently measure association between gene or genome and phenotypes, high throughput 

phenotyping using remote sensing techniques and advanced mathematical algorithms is a 

useful tool to qualify and quantify plant traits in crop research (Haghighattalab et al., 2016).  

 

Current improvements in aerial-based platforms and sensors make it possible to efficiently 

collect phenotypes via analysis of digital imagery. Low-cost unoccupied aerial vehicles (UAVs) 

equipped with various sensors (i.e., cameras) can quickly collect large quantities of field data, 

which enables plant breeders to efficiently detect crop traits of numerous genotypes in a large-

scale field (White et al., 2012; Sankaran et al., 2015). In addition to the efficiency of data 

collection, UAV-based imagery can provide temporal and novel digital phenotypes related to 

crop performance over the growing season, which has less damage on the crop canopy and less 

bias in data collection compared with manual measurement or visual rating.  

 

Aerial-based phenotyping platforms enable higher temporal resolution due to ease of accessing 

field trials and less requirements for labor and time. Sensors mounted to these platforms allow 
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crop researchers to gather high spatial and spectral resolution imagery. Application of UAVs 

with imaging sensors such as commercial RGB cameras and multispectral cameras in 

agriculture has gained the attentions of many researchers over the last decade (Haghighattalab 

et al., 2016).  

 

Canola is an important oilseed crop grown in Canada, contributing $29.9 billion to the 

Canadian economy annually and is primarily grown in western Canada including 

Saskatchewan, Alberta, and Manitoba (Canola Council of Canada, 2021). Seed yield is one of 

the most important plant phenotypes in breeding programs, which is controlled by multiple 

genes contributing small effects and correlated with many growth parameters. Yield prediction 

models based on the different growth parameters estimated digitally may provide efficient 

selection criteria in breeding projects by associating yield with its related digital phenotypes 

under different environmental conditions (Sabaghnia et al., 2010). Field phenotypes, including 

flowering number, flowering layer depth, and canopy height are potential indicators for yield 

estimation, which could be assessed by two-dimensional (2D) vegetation indices or canopy 

structural data extracted from three-dimensional (3D) digital surface models (DSMs) at plot 

level (Sulik and Long, 2015, 2016; Bendig et al., 2014, 2015).  

 

1.2 Hypotheses and Broad Objectives 

 

1.2.1 Hypothesis:  

 

The general hypothesis is that agronomic traits of canola including flowering number, 

flowering layer depth (i.e., vertical distance from the bottom flower to the top flower of canopy), 

canopy height, and seed yield can be quantified or estimated by UAV-based multispectral 

imagery at reproductive stage. More specifically, one hypothesis is that yellow flower number 

can be estimated by spectral vegetation index and used for yield estimation. Second, canopy 

structural information such as flowering layer depth and canopy height can be quantified using 

3D DSMs extracted from UAV-based images. The two digitalized canopy structural 

phenotypes can be indicators for yield estimation. Lastly, seed yield can be estimated using the 

combination of 2D and 3D imagery information collected at reproductive stage. 
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1.2.2 Broad Objectives: 

 

In this study, the main objective was to develop an efficient method to phenotype flower 

number, canopy structural information, and seed yield in canola using UAV-based imagery, 

which can enhance the genotype selection process in plant breeding programs. More 

specifically, the first objective was to investigate the relationship between the actual and UAV-

based flowering numbers, and to evaluate the potential of the digitalized flowering trait to 

estimate yield (Chapter 3). The second objective was to quantify crop canopy structural 

information including flowering layer depth and canopy height using DSMs derived from 

UAV-based imagery (Chapter 4). The third objective was to develop a descriptive yield model 

using UAV-based digital imagery with diverse breeding genotypes under various 

environmental conditions (Chapter 5).  
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 Canola Production in Canada and its Use 

 

Canola (Brassica napus L., genome AACC, 2n = 38) is an allopolyploid species, deriving from 

natural hybridization between Brassica rapa (genome AA, 2n = 20) and Brassica oleracea 

(genome CC, 2n = 18) (Rana et al., 2004; Li et al., 2014). Canola cultivars commonly grown 

in Canada belongs to three Brassica species (i.e., Brassica napus, Brassica rapa, and Brassica 

juncea). The generic term “canola” is derived from “Canadian oil” and refers to rapeseed 

varieties with low erucic acid (less than 2% of its fatty acid profile) and low glucosinolates 

(less than 30 micromoles per gram of air-dried, oil-free meal) (Canola Council of Canada, 

2021). The nutritional desirability of a high level of erucic acid content in the rapeseed oil was 

questioned. In addition, glucosinolates of rapeseed meal used in rations led to the pungent 

odour and taste for livestock consumption, which could reduce feed efficacy (Canola Council 

of Canada, 2021). The first canola cultivars with low erucic acid and glucosinolates were 

developed from common rapeseed by Canadian breeders during the1960’s and 1970’s through 

traditional plant breeding methods (Stefansson and Gold, 1995).  

 

The advantages of canola as edible oil on human health have been well known for decades. 

Canola oil, as a healthy vegetable oil, is low in saturated fat and consists of two essential fatty 

acids (i.e., alpha-linolenic acid and linoleic acid) which cannot be produced by human (Scarth 

and McVetty, 1999; Lin et al., 2013). Previous studies have shown the health benefits of canola 

oil in reducing blood cholesterol levels and heart disease risk (Lin et al., 2013). In addition, 

serving as source for livestock feed, canola meal contains high quality protein (Kalscheur and 

Moore, 2018). Canola meal has shown advantages in dairy rations with increased milk yield, 

milk protein yield, and dry matter intake compared with other vegetable protein source such as 

soybean meal (Martineau et al., 2013; Broderick et al., 2016). Canola is the predominant 

oilseed crop grown in Canada which remains the world leader in production and exports 

(Clayton et al., 2000; Morrison et al., 2016). With the growing global demand for canola, it is 

critical for Canada to maintain and improve canola yield and seed quality to meet the market 

demands.  
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2.2 Phenotyping in Plant Breeding 

 

The plant phenotype is defined as the ultimate plant expression of the structure, morphology, 

and physiology affected by genetic factors, environmental conditions, and their interactions 

(White et al., 2012; Araus and Cairns, 2014; Granier and Vile, 2014). Phenotying in a breeding 

program is defined as a process to measure or estimate various plant expressions such as canopy 

volume, growth rate, physiological characteristics (e.g., leaf area index and flower number, 

etc.), susceptibility to biotic and abiotic stress, and grain yield (White et al., 2012; Sankaran et 

al., 2015). Phenomics refers to the research field of improved phenotyping technologies for 

studying plant growth, performance, and composition (Furbank and Tester, 2011; White et al., 

2012; Sankaran et al., 2015) 

 

To solve the global food security problem, crop production must double by 2050 to satisfy the 

food demand of increasing populations, unstable climate conditions, and limited natural 

resources (Furbank and Tester, 2011; Tilman et al., 2011). Over the last decade, many efforts 

have been made to improve production practices to increase crop productivity (Sankaran et al., 

2015). Additionally, there has been great progress in genetic and genomic technologies for 

breeding programs, which rapidly reduced the costs and time of genotyping (White et al., 2012). 

During the breeding process, field-based phenotyping plays an important role in evaluating 

plant performance, which contributes to selection of ideal genotypes that are high yielding and 

stress tolerant by associating genotype with corresponding phenotype (Montes et al., 2007; 

Furbank and Tester, 2011; Sankaran et al., 2015). To select for better crop genotypes and 

develop new varieties with desired traits, plant breeders need to assess many distinct genotypes 

grown in multiple environments to detect interactions between genotype and environment 

(White et al., 2012; Araus and Cairns, 2014). However, the current methods of phenotyping 

crop samples are very laborious requiring manual collection of phenotypic data from numerous 

genotypes in the field such as flowering traits and plant height (Araus and Cairns, 2014; Shi et 

al., 2016). In general, the conventional methods are labor intensive, time consuming, expensive, 

destructive, and subjective (e.g., scoring scale of crop growth conditions) in large breeding 

trials (Araus and Cairns, 2014; Sankaran et al., 2015).  

 

By recognizing the limitation in existing phenotyping approaches, developing cost and time 

efficient techniques must be pursued to accelerate the breeding program. High-throughput 
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phenotyping uses various sensors integrated with autonomous or semi-autonomous platforms 

to collect phenotypic data across different genotypes in field trials (Shi et al., 2016). This novel 

data collection technique can provide more rapid and accurate phenotypic data collection with 

less labor efforts compared with conventional phenotyping methods, which allow more 

genotypes entering the breeding workflow (Araus and Cairns, 2014; Shi et al., 2016).   

 

2.3 Remote Sensing Techniques in High-throughput Phenotyping 

 

2.3.1 Remote Sensing Techniques 

 

Remote sensing is defined as a method of collecting data or information via platforms equipped 

with sensors without physically touching subjects (Araus and Cairns, 2014; Wójtowicz et al., 

2016). The information carrier in remote sensing is electromagnetic radiation reflected or 

emitted by objects, which can be collected by remote sensing sensors (Araus and Cairns, 2014; 

Wójtowicz et al., 2016). Regarding plants, the amount of radiation reflected or emitted is 

influenced by leaf pigments, cell structure, and water content (Kumar and Silva, 1973). The 

most widely used wavelengths in remote sensing are visible light (400 to 700 nm), near infrared 

(700 to 1,100 nm), shortwave infrared (1,100 to 3,000 nm), thermal infrared (7,000 to 14,000 

nm), and microwave bands (1 mm to 1 m) (Araus and Cairns, 2014; Wójtowicz et al., 2016).  

 

By correlating the radiation information with plant phenotypes, many categories of plant traits 

can be measured such as flowering traits, plant height, leaf area index, green biomass, and yield 

prediction through non-invasive approaches. Therefore, the remote sensing techniques can be 

used for field crop phenotyping, which are repeatable, accurate, non-destructive and time-

efficient methods to gathering the information generated through radiation reflected or emitted 

by crop canopy (Araus and Cairns, 2014).  

 

2.3.2 Platforms in Remote Sensing for Field Phenotyping  

 

Available remote sensing platforms for field phenotyping range from ground-based to aerial-

based systems including ground vehicles, hand-held instruments, satellites, aircraft, helicopters, 
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and unoccupied aerial vehicles (UAVs) (White et al., 2012; Sankaran et al., 2015; 

Haghighattalab et al., 2016; Wójtowicz et al., 2016). 

 

Ground-based remote sensing has been applied in field experiments to investigate plant 

responses to biotic and abiotic stress (Jackson, 1986; White et al., 2012; Wójtowicz et al., 2016). 

Sensors mounted on the ground-based platforms are expected to provide higher spatial and 

spectral resolutions with all measurements at a shorter distance compared to aerial-based 

systems, which is useful in relatively small-scale field trials (Jackson, 1986; White et al., 2012; 

Wójtowicz et al., 2016). However, low portability and long transporting time for the ground-

based platforms can preclude the utilization at multiple experimental locations (Haghighattalab 

et al., 2016).   

 

Compared with ground-based platforms, aerial-based remote sensing can rapidly record 

imagery of entire field and have no requirements for good soil conditions to enter. It is more 

practical for multiple large experimental areas and various environmental conditions. In recent 

years, small, unoccupied aerial vehicles (UAVs) with the aircraft remotely piloted from the 

ground station, have been developed for use in agriculture research (Shi et al., 2016; Wójtowicz 

et al., 2016). Compared with other aerial-based platforms such as satellite, small UAVs have 

gained more attention in agriculture projects because of the relatively low operation cost, user-

friendly and accurate navigation planning flight control, flexibility in flight height, opportunity 

for more frequent digital data collection, and high-resolution images (Sankaran et al., 2015; 

Haghighattalab et al., 2016; Shi et al., 2016; Wójtowicz et al., 2016).  

 

UAVs can be classified into two groups: fixed-wing and rotary-wing UAVs (Sankaran et al., 

2015; Shi et al., 2016; Wójtowicz et al., 2016). Selection of UAVs mainly depends on 

experimental objectives (Sankaran et al., 2015; Wójtowicz et al., 2016). Fixed-wing UAVs 

have higher flight speed and height, which enables the capture of a wider range of field areas 

compared to rotary-wing UAVs (Shi et al., 2016; Wójtowicz et al., 2016). In addition, fixed-

wing UAVs allow heavier sensors and longer flight duration (Shi et al., 2016; Wójtowicz et al., 

2016). On the other hand, rotary-wing UAVs can take off and land vertically without runways 

and have better hovering capability over the target field areas (Sankaran et al., 2015; Wójtowicz 

et al., 2016).  
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2.3.3 Sensors Used for Small UAV Platforms 

 

Different sensors have been developed for field phenotyping mounted to the small UAV 

platforms (Araus and Cairns, 2014; Sankaran et al., 2015; Shi et al., 2016; Wójtowicz et al., 

2016). These sensors are lightweight to meet the limited payload lift capability of small UAVs 

(Sankaran et al., 2015; Shi et al., 2016). In agriculture research, the most widely used sensors 

for small UAVs are RGB (red, green and blue wavelength bands from 400 to 700 nm), 

multispectral (i.e., 3 to 6 spectral bands from 400 to 1,000 nm), and thermal sensors (commonly 

from 7,000 to 14,000 nm), which are able to detect the wavelength of spectral radiation and the 

amount of energy (Zhang and Kovacs, 2012; Sankaran et al., 2015; Shi et al., 2016; Wójtowicz 

et al., 2016). Apart from these sensors, hyperspectral sensors (10s to 100s of continuous 

spectral bands) and LiDAR (light detection and ranging) emitting its own pulsed light to detect 

objects, have promising potential to be used for small UAVs (Sankaran et al., 2015; Shi et al., 

2016). Hyperspectral sensors can provide a wide spectral range but require development in 

lowering its weight to meet the maximum payload lift capabilities of UAVs (Shi et al., 2016). 

LiDAR can be used to collect morphological data by penetrating through crop canopy and 

collecting internal canopy structure and canopy density (Sankaran et al., 2015; Shi et al., 2016).  

 

Spatial, spectral and temporal resolutions are important factors to be considered when applying 

UAVs for research. Spatial resolution is narrowly defined as pixel size while broadly defined 

as the total area size that aerial images can cover (Wójtowicz et al., 2016). Spectral resolution 

means the ability to define distinct wavelength intervals or the width of wavelength bands (i.e., 

the higher spectral resolution, the narrower the wavelength range for a specific band) 

(Wójtowicz et al., 2016). Usually, temporal resolution indicates the frequency of data 

collection while the broad sense of temporal resolution refers to the earliest date when you can 

find historical data from saved images taken by imaging sensors.  
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2.4 Application of UAV in High-throughput Phenotyping  

 

2.4.1 Mechanisms of Crop Information (Canopy Reflectance and Canopy Structure) 

Extraction from UAV-based Images 

 

UAV-based phenotyping is mainly based on the characteristics of spectral radiation reflected 

and the amount of light energy emitted by plants, which are recorded by remote sensors 

(Christenson et al., 2016; Wójtowicz et al., 2016). Generally, the amount of spectral reflectance 

of plants is correlated to morphological and physiological traits due to leaf pigments, cell 

structure, and water content (Kumar and Silva, 1973); thus, ratios of different bands in the 

visual light, near and shortwave infrared wavelengths, named as vegetation indices (VIs), were 

used to characterize plant traits (Sankaran et al., 2015; Christenson et al., 2016; Wójtowicz et 

al., 2016). The most popular and widely used vegetation index is the normalized difference 

vegetation index (NDVI) (Equation 2.1) calculated as a ratio of difference over sum of the near 

infrared and red bands, which was first used by Rouse et al. (1974) in Great Plains study. NDVI 

is commonly used to identify vegetation area, plant health status, and biomass for agriculture 

research.  

 

NDVI = (
𝑅𝑁𝐼𝑅−𝑅𝑟𝑒𝑑

𝑅𝑁𝐼𝑅 +𝑅𝑟𝑒𝑑
)                                                       [2.1] 

 

Where RNIR represents the reflectance value of near infrared wavelength (700 - 1,100 nm), and 

Rred represents the reflectance value of red wavelength (600 - 700 nm).  

 

Aside from VIs calculated based on canopy reflectance, canopy structure information can be 

captured via building 3-dimensional (3D) crop surface models (CSMs) using structure-from-

motion (SfM) photogrammetry, which allows the measurements of canopy height, plant 

biomass, and lodging condition (Westoby et al., 2012; Shi et al., 2016; Malambo et al., 2018). 

SfM is a method providing high-resolution digital evaluation models (DEMs) from overlapping 

images (Westoby et al., 2012; Malambo et al., 2018). This technique applies bundle adjustment 

based on image matching features, which has been used for characterizing canopy height in 

various research such as barley (Bendig et al., 2014), wheat (Holman et al., 2016; Panday et 
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al., 2020), corn (Shi et al., 2016; Malambo et al., 2018), and sorghum (Shi et al., 2016; 

Malambo et al., 2018).  

 

2.4.2 Crop Traits Evaluation Using Imagery  

 

Many crop traits can be evaluated by high-throughput phenotyping method such as emergence 

rate, canopy cover, flowering number, canopy height, chlorophyll content, leaf area index, 

biomass, plant maturity, and yield (White et al., 2012; Araus and Cairns, 2014; Wójtowicz et 

al., 2016). Among those phenotypes, flowering number is an important phenotype positively 

correlated with seed yield in canola (Tayo and Morgan, 1975; Diepenbrock, 2000; Kirkegaard 

et al., 2018). Previous research has investigated flowering using imagery-based method in 

many crops (Guo et al., 2015; Sulik and Long, 2015, 2016; Fang et al., 2016; Wan et al., 2018; 

Xu et al., 2018; d’Andrimont et al., 2020; Han et al., 2021; Zhang et al., 2021b). For example, 

in canola, Sulik and Long (2016) reported the normalized difference yellowness index (NDYI) 

could effectively capture the yellowness of canola flower and estimate county-level yield with 

a coefficient of determination (R2) value of 0.76. Multiple authors (d’Andrimont et al., 2020; 

Han et al., 2021; Zhang et al., 2021b) found NDYI or NDYI-based pixel could successfully 

detect canola flower and determine the peak flowering timing using satellite or multispectral 

imagery with moderate to high estimation accuracy. Wan et al. (2018) and Gong et al. (2018) 

found the combination of vegetation index and classification methods can improve canola 

flower detection. In addition, Guo et al. (2015) estimated flowering panicles in rice using the 

machine learning method (i.e., support vector machine) and found a significant correlation 

between the visually measured and image-based flowering panicles with correlation coefficient 

(r = 0.82). Xu et al. (2018) applied convolutional neural network to count cotton bloom from 

UAV-based color imagery with less than 10% estimation error. 

 

Canopy height is another important crop trait in agriculture research, which is usually related 

to crop lodging, mechanical harvest, and yield estimation. This phenotype has been studied 

using imagery for biomass or yield estimation in various crops such as barley (Bendig et al., 

2014), corn (Geipel et al., 2014), poppy crop (Papaver somniferum L.) (Iqbal et al., 2017), 

cotton (Feng et al., 2019), wheat (Panday et al., 2020), and cool season crops including 

chickpea, dry pea, camelina, and canola (Zhang et al., 2021a). In a barley field trial conducted 

in Germany, estimated canopy height extracted from the CSMs generated by UAV-based 3D 
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geometry information was significantly regressed with ground reference height and dry 

biomass (R2 = 0.92 and 0.82, respectively) (Bendig et al., 2014). A poppy crop study 

demonstrated the digital canopy height could be reliably estimated using CSMs developed from 

RGB imagery with R2 ranging from 0.93 to 0.97 (Iqbal et al., 2017). They also stated that the 

digital canopy height is a promising indicator of poppy capsule volume (R2 = 0.74). Feng et al. 

(2019) applied UAV-based imaging method to estimate canopy height in cotton using the 

difference in DEMs between crop canopy and soil surface with less than 10% estimation error. 

This study reported a significant correlation between the digitalized canopy height and cotton 

yield with r ranging from 0.66 to 0.96. Similarly, low estimation error (5% to 11.9%) was 

observed when comparing the actual and estimated canopy heights in wheat using CSMs 

derived from RGB images (Panday et al., 2020). There were significant relationships between 

the estimated canopy height and above ground biomass and grain weights (R2 = 0.66 and 0.70, 

respectively). Zhang et al. (2021a) reported significant correlations between actual and 

estimated canopy heights using CSMs extracted from UAV-based RGB imagery in wheat, 

chickpea, dry pea, camelina, and canola.  

 

2.4.3 Yield Estimation Using UAV-based Imagery and The Machine Learning Method 

 

UAVs with various sensors have been used for yield or biomass estimation in many crops such 

as canola, rice, wheat, barley, corn, and cotton (Swain and Zaman, 2012; Bendig et al., 2014, 

2015; Johnson et al., 2016; Sulik and Long, 2016; Gong et al., 2018; Peng et al., 2019; Feng et 

al., 2020; Ramos et al., 2020; Zhang et al., 2021b). For example, canola seed yield was 

predicted by NDYI in a linear regression model, proposed by Sulik and Long (2016). They 

stated that there were significant correlations between NDYI and seed yield with higher R2 

values than NDVI at the peak flowering time. NDVI performed better in yield estimation at the 

vegetative stage by capturing greenness. But NDYI could catch more yellowness of flowering 

for yield prediction during the flowering period. They suggested that NDYI collected at the 

peak flowering time could provide more informative data for yield prediction because early 

flowering contributes more pods to final yield than late flowering. A field study conducted by 

Swain and Zaman (2012) investigated the application of canopy reflectance for estimating rice 

yield. The study illustrated that the NDVI extracted from UAV-based multispectral images 

collected at 65 days after planting (i.e., booting stage) had a linear relationship with yield (R2 

= 0.76) (Swain and Zaman, 2012).  
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Compared with using crop information obtained from a single image date to estimate biomass 

or yield, multi-temporal imagery over a growing season may provide more details of the 

dynamics of crop growth status and progress (Xue et al., 2007; Wang et al., 2014; Zhou et al., 

2017; Malambo et al., 2018; Zhang et al., 2021b). Xue et al. (2007) found the cumulative 

vegetation indices, accumulated from heading to maturity, had the most robust relationship 

with grain yield in wheat. Similar results were found by Wang et al. (2014) who stated that the 

cumulative NDVI and ratio vegetation index (RVI) observed from jointing to filling stages 

improved the yield estimation in wheat compared to the indices obtained from a single image 

date. Zhou et al. (2017) reported the cumulative NDVI and visible atmospherically resistant 

index (VARI) from booting to the heading stage had better performance for rice yield 

estimation with a R2 value of 0.75 and 0.72, respectively than when comparing with a single 

image.  

 

Crop yield is a complex crop trait affected by genotype, environments, and their interactions. 

Therefore, simply applying a single input variable in a yield or biomass prediction model may 

result in inaccurate results because of the potential saturation of VIs at a specific growth stage, 

which neglects important growth condition and information during the remaining growing 

season (Geipel et al., 2014; Liu et al., 2019; Feng et al., 2020; Wan et al., 2020). Geipel et al. 

(2014) applied a multiple linear regression model including several VIs representing crop 

coverage and digital crop heights computed from CSMs to estimate corn yield. They reported 

that the multiple linear regression model improved the accuracy of yield estimation compared 

with a simple linear regression model (Geipel et al., 2014). Liu et al. (2019) stated that the 

combination of NDVI with a texture metrics (i.e., contrast) improved the accuracy of biomass 

prediction compared with a single VI, and this combination had a great potential for biomass 

estimation in canola. Feng et al. (2020) found that yield prediction accuracy in cotton increased 

when DSM-based plant height, cotton fibre index, canopy temperature and canopy colour space 

were considered in the yield estimation model compared to one image feature. Wan et al. (2020) 

indicated the combination of NDVI, NDYI, canopy height and canopy coverage greatly 

improved the prediction results of yield in rice compared to using a single variable.   

 

Within the last decade, various modeling algorithms have been applied to estimate yield or 

biomass using imagery-based phenotypes as independent variables (Wang et al., 2016; Liu et 
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al., 2019; Feng et al., 2020; Wan et al., 2020). Random forest (RF) is one of the most used 

models to build a descriptive yield model. It is an ensemble machine learning method for 

classification and regression determination. For the regression purposes, it can efficiently 

handle many independent variables, has less sensitivity to outliers and less over-fitting issues 

(Wang et al., 2016; Liu et al., 2019). In addition, the RF regression model needs fewer model 

hyperparameters (i.e., number of decision trees and number of variables for each split) 

compared with other machine learning methods such as artificial neural network and support 

vector regression (Wang et al., 2016; Liu et al., 2019). A RF regression model creates many 

randomized and independent regression trees (i.e., decision trees) which forms the “forest”. 

Each decision tree is trained by randomly selected a subset of training samples and variables 

using a bootstrap aggregating algorithm. Bootstrapping aggregating is an ensemble technique 

which chooses a random sample from the original dataset. Then the RF regression model 

combines the multiple decision trees and takes the average of all the outputs to develop an 

optimal ensemble model with accurate and stable prediction. It is important to determine two 

model hyperparameters including the number of decision trees (ntree) and the number of 

variables at each tree (mtry). For the RF regression model, the default values for the ntree and 

mtry are 500 trees and 1/3 of total number of variables, respectively (Wang et al., 2016).  

 

2.5 Pre-processing UAV-based Images (Geometric and Radiometric Calibration) 

 

Large quantities of overlapped images covering the whole experimental field can be obtained 

by small UAVs. Prior to analyzing the image of study area, a critical task is combing all 

individual overlapped images into a complete field map of the field using a process of 

mosaicking in professional image software (e.g., Pix4D pro mapper and PhotoScan) (Torres-

Sánchez et al., 2014). The image software will search for common points in the overlapped 

images and match the overflown area. However, commonly used image sensors mounted to 

UAV platforms have limitations in image geometry because of geometric distortion problems 

of consumer-grade camera, which may result in inaccurate size of object (Haghighattalab et al., 

2016). Therefore, geometric calibration prior to analyzing images is critical (Torres-Sánchez 

et al., 2014; Haghighattalab et al., 2016). According to the positions of ground geo-reference 

points (i.e., ground control points), image geometry can be constructed, and the individual 

aerial images are projected over it for orthophoto process (Torres-Sánchez et al., 2014; 
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Haghighattable et al., 2016). Global positioning system (GPS) measures geo-location for each 

ground control point (GCP) (Haghighattable et al., 2016). Although lens distortion is another 

internal problem, this issue is expected to be compensated by the image sensor itself.  

 

Ortho-mosaic images also need radiometric calibration because of unstable illumination 

intensity in the field resulting from shading from cloud as well as atmospheric absorption 

differing within and among imaging dates (Haghighattable et al., 2016). Gray-scale or white 

calibration panels can be used for calibration to correct for this (Wang et al., 2015; 

Haghighattable et al., 2016). Some software (e.g., Pix4D pro mapper) can semi-automatically 

calibrate the radiometric and geometric issues of images, which improve the precision of 

following image analysis (Torres-Sánchez et al., 2014; Haghighattalab et al., 2016).  

 

2.6 Challenges in Field-based High-throughput Phenotyping Implementation 

 

Collecting raw phenotyping data is not difficult with advances in UAVs platforms and sensors; 

however, subsequent processing and mining “big phenotyping data” sets remain challenging 

(White et al. 2012; Araus and Cairns, 2014). More specifically, combining and comparing the 

imagery collected by different sensors requires imagery processing standardization by applying 

efficient image software tools (White et al. 2012; Araus and Cairns, 2014). In addition, properly 

understanding and effectively using large volumes of phenotyping data needs advanced 

algorithms and modeling for incorporating genotypic, phenotypic, and environmental data 

(White et al. 2012; Araus and Cairns, 2014). Otherwise, extensive calculations or inaccurate 

modeling may limit real-time information of plants, which may hinder breeders and farmers 

from predicting or making accurate decisions for genotypes selection and crop management 

(White et al. 2012; Araus and Cairns, 2014; Haghighattable et al., 2016). In conclusion, 

automatic and rapid imaging processing and advanced statistical tools need to be improved to 

drive forward the application of UAV-based imagery in agriculture field (White et al. 2012; 

Araus and Cairns, 2014; Haghighattable et al., 2016). 
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CHAPTER 3 PHENOTYPING FLOWERING IN CANOLA (Brassica napus L.) AND 

ESTIMATING SEED YIELD USING AN UNOCCUPIED AERIAL VEHICLE (UAV)-

BASED IMAGERY 

 

The content of this chapter has been published in Frontiers in Plant Science: Zhang, T., Vail, 

S., Duddu, H. S., Parkin, I. A., Guo, X., Johnson, E. N., and Shirtliffe, S. J. (2021). Phenotyping 

flowering in canola (Brassica napus L.) and estimating seed yield using an unmanned aerial 

vehicle-based imagery. Frontiers in Plant Science, 12, 1178. doi: 10.3389/fpls.2021.686332 

 

This chapter has been reformatted from the published version of the manuscript based on the 

requirements of manuscript-style thesis and dissertations. 

 

Abstract 

 
Phenotyping traits related to crop performance is critical for genotype selection and variety 

development in plant breeding. Canola (Brassica napus L.) flowers semi-indeterminately and 

the bright yellow flowers accumulate over a relatively long period. Flower production of canola 

plays an important role in yield determination. Yellowness of canola petals may have a critical 

reflectance signal and can be a good predictor of pod number and, therefore, seed yield. 

However, estimating flowering based on traditional visual scales is subjective, time-consuming, 

and labor-intensive. Recent developments in phenotyping technologies using unoccupied aerial 

vehicles (UAVs) make it possible to effectively capture crop information and to predict crop 

yield via imagery. The objectives were to investigate the application of vegetation indices in 

estimating canola flower numbers and to develop a descriptive model of canola seed yield. 

Fifty-six diverse Brassica genotypes including 54 B. napus genotypes, a Brassica carinata 

genotype, and a Brassica juncea genotype were grown near Saskatoon, SK, Canada from 2016 

to 2018, and near Melfort and Scott, SK, Canada in 2017. Aerial imagery with geometric and 

radiometric corrections was collected through the flowering stage using a UAV mounted with 

a multispectral camera. The normalized difference yellowness index (NDYI) was a useful 

vegetation index for representing canola yellowness, which was related to canola flowering 

number during the full flowering stage. However, the flowering pixel number estimated by the 

thresholding method improved the ability of NDYI to detect yellow flowers with coefficient of 

determination (R2) values ranging from 0.54 to 0.95. Moreover, compared with using a single 

image date, the NDYI-based flowering pixel numbers accumulated over time covers more 

growth information and can be a good predictor of pod number and thus canola yield with R2 

ranging from 0.12 to 0.42. These results indicate that NDYI-based flowering pixel number can 
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estimate flowering number. The cumulative flowering number extracted from imagery over 

time can be a potential phenotype associated with canola seed yield. 

 

3.1 Introduction 

 

Canola (Brassica napus L.) is the predominant oilseed crop grown in Canada (Clayton et al., 

2000). Canada has the largest area of canola production in the world (Statistics Canada, 2018). 

With the growing global demand for canola, Canada needs to maintain and improve canola 

yield and seed quality to meet the market demands. Yield components of canola consist of the 

number of pods, the seeds per pod, and the weight per seed (Tayo and Morgan, 1975; McGregor, 

1981; Diepenbrock, 2000; Ivanovska et al, 2007; Faraji, 2012). Among these components, pod 

number retained at maturity is the most important factor as it is influenced most by environment 

constraints (Tayo and Morgan, 1975; McGregor, 1981; Diepenbrock, 2000; Ivanovska et al, 

2007; Faraji, 2012; Gan et al., 2016; Kirkegaard et al., 2018). The flowering stage of canola is 

important for yield estimation as flowers produced in the first 2-3 weeks from anthesis 

contribute to 75% of the pods at maturation (Tayo and Morgan, 1975). Additionally, the 

flowering period can last from 2 to 6 weeks, which is a major portion of the crop growth cycle 

(Gan et al., 2016; Kirkegaard et al., 2018). Thus, flower production is one of the most important 

factors in determining final seed yield (Tayo and Morgan, 1975; Diepenbrock, 2000; Faraji et 

al., 2008; Fang et al., 2016; Gong et al., 2018; Kirkegaard et al., 2018; Zhang and Flottmann, 

2018).  

 

During the plant breeding process, field-based phenotyping plays an important role in 

evaluating plant performance. It contributes to the selection of ideal genotypes that are high-

yielding by associating genotype with the corresponding phenotype (Montes et al., 2007; 

Sankaran et al., 2015). To select for better canola genotypes and eventually develop better 

varieties, breeders need to assess many distinct genotypes grown in multiple environments to 

detect interactions between genotype and environment (White et al., 2012; Araus and Cairns, 

2014).  

 

The estimation of flowering number based on traditional visual scales is subjective, labor-

consuming, and is often destructive (Sulik and Long, 2015; Fang et al., 2016; Wan et al., 2018). 
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Although ground-based platforms such as Greenseeker (Trimble Inc., Westminster, CO, United 

States), Crop Circle (Holland Scientific Inc., Lincoln, NE, United States), or time-lapse RGB 

imaging can provide adequate spectral data, these platforms still require a prohibitive amount 

of time and labor (Xu et al., 2017; Hassan et al., 2019). Additionally, data collection using 

these ground-based platforms may cause crop canopy damage, soil compaction, and is also 

subject to environmental conditions that could limit field access. Therefore, it is necessary to 

develop an objective, non-destructive, and efficient method to estimate flower numbers. With 

this, one can model seed yield by assessing radiometric data of the crop canopy, which has the 

potential to accelerate breeding methods for yield improvement. Current improvements in 

aerial-based platforms and imaging sensors make it possible to effectively collect phenotypes 

via analyzing digital imagery (Kim et al., 2019). Unoccupied aerial vehicles (UAVs) equipped 

with various sensors can quickly provide large quantities of field data enabling plant breeders 

to efficiently detect traits of numerous plots in large-scale field trials (Kefauver et al., 2017).  

 

Spectral reflectance of the crop canopy is correlated with morphological and physiological 

traits. Leaf pigment composition and cell structure can affect reflectance of crop; thus, ratios 

or differences of different bands in the visual light, near IR (NIR) and shortwave IR 

wavelengths (i.e., vegetation indices) can be a tool to characterize plant traits (Sankaran et al., 

2015; Wójtowicz et al., 2016). Previous studies have shown that multispectral reflectance 

profiles of visible bands (i.e., blue, green, and red), and NIR bands could estimate canopy 

features such as nitrogen use efficiency (Kefauver et al., 2017; Prey et al., 2020), leaf area 

index (Tunca et al., 2018; Blancon et al., 2019), and flower numbers (Guo et al., 2015; Sulik 

and Long, 2015, 2016; Carl et al., 2017; Gong et al., 2018; Wan et al., 2018; Xu et al., 2018). 

These plant traits investigated remotely have the potential to improve yield estimates. Flower 

number, as an important factor in determining crop yield, is correlated with optical properties 

in various crops, such as rice (Guo et al., 2015), cotton (Xu et al., 2017, 2018), and canola 

(Sulik and Long, 2015, 2016; Gong et al., 2018; Wan et al., 2018). Guo et al. (2015) applied a 

machine learning model, the support vector machine, for rice flowering identification using 

RGB images, which resulted in a significant correlation between the visually counted rice 

flowering panicles and identified flowering (correlation coefficients ranging from 0.64 to 0.82). 

In canola, there are three different canopy morphologies during the growing season, namely, 

the vegetative phase (green canopy dominated by leaves), the flowering phase (yellow canopy 

dominated by the yellowness of flower petals), and the mature phase (green or brown canopy 
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because of pods and branches) (Sulik and Long, 2016). During the flowering phase, the 

yellowness of canola petals is due to carotenoid absorption of blue and reflectance of a mixture 

of green and red wavelengths (Sulik and Long, 2015, 2016), but the yellow color has little 

impact on red edge and NIR reflectance unlike a green vegetative canopy (Shen et al., 2009; 

Migdall et al., 2010; Sulik and Long, 2015, 2016). Thus, the contributed red light decreases the 

normalized difference vegetation index (NDVI) values (Equation 3.1) and adversely impacts 

the ability of NDVI to monitor crop growth condition and estimate yield during the flowering 

phase (Shen et al., 2009, 2010; Sulik and Long, 2015, 2016). Sulik and Long (2015) found that 

the ratio of green and blue was strongly correlated with the actual flower numbers with a 

coefficient of determination (R2) of 0.87, and they proposed the normalized difference 

yellowness index (NDYI) (Equation 3.2) could be a potential yield predictor (R2 = 0.76) (Sulik 

and Long, 2016). d’Andrimont et al. (2020) and Han et al. (2020) reported that NDYI 

successfully captured canola yellowness and detected the peak flowering dates using Sentinel-

2 satellite imagery (European Space Agency, United Nations). Fang et al. (2016) found that 

reflectance at 550 nm was the most sensitive band to estimate flowering coverage with an 

estimation error below 6% when compared with wavelengths at 490, 670, 720, 800, and 900 

nm. Wan et al. (2018) and Gong et al. (2018) reported that combining vegetation index and 

image classification methods (i.e., k-means clustering method by CIE L*a*b space and pixel-

level spectral mixture analysis) improved the accuracy of flower numbers and yield estimation 

in canola with R2 values of 0.89 and 0.75, respectively.  

 

Although several studies have detected canola flowering number and predicted yield, most of 

these field experiments were conducted with relatively few canola genotypes and environments, 

which may neglect the effect of genotype and environmental fluctuations on yellowness of 

flower (Ohmiya, 2011) and petal size (Jiang and Becker, 2003; Qian et al., 2021). In addition, 

yield estimation models used in those studies were based on only one image date (Sulik and 

Long, 2016; Gong et al., 2018), which ignores the effect of time and duration of flowering 

(Tayo and Morgan, 1975). Thus, the cumulative reflectance data of flowering throughout the 

flowering period may provide a better estimate of crop yield. Therefore, the objectives in this 

study were to use UAV multispectral data to detect flowers within a wide range of canola 

genotypes (Table A.1, Appendix A) and to estimate seed yield in canola using time series 

imagery collected during the flowering period. 
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3.2 Materials and Methods 

 

3.2.1 Experimental Sites and Plant Materials 

 
The experiment was conducted at the Agriculture and Agri-Food Canada Research Farm near 

Saskatoon, SK, Canada from 2016 to 2018 (52° 10' 52.9'' N, 106° 30' 10.6'' W in 2016; 52° 10' 

59.3'' N, 106° 30' 53.7'' W in 2017; 52° 10' 57.7'' N, 106° 30' 01.4'' W in 2018), and near Melfort 

(52° 49' 9.6'' N, 104° 35' 46.9'' W) and Scott (52° 21' 55.3'' N, 108° 52' 32.6'' W), SK, Canada 

in 2017 (Table 3.1). The soil texture at Saskatoon was a clay loam with a pH of 7.3 and an 

organic matter content of 5.5%. The field plots were set up in a randomized incomplete block 

design (i.e., rectangular lattice design) with three replications (Figure 3.1). A rectangular lattice 

design was used to reduce spatial variability within each block. Individual plot size was 6.0 m 

long x 1.2 m wide in 2016 and 2018, and 6.0 m long x 1.5m wide in 2017. Fifty-six genotypes 

(Table A.1, Appendix A; Saskatoon Research and Development Center, Agriculture and Agri-

Food Canada) including 54 diverse B. napus genotypes, a B. carinata genotype, and a B. juncea 

genotype were selected and planted with a row spacing of 0.3 m. Fifty of the diverse genotypes 

were used as founders to form a spring B. napus Nested Association Mapping (NAM) 

population from crossing founders to a common reference genotype (Ebersbach et al., 2022). 

This panel, which represents diverse germplasm resources and the historical basis of canola 

breeding programs, differs in geographic origin, pedigree, phenotypes, and genotype 

(Ebersbach et al., 2022). Seeding occurred on May 27, 28, and 21 in 2016, 2017, and 2018, 

respectively, at a seeding rate of 108 seeds m-2 (Table 3.1). Out of the 56 genotypes, 16 were 

selected and planted in two adjacent but separate plots as double plots. The criteria of genotype 

selection for the double plots were based on contrasting seed quality (i.e., seed color, acid 

detergent lignin, seed glucosinolates, and seed erucic acid) and phenological similarities (Taye 

et al., 2020). The reason for setting double plots was to preserve one plot for imaging and yield 

determination without any subsamples being removed. The 16 B. napus genotypes planted in 

double plots were YN04-C1213sp013, DH27298, NAM-0, 5, 13, 14, 17, 23, 30, 37, 32, 43, 46, 

72, 76, and 79.  
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Table 3.1 Summary of canola trials and data collection (imagery acquisition and manual flower count) at 

Saskatoon, SK, Canada from 2016 to 2018, and at Melfort and Scott, SK, Canada in 2017.  

Site Year 
Seeding 

date 

Number of 

genotypes 

Flight 

altitude 

(m) 

Image acquisition dates 
Manual flower 

count dates 

Saskatoon 2016 May 27 56 20 
July 14; 19; 26 

August 06 

July 15; 22; 29 

August 05 

       

 2017 May 28 56 20 
July 07; 11; 15; 19; 22; 26 

August 01; 09; 16; 22 

July 10;18; 25 

August 01 

       

 2018 May 21 56 25 

June 28 

July 06; 09; 16; 20; 24; 27; 30 

August 03; 07 

July 10; 17; 24; 31 

       

Melfort 2017 May 18 16 15 July 05; 13; 20; 26 July 05; 20; 26 

       

Scott 2017 June 20 16 20 August 09; 16; 29 August 09; 16 

 

 

 

Figure 3.1 The overview of experimental plot layout at the Agriculture and Agri-Food Canada Research Farm 

(52° 10' 52.9'' N, 106° 30' 10.6'' W) near Saskatoon, SK, Canada on July 14, 2016. 

 

The selected 16 B. napus genotypes were planted in a randomized complete block design with 

three replications at the Melfort and Scott locations in 2017. The 16 genotypes were seeded in 

double-plots and subsampling occurred in destructive plots. The neighbouring non-destructive 

plots were used for imaging and final yield determination. All genotypes were planted in 5 m 

long x 1.2 m wide plots at Melfort and in 5m long x 1 m wide plots at Scott. Canola was seeded 
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on May 18 at Melfort and re-seeded on June 20 at Scott due to hail damage, at a desired seeding 

rate of 108 seeds m-2 with a row spacing of 0.3 m (Table 3.1). Edge® (ethalfluralin) was applied 

as a pre-emergence herbicide at a rate of 19.1 kg ha-1 to control weeds. Any weeds not 

controlled by the herbicides were removed by hand. 

 

3.2.2 Image Acquisition 

 

3.2.2.1 Platform and sensor 

 
The UAV used in this study was a Draganflyer X4-P model in 2016 and 2017 (DraganFly Inc., 

Saskatoon, SK, Canada). It is a rotary-wing platform with a maximum payload of 800 g. It can 

semi-automatically depart and land based on GPS navigation mode and optional Surveyor 

software. Flight mission was planned in Surveyor software (DraganFly Inc., Saskatoon, SK, 

Canada) by importing ground coordinates of the field boundaries. The other rotary-wing 

platform was a Draganflyer Commander model (DraganFly, Inc., Saskatoon, SK, Canada), 

used in 2018, which differs from the X4-P model in its maximum payload capacity (1,000 g).  

 

A multi-spectral camera (RedEdge, MicaSense Inc., Seattle, WA, United States) was used to 

acquire images (12-bit image) with an image resolution of 1.2 megapixels (1,280 x 960 pixels) 

for each of five spectral bands (blue: 475  10 nm; green: 560  10 nm; red: 668  5 nm; red 

edge: 717  5 nm; near infrared: 840  20 nm) (Table 3.2). The focal length of the camera is 

5.5 mm and ground sampling distance at 15, 20, and 25 m above ground level was 1.02, 1.36, 

and 1.70 cm per pixel, respectively (Table 3.2). Images of a MicaSense reflectance panel 

(RedEdge, MicaSense Inc., Seattle, WA, United States) were taken before and after each UAV 

flight for radiometric calibration. To geo-reference aerial images, six ground control points 

(GCPs) were distributed across the experimental area during the whole crop season in 2016 at 

Saskatoon. The size of the GCPs was 60 cm x 60 cm, which were geolocated by Trimble 

GeoExplorer 2008 GPS (Trimble Inc., Westminster, CO, United States). GCPs were manually 

placed at the same location when phenotyping canola by UAV, which provided an overlay of 

images taken from various dates and reduced workload by using the same geolocation 

information for each GCP. For the four locations in 2017 and 2018, GCPs were permanently 

mounted within guard plots to avoid manually carrying GCPs to the field. 
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Table 3.2 Basic specifications for the multispectral camera (RedEdge) equipped on the unoccupied aerial vehicle 

(UAV) platforms. 

GSDa (cm per 

pixel) (per 

band) 

Flight 

altitude 

(m) 

Sensor resolution 

per band (MP)b 

Focal 

length 

(mm) 

Full width at half 

maximum (nm) 
Peak wavelength (nm) 

1.02  

1.36  

1.70  

15 

20 

25 

1.2c  5.5 

Blue: 465 - 485 

Green: 550 - 570 

Red: 663 - 673 

Red edge: 712 - 722 

NIR: 820 - 860 

Blue: 475 

Green: 560 

Red: 668 

Red edge: 717 

NIR: 840 

aGSD: ground sampling distance  
bMP: megapixel 
cimage resolution: 1.2 MP = 1,280 x 960 pixels 

 

 

3.2.2.2 UAV flight schedule 

 
The UAV, equipped with a multispectral camera, captured the images of the fields weekly 

during the flowering stage at Saskatoon in 2016 and at Melfort and Scott in 2017 (Table 3.1). 

The imagery was collected semi-weekly in 2017 and 2018 at Saskatoon for the duration of 

canola flowering (Table 3.1). For the Saskatoon location, although weather conditions such as 

rain, clouds, and heavy wind limited the flight schedule, image timing interval was achieved 

as close to 7 days in 2016, and 4 days in 2017 and 2018. For the Melfort and Scott locations in 

2017, image collection was carried out at a 7-day interval. 

 

3.2.3 Image Process and Data Extraction 

 

3.2.3.1 Image pre-process  

 
Multispectral images were processed, stitched, and calibrated in Pix4Dmapper Pro (Pix4D Inc., 

San Francisco, CA, United States). Individual images were aligned based on common points 

from the overlapped images to generate a geo-referenced image that matched the overflown 

study area. Geometric calibration was done by importing the geo-location of GCPs to reduce 

geometric distortion problems of the camera. A system coordinate, World Geodetic System 

1984, was applied to generate geo-referenced images. The images of the MicaSense reflectance 

panel were used in the radiometric calibration to enhance spectral consistency between 

different flight dates. Then the five generated reflectance maps corresponding to each spectral 

band were exported and used for further analysis.  
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3.2.3.2 Vegetation index calculation, thresholding, and accumulation of flowering 

progress 

 
ArcGIS software version 10.4.1 (ESRI Canada, Toronto, ON, Canada) was applied for plot 

segmentation, vegetation indices calculation, and thresholding. In this study, the middle three 

rows for each plot were segmented using polygon shapes with assigned plot numbers. The 

polygon shapes were generated using the “Create Feature” tool. Vegetation index maps were 

derived via calculation of the reflectance maps using the “Raster Calculator” tool. Commonly 

used vegetation indices, NDVI (Rouse et al., 1974), NDYI (Sulik and Long, 2016), green 

normalized difference vegetation index (GNDVI) (Gitelson et al., 1996), and normalized 

difference red edge index (NDRE) (Gitelson and Merzlyak, 1997) were calculated as following 

equations to compare with the actual flower number counts: 

 

                                    NDVI = (
𝑅𝑁𝐼𝑅−𝑅𝑟𝑒𝑑

𝑅𝑁𝐼𝑅+𝑅𝑟𝑒𝑑
)                                                             [3.1] 

                                   NDYI = (
𝑅𝑔𝑟𝑒𝑒𝑛−𝑅𝑏𝑙𝑢𝑒

𝑅𝑔𝑟𝑒𝑒𝑛 +𝑅𝑏𝑙𝑢𝑒
)                                                         [3.2] 

                                    GNDVI = (
𝑅𝑁𝐼𝑅− 𝑅𝑔𝑟𝑒𝑒𝑛

𝑅𝑁𝐼𝑅+ 𝑅𝑔𝑟𝑒𝑒𝑛
)                                                       [3.3] 

                                   NDRE = (
𝑅𝑁𝐼𝑅− 𝑅𝑟𝑒𝑑 𝑒𝑑𝑔𝑒

𝑅𝑁𝐼𝑅+ 𝑅𝑟𝑒𝑑 𝑒𝑑𝑔𝑒
)                                                      [3.4] 

 

where RNIR, Rred, Rgreen, Rblue, and Rred edge are the reflectance values at bands centered on 840, 

668, 560, 475, and 717 nm, respectively (Table 3.2). NDVI is the most commonly used 

vegetation index to identify crop growth condition and yield estimation (Rouse et al., 1974). 

NDYI has previously shown strong correlation with seed yield (Sulik and Long, 2016). GNDVI 

(Gitelson et al., 1996) and NDRE (Gitelson and Merzlyak, 1997) are related to photosynthesis 

and have been reported in previous research. 

 

Canola flowers and leaf organs co-existed within each plot during flowering; thus, the 

“Conditional Function” [Con (index map > threshold value, index map, “”)] in the “Raster 

Calculator” tool was used to separate flowering pixels from non-flowering pixels by applying 

threshold values on vegetation index maps. Threshold values were manually determined by 

comparing the composited RGB images with calculated index maps so that most flowering 

pixels could be selected and segmented. All pixels in the index map that have values larger 
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than the threshold values were kept in a threshold index map, otherwise, pixels were discarded. 

Then, the “Zonal Statistics” tool was used to extract the summary statistics of the threshold 

index map, which included the number of flowering pixels per plot.  

 

This study involved 56 diverse genotypes with a high flowering density gradient and diverse 

flowering timing. In most cases, the 56 genotypes showed different development stages within 

an image. It was difficult to determine which image date was the perfect timing for yield 

estimation. For this reason, the area under the flowering progress curve (AUFPC) was used to 

calculate accumulation of flowering progress during the flowering season using the following 

equation: 

 

𝐴𝑈𝐹𝑃𝐶 = (
𝐹1+𝐹2

2
− 𝐹1) (𝑡2 − 𝑡1) + (

𝐹2+ 𝐹3

2
− 𝐹1) (𝑡3 − 𝑡2) + ⋯ + (

𝐹𝑛−1+𝐹𝑛

2
− 𝐹1) (𝑡𝑛 −

𝑡𝑛−1)                                                                                                                                       [3.5] 

 

where F1, F2, F3, Fn-1, and Fn represent the flowering pixel numbers at each image date and t1, 

t2, t3, tn-1, and tn represent Julian date at each image timing. The flower accumulation refers to 

the overall flower progress over the flowering stage. The AUFPC is an adjusted accumulation 

equation based on the area under the disease progress curve (AUDPC), which is used in general 

in pathology studies for estimating the effect of disease progression on crop yield (Jeger and 

Viljanen-Rollison, 2001; Simko and Piepho, 2012). Similar to the AUDPC, the advantage of 

the AUFPC is providing a baseline for each genotype to adjust flowering progress, which can 

reduce the effect of diverse initial flowering pixel numbers of each genotype on the calculated 

area. The AUFPC equation converted several flowering pixel numbers at a series of image 

timings into a single value for reporting. The higher AUFPC number indicates greater overall 

flowering number. Figure 3.2 displays an example of flowering progress over time for a 

genotype (NAM-23). Seven data points on the curve line represent NDYI-based pixel numbers 

for each image date. Pictures under the seven points are corresponding threshold index maps. 

Then, the area under the curve line was calculated using the AUFPC equation (Equation 3.5) 

for NAM-23. The same mathematical method was used to calculate flowering progress for all 

other genotypes across 5 site years.  
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Figure 3.2 The growth pattern of flowering progress for a Brassica napus genotype (NAM-23) during the 

flowering stage at the Agriculture and Agri-Food Canada Research Farm (52° 10' 59.3'' N, 106° 30' 53.7'' W) near 

Saskatoon, SK, Canada in 2017. X-axis is imagery acquisition date (Julian date) in 2017. The y-axis is normalized 

difference yellowness index (NDYI)-based pixel number per plot. A solid curve line is the flowering progress 

trend of NAM-23. Seven points on the progress curve line represent NDYI-based pixel number per plot at seven 

imagery acquisition dates. Seven pictures under each point are corresponding false-color images after thresholding 

with flowers highlighted in yellow. The region of interest was highlighted in red.  

 

3.2.4 Ground Reference Data Collection 

 
Canola flowering started in early July and ended in early August. The first row of each plot 

was manually sampled to estimate flowering at a 7-day interval from July to August. Flower 

numbers on the main stem and branches was counted within a 0.075 m2 area. Then, the counted 

flower number was converted to per-plot value (i.e., actual flower number per plot area). The 

manual flower count for total 168 experimental plots required approximately eight hours with 

the help of nine summer students per sampling date. Grain yield was straight combined by a 

small plot combine harvester when the crop was mature and dry. This occurred multiple times 

due to differing maturity dates of the B. napus genotypes. To reduce the border effect, the 
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middle four rows of each plot were harvested. All harvested seeds were air-dried to 10% seed 

moisture. Final yields were weighed after seed cleaning.  

 

3.2.5 Statistical Analysis 

 
The PROC LATTICE procedure of SAS version 9.4 (SAS Institute, Cary, NC, United States) 

was used to analyze the data. The LATTICE procedure reduced variations within blocks. After 

data adjustment, PROC REG in SAS version 9.4 was used as the statistical tool to investigate 

the simple linear regressions between ground reference data and imagery. Both ground 

reference data (i.e., actual flower number and seed yield) and imagery (i.e., vegetation indices) 

were averaged for each genotype. In this study, a zero-intercept linear regression model was 

used as there was no flowering pixel prior to the commencement of flowering when comparing 

the actual flower number and imagery. Furthermore, the fitted intercept values were close to 

zero in most cases. Scatterplots of variables were observed to determine whether data could be 

combined for analysis. In the case where data could not be combined, data were analyzed 

within site years (Tables B.1, B.2, Appendix B). 

 

3.3 Results and Discussion 

 

3.3.1 Regression Between Flowering Pixel Number and Actual Flower Numbers 

 
Initial regression results showed that GNDVI and NDRE did not demonstrate significant 

correlations with the actual flower count (p > 0.05, data not shown). Meanwhile, regression 

results showed NDYI had greater coefficients of determination (R2) than NDVI with actual 

flower numbers over 3 years of study. Increased red light from the yellow petals can reduce 

NDVI values and affect its ability to detect canola growth conditions. Noise from soil 

background and green vegetation within a plot at the early flowering stage may result in an 

adverse effect on the ability of NDYI to detect yellow flowers. For this reason, NDYI maps 

were used to extract flowering pixels and remove non-flowering pixels by the thresholding 

method. Flowering pixels were detected and counted when pixel values were greater than 

NDYI-based threshold levels. Threshold values were 0.59, 0.52, and 0.45 in 2016, 2017, and 

2018, respectively.  
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Across 5 site years, the R2 values between NDYI-based flowering pixel numbers and actual 

flower numbers ranged from 0.54 to 0.95 during flowering duration (Figures 3.3–3.7) 

depending on the date of sampling. There were significant relationships between flowering 

pixel numbers and actual flower numbers in 2016 at Saskatoon (Figure 3.3). Not surprisingly, 

the early flowering stage (July 15) had a significant regression relationship with actual flower 

numbers with R2 of 0.85 (Figure 3.3A). Developing flowers were on the upper part of a plant 

at the early flowering stage so sensors could easily detect these early-blooming flowers. 

Whereas, the late flowering stage (August 05) showed the weakest regression (R2 = 0.54) 

(Figure 3.3D) compared with other image dates, which might be a result of lower sensitivity of 

NDYI to differentiate yellow flowers and dark green pods. Dark green pods impart more green 

reflectance, which can make NDYI less sensitive to yellow flowers, as yellow is a composite 

color of green and red (Yates and Steven, 1987; Sulik and Long, 2015, 2016). Additionally, 

the potential reason why it had the smallest R2 was the occlusion of late-developing flowers 

growing on the lower branches.  
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Figure 3.3 The relationship between actual flower numbers per plot and pixel numbers extracted from aerial 

images during the flowering stage at Saskatoon, SK, Canada in 2016. Actual flower numbers per plot were 

manually measured. Pixel number per plot was detected by the thresholding method. (A) Regression equation for 

July 15, 2016: y=1.60x, R2=0.85. (B) Regression equation for July 22, 2016: y=2.20x, R2=0.77. (C) Regression 

equation for July 29, 2016: y=2.24x, R2=0.79. (D) Regression equation for August 05, 2016: y=1.18x, R2=0.54. 
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Figure 3.4 The relationship between actual flower numbers per plot and pixel numbers extracted from aerial 

images during the flowering stage at Saskatoon, SK, Canada in 2017. Actual flower numbers per plot were 

manually measured. Pixel number per plot was detected by the thresholding method. (A) Regression equation for 

July 10, 2017: y=2.41x, R2=0.95. (B) Regression equation for July 18, 2017: y=1.83x, R2=0.91. (C) Regression 

equation for July 25, 2017: y=2.23x, R2=0.82. (D) Regression equation for August 01, 2017: y=0.78x, R2=0.67. 
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Figure 3.5 The relationship between actual flower numbers per plot and pixel numbers extracted from aerial 

images during the flowering stage at Saskatoon, SK, Canada in 2018. Actual flower numbers per plot were 

manually measured. Pixel number per plot was detected by the thresholding method. (A) Regression equation for 

July 10, 2018: y=2.21x, R2=0.92. (B) Regression equation for July 17, 2018: y=2.46x, R2=0.94. (C) Regression 

equation for July 24, 2018: y=2.68x, R2=0.92. (D) Regression equation for July 31, 2018: y=2.03x, R2=0.61.  
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Figure 3.6 The relationship between actual flower numbers per plot and pixel numbers extracted from aerial 

images during the flowering stage at Melfort, SK, Canada in 2017. Actual flower numbers per plot were manually 

measured. Pixel number per plot was detected by the thresholding method. (A) Regression equation for July 05, 

2017: y=3.70x, R2=0.71. (B) Regression equation for July 20, 2017: y=1.46x, R2=0.90. (C) Regression equation 

for July 26, 2017: y=1.29x, R2=0.91. 
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Figure 3.7 The relationship between actual flower numbers per plot and pixel number extracted from aerial images 

during the flowering stage at Scott, SK, Canada in 2017. Actual flower numbers per plot were manually measured. 

Pixel number per plot was detected by the thresholding method. (A) Regression equation for August 09, 2017: 

y=0.81x, R2=0.82. (B) Regression equation for August 16, 2017: y=0.78x, R2=0.83.  

 

The Saskatoon location in 2017 and 2018 had similar regression patterns between flowering 

pixel numbers and actual flower numbers (Figures 3.4, 3.5). There were significant 

relationships at the early flowering stages (July 10, 2017 and July 17, 2018) (Figures 3.4, 3.5). 

Similar to 2016, the relationships became weaker with the late flowering stage (August 01, 

2017 and July 31, 2018) (Figures 3.4, 3.5). Although the late flowering stages had weaker 

regressions compared with the early flowering timing, the regressions at the peak flowering 

dates (July 25, 2017 and July 24, 2018) had high R2 ranging from 0.82 to 0.92 (Figures 3.4, 

3.5).  

 

For the Melfort location in 2017, the first image date (July 05) had the weakest regression (R2 

= 0.71) (Figure 3.6A). Ground measurement errors from subsampling plants could be a 

potential reason for decreased regressions at the early flowering stage. Moreover, another 
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potential reason could be the actual flower number counted within a small sampling area might 

not be representative of entire flower number for each plot. However, the peak flowering time 

(July 20) and late flowering stage (July 26) showed significant relationships with higher R2 up 

to 0.91 compared with the early flowering stage (Figure 3.6). The potential reason why this site 

year had a greater R2 at the late flowering stage is that flight altitude (15m) at Melfort in 2017 

was lower than the other site years (Table 3.1). The higher resolution may have increased the 

ability of the sensor to detect flowers growing lower in the canopy. Although the flight altitude 

was relatively low compared with other locations, there was no significant canopy movement 

due to the UAV platform. The re-seeding date at Scott was June 22, 2017. Flowering started 

relatively late with a shorter duration compared with other site years. There was no imagery 

collected at the end of the flowering stage, and thus, those relationships are unknown. At Scott, 

the R2 values for the regressions between flowering pixel numbers and actual flower numbers 

followed similar patterns as the Saskatoon location. The early flowering stage (August 09) and 

the peak flowering time (August 16) had significant relationships (Figure 3.7). 

 

For the Saskatoon location over 3 years, slopes were relatively consistent at the early flowering 

stages (Figures 3.3–3.5). Slope values became smaller with the delayed flowering stage. There 

was a smaller slope value at the late flowering stage (slope = 1.18) compared with the peak 

flowering time (slope = 2.20) at Saskatoon in 2016. The Saskatoon location in 2017 and 2018 

had similar patterns (Figures 3.4, 3.5). The Melfort location had similar patterns with a smaller 

slope at the late flowering stage (Figure 3.6) but the slope of the first image date (slope = 3.70) 

was greater than the other image dates. This indicated that early flowering imagery 

overestimated the actual flower number. Experimental plots at this location showed non-

uniform flowering with fewer flowers at the front of each plot which might be caused by the 

edge effect. Thus, manual flower count based on subsampling plants at the front row of a plot 

may not accurately represent the average flower numbers. In 2017 at Scott, slopes were 

consistent at the early and the peak flowering times (Figure 3.7). The slope values at this 

location were smaller than the other site years. A potential reason for this underestimation of 

flower number was that the plots had a more condensed canopy and there were more branches 

at this site year than other site years (data not shown) due to poor emergence percentage. Thus, 

for the Scott location, there were more flowers produced on the lower branches resulting in 

more occlusion issues. As mentioned above, there was no available data collected at the end of 

flowering; thus, the relationship at this stage is unknown.  
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In general, although the linear regression slopes varied across site years, the high R2 values 

indicated that the flowering pixel numbers extracted from the threshold NDYI map performed 

well to predict actual flower numbers at the early and peak flowering stages in canola (R2 up 

to 0.95). Moreover, the early flowering stages across 5 site years showed greater slope values, 

as most flowers at this early stage were visible and had less occlusion. In contrast, flowers 

growing on lower branches were likely to be underestimated at the late flowering stages. 

Subsampling variability might make the actual flower count non-representative for a plot, 

which might reduce the accuracy of flower estimation. These results were consistent with Sulik 

and Long (2015), wherein the ratio of blue and green was significantly correlated to the yellow 

flowers in canola with a significant R2 value of 0.87 at the full flowering stage. Wan et al. (2018) 

reported a significant correlation (R2 = 0.89) between manually counted flower number and 

classified flower coverage area using k-means clustering method based on the CIE L*a*b space 

model during the full flowering period. Xu et al. (2018) found that white cotton flowers had 

higher prediction accuracy at the early flowering stage. The lower classification accuracy at 

the later growth stage may have resulted from coverage of leaves which increased misclassified 

non-flowers when using a convolutional neural network (Xu et al., 2018). They recommended 

that using one raw image and side-view cameras might solve this issue, as more cotton flowers 

would be detected from different perspectives.  

 

3.3.2 Yield Estimation Using UAV-derived Flowering Accumulation During The 

Flowering Period  

 
Flowering pixel numbers derived from the threshold NDYI map were able to estimate actual 

flower numbers across 5 experimental site years. Initially, regression analysis was used to 

determine the relationship between yield and flowering pixel numbers at each image date. 

Among the 5 site years, in most cases, there were no significant relationships until the middle 

of July when most varieties started blooming (Table 3.3). In addition, it is difficult to determine 

a single well-defined image time for crop yield estimation because of various environmental 

fluctuations and various flowering timings in large-scale breeding programs, especially 

involving many diverse genotypes. Furthermore, important flowering progress information 

may be missed if yield estimation is only based on imagery from a single date (Haynes and 

Weingartner, 2004; Gan et al., 2016). Although flower formation at the later stage may 
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contribute less than early timing points, they may still have the potential to increase final grain 

yield. Therefore, integrating all aspects of the entire flowering duration using AUFPC can 

reflect flowering accumulation progress and improve the accuracy of crop yield estimation.  

 

Table 3.3 The coefficient of determination (R2) between flowering pixel numbers from a single image date and 

yield at Saskatoon, SK, Canada from 2016 to 2018 and at Melfort and Scott, SK, Canada in 2017.  

Site 2016 R2 2017 R2 2018 R2 

Saskatoon July 14 0.04 July 07 0.02 June 28 < 0.01 

 July 19 < 0.01 July 11 < 0.01 July 06 0.02 

 July 26 0.02 July 15 0.04 July 09 0.06 

 August 06 0.04 July 19 0.29*** July 16 0.36*** 

  July 22 0.33*** July 20 0.22*** 

  July 26 0.06 July 24 0.07 

  August 01 0.06 July 27 < 0.01 

  August 09 0.02 July 30 0.03 

  August 16 0.05 August 03 0.03 

  August 22 0.05 August 07 
0.02 

 

Melfort  July 05 < 0.01   

  July 13 0.23*   

  July 20 0.02   

  July 26 
0.14 

 
  

Scott  August 09 0.46**   

  August 16 0.32*   

  August 29 0.01   

* Significant at the 0.05 probability level. 

** Significant at the 0.01 probability level. 

***Significant at the 0.001 probability level. 

 

There were significant relationships between the UAV-derived flower accumulation and yield 

during the flowering period (Figures 3.8, 3.9). In 2016, at Saskatoon, UAV-derived flower 

accumulation had a significant relationship with yield (R2 = 0.12, p < 0.05) (Figure 3.8A). The 

calculation of flower accumulation progress was done by integrating the flowering pixel 

numbers over four image dates at a 7-day interval, which missed the starting point of the 

flowering period. There was no adequate imagery data for the entire flowering period, so it 

may be the reason for the low accuracy of yield estimation. In both 2017 and 2018 at Saskatoon, 

imagery were collected semi-weekly (Table 3.1). For the 2 site years, the relationships between 

the UAV-derived flower accumulation and seed yield were relatively stronger compared to the 

1st experimental year (R2 = 0.30, p < 0.05 in 2017; R2 = 0.34, p < 0.05 in 2018) (Figures 3.8B,C). 

At the Melfort and Scott locations in 2017, there were more consistent and stronger regressions 
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(Figure 3.9) using the UAV-derived flower accumulation, when compared with a single image 

date (Table 3.3). 

 

Figure 3.8 The relationship between seed yield and UAV-derived flower accumulation at Saskatoon, SK, Canada 

from 2016 to 2018. The UAV-derived flower accumulation was calculated using the area under flowering progress 

curve function. (A) Regression for the Saskatoon location in 2016: y=0.0014x+1558.72, R2=0.12. (B) Regression 

for the Saskatoon location in 2017: y=0.0026x+1384.70, R2=0.30. (C) Regression for the Saskatoon location in 

2018: y=0.0095x+1535.88, R2=0.34.  
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Figure 3.9 The relationship between seed yield and UAV-derived flower accumulation at Melfort and Scott, SK, 

Canada in 2017. The UAV-derived flower accumulation was calculated using the area under flowering progress 

curve function. (A) Regression for the Melfort location in 2017: y=0.0044x+1400.80, R2=0.28. (B) Regression 

for the Scott location in 2017: y=0.0062x+692.73, R2=0.42 

 

 

In general, compared with using a single image, applying the integration of flowering progress 

to estimate yield includes more information to provide consistent accuracy (Figures 3.8, 3.9). 

Although the R2 values for yield estimation were not high, the results still demonstrate the 

potential of AUFPC to predict yield, especially for crops producing bright flowers (e.g., canola 

and cotton) under different environmental conditions.  

 

Several studies have reported similar results (Sulik and Long, 2016; Gong et al., 2018; Xu et 

al., 2017; Hassan et al., 2019). Sulik and Long (2016) reported that the NDYI values during 

flowering had high accordance with yield observations (R2 = 0.76), which showed a better 

correlation with seed yield than NDVI at the peak flowering time in canola. Gong et al. (2018) 

found that NDVI multiplied by leaf-related canopy fraction had the strongest relationship with 

canola yield with low estimation errors (coefficient of variation < 13%) at the early flowering 
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stages. Some research also investigated yield estimation using canopy reflectance data in other 

crops including cotton and wheat (Xu et al., 2017; Hassan et al., 2019). Xu et al. (2017) reported 

that the estimated cotton flower number derived from aerial images using a convolutional 

neural network significantly correlated with cotton yield (R2 = 0.36). Hassan et al. (2019) 

reported that UAV-based NDVI measured at the grain filling stage could be a promising tool 

for wheat yield prediction with R2 ranging from 0.83 to 0.89 in field conditions. 

 

Regression results had smaller R2 values compared with the previous studies. This is probably 

associated with many diverse genotypes (i.e., 56 diverse genotypes) estimated in this study 

(Tables A.1, Appendix A). Most previous research only planted one or few genotypes. Stability 

of pigments in rapeseed flowers for each genotype may change under different developmental 

stages (Ohmiya, 2011). These factors can impact yellow to some degree (Ohmiya, 2011). The 

inconsistent yellowness may explain that the less model variation could be explained by the 

flower accumulation when more varieties were involved in regression analysis. Furthermore, 

flowering pixels extracted based on threshold values may not have been consistent over the 

flowering stage, as each threshold value was determined manually. In addition, canola yield 

components include pod number, seed number per pod, and seed weight. Although pod number 

per plant is highly correlated with seed yield (Tayo and Morgan, 1975; McGregor 1981; 

Ivanovska et al., 2007), only 45% of flowers produce pods (McGregor 1981). Seed weight per 

pod and thousand seed weight also significantly correlated with seed yield (Ivanovska et al, 

2007). The simple regression analysis of flower numbers could not fully explain yield variation. 

Additional yield components considered in the yield estimation model would improve the 

accuracy of seed yield estimation. Finally, severe flower abortion and poor pod formation can 

happen under drought and heat stress during the crop season (Faraji et al, 2008). Flowering 

progress only reveals part of crop growth stages, so some varieties even with high AUFPC may 

end up with low yield under stress, which may result in a weaker relationship between the 

UAV-derived flower accumulation and seed yield. Combining UAV-based reflectance data at 

both flowering and pod stages may enhance yield estimation accuracy. 

 

Usually, breeding programs need to assess a large number of varieties or breeding genotypes 

across multiple environmental conditions. Therefore, from a practical perspective, these results 

revealed a more realistic yield estimation trend for large-scale breeding programs. Moreover, 

most previous research used one image date or selected the largest reflectance index value for 
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each plot across all sampling dates to estimate crop yield. In fact, it is difficult to determine the 

best image date for yield estimation using multiple crop varieties grown in differing 

environmental conditions. Fluctuating environments can influence flowering progress; 

therefore, UAV-derived flower accumulation is a promising and predictable variable in the 

descriptive yield model.  

 

3.4 Conclusions 

 

In this study, a simple and effective approach was proposed to estimate relative flower numbers 

and model seed yield based on the cumulative flowering pixel. This study results showed that 

flowering pixel numbers estimated by the thresholding method significantly regressed with 

manual flower count during the flowering stage with R2 value up to 0.95, indicating that 

flowering pixel numbers can be used as a good indicator of flower number in the field. 

Additionally, the integration of flowering progress from consecutive images via AUFPC math 

function was more consistently and strongly related to yield compared with using a single 

image date because cumulative flowering pixel over time utilizes more information of crop 

growth. Therefore, the UAV-derived flower accumulation can be a promising indicator for 

yield estimation. These tools do not require extra coding or strong computer science 

background, can be used for calculating thresholds and vegetation indices, and is a convenient 

tool for agronomists and breeders. Future studies need to consider and test a multivariate model 

including multiple vegetation indices related to other yield components and more reflectance 

information from the pod stage to improve yield estimation accuracy. 
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Transition section between Chapter 3 and Chapter 4 

 

Chapter 3 investigated the potential of two-dimensional vegetation indices extracted from 

UAV-based imagery to detect canola flower number and estimate seed yield. The normalized 

difference yellowness index-based pixel number could detect yellow flowers, and the 

accumulation of flowering pixels over time was a potential digital phenotype for yield 

estimation. The objective of the next study in Chapter 4 was to evaluate whether canopy 

structural information (i.e., flowering layer depth and canopy height) throughout the crop 

season can be estimated using three-dimensional digital surface models extracted from UAV-

based imagery and has the potential to estimate seed yield in canola.  
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CHAPTER 4 QUANTIFYING CANOPY HEIGHT AND FLOWERING LAYER 

DEPTH TO ESTIMATE SEED YIELD IN CANOLA (Brassica napus L.) USING 

UNOCCUPIED AERIAL VEHICLE-BASED MULTI-TEMPORAL IMAGERY 

 

The content of this chapter will be submitted to Remote Sensing.  

 

 

 

Abstract 

 

Unoccupied aerial vehicles (UAVs) mounted with imaging sensors have become a useful 

phenotyping approach for assessing crop traits in situ because of their rapid, low-cost, and non-

destructive manner. Plant height and flowering traits are common field measurements for 

analyzing plant growth. In tradition, manual plant height measurement and visual rating for 

estimating flowering number are labor-intensive, destructive, and subjective. To overcome the 

limitations, the objectives were to evaluate the potential of UAV-based multispectral imagery 

to quantify canopy height and flowering layer depth (i.e., vertical distance from the bottom 

flower to the top flower), and to investigate whether the digitalized crop traits can be seed yield 

predictors. This study was conducted using fifty-six diverse Brassica genotypes from 2016 to 

2018, near Saskatoon, SK, Canada. The results demonstrated that there were significant 

relationships between actual and UAV-derived canopy heights during reproductive stage with 

coefficient of determination (R2) ranging from 0.67 to 0.90. The peak flowering time and pod 

stage were the optimum growth stages for canopy height estimation with the highest R2 values. 

Significant relationships between the manually measured and UAV-derived flowering layer 

depth were observed with R2 ranging from 0.13 to 0.42. Additionally, compared with using the 

crop information extracted from a single image date, there were more consistent and significant 

regressions between the digitalized cumulative canopy height or cumulative flowering layer 

depth over the reproductive period and seed yield (R2 up to 0.46 and 0.34, respectively). This 

study indicates that UAV-based multispectral imagery can estimate canopy height and 

flowering layer depth with high to moderate accuracy. The digitalized cumulative canopy 

height and flowering layer depth at the flowering stage can be potential indicators for seed 

yield estimation. 
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4.1 Introduction 

 

Canola (Brassica napus L.) is an important vegetable oil source grown worldwide. Crop yield 

is one of the most crucial targets for canola growers. Accurate crop yield forecasts enable 

farmers to take effective crop management decisions during the growing season to optimize 

pest control and crop nutrient supply (Peng et al., 2019). In addition, early field evaluation of 

crops depending on secondary traits is now common for high-yielding genotype selection in 

plant breeding programs (Hassan et al., 2019).  

 

Canola leaves are the major plant structures for photosynthesis. Stem also plays an important 

role in photosynthesis through pod and seed development stages. Plant height is an important 

indicator of crop stand and yield estimation (Ma et al., 2015; Ivanovska et al., 2007; Bendig et 

al., 2014; Iqbal et al., 2017; Assefa et al., 2018; Zhang et al., 2021a). Plant height was found 

positively correlated with seed yield in Brassica genotypes (Ivanovska et al., 2007; Assefa et 

al., 2018). Usually, maximum stem length overlaps the peak flowering time (Canola Council 

of Canada, 2021). Crop lodging is determined as the aboveground part of plant falling over, 

which is a key factor affecting canola yield potential (Wu and Ma, 2016, 2018). Normally, 

lodged plants make the canopy closer to the ground, which can impede harvest and lower yield 

as it can cause uneven pod maturity and increase diseases severity (Wu and Ma, 2016, 2018). 

Thus, crop canopy height measurement during the whole growing season can be an indicator 

of plant growth status and may assist in crop management decision-making and yield 

estimation (Ivanovska et al., 2007; Bendig et al., 2014; Iqbal et al., 2017; Assefa et al., 2018).  

 

Flowering number in canola is an important phenotype that determines seed yield potential 

(Tayo and Morgan, 1975; Diepenbrock, 2000; Faraji et al., 2008; Faraji, 2012; Fang et al., 

2016; Sulik and Long, 2016; Gong et al., 2018; Kirkegaard et al., 2018; Zhang and Flottmann, 

2018; Zhang et al., 2021b). Accurate yield estimation using flowering traits may allow canola 

breeders to select the high-yielding genotypes at the early reproductive growth stages. It could 

permit selection for a yield proxy in years when harvest environments are unfavorable.  

 

Plant height is normally measured manually from the bottom of the crop to the top of the 

highest point of plant using a meter-ruler, which is time-consuming and labor intensive. 

Flowering traits are visually assessed which is time-consuming and subjective, especially when 
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assessing many genotypes under multiple field conditions (Sulik and Long, 2015; Fang et al., 

2016; Wan et al., 2018; Zhang et al., 2021b). In breeding programs, flowering is typically 

limited to being recorded as the date of commencement, and may not be recorded in large 

nursery trials.  

 

With the advancement of UAVs, crop information obtained by remote sensors at high spatial 

and temporal resolutions has attracted more attention. A commonly used approach to estimate 

yield is applying a vegetation index calculated using spectral reflectance bands in the visual 

region (blue, green, and red) and near IR (NIR). Studies have shown significant relationships 

between the vegetation indices and seed yield in corn (Ramos et al., 2020), rice (Zhou et al., 

2017), sunflower (Tunca et al., 2018), and canola (Sulik and Long, 2016; Zhang et al., 2021b).  

 

An alternative method to estimate yield is to model it using canopy height information, 

extracted from crop surface models (CSMs) (Geipel et al., 2014; Bendig et al., 2014 and 2015; 

Iqbal et al., 2017; Panday et al., 2020). Structure from motion (SfM) and multi-view stereopsis 

techniques has enabled efficient production of dense point clouds (Bendig et al., 2015), which 

can be used to develop CSMs and detailed orthoimages (Bendig et al., 2015). This detailed 

three-dimensional (3D) model recreation enables a new and realistic view of crop growth and 

health. In addition, it may provide more crop information (i.e., dynamics of plant height 

throughout the crop season) when there is no significant spectral difference in two-dimensional 

(2D) reflectance maps (Bendig et al., 2015). The method of using CSMs derived from 3D point 

clouds has shown the suitability to estimate plant height for biomass and seed yield estimation 

in various crops such as corn, barley, poppy crop (Papaver somniferum L.), and wheat (Geipel 

et al., 2014; Bendig et al., 2014 and 2015; Iqbal et al., 2017; Panday et al., 2020). Geipel et al. 

(2014) studied yield modeling using plant height information extracted from UAV-based 

imagery in corn. They found yield could be estimated using digital height information after 

completion of canopy closure. Bendig et al. (2014 and 2015) found that plant height derived 

from UAV-based CSMs was significantly correlated with dry biomass in barley. Iqbal et al. 

(2017) reported significant correlations between UAV-extracted plant height and ground-

measured plant height (R2 = 0.92 - 0.97) in poppy crop. Their study also indicated the UAV-

based plant height was a reliable indicator for capsule volume of poppy crop at the productive 

stage. Panday et al. (2020) estimated a linear regression between plant height derived from 
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CSMs and grain yield of wheat. This study showed a significant relationship between grain 

yield and the plant height obtained from CSMs with R2 of 0.70.  

 

Many researchers have evaluated canola flowering traits by analyzing canopy reflectance from 

2D orthoimages (Sulik and Long, 2015, 2016; Gong et al., 2018; Wan et al., 2018; Zhang et 

al., 2021b). Sulik and Long (2015, 2016) and Zhang et al. (2021b) found that there were 

significant linear relationships between the normalized difference yellowness index (NDYI) 

and flower numbers, and the NDYI could be a potential yield indicator. Similarly, Fang et al. 

(2016), Gong et al. (2018), and Wan et al. (2018) reported that the combination of vegetation 

index and sophisticated machine learning methods or pixel-level spectral mixture analysis 

improved the estimates of flower numbers and crop yield. Although the 2D reflectance maps 

provide information for flowering number estimation, the measurement of flowering layer 

depth using 3D information may be an alternative approach to estimate flowering volume (i.e., 

flowering volume = plot area x flowering layer depth), which may have a similar growth pattern 

as flowering number. Flowering layer depth refers to the difference between the top flowering 

height and the lowest flowering height (Figure 4.1). Instead of using the top view of 2D canopy 

reflectance information, 3D image reconstruction using the SfM and multi-view stereo 

technique can measure crop canopy structure using high vertical resolution. Tayo and Morgan 

(1975) reported the lowest flower buds on the main stem were the first to become yellow. 

Flowering then continued acropetally. Usually, the flowers on the main stem and the upper four 

axillary racemes will develop into productive pods at maturity. Flowering layer depth could be 

estimated by using 3D data. Vanbrabant et al. (2020) found the 3D method showed a higher 

accuracy of flower cluster estimation in pear (R2 > 0.70) than 2D method with R2 of 0.53.  
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Figure 4.1 Canopy height refers to the vertical distance from the base of a plant to the maximum point of crop 

canopy. Flowering layer depth is the difference between the top flowering height and lowest flowering height. 

 

 

Some studies have investigated the estimation accuracy of plant height using UAV-based 

imagery or LiDAR. However, little research has studied the application of canopy height 

information in estimating canola yield using UAV-based imagery. Additionally, the 

measurement of flowering layer depth, a potential indicator of plant growth condition, is a new 

phenotype combining 2D and 3D information which may assist flowering number estimation, 

and therefore yield prediction. Thus, the objectives of this study were to investigate the ability 

of UAV-based imagery to estimate canola canopy height and flowering layer depth, and to 

assess the potential of digital canopy height information and flowering layer depth to estimate 

yield. 
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4.2 Materials and Methods 

 

4.2.1 Study Area  

 

The field study was conducted near Saskatoon from May 2016 to September 2018 (52° 10’ 

52.9” N, 106° 30’ 10.6” W in 2016; 52° 10’ 59.3” N, 106° 30’ 53.7” W in 2017; and 52° 10’ 

57.7” N, 106° 30’ 01.4” W in 2018). Fifty-six diverse genotypes (Ebersbach et al., 2022; Table 

A.1, Appendix A) were planted in rectangular lattice design with three replicates at a desired 

rate of 108 seeds m-2. Out of the 56 genotypes, 16 were selected and planted in two adjacent 

but separate plots as double plots, as described in Chapter 3. The dimension of plot sizes was 

1.2 m wide by 6.0 m long in 2016 and 2018, and 1.5 m wide by 6.0 m long in 2017. Canola 

plots were seeded on May 27, 28, and 21 in 2016, 2017 and 2018, respectively (Table 4.1). 

Pesticides were applied based on requirement. Weeds not controlled by the pesticides in field 

were manually removed.  

Table 4.1 Details of canola trials and data acquisition (image collection, actual canopy height and flowering layer 

depth measurement dates) near Saskatoon, SK, Canada from 2016 to 2018. 

Year 
Seeding 

date 

Flight 

altitude 

(m) 

Image collection date 
Height measurement 

date 

Flowering layer 

depth measurement 

date 

2016 May 27 20 June 13; 30   

   July 14; 19; 26 July 19; 27 July 19; 27 

   August 06; 22 August 11  

   September 08 September 11  

      

2017 May 28 20 June 28   

   July 07; 15; 19; 22; 26 July 04 July 25 

   August 09; 16; 22; 29 August 14  

      

2018 May 21 25 June 28   

   July 06; 09; 16; 20; 24; 27; 30 July 10; 17; 25; 31 July 10; 17; 25 

   August 03; 07; 14; 20; 28 August 07; 14; 20; 28  

 

4.2.2 Image Acquisition 

 

A Draganflyer X4-P multirotor UAV (DraganFly Inc., Saskatoon, SK, Canada) was used for 

imagery collection in 2016 and 2017. The other UAV named Draganflyer Commander 

(DraganFly Inc., Saskatoon, SK, Canada) was used to acquire imagery in 2018. A multi-
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spectral camera (RedEdge, MicaSense Inc., Seattle, WA, United States) was mounted on the 

UAVs to collect aerial imagery (12-bit image) of blue (475  10 nm), green (560  10 nm), red 

(668  5 nm); red edge (717  5 nm), and near-infrared (840  20 nm) bands with an image 

resolution for each band of 1.2 megapixels (1,280 x 960 pixels). The UAV flight mission was 

programmed using Draganfly Surveyor software (DraganFly Inc., Saskatoon, SK, Canada). 

The UAVs were flown over the canola trials at a ground speed of 1.7 meter per second and at 

20 and 25 m above ground level which resulted in a ground sampling distance of 1.36 and 1.70 

cm per pixel, respectively. During the flight mission, all aerial images were collected at 80% 

front and 80% side overlaps. A MicaSense calibration target was imaged before and after each 

flight mission for radiometric calibration. Ground control points (GCPs) were evenly placed in 

the experiment area for georeferencing throughout the crop season. GCPs were geolocated by 

Trimble GeoExplorer 2008 GPS (Trimble Inc., Westminster, CO, United States). 

 

The UAV-based multispectral imagery was collected at a 7-day interval during the field season 

in 2016, at 3-day interval in 2017 and 2018 during the flowering period, and at 7-day interval 

at the vegetative and pod stages from 2017 to 2018 (Table 4.1).  

 

4.2.3 Image Processing and Data Extraction 

 

4.2.3.1 Image pre-processing 

 

The UAV-based multispectral imagery was pre-processed in Pix4Dmapper Pro (Pix4D Inc., 

San Francisco, CA, United States). The basic processing steps include (1) initial processing for 

the photo alignment, (2) generation of a dense point cloud and mesh, and (3) generation of 

digital surface models (DSMs) and orthomosaic (Duddu et al., 2019; Zhang et al., 2021b).  

 

(1) In the initial processing step, images were imported and stitched using features extraction 

from the overlapped images. Sparse point cloud was created after the key point extraction and 

image matching. Radiometric calibration was done by using the images of the MicaSense 

calibration target. To georeference the point cloud, the geo-location of GCPs was imported. 

Bundle block adjustment was applied to adjust the position and orientation of photos.  
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(2) In the second step, a dense point cloud and mesh were created based on the sparse point 

cloud. To generate suitable 3D point cloud, important parameters were established (i.e., image 

scale: half image size; point density: optimal; the minimum number of matches: 3). The image 

scale parameter in Pix4D is keypoints image scale, which refers to the image size where 

additional 3D points are computed. The point density is a parameter used to determine the point 

cloud density, and the minimum number of matches per 3D point means the minimum number 

of images that each 3D point needs to be correctly re-projected in (Maturbongs et al., 2019). In 

this study, the default processing parameters in Pix4d were used to generate a high-quality 

point cloud with less noise and artifacts. 

 

(3) In the last step, the DSMs of the experiment area was generated, which was exported for 

further canopy height extraction and flowering layer depth determination. As the second 

product, calibrated orthomosaic maps (i.e., calibrated reflectance maps) were generated and 

exported for vegetation index calculations. The spatial resolution for the two products (i.e., 

DSM and reflectance map) was 1.36 cm per pixel at 20m and a 1.70 cm per pixel resolution at 

25m. 

 

4.2.3.2 Canopy height extraction and accumulation of canopy height dynamics 

 

After image pre-processing, the generated DSMs and calibrated reflectance maps were 

imported into the ArcGIS version 10.4.1 (ESRI Canada, Toronto, ON, Canada) for canopy 

height estimation.  

 

The calibrated reflectance maps of red, green, and blue were used to generate composited RGB 

image using the “Composite Band” tool for identifying plant and bare soil area. To segment 

the area of interest for each experimental plot and the adjacent bare soil surface, polygon shapes 

were generated using the “Create Feature” tool. Then, the generated plant and soil polygons 

were applied to the DSMs. The mean height value of plant area for each plot and corresponding 

adjacent soil surface were extracted using the “Zonal Statistics” tool. The UAV-derived canopy 

height was determined by subtracting the DSM of the bare soil surface from the DSM of the 

corresponding plot area: 
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                         UAV-derived canopy height = DSMcrop - DSMsoil                           [4.1] 

 

Where DSMcrop and DSMsoil represent crop canopy and neighboring bare soil surface heights, 

respectively. 

 

Cumulative UAV-derived canopy height refers to an overview of canopy height dynamics 

throughout the entire crop season. It reveals both the magnitude of canopy height and duration 

of height change. To combine dynamics of canopy height over the whole crop season, 

cumulative UAV-derived canopy height was computed using the area under the flowering 

curve formula (Equation 3.5), which has been used to improve the accuracy of yield estimation 

in canola (Zhang et al., 2021b).  

 

4.2.3.3 Flowering layer depth determination 

 

4.2.3.3.1 Flowering layer depth determination using the thresholding method 

 

To exclude the flowering area from non-flowering area, the NDYI was calculated using the 

“Raster Calculator” tool in the ArcGIS version 10.4.1. NDYI has shown its ability to efficiently 

separate canola flowers from vegetative or soil surface area (Sulik and Long, 2016; 

d’Andrimont et al., 2020; Han et al., 2021; Zhang et al., 2021b). It was calculated as following 

formula: 

  

                                                       NDYI = (
𝑅𝑔𝑟𝑒𝑒𝑛−𝑅𝑏𝑙𝑢𝑒

𝑅𝑔𝑟𝑒𝑒𝑛+𝑅𝑏𝑙𝑢𝑒
)                                                  [4.2] 

 

Where Rgreen and Rblue represent green and blue bands on 560 nm and 475 nm, respectively.  

 

The output NDYI maps were grouped into flowering pixel and non-flowering pixels by the 

thresholding method. The details of selecting and segmenting flowering pixels for each plot 

by applying threshold values to the NDYI maps were described by Zhang et al. (2021b). The 

segmented flowering pixels with pixel values larger than threshold values were converted into 

a value of “1”, and the non-flowering pixels with pixel values below threshold values were 

converted into “no data” using the “Reclassify” tool. The threshold NDYI maps became a 
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binary layer with “1” and “no data”, which were combined with DSMs to extract the height of 

flowering area. Similarly, to estimate the height of non-flowering area, the flowering pixels 

were converted into “no data”, and non-flowering pixels were converted into “1”. The non-

flowering binary layer was combined with DSMs. Finally, flowering pixel height and non-

flowering pixel height were subtracted to determine the flowering layer depth. The mean values 

of flowering height and corresponding non-flowering height per plot were extracted using the 

“Zonal Statistics” tool. The flowering layer depth using the threshold method was FLthreshold, 

calculated using the following formula: 

 

                                    FLthreshold = DSMflowering area – DSMnon-flowering area                              [4.3] 

  

where DSMflowering area and DSMnon-flowering area represent the mean height of flowering area and 

non-flowering area, respectively. 

 

4.2.3.3.2 Flowering layer depth determination using the UAV-derived canopy height 

difference between the bolting and flowering stages 

 

The bolting stage in canola begins when canola flower buds are formed and are first visible in 

the rosette of leaves. The flower buds quickly become yellow after bolting. Flowering duration 

is the period from the first opening bud on the main raceme until all flowers developed into 

pods. Canopy heights at the bolting and flowering stages were calculated using the overall plot 

mean height of the DSMs at the bolting and flowering stages. The flowering layer depth using 

the mean height difference was FLmean, and it was calculated using the following formula:  

 

                  FLmean = DSMcanopy height at flowering stage – DSMcanopy height at bolting stage                  [4.4] 

 

where DSMcanopy height at flowering stage represents UAV-derived canopy height at the flowering 

stage, and DSMcanopoy height at bolting stage represents UAV-derived canopy height at the bolting 

stage. 
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4.2.3.3.3 Flowering layer depth determination using the maximum height values at the 

bolting and flowering stages 

 

Flowering layer depth refers to the vertical distance from the top flower to the bottom flower 

of a plant. Usually, the top flower for each plant is the highest point. In this method, instead of 

using the mean height value at plot-level, canopy heights were estimated using the maximum 

height value at the bolting and flowering stages, which is FLmaximum. It was calculated using the 

following formula:   

  

                FLmaximum = DSMmaximum height at flowering stage – DSMmaximum height at bolting stage              [4.5] 

 

where DSMmaximum height at flowering stage and DSMmaximum height at bolting stage represent the maximum 

height at the flowering and bolting stages.   

 

4.2.4 Ground Reference Measurement 

 

Canopy height refers to the vertical distance from the base of a plant to the highest point of 

crop canopy (Figure 4.1). Canola flowering layer depth refers to the vertical distance from the 

bottom flower to the top flower of a plant (Figure 4.1). Three plants were randomly selected 

from the front, middle, and back of each plot, and manually measured in situ with a meter-ruler 

for canopy height and flowering layer depth determination. Canopy height was measured from 

July to early September for 56 diverse genotypes in 2016 and 2017, and the selected 16 

genotypes in 2018 (Table 4.1). Flowering layer depth was measured in July for 56 diverse 

genotypes in 2016, and the selected 16 genotypes in 2017 and 2018 (Table 4.1). There were no 

adequate summer students to manually measure canopy height and flowering layer depth for 

all 56 genotypes; thus, the ground reference data were collected for the selected 16 genotypes 

in the 2017 and 2018 seasons. The criteria of genotype selection was described in Chapter 3. 

 

To reduce border effect, the middle four rows of each experimental plot were straight combined 

by a small plot combine harvester when the crop was mature and dry. This occurred multiple 

times due to differing maturity dates of the Brassica genotypes. All harvested seeds were air-

dried to 10% seed moisture. Final seed yields were determined after air-drying and seed 

cleaning. 
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4.2.5 Statistical Analysis 

 

PROC LATTICE in SAS 9.4 (SAS institute Inc., Cary, NC) was applied to investigate and 

adjust data to reduce variations within blocks (SAS version 9.4, SAS institute Inc., Cary, NC). 

Mean values per Brassica genotype were computed across three replications for ground 

reference data (i.e., seed yield and manual canopy height and flowering layer depth) and image-

based features (i.e., UAV-derived canopy height and flowering layer depth) within each year. 

These mean values were used to evaluate relationships between ground reference data and 

image-based features by PROC REG (SAS 9.4).  

 

4.3 Results and Discussion 

 

4.3.1 Canopy Height Estimation Using UAV-based Imagery  

 

Across 3 site years, there were significant relationships between the ground measured and 

UAV-derived canopy heights with coefficient of determination (R2) ranging from 0.24 to 0.90. 

The peak flowering time and pod stage achieved high R2 values between the manually measured 

and UAV-derived canopy heights when canola usually reached its tallest height.  

 

In 2016, there were significant relationships between the actual and UAV-derived canopy 

heights at reproductive stage with R2 values ranging from 0.74 to 0.90 (Figure 4.2). Compared 

with the early flowering and late pod stages, the peak flowering time and the early pod stage 

had the strongest relationships with R2 value of 0.80 and 0.90, respectively (Figures 4.2B,C). 

Not surprisingly, canola had not reached the maximum plant height at the early flowering stage. 

The relatively short height might result in less accurate estimation via UAV-imagery (Figure 

4.2A). The R2 value (0.76) between the actual and UAV-derived canopy heights decreased at 

the late pod stage (Figure 4.2D). For this site year, plant lodging occurred at late development 

stage, which resulted in shorter and uneven canopy height. The reduced canopy height caused 

by lodging might have resulted in decreased estimation accuracy because of relatively lower 

spatial resolution compared with taller plants. In addition, it was difficult to accurately 

determine the average canopy height for non-uniform plots by manually measuring limited 

samples (i.e., three plant samples from the front, middle and back of each plot) (Wilke et al., 
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2019; Morrison et al., 2021). In contrast, canopy height estimation via imagery could cover 

larger sampling area than manual measurement, which indicates imagery may reveal more 

realistic data than manual measurement (Wilke et al., 2019; Morrison et al., 2021). During the 

crop season in 2016, UAV-based imagery overestimated canopy height at the early 

development stage (slope > 1) (Figures 4.2A,B), and underestimated canopy height when crop 

grew taller at the late growth stage with slope less than one (Figures 4.2C,D). Although the 

slopes over the season were not consistently larger or less than one, the absolute values of the 

slopes were close to one with intercepts close to zero, which indicates UAV-derived canopy 

height was close to the actual canopy height.  

 

Similar results were observed in 2017 and 2018. The flowering and pod stages showed 

significant relationships between the actual and UAV-derived canopy heights with R2 ranging 

from 0.67 and 0.87 (Figures 4.3, 4.4). Usually, a canola plant has reached maximum height at 

the peak flowering stage. As mentioned above, taller plants could be easily detected via 

imagery. Therefore, a relationship with higher R2 can be expected after the full flowering stage 

compared with the early development stage. The bolting stage showed low R2 values between 

the actual and UAV-derived canopy heights in 2017 and 2018 (Figures 4.3A, 4.4A). Moreover, 

the actual canopy height tended to be underestimated at the early development stage in 2017 

and 2018 (slop = 0.85 and 0.68, respectively) (Figures 4.3A, 4.4A), which could be resulted 

from less accurate estimation of smaller plant and incompletely closed canopies at the early 

development stage compared with the flowering and pod stages. Canopy height was 

overestimated by the UAV-based imagery at the flowering and pod stages with a slope ranging 

from 1.14 to 3.17 in 2018, which was different from the height estimation in 2016 and 2017 

(Figures 4.2-4.4). It could be resulted from the shorter canopy height in 2018 over the growing 

season compared with the heights in the first two study years (Figures 4.2-4.4).  

 

In general, there were significant relationships between the actual and UAV-derived canopy 

heights at both peak flowering and early pod stages when canola had reached full plant height 

at peak flowering. Although significant relationships between the ground measured and UAV-

derived canopy heights were observed at the early flowering and late pod stages, the R2 values 

were less compared with the peak flowering and early pod stages. Prior to the peak flowering 

stage, the raceme continues to elongate and plant height is relatively short. The results indicate 

that taller plants could be more easily and accurately estimated by UAV-based imagery. These 
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findings were consistent with a study by Iqbal et al. (2017) who found that the relationship 

between the ground measured and estimated heights had a greater R2 for taller plants. In 

addition, the plant height is also very dynamic before peak flowering. The time gap between 

the dates of ground reference data collection and taking imagery might also reduce the accuracy 

of height estimation (Table 4.1). Apart from plant size, crop lodging may also affect the 

accuracy of height estimation due to non-uniform canopy (Iqbal et al., 2017; Wilke et al., 2019; 

Morrison et al., 2021). Iqbal et al. (2017) reported that the correlation between yield and 

estimated plant height was weak when poppy crop development was not uniform within a plot. 

UAV-based imagery tended to overestimate the canopy height of short plots and underestimate 

the tall plots. Morrison et al. (2021) also reported overestimation for the short canopy and 

underestimation for the tall canopy at the early growing season in soybean and wheat.  

 

A                                                                                  B 

 
C                                                                                   D 

 
Figure 4.2 Relationships between the UAV-derived canopy height and actual canopy height during the 

reproductive stage at Saskatoon, SK, Canada in 2016. Actual canopy height per plot were manually measured by 

averaging the height of three randomly selected plants from the front, middle, and back of each plot. UAV-derived 

canopy height was extracted from the overall plot mean height of middle three rows for each plot. (A) Regression 

equation for July 19, 2016: y=1.04x-0.21, R2=0.74. (B) Regression equation for July 27, 2016: y=1.20x-0.39, 

R2=0.80. (C) Regression equation for August 11, 2016: y=0.82x+0.01, R2=0.90. (D) Regression equation for 

September 11, 2016: y=0.74x+0.23, R2=0.76. 
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Figure 4.3 Relationships between the UAV-derived canopy height and actual canopy height at Saskatoon, SK, 

Canada in 2017. Actual canopy height per plot were manually measured by averaging the height of three randomly 

selected plants from the front, middle, and back of each plot. UAV-derived canopy height was extracted from the 

overall plot mean height of middle three rows for each plot. (A) Regression equation for July 04, 2017: 

y=0.85x+0.04, R2=0.51. (B) Regression equation for August 14, 2017: y=0.73x+0.14, R2=0.80.  
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Figure 4.4 Relationships between the UAV-derived canopy height and actual canopy height at Saskatoon, SK, 

Canada in 2018. Actual canopy height per plot were manually measured by averaging the height of three randomly 

selected plants from the front, middle, and back of each plot. UAV-derived canopy height was extracted from the 

overall plot mean height of middle three rows for each plot. (A) Regression equation for July 10, 2018: y=0.68x-

0.02, R2=0.24. (B) Regression equation for July 17, 2018: y=2.56x-1.29, R2=0.86. (C) Regression equation for 

July 25, 2018: y=1.14x-0.25, R2=0.67. (D) Regression equation for July 31, 2018: y=1.15x-0.34, R2=0.79. (E) 

Regression equation for August 07, 2018: y=3.17x-1.62, R2=0.84. (F) Regression equation for August 14, 2018: 

y=2.13x-0.54, R2=0.69. (G) Regression equation for August 20, 2018: y=1.93x-0.04, R2=0.83. (H) Regression 

equation for August 28: y= 2.77x-0.51, R2=0.87.  
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4.3.2 Relationships Between Ground Measured and UAV-derived Flowering Layer Depth  

 

Simple linear and quadratic regression models were tested between the actual flowering layer 

depth (FLactual) and flowering layer depth extracted from UAV-based imagery. According to 

the coefficient of determination, there were significant relationships between the FLactual and 

FLmean in most cases (Table 4.2). However, FLthreshold was not significantly regressed with the 

FLactual. Strong relationships between the FLactual and the FLmaximum were not observed except 

at the early flowering stage (July 19, 2016 and July 10, 2018) (Table 4.2). In addition, compared 

with the linear regression model, a quadratic regression model fits the dataset better (Table 

4.2). Therefore, quadratic regressions between the FLactual and the FLmean would be further 

discussed. 

 

Table 4.2 Coefficient of determination (R2) between the actual and UAV-derived flowering layer depth at 

Saskatoon from 2016 to 2018. 

Year Date               FLthreshold                  FLmean            FLmaximum 

  Regression R2 Regression R2 Regression R2 

2016 July 19 Linear 0.04 Linear 0.09* Linear 0.06 

  Quadratic 0.05 Quadratic 0.40*** Quadratic 0.47*** 

 July 27 Linear 0.002 Linear 0.09* Linear 0.09* 

  Quadratic 0.01 Quadratic 0.13* Quadratic 0.16* 

2017 July 25 Linear 0.07 Linear 0.23 Linear 0.18 

  Quadratic 0.02 Quadratic 0.36* Quadratic 0.34 

2018 July 10 Linear 0.11 Linear 0.13 Linear 0.07 

  Quadratic 0.14 Quadratic 0.13 Quadratic 0.37* 

 July 17 Linear 0.05 Linear 0.25* Linear 0.10 

  Quadratic 0.05 Quadratic 0.34* Quadratic 0.13 

 July 25 Linear 0.21 Linear 0.39* Linear 0.10 

  Quadratic 0.22 Quadratic 0.42* Quadratic 0.23 

* Significant at the 0.05 probability level. 

** Significant at the 0.01 probability level. 

***Significant at the 0.001 probability level. 

 

In 2016, there was a significant relationship between FLactual and FLmean at the early flowering 

stage (July 19) (Figure 4.5). The relationship had a decreased R2 at the peak flowering stage 

(July 27) (Figure 4.5). Moreover, the results showed that Brassica genotypes with shorter 

flowering layer depth were overestimated. In 2017, the peak flowering stage had a significant 

regression with R2 of 0.36 (Figure 4.6). Similarly, the flowering layer depth was overestimated 

for the genotypes with short layer depth. For the year of 2018, the FLmean was significantly 
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correlated with the FLactual at full flowering (R2 = 0.34 and 0.42) (Figures 4.7B,C). Although 

the regression at the peak flowering (July 17) was not statistically significant, the p value was 

close to the significance level (0.05). Like 2016 and 2017, there was an overestimation for the 

FLactual using UAV-based imagery. There was no significant relationship between the FLactual 

and FLmean at the beginning of flowering stage (Figure 4.7A). Ground reference data were not 

collected at the end of flowering stage for three site years. Therefore, the relationship at this 

stage was unknown. 

 

In general, results from 3 site years, indicate that imagery consistently overestimated canola 

FLactual. The UAV-derived FLmean was calculated by subtracting UAV-derived canopy height 

at the bolting stage from the UAV-derived canopy height at the flowering stage (Equation 4.4). 

Crop canopy was not completely closed and level at the bolting stage. The bolting flower buds 

were taller than the leaves, but the canopy surface was discontinuous as the buds and racemes 

only filled part of the uppermost canopy level. As a result canopy height extracted from the 

DSMs were shorter than the actual canopy height measured at the bolting stage. But there might 

be less impact on the UAV-derived canopy height when crop canopy was close, more even, 

denser, and taller at the flowering stage, which made UAV-derived canopy height was closer 

to actual height. Although FLactual was overestimated using UAV-based imagery, the 

consistence of overestimation may not affect the ability to predict crop growth trend, which 

indicates that the UAV-derived FLmean has the potential to estimate FLactual under field 

conditions. 

 

The non-significant relationship between the FLactual and FLmean at the beginning of flowering 

stage in 2018 might be due to the short layer depth. Although flowers were presumably not 

occluded by the top branches at this stage, the yellow flowering layer were too short to be 

accurately extracted from imagery taken at 25-meter flight altitude. Flowers with pale yellow 

petals or flowers with small size petals might be neglected when extracting data from imagery 

with relatively low spatial resolution in which the size of the organ was lower than the GSD. 

Improving the GSD with high resolution RGB imagery may improve the possibility of flower 

detection at the early flowering stage. Moreover, the short flowering layer depth at the early 

flowering stage might introduce more manual measurement errors and decrease estimation 

accuracy compared with the late development stages (Morrison et al., 2021).  

 



 

 

74 

 

A                                                                                   B 

 
Figure 4.5 Relationships between the UAV-derived flowering layer depth and actual flowering layer depth at 

Saskatoon, SK, Canada in 2016. Fifty-six genotypes including 54 diverse B. napus genotypes, a B. carinata 

genotype, and a B. juncea genotype were manually measured for the flowering layer depth. (A) Regression 

equation for July 19, 2016: y=-3.01x2+2.25x+0.42, R2=0.40. (B) Regression equation for July 27, 2016: y=-

2.42x2+2.29x+0.40, R2=0.13.  

 

 

 
Figure 4.6 Relationships between the UAV-derived flowering layer depth and actual flowering layer depth at 

Saskatoon, SK, Canada in 2017. Sixteen B. napus genotypes were manually measured for the flowering layer 

depth. Regression equation for July 25, 2017: y=-28.84x2+24.77x-4.53, R2=0.36. 
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Figure 4.7 Relationships between the UAV-derived flowering layer depth and actual flowering layer depth at 

Saskatoon, SK, Canada in 2018. Sixteen B. napus genotypes were manually measured for the flowering layer 

depth. (A) There was no significant regression for July 10, 2018: R2=0.13, p=0.41. (B) Regression equation for 

July 17, 2018: y=-68.85x2+15.33x-0.04, R2=0.34. (C) Regression equation for July 25, 2018: y=-

60.37x2+10.95x+0.13, R2=0.42.  
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4.3.3 Seed Yield Estimation Using UAV-derived Canopy Height Extracted from a Single 

Image Date 

 

Among all site years, there were significant relationships between UAV-derived canopy height 

and seed yield at the peak flowering stage (R2 ranging from 0.23 to 0.42, p < 0.05) (Figure 4.8). 

In 2016, the flowering period demonstrated significant relationships between the UAV-derived 

canopy height and seed yield except at the late flowering stage (August 06). Usually, plant 

height reached the maximum height at the peak flowering. By peak flowering, the plant stem 

is the major photosynthetic area providing food source for crop development (Canola Council 

of Canada, 2021). In addition, taller plants can be easily detected by the sensor with a higher 

assessment accuracy. The relationships had small R2 values ranging from 0.10 to 0.12 at the 

pod stage (Figure 4.8A). These relationships might be due to severe crop lodging at the late 

growth stage in 2016, which resulted in uneven maturity and smaller plant size with lower 

accuracy of height estimation. There were no significant relationships between the UAV-

derived canopy height and seed yield at the vegetative stage. At the early development stage, 

canola plants were still short and might require higher spatial resolution for accurate height 

estimation. Additionally, height information at the vegetative stage might not be a key factor 

contributing to seed yield. Other factors such as environmental conditions during the remaining 

growth stage and crop diseases, can affect final seed yield. Therefore, UAV-derived canopy 

height at the early vegetative stage may contribute little in modeling yield.  

 

In 2017, there were similar patterns in the relationships between the UAV-derived canopy 

height and seed yield compared with the 2016 assessment. The peak flowering stage (July 26) 

showed a significant relationship with seed yield with R2 of 0.28 (Figure 4.8B). Both vegetative 

(June 28 – July 07) and pod stages (August 16 – August 29) had relatively less R2 compared 

with the flowering stage (Figure 4.8B). Not surprisingly, in 2018, the flowering stage showed 

significant relationships with seed yield. The weakest relationship between the UAV-derived 

canopy height and seed yield was found at the vegetative stage (R2 = 0.14 to 0.25) (Figure 

4.8C). The pod stage showed significant relationships with seed yield with greater R2 up to 

0.48 compared with the regressions in 2016 and 2017 (Figure 4.8). These relatively stronger 

relationships at the pod stage might be resulted from less plant lodging and more uniform 

canopy in 2018.  
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Generally, consistently significant relationships between the UAV-derived canopy height and 

seed yield were observed during the flowering stage. The peak flowering time showed the 

greatest R2 when canola plants reached the maximum stem length. Canola plant stem played 

an important role in photosynthesis and became the major sources of food for seed growth by 

peak flowering when lower pods had started elongating. In addition, a larger plant made it easy 

for sensor detection during the flowering period. There were no consistently strong 

relationships with seed yield at the pod stage. Normally, crop lodging can result in non-uniform 

and shorter canopy height, which can reduce the accuracy of canopy height estimation (Iqbal 

et al., 2017; Wilke et al., 2019; Morrison et al., 2021). Thus, digital canopy height information 

at the pod stage may not be a stable indicator for yield estimation when severe lodging occurs. 

Across 3 site years, the weakest relationships were found at the vegetative stage, indicating that 

this growth stage might not be a critical growth stage for yield estimation using canopy height 

information. Canola plants might be too small to be detected by imagery, which could lower 

the accuracy of height estimation, and therefore yield prediction. The results are in accordance 

with the study of Geipel et al. (2014). They stated that high resolution imagery was required 

for height estimation at the early growth stages of corn. In addition, canopy height information 

at the vegetative stage may not be a key factor contributing to final seed yield.  
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Figure 4.8 Trend lines of coefficient of determination (R2) between seed yield and the UAV-derived canopy 

height at Saskatoon, Saskatchewan, Canada in 2016 (A), 2017 (B), and 2018 (C).  

 

 

0

0.2

0.4

0.6

0.8

1

150 170 190 210 230 250 270

2016

Vegetative Flowering Pod

0

0.2

0.4

0.6

0.8

1

150 170 190 210 230 250 270

2017

Vegetative Flowering Pod

0

0.2

0.4

0.6

0.8

1

150 170 190 210 230 250 270

2018

Vegetative Flowering Pod

R
2
 

R
2
 

R
2
 

Julian date 



 

 

79 

4.3.4 Seed Yield Estimation Using The Cumulative Canopy Height Calculated from 

Multi-Temporal Imagery 

 

Although there were significant relationships between the UAV-derived canopy height and 

yield during the reproductive stage, lodging at the late development stage such as the pod stage 

might have an adverse effect on the accuracy of canopy height and yield estimation. Therefore, 

the dynamics of canopy height during the entire crop season may demonstrate a more realistic 

plant growth condition such as rapid stem elongation or lodging.  

 

Compared with the canopy height extracted from a single image date, the cumulative UAV-

derived canopy height across the flowering stage and entire crop season showed more 

consistent and significant relationships with seed yield (R2 ranging from 0.25 to 0.46) (Figures 

4.9-4.11). More specifically, in 2016, the UAV-derived canopy height accumulated during the 

flowering stage and whole crop season showed significant relationships with seed yield with 

greater R2 than using a single image (Figures 4.8A, 4.9A,C). A weak relationship between the 

cumulative UAV-derived canopy height and yield was found at the pod stage (Figure 4.9B). 

The potential reason might be an adverse impact of severe lodging on canopy height and 

uniformity, which makes digital height information unreliable for yield estimation.  

 

In 2017, the accumulation of canopy height dynamics throughout the flowering stage and entire 

crop season had the highest yield estimation accuracy, compared with using the single image 

date (Figures 4.8B, 4.10A,C). The cumulative UAV-derived canopy height at the pod stage 

had low yield estimation accuracy (R2 = 0.17) (Figure 4.10B). Similarly, in 2018, the flowering 

stage and entire crop season showed significant relationships between the cumulative UAV-

derived canopy height and yield (Figures 4.11A,C). The accumulation of UAV-derived canopy 

height at the pod stage had relatively higher yield estimation accuracy compared with the pod 

stage in 2016 and 2017. It might be due to less lodging in 2018 compared with the first 2 site 

years. Previous studies have shown the improvement of yield estimation by accumulating 

multi-temporal vegetation index in rice (Zhou et al., 2017), wheat (Xue et al., 2007; Wang et 

al., 2014), and canola (Zhang et al., 2021b). They reported that the accumulative imagery could 

better represent the general crop growth status than using a single image.  
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Figure 4.9 Relationships between seed yield and cumulative UAV-derived canopy height at the flowering stage, 

the pod stage, and throughout the crop season in 2016. (A) Regression equation at the flowering stage: 

y=89.22x+109.77, R2=0.29. (B) Regression equation at the pod stage: y=24.21x+1507.40, R2=0.11. (C) 

Regression equation throughout the crop season: y=27.06x+504.80, R2=0.25. 
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Figure 4.10 Relationships between seed yield and cumulative UAV-derived canopy height at the flowering stage, 

the pod stage, and throughout the crop season in 2017. (A) Regression equation at the flowering stage: 

y=83.27x+102.58, R2=0.30. (B) Regression equation at the pod stage: y=281.85x+947.41, R2=0.17. (C) 

Regression equation throughout the crop season: y=62.09x+76.94, R2=0.30. 
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Figure 4.11 Relationships between seed yield and cumulative UAV-derived canopy height at the flowering stage, 

the pod stage, and throughout the crop season in 2018. (A) Regression equation at the flowering stage: 

y=122.51x+1361.30, R2=0.46. (B) Regression equation at the pod stage: y=54.12x+969.06, R2=0.41. (C) 

Regression equation throughout the crop season: y=38.03x+641.76, R2=0.46. 

 

4.3.5 Seed Yield Estimation Using Cumulative UAV-derived Flowering Layer Depth  

 

Flowering timing differed among the diverse 56 Brassica genotypes. To cover the entire 

flowering layer development progress for each genotype, the FLmean was accumulated over 

time using the flowering progress curve (AUFPC) (Equation 3.5), as described by Chapter 3. 

The cumulative FLmean is defined as the overall magnitude and the duration of flowering layer 

depth change.  

 

Seed yield was significantly and positively correlated with the cumulative FLmean in 2016 (R2 

= 0.20) and in 2017 (R2 = 0.34) (Figures 4.12A,B). There was no significant relationship 

between the cumulative FLmean and seed yield in 2018 (Figure 4.12C). The yellow layer of 

canola flower can reflect or absorb 60% - 65% incoming solar radiation that could have been 
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used by the photosynthetic plant tissue (Diepenbrock 2000). It seems that shorter yellow FLactual 

may increase radiation absorption by the leaves and seed development (Diepenbrock 2000). 

However, less flower number per unit ground can result in fewer pods and seed (Yates and 

Steven, 1987). In this study, it indicated that the increase in radiation with fewer pods and seed 

might not be a significant factor influencing seed yield, which is consistent with results found 

by Yates and Steven (1987). The non-significant regression result in 2018 might be because 

the relatively shorter FLactual could not be accurately estimated via the imagery. 

 

Compared with the cumulative FLmean, there were no significant relationships between the 

manually measured cumulative FLactual and seed yield over 3 site years (Figure 4.13). The non-

significant relationships might be due to the limited sampling size (i.e., 3 plants per plot for 

each manual measurement) in the field at the flowering stage. Smaller sample size might make 

the manual measurement not representative for an entire plot (Morrison et al., 2021). In 

addition, manual measurement was influenced by lacking labor and limited access to field due 

to wet field conditions. Therefore, the frequency of the manual measurement was lower than 

UAV imagery collection, resulting in inadequate plant growth information for yield estimation 

(Table 4.1). Moreover, missing data due to human error could be another factor affecting 

regression. The results indicate that adequate flowering layer depth progress information might 

be necessary to improve the accuracy of seed yield estimation. 
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Figure 4.12 Relationships between seed yield and cumulative UAV-derived flowering layer depth from 2016 to 

2018 at Saskatoon, SK, Canada. (A) Regression equation in 2016: y=77.51x+878.31, R2=0.20. (B) Regression 

equation in 2017: y=74.91x+572.19, R2=0.34. (C) There was no significant regression in 2018: R2=0.09, p=0.27. 
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Figure 4.13 Relationships between seed yield and cumulative actual flowering layer depth from 2016 to 2018 at 

Saskatoon, SK, Canada. There were no significant relationships in 2016 (A), 2017 (B), and 2018 (C). 

 

 

4.4 Conclusions 

 

In conclusion, canopy height can be estimated using UAV-based imagery during reproductive 

stage. The peak flowering and pod stages showed the highest accuracy of height estimation 

using the UAV-based DSMs when plant reached the maximum height. In addition, shorter 

plants at the early development stage may require sensors with high spatial resolution to 

increase estimation accuracy. The results also implied the UAV-derived canopy height had the 

potential to monitor the dynamics of crop canopy height during the growing season, which can 

be used for crop lodging evaluation. Moreover, this study indicated that canopy height 

information extracted from a single image date during the flowering and pod stages had the 

potential for seed yield estimation, but the accuracy of yield estimation using height 

information at the pod stage was not consistent, and it can be influenced by severe crop lodging. 

Similar results were reported by Geipel et al. (2014) and Bendig et al. (2015) in barley and 
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corn, respectively. Their studies indicated that the application of digital height information in 

yield estimation was limited by certain growth stage. Compared with using the single image 

date, the accumulation of UAV-derived canopy height dynamics at the flowering period or the 

entire crop season increased yield estimation accuracy. The cumulative UAV-derived canopy 

height during the flowering stage may be a more promising phenotype than the entire crop 

season as the accumulation from the flowering period requires less imagery collection and 

provides earlier crop evaluation. Moreover, the cumulative FLmean can be a potential predictor 

variable to explain some variations in seed yield model. This digitalized phenotype can be 

estimated using UAV-based DSMs.  
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Transition section between Chapter 4 and Chapter 5 

 

Chapter 3 and Chapter 4 showed that flowering number, flowering layer depth, and canopy 

height could be estimated or quantified using two-dimensional (2D) or three-dimensional (3D) 

imagery information. Additionally, accumulating these digitalized phenotypes using UAV-

based multi-temporal imagery improved the ability to estimate seed yield compared with using 

a single image. However, applying a single predictor variable in a yield model may not explain 

adequate variations. Chapter 5 would estimate seed yield using the combination of 2D and 3D 

imagery with a machine learning method.  
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CHAPTER 5 SEED YIELD ESTIMATION USING UNOCCUPIED AERIAL 

VEHICLE (UAV)-BASED MULTISPECTRAL IMAGES AND THE RANDOM 

FOREST MODEL IN DIVERSE BRASSICA GENOTYPES 

 

The content of this chapter will be submitted to Remote Sensing. 

 

 

 

Abstract 

 

Early yield estimation in canola (Brassica napus L.) plays an important role in selecting 

breeding genotypes and developing cultivars through crop breeding that optimize field 

productivity. Traditional methods for yield estimation based on visual rating or manual 

sampling before harvest stage are subjective, destructive, labor-intensive, and time-consuming 

for large-scale fields. In the most recent decade, advances in unoccupied aerial vehicle (UAV) 

mounted with imaging sensors have demonstrated an ability to acquire high temporal and 

spatial resolution images for yield estimation without damaging the crop canopy. The objective 

of this study was to estimate seed yield in canola using multi-temporal UAV-based imagery 

collected during the entire crop season. Fifty-six Brassica breeding genotypes were 

investigated in canola field experiments conducted near Saskatoon, SK, Canada from 2016 to 

2018. Multispectral imagery was collected at 3-day or 7-day intervals during the crop season. 

To estimate seed yield, instead of using vegetation indices (VIs) extracted from a single image 

date, VIs were accumulated at the vegetative (i.e., seedling and bolting stages), the flowering, 

and the pod stages. These cumulative VIs and two cumulative canopy structural phenotypes 

(i.e., crop canopy height and flowering layer depth) were evaluated as potential predictor 

variables using simple linear regression and random forest (RF) regression models. The linear 

regression results demonstrated that the cumulative UAV-derived canopy height at the 

flowering stage was an acceptable indicator for yield estimation with coefficient of 

determination (R2) value of 0.18. The RF regression model combining 9 cumulative VIs and a 

cumulative canopy structural phenotype improved the accuracy of yield estimation (R2 = 0.32; 

root mean square error = 490.54 kg/ha for the validation dataset) compared with the linear 

regression model. According to the ranking of variable importance by the RF regression model, 

the cumulative blue normalized difference vegetation index at the flowering stage, the 

cumulative UAV-derived canopy height at the flowering stage, and the cumulative normalized 
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difference vegetation index at the vegetative stage were the most important traits for yield 

estimation. Moreover, the vegetative (i.e., from seedling to bolting stage) and flowering stages 

were the optimal early crop growth stage for yield estimation in canola. The results indicate 

that combining the cumulative VIs and cumulative canopy structural phenotype derived from 

UAV-based imagery has the potential to estimate seed yield in canola which can assist breeding 

programs and improve farm productivity. 

 

5.1 Introduction  

 

Canola (Brassica napus L.), an important oilseed crop, is cultivated worldwide. Canada is 

among the top five exporting countries, with 20.8 million seed acres and a production of 18.7 

million tonnes in 2020 (Statistics Canada, 2020). Timely and accurate crop yield estimation 

before harvest is important in high-yielding genotype selection and cultivar development in 

breeding programs (Araus and Cairns, 2014; Sankaran et al., 2015). Yield estimation plays a 

vital role in optimizing field management for farmers (Peng et al., 2019) and decision making 

for policy makers and marketing agencies (Johnson et al., 2016). However, the conventional 

methods to estimate crop yield before maturity stage using visual field evaluation or straight 

harvest require extensive field experience and are labor-intensive and destructive. In addition, 

these methods are subjective due to limited sampling size which may not be representative for 

the entire plot-level or farm-scale field. Furthermore, traditional crop yield models usually 

require quantitative information such as crop type, growth stages, environmental conditions, 

and management operations, which is sometimes difficult to obtain and quantify (Johnson et 

al., 2016; Peng et al., 2019). To overcome the challenges of the conventional methods to 

estimate crop yield in situ and the complexity of traditional crop growth models, it is necessary 

to establish an efficient and accurate descriptive yield model for plant breeders, farmers, and 

policy makers.  

 

In the recent decade, advances in remote sensing techniques have shown potential as an 

efficient and non-destructive approach for crop yield prediction. Among the remote 

phenotyping platforms, unoccupied aerial vehicles (UAVs) equipped with multi-spectral 

sensors have become a relatively low-cost high-throughput phenotyping tool that can provide 

high spatial and temporal resolution images for large-scale areas. Application of vegetation 
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indices (VIs) extracted from the multispectral imagery have been widely studied in many crops 

for yield or biomass estimation such as canola (Sulik and Long, 2016; Gong et al., 2018; Peng 

et al., 2019; Zhang et al., 2021b), wheat (Han et al., 2021b), barley (Bendig et al., 2015; 

Johnson et al., 2016), rice (Noureldin et al., 2013; Zhou et al., 2017; Wan et al., 2020), corn 

(Ramos et al., 2020), and cotton (Feng et al., 2020). In canola, Sulik and Long (2016) 

determined that normalized difference yellow index (NDYI) at the flowering stage was 

significantly correlated with county-level seed yield with R2 up to 0.76. Gong et al. (2018) 

showed that a set of greenness related VIs such as the normalized difference vegetation index 

(NDVI) multiplied by leaf-related abundance at the early flowering stage were able to estimate 

yield under different nitrogen treatments with low estimation error (< 13%). Peng et al. (2019) 

found that red edge vegetation index (CIred edge) during the vegetative stage was able to predict 

seed yield with low estimation error (< 15%). Han et al. (2021b) applied NDVI and soil 

adjusted vegetation index (SAVI) to estimate seed yield in wheat with R2 of 0.673 and 0.616, 

respectively.  

 

Apart from spectral information extracted from 2-dimensional (2D) orthomosaic, canopy 

structural phenotype (e.g., crop canopy height) can be a potential indicator for monitoring crop 

health status and yield estimation (Zhang et al., 2021a). The canopy structural phenotypes are 

defined as the characteristics of crop canopy which can be quantified using 3-dimensional (3D) 

imagery such as canopy height and flowering layer depth (Chapter 4). Previous research has 

proven that digital crop height extracted from 3D models such as crop surface models (CSMs) 

or digital elevation models (DEMs) was strongly correlated with growth parameters and seed 

yield or biomass in various crops such as barley (Bendig et al., 2015), cotton (Feng et al., 2019), 

and cool season crops including chickpea, dry pea, camelina, and canola (Zhang et al., 2021a). 

For example, Bendig et al. (2015) observed that plant height derived from CSMs was the most 

robust digital phenotype for biomass estimation in barley (R2 = 0.80 - 0.82) compared with a 

series of VIs. A linear regression using plant height extracted from DEMs was able to predict 

yield in cotton with r value ranging from 0.66 to 0.96 (Feng et al., 2019). Zhang et al. (2021a) 

demonstrated that plant height derived from UAV-based RGB images were significantly 

correlated with actual plant height in four cool-season crops (i.e., chickpea, dry pea, camelina, 

and canola). 
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In addition, compared with using UAV-based imagery obtained from a single image date, 

accumulative or multi-temporal imagery may improve the accuracy of yield estimation (Xue 

et al., 2007; Wang et al., 2014; Zhou et al., 2017; Wan et al., 2020; Zhang et al., 2021b). Xue 

et al. (2007) and Wang et al. (2014) found that the cumulative NDVI and ratio vegetation index 

(RVI) obtained from the jointing to grain filling stage improved yield estimation accuracy in 

wheat. Zhou et al. (2017) showed that the multi-temporal NDVI derived from multispectral 

images had a significant relationship with seed yield in rice using a multiple linear regression 

model (r = 0.73). Zhang et al. (2021b) reported that accumulative NDYI-based pixel number 

during the flowering stage improved the yield estimation accuracy among 56 Brassica 

genotypes across 5 site years, compared with using imagery from a single image date.  

 

During the entire crop season, canola has three distinct canopy morphologies with different 

spectral reflectance including the vegetative stage dominated by leafy vegetation, the flowering 

stage displaying a yellowish canopy, and the mature stage with green to dark green or brown 

pods and branches (Domínguez et al., 2015; Pan et al., 2013; Sulik and Long, 2016; Han et al., 

2021a; Singh et al., 2021). In addition, canola yield is related to many direct and indirect factors 

during the entire crop season. Simply inputting a single predictor variable in a descriptive yield 

model may result in unsatisfactory and inaccurate results because of the potential saturation of 

VIs and neglecting other important factors which may contribute to final seed yield (Geipel et 

al., 2014; Liu et al., 2019; Fu et al., 2020). Geipel et al. (2014) set up a multiple linear regression 

model including crop coverage related VIs and digital crop heights computed from CSMs. 

They reported that the multiple linear regression model improved the accuracy of yield 

estimation compared with the simple linear regression model using a single predictor. Liu et al. 

(2019) also reported that combining VIs and texture metrics computed by a gray level co-

occurrence matrix texture algorithm improved above ground biomass estimation in winter 

canola.  

 

In the contest to build a descriptive model, numerous types of regression models can be used 

to explore the relationships between remote sensed imagery and crop yield. In this study a 

simple linear regression model and a random forest (RF) model were applied. These models 

were used to determine the contribution of each digital phenotype to seed yield and to develop 

a descriptive yield prediction model. The linear regression model has commonly been used to 

determine simple relationships between digital phenotypes and yield (Zhou et al., 2017; Fu et 
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al., 2020). The RF is a non-linear regression model which has low sensitivity to outliers and 

minimized overfitting risk by the bagging algorithm (Liu et al., 2019; Fu et al., 2020; Ramos 

et al., 2020). To fit an RF, two model hyperparameters (i.e., ntree and mtry) need to be set. The 

hyperparameter ntree determines the number of decision trees grown in the RF model, while 

mtry refers to the number of variables for each split (Liu et al., 2019; Fu et al., 2020).  

 

Many researchers have shown that seed yield prediction model using UAV-based digital 

phenotypes could be a selection tool in breeding programs and could assist in field management. 

However, most research on canola yield estimation models only applied limited imagery from 

a single image date or a single growth stage, which neglected the progression of crop growth 

and might reduce yield prediction accuracy. Combining comprehensive growth information 

over the entire crop season may improve the accuracy of yield estimation. In this context, time-

series imagery during the entire crop season should be considered and evaluated to estimate 

yield. In addition, diverse genotypes, uncertain environmental conditions, and the interaction 

between genotypes and environments may make it more difficult to develop a robust yield 

model. In this study, the main objective was to investigate the potential of cumulative 

phenotypes calculated from multi-temporal images for yield estimation using 56 highly diverse 

Brassica genotypes across three site years. 

 

5.2 Materials and Methods 

 

5.2.1 Experimental Field 

 

A three-year field study was conducted at Agriculture and Agri-Food Canada Research Farm 

near Saskatoon (latitude: 52.181577, longitude: -106.499884) in Saskatchewan from 2016 to 

2018. Fifty-six diverse Brassica breeding genotypes (Ebersbach et al., 2022; Table A.1, 

Appendix A) were grown in a rectangular lattice design with three replicates, resulting in 168 

plots in total with plot sizes of 6.0 m long x 1.2 m wide in 2016 and 2018, and 6.0 m long x 1.5 

m wide in 2017. Canola was seeded at a recommended rate of 108 seeds m-2. Pesticides were 

applied based on field conditions. More details of study area and field management operations 

were descripted by Chapter 3. Seed yield of each experimental plot was determined at maturity 
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stage by harvesting the four central rows to reduce border effect using a small plot combine 

harvester.  

 

5.2.2 Multispectral Imagery Collection 

 

Across three site years, UAV platforms (i.e., Draganflyer X4-P model and Draganflyer 

Commander model) (DraganFly Inc., Saskatoon, SK, Canada) equipped with a multispectral 

sensor (RedEdge, MicaSense Inc., Seattle, WA, United States) were used to take imagery over 

the study area. The sensor has five channels consisting of blue (Rblue, 475  10 nm), green 

(Rgreen, 560  10 nm), red (Rred, 668  5 nm), red edge (Rred edge, 717  5 nm), and near-infrared 

(Rnir, 840  20 nm) with an image resolution of 1.2 megapixels and radiometric resolution of 

12-bit. Flight altitudes were 20 m and 25 m above ground level, leading to ground sampling 

distance of 1.36 cm per pixel and 1.70 cm per pixel, respectively. 

 

Images of a calibration panel were taken before and after each flight for radiometric calibration; 

and geo-locations of ground control points were recorded by GeoExplorer 2008 GPS (Trimble 

Inc., Westminster, CO, United States) for geometric calibration. To cover the entire crop 

growth progress, imagery collection was arranged weekly in 2016, semi-weekly during the 

flowering period in 2017 and 2018, and weekly during the vegetative and pod stages in 2017 

and 2018 (Table 5.1).  
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Table 5.1 Details of canola trials and imagery acquisition at Saskatoon, SK, Canada from 2016 to 2018.  

Year Seeding date 
Number of 

genotypes 

Flight altitude 

(m) 
Image acquisition  

2016 May 27 56 20 

June 13; 24; 30 

July 14; 19; 26 

August 06; 22 

September 08 

 

2017 May 28 56 20 

June 28 

July 07; 11; 15; 19; 22; 26 

August 01; 09; 16; 22; 29 

 

2018 May 21 56 25 

June 07; 20; 28 

July 06; 09; 16; 20; 24; 27; 30 

August 03; 07; 10; 14; 17; 20; 23; 28; 31 

 

5.2.3 Imagery Processing and Data Extraction 

 

5.2.3.1 Pre-processing  

 

Multispectral imagery was initially processed in a commercial software; Pix4Dmapper Pro 

(Pix4D Inc., San Francisco, CA, United States) for mosaicking, radiometric and geometric 

calibration. Five calibrated reflectance maps were obtained and exported for further vegetation 

indices (VIs) calculation. Meanwhile, digital surface models (DSM) were generated using the 

Structure from Motion algorithm for height-related traits extraction. More details were 

descripted in Chapter 4. 

 

5.2.3.2 Vegetation indices, canopy height, flowering layer depth, and cumulative image-

based features calculation during the crop season 

 

The generated orthomosaic images and DSMs were imported into ArcGIS 10.4.1 (ESRI 

Canada, Toronto, ON, Canada) for further data extraction. The “Raster Calculator” tool 

computed VIs using different combinations of the five calibrated reflectance maps. According 

to previous research, several commonly used VIs were tested in this study including normalized 

difference vegetation index (NDVI), red edge ratio vegetation index (RVI), chlorophyll index 

(CIred edge), blue normalized difference vegetation index (BNDVI), green normalized difference 

vegetation index (GNDVI), and visible atmospherically resistant index (VARI) (Rouse et al., 
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1974; Gitelson et al., 1996 and 2002; Xue et al., 2004; Vina et al., 2004; Sulik and Long, 2016; 

Hussain et al., 2020). These VIs have shown the possibility to predict crop biomass or yield. 

Additionally, high resolution flowering index (HFI), red-blue normalizing flowering index 

(RBFI) (Fernando and Ha, 2021; personal communication), and modified yellowness index 

(MYI) (Ha, 2021; personal communication) have been proposed and recommended for 

yellowish flower detection during the flowering stage. Details of these VIs are shown in Table 

5.2. 

 

Table 5.2 Details of vegetation indices applied in this study.  

Indices  Name Formula Reference 

NDVI Normalized difference vegetation index (Rnir-Rred)/(Rnir+Rred) Rouse et al. (1974) 

RVI Ratio vegetation index Rnir/Rred Xue et al. (2004) 

CIred edge Red edge chlorophyll index (Rnir/Rred edge)-1 Gitelson et al. (2002) 

BNDVI Blue normalized difference vegetation index (Rnir-Rblue)/(Rnir+Rblue) Sulik and Long (2016) 

GNDVI Green normalized difference vegetation index (Rnir-Rgreen)/(Rnir+Rgreen) Gitelson et al. (1996) 

VARI Visible atmospherically resistant index (Rgreen-Rred)/(Rgreen+Rred+Rblue) Vina et al. (2004) 

HFI High resolution flowering index (Rred-Rblue) x(Rgreen-Rblue) Fernando and Ha (2021) 

RBNI Red-blue normalizing index (Rred-Rblue)/(Rred+Rblue) Fernando and Ha (2021) 

MYI Modified yellowness index (Rred x Rgreen)/Rblue Ha (2021) 

 

In this experiment, to cover the dynamics of crop growth over time, the selected VIs were 

accumulated at the vegetative, flowering, and pod stages, resulting in 27 cumulative VIs. The 

cumulative VIs were calculated using the area under curve (AUC) formula: 

 

𝐴𝑈𝐶 = (
𝑋1+𝑋2

2
) (𝑡2 − 𝑡1) + (

𝑋2+𝑋3

2
) (𝑡3 − 𝑡2) + ⋯ + (

𝑋𝑛−1+𝑋𝑛

2
) (𝑡𝑛 − 𝑡𝑛−1)     [5.1] 

 

where X1, X2, X3, Xn-1, and Xn represent the VIs values at each image date, and t1, t2, t3, tn-1, and 

tn represent Julian date at each image timing. 

 

Chapter 3 showed that a cumulative VI extracted from multi-temporal imagery (i.e., cumulative 

NDYI-based flowering pixel) had the potential as a promising indicator of crop growth status 

and yield production; thus, the cumulative NDYI-based pixel number is included for further 

regression analysis. Details about the calculation of the cumulative NDYI-based flowering 

pixel number were described by Chapter 3.  
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In addition to the 2D image-based features, two cumulative canopy structural phenotype 

extracted from 3D DSMs (i.e., the cumulative UAV-derived canopy height and flowering layer 

depth at the flowering stage) has been proved to be potential indicators to estimate seed yield 

(Chapter 4). The two digital cumulative phenotypes were also tested in Chapter 5. The details 

of extracting and calculating the cumulative UAV-derived canopy structural phenotypes were 

described in Chapter 4.  

 

5.2.4 Data Analysis and Model Development 

 

For each cumulative image-based feature, mean values per Brassica genotype were calculated 

across three replications within each year. In addition, mean yield per genotype was averaged 

across three replicates within each year, resulting in 168 data points (i.e., 168 = 56 genotype x 

3 site years). These mean values (i.e., cumulative image-based features and seed yield) per 

genotype were used in further regression analysis.  

 

The simple linear regression model was calculated using PROC REG in SAS 9.4 (SAS Institute, 

Cary, NC, United States) to estimate the linear relationships between seed yield and single 

cumulative image-based features (i.e., VIs and canopy structural phenotypes).  

 

Prior to applying random forest (RF) regression model, all cumulative VIs and canopy 

structural phenotypes were pre-screened to avoid covariance. To select suitable independent 

variables within these cumulative VIs and canopy structural phenotypes, Pearson correlation 

was applied. The independent variables with Pearson correlation coefficient (r) larger than 0.9 

were considered as highly correlated input variables and removed before further RF regression 

analysis. Pearson correlation analysis was done by the package ‘corrplot’ in R (Wei and Simko, 

2021). According to the initial correlation results, twelve highly correlated variables were 

eliminated (Figure 5.1). The remaining variables were input as predictors in a random forest 

regression model (Figure 5.2).  
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Figure 5.1 Heatmap of correlation between each cumulative vegetation indices and canopy structural phenotypes. 

auc_VARI represents cumulative VARI; auc_NDYI_pixel represents cumulative NDYI-based pixel number; 

auc_RVI represents cumulative RVI; auc_CIrededge represents cumulative CIred edge; auc_HFI represents 

cumulative HFI; auc_MYI represents cumulative MYI; auc_FL represents cumulative flowering layer depth; 

auc_RBNI represents cumulative RBNI; auc_canopyheight represents cumulative UAV-derived canopy height; 

auc_NDVI represents cumulative NDVI; auc_GNDVI represents cumulative GNDVI; auc_BNDVI represents 

cumulative BNDVI; “_Vege” represents at the vegetative stage; “_flowering” represents at the flowering stage; 

“_pod” represents at the pod stage.  

 

The RF regression model was constructed with the package ‘randomForest’ in R (Liaw and 

Wiener, 2002). The RF regression model is a non-linear ensemble approach for regression 

determination which is widely used for crop yield or biomass prediction because of its non-

sensitivity to data skewness and less overfitting problems (Liu et al., 2019; Wan et al., 2020). 

Two basic model hyperparameters need to be determined to fit RF model including the number 

of variables for each split (mtry) and the number of trees (ntree) to grow. To determine the 

suitable hyperparameters, the hyperparameter ntree was evaluated from 100 to 1000 at a 100-

interval. The hyperparameter mtry was determined from 3 to 18 at a 1-interval. Finally, in this 

study, the default hyperparameters (i.e., mtry = 6; ntree = 500) were applied in the RF 
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regression model because there was no obvious improvement after model tuning. After the 

initial RF modeling, the least important variables were gradually removed based on the variable 

importance in the projection (VIP). The lower VIP value (i.e., mean decrease accuracy %) 

represents less contribution to the seed yield estimation. Seventy percent data from 2016 to 

2018 were randomly selected as the training dataset for the regression model (Wan et al., 2020). 

Then, the remaining 30% of the dataset obtained over the three site years were used to validate 

the generated regression model (Wan et al., 2020). Yield estimation model was evaluated based 

on two statistical indexes including the coefficient of determination (R2) and root mean square 

error (RMSE).  

 

5.3 Results and Discussion 

 

5.3.1 Seed Yield Estimation Using Single Cumulative Vegetation Indices and Canopy 

Structural Phenotypes 

 

To combine and standardize datasets across three site years, the selected vegetation indices 

(VIs) were accumulated over three growth stages (i.e., vegetative stage, flowering stage, and 

pod stage) into one value for further regression analysis using the area under curve function 

(Equation 5.1). In addition, the cumulative VIs calculated using multi-temporal images usually 

contain more details of crop growth progress compared with using a single image date (Zhou 

et al., 2017; Liu et al., 2019; Zhang et al., 2021b). Therefore, in the linear regression analysis, 

the selected VIs accumulated at the vegetative, flowering, and pod stages, the cumulative 

NDYI-based flowering pixel number, the cumulative flowering layer depth, and the cumulative 

UAV-derived canopy height at the flowering stage were applied as inputs to estimate seed yield 

(Table 5.3). Unfortunately, there were no significant relationships between the single 

cumulative VIs and seed yield except the cumulative UAV-derived canopy height at the 

flowering stage (R2 = 0.18) (Table 5.3). Although the R2 value for the relationship between the 

cumulative UAV-derived canopy height at the flowering stage and seed yield was not as high 

as previous studies (Sulik and Long, 2016; Gong et al., 2018; Liu et al., 2019), the significant 

regression result is still acceptable because the datasets were based on the responses of 56 

diverse Brassica genotypes over three site years (Table B.1, Appendix B). Unlike this study, 

most previous research collected datasets from only one or few varieties and often only one or 
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two environments (Sulik and Long, 2016; Gong et al., 2018; Liu et al., 2019). The crop growth 

patterns with less diverse varieties and environments may be easier to be explained by a 

regression model (Zhang et al., 2021b). The results indicated that the cumulative UAV-derived 

canopy height at the flowering stage could be a promising yield indicator in canola when using 

a single predictor for yield estimation.  

 

Table 5.3 Coefficient of determination (R2) and root mean square error (RMSE) for the linear regression model 

between seed yield and the cumulative vegetation indices and canopy structural phenotypes at Saskatoon, SK, 

Canada. 

 Growth stages 

 R2 RMSE (kg/ha) 

Cumulative Indices Vegetative Flowering Pod Vegetative Flowering Pod 

auc_NDVI 0.02 0.07 0.06 698.98 682.82 686.80 

auc_RVI < 0.01 0.07 0.06 706.80 681.40 685.50 

auc_CIred edge 0.02  0.07 0.02 700.40 681.62 701.64 

auc_BNDVI 0.02 0.09 0.04 704.22 676.47 692.12 

auc_GNDVI 0.03 0.06 0.02 696.80 1180.51 699.84 

auc_VARI < 0.01  0.08 0.09 706.67 726.49 676.10 

auc_HFI 0.04  < 0.01 0.03 692.64 707.22 695.07 

auc_RBNI < 0.01 0.07 < 0.01 706.98 680.54 881.50 

auc_MYI < 0.01  0.07 0.06 706.49 720.77 685.97 

auc_ndyi_ pixel NA < 0.01 NA NA 706.04 NA 

auc_FL NA 0.03 NA NA 695.01 NA 

auc_canopyheight NA  0.18** NA NA  642.04 NA 

* Significant at the 0.05 probability level. 

** Significant at the 0.01 probability level. 

***Significant at the 0.001 probability level. 

NA represents no data available.  

auc_NDVI represents cumulative NDVI. 

auc_RVI represents cumulative RVI. 

auc_CIred edge represents cumulative CIred edge. 

auc_BNDVI represents cumulative BNDVI. 

auc_GNDVI represents cumulative GNDVI. 

auc_VARI represents cumulative VARI. 

auc_HFI represents cumulative HFI. 

auc_RBNI represents cumulative RBNI. 

auc_MYI represents cumulative MYI. 

auc_NDYI_pixel represents cumulative NDYI-based pixel number. 

auc_FL represents cumulative flowering layer depth.  

auc_canopyheight represents cumulative UAV-derived canopy height. 
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5.3.2 Seed Yield Estimation Using the Random Forest Model 

 

After the initial RF modeling, the least important variables were removed gradually based on 

the ranking of variable importance (Figure 5.2). Then, ten cumulative variables including the 

cumulative BNDVI, the cumulative UAV-derived canopy height, the cumulative VARI, the 

cumulative RVI, the cumulative NDYI-based pixel at the flowering stage, the cumulative 

NDVI, the cumulative GNDVI, the cumulative CIred edge, the cumulative HFI at the vegetative 

stage and the cumulative MYI at the pod stage were selected and used as inputs in the RF 

regression model, which provided more accurate seed yield estimation (R2 = 0.92 ; RMSE = 

237.15 kg/ha for the training data; R2 = 0.32 ; RMSE = 490.54 kg/ha for the validation data) 

compared with the linear regression model using a single predictor variable (i.e., cumulative 

UAV-derived canopy height at the flowering stage) (R2 = 0.18; RMSE = 642.04 kg/ha). The R2 

value for the validation dataset was increased by 78% and RMSE value reduced 24%. Similar 

results were found by Liu et al. (2019) who reported that the CIred edge and RVI were the most 

important indicators based on the ranking of variable importance in the RF regression model 

for biomass estimation in winter canola. Wan et al. (2020) found that combining multi-temporal 

NDVI, NDYI, canopy height, and canopy coverage resulted in robust yield prediction in rice 

(r = 0.83 - 0.85) with a RF model. Ramos et al. (2020) stated that NDVI and GNDVI were the 

top variables in the RF for yield prediction in corn.  

 

In this yield estimation study, the results showed that the flowering and vegetative stages were 

more important than the pod stage for yield estimation in canola when using UAV-based 

imagery. Although the cumulative MYI at the pod stage provided some contributions to the 

yield estimation (Figure 5.2), the other 9 cumulative variables at the early growth stages (i.e., 

vegetative or flowering stages) could provide satisfying yield estimation for on-time field 

management strategy to maintain final yield.  
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Figure 5.2 Ranking of the variable importance of various cumulative vegetation indices in the random forest 

regression model. auc_BNDVI represents cumulative BNDVI; auc_canopyheight represents cumulative UAV-

derived canopy height; auc_NDVI represents cumulative NDVI; auc_GNDVI represents cumulative GNDVI; 

auc_VARI represents cumulative VARI; auc_RVI represents cumulative RVI; auc_CIrededge represents 

cumulative CIred edge; auc_HFI represents cumulative HFI; auc_MYI represents cumulative MYI; auc_NDYI_pixel 

represents cumulative NDYI-based pixel number at the flowering stage; auc_FL represents cumulative flowering 

layer depth at the flowering stage; auc_RBNI represents cumulative RBNI; “_Vege” represents at the vegetative 

stage; “_flowering” represents at the flowering stage; “_pod” represents at the pod stage.  

 

 

The ranking of variable importance in the RF regression model revealed that the cumulative 

BNDVI and the cumulative UAV-derived canopy height at the flowering stage, and the 

cumulative NDVI at the vegetative stage were the most important inputs for seed yield 

estimation in canola (Figure 5.2). Although Chapter 3 indicated that the cumulative NDYI-

based pixel number during the flowering period was a significant indicator for yield estimation, 

the RF results demonstrated that the cumulative BNDVI at the flowering stage was more 

sensitive for seed yield estimation. During the flowering stage, both green vegetation and 

yellow flowers were visible before and after the peak flowering. The cumulative NDYI-based 

pixel number detected and represented the flowering production progress (Sulik and Long, 

2016; Zhang et al., 2021b). The BNDVI value of each plot was the average reflectance of both 

green vegetation and yellow flowers. Chlorophyll absorbs at blue wavelength band and reflects 

NIR (Sulik and Long, 2016). Meanwhile, the yellowness of flowers due to carotenoids also 
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absorbs blue reflectance with few effects on NIR (Sulik and Long, 2015; Zhang et al., 2021b). 

Therefore, the greater BNDVI value could be expected with healthier green vegetation and 

more flowers and pods. This digital phenotype (i.e., cumulative BNDVI at the flowering stage) 

included more crop growth information compared with the cumulative NDYI-based pixel 

number. Moreover, the cumulative UAV-derived canopy height at the flowering stage derived 

from 3D DSMs was the second most important input variable in the RF. The accumulation of 

UAV-derived canopy height during the flowering stage included not only the canopy height 

information, but also the dynamic change of canopy height over time such as lodging or 

uniformity which had effects on the final seed yield (Chapter 4). Furthermore, as a common 

VI, NDVI extracted from a single image date could not explain many variations in yield 

estimation (Table 5.3), but the cumulative NDVI during the vegetative stage could be a 

promising yield indicator because it could capture the dynamic change of crop photosynthetic 

capacity at this stage using NIR and red reflectance. As expected, similar to NDVI, the 

cumulative NDVI became non-sensitive at the flowering stage because of the effect of yellow 

flowers (Sulik and Long, 2015, 2016; Zhang et al., 2021b).  

 

Not surprisingly, the RF regression model underestimated seed yield in the validation dataset 

(slope = 0.38) (data not shown). This was probably because the vegetative parts (i.e., leaves, 

stem, and branches) and yellow flowering might be occluded by the upper part of crop canopy. 

These lower plant parts could not be captured by UAV-based images, and the missing crop 

growth information might reduce the accuracy of yield estimation. Similar results have been 

reported by Zhang et al. (2021b) who stated the missing flowering accumulation progress might 

be a reason of reduced accuracy of yield estimation using UAV-based imagery.   
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A                                                                                              B 

  

Figure 5.3 Actual seed yield compared with estimated seed yield with the random forest model using the 

cumulative BNDVI, the cumulative UAV-derived canopy height, the cumulative VARI, the cumulative RVI, the 

cumulative NDYI-based flowering pixel at the flowering stage, the cumulative NDVI, the cumulative GNDVI, 

the cumulative CIred edge, the cumulative HFI at the vegetative stage, and the cumulative MYI at the pod stage for 

the training dataset (A) and the validation dataset (B). 70% of raw data were used as the training dataset and the 

remaining data were considered as the validation dataset. The blue dash line represents 1:1 reference line.  
 

5.4 Conclusions 

 

In this study, seed yield was regressed with the cumulative VIs and canopy structural 

phenotypes using a simple linear regression model and a random forest (RF) regression model 

with 56 genotypes grown under three site years. The RF regression model selected 9 cumulative 

VIs and a canopy structural phenotype (i.e., the cumulative BNDVI, the cumulative UAV-

derived canopy height, the cumulative VARI, the cumulative RVI, the cumulative NDYI-based 

pixel at the flowering stage, the cumulative NDVI, the cumulative GNDVI, the cumulative 

CIred edge, the cumulative HFI at the vegetative stage, and the cumulative MYI at the pod stage) 

as input indicators for yield estimation.  

 

According to the ranking of variable importance, the RF model indicated that the cumulative 

BNDVI at the flowering stage, the cumulative UAV-derived canopy height at the flowering 

stage, and the cumulative NDVI at the vegetative stage were the most important variables for 

yield estimation, which combined multi-temporal crop spectral and canopy structural 

information. In addition, the vegetative and flowering stages could be the optimal growth stages 

for early yield estimation as only one cumulative VI was calculated at the pod stage within the 

10 selected input variables. Moreover, compared with the simple linear regression model, the 
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RF regression model improved the accuracy of seed yield estimation in canola (R2 = 0.32; 

RMSE = 490.54 kg/ha for the validation dataset). In the simple linear regression analysis, there 

was a significant relationship between the cumulative UAV-derived canopy height at the 

flowering stage and seed yield. Although the R2 value of 0.18 was not as high as previous 

research, considering 56 various Brassica genotypes and three different site years (Table B.1, 

Appendix B), the cumulative UAV-derived canopy height at the flowering stage with a 

significant relationship was still acceptable as an individual indicator for canola yield 

estimation.  

 

These results indicate that combining the cumulative VIs and a canopy structural phenotype 

over the vegetative and flowering stages extracted from UAV-based imagery have the potential 

to estimate seed yield under field conditions. The ten selected variables, especially the 

cumulative BNDVI and the cumulative UAV-derived canopy height at the flowering stage, and 

the cumulative NDVI at the vegetative stage were promising digital phenotypes which could 

assist plant breeders in yield estimation of diverse Brassica genotypes under multiple field 

conditions.  

 

The future studies need to consider RGB imagery with higher resolution which may capture 

more crop growth information. Moreover, thermal sensors can be included in the future studies 

to gain new insights into field phenotyping and improve yield estimation accuracy. In addition, 

the selected input variables by the RF can be applied to satellite imagery which may allow 

regional-scale yield estimation and field scouting. 
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CHAPTER 6 GENERAL DISCUSSION AND CONCLUSION 

 

6.1 General Discussion  

 

Conventional phenotyping methods such as visual rating and manual measurement under field 

conditions are laborious, time-consuming, subjective, and destructive, which has become the 

bottleneck affecting genotype selection and new cultivar development with desirable crop 

performance (Araus and Cairns, 2014; Sankaran et al., 2015). With the advancement of aerial 

platforms mounted with imaging sensors, crop traits could be rapidly evaluated with relatively 

high accuracy (Araus and Cairns, 2014; Sankaran et al., 2015). In this thesis, the main 

hypothesis is agronomic traits of canola including flowering number, flowering layer depth, 

canopy height, and seed yield can be quantified or estimated by unoccupied aerial vehicle 

(UAV)-based multispectral imagery at reproductive stage.  

 

Canola flowering number is an important and interesting crop trait related to pod number and 

final seed yield (Tayo and Morgan, 1975; Diepenbrock, 2000; Faraji et al., 2008; Kirkegaard 

et al., 2018; Zhang and Flottmann, 2018). With the bright yellow flowering and relatively long 

flowering period (Gan et al., 2016; Kirkegaard et al., 2018), the dynamics of flowering progress 

in the field could be captured by the UAV-based imagery and have the potential to estimate 

yield.  

 

In the first study, it was hypothesized that yellow flower number could be estimated by spectral 

vegetation index and used for yield estimation (Chapter 3). Linear regression analysis was 

applied to investigate the relationship between the manually measured flower number and 

digitalized flowering number extracted from UAV-based imagery. The results indicated that 

normalized difference yellowness index (NDYI)-based pixel number had the potential to detect 

flower yellowness and estimate flower number with coefficient of determination (R2) value up 

to 0.95. Several researchers found the ratio of green and blue and NDYI could successfully 

detect canola flower (Sulik and Long, 2016; d’Andrimont et al., 2020; Han et al., 2021). NDYI 

is a ratio of sum and difference between blue and green wavelength bands (Sulik and Long, 

2016). Yellowness of flower petals decreases blue and increases red and green reflectance with 

little impact on near IR (NIR), therefore, NDYI is more sensitive to yellow flowers than other 
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greenness-related vegetation indices (VIs) using NIR (Sulik and Long, 2016). The average of 

NDYI for each plot contained both yellow flowering and green vegetation. Thresholding 

method was applied to extract flowering pixels and exclude non-flowering ones, which 

improved the sensitivity of NDYI to detect yellow flowers.  

 

Chapter 3 showed that the NDYI-based pixel extracted from a single image was not 

consistently correlated with yield. The results contrast with Sulik and Long (2016) who found 

NDYI extracted at the peak flowering stage was consistently and significantly correlated with 

seed yield in canola with R2 up to 0.76. The inconsistent relationships in my study might be 

due to more diverse genotypes involved and various environments (Table B.1, Appendix B) 

compared with the study by Sulik and Long (2016) who investigated fewer varieties. My field 

study evaluated 56 diverse breeding genotypes showing various flowering timing and growth 

habits. In addition, the field experiments were conducted under various environmental 

conditions (i.e., five site years), which made flowering timing and progress pattern more 

unpredictable. Therefore, it was difficult to determine an optimal image timing representing a 

specific development stage for all genotypes under various environmental conditions for yield 

estimation. 

 

The area under the flowering progress curve math function was used to accumulate flowering 

progress over the stage. This new digital cumulative flowering phenotype was significantly and 

consistently correlated with seed yield with R2 up to 0.42. Compared with using a single image, 

the cumulative NDYI-based pixels, as a new phenotype, captured the complete flowering 

progress, which provided more crop growth information and was significantly correlated with 

seed yield with higher R2. Similar results were reported in wheat (Xue et al., 2007; Wang et al., 

2014) and rice (Zhou et al., 2017). The authors stated that the cumulative vegetation indices 

improved yield estimation when comparing with using a single image (Xue et al., 2007; Wang 

et al., 2014; Zhou et al., 2017). These findings proved the first hypothesis that canola flower 

number was related to canopy reflectance and could be estimated by spectral VI (i.e., NDYI-

based pixel number), and the accumulation of the NDYI-pixels over the flowering stage can be 

an indicator of seed yield in canola.  

 

Crop growth status and seed yield can be estimated by two-dimensional (2D) canopy 

reflectance (Chapter 3). Canopy height, as a canopy structural feature, can be a potential 
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indicator of plant growth status and may assist in yield estimation (Ivanovska et al., 2007; 

Bendig et al., 2014; Iqbal et al., 2017; Assefa et al., 2018; Zhang et al., 2021). Additionally, 

flowering layer depth may show similar growth pattern as flowering number correlated with 

seed yield. These two canopy structural phenotypes extracted from three-dimensional (3D) 

digital surface models (DSMs) may be an alternative method for yield estimation. 

 

The second hypothesis of my study is canopy structural phenotypes (i.e., flowering layer depth 

and canopy height) can be quantified using 3D DSMs extracted from UAV-based images and 

the digitalized canopy structural phenotypes can be indicators for yield estimation (Chapter 4). 

The results of Chapter 4 demonstrated that canopy height could be quantified using DSMs 

derived from UAV-based imagery. The optimum image timing was the peak flowering and 

early pod stages achieving the highest R2 values between manually measured and UAV-derived 

canopy heights. Usually canola has reached its maximum height at the peak flowering and early 

pod stages. The taller plants are more visible and easier to be captured by imaging sensor due 

to relatively high spatial resolution. Iqbal et al. (2017) reported similar results that the accuracy 

of canopy height estimation using UAV imagery was higher for taller plants in poppy crop. 

Moreover, plant height changes dynamically before peak flowering, thus, time gap between the 

dates of imaging and ground reference data collection might be another reason for the weaker 

correlations between the manually measured and UAV-derived canopy heights before peak 

flowering. Furthermore, the non-uniform lodging condition at the late pod stage might also 

reduce the estimation accuracy because the limited manual measurements might not be 

representative for the whole plot (Iqbal et al., 2017; Morrison et al., 2021).  

 

The manually measured flowering layer depth was significantly correlated with UAV-derived 

flowering layer depth at the peak flowering stage. The flowers at the early flowering stage were 

not occluded by the upper part of canopy, but the shorter depth might reduce the estimation 

accuracy due to relatively low image resolution at 25 m flight altitude or more errors from 

manual measurement (Morrison et al., 2021). Flowering layer depth was generally 

overestimated by UAV-based images, but the consistence of overestimation can still represent 

the trend of dynamic change of this flowering trait. The overestimation might be resulted from 

the underestimation of canopy height at the bolting stage due to thin and incompletely closed 

canopy.  
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In terms of yield estimation, like NDYI-based flowering pixel accumulation (Chapter 3), both 

UAV-derived canopy height and flowering layer depth accumulated over the flowering stage 

showed more consistent and significant relationships with seed yield compared with using a 

single image. The two digitalized cumulative phenotypes over the flowering stage included 

more crop growth information and might reveal more realistic change of crop status than a 

single image (Zhou et al., 2017). These findings proved the second hypothesis that flowering 

layer depth and canopy height could be quantified using UAV-based images, and the 

accumulation of these two phenotypes at reproductive stage (i.e., flowering stage) could be 

applied as new input variables for yield estimation.  

 

Chapters 3 and 4 indicated that the digitalized cumulative flowering number and canopy 

structural traits could be applied as a single predictor variable for yield estimation in canola. 

Seed yield is an important and complex crop trait. A single predictor variable in a yield model 

may not adequately explain variations. The third hypothesis is that seed yield can be estimated 

using the combination of 2D and 3D imagery information collected at reproductive stage 

(Chapter 5).  

 

In the third study, VIs were accumulated at the vegetative, flowering, and pod stages resulting 

in 27 cumulative VIs. According to Chapters 3 and 4, the cumulative NDYI-based pixel 

number, the cumulative UAV-derived canopy height, and the cumulative flowering layer at the 

flowering stage also demonstrated the potential to estimate yield; thus, they were included as 

input variables in the yield model. A commonly used machine learning method (i.e., random 

forest model) was applied in this study and it selected 10 variables as the inputs with the highest 

estimation accuracy. Compared with a simple linear regression model, a random forest (RF) 

regression model improved estimation accuracy and lowered error. The higher estimation 

accuracy was also observed in wheat yield (Fu et al., 2020) and canola biomass when using the 

RF (Liu et al., 2019).  

 

The ranking of variable importance by the RF regression model showed three digital 

cumulative phenotypes including the cumulative blue normalized difference vegetation index 

(BNDVI) at the flowering stage, the cumulative UAV-derived canopy height at the flowering 

stage, and the cumulative normalized vegetation index (NDVI) at the vegetative stage were the 

most promising (i.e., top three) indicators for yield estimation. BDNVI consists of blue and 
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NIR which can be sensitive to both chlorophyll and yellowness of flower petals as chlorophyll 

absorbs blue and reflects NIR, and yellow petals absorb blue but have no or little impact on 

NIR (Sulik and long, 2016). The heathier green vegetation and more yellow flowers are 

expected to be correlated with greater BNDVI value. In this study, the cumulative BNDVI at 

the flowering stage correlated with the vegetation health status and the progress of flower 

production contributed most to the yield estimation. The cumulative UAV-derived canopy 

height at the flowering stage and the cumulative NDVI at the vegetative stage reflected the 

dynamic change of canopy height at the flowering stage and plant vigor at the early growth 

stage, respectively, demonstrating significant contributions to yield. Furthermore, the 

vegetative and flowering stages were the optimum period for early yield estimation using the 

cumulative UAV-derived phenotypes. These findings agreed the third hypothesis that the 

combination of 2D and 3D imagery information improved yield estimation with higher R2 value 

and smaller root mean square error compared with applying a single predictor variable. 

However, different from the hypothesis, among the 10 cumulative phenotypes selected by the 

RF regression model, most of them were accumulated at the vegetative and flowering stages 

which indicated that both vegetative and flowering stages were the critical period for early 

yield estimation in canola using UAV-based imagery.  

 

6.2 Implications  

 

This research supports the introduction of UAV-based imagery to provide plant breeders and 

farmers with more reliable phenotypic data without damaging crop canopy. This new 

phenotyping method is less labour intensive, time consuming, destructive, and subjective 

compared to the conventional phenotyping methods. Plant breeders and farmers can get earlier 

crop traits evaluation for a large-scale field without harvesting, which may accelerate breeding 

process and assist field management. More specifically, the flowering number estimation study 

implied that canola flower number could be estimated more efficiently and objectively using 

UAV-based imagery. The canopy structure study indicated canopy height and flowering layer 

depth could be quantified using images with high to moderate estimation accuracy. The yield 

estimation study using a machine learning method implied that the accumulation of digitalized 

crop traits at the early development stages could monitor crop growth status and be applied in 

yield estimation.  
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6.3 Future Study 

 

This dissertation evaluated four crop traits including flowering number, canopy height, 

flowering layer depth, and seed yield in canola across three years and three locations using 56 

diverse Brassica genotypes (Table A.1, Appendix A). Future studies can investigate more crop 

traits such as days to flowering, flowering duration, plant lodging, biomass, crop growth rate, 

and nitrogen use efficiency. In breeding programs, plant breeders can use these digitalized 

phenotypes to evaluate and select diverse breeding genotypes with desirable traits more 

efficiently and frequently. For example, flowering timing and flowering duration derived from 

UAV-based imagery can be used to quickly identify genotypes with the optimal flowering traits 

to avoid local environmental stress such as heat, drought, and frost. In addition, to develop a 

more robust yield model, more digital crop traits can be included and validated in a real 

breeding project. Moreover, sensors with higher spatial resolution such as RGB camera can be 

applied to capture more details of crop traits. Thermal camera is another sensor to be considered 

in the future as it can provide canopy temperature to evaluate crop responses to biotic and 

abiotic stress. Furthermore, satellite images could be investigated for regional-scale field 

scouting and yield estimation. 
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APPENDIX A 

 

Table A.1 Details of 56 Brassica genotypes involved in the canola trials.   

 

NAM CODE Name Origin Group Canola Quality 

NAM-23 
Daichousen 

(mizuyasu) 
North Korea Asian 

Yes 

NAM-31 Wase Chousen Korea Asian Yes 

NAM-32 Dong Hae 2 South Korea Asian No 

NAM-33 Dong Hae 3 South Korea Asian No 

NAM-34 Dong Hae 11 South Korea Asian No 

NAM-36 81N058-5 Unknown Asian No 

NAM-39 Nakate Chousen Korea Asian No 

NAM-45 Dong Hae 6 South Korea Asian No 

NAM-46 Dong Hae 21 South Korea Asian No 

NAM-47 Dong Hae 23 South Korea Asian No 

NAM-53 Buk Wuk 27 South Korea Asian No 

NAM-66 N12-C11609 Unknown Asian No 

NAM-8 86004 Unknown Asian Yes 

NAM-83 SWU Chinese 9 China Asian No 

NAM-85 DC21 South Korea Asian No 

NAM-86 Kinki 22 South Korea Asian No 

NAM-15 N01D-1330 Australia Australian Yes 

NAM-37 Wesroona Australia Australian No 

NAM-38 Wesreo Australia Australian No 

NAM-4 Wesway Australia Australian No 

NAM-82 Tribune Australia Australian Yes 

NAM-0 N99-508 Canada Canadian Adapted Yes 

NAM-12 46A65 Canada Canadian Adapted Yes 

NAM-17 N00-C3661sp2 Canada Canadian Adapted Yes 

DH27298 DH27298 Canada Canadian Adapted Yes 

DH12075 DH12075 Canada Canadian Adapted Yes 

NAM-51 AC Elect Canada Canadian Adapted Yes 

NAM-71 ACS N22 Canada Canadian Adapted Yes 

NAM-72 ACS YN03-C656 
Canada,winter 

background 
Canadian Adapted 

Yes 

NAM-75 Magnum Canada Canadian Adapted Yes 

NAM-76 Ebony Canada Canadian Adapted Yes 

NAM-78 Unknown Canada Canadian Adapted Yes 

YN04-C1213sp013 YN04-C1213sp013 Canada Canadian Adapted Yes 

NAM-1 Czyzowska Poland European No 

NAM-10 Global Sweden or Denmark European Yes 

NAM-13 Campino Germany European Yes 

NAM-14 Svalöf’s Gulle Sweden European No 

NAM-28 Topas Sweden European Yes 

NAM-30 Egra Unknown European Yes 

NAM-40 Mlochowski Poland European No 

NAM-56 MAZOWIECKI Poland European No 
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NAM-57 Mozart Denmark European Yes 

NAM-65 Puma Sweden or Denmark European Yes 

NAM-68 Lirawell Germany European Yes 

NAM-73 Optima Denmark European No 

NAM-87 Tanto France European Yes 

NAM-88 SRS1632 Poland European No 

NAM-25 Nolza 541 Argentina Other Yes 

NAM-26 Nolza 531 Argentina Other Yes 

NAM-29 PSA12 RSYN Other No 

NAM-42 PI432392 Bangladesh South Asian No 

NAM-43 PI432395 Bangladesh South Asian No 

NAM-5 BN-1 India South Asian No 

NAM-79 PAK 85912 Pakistan South Asian No 

B.carinata GID-5461 NA NA NA 

B.juncea Centennial Brown NA NA No 

NA represents no data available.  
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APPENDIX B 

 

Table B.1 Analysis of variance and covariance table of fixed and random effects on seed yield of 56 Brassica 

genotypes at Saskatoon, SK, Canada from 2016 to 2018 (i.e., three site years). The fixed effect was genotype, and 

the random effects were site year and the interaction between site year and genotype. 

Effect Z value F value p value 

Site year 0.77 NA 0.22 

Site year x genotype 5.47 NA < 0.0001*** 

Genotype NA 9.25 < 0.0001*** 

*, **, ***, significant at the 0.05, 0.01, and 0.001 probability, respectively. 

NA represents no data available.  

 

 

Table B.2 Analysis of variance and covariance table of fixed and random effects on seed yield of the selected 16 

Brassica genotypes at Saskatoon, Melfort, and Scott, SK, Canada from 2016 to 2018 (i.e., five site years). The 

fixed effect was genotype, and the random effects were site year and the interaction between site year and genotype.  

Effect Z value F value p value 

Site year 1.39 NA 0.08 

Site year x genotype 3.81 NA < 0.0001*** 

Genotype NA 8.12 < 0.0001*** 

*, **, ***, significant at the 0.05, 0.01, and 0.001 probability, respectively. 

NA represents no data available.  
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