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ABSTRACT 

This thesis meets some of the objectives of ASHRAE Research Project 1780, titled “Test method to 

evaluate cross-contamination of gaseous contaminants within total energy recovery wheels” and 

contains a literature review and experimental measurements of contaminant transfer in energy wheels. 

The literature review showed that there is no established test methodology for measuring the 

contribution of adsorption/desorption to gaseous contaminant transfer in energy wheels. Furthermore, 

most of the studies lacked a rigorous uncertainty analysis. Analysis of the data in the literature 

revealed that the energy wheel design parameters such as face velocity have a more significant 

effect on the contaminant transfer rate, i.e., Exhaust Air Transfer Ratio (EATR), than operating 

conditions such as temperature and humidity. Furthermore, the EATR due to adsorption/desorption 

was higher for acetic acid, phenol, and acetaldehyde than for other contaminants, which may be 

due to the high water solubility and small molecular size of acetic acid, phenol, and acetaldehyde. 

The thesis shows that the test facility used to measure gaseous contaminant transfer in energy wheels 

conserved mass and energy, provided steady state flow parameters and satisfied ASHRAE Standard 

84 (2020) requirements. Experimental data showed that EATR consistently decreased with increasing 

air flow rate and did not change significantly with changes in outdoor air temperature. The EATR 

values for carbon dioxide and sulfur hexafluoride were nearly equal, indicating that carbon dioxide 

does not transfer by adsorption/desorption. A proposed test method for determining the contribution 

of adsorption/desorption in gaseous contaminant transfer in energy wheels was applied for ammonia, 

methanol, isopropyl alcohol, and carbon dioxide. The EATR values due to adsorption/desorption 

were highest for ammonia, followed by methanol, isopropyl alcohol, and carbon dioxide. The reason 

for the high adsorption/desorption of ammonia might be because its physical properties are similar to 

water.  



iii 

ACKNOWLEDGEMENTS 

First, I would like to sincerely thank my supervisor, Professor Carey Simonson, for his support 

and patience during the last few years. I have learned a lot of valuable lessons during my MSc 

program from my supervisor. I would also like to thank Professor Jafar Soltan, co-investigator on 

ASHRAE RP-1780, for his input on my research. 

I would like to thank my advisory committee members, Prof. Donald Bergstrom and Prof. David 

Sumner, for their valuable comments and constructive feedback. 

I would like to acknowledge technical assistance that I received from the departmental assistants, 

Mr. Hayden Reitenbach, Dr. Melanie Fauchoux, and Mr. Shawn Reinink. I specially acknowledge 

my fellow graduate students and post-doctoral fellows, Dr. E. Krishnan, Mr. H. Ramin, Dr. W.O. 

Alabi, Dr. G. Annadurai, Mr. B. Xing, Mr. A. Razmavar, Mr. T. Okolo, and Mr. M. Mostafavi 

Sani, for their encouragement, valuable comments, and support. 

I also wish to thank my friends, Mr. Iman Jamali and Mr. Kharazm Khaledi, for their spiritual 

words which supported me throughout my program. 

The financial assistance from American Society of Heating Refrigerating and Air-conditioning 

Engineers (ASHRAE), a Dean’s scholarship, Russell Haid Memorial Award, Graduate Devolved 

Scholarship, and the Natural Sciences and Engineering Research Council of Canada (NSERC), is 

greatly appreciated. 

  



iv 

TABLE OF CONTENTS 

PERMISSION TO USE .............................................................................................................. i 

DISCLAIMER ........................................................................................................................... i 

ABSTRACT .............................................................................................................................. ii 

ACKNOWLEDGEMENTS....................................................................................................... iii 

TABLE OF CONTENTS .......................................................................................................... iv 

LIST OF TABLES................................................................................................................... vii 

LIST OF FIGURES ................................................................................................................ viii 

NOMENCLATURE ................................................................................................................. xi 

CHAPTER 1     INTRODUCTION ............................................................................................ 1 

1.1 Overview ....................................................................................................................... 1 

1.2 Energy wheels................................................................................................................ 3 

1.3 Contaminants and contaminant transfer........................................................................... 5 

1.3.1 Carryover ................................................................................................................ 6 

1.3.2 Air leakage .............................................................................................................. 7 

1.3.3 Adsorption/desorption ............................................................................................. 8 

1.3.4 Absorption/evaporation............................................................................................ 9 

1.3.5 Condensation/evaporation ...................................................................................... 10 

1.4 Objectives.................................................................................................................... 10 

1.5 Thesis structure ............................................................................................................ 11 

1.6 List of publications....................................................................................................... 11 

CHAPTER 2     LITERATURE REVIEW ................................................................................ 13 

2.1 Overview ..................................................................................................................... 13 

2.2 Introduction ................................................................................................................. 14 

2.3 Test standards and performance parameters................................................................... 14 

2.3.1 Effectiveness (ε) .................................................................................................... 15 

2.3.2 Outdoor air correction factor (OACF)..................................................................... 15 

2.3.3 Exhaust air transfer ratio (EATR) ........................................................................... 15 

2.3.4 Energy and mass inequalities ................................................................................. 17 

2.3.5 Energy wheel design parameters ............................................................................ 17 

2.4 Summary of research on contaminant transfer in energy exchangers .............................. 18 

2.4.1 Carryover and air leakage of inert gases ................................................................. 18 



v 

2.4.1.1 Fisk et al. (1985) [4] ....................................................................................... 18 

2.4.1.2 Khoury et al. (1988) [13]................................................................................. 19 

2.4.1.3 Andersson et al. (1999) [19] ............................................................................ 19 

2.4.1.4 Shang et al. (2001) [5]..................................................................................... 20 

2.4.1.5 Sparrow et al. (2001) [20] ............................................................................... 21 

2.4.1.6 Roulet et al. (2002) [10] .................................................................................. 22 

2.4.1.7 Wolfrum et al. (2008) [21] .............................................................................. 22 

2.4.1.8 Patel et al. (2014) [22]..................................................................................... 22 

2.4.1.9 Hult et al. (2014) [24] ..................................................................................... 23 

2.4.1.10 Kassai (2018) [25]......................................................................................... 24 

2.4.2 Adsorption/desorption of non-inert gases................................................................ 24 

2.4.2.1 Fisk et al. (1985) [4] ....................................................................................... 25 

2.4.2.2 Andersson et al. (1999) [19] ............................................................................ 25 

2.4.2.3 Okano et al. (2001) [14] .................................................................................. 27 

2.4.2.4 Roulet et al. (2002) [10] .................................................................................. 29 

2.4.2.5 Wolfrum et al. (2008) [21] .............................................................................. 30 

2.4.2.6 Kodama (2010) [6].......................................................................................... 31 

2.4.2.7 Bayer (2011) [7] ............................................................................................. 32 

2.4.2.8 Patel et al. (2014) [22]..................................................................................... 33 

2.4.2.9 Hult et al. (2014) [24] ..................................................................................... 34 

2.4.2.10 Nie et al. (2015) [26] ..................................................................................... 35 

2.5 Summary of the literature review .................................................................................. 35 

2.6 Analysis of literature data ............................................................................................. 37 

2.6.1 Effect of temperature on EATR.............................................................................. 37 

2.6.2 Effect of humidity on EATR .................................................................................. 39 

2.6.3 Effect of face velocity on EATR ............................................................................ 41 

2.6.4 Effect of effectiveness on EATR ............................................................................ 42 

2.7 New method to determine the contaminant transfer due to adsorption/desorption ........... 43 

2.8 Conclusions ................................................................................................................. 45 

CHAPTER 3     EXPERIMENTAL FACILITY AND RESULTS .............................................. 47 

3.1 Overview ..................................................................................................................... 47 

3.2 Test facility.................................................................................................................. 48 

3.2.1 Air handling system ............................................................................................... 49 



vi 

3.2.2 Test section ........................................................................................................... 50 

3.2.3 Gas injection system .............................................................................................. 52 

3.2.3.1 Gas injection technique ................................................................................... 52 

3.2.3.2 Liquid evaporation technique .......................................................................... 54 

3.2.3.3 Gaseous contaminants ..................................................................................... 58 

3.2.4 Gas sampling technique ......................................................................................... 59 

3.2.5 Instrumentation and uncertainty analysis ................................................................ 61 

3.2.5.1 Gasmet gas analyzer........................................................................................ 62 

3.2.6 Energy wheel performance test results and verification of the test facility ................ 64 

3.2.6.1 Operating condition inequalities ...................................................................... 65 

3.2.6.2 Mass and energy inequalities ........................................................................... 67 

3.2.6.3 Effectiveness .................................................................................................. 69 

3.3 Results and discussions ................................................................................................ 71 

3.3.1 Measured concentration data .................................................................................. 72 

3.3.2 Effect of outdoor air temperature on EATR ............................................................ 74 

3.3.3 Effect of air face velocity on EATR ....................................................................... 76 

3.3.4 EATR due to adsorption/desorption........................................................................ 77 

3.3.5 Comparison with literature data.............................................................................. 80 

3.4 Conclusions ................................................................................................................. 81 

CHAPTER 4     SUMMARY, CONCLUSIONS, AND FUTURE WORK ................................. 84 

4.1 Summary ..................................................................................................................... 84 

4.2 Conclusions ................................................................................................................. 85 

4.3 Future work ................................................................................................................. 86 

REFERENCES ........................................................................................................................ 88 

APPENDIX A ......................................................................................................................... 92 

APPENDIX B ....................................................................................................................... 100 

  



vii 

LIST OF TABLES 

Table 1.1.  List of the selected gaseous contaminants for ASHRAE RP-1780. The contaminants 
that will be tested in this thesis are highlighted.......................................................... 5 

Table 2.1.  Summary of the gaseous contaminant transfer rates and uncertainties measured on 

various energy exchangers. .................................................................................... 36 

Table 3.1.  Properties of water and selected VOCs in this MSc research [8], [31], [32]. ............. 59 

Table 3.2.  Instrument specifications and calibration details...................................................... 62 

Table 3.3.  Operating conditions during the test on the energy wheel at a nominal air flow rate of 
24 L/s (50 CFM). ................................................................................................... 65 

Table 3.4. Test conditions for different experiments where different sets of experiments are 
highlighted. ........................................................................................................... 72 

Table 3.5.  Mass inequality and concentration of carbon dioxide at different measurement stations 
in tests with varying outdoor air temperatures. ........................................................ 75 

Table 3.6. Mass inequality and concentration of sulfur hexafluoride at different measurement 
stations in tests with varying outdoor air temperatures............................................. 75 

Table 3.7.  Mass inequality and concentration of carbon dioxide at different measurement stations 
in tests with varying air face velocities.................................................................... 77 

Table 3.8. Contribution of adsorption/desorption (EATRad) and air leakage and carryover 
(EATRinert) on the contaminant transfer rate and mass inequality for the various gases.
 ............................................................................................................................. 79 

 

 



viii 

LIST OF FIGURES 

Figure 1.1. Schematic of an HVAC system providing conditioned (heated/cooled) outdoor air to a 
building. .................................................................................................................. 2 

Figure 1.2. Schematic of an energy wheel rotating between the supply side (outdoor/supply 

airstreams) and the exhaust side (return/exhaust airstreams) [9]. ................................ 4 

Figure 1.3. Schematic showing gaseous contaminant transfer by carryover in an energy wheel. .... 6 

Figure 1.4. Schematic showing a purge section in an energy wheel that transfers outdoor air to 
exhaust airstream and prevent carryover from return airstream to supply airstream..... 7 

Figure 1.5. Schematic showing gaseous contaminant transfer by air leakage in an energy wheel. .. 8 

Figure 1.6. Schematic showing gaseous contaminant transfer by adsorption/desorption, where (a) 
depicts adsorption from the return airstream and (b) depicts desorption into the supply 
airstream. ................................................................................................................ 9 

Figure 2.1. Schematic of an air-to-air energy exchanger showing the airflow and measurement 
stations. ................................................................................................................. 14 

Figure 2.2. Schematic of the test facility used by Shang et al. (2001) to measure nitrous oxide 
contaminant transfer [5]. ........................................................................................ 20 

Figure 2.3. Schematic of a run-around membrane energy exchanger (RAMEE) [23]. ................. 23 

Figure 2.4. Formaldehyde concentration in a building during 8 hours with a 10% EATR in an energy 
wheel when the initial concentration is 20 µg/m3 and the ventilation rate is one air 
change per hour [19]. ............................................................................................. 26 

Figure 2.5. EATR as a function of face velocity at different outdoor air relative humidities and with 
wheels coated with silica gel (SG) and ion exchange resin (IER) desiccants (OA 

conditions: T = 30°C, RH = 50-80%, rotational speed = 16 rpm) [14]. An additional 
dashed line is included which represents the change in EATR that would occur at a 
constant contaminant transfer rate as the face velocity increases. ............................. 29 

Figure 2.6. EATR for (a) acetaldehyde, ammonia, acetic acid, methanol, and isopropyl alcohol, (b) 
MIBK, xylene, carbon dioxide, propane, and (c) sulfur hexafluoride versus outdoor air 
temperatures under varying test conditions. ............................................................ 38 

Figure 2.7. EATR for ammonia versus outdoor air temperature at constant test conditions [14]. . 39 

Figure 2.8. EATR for (a) acetaldehyde, ammonia, acetic acid, methanol, and isopropyl alcohol, and 
(b) MIBK, xylene, carbon dioxide, and propane versus outdoor air relative humidity 
under varying test conditions. ................................................................................. 40 

Figure 2.9. EATR for ammonia versus outdoor air relative humidity at constant test conditions  [14].
 ............................................................................................................................. 41 

Figure 2.10. EATR for ammonia versus air face velocity at constant test conditions (solid lines) [14] 
compared to EATR that would exist if the total contaminant transfer rate were constant 

at a face velocity of 2 m/s (dashed lines). ................................................................ 42 

Figure 2.11. EATR as a function of total effectiveness for different energy exchangers. ............. 43 



ix 

Figure 2.12. EATRad for different VOCs reported in the literature. ............................................ 45 

Figure 3.1. Schematic of the energy wheel test facility showing the air handling system, test section, 
gas injection system, and gas sampling system. ....................................................... 49 

Figure 3.2. Photograph of the energy wheel test facility used in the contaminant transfer 
experiments. .......................................................................................................... 49 

Figure 3.3. Photograph of the test facility showing the energy wheel cassette and diffusers. ....... 51 

Figure 3.4. The energy wheel face and seals showing the direction of air leakage from the high -

pressure side (Phigh) or SA to the low-pressure side (Plow) or RA. ............................. 51 

Figure 3.5. (a) Schematic diagram and (b) photograph of the gas injection system showing the 

rotameter, gas cylinder, and injection port............................................................... 53 

Figure 3.6. Concentration of (a) carbon dioxide and (b) sulfur hexafluoride as a function of time in 

the RA when the gases are injected using the gas injection technique. The error bars 
indicate the uncertainty in the measured concentration. ........................................... 54 

Figure 3.7. (a) Schematic diagram and (b) photograph of the liquid evaporation system showing the 
syringe pump and injection port for liquid injection. ............................................... 56 

Figure 3.8. Concentration of (a) ammonia, (b) methanol, and (c) isopropyl alcohol as a function of 
time in the RA when the gases are injected using the liquid injection technique. The 
error bars indicate the uncertainty in the measured concentration. ............................ 57 

Figure 3.9. Schematic diagram of the gas sampling technique showing the sampling ports, sampling 
tubes, solenoid valves, and gas analyzer for measuring the gas concentration at different 
measurement stations. ............................................................................................ 60 

Figure 3.10. Sulfur hexafluoride concentration versus time when the FTIR cell is flushed with 40 
L/min flow of nitrogen for three minutes. ............................................................... 61 

Figure 3.11. Sample gas measurement data with FTIR spectroscopy technique [38]. .................. 64 

Figure 3.12. Schematic diagram showing the energy wheel test conditions at an air flow rate of 24 
L/s (50 CFM) and a face velocity of 1 m/s. ............................................................. 65 

Figure 3.13. Results of the temperature and humidity inequality check according to ASHRAE 
Standard 84 (2020) [15] for OA (a and c) and RA (b and d)..................................... 67 

Figure 3.14. Results of the inequality check for (a) dry air mass flow rate, (b) water vapor, and (c) 
energy transfer. ...................................................................................................... 68 

Figure 3.15. Instantaneous (a) sensible, (b) latent, and (c) total effectiveness values after the test has 
reached steady state conditions according to ASHRAE Standard 84 [15]. ................ 70 

Figure 3.16. Comparison of the average effectiveness values obtained from the experiments and the 
manufacturer. ........................................................................................................ 71 

Figure 3.17. Concentration measurements of sulfur hexafluoride at OA, SA, EA, and RA versus 
time for test number 7. ........................................................................................... 73 

Figure 3.18. Effect of outdoor air temperature on the measured EATR for carbon dioxide and sulfur 
hexafluoride. ......................................................................................................... 75 



x 

Figure 3.19. Effect of air face velocity on EATR for carbon dioxide. ......................................... 77 

Figure 3.20. Measured EATR of five contaminants showing the contributions of air leakage and 
carryover (in red) and adsorption/desorption (in yellow).......................................... 78 

Figure 3.21. Comparison of EATR values measured in this thesis and values from the literature. 80 

Figure B.1. Schematic diagram of GC instrumentation. ........................................................... 101 

Figure B.1. The EATR uncertainty versus instrument uncertainty for different values of the EATR 
and (𝐶3 − 𝐶1)...................................................................................................... 104 

  



xi 

NOMENCLATURE 

ACRONYMS 

AAEEs  Air-to-air energy exchangers 

ASHRAE American Society of Heating Refrigerating and Air-conditioning 

Engineers 

CFM  Cubic feet per minute 

EA  Exhaust air 

EATR  Exhaust air transfer ratio 

FTIR  Fourier transform infrared 

HPLC  High performance liquid chromatography 

HVAC  Heating, ventilating and air conditioning 

IER  Ion exchange resin 

ISO  International Organization for Standardization 

LAMEE  Liquid-to-air membrane energy exchanger 

MIBK  Methyl isobutyl ketone 

NI  National Instruments 

OA  Outdoor air 

OACF  Outdoor air correction factor 

P  Liquid circulating pump 

ppb  Parts per billion 

ppm  Parts per million 

PVC  Polyvinyl Chloride 

RA  Return air 

RAMEE  Run-around membrane energy exchanger 



xii 

RFP  Request-For-Proposal 

RP  Research project 

SA  Supply air 

SG  Silica gel 

VOCs  Volatile organic compounds 

SYMBOLS 

a  Absorptivity (m2/mol) 

A  Absorbance 

b  Optical path length (m) 

c  Concentration (ppm) 

C  Heat capacity rate (J/K) 

Cr*  Heat capacity rate ratio 

Cp  Specific heat capacity (J/kg. K) 

dT  Maximum deviation from time-averaged temperature (℃) 

dW  Maximum deviation from time-averaged humidity (gw/kga) 

fpm  feet per minute (ft/min) 

h  Specific enthalpy (kJ/kg) 

I Intensity of infrared radiation that has passed through the sample gas 

(W/m2) 

I0  Intensity of infrared radiation for background measurement (W/m2) 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

People spend 90% of their time in buildings and the air quality in buildings plays an important role 

in occupants’ health and productivity [1]. The air quality in buildings can be diminished by 

increasing the indoor concentration of gaseous and particulate contaminants. Studies have shown 

that if the concentration of gaseous contaminants increases (due to insufficient fresh air), the 

productivity of the occupants will decrease [2]. Therefore, fresh air (i.e., ventilation) should be 

continuously supplied to occupied buildings in order to maintain adequate indoor air quality (IAQ). 

To provide fresh air to buildings and maintain thermal comfort conditions, Heating, Ventilating 

and Air-Conditioning (HVAC) systems are needed to condition the fresh outdoor air [3]. One way 

to reduce energy consumption for conditioning the outdoor air is to use air-to-air energy 

exchangers (AAEEs) that exchange heat and moisture between the building exhaust and supply 

airstreams. 

Figure 1.1 shows a schematic of an HVAC system that provides conditioned air to a building. The 

supply fan provides fresh outdoor air to the building and the exhaust fan removes 

stale/contaminated air from the building. The outdoor air will be heated or cooled by the exhaust 

air depending on the outdoor climatic conditions. The energy exchanger is used to transfer energy 

between the return airstream and supply airstream. 
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Figure 1.1. Schematic of an HVAC system providing conditioned (heated/cooled) outdoor air to 

a building. 

As the energy exchanger exchanges heat and moisture between the supply and return airstreams, 

contaminants in the return airstream may also be transferred to the supply airstream. Over the past 

decades, researchers and engineers have investigated gaseous contaminant transfer in different 

AAEEs [4]–[8]. However, there is no established test methodology or systematic procedure with 

quantified uncertainty for measuring gaseous contaminant transfer in energy wheels reported in 

the literature. 

Developing a test methodology for measuring gaseous contaminant transfer in energy wheels will 

be useful for quantifying the percentage of gaseous contaminants that return to the building. To 

address this gap, the American Society of Heating, Refrigerating and Air-conditioning Engineers 

(ASHRAE) initiated a research project on this topic. The project is ASHRAE RP-1780: Test 

method to evaluate cross-contamination of gaseous contaminants within total energy recovery 

wheels, and Professors Carey Simonson and Jafar Soltan of the University of Saskatchewan were 

selected by ASHRAE to complete this research project. The request for proposal for ASHRAE 
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RP-1780 is available in Appendix A. This MSc research is part of ASHRAE RP-1780 and the 

findings of this MSc research will be included in the final report for ASHRAE RP-1780. 

1.2 Energy wheels 

A schematic of an energy wheel operating as an AAEE that rotates between the supply and return 

airstreams of a building is shown in Figure 1.2. Energy wheels contain numerous tiny flow 

channels (hydraulic diameter of a few mm), and are typically made of aluminum, and coated with 

a desiccant. Some well-known desiccants are silica gel, molecular sieve, and zeolites. If the wheel 

is not coated with a desiccant, the wheel only transfers heat and is called a heat wheel. 

During the operation of an energy wheel, one half of the wheel is exposed to the supply/outdoor 

airstream while the other half is exposed to the exhaust/return airstream. When hot and humid air 

passes through the flow channels of an energy wheel, heat and moisture transfer from the air to the 

energy wheel. Heat is stored in the aluminum matrix and moisture is adsorbed by the desiccant. 

As the wheel rotates, heat and moisture are released from the desiccant-coated wheel to the cold 

and dry outdoor airstream entering the building. 
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Figure 1.2. Schematic of an energy wheel rotating between the supply side (outdoor/supply 

airstreams) and the exhaust side (return/exhaust airstreams) [9]. 

In addition to energy exchange between the airstreams, gaseous contaminants may 

transfer between the two airstreams. There is a possibility of transferring contaminants 

from the return air (i.e., building exhaust air) to the supply air via three mechanisms: 

(1) air leakage, (2) carryover, and (3) adsorption/desorption [10]. 

Contaminant transfer from the return airstream to the supply airstream by air leakage can be 

reduced or eliminated by improving the sealing between the ducts and the exchanger and by having 

a higher pressure on the supply side than on the exhaust side. Carryover occurs because return air 

entrained in the flow channels is transferred to the supply side as the energy wheel rotates. 

Carryover can be reduced by installing a purge section which diverts the entrained return air to the 

exhaust airstream rather than to the supply airstream. Contaminant transfer due to 

adsorption/desorption occurs when the contaminant is adsorbed by the desiccant in the return 
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airstream and desorbed in the supply airstream. These mechanisms will be discussed and described 

in more detail in the next section. 

1.3 Contaminants and contaminant transfer 

There are numerous indoor airborne contaminants including particulates, vapors, and gases. 

Particulate contaminants are solid particles with physical sizes ranging from nanometers to 

micrometers. ASHRAE [11] defines a vapor as a substance that is in a gaseous form but would be 

in in liquid or solid state under natural atmospheric conditions. A gas is a substance that is in the 

gaseous state under natural atmospheric conditions [11]. Vapor and gaseous contaminants are as 

small as air molecules and are found in indoor and outdoor environments. Gaseous contaminants 

can be divided into organic and inorganic compounds. The organic compounds , which contain 

carbon molecules, are found in higher concentrations in buildings than inorganic compounds. 

Volatile organic compounds (VOCs) are common contaminants in building indoor air and are 

organic compounds. 

The ASHRAE RP-1780 (lists 11 specific contaminants that must be tested in the project. These 

contaminants are listed in Table 1.1 and were selected based on their relevance to building indoor 

air and their chemical properties (e.g., water solubility, molecular size, polarity (i.e., existence of 

positive and negative electrical charges in a molecule), and toxicity). 

Table 1.1. List of the selected gaseous contaminants for ASHRAE RP-1780. The contaminants 

that will be tested in this thesis are highlighted. 

Propane or hexane Xylene Acetaldehyde 

Sulfur hexafluoride (SF6) Acetic acid Methyl isobutyl ketone (MIBK) 

Phenol Carbon dioxide (CO2) Methanol (CH3OH) 

Ammonia (NH3) 
Isopropyl alcohol 

(C3H8O) 
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In this MSc research, experiments will be conducted with carbon dioxide, sulfur hexafluoride, 

ammonia, isopropyl alcohol, and methanol as highlighted in Table 1.1. It should be noted that 

sulfur hexafluoride is often used as an inert (non-reacting) tracer gas, while there are some bans 

on sulfur hexafluoride due to its high global warming potential [12]. Ammonia and water have 

very similar chemical properties (molecular size and polarity) which will be discussed in detail in 

Chapter 3. It is expected that ammonia may show similar transfer rates as water vapor. 

All gaseous contaminants will transfer in an energy wheel when air is transferred between the 

airstreams due to air leakage or carryover. However, only certain gaseous contaminants will 

transfer due to adsorption/desorption, as will be discussed in the subsequent sections. 

1.3.1 Carryover 

The contaminant transfer due to carryover occurs when return air flows through the energy wheel 

and part of the air is transferred to the supply airstream as the wheel rotates. Figure 1.3 presents a 

schematic of carryover in an energy wheel. As shown in Figure 1.3, the flow channels of the energy 

wheel are full of air from the exhaust side when the wheel rotates from the exhaust side to the 

supply side. This exhaust air, which contains gaseous contaminants, mixes with fresh incoming 

outdoor air resulting in contaminant transfer and these contaminants are returned to indoor space 

of the building. 

  

Figure 1.3. Schematic showing gaseous contaminant transfer by carryover in an energy wheel. 
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The carryover can be limited by using a purge section in the energy wheel and through a good 

installation and proper maintenance of the energy wheel [6], [9]. Figure 1.4 shows a schematic of 

a purge section in an energy wheel that prevents carryover from return airstream to supply 

airstream. The purge isolates a section of the wheel on the boundary between the supply and return 

airstreams and displaces the entrapped return air (from the exhaust side) along with some outdoor 

air to the exhaust side. Contaminant transfer due to carryover is independent of the gas since 

contaminants are simply carried with the air from one side of the wheel to the other side of the 

wheel. 

 

Figure 1.4. Schematic showing a purge section in an energy wheel that transfers outdoor air to 

exhaust airstream and prevent carryover from return airstream to supply airstream. 

1.3.2 Air leakage 

The contaminant transfer by air leakage occurs due to pressure difference between the supply and 

return airstreams. In this case, air leaks through the interface (seals) between the return and supply 
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airstreams as shown in Figure 1.5. The leakage can occur either from the supply to the return 

airstream or vice versa, depending on the pressure of the airstreams. 

Contaminant transfer due to leakage of contaminated air on the exhaust side to the fresh air on the 

supply side can be eliminated by maintaining a higher pressure on the supply side than on the 

exhaust side (Psupply > Preturn). The locations of the fans in outdoor, supply, return, and exhaust 

airstreams play an important role in the air leakage direction [13]. Figure 1.5 shows a schematic 

of the air leakage mechanism in an energy wheel, where the supply air has a higher pressure than 

return air. 

  

Figure 1.5. Schematic showing gaseous contaminant transfer by air leakage in an energy wheel. 

1.3.3 Adsorption/desorption 

Contaminant transfer due to adsorption/desorption occurs when the desiccant-coated energy wheel 

has the capacity to adsorb the gaseous contaminant in one airstream, store the contaminant in the 

desiccant and then release the gaseous contaminant by desorption in the other airstream (similar 

to transfer of water vapor). Figure 1.6 presents a schematic of the adsorption/desorption 

mechanism for a desiccant-coated aluminum sheet, which is a typical construction of many energy 

wheels. 

Seal 

Phigh 
(SA) 

Plow 
(RA) 
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Figure 1.6. Schematic showing gaseous contaminant transfer by adsorption/desorption, where (a) 
depicts adsorption from the return airstream and (b) depicts desorption into the supply airstream. 

The sorption capacity of desiccants will vary for different contaminants. Contaminant transfer 

between the airstream and the desiccant occurs because of the difference in the vapor pressure of 

the contaminant between the airstream and the desiccant [14]. Adsorption occurs when the vapor 

pressure is higher in the air than on the desiccant surface and desorption occurs when the vapor 

pressure is higher on the desiccant surface than in the air. 

Contaminant transfer in energy wheels through adsorption/desorption mechanism is expected to 

depend on many parameters such as the air conditions (temperature and humidity), the properties 

of the contaminants, the desiccant [6], and the design of the wheels (i.e., air face velocity, Number 

of Transfer Unit (NTU), capacity rate ratio (Cr*), and effectiveness). 

1.3.4 Absorption/evaporation 

In addition to the main mechanisms mentioned above, some gaseous contaminants in the return 

airstream may be absorbed by the desiccant and evaporate on the supply side. For example, when 
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water vapor in the return airstream condenses to from a layer of liquid water (or frost) within the 

energy wheel channels, water soluble gaseous contaminants such as formaldehyde and methanol 

may absorb in the liquid (or frozen) water. Gaseous contaminant absorption occurs because of 

attractive forces between the gaseous contaminants and the liquid (frozen) water. When the liquid 

water evaporates into the supply airstream, the absorbed contaminants may evaporate and transfer 

to the supply air. 

1.3.5 Condensation/evaporation 

The condensation of gaseous contaminants will occur if the concentration of the contaminant 

reaches saturation. Although such high concentrations are expected to be very rare for AAEE 

applications in building HVAC systems, it may be possible for a contaminant to condense on the 

exhaust side of the wheel and evaporate on the supply side of the wheel. Contaminant transfer by 

condensation/evaporation in AAEEs is expected to be small. 

1.4 Objectives 

As mentioned earlier, this MSc research is part of the ASHRAE RP-1780 research project. One 

objective of this research project is to conduct a detailed literature review on test methodologies 

for measuring gaseous contaminant transfer in energy wheels. This objective will be fulfilled in 

this MSc thesis. Further, a test facility has been set-up by a research engineer (Easwaran Krishnan) 

in the Thermal Laboratory at the University of Saskatchewan in order to measure gaseous 

contaminant transfer in energy wheels. The test facility, instrumentation and some experimental 

data will be presented in this thesis. This MSc research has the following two objectives. 

1. Conduct a literature review on test methodologies for measuring gaseous contaminant 

transfer in energy wheels. 
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2. Apply and verify a test methodology for measuring gaseous contaminant transfer in energy 

wheels. 

1.5 Thesis structure 

This thesis is prepared in a manuscript style and contains two research papers (Chapters 2 and 3) 

that address the two abovementioned objectives. Chapter 2 addresses the first objective and 

presents a literature review on test methodologies for measuring gaseous contaminant transfer in 

energy wheels. Chapter 3 addresses the second objective and describes the test methodology and 

experimental results for gaseous contaminant transfer in energy wheels. The test facility, test 

performance data and energy wheel effectiveness values are discussed. It will be shown that the 

test facility conserves energy and mass during the experiments, provides steady state flow 

parameters as required in ASHRAE Standard 84 (2020) [15], and results in effectiveness values 

similar to the manufacturer’s data. Finally, Chapter 4 provides a summary and conclusions of 

thesis and suggestions for further work. Appendix A provides the request for proposal for 

ASHRAE RP-1780. Appendix B explains details of working principles of gas measurement 

techniques and their uncertainty analysis. 

1.6 List of publications 

The two papers that form the core of this thesis are under preparation. Both papers will be prepared 

and published according to the ASHRAE RP-1780 contract. 

Chapter 2: M. Torabi, E. N. Krishnan, J. Soltan, and C. J. Simonson, “A Literature Review on 

Test Methodologies for Measuring Gaseous Contaminant Transfer in Energy 

Exchangers,” under preparation. 
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Chapter 3: E.N. Krishnan, H. Reitenbach, M. Torabi, J. Soltan, and C. J. Simonson, “A Test 

Methodology for Measuring Gaseous Contaminant Transfer in Energy Wheels,” 

under preparation.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview 

This chapter presents a literature review on experimental studies for measuring gaseous 

contaminant transfer in different energy exchangers, which is the first objective of this MSc thesis. 

In this chapter, 15 papers/reports have been reviewed in detail. These papers/reports describe the 

different instrumentation and methodologies used and the data measured to quantify the transfer 

of various gases in various energy exchangers. The measured transfer rates and uncertainties 

(where available) for the different gases are summarized. The measured transfer rates vary between 

0% and 75% with uncertainties between 1% and 30%. 

The literature review shows that there are three major mechanisms f or gaseous contaminant 

transfer in energy exchangers: (1) air leakage, (2) carryover, and (3) adsorption/desorption. The 

published articles reviewed in this chapter will be organized based on the transfer mechanisms. 

The literature review shows that there are established test methodologies to quantify the gaseous 

contaminant transfer in energy wheels due to air leakage and carryover. However, there is no 

established method to measure gaseous contaminant transfer due to the adsorption/desorption 

mechanism. Furthermore, many studies do not undertake a rigorous uncertainty analysis. 

This chapter contains a draft review paper based on the literature review of gaseous contaminant 

transfer in energy exchangers. The author of the thesis, Mr. Mehrdad Torabi (MSc student), wrote 

the manuscript and performed the literature data analysis. Mr. Easwaran Krishnan (research 

engineer) reviewed and commented on the manuscript. Professors Carey Simonson and Jafar 

Soltan supervised the work. 
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2.2 Introduction 

A search of the literature revealed relatively few (15) studies on gaseous contaminant transfer in 

energy exchangers over the last thirty-five years. This chapter will first present the standard 

methods for measuring energy wheel performance and contaminant transfer due to carryover and 

leakage, followed by research on contaminant transfer in energy wheels, and finally a method to 

quantify contaminant transfer due to adsorption/desorption in energy wheels. The major findings 

and contributions of the published articles, comparison of gaseous contaminant transfer results, 

and effects of operating conditions on gaseous contaminant transfer results, will be discussed. 

2.3 Test standards and performance parameters  

ASHRAE 84 [15] and CSA C 439-18 [16] Standards provide guidelines to conduct performance 

tests. The performance of an energy exchanger depends on the design parameters and operating 

conditions. The direction of airflow and the nomenclature of the inlet and outlet airstreams as given 

in ASHRAE Standard 84 (2020) [15] are shown in Figure 2.1. The major parameters used to 

quantify the energy and contaminant transfer performance are presented in separate sections 

below. 

 

Figure 2.1. Schematic of an air-to-air energy exchanger showing the airflow and measurement 
stations. 
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2.3.1 Effectiveness (ε) 

Effectiveness is defined as the ratio of actual energy transfer rate at a specific test condition to the 

maximum energy transfer at the same test condition [17]. The sensible, latent, and total 

effectiveness can be determined using Eqs. (2.1) to (2.3) according to ASHRAE Standard 84 

(2020) [15], 

s =
m2̇ (Cp,1T1 − Cp,2T2)

ṁmin (2,3)  (Cp,1T1 − Cp,3T3)
 (2.1) 

l =
m2̇ (W1 − W2)

ṁmin (2,3)  (W1 − W3 )
 (2.2) 

tot =
m2̇ (h1 − h2)

ṁmin (2,3) (h1 − h3)
 , (2.3) 

where ṁ, T, W, Cp  and h represent the mass flow rate, temperature, humidity ratio, specific heat 

capacity, and specific enthalpy at stations 1, 2, and 3 according to the subscripts.  Subscripts s, l, 

and tot stand for sensible, latent, and total, respectively. 

2.3.2 Outdoor air correction factor (OACF) 

ASHRAE Standard 84 (2020) [15] defines the outdoor air correction factor as the ratio of outdoor 

air mass flow rate (ṁ1 ) to the supply air mass flow rate (ṁ2). 

OACF =
ṁ1

ṁ2
 . (2.4) 

2.3.3 Exhaust air transfer ratio (EATR) 

Exhaust air transfer ratio (EATR) is used to express the amount of an inert tracer gas (i.e., a gas 

that does not significantly react with the desiccant coated on the surface of flute channels of the 

energy exchanger such as sulfur hexafluoride) that is transferred from the exhaust side (station 3) 



16 
 

to the supply side (station 2). EATR is defined as the ratio of tracer gas concentration difference 

between the supply and the outdoor airstreams relative to the tracer gas concentration difference 

between the return and the outdoor airstreams [15], 

EATR =
C2 − C1

C3 − C1
, 

(2.5) 

where C1, C2, and C3 are the tracer gas concentration measured at stations 1, 2 and 3, respectively. 

It should be noted that EATR is a measure of transfer of air through carryover and air leakage 

mechanisms from exhaust side to supply side of the energy exchanger and is not directly applicable 

to the measurement of other gaseous contaminants in the device as described in ASHRAE Standard 

84 (2020) [15]. 

The uncertainty in EATR can be calculated using uncertainty propagation methods as [18] 

UEATR = √(UC2

1

(C3 − C1)
)2 + (UC1

C2 − C3

(C3 − C1 )2)2 + (UC3

C1 − C2

(C3 − C1) 2)2 , (2.6) 

where UC1
, UC2

 and UC3
 are uncertainty in the tracer gas concentration measurements at stations 

1, 2 and 3, respectively. 

Tracer gas measurement procedure: To measure EATR, an inert tracer gas is injected into the 

return airstream. Then, air samples are drawn from each station, and the concentration of tracer 

gas is measured using calibrated gas analyzers. The air sampling lines must be short enough to 

avoid dilution and sample line transients. ASHRAE Standard 84 (2020) [15] requires the 

uncertainty in EATR to be less than ± 3%. The requirements of the sampling equipment and 

recommendations on the sampling grid are also provided in the test standards [15], [16]. 
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2.3.4 Energy and mass inequalities 

During every performance test, in addition to the performance parameters, the test data should 

satisfy the energy and mass inequalities [16]. The inequality equations for (i) dry air mass flow 

rate, (ii) energy transfer, (iii) water vapor mass transfer, (iv) enthalpy transfer, and (v) 

contaminants mass transfer are provided in Eqs. (2.7) - (2.11) [15]. 

For sensible energy transfer:  

|m1̇ − m2̇ + m3̇ − m4̇ |

ṁmin (1,3)  
< 0.05 

(2.7) 

|m1̇ CpT1 − m2̇ CpT2 + m3̇ CpT3 − m4̇ CpT4|

ṁmin (1,3) Cp  |T1 − T3|
< 0.20 . (2.8) 

For water vapor transfer:  

|m1̇ W1 − m2̇ W2 + m3̇ W3 − m4̇ W4|

ṁmin (1,3) Cp  |W1 − W3|
< 0.20 . (2.9) 

For enthalpy transfer:  

|m1̇ h1 − m2̇ h2 + m3̇ h3 − m4̇ h4|

ṁmin (1,3) Cp  |h1 − h3|
< 0.20 . (2.10) 

For tracer gas mass inequality:  

|m1̇ C1 − m2̇ C2 + m3̇ C3 − m4̇ C4 |

ṁmin (1,3) |C1 − C3|
< 0.15 . (2.11) 

2.3.5 Energy wheel design parameters 

Some important non-dimensional parameters that are used to define energy wheels are the 

number of transfer units (NTU) and matrix heat capacity rate ratio (Cr*) which can be evaluated 

using Eqs. (2.12) and (2.13) [17]. 
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NTU =
UA

Cmin.
 (2.12) 

Cr∗ =
(ṁCp)

matrix
ω 

(Cmin)air
 . (2.13) 

Here, U, A, ṁ, C, and ω are overall heat transfer coefficient, heat transfer surface area, air mass 

flow rate, heat capacity rate, and rotational speed, respectively. 

2.4 Summary of research on contaminant transfer in energy exchangers 

The following section summarizes the research on contaminant transfer in energy exchangers and 

the effect of operating conditions on the transfer rate for various contaminants. Most of the studies 

have applied the concept of EATR for gaseous contaminants, even for gases that are not inert 

gases as specified in the test standards [15], [16]. The measurements of non-inert gases, therefore, 

include all the contaminant transfer mechanisms (carryover, leakage, and adsorption/desorption). 

The studies will be sorted into two sections based on the main transfer mechanisms and will be 

presented in chronological order within each section. 

2.4.1 Carryover and air leakage of inert gases 

2.4.1.1 Fisk et al. (1985) [4] 

Fisk et al. (1985) [4] studied gaseous contaminant transfer from the return airstream to the supply 

airstream in an energy wheel. Propane (C3H8) and sulfur hexafluoride (SF6) were used to determine 

the air leakage in the energy wheel. Propane and sulfur hexafluoride were injected upstream of the 

energy wheel in exhaust side. To improve the mixing of the tracer gases in the airstream, tracer 

gases were injected through a manifold upstream of an orifice plate and mixing vanes. The 

concentrations of contaminants were monitored using infrared analyzers. The results showed that 
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sulfur hexafluoride and propane transfer rates were between 6-7% and 5-7%, respectively, 

indicating that propane could be a possible inert tracer gas for this application. 

2.4.1.2 Khoury et al. (1988) [13] 

Khoury et al. (1988) [13] studied sulfur hexafluoride transfer in a heat wheel. Sulfur hexafluoride 

was stored in a gas chamber and injected into the return airstream with a rotameter. In the 

experiments, three-meter-long sampling tubes were used to collect air samples from the center of 

the air ducts. Air samples were collected into 15 L Tedlar sampling bags. Tedlar Sampling bags 

were made of polyvinyl fluoride (PVF) film and were used for collection of air samples in different 

air temperatures. The concentration of sulfur hexafluoride in the collected air samples was 

measured using infrared spectroscopy with a calibrated MIRAN 1A gas analyzer. The results 

showed that an average of 1% of sulfur hexafluoride was transferred by the heat wheel from the 

return air to the fresh supply air. A mass balance showed that 30% of the injected sulfur 

hexafluoride was lost during the experiment. The authors suggested that the sulfur hexafluoride 

could have been adsorbed by the wheel cassette. Their experimental data did not include an 

uncertainty analysis. 

2.4.1.3 Andersson et al. (1999) [19] 

Andersson et al. (1999) [19] studied formaldehyde transfer in six energy wheels with and without 

a purge section. They measured carryover and air leakage using nitrous oxide (N2O). A vacuum 

pump and metal tubes were used to draw air samples from the outdoor, supply, return, and exhaust 

airstreams. An infrared spectrophotometer was used to determine the nitrous oxide concentration 

in the air samples. Test results showed that 3% of injected nitrous oxide was transferred from the 

return airstream to the supply airstream for the energy wheels without a purge section (i.e., 
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carryover and air leakage) and 1% of injected nitrous oxide was transferred for the wheel with a 

purge section (i.e., air leakage assuming a well-designed purge section). Results showed that the 

standard deviations were 1-12% for nitrous oxide concentration. Andersson et al. (1999) [19] also 

conducted experiments with formaldehyde and these tests are described in Section 2.4.2.2. 

2.4.1.4 Shang et al. (2001) [5] 

Shang et al. (2001) [5] studied the transfer of nitrous oxide in an energy wheel with and without a 

purge section. Five pressure differences were applied between the exhaust airstream and outdoor 

airstream ranging from -254 Pa to +254 Pa. The schematic of their test facility is provided in Figure 

2.2. 

 

Figure 2.2. Schematic of the test facility used by Shang et al. (2001) to measure nitrous oxide 
contaminant transfer [5]. 

Experiments were started by injecting nitrous oxide into the return airstream until a concentration 

of 150 ppm was reached. Air samples were collected in 100 L sampling bags and analyzed with a 

gas analyzer. Details of the gas measurement techniques such as the type of gas analyzer were not 

provided. 
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The results for the experiments on the energy wheel without a purge section showed that EATR 

was 33% when the pressure difference (Psupply-Pexhaust) was -254 Pa and reduced to 1% when the 

pressure difference was +254 Pa. Results for experiments on the energy wheel with a purge section 

showed that EATR was 54% for a pressure difference of -246 Pa and reduced to 1.1% for a pressure 

difference of +250 Pa. The highest EATR uncertainty was ± 3% at a pressure difference of +250 

Pa. They suggested that a purge section increased EATR and uncertainty in measurement when 

the exhaust side pressure is higher than supply side pressure and therefore, the purge section may 

not always be beneficial. 

2.4.1.5 Sparrow et al. (2001) [20] 

Sparrow et al. (2001) [20] studied carbon dioxide transfer in a flat plate enthalpy exchanger using 

a novel semi-permeable membrane. The membrane was coated with polymer material which 

allowed water vapor transfer but prevented the transfer of other gases. This was due to polymer 

coatings that were synthesized to create pores similar in size to the water vapor molecule (2.6 Å). 

A pressurized cylinder of carbon dioxide was connected to four distribution tubes to ensure a 

uniform concentration of carbon dioxide in the return airstream. An infrared spectroscopy 

technique was used with a resolution of 1 ppm for measuring carbon dioxide concentration in the 

return, outdoor and supply airstreams. The authors did not measure carbon dioxide concentration 

in the exhaust airstream to reduce costs; rather they assumed a mass balance for carbon dioxide. 

Mass transfer effectiveness for water vapor (i.e., latent effectiveness) was found to be 50% at face 

velocities between 0.25-0.5 m/s (50-100 fpm) and transfer of carbon dioxide was found to be 1% 

at a face velocity of 1.5 m/s (300 fpm). A selectivity parameter was introduced for quantifying gas 

transfer through the applied polymer membrane. This parameter was the ratio of water vapor 

transfer rate to carbon dioxide transfer rate and ranged between 21 and 61. The study showed that 
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the membrane transferred water vapor while allowing very little carbon dioxide transfer through 

the membrane. This study did not provide an uncertainty analysis of the results. 

2.4.1.6 Roulet et al. (2002) [10] 

Roulet et al. (2002) [10] studied volatile organic compounds (VOCs) transfer in energy wheels in 

an auditorium, a laboratory, and a building. Tracer gas experiments with sulfur hexafluoride 

showed that the transfer rate through air leakage and carryover mechanisms were 7  ± 4% in the 

auditorium, 5 ± 11% in the laboratory and 26 ± 16% in the building. The higher transfer rate in the 

building might have been due to higher air flow rates on the exhaust side than on the supply side 

of the wheel. Roulet et al. (2002) [10] reported experimental data for other VOCs, which will be 

provided in Section 2.4.2.4 as the adsorption/desorption mechanism is dominant for those VOCs. 

2.4.1.7 Wolfrum et al. (2008) [21] 

Wolfrum et al. (2008) [21] studied sulfur hexafluoride, toluene and n-hexane transfer in a desiccant 

wheel coated with a silicate-based desiccant. Tracer gas experiments with sulfur hexafluoride 

showed a 1% air leakage and carryover from the return airstream to the supply airstream. The 

pressure differences between the return and supply airstream were set to zero. Experimental data 

for other VOCs will be presented in Section 2.4.2.5. 

2.4.1.8 Patel et al. (2014) [22] 

Patel et al. (2014) [22] performed experiments to measure sulfur hexafluoride, formaldehyde and 

toluene transfer in a run-around membrane energy exchanger (RAMEE). A RAMEE consists of 

two energy exchangers, a liquid desiccant running loop and a pump to run liquid desiccant between 

energy exchangers. These energy exchangers are called liquid-to-air membrane energy exchangers 

(LAMEEs). Figure 2.3 shows a schematic of a RAMEE. 
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Figure 2.3. Schematic of a run-around membrane energy exchanger (RAMEE) [23]. 

Experiments with sulfur hexafluoride showed that EATR was almost zero, which was due to its 

very low solubility in water. EATR results for the formaldehyde and toluene were higher and will 

be provided in Section 2.4.2.8. 

2.4.1.9 Hult et al. (2014) [24] 

Hult et al. (2014) [24] studied sulfur hexafluoride and VOC (carbon dioxide and formaldehyde) 

transfer in energy wheels using field and laboratory experiments. The carbon dioxide concentration 

in the outdoor, supply and return airstreams were measured to determine the contributions of air 

leakage and carryover mechanisms on cross-contamination in an energy wheel. Air samples were 

collected in silica gel cartridges coated with 2,4-dinitrophenylhydrazine. Sampling cartridges were 

extracted into 2 mL of high purity acetonitrile. Sample extracts were analyzed using the high 

performance liquid chromatography (HPLC) technique. Appendix B provides more details about 

the working principles of the gas measurement techniques such as HPLC, gas chromatography, 

and infrared spectroscopy. 

Laboratory experiments were done in order to validate field experiments at air flow rates between 

120-340 m3/h. Laboratory experiments started with injecting sulfur hexafluoride into the return 
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airstream. Air samples were collected using sampling bags and analyzed using a gas 

chromatography technique. The measured sulfur hexafluoride concentrations were between 20-

1200 µg/m3 and the EATR was between 12% to 19%. 

2.4.1.10 Kassai (2018) [25] 

Kassai (2018) [25] studied carbon dioxide transfer in an energy wheel coated with a 3Å molecular 

sieve desiccant. carbon dioxide was injected into return airstream from a 50 L volume cylinder. A 

TESTO multifunctioning metering instrument was used to measure the carbon dioxide 

concentration in different airstreams. Results showed that the carbon dioxide transfer from the 

return airstream to the supply airstream increased with wheel rotational speed. carbon dioxide 

transfer also increased as air flow rate increased in the return and outdoor airstreams. For example, 

at a volume flow rate of 400 m3/h and a wheel rotational speed of 2 rpm the carbon dioxide transfer 

was 2%, and at a volume flow rate of 800 m3/h and a wheel rotational speed of 10 rpm the carbon 

dioxide transfer was 4%. 

Their results showed that carbon dioxide transfer was between 2-5% depending on wheel speed 

and flow rate. It was assumed that the two major mechanisms for carbon dioxide transfer were air 

leakage and carryover. This study did not present an uncertainty analysis of results and 

contaminant mass conservation in the experiments. 

2.4.2 Adsorption/desorption of non-inert gases 

In this section, the experimental studies on contaminant transfer due to adsorption/desorption are 

summarized. It should be noted that the results of the contaminant transfer experiments reported 

in this section also include all the possible transfer mechanisms (carryover, leakage, and 

adsorption/desorption). 
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2.4.2.1 Fisk et al. (1985) [4] 

Fisk et al. (1985) [4] studied formaldehyde transfer in an energy wheel. Gaseous formaldehyde 

was produced by evaporating a methanol-free aqueous formaldehyde solution into a secondary 

airflow. This secondary airflow, containing the gaseous formaldehyde, was injected into the return 

airstream upstream of the energy wheel. The secondary airflow passed through a manifold 

upstream the orifice plate and mixers similar to the injection procedure for sulfur hexafluoride and 

propane. The details of the formaldehyde concentration measurement technique were not provided. 

Results showed that formaldehyde transfer was between 9-15% depending on the outside air 

temperature and humidity ratio. Higher outside temperatures and humidity ratios resulted in higher 

formaldehyde transfer rates. The difference between the formaldehyde transfer rate and the tracer 

gas transfer rate showed that there were mechanisms other than carryover and leakage that 

contributed to formaldehyde transfer in the energy wheel. 

Fisk et al. (1985) [4] concluded that the higher transfer rates of formaldehyde may be due to 

adsorption of formaldehyde by the desiccant coated wheel on the exhaust side, followed by transfer 

through wheel rotation to the supply side, and desorption on the supply airstream. They reported 

an uncertainty of ± 12% in the formaldehyde transfer rate. 

2.4.2.2 Andersson et al. (1999) [19] 

Andersson et al. (1999) [19] conducted experiments with formaldehyde in energy wheels. The 

concentration of formaldehyde in different airstreams was measured using a chemisorption 

technique employing 2,4-dinitrophenylhydrazine-impregnated glass fiber filters. Six filters were 

used for air sampling. In addition, where air flow was not homogenous, air sampling was done 

using grids of metal tubes (1 mm in diameter) located perpendicular to the airstream. These metal 
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tubes were used for collecting air samples in a bottle. The bottle contained filters for adsorbing 

formaldehyde, and the filters were analyzed using high performance liquid chromatography 

(HPLC). It was found that in the worst-case scenario 9% of the formaldehyde transferred from the 

return airstream to the supply airstream with a standard deviation between 15% and 29%. Results 

agreed with results reported by Fisk et al. (1985) [4] (who measured a formaldehyde transfer rate 

of 9-15%). 

Andersson et al. (1999) [19] estimated the effects of formaldehyde transfer in energy wheels on 

the concentration of formaldehyde in a building. It was assumed that indoor formaldehyde 

concentration was 20 µg/m3 in building, the ventilation rate was one air change per hour, and the 

formaldehyde transfer from the return airstream to the supply airstream was 10%. Figure 2.4 shows 

that formaldehyde concentration in the indoor air increased to 22 µg/m3 during the first 2 hours of 

operation of the ventilation system. After the first 2 hours, the formaldehyde concentration 

remained constant in the building. 

 

Figure 2.4. Formaldehyde concentration in a building during 8 hours with a 10% EATR in an 
energy wheel when the initial concentration is 20 µg/m3 and the ventilation rate is one air change 

per hour [19]. 

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10

F
o
rm

a
ld

e
h
y
d
e
 
(m

g
/m

3
)

Time (hour)



27 
 

2.4.2.3 Okano et al. (2001) [14] 

Okano et al. (2001) [14] studied contaminant transfer in energy wheels coated with two different 

desiccants: ion exchange resin (IER) and silica gel (SG). The ion exchange resin was selected 

because it is nonporous and little contaminant transfer by adsorption/desorption is expected, while 

the silica gel was selected since it is a common desiccant material. Experiments were started by 

generating gaseous contaminants in a box and injecting them into the return airstream. The 

contaminants tested were ammonia, isopropyl alcohol, toluene, acetic acid, formaldehyde, styrene, 

acetone, xylene, ethyl methyl ketone, ethyl acetate, butyl acetate, ethyl alcohol, and methanol.  

A sorption test was conducted to determine the sorption capacity of the desiccants. The sorption 

test showed that the ion exchange resin adsorbed 3% by mass of isopropyl alcohol and the different 

silica gel desiccants adsorbed 17-19% by mass of isopropyl alcohol. The concentration of 

isopropyl alcohol was not reported in these tests. 

The concentration of ammonia, formaldehyde and acetic acid was measured using gas detector 

tubes, whereas the gas chromatography technique was used for the remaining contaminants. 

Details of the contaminant injection system and the instruments used to measure the contaminant 

concentration were not described in the paper. 

Experiments with the energy wheel that was coated with the ion exchange resin (IER) showed that 

ammonia, acetic acid, and formaldehyde transfers were 10%, 7% and 5%, respectively. Other 

contaminants showed no transfer in the IER energy wheel. Measured results for ammonia from 

[14] are presented in Figure 2.5. The results show that as the face velocity increases, EATR 

decreases. In order to determine if this trend is mainly due to a decrease in actual contaminant 

transfer rate or due to an increase in dilution at higher face velocities (i.e., higher air flow rates), a 

dashed line is added to Figure 2.5 which represents the change in EATR that would result due to 
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dilution only (i.e., a constant contaminant transfer rate that is diluted by a higher air flow rate), and 

is calculated as 

EATRb =
EATRa ∙ Va

Vb
 , (2.14) 

where V is the face velocity (i.e., air velocity that hits energy wheel surface). Subscripts a and b 

represent measured contaminant transfer results and calculated contaminant transfer only due to 

dilution, respectively. Since the measured results follow a trend similar to the dashed line in Figure 

2.5, it can be concluded that the measured decreases in EATR with increasing face velocity are 

mainly due to dilution and not due to a decrease in the actual contaminant transfer rate. 

Figure 2.5 also shows that EATR increases with increasing outdoor air relative humidity in an 

energy wheel coated with silica gel (SG) and remains constant with increasing outdoor air relative 

humidity in an energy wheel coated with ion exchange resin (IER). 
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Figure 2.5. EATR as a function of face velocity at different outdoor air relative humidities and 
with wheels coated with silica gel (SG) and ion exchange resin (IER) desiccants (OA conditions: 
T = 30°C, RH = 50-80%, rotational speed = 16 rpm) [14]. An additional dashed line is included 

which represents the change in EATR that would occur at a constant contaminant transfer rate as 
the face velocity increases. 

Further experiments on different desiccants showed that the ion exchange resin, synthesized 

zeolite, silica gel, and lithium chloride showed 17%, 36%, 43%, and 60% ammonia transfer rate, 

respectively. The authors noted that the desiccants with smaller pore sizes had higher desiccating 

capacity (i.e., transfer of water vapor between supply side of the wheel and the exhaust side of the 

wheel) and had lower contaminant transfer rates. 

2.4.2.4 Roulet et al. (2002) [10] 

Roulet et al. (2002) [10] performed contaminant transfer experiments using VOCs with different 

physical and chemical properties (e.g., saturation degree, boiling point, and polarity). The 

contaminants selected for the study included n-decane, n-butanol, 1-hexanol, phenol, 1,6-

dicholorhexane, hexanal, benzaldehyde, limonene, m-xylene, mesitylene, and dipropyl ether. A 

liquid mixture of VOCs was used such that one milliliter of the mixture containing equal masses 
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of all VOCs was injected into a 200 ℃ airstream for 30 s. The hot air evaporated the contaminants, 

and the hot and contaminated airstream was delivered to the return airstream of the test facility. 

Pumps were used to collect air samples from the outdoor, supply, return, and exhaust airstreams. 

The air samples passed through tubes coated with adsorbing agents. The tubes were then heated, 

so the adsorbed VOCs would be released and stored in a cold trap. The VOCs in the cold trap were 

analyzed using gas chromatography. A mass spectrometer was used to identify each contaminant 

and a flame ionization detector was used to measure the contaminant concentration. 

Experimental results showed that the contaminant transfer rate is related to the VOCs boiling point. 

Chemical compounds with higher boiling points showed higher transfer rates. For example, phenol 

with a boiling point of 182 ℃ showed a transfer rate of 48% and limonene with a boiling point of 

177 ℃ showed a transfer rate of 4%. A physical reason fo r this result was not provided. This 

research did not examine the effects of operating conditions on VOC transfer by 

adsorption/desorption in energy wheels. 

2.4.2.5 Wolfrum et al. (2008) [21] 

Wolfrum et al. (2008) [21] studied toluene and n-hexane transfer in a desiccant wheel. A syringe 

pump with 10 mL volume was used to inject a liquid mixture of toluene and n-hexane into the 

return airstream. The syringe pump injected the VOCs with a flow rate of 1-10 µL/min to a transfer 

airstream with a flow rate of 28 L/min. The transfer airstream was used to evaporate and mix the 

VOCs before they were injected into the return airstream. The transfer airstream entered the return 

airstream 6 m upstream the desiccant wheel. A 50:50 mixture by mass of toluene and n-hexane 

was injected at 18 µL/min into a transfer airstream with a flow rate of  16990 L/min resulted in 

concentration of 100 ppb for gaseous toluene and concentration of 125 ppb for gaseous n -hexane. 
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Air samples were collected using a vacuum pump and passed through a manifold with 10 sorbent 

tubes. Adsorbed contaminants by the tubes were desorbed and concentrated using a thermo-

desorption technique. Gas chromatography was used to identify the concentration of VOC. After 

determining the VOCs concentration in the sorbent tubes, each tube was heated to 325 ℃ for 10 

minutes to ensure no contaminant remained in the tube for the next experiment. The desiccant 

wheel transferred 50-80% of the toluene and 10-30% of the n-hexane from the return airstream to 

supply airstream. A total uncertainty of 5% was included in the results. Results showed that 

contaminant mass conservation was satisfied. 

2.4.2.6 Kodama (2010) [6] 

Kodama (2010) [6] studied the transfer of VOCs in energy wheels coated with two types of 

desiccants: ion-exchange resin (IER) and 3 Å zeolite molecular sieve. These desiccants were 

selected due to the selectivity feature on water vapor adsorption/desorption and preventing gaseous 

contaminants from adsorption/desorption. Tests were conducted for pressure difference between 

the supply and return airstreams of 0 and 250 Pa. The supply airstream had a higher flow rate than 

that of the return airstream. Carbon dioxide, propane, ammonia, and formaldehyde were tested. 

Carbon dioxide and propane were injected at constant flow rates using a mass flow controller. 

Ammonia and formaldehyde were injected by an aeration mechanism where an airstream was 

supplied through water solutions of the contaminants at a controlled flow rate. Then the ammonia 

and formaldehyde rich air was injected into the return airstream. 

Air samples were collected in sampling bags and analyzed by gas detector tubes and gas  

chromatography. Carbon dioxide and propane concentrations were measured using gas 

chromatography technique. Formaldehyde and ammonia concentrations were determined by gas 
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detector tubes. Gas detector tubes with a measuring range of 0.2-20 ppm for ammonia and 0.05-4 

ppm for formaldehyde were applied. 

The results showed that ammonia transfer was between 20-46%, carbon dioxide transfer was 

between 1-3%, formaldehyde transfer was between 6-35%, and propane transfer was between 1-

4%. Ammonia showed the highest transfer rate, which was attributed to its higher water-solubility 

and smaller molecular size. The ion-exchange resin desiccant showed 2-6 times lower contaminant 

transfer than the 3Å zeolite desiccant. It was concluded that desiccants which adsorb water a nd 

water-soluble substances are more likely to transfer VOCs in energy wheels. The results did not 

include contaminant mass conservation or an uncertainty analysis. 

2.4.2.7 Bayer (2011) [7] 

Bayer (2011) [7] studied the transfer of VOCs in energy wheels coated with 3 Å molecular sieve 

desiccants. The studied VOCs included propane, carbon dioxide, methyl isobutyl ketone (MIBK), 

isopropyl alcohol, xylene, acetaldehyde, methanol, and acetic acid. The wheel rotated at 20 rpm 

and the pressure of the supply airstream was 109 Pa higher than that of the return airstream. 

Air samples were collected in Tedlar sampling bags and analyzed with a photoacoustic 

spectroscopy technique. The air samples were taken 10 times and the average VOC concentration 

was reported. The published report did not describe the contaminant injection method nor details 

of the contaminant concentration measurement technique. Experiments on an energy wheel coated 

with a 3 Å molecular sieve desiccant showed that contaminant transfer was zero for all 

contaminants. This work did not contain an uncertainty analysis. It should also be noted that these 

results were published as a report and were not peer-reviewed. 
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2.4.2.8 Patel et al. (2014) [22] 

Patel et al. (2014) [22] performed experiments with toluene and formaldehyde in a run-around 

membrane energy exchanger (RAMEE). Contaminants were injected using a calibrated gas 

mixture injection technique and a contaminant evaporation technique. In the calibrated gas mixture 

injection technique, gaseous toluene with a concentration of 150 ppm and gaseous formaldehyde 

with a concentration of 30 ppm were injected into the exhaust airstream. In the contaminant 

evaporation technique, liquid contaminants were injected into an evaporation chamber using a 

syringe pump with flow rates from 0.73 μL/h to 1500 mL/h . Liquid contaminants were evaporated 

and contaminated air flowed to the exhaust airstream. Air samples were drawn from the supply 

and exhaust ducts to 100 L Teflon sampling bags. Air samples were analyzed using the Fourier 

Transform Infrared (FTIR) spectroscopy technique. 

The contaminant transfer in the RAMEE occurred due to the concentration difference between the 

contaminants in the airstream and the contaminants in the liquid desiccant in the LAMEEs. The 

contaminant transfer mechanisms were described as (1) convection from the exhaust airstream to 

the membrane surface, (2) diffusion through the membrane to the liquid desiccant, (3) advection 

of contaminants dissolved in the liquid desiccant to the supply LAMEE, (4) diffusion through the 

membrane, and (5) convection to the supply airstream. 

EATR values were found to be 4-6% for formaldehyde and 2-3% for toluene. The uncertainty in 

the formaldehyde and toluene transfer rates were 4% and 3%, respectively. The higher EATR for 

formaldehyde was attributed to a higher diffusivity and water solubility compared to toluene. 

These values are smaller than the 71% toluene transfer in a desiccant wheel [21] and 8-15% 

formaldehyde transfer in energy wheels [4], [19]. Moreover, changes in the air flow rate, test 
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conditions and liquid desiccant flow rate showed no significant effect on the transfer rate of 

contaminants in the RAMEE. 

2.4.2.9 Hult et al. (2014) [24] 

Hult et al. (2014) [24] investigated formaldehyde transfer rate in energy wheels using laboratory 

and field experiments. Experiments started with injecting liquid formaldehyde into an evaporation 

chamber using a glass syringe pump. Gaseous formaldehyde with a concentration range of 60-75 

µg/m3 was delivered to the return airstream. Air samples were collected with 2,4-

dinitrophenylhydrazine silica samplers from the outdoor, supply, return, and exhaust airstreams. 

Results from the field experiments showed a formaldehyde transfer rate between 28% and 29%. 

carbon dioxide concentration measurement showed that 92-100% of formaldehyde transfer 

occurred due to air leakage and carryover mechanisms, and only 0-8% of formaldehyde transfer 

occurred due to adsorption/desorption mechanism. Laboratory experiments at different air flow 

rates showed that the formaldehyde transfer rate decreased as the air flow rate increased. Similarly, 

the researchers found that formaldehyde adsorption/desorption decreased as the air flow rate 

increased. For example, the contribution of adsorption/desorption on the formaldehyde transfer 

was 30% at an air flow rate of 85 m3/h and 10% at an air flow rate of 340 m3/h. This might have 

occurred due to the inverse relationship between air flow rate and residence time of formaldehyde 

in the wheel. In other words, as the air flow rate decreased, the air velocity through the wheel flutes 

decreased and thus there was more time for formaldehyde molecules to be adsorbed by the 

desiccants. Formaldehyde transfer results were shown with a total uncertainty of ± 3% for field 

and laboratory experiments. 
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2.4.2.10 Nie et al. (2015) [26] 

Nie et al. (2015) [26] studied gaseous contaminant transfer in a flat plate enthalpy exchanger. 

Toluene, acetone, and ammonia were used. These contaminants were continuously injected into 

the return airstream with a washing bottle connected to the injection port. The washing bottle was 

used to control contaminant concentration at the injection port. Details of the contaminant injection 

technique such as the mass of injected contaminants were not provided. Air samples were taken 

from the outdoor, supply, return, and exhaust airstreams. Plastic tubes were used to deliver air 

samples to a photoacoustic multi-gas analyzer. 

Results showed that the toluene transfer from the return airstream to the supply airstream was 

between 7-8%, the acetone transfer was between 5-6%, and the ammonia transfer was between 8-

9%. Experiments at different outdoor conditions showed that the toluene transfer in the flat plate 

enthalpy exchanger was nearly unaffected by outdoor temperature and humidity ratio. For 

example, when the outdoor air temperature was 35 ℃ and the humidity ratio was 22 g/kg (63% 

RH), the toluene transfer was 7%. When the outdoor air temperature decreased to 11 ℃ and the 

humidity ratio decreased to 6 g/kg (74% RH), the toluene transfer increased to 8%. Similar results 

were found for acetone and ammonia. This study did not include an uncertainty analysis nor report 

whether the mass of contaminants was conserved in the experiments. 

2.5 Summary of the literature review 

Table 2.1 provides a summary of the measured EATR values and uncertainties for various energy 

exchangers from the literature. An established test methodology for measuring contaminant 

transfer due to air leakage and carryover (i.e., due to bulk airflow) in energy wheels is available in 

ASHRAE Standard 84 (2020) [15]. However, based on the literature review, a similar test 
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methodology for determining the contribution of adsorption/desorption mechanism in gaseous 

contaminant transfer in energy wheels is missing. 

Table 2.1. Summary of the gaseous contaminant transfer rates and uncertainties measured on 
various energy exchangers. Studies that reported 3% uncertainty of EATR satisfied ASHRAE 

Standard 84 requirement. 

Gas Energy exchanger EATR Uncertainty Reference 

1. Acetaldehyde Energy wheel 17% NR Bayer (2011) [7] 

2. Ammonia 
Energy wheel 10-46% 

NR 

Okano et al. (2001) [14], 

Kodama (2010) [6] 

Flat plate enthalpy exchanger 8-9% Nie et al. (2015) [26] 

3. Acetic acid Energy wheel 7-36% NR 
Okano et al. (2001) [14], 

Bayer (2011) [7] 

4. Methanol Energy wheel 0-11% NR 
Okano et al. (2001) [14], 

Bayer (2011) [7] 

5. Isopropyl 

alcohol 
Energy wheel 0-4% NR 

Okano et al. (2001) [14], 

Bayer (2011) [7] 

6. Methyl isobutyl 

ketone 
Energy wheel 0-3% NR 

Okano et al. (2001) [14], 

Bayer (2011) [7] 

7. Xylene Energy wheel 0-30% NR 

Okano et al. (2001) [14], 

Bayer (2011) [7], 

Roulet et al. (2002) [10] 

8. Carbon dioxide 
Energy wheel 0.6-5% 

NR 

Kodama (2010) [6], 

Bayer (2011) [7], 

Kassai (2018) [25] 

Flat plate type mass exchanger 1% Sparrow et al. (2001) [20] 

9. Propane or 

hexane 

Energy wheel 0.2-7% 

5% 

Kodama (2010) [6], 

Bayer (2011) [7], 

Fisk et al. (1985) [4] 

Flat plate enthalpy exchanger 6-8% Fisk et al. (1985) [4] 

Desiccant wheel 20% Wolfrum et al. (2008) [21] 

10. Phenol Energy wheel 30-75% NR Roulet et al. (2002) [10] 

11. Sulfur 

hexafluoride 

Energy wheel 5-26% 
1% 

Bayer (2011) [7], 

Khoury et al. (1988) [13], 

Fisk et al. (1985) [4], 

Roulet et al. (2002) [10] 

Flat plate enthalpy exchanger 5-8% Fisk et al. (1985) [4] 

12. Formaldehyde Energy wheel 6-35% 3-29% 

Okano et al. (2001) [14], 

Kodama (2010) [6], 

Andersson et al. (1999) [19], 

Bayer (2011) [7], 
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Hult et al. (2014) [24], 

Fisk et al. (1985) [4] 

Flat plate enthalpy exchanger 7-12% Fisk et al. (1985) [4] 

RAMEE 5-6% Patel et al. (2014) [22] 

13. Nitrous oxide Energy wheel 1-54% 3% Shang et al. (2001) [5] 

14. Acetone 
Energy wheel 0 

NR 
Okano et al. (2001) [14] 

Flat plate enthalpy exchanger 5-6 Nie et al. (2015) [26] 

15. Toluene 

RAMEE 2-3% 

3-5% 

Patel et al.(2014) [22] 

Desiccant wheel 70% Wolfrum et al. (2008) [21] 

Flat plate enthalpy exchanger 7-8% Nie et al. (2015) [26] 

Energy wheel 0-30% Okano et al. (2001) [14] 

16. Inert tracer gas 
(for measuring air 
leakage and 

carryover) 

Air-to-air heat/energy 

exchanger 
---- 3% 

ASHRAE Standard 84 (2020) 

[15], 

CSA Standard C 439-18 (2018) 

[16] 

RAMEE = Run-around membrane energy exchanger, NR = uncertainty not reported  

 

2.6 Analysis of literature data 

In the following sections, the literature data will be presented to show the effect of different 

operating and design parameters on EATR. 

2.6.1 Effect of temperature on EATR 

Figure 2.6 presents EATR versus outdoor air temperature for different VOCs. EATR for 

acetaldehyde, ammonia, acetic acid, methanol, and isopropyl alcohol are shown in Figure 2.6 (a), 

EATR for methyl isobutyl ketone (MIBK), xylene, carbon dioxide, and propane are shown in 

Figure 2.6 (b), and EATR for sulfur hexafluoride is shown in Figure 2.6 (c). There is no clear 

relationship between EATR and outdoor air temperature because the design and operating 

parameters are different in each test (e.g., different exchangers, desiccants, face velocities, pressure 

conditions, and purge sections). Figure 2.6 tends to indicate that these other parameters play a 

more important role in contaminant transfer than temperature. 
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Figure 2.6. EATR for (a) acetaldehyde, ammonia, acetic acid, methanol, and isopropyl alcohol, 

(b) MIBK, xylene, carbon dioxide, propane, and (c) sulfur hexafluoride versus outdoor air 
temperatures under varying test conditions. 
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Okano et al. (2001) [14] studied the effect of outdoor air temperature on EATR for ammonia while 

keeping other parameters constant. They found that changing outdoor air temperature does not 

change EATR significantly, as can be seen in Figure 2.7. Okano et al. (2001) [14] found that 

energy wheels with different desiccants (silica gel (SG) and ion exchange resin (IER)) show very 

similar trends for EATR versus outdoor air temperature. 

 

Figure 2.7. EATR for ammonia versus outdoor air temperature at constant test conditions [14]. 
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Figure 2.8. EATR for (a) acetaldehyde, ammonia, acetic acid, methanol, and isopropyl alcohol, 
and (b) MIBK, xylene, carbon dioxide, and propane versus outdoor air relative humidity under 

varying test conditions. 

Figure 2.9 presents the effect of outdoor air relative humidity on EATR for ammonia as measured 
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than the apparent trend in Figure 2.9. Okano et al. (2001) [14] found that increasing the outdoor 

air relative humidity increases EATR for ammonia in energy wheels with a silica gel desiccant but 

does not change EATR in energy wheels with an ion exchange resin desiccant. 

 

Figure 2.9. EATR for ammonia versus outdoor air relative humidity at constant test conditions  
[14]. 
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velocity (flow rate of air) increases. Figure 2.10 also contains dashed lines to indicate how EATR 

would change if the contaminant transfer rates were constant at the measured contaminant transfer 

rate at a face velocity of 2 m/s using Eqn. (2.13) in Section 2.4.2.3. Comparing the solid lines 

(measured data) and the dashed lines (data based on a constant contaminant transfer rate and 

dilution) shows that the measured EATR is quite similar (within ± 5%) to EATR calculated 

assuming a constant contaminant transfer rate. It should also be noted that this study [14] did not 

report the uncertainty of the EATR results. 

 

Figure 2.10. EATR for ammonia versus air face velocity at constant test conditions (solid lines) 
[14] compared to EATR that would exist if the total contaminant transfer rate were constant at a 

face velocity of 2 m/s (dashed lines). 
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increase in the adsorption/desorption of the contaminant in the energy wheels (it should be noted 

that the adsorption/desorption of water vapor also increases as the effectiveness increases). For 

some VOCs and exchangers (e.g., ammonia in the flat plate energy exchanger [26] and propane in 

energy wheel [4], [6], [7]), EATR decreases as the total effectiveness increases. 

 

Figure 2.11. EATR as a function of total effectiveness for different energy exchangers. 
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The literature review revealed that the adsorption/desorption mechanism significantly contributes 

to gaseous contaminant transfer in energy exchangers. Contaminant transfer due to 

adsorption/desorption depends on many factors, such as the nature of the contaminant, the type of 

desiccant, the exchanger design, and the operating conditions. Hence, a new parameter (EATRad) 

is proposed to quantify the contribution of the adsorption/desorption in gaseous contaminant 

transfer in energy exchangers. The EATRad is determined by subtracting the EATR measured with 

a non-inert gas (e.g. VOCs) from the EATR measured with an inert tracer gas (sulfur hexafluoride 

– according to ASHRAE Standard 84 (2020) [15]) as given in Eqn. (2.15). 

EATRad = EATRnon−inert − EATRinert  (2.15) 

The EATRnon−inert and EATRinert are the EATR of the gas being tested and the inert gas (i.e., 

sulfur hexafluoride), respectively. The EATRad for different gaseous contaminants, which were 

calculated from data in the literature using Eqn. (2.15), are presented in Figure 2.12. Figure 2.12 

shows that EATRad is highest for acetic acid, phenol, and acetaldehyde. This may be due to the 

higher water solubility and smaller molecular size of these VOCs. Xylene was studied in two 

research papers [7], [10] and the EATRad for xylene was reported to be between 3% and 13%. This 

difference between the EATRad values could be due to the different design considerations and test 

conditions in the different studies. Additional research is required to verify the proposed method 

of quantifying contaminant transfer due to adsorption/desorption (EATRad) and to determine the 

uncertainty in EATRad for various gases and operating conditions. 
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Figure 2.12. EATRad for different VOCs reported in the literature. 

2.8 Conclusions 

This chapter reviewed the available experimental studies in the area of contaminant transfer in 

energy exchangers. Several papers have reported the contaminant transfer rate of various 

contaminants, and most of them were focused on rotary-type energy exchanges. Based on the 

available literature on contaminant transfer in energy exchangers, the following conclusions can 

be made. 

• There are three main mechanisms that contribute to gaseous contaminant transfer in energy 

exchangers: air leakage, carryover, and adsorption/desorption. 

• Gaseous contaminant transfer due to air leakage and carryover has been studied and 

measured extensively in the literature using inert gases. An established test methodology 

for measuring air leakage and carryover exists and is included in test standards ASHRAE 

84-2020 [15] and CSA C439 [16]. Contaminant transfer due to air leakage and carryover 
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(i.e., bulk air flow from the exhaust side to the supply side of the exchanger) is quantified 

using the exhaust air transfer ratio (EATR). 

• Several researchers have measured contaminant transfer of non-inert gases in energy 

exchangers. While such measurements inherently include all transfer mechanisms (air 

leakage, carryover, and adsorption/desorption), no test methods exist in the literature to 

quantify the adsorption/desorption mechanism. Thus, a method to quantify contaminant 

transfer due to adsorption/desorption was proposed and applied in this chapter. More  

research is required to verify the proposed method and its uncertainty. 

• The literature review showed that measured gaseous contaminant transfer rates vary 

between 0% and 75%. The highest transfer rates were measured for phenol, toluene, nitrous 

oxide, ammonia, acetic acid, and formaldehyde. A common chemical characteristic among 

these contaminants, except for nitrous oxide (a tracer, and a non-reacting gas), is their high 

water solubility, which may be a possible reason for high contaminant transfer rates.  The 

high value of EATR for nitrous oxide was due to higher pressure on the exhaust side than 

the supply side of the energy wheel causing significant contaminant transfer due to air 

leakage. 

• The literature review showed that the uncertainties in measured EATR varied between 1% 

and 30%, but most studies did not include a detailed uncertainty analysis. Furthermore, 

most studies did not determine if the experiments conserved mass of gaseous contaminants. 

• The literature review showed that the exchanger design parameters (effectiveness and face 

velocity) have a more significant effect on EATR than the operating conditions (relative 

humidity and temperature) for the case of energy wheels.
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CHAPTER 3 

EXPERIMENTAL FACILITY AND RESULTS 

3.1 Overview 

This chapter addresses the second objective of this MSc thesis, which is to apply and verify a test 

methodology for measuring gaseous contaminant transfer in energy wheels. The proposed test 

methodology including the test facility, contaminant injection methods, gas sampling technique, 

instrumentation, and uncertainty analysis is described. The test facility and methodology are 

applied to measure the contaminant transfer rates, expressed as a dimensionless ratio known as the  

exhaust air transfer ratio (EATR), for carbon dioxide (CO2), sulfur hexafluoride (SF6), ammonia 

(NH3), methanol (CH3OH), and isopropyl alcohol (C3H8O) at different design and operating 

conditions. The effect of the air face velocity (design parameter) and outdoor air temperature 

(operating condition) on EATR are investigated. It is shown that outdoor air temperature has a 

negligible effect on EATR while increasing the air face velocity decreases EATR. The results 

show that EATR for carbon dioxide and sulfur hexafluoride are nearly equal, which indicates that 

the transfer of carbon dioxide is mainly due to air leakage and carryover. The proposed method 

for determining the contaminant transfer due to adsorption/desorption in energy wheels, that was 

presented in Chapter 2 of the thesis, is applied and verified. The EATR test data show that the 

contribution of adsorption/desorption is significant for ammonia, methanol, and isopropyl alcohol. 

A common characteristic of ammonia, isopropyl alcohol, and methanol is that they are all polar 

chemicals. 

This chapter is part of a research paper that is under preparation. The authors of the paper will be 

Easwaran Krishnan, Hayden Reitenbach, Mehrdad Torabi, Jafar Soltan, and Carey Simonson. 

Mehrdad Torabi wrote this chapter with input from Easwaran Krishnan and Carey Simonson. 
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Easwaran Krishnan and Mehrdad Torabi jointly conducted the experiments and analyzed the 

experimental data. Easwaran Krishnan provided Figures 3.13 to 3.16 in this chapter. Hayden 

Reitenbach and Easwaran Krishnan developed the test methodology and the test facility. 

Professors Carey Simonson and Jafar Soltan provided oversight for the research. 

3.2 Test facility 

The contaminant transfer experiments presented in this chapter were conducted using an existing 

energy wheel test facility at the University of Saskatchewan. The test facility has been used by 

previous graduate students and researchers [8], [28], [29] to test various air-to-air energy 

exchangers in accordance with ASHRAE Standard 84 (2020) [15]. 

The test facility is shown in Figures 3.1 and 3.2 and consists of an air handling system, a test 

section (containing the energy wheel), a gas injection system, and a gas sampling system. The 

function of the air handling system is to transport air to/from the test section and allow the 

measurement of the air properties at different measurement stations. The air handling system 

contains four air lines including outdoor air (OA), supply air (SA), return air (RA), and exhaust 

air (EA). The gas injection system was used to control the injection of contaminants to RA. The 

gas sampling system consisted of a vacuum pump, Teflon sampling tubes with solenoid valves to 

draw air samples and a gas analyzer to measure the concentration of the gas samples. 
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Figure 3.1. Schematic of the energy wheel test facility showing the air handling system, test 
section, gas injection system, and gas sampling system. 

 

Figure 3.2. Photograph of the energy wheel test facility used in the contaminant transfer 

experiments. 

3.2.1 Air handling system 

Four centrifugal blowers (5 hp (3.73 kW) vacuum fans) were used to provide the required airflow 

to the test section and maintain the desired pressures in the supply and exhaust air lines. The supply 

and exhaust air lines were made of 5 cm (2 inch) circular PVC pipes and the flow rates were 
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controlled by varying the rotational speed of the blowers using variable voltage transformers. Flow 

mixers were used to provide uniform temperature, relative humidity, and contaminant 

concentration in the airflow at the measurement stations. Air temperatures and relative humidities 

were measured using T-type thermocouples and capacitive humidity sensors, respectively (more 

details of the instrumentation, calibration and uncertainty are provided in Section 3.2.5). The 

airflow rate was measured with an orifice plate and a differential pressure transducer. Honeycomb-

shaped flow conditioners were installed upstream of the orifice plates to reduce flow disturbances 

and achieve an accurate measurement of the airflow rate (i.e., providing fully developed flow 

before the orifice plate). The construction and installation of the orifice plates were based on ISO 

5167 Standard [30]. 

An environmental chamber provided conditioned air from -40℃ to +40℃ and 20% RH to 90% 

RH at airflow rates in a range of 10 L/s to 50 L/s (20 CFM to 100 CFM). PID-controlled tubular 

heaters were used to control temperature in the test section with a maximum deviation of ± 0.3°C 

at the test section inlet in outdoor airstream. 

3.2.2 Test section 

The energy wheel under test was located inside the test section. Figure 3.3 shows a picture of the 

test section and diffusers. The test section contained a molecular sieve coated energy wheel having 

a diameter of 250 mm and a thickness of 100 mm. A belt-driven gear motor was used to rotate the 

energy wheel, and the rpm was controlled with the help of a Dayton DC speed controller. The 

wheel speed was 18 rpm in all the tests. The leakage of air between the test section and the 

surroundings was reduced by applying a silicone sealant to all mating surfaces between the wheel 

cassette and the diffusers. In addition, air leakage was reduced by keeping the pressure in the test 

section near atmospheric pressure. 
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Figure 3.4 shows a picture of the energy wheel face and the seal between the supply and exhaust 

sides of the wheel. As discussed in Section 1.3.2, to prevent air leakage from the RA to the SA, 

the SA pressure should be higher than RA pressure. This higher pressure in the SA side was 

maintained in the experiments to prevent air leakage from the RA to the SA (i.e., air leakage 

occurred from the SA to the RA as shown in Figure 3.4). 

 

Figure 3.3. Photograph of the test facility showing the energy wheel cassette and diffusers. 

 

Figure 3.4. The energy wheel face and seals showing the direction of air leakage from the high-
pressure side (Phigh) or SA to the low-pressure side (Plow) or RA. 
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3.2.3 Gas injection system 

As shown in Figure 3.1, the contaminants were injected into the RA to represent contaminated air 

from a building. A flow mixer was located downstream of the injection port to ensure adequate 

mixing of the contaminant and a uniform contaminant concentration at the measurement station 

and wheel inlet. Both gases and liquids were used as a contaminant source. The contaminant 

injection technique was chosen based on the availability of contaminants in gaseous or liquid states 

at room temperature (i.e., boiling point of contaminants). Since carbon dioxide and sulfur 

hexafluoride are gaseous at room temperature (i.e., carbon dioxide and sulfur hexafluoride have 

very low boiling points), they were injected using a gas injection technique. Also, since ammonia, 

methanol, and isopropyl alcohol are available in a liquid state at room temperature (they have 

higher boing points than carbon dioxide and sulfur hexafluoride), a liquid evaporation technique 

was used for injecting these contaminants. More details on the gas injection techniques are 

provided in following sections. 

3.2.3.1 Gas injection technique 

Figure 3.5 contains a schematic and a photograph of the gas injection system. This method was 

used to inject carbon dioxide and sulfur hexafluoride. A commercially available pressurized 

cylinder containing the gaseous contaminant was used as an external source to inject the 

contaminant. The flow rate of the contaminant was controlled using a rotameter to achieve the 

desired concentration in the RA. The advantage of the gas injection technique is that it is simple 

to implement and control and produces a steady concentration of contaminants in the RA as shown 

in Figure 3.6. The main drawback of this technique is that the costs are generally higher per mass 

of contaminant than the liquid injection technique, and the cylinders can hold less ma ss of 
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contaminant than liquid containers and thus the cylinders may need to be replaced after only a few 

experiments. 

 

 

Figure 3.5. (a) Schematic diagram and (b) photograph of the gas injection system showing the 
rotameter, gas cylinder, and injection port. 
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Figure 3.6. Concentration of (a) carbon dioxide and (b) sulfur hexafluoride as a function of time 
in the RA when the gases are injected using the gas injection technique. The error bars indicate 

the uncertainty in the measured concentration. 

3.2.3.2 Liquid evaporation technique 

Figure 3.7 contains a schematic and a photograph of the liquid evaporation technique used for 

injecting ammonia, methanol, and isopropyl alcohol. Ammonia was mixed with water (30% 

ammonia and 70% water by mass), and methanol and isopropyl alcohol were used in pure liquid 

forms. In this method, a syringe pump (LongerPump model NE 300) was used to inject the liquid 

contaminants into a warm airstream (60 ± 2 ℃ with a flow rate of 12 ± 1 L/min) that flowed 
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through a metal tube. A tubular heater was used to heat a compressed airflow which was controlled 

using a rotameter, as shown in Figure 3.7(a). As the syringe pump injected the liquid contaminants 

into the warm airstream, contaminants were evaporated and carried with the airflow to the RA. 

The liquid evaporation technique is less expensive and safer compared to the gas injection 

technique but is more complicated to set up and control. The contaminant concentration is not as 

steady with the liquid injection technique (as shown in Figure 3.8) compared to the gas injection 

technique (Figure 3.6). The period behavior of contaminant concentration in Figure 3.8 (a) and (c) 

is mainly due to periodic injection of contaminants by syringe pump, in which the pump pushed 

the syringe into the metal tube, liquid contaminants were injected, and pump withdrew the syringe. 

This process was repeated and resulted in a periodic contaminant concentration in Figure 3.8 (a) 

and (c). The temperature and flow rate of airstream in the metal tube increased for injection of 

methanol, which resulted in less periodic concentration of methanol in RA. 
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Figure 3.7. (a) Schematic diagram and (b) photograph of the liquid evaporation system showing 
the syringe pump and injection port for liquid injection. 
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Figure 3.8. Concentration of (a) ammonia, (b) methanol, and (c) isopropyl alcohol as a function 
of time in the RA when the gases are injected using the liquid injection technique. The error bars 

indicate the uncertainty in the measured concentration. 
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3.2.3.3 Gaseous contaminants 

More than 300 volatile organic compounds (VOCs) have been identified in air [11]. In ASHRAE 

RP-1780, 11 VOCs (i.e., xylene, acetaldehyde, ammonia (NH3), sulfur hexafluoride (SF6), acetic 

acid, methyl isobutyl ketone (MIBK), isopropyl alcohol (C3H8O), phenol, carbon dioxide (CO2), 

methanol (CH3OH), propane/hexane) were specified for contaminant transfer experiments. In this 

MSc research, carbon dioxide, sulfur hexafluoride, ammonia, methanol, and isopropyl alcohol 

were selected for contaminant transfer experiments. These contaminants were chosen based on (i) 

concentration of the VOCs in indoors, (ii) ability to measure the concentrations, and (iii) chemical 

and physical characteristics (i.e., operational safety). 

In this MSc research, the effects of operating conditions (outdoor air temperature) and design 

parameters (air face velocity that is velocity of air hitting energy wheel surface) on EATR were 

investigated. Furthermore, the proposed test method for measuring the contribution of 

adsorption/desorption in contaminant transfer in energy wheels presented in Chapter 2 was applied 

and verified. The proposed test method is applied for carbon dioxide, ammonia, methanol, and 

isopropyl alcohol. Table 3.1 contains the properties of water and the selected contaminants for this 

MSc research [8], [31], [32]. 
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Table 3.1. Properties of water and selected VOCs in this MSc research [8], [31], [32]. 

Chemicals 
Molecular weight 

(g/mol) 
Molecular diameter 

(Å) 
Boiling point 

(°C) 

sulfur hexafluoride 146.06 5.5 -64 

carbon dioxide 44.01 3.3 -79 

ammonia 17.03 2.6 -33 

isopropyl alcohol 60.1 16 83 

methanol 32.04 3.8 65 

water 18.01 2.6 100 

 

3.2.4 Gas sampling technique 

Figure 3.9 shows a schematic of the gas sampling technique used to draw air samples from the 

different measurement stations. The gas samples were collected from all the airlines via Teflon 

sampling tubes connected to sampling ports and a vacuum pump (model: 1LAA-10M-1000X, 

GAST, USA). The sampling ports were designed following the guidelines provided in ASHRAE 

Standard 84 (2020) [15]. Computer-controlled solenoid valves were used to select which 

measurement station (OA, SA, RA, and EA) was sampled at any time. The sampling order applied 

was: OA, SA, EA, and RA to reduce the effect of drawing samples on the airflow rate through the 

energy wheel which may affect the contaminant transfer rate. 
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Figure 3.9. Schematic diagram of the gas sampling technique showing the sampling ports, 
sampling tubes, solenoid valves, and gas analyzer for measuring the gas concentration at 

different measurement stations. 

Figure 3.9 shows that the Teflon sampling tubes were connected to a main sampling tube after the 

solenoid valves. The gas samples from the main sampling tube were directed to a Fourier transform 

infrared (FTIR) gas analyzer for concentration measurements. A rotameter set to 0.5 L/s (2% of 

the main flow at 22 L/s (50 CFM)) was used to control the flow rate of the gas sample to the FTIR 

gas analyzer. After measuring the concentration of one station, the cell of the FTIR gas analyzer 

was flushed with nitrogen (N2). It was found that a nitrogen flow rate of 40 L/min for 3 minutes 

(i.e., 120 L of nitrogen for the 100 L gas analyzer cell) was adequate to flush the gas analyzer as 

shown in Figure 3.10. The gas samples from the FTIR gas analyzer were exhausted to a fume hood 

through a separate exhaust duct. 
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Figure 3.10. Sulfur hexafluoride concentration versus time when the FTIR cell is flushed with 40 

L/min flow of nitrogen for three minutes. 

With the gas sampling method, the real time monitoring of concentration at each measurement 

station was done separately, since simultaneous measurement of gas samples from different 

stations was not possible. More details about real time measurement of gas concentration in 

different stations are provided in Section 3.4.1. 

3.2.5 Instrumentation and uncertainty analysis 

Calibrated Copper-Constantan (T-type) thermocouples, capacitive humidity sensors, and pressure 

transducers were used to measure the air temperature, humidity, and pressure, respectively. 

Thermocouples, humidity sensors and pressure transducers were calibrated using a Hart Scientific 

dry-well temperature calibrator [33] (± 0.1°C), Thunder Scientific humidity generator [34] (± 0.5% 

RH), and a Druck precision portable pressure calibrator DPI 605 [35] (± 1 Pa), respectively. During 

the calibrations, a sampling time of 10 seconds was used to determine the transients in the 

temperature and humidity measurements. Five thermocouples and one humidity sensor were used 
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at each measurement station. A Gasmet™ FTIR gas analyzer (model: CR-100M) was used to 

measure the concentration of contaminants (see Section 3.2.5.1). 

A National Instruments (NI) data acquisition system was used to acquire and store the data in a 

computer during the experiments. A LabVIEW (v. 16) program was used to monitor temperature, 

humidity, pressure, and concentration data in experiments. The instrumentation and calibration 

details are reported in Table 3.2. 

Table 3.2. Instrument specifications and calibration details. 

Measurement parameter Instrument Calibration range Total Uncertainty 

Temperature 
Omega T-type 
thermocouples 

-30 to +40°C ± 0.2°C 

Relative humidity 
Honeywell Capacitive 

humidity sensors 

0-95% RH at 

24°C 
± 2% 

Differential pressure 

(across orifice plate) Validyne differential 
pressure transducer 

0-3.5 kPa 20 Pa 

Differential pressure 
(across the wheel) 

0-860 Pa 8 Pa 

Mass flow rate Orifice plates - 1-2.5% 

Concentration of gaseous 

contaminants 

Gasmet FTIR 

spectroscopy 
- 2% 

3.2.5.1 Gasmet gas analyzer 

The Gasmet gas analyzer measures gas concentration using FTIR spectroscopy [36]. In FTIR 

spectroscopy, a gaseous sample concentration is related to the absorbance of infrared (IR) light as 

the IR light passes through the sample, i.e., the more absorbing gas molecules that are present in 

the sample, the more IR radiation will be absorbed. The linear relationship between gas 

concentration and IR radiation absorbance is known as Beer’s law, as shown in Eq. (3.1) [36]: 

log (
I0

I
) = log (

1

TR
) = A = a ∙ b ∙ c  (3.1) 
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Here, I and I0 are intensity of the IR radiation that has passed through the sample gas and the 

intensity of the IR radiation for background measurement (i.e., the intensity of the IR radiation that 

passed through zero gas, i.e., nitrogen gas which is non-absorbing), respectively [37]. TR, A, a, b, 

and c are transmittance, absorbance, absorptivity (m2/mol), optical path length (m), and 

concentration (mol/m3), respectively. In Eq. (3.1) the concentration is unknown and can be 

calculated since absorbance is measured by the FTIR gas analyzer, absorptivity is known through 

the background measurement, and the optical path length is a known quantity of the FTIR gas 

analyzer, which is 100 m (the light passes 100 times through the 1 m long cell in the gas analyzer) 

[37]. 

A sample output data set for IR spectroscopy gas analyzer is showed in Figure 3.11. The 

concentration of the gases in a sample is determined by comparing the reference spectrum and 

sample spectrum with the help of Calcmet software (V.12) developed by Gasmet™ [38]. The FTIR 

gas analyzer has a length of 1 meter and IR light passes through the sampling cell 100 times in 

order to maintain 100 meters of path length for the IR light. The intensity and frequency of the IR 

light that passes through the gas and are received by the Gasmet sensor is compared with the 

intensity and frequency of the radiated IR light. The difference between the frequency of radiated 

and received IR lights allows the Calcmet software to determine the chemical compounds in the 

sample gas [37]. The concentration of these chemical compounds (gases) is determined based on 

calibration tests conducted by Gasmet over a range of gases and concentrations. 
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Figure 3.11. Sample gas measurement data with FTIR spectroscopy technique [38]. 

3.2.6 Energy wheel performance test results and verification of the test facility 

ASHRAE Standard 84 (2020) [15] provides the normative criteria for the acceptance of test data 

during energy wheel performance testing. These criteria ensure steady state operating conditions 

and acceptable mass and energy balances. Effectiveness and EATR are the two performance 

parameters to quantify the energy recovery performance and the transfer of contaminants when the 

wheel operates under balanced flow conditions. The effectiveness and EATR equations were 

introduced in Chapter 2 (Eqs. (2.1) - (2.3) and (2.5)). The EATR test data needs to satisfy the 

operating condition inequality checks (i.e., Eqs. (2.7) - (2.11)) according to ASHRAE Standard 84 

(2020) [15]. In addition, it is important to verify the performance of the energy wheel with 

manufacturer’s data to assure that the facility is functional. The detailed operating conditions for 

the test used to verify the test facility are given in Figure 3.12 and Table 3.3. 
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Figure 3.12. Schematic diagram showing the energy wheel test conditions at an air flow rate of 
24 L/s (50 CFM) and a face velocity of 1 m/s. 

Table 3.3. Operating conditions during the test on the energy wheel at a nominal air flow rate of 
24 L/s (50 CFM). 

 Parameter Values 

Outdoor air 

Temperature 35.5 °C 

Flow rate 0.026 kg/s 

Humidity ratio 10.2 gw/kga 

Relative humidity 29% 

Return air 

Temperature 27 °C 

Flow rate 0.024 kg/s 

Humidity ratio 16.1 gw/kga 

Relative humidity 73% 

Wheel rotational speed 18 rpm 

Face velocity 1 m/s 

Outdoor air correction factor (OACF) 1.05 

3.2.6.1 Operating condition inequalities 

Figure 3.13 shows the inequality checks to ensure tests are conducted at steady state for 

temperature (T) and humidity ratio (W) in the RA and OA where dT (dW) is the maximum 

deviation of any temperature (humidity ratio) reading from time-averaged mean value of T (W). 

Outdoor Air 

Return Air 

0.0249 kg/s 0.0262 kg/s 

0.0247 kg/s 

287 Pa 340 Pa 

350 Pa 420 Pa 

0.0252 kg/s 

④ ③ 

② ① 
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Indices 1 and 3 represent the OA and RA stations, respectively [15]. The temperature and humidity 

inequalities from ASHRAE Standard 84 (2020) [15] are given in Eqs. (3.2) - (3.5). 

 
|dT1|

|T1 − T3|
< 0.02 (3.2) 

|dT3|

|T1 − T3|
< 0.02 (3.3) 

|dW1|

|W1 − W3|
< {

0.05 for (W1 > W3)

0.1 for (W1 < W3)
 (3.4) 

|dW3|

|W1 − W3|
< {

0.05 for (W1 > W3)

0.1 for (W1 < W3)
 (3.5) 

The inequality results are evaluated after 90 min of energy wheel operation to confirm the steady-

state conditions. While ASHRAE Standard 84 (2020) [15] requires 60 min of wheel operation to 

reach steady-state conditions, experiments were continued for 30 more min to ensure the inequality 

checks were satisfied. The maximum measured temperature and humidity inequalities are 0.5% 

and 2.5%, respectively, and are lower than the ASHRAE Standard 84 (2020) [15] allowed 

inequality limits of 2% for temperature and 5% for humidity. 
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(a) (b) 

 
 

(c) (d) 

  

Figure 3.13. Results of the temperature and humidity inequality check according to ASHRAE 
Standard 84 (2020) [15] for OA (a and c) and RA (b and d). 

3.2.6.2 Mass and energy inequalities 

Figure 3.14 shows inequality checks for dry air mass flow rate, water vapor and enthalpy transfer 

based on Eqs. (2.7), (2.9), and (2.10), respectively. It is seen that the dry air flow rate inequality is 

about 2%, and the water vapor and energy inequalities are about 8%. The maximum allowed 

inequalities for these parameters are 5% for dry air mass flow rate and 20% for water vapor and 

enthalpy transfer [15]. From the inequality check results, the following conclusions are made: (i) 
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the test facility conserves mass and energy, (ii) the facility can provide steady -state (time-

invariant) airflow properties at the energy wheel inlet, and (iii) the facility meets the requirements 

of ASHRAE Standard 84 (2020) [15]. 

(a) (b) 

  

(c)  

 

Figure 3.14. Results of the inequality check for (a) dry air mass flow rate, (b) water vapor, and 

(c) energy transfer. 
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3.2.6.3 Effectiveness 

The sensible, latent, and total effectiveness of the energy wheel are determined using the 

temperature, humidity, and flow rate measurements. The instantaneous effectiveness values for 

the duration between 90-120 min are presented in Figure 3.15. The effectiveness of the wheel is 

determined by averaging these instantaneous effectiveness values. 

The calculated sensible effectiveness is 83 ± 5%, latent effectiveness is 73 ± 7%, and total 

effectiveness is 79 ± 6%. The uncertainties in effectiveness values are acceptable as the maximum 

allowed uncertainties in ASHRAE Standard 84 (2020) [15] are ± 5% for sensible, ± 7% for latent, 

and ± 5-7% for total effectiveness. 
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Figure 3.15. Instantaneous (a) sensible, (b) latent, and (c) total effectiveness values after the 
test has reached steady state conditions according to ASHRAE Standard 84 [15]. 

Figure 3.16 compares the average effectiveness obtained from the experiments with the 

manufacturer’s data. The manufacturer’s data are based on a simulation software, not actual 

experimental data, and no uncertainty limits are reported. However, the uncertainties can be 

assumed to be in the same order as experimental data from ASHRAE Standard 84 (2020) [15]. 

The experimental and manufacturer’s sensible effectiveness data agree within ±  5%, whereas 

differences of 9% and 7% are observed in the latent and total effectivenesses, which is higher than 

the measured uncertainty in these parameters. Slight leakages in the test facility and interaction of 
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the wheels/airstreams with the surroundings could result in effectiveness variations. Considering 

these possibilities, it is reasonable to claim that the test facility provides reliable results. 

 

Figure 3.16. Comparison of the average effectiveness values obtained from the experiments 
and the manufacturer. 

3.3 Results and discussions 

In this section, the real-time concentration measurement data and EATR results for the selected 

contaminants are presented. The effect of the outdoor air temperature, air flow rate (face velocity) 

and various gaseous contaminants on EATR will be shown for the test conditions in Table 3.4 

where tests 1-4 (carbon dioxide) and 5-8 (sulfur hexafluoride) investigate the effect of outdoor air 

temperature (highlighted in yellow), tests 3 and 9-10 (carbon dioxide) investigate the effect of air 

flow rate (highlighted in green), and tests 3, 7, and 11-13 (ammonia, methanol, and isopropyl 

alcohol) investigate the effect of various gases (highlighted in blue). At the end of this section, the 

experimental results will be compared with data from the literature review presented in Chapter 2. 
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Table 3.4. Test conditions for different experiments where different sets of experiments are 
highlighted. 

Test 
number 

Contaminant 
Temperature (℃) Relative humidity (%) Flow rate (L/s [CFM]) 

Return Outdoor Return Outdoor Return Outdoor 

1 CO2 27 1 50 45 22 [47] 22 [47] 

2 CO2 28 10 50 50 22 [47] 22 [47] 

3 CO2 25 25 48 47 23.6 [50] 23 [49] 

4 CO2 25 31 45 47 23.6 [50] 23.6 [50] 

5 SF6 25 1.5 48 48 22.7 [48] 22.7 [48] 

6 SF6 25 10 49 50 23 [49] 22.7 [48] 

7 SF6 25 25 48 46 22.7 [48] 22.7 [48] 

8 SF6 28 31 46 47 23 [49] 23.6 [50] 

9 CO2 24 25 48 48 19 [40] 19 [40] 

10 CO2 24 25 48 46 28 [60] 28 [60] 

11 NH3 24 24 50 50 23.6 [50] 23.6 [50] 

12 C3H8O 24 24 50 50 23.6 [50] 23.6 [50] 

13 CH3OH 24 24 50 50 23.6 [50] 23.6 [50] 

 

3.3.1 Measured concentration data 

Figure 3.17 contains the measured sulfur hexafluoride concentration as a function of time at the 

different measurement stations for test number 7 from Table 3.4. The real time measurement was 

done in the following order: OA, SA, EA, and RA. The reason the measurements were done in 

that order was to keep the flow rate of the RA through the wheel constant while the other airstreams 

were being measured. It should be noted that measuring the gas concentration requires a small 

flow rate of air (40 L/min, which is 3% of the nominal 23 L/s RA flow) to be drawn from the 

measurement station, thus the airflow rate through the wheel changes slightly when the RA and 
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SA concentrations are being measured. The order and timing of the measurement sequence were 

controlled by LabVIEW and solenoid valves. 

 

 

 

 

 

 

 

 

Figure 3.17. Concentration measurements of sulfur hexafluoride at OA, SA, EA, and RA versus 
time for test number 7. 

Figure 3.17 shows that the gas concentration for the different stations was calculated based on the 

concentrations measured over a period of 3 min at the end of an 8 min measurement period. In the 

first measurement period, gas samples from the OA were directed to the Gasmet gas analyzer and 

real time measurements were made for 8 min. The average of the last 3 min was used as the 

contaminant concentration in the OA. Then, the solenoid valve of the OA station was closed by 

the LabVIEW program, and the sample cell was flushed with nitrogen with a flow rate of 40 L/min 

for 3 min in order to flush the OA gas from the Gasmet test cell. 

Next, the solenoid valve for the SA station was opened, and 40 L/min of SA were directed to the 

gas analyzer for 8 min (5 min for filling the sample cell and 3 min for measurement). Again, the 
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average of last the 3 min of measurements was used as contaminant concentration in the SA. After 

the gas samples from the SA were measured, the solenoid valve for SA was closed and the gas 

analyzer test cell was flushed with nitrogen for 3 min. The same procedure was followed for the 

EA and RA measurement stations. 

3.3.2 Effect of outdoor air temperature on EATR 

Figure 3.18 shows EATR as a function of outdoor air temperature for carbon dioxide and sulfur 

hexafluoride. It is noted that sulfur hexafluoride is recommended as a tracer gas for EATR 

experiments as it is a non-reactive gas and is not adsorbed by desiccant materials (i.e., there is no 

sulfur hexafluoride transfer through adsorption/desorption) [15]. Furthermore, since the 

experiments were conducted at a positive pressure difference between the supply and exhaust sides 

(30 Pa higher on the supply side), air leakage only occurred from the supply side to the exhaust 

side. Therefore, the contaminant transfer in sulfur hexafluoride experiments occurred mainly due 

to carryover. 

The EATR values for carbon dioxide and sulfur hexafluoride change from 1.1% to 2.5% with an 

uncertainty of 1.1% to 3%. The average value for EATR is 1.9 ± 1.7% for carbon dioxide and 1.7 

± 1.9% for sulfur hexafluoride. The EATR values and related uncertainties for sulfur hexafluoride 

and carbon dioxide are very similar at different outdoor air temperatures. This indicates that carbon 

dioxide is also not adsorbed in the desiccant materials and transferred only by carryover. Figure 

3.18 also shows that the outdoor air temperature does not significantly affect EATR. Tables 3.5 

and 3.6 provide the contaminant mass inequality and concentrations of carbon dioxide and sulfur 

hexafluoride for the different tests, respectively. It is seen that contaminant mass inequality 

satisfies the ASHRAE Standard 84 (2020) [15] requirement of 15% according to inequality checks 

presented in Eq. (2.10) of Chapter 2. 
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Figure 3.18. Effect of outdoor air temperature on the measured EATR for carbon dioxide and 
sulfur hexafluoride. 

Table 3.5. Mass inequality and concentration of carbon dioxide at different measurement stations 
in tests with varying outdoor air temperatures. 

Test number OA (ppm) SA (ppm) RA (ppm) EA (ppm) EATR (%) 
Mass 

inequality (%) 

1 487 507 1581 1495 1.8 ± 3 2 

2 496 507 1456 1412 1.1 ± 1.5 6 

3 491 514 1489 1416 2.3 ± 1.1 6 

4 462 490 1630 1385 2.4 ± 1.2 1 

 

Table 3.6. Mass inequality and concentration of sulfur hexafluoride at different measurement 

stations in tests with varying outdoor air temperatures. 

Test number OA (ppm) SA (ppm) RA (ppm) EA (ppm) EATR (%) 
Mass 

inequality (%) 

5 0 0.45 24.8 20.7 1.8 ± 2 4 

6 0 0.3 29.5 21.5 1 ± 1.7 8 

7 0 0.6 24.0 25.0 2.5 ± 2 3 

8 0 0.35 27.5 21.5 1.3 ± 2 10 
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3.3.3 Effect of air face velocity on EATR 

Figure 3.19 presents the effect of air face velocity on EATR for carbon dioxide using tests 3, 9, 

and 10. Experiments were done at air face velocities of 0.8, 1, and 1.2 m/s. Figure 3.19 shows a 

consistent trend of decreasing EATR with increasing air face velocity (EATR decreased from 3.9  

± 0.7% to 1.5 ± 1.2% when the air face velocity increased from 0.8 m/s to 1.2 m/s). 

To find out the main reason for decreasing EATR of carbon dioxide with increasing air face 

velocity, Figure 3.19 shows a dashed line that represents changes in EATR if the contaminant 

transfer rate would be constant at an air face velocity of 0.8 m/s. The dashed line was calculated 

using Eq. (2.13) and shows the changes in EATR that would occur if the contaminant transfer rate 

was constant and EATR would change only because of dilution. It is seen that EATR for a constant 

contaminant transfer rate (dashed line) is within the uncertainty limits of the measured EATR. 

Therefore, it can be concluded that the decrease in EATR due to increased air face velocities is 

mainly due to dilution of contaminants and not because of the reduction in actual contaminant 

transfer rate. Table 3.7 shows the contaminant mass inequality and concentration of carbon dioxide 

at different measurement stations for these experiments. The contaminant mass inequality is less 

than the 15% allowed in ASHRAE Standard 84 (2020) [15] for all experiments. 

By comparing Figures 3.18 and 3.19, it can be realized that the air face velocity has a more 

important impact on EATR than outdoor air temperature. This reveals that air face velocity can be 

considered as a controlling parameter in EATR experiments, while outdoor air temperature did not 

show a significant impact on EATR. 
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Figure 3.19. Effect of air face velocity on EATR for carbon dioxide. 

Table 3.7. Mass inequality and concentration of carbon dioxide at different measurement stations 
in tests with varying air face velocities. 

Test 
number 

Air face 
velocity (m/s) 

OA 
(ppm) 

SA 
(ppm) 

RA 
(ppm) 

EA 
(ppm) 

EATR 
(%) 

Mass 
inequality (%) 

9 0.8 471 528 1932 1790 4 ± 1 2 

3 1 491 514 1489 1416 2 ± 1 6 

10 1.2 477 495 1660 1476 2 ± 1 1 

 

3.3.4 EATR due to adsorption/desorption 

In this section, the proposed method for determining the contaminant transfer due to 

adsorption/desorption (EATRad) in the energy wheel (as was presented in Section 2.7) is applied 

and verified. EATRad is calculated by subtracting EATRnon−inert (i.e., EATR for the tested 

contaminant) from EATRinert (i.e., EATR for the inert tracer gas which is sulfur hexafluoride in 

these experiments). 
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EATRad = EATRnon−inert − EATRinert (3.6) 

Equation (3.6) is applied for ammonia, methanol, isopropyl alcohol, and carbon dioxide, and the 

results are shown in Figure 3.20. The OA and RA temperatures were at 24 ± 1°C, and the OA and 

RA relative humidities were 50 ± 2% for the tests in Figure 3.20. The OA and RA air face velocities 

were 1 m/s. 

 

Figure 3.20. Measured EATR of five contaminants showing the contributions of air leakage 

and carryover (in red) and adsorption/desorption (in yellow). 

Figure 3.20 shows the contaminant transfer due to air leakage and carryover (i.e., EATRinert) and 

adsorption/desorption (i.e., EATRad), which combine to give the total measured EATR. It is seen 

that ammonia shows the highest transfer due to adsorption/desorption (70 ± 5%), followed by 

methanol (42 ± 3%), isopropyl alcohol (28 ± 3%), and carbon dioxide (-0.2 ± 2). The high amount 

of adsorption/desorption for ammonia might be mainly because ammonia has physical properties 

(molecular size and weight) very similar to water, as seen in Table 3.1. Also, methanol has a 

molecular size very similar to water, which indicates the importance of the molecular size of the 

contaminants for adsorption/desorption on the surface of desiccants.  
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Furthermore, it is noted that ammonia, methanol, and isopropyl alcohol are polar contaminants 

similar to water. Since water is a polar molecule and it is adsorbed on desiccants, it may be realized 

that polar molecules such as ammonia, isopropyl alcohol, and methanol are also adsorbed. In 

addition, carbon dioxide and sulfur hexafluoride are non-polar molecules which prevents them 

from adsorbing/desorbing on desiccants (as it is seen in Figure 3.20, where there is no 

adsorption/desorption for carbon dioxide). 

Table 3.8 shows the contribution of the adsorption/desorption (EATRad), air leakage and carryover 

( EATRinert ) on the total contaminant transfer rate ( EATRnon−inert ), and contaminant mass 

inequality for the different contaminants. It is seen that contaminant mass inequality for the 

experiments with sulfur hexafluoride, carbon dioxide, and methanol satisfy ASHRAE Standard 84 

(2020) requirement [15], but the experiments with ammonia and isopropyl alcohol do not. It is 

noted that the uncertainty in EATRad was calculated according to uncertainty propagation rules 

[18] as: 

Table 3.8. Contribution of adsorption/desorption (EATRad) and air leakage and carryover 
(EATRinert) on the contaminant transfer rate and mass inequality for the various gases. 

Test Contaminant EATRinert (%) EATRnon−inert (%) EATRad (%) 
Mass 

inequality (%) 

7 
sulfur 

hexafluoride 
2.5 ± 1.6 2.5 ± 1.6 0 3 

3 
carbon 
dioxide 

2.5 ± 1.6 2.3 ± 1.2 -0.2 ± 2 6 

11 Ammonia 2.5 ± 1.6 72.5 ± 4.4 70 ± 5 31 

12 Methanol 2.5 ± 1.6 44.5 ± 2.2 42 ± 3 13 

13 
isopropyl 
alcohol 

2.5 ± 1.6 30.5 ± 2.3 28 ± 3 19 

UEATRad
= √(UEATRinert

)2 + (UEATRnon−inert
)2 . 

(3.7) 
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3.3.5 Comparison with literature data 

Figure 3.21 shows a comparison between the measured EATR for ammonia, isopropyl alcohol, 

methanol, carbon dioxide, and sulfur hexafluoride with data from the literature. The literature data 

with the most similar test conditions (wheel size, wheel rotational speed, air flow rate, desiccant 

material, duct size, etc.) were selected in order to provide the most comparable test results. It is 

seen that the order of the EATR values measured in this thesis are similar to the order in the 

literature (e.g., ammonia has the highest EATR value followed by methanol). However, the EATR 

values for isopropyl alcohol and sulfur hexafluoride are unexpectedly high in the literature. The 

measured EATR value in the thesis for sulfur hexafluoride is 2.5 ± 1.6%, while Roulet et al. (2002) 

[10] reported EATR for sulfur hexafluoride as 25%. 

 

Figure 3.21. Comparison of EATR values measured in this thesis and values from the literature. 

The difference between the measured results and literature data is mainly due to different design 

and operating conditions. It can be concluded that while the literature data can be compared with 

the EATR results in this thesis, there are different design and operating conditions that prevent a 
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precise comparison between the measured results and literature data. It should also be noted that 

the uncertainties in the measured EATR values were not reported for any of literature data in Figure 

3.21. 

3.4 Conclusions 

In this chapter, the second objective of this thesis (i.e., to apply and verify a test methodology  for 

measuring gaseous contaminant transfer in energy wheels) was fulfilled. The test method was 

applied and verified for carbon dioxide, ammonia, isopropyl alcohol, and methanol. Performance 

test data were presented which verify the test methodology, and energy wheel effectiveness values 

were compared with manufacturer’s data. A test methodology was introduced and EATR results 

for different contaminants were presented. The following are the major conclusions from this 

chapter. 

• A test facility for measuring the gaseous contaminant transfer in energy wheels was 

introduced and measurement results presented. 

• The performance test data showed that facility conserves mass and energy during the 

experiments, provides steady state airflow properties in the test section, and thus 

satisfies ASHRAE Standard 84 (2020) requirements. 

• Sensible, latent, and total effectiveness data were compared with manufacturer’s data. 

It was found that facility produces test data similar to the manufacturer’s data. 

Therefore, it is claimed that the test facility provides reasonable test data. 

• A proposed test method for measuring contribution of adsorption/desorption in 

contaminant transfer in energy wheels was applied and verified. The test method was 
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verified by testing four gaseous contaminants (methanol, isopropyl alcohol, ammonia, 

carbon dioxide, and one tracer gas (sulfur hexafluoride)). 

• The EATRad for ammonia, methanol, and isopropyl alcohol was reported as 70 ± 5%, 

42 ± 3%, and 28 ± 3%, respectively. The high EATRad of ammonia might be mainly 

because ammonia has physical properties very similar to water (molecular size and 

weight). In addition, ammonia, methanol, and isopropyl alcohol are polar chemicals 

(same as water), which is expected to allow them to be adsorbed/desorbed by 

desiccants. 

• The experimental data for carbon dioxide and sulfur hexafluoride showed that outdoor 

air temperature does not have a significant impact on EATR. In fact, EATR did not 

change significantly when the outdoor air temperature changed from 1℃ to 31℃. 

Furthermore, the average EATR values for carbon dioxide and sulfur hexafluoride were 

very similar (1.9 ± 1.7% for carbon dioxide and 1.7 ± 1.9% for sulfur hexafluoride), 

which indicates that the carbon dioxide transfer in energy wheels only occurs due to 

carryover and leakage. 

• Experimental data for carbon dioxide showed that the EATR consistently decreased 

from 3.9 ± 0.7% to 1.5 ± 1.2% as the air face velocity increased from 0.8 m/s to 1.2 

m/s. The EATR decrease was mainly due to dilution of contaminant in higher airflow 

rates and not due to reduction in the actual contaminant transfer rate. Air face velocity 

was found to have a more important impact on EATR than outdoor air temperature. 

• EATR results for ammonia, methanol, isopropyl alcohol, carbon dioxide, and sulfur 

hexafluoride were compared with literature data. The EATR results reported in 

literature are different from the measured EATR values in this thesis. The difference in 
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EATR values between the measured EATR values and literature data were mainly due 

to different design and test conditions. 
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CHAPTER 4 

SUMMARY, CONCLUSIONS, AND FUTURE WORK 

4.1 Summary 

This MSc research was part of ASHRAE Research Project (RP) 1780 titled “Test method to 

evaluate cross-contamination of gaseous contaminants within total energy recovery wheels”, and 

there were two main objectives for this MSc research. The first objective was to conduct a literature 

review on test methodologies for measuring gaseous contaminant transfer in energy wheels, and 

the second objective was to apply and verify a test methodology for measuring gaseous 

contaminant transfer in energy wheels. Since the literature review showed that there is no 

established test methodology to determine the contribution of adsorption/desorption in 

contaminant transfer in energy wheels, a test methodology was applied and verified for measuring 

contaminant transfer due to adsorption/desorption in energy wheels. The test facility, 

instrumentation and experimental data were presented in the thesis. 

The literature review in Chapter 2 showed that several researchers have measured contaminant 

transfer in energy exchangers and have reported results in terms of Exhaust Air Transfer Ratio 

(EATR). The EATR values include all contaminant transfer mechanisms: (1) carryover of gas 

contained in the flutes of a rotating wheel, (2) leakage of gas past seals separating the airstreams, 

and (3) adsorption of gas by the desiccant from the airstream with a high contaminant 

concentration followed by desorption to the other airstream. ASHRAE Standard 84 (2020) 

provides a test method for determining EATR for inert gases, which accounts for contaminant 

transfer due to bulk air flow only (i.e., (1) carryover and (2) leakage). Thus, a method to determine 

contaminant transfer due to (3) adsorption/desorption was presented in Chapter 2 and applied to 

the literature data. It was found that the contaminant transfer in energy wheels due to 
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adsorption/desorption was the highest for acetic acid, phenol, and acetaldehyde. The  literature 

review showed that most researchers did not conduct a thorough uncertainty analysis, or consider 

contaminant mass conservation in their experiments. The literature data show that there are no 

clear relationships between contaminant transfer (EATR) and operating conditions (temperature 

and humidity). This could be due to different test conditions and wheel designs (e.g., wheel size, 

desiccant, duct size, purge section, pressure difference, etc.) used in the experiments. On the other 

hand, the literature review showed that the design conditions (effectiveness and face velocity) had 

a noticeable impact on EATR. 

An existing test facility was used to conduct EATR experiments on an energy wheel coated with 

a molecular sieve desiccant, and the contribution of adsorption/desorption to contaminant transfer 

was determined. The results were presented in Chapter 3 for EATR experiments performed 

according to ASHRAE Standard 84 (2020) and at different operating (temperature) and design 

(face velocity) conditions. The experimental results showed that face velocity has a more 

significant impact on EATR than temperature. The average measured EATR value was 1.9 ± 1.7% 

for carbon dioxide and 1.7 ± 1.9% for sulfur hexafluoride. Therefore, it was concluded that carbon 

dioxide behaves very similarly to sulfur hexafluoride and is transferred only through bulk air 

transfer (i.e., air leakage and carryover). Experiments with different contaminants showed that 

EATR due to adsorption/desorption is highest for ammonia (70 ± 5%), followed by methanol (42 

± 3%), isopropyl alcohol (28 ± 3%), and carbon dioxide (-0.2 ± 2). The smaller molecular size and 

higher water solubility could be the reasons for the high EATR of ammonia compared to the other 

tested contaminants. 

4.2 Conclusions 

The main conclusions of this thesis are given below. 
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1. A test methodology for measuring the contribution of adsorption/desorption in gaseous 

contaminant transfer in energy wheels is not available in the literature. 

2. Energy wheel design parameters (face velocity and effectiveness) affect EATR more than 

operating conditions (temperature and humidity). 

3. The literature shows that EATR for acetic acid, phenol, and acetaldehyde is higher than for 

other contaminants, which is likely due to the transfer of these gases by 

adsorption/desorption since these gases have a high water solubility and are small 

molecules. 

4. The proposed test methodology meets the requirements of ASHRAE Standard 84 (2020) 

and provides EATR due to adsorption/desorption with an uncertainty of less than ± 5% at 

the 95% confidence interval. 

5. The measured EATR values are very similar for carbon dioxide and sulfur hexafluoride 

indicating that carbon dioxide is transferred only by carryover and leakage (for the case of 

energy wheels with molecular sieve desiccants) and by carryover only when the pressure 

is higher on the supply side than on the exhaust side of the wheel. 

6. EATR decreases with increasing face velocity and does not change significantly with 

increasing temperature. 

7. EATR due to adsorption/desorption is highest for ammonia, followed by methanol, 

isopropyl alcohol, and carbon dioxide. The reasons for the higher adsorption/desorption of 

ammonia on desiccants might be its smaller molecular size and higher water solubility. 

4.3 Future work 

The following activities are recommended for future research. 
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• Apply the proposed test methodology for different contaminants such as xylene, acetic 

acid, phenol, and acetaldehyde as required in ASHRAE RP-1780. 

• Verify the test methodology proposed in this thesis for energy wheels with different 

desiccants such as silica gel or ion-exchange resin. 

• Perform numerical modelling of gaseous contaminant transfer in energy wheels and 

develop numerical models to predict EATR for different energy wheel design and 

operating conditions. 

• Determine EATR for different energy exchangers such as liquid-to-air membrane energy 

exchangers and flat-plate membrane energy exchangers. These experimental data can help 

determine the energy exchangers that minimize the return of gaseous contaminants into a 

building via the supply air. 

• Perform a comprehensive literature review on gaseous contaminant measurement 

techniques. The advantages and disadvantages of these techniques can be meticulously 

reviewed and reported, which would assist researchers and engineers in the HVAC industry 

to select the best gas measurement techniques for contaminant transfer experiments. 

Furthermore, the literature review could contain an uncertainty analysis for the various gas 

measurement instruments. 

• Conduct a literature review on modelling of contaminant transfer in energy exchangers.  

• Perform sorption studies of various gaseous contaminants on solid desiccants and identify 

the best candidates for energy exchanger applications. 
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APPENDIX A 

ASHRAE RP-1780 Request-For-Proposal 

The following document is provided as the original version of ASHRAE RP-1780 Request-For-

Proposal (RFP) published in 2018. The RFP was changed slightly in next version of the ASHRAE 

RP-1780 RFP published in 2019. The only change between the two versions of RFP is removal of 

-20 ºF test condition from the original document. 
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APPENDIX B 

GAS CONCENTRATION MEASUREMENT TECHNIQUES 

ASHRAE Fundamentals Handbook [11] lists different gaseous contaminant concentration 

measurement techniques such as gas chromatography (GC), high performance liquid 

chromatography (HPLC), and infrared (IR) spectroscopy. In the following paragraphs, these 

gaseous contaminant concentration measurement techniques and their practical applications in 

energy exchangers will be described. 

The GC technique is separation of components of a gaseous sample using a stationary phase and 

a mobile phase. Mobile phase usually is an inert gas (helium or nitrogen) that does not react with 

gas samples and the stationary phase is a liquid or solid inside a long column. If the stationary 

phase is solid, gas components are absorbed into the solid and desorbed to mobile phase. If the 

stationary phase is liquid, gas components are adsorbed on surface of liquid and desorbed to mobile 

phase. 

Mobile phase, i.e., carrier gas, is used to take gaseous samples to column with the stationary phase. 

The mobile phase reacts with stationary phase and as the chemical reactions between components 

of gaseous sample and stationary phase increases, there would be a longer time for the sample to 

pass through the column. After passing through the column, sample reaches a detector port that is 

used to identify chemical components and their concentration.  Detector produces signals in 

accordance with components concentration, which are shown by a computer. Figure B.1 shows a 

schematic of a gas chromatogram. Time period from gas sample injection to detection port is called 

retention time. The retention time for different components depends on chemical reaction between 

mobile and stationary phase. 
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Figure B.1. Schematic diagram of GC instrumentation. 

The GC is an accurate, high-speed and high-sensitivity separation technique that is used to 

determine components of complex materials such as gasoline, smoke, oil, and soil organic matter. 

However, this separation technique needs another instrument such as mass spectrogram for 

confirmation of results. Further, the sample for the GC analysis must be volatile, i.e., materials 

with low boiling point. 

Roulet et al. [10] used the GC technique to measure concentration of 11 gaseous contaminants (n-

decane, n-butanol, hexanol, phenol, 1,6-dicholorhexane, hexanal, benzaldehyde, limonene, m-

xylene, mesitylene, and dipropylether). Air samples were collected in a small tube with an 

absorbing medium. Absorbed contaminants in the small tube were desorbed by heating the tube 

and stored in a cold trap. A flame ionization detector (FID) was used to detect and measure the 

amount of each compound, while a mass spectrograph was used to help identify each compound 

in the cold trap. Wolfrum et al. [21] collected air samples into a manifold containing 10 sorbent 

tubes (100 mg of Tenax TA 35/60) and desorbed the concentrated contaminants in sorbent tubes 

with a thermal desorption unit (Perkin-Elmer ATD 400). These concentrated gas samples were 

analyzed by a gas chromatograph (Agile 6890N) with an FID. 

Another gaseous contaminant concentration measurement technique is the HPLC. The HPLC is 

very similar to the GC technique with some modifications. In the HPLC the mobile phase is liquid, 
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and the stationary phase can be solid or liquid. As sample goes through the column, chemical 

components of the sample react with stationary phase. The chemical components of the sample are 

separated and identified by a detector which measures concentration of each component. 

Different components of an HPLC instrument include stainless steel columns, absorbent materials 

coated on surface of column and a pump for driving liquid from a chamber to columns. Further, 

there are different types of HPLC technique; 1) Normal phase; mobile phase is non -polar and 

stationary phase is polar, 2) Reverse phase; mobile phase is polar and stationary phase is non-

polar, 3) Size exclusion; stationary phase consists of porous beads that allow permeation of small-

size molecules, and 4) Ion-exchange; mobile phase has positive or negative electric charge 

depending on electric charge of stationary phase. 

The HPLC technique has been known as an affordable and easy to handle method for measuring 

gas concentration. Using the HPLC technique, it is possible to identify compounds of limited 

thermal stability or volatility in short times, i.e., each experiment may take 5 to 10 minutes. 

However, a disadvantage of the HPLC technique is that availability of different detectors makes it 

difficult for the operator to choose suitable detector for concentration measurement purpose [39]. 

Hult et al. [24] used the HPLC technique for measuring formaldehyde transfer rate in their 

experiments. Air samples were drawn using a multichannel peristaltic pump, with a sampling flow 

rate of 1L/min at 20 mins. Air samples were collected into silica gel cartridges coated with 2,4-

dinitrophenylhydrazine (DNPH XPoSure Aldehyde Sampler; Waters corporation). Then, samples 

were extracted into 2 mL of high purity acetonitrile and analyzed using the HPLC technique 

(HPLC; 1200 Series; Agilent Technologies). 

The IR spectroscopy technique is the absorption measurement of different IR frequencies by a 

sample exposed to an IR radiation source. A chemical compound can absorb IR light, if frequency 
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of the light matches with frequency of the chemical compound vibrations. The vibrations of a 

chemical compound could be described as wagging, bending, and stretching. When frequency of 

the IR light is equal to the frequency of chemical compound vibrations, the energy from IR waves 

is absorbed by the chemical group. When the frequency of IR waves is different than that of 

chemical group vibrations, the energy from IR waves does not absorb by the chemical compound. 

For example, consider formaldehyde as a gaseous sample with two types of molecular vibrations 

including wagging (rotational movement) and stretching (translational movement). The frequency 

for wagging is assumed as 4 Hz and the frequency for stretching is assumed as 2 Hz. When an IR 

radiation with 2 or 4 Hz hits formaldehyde molecule, formaldehyde absorbs all the energy. When 

an IR wave with frequency other than 2 or 4 Hz is emitted, the IR wave passes through the chemical 

compound. To show output data for an IR spectroscopy analysis, frequency is converted to wave 

number, i.e., reciprocal of wavelength. Different gases absorb the IR radiation in different wave 

numbers. Carbon dioxide absorbs IR radiations with wave numbers at 2350 cm-1. Water vapor 

absorbs wave numbers between 1300-1800 and 3500-4000 cm-1. 

Andersson et al. [19] used an infrared spectrophotometer (MIRAN 1A) to determine the 

concentration of nitrous oxide. The air samples were collected using a vacuum pump and a metal 

tube with 45o capped end. The tube was inserted into the duct and placed perpendicular to the air 

stream such that the inclined capped end of the tube remained in the middle of the duct with the 

open area facing the air flow. Sparrow et al. [20] used a commercially available TSI carbon dioxide 

meter (Q-TRAK 8550) to measure the concentration of carbon dioxide in the air samples. Fisk et 

al. [4] used infrared analyzers for real-time measurement of propane and sulfur hexafluoride. A 

microprocessor based solenoid valve system was used which directed the air samples into the 

analyzers from the air stream. 
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A literature review on different gas measurement techniques and their uncertainties was done. 

Table B.1 shows the uncertainty for each gas measurement technique. 

Table B.1. Gas measurement techniques and their uncertainties. 

Measurement technique Uncertainty Reference 

1. Gas chromatography 
1% Wolfrum et al. (2008) [21] 

2% Hult et al. (2014) [24] 

2. Gas detector tubes 5-10% Kodama (2010) [6], Okano et al. (2001) [14] 

3. Photoacoustic spectroscopy 1% Nie et al. (2015) [26] 

4. Infrared spectroscopy 

2% Patel (2014) [8] 

3-5% Kassai (2018) [25] 

3% Sparrow et al. (2001) [20] 

 

Using the measurement technique uncertainty, EATR and tracer gas concentration difference 

between the outdoor airstream and the return airstream (𝐶3 − 𝐶1), the EATR uncertainty was 

calculated using Eq. (2.6). Figure B.1 shows the EATR uncertainty versus gas measurement 

technique uncertainty. The EATR values were assumed as 1%, 3% and 10%, and (𝐶3 − 𝐶1) values 

were assumed as 50ppm, 100ppm and 200ppm. 

 

Figure B.1. The EATR uncertainty versus instrument uncertainty for different values of the 
EATR and (𝐶3 − 𝐶1). 
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The photoacoustic spectroscopy technique with 1% uncertainty shows the lowest EATR 

uncertainty of less than 2%. The GC technique with 2% uncertainty shows the EATR uncertainty 

of less than 3%. The FTIR spectroscopy technique with 2% uncertainty [8] shows the EATR 

uncertainty less than 3%. However, gas detector tubes with an uncertainty between 5-10% leads 

to EATR uncertainty more than 3%. Therefore, the three gas measurement techniques, i.e., GC, 

FTIR spectroscopy, photoacoustic spectroscopy, when EATR is below 10% and (𝐶3 − 𝐶1) is 

between 50 to 200 ppm satisfy the EATR uncertainty recommended by ASHRAE Standard 84 

[15]. 


