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ABSTRACT 

 

Stripe rust, caused by Puccinia striiformis f. sp. tritici, affects wheat production in 

Canada. Two effective strategies to control this disease are the deployment of cultivars 

with stripe rust resistance, and the use of fungicides when susceptible and moderately 

resistant cultivars are grown under high stripe rust risk conditions. 

The effect of fungicide application timing on hard red spring wheat cultivars 

varying in stripe rust resistance was determined at two seeding dates in central 

Saskatchewan from 2012 to 2016. Under high disease pressure at a mid-May seeding 

date, a single fungicide application at the mid-flower growth stage of wheat decreased 

disease severity to 26% compared with the unsprayed control at 87% for the 

susceptible cultivar ‘AC Barrie’; the magnitude of the response was somewhat less for 

the moderately resistant cultivar ’CDC Imagine’. There was a significant yield increase 

of 59% when the fungicide was applied to the susceptible cultivar at mid-flower. Similar 

effects of fungicide application were observed for protein content, test weight and 

thousand-kernel weight. Furthermore, at a later seeding date (early June) fungicide 

application at stem elongation and at mid-flower growth stages of wheat had the same 

positive effect of reducing stripe rust symptoms from 87% to 51 and 54% and increasing 

yield by 53 and 46%, respectively for the susceptible cultivar “AC Barrie’. A fungicide 

application had no effect on the stripe rust resistant cultivar ‘Lillian’ at either seeding 

date; however, it did reduce leaf-spotting diseases on this cultivar. The study 

demonstrated that a single fungicide application reduces stripe rust severity, increases 

yield and improves grain quality in the susceptible and moderately resistant wheat 

cultivars used in this experiment at the mid-May seeding date. At the early June seeding 
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date, fungicide reduced disease severity of the susceptible and moderately resistant 

cultivars, but increased yield only for the susceptible cultivar. 

Spelt (Triticum aestivum ssp. spelta), a sub-species of wheat, has been included 

in varietal development programs because its unique genetic composition makes it easy 

to cross with bread wheat to introgress desirable traits such as improved grain quality 

and stripe rust resistance. It has been found that spelt carries race-specific resistance 

gene Yr5, which confers resistance to all known P. striiformis f. sp. tritici races in North 

America. The stripe rust resistance of two spelt genotypes, CDC Silex and 10Spelt17, 

was studied by analyzing populations from crosses with the susceptible bread wheat 

cultivar ‘Avocet’. Based on growth chamber testing, the adult plant resistance of these 

spelt genotypes was shown to be conferred by at least two genes.   
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CHAPTER 1 

1. INTRODUCTION  

 

Stripe rust of wheat (Triticum aestivum L.) caused by the fungus Puccinia 

striiformis Westend. f. sp. tritici (Pst) is an important disease in many countries when 

favorable weather conditions occur (Chen 2005; Chen et al. 2014).  The disease is also 

known as yellow rust because the symptoms appear as narrow, yellow-orange stripes of 

pustules called uredia, which are parallel to the leaf veins on adult wheat plants.  The first 

report of stripe rust in Manitoba and eastern Saskatchewan was in 2000, and serious 

epidemics took place in 2006 and 2011 in western Canada causing yield losses of up to 

35% in susceptible cultivars (Fetch et al. 2011; Brar and Kutcher 2016). 

The most common control measures for stripe rust are the use of resistant wheat 

cultivars and the application of foliar fungicide.  Cultivar resistance is considered all-stage 

resistance (ASR), which is usually race-specific and effective at both seedling and adult 

plant growth stages, or adult plant resistance (APR), which is generally non-race specific 

(Line and Chen 1995; Chen 2005; Luo et al. 2009). Foliar fungicide application to control 

stripe rust in susceptible or moderately resistant cultivars is an important management 

strategy for growers and several studies in other countries have been conducted to 

estimate yield loss and to reduce unnecessary use of fungicides (Chen 2007).  
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1.1  Hypotheses 

 

Three hypotheses were developed for the two projects of this thesis: 

1. Foliar fungicide application at mid-flowering (first anthers visible) is the optimum 

time to control stripe rust on susceptible bread wheat cultivars.  

2. The benefit of foliar fungicide will vary among wheat cultivars depending on their 

resistance to stripe rust.  

3. Adult plant stripe rust resistance in crosses of spelt (Triticum aestivum ssp. spelta) 

with bread wheat (T. aestivum) is due to ASR genes and is simply inherited. 

1.2. Objectives 

1. To assess the effectiveness of tebuconazole fungicide (Folicur® 250 EW) to 

control stripe rust when applied at three crop growth stages on three bread wheat 

cultivars representing a range of resistance to stripe rust in field plot experiments at two 

seeding dates, at multiple site-years. 

2. To determine the inheritance of adult plant resistance to stripe rust in two crosses 

of spelt (stripe rust resistant) x bread wheat (cv ‘Avocet’, stripe rust susceptible) using 

one isolate of Pst under controlled conditions. 
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CHAPTER 2 

2. LITERATURE REVIEW 

2.1 Wheat 

 

2.1.1 Triticum spp.: Importance and Biology 

 

Domestication of cereals is an example of human impact on the evolutionary 

processes of speciation, natural selection, and adaptation (Gustafson et al. 2009).  

Wheat describes a number of species of the genus Triticum, of three ploidy 

levels: diploids (einkorn) T. monococcum and T. urartu, all with the genome AA 

consisting of 7 pairs of chromosomes; tetraploids (emmer, durum, polish, rivet and 

persian wheat) T. turgidum and T. timopheevii with the genome AABB and 14 pairs of 

chromosomes; and hexaploids (spelt, bread, club and Indian shot wheat) T. aestivum  

with the genome AABBDD and 21 pairs of chromosomes (Knott 2012; McFadden and 

Sears 1946; Dvorak et al. 2011; Bonjean and Angus 2011).  

The diploid T. urartu is the A genome donor to all wheat species; this diploid 

species was first found in Greece by Boissier in 1884 and later identified in 

southwestern Iran, northern Iraq, the Transcaucasia, eastern Lebanon, southeastern 

Turkey, western Syria and the Mediterranean (Bonjean and Angus 2011; Gustafson et 

al. 2009). The origin of the B genome is controversial, but some evidence suggests that 
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Aegilops speltoides Tausch (2n=2x=14) is the donor of this genome, not just for 

tetraploid wheat but also for hexaploid (Kerber and Rowland 1974).  

The hexaploid wheats were created by the hybridization of A. tauschii, the male 

donor of the D genome, and T. turgium L. the female donor with the genome AABB 

(Matsuoka 2011; McFadden and Sears 1946). It is believed that they originated in 

Afghanistan, Turkmenistan and Transcaucasia approximately 10,000 years ago (Dvorak 

et al. 1998). Most species of the three ploidy groups have been cultivated, although only 

T. turgidum ssp. durum and T. aestivum ssp. aestivum are grown extensively and make 

up close to 90% of the cultivated wheat in the world (Mehta 2014). 

2.1.2 Triticum aestivum ssp. spelta (Spelt) 

 

Hexaploid T. aestivum ssp. spelta (spelt) is a hulled or covered wheat with 

adherent glumes and a brittle rachis, compared with common wheat T. aestivum whose 

kernels are free threshing (Dorval et al. 2015). Several theories on the origin of spelt 

have been suggested, one of which was that it originated from the spontaneous 

hybridization of T. diccocoides and A. tauschii in southwest Asia and then Europe. 

Another theory is that spelt originated in Europe from spontaneous crosses between T. 

aestivum and T. diccocum (Dvorak et al. 1998, Kerber and Rowland 1974). As A. 

tauschii is hulled, McFadden and Sears (1946) concluded that a hulled spelt is the 

ancestral form of the free-threshing hexaploid wheat. However, the discovery at 

archeological sites of a free-threshing hexaploid wheat before spelt has increased 

speculation about the ancestral position of spelt to free threshing wheat (Dvorak et al. 
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1998). Spelt is associated with common wheat because of it equivalency on protein 

content and higher nutritional levels (Wiwart et al. 2012).   

Spelt was an important cereal crop cultivated in Europe in the 1930s when it 

made up almost 40% of the wheat growing area. Nowadays it is grown on a limited 

scale in Europe and Asia (Kema 1992b) and the United States (Stallknecht et al. 1996; 

Dvorak et al. 2006). There is renewed interest in spelt wheat as a low input crop for 

organic production. Also, its natural resistance against several fungal pathogens 

demonstrates its potential as a stripe rust resistance source (Dorval 2015; Kema 

1992a). Several studies of spelt accessions since the 19th century have shown complete 

resistance to stripe rust even in years with high disease pressure; all these accessions 

carried the gene Yr5 (Kema 1992a). This single dominant gene confers resistance to 

almost all known races of stripe rust in North America, but not in Australia, and it has 

been used to breed for resistance to the disease. The gene Yr5, in combination with 

other seedling and adult plant resistance genes, can provide durable resistance to 

wheat cultivars (Yan et al. 2003). 

 

2.1.3 Wheat Production in the World and in Canada 

 

Wheat along with rice and corn is one of the most important crops for human 

consumption in the world (Peng et al. 2011; Evans et al. 1981). Worldwide, 

approximately 220 million hectares of wheat are cultivated annually producing 

approximately 700 million tonnes (Balfourier et al 2019). It is an important source of 

carbohydrates and essential nutrients and delivers 15% of the calories consumed daily. 

In addition, it is easy to store and process into flour. Dough produced from bread wheat 
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flour has unique viscoelastic properties and the starch is easily digested, as is the 

protein (Curtis et al. 2002). In Canada, wheat is used to make bread, a wide range of 

noodles, pasta, couscous, and it is used as feed for livestock. 

The major wheat producers and exporters are Argentina, Australia, Canada, the 

European Union, Kazakhstan, the Russian Federation, Ukraine and the United States 

(FAO.org 2019). In 2018, over 10 million hectares of wheat were seeded in Canada, 

and the western Canadian provinces (Manitoba, Alberta, and Saskatchewan) accounted 

for over 9.5 million hectares with total production of 29 million tonnes (Statistics Canada 

2019).  

The Canada Western Red Spring (CWRS) bread wheat market class represents 

the most widely grown of all wheat market classes, accounting for 5.9 million hectares 

of western Canadian wheat and close to 19.7 million tonnes in 2018 (Statistics Canada 

2019). The CWRS wheat cultivars command a premium price in the world market, 

which has led to high production (McCallum and DePauw 2008). 

2.2 Puccinia striiformis f. sp. tritici, Causal Agent of Stripe Rust 

2.2.1 History and Impact 

 

Stripe rust of wheat caused by the fungus P. striiformis Westend. f. sp. tritici 

Eriks. (Pst), (McIntosh 1992) is an important disease of wheat. Globally, stripe rust has 

been reported from approximately 60 countries (Chen 2005). It is believed that the 

centre of origin of Pst is Transcaucasia, where grasses were the first hosts (Chen et al. 

2014). The pathogen arrived in North America sometime before 1915 (Chen et al. 2002) 

and in Canada in 1926 (Su et al. 2003). It was reported in Germany and the 
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Netherlands in 1921 (Zadoks 1961), China in 1949 (Wan et al. 2007), Australia in 1979 

(Wellings and McIntosh 1990), and in South Africa and the Middle East in 1996 (Boshoff 

et al. 2002). 

In severe epidemics, stripe rust causes substantial yield losses, primarily by 

decreasing plant vigor, reducing kernel number and size and causing reduced 

germination. Yield loss caused by stripe rust can be as much as 100% depending on 

the susceptibility of the cultivar, particularly if the disease develops early in the season, 

which may result in several cycles of infection in the same growing season (Chen 

2005). Several stripe rust epidemics in wheat growing countries have had major 

economic impact, for instance in New Zealand an epidemic in 1980-1981 caused yield 

losses of up to 60%, and in Australia between 1983-1986 yield losses were as much as 

80% in some crop fields (Murray et al. 1994). In the United States, several epidemics 

have occurred causing up to 70% yield loss in 1960, 2000 and 2003 in several farmers’ 

fields (Chen 2005; Chen et al. 2002; Wellings 2011).  

In 2005 in southern Alberta, stripe rust of wheat became epidemic, reaching 

disease severities of 100% in the most affected crops and resulting in premature 

ripening and the development of uredia in-between kernels and glumes (McCallum et al. 

2007). Stripe rust symptoms have been detected in certain susceptible Canadian wheat 

classes including Canada Western Red Winter (CWRW), Canada Western Red Spring 

(CWRS) and Canada Prairie Spring Red (CPRS) (Randhawa 2012; Puchalski and 

Gaudet 2010). Major epidemics in western Canada that took place in 2006 and 2011 

caused yield losses up to 35% in susceptible cultivars (Kutcher et al. 2012; Fetch et al. 

2011).  
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In North America, stripe rust is frequently detected in the Pacific Northwest 

(PNW) of the USA, where conditions are often optimal for the development of the 

disease. Wheat production in western Canada is at risk as it is believed that stripe rust 

spores blow into the area from the PNW and the Puccinia pathway, where the pathogen 

undergoes the sexual reproductive phase on its alternate host (Jin et al. 2010; Chen 

2005; Brar and Kutcher 2016). Another risk factor seems to be the overwintering 

capacity of Pst as is the case in southern Alberta where Pst mycelium within winter 

wheat tissue can survive and create hot spots in a field early in the growing season. 

This situation can lead to early infection of wheat, resulting in the generation of a great 

amount of spore production (Lyon and Broders 2017). There are multiple reports of the 

overwintering potential of stripe rust when spring wheat is seeded near winter wheat 

generating a green bridge. For example, Kumar et al. (2013) reported that overwintering 

of Pst resulted in higher disease severity in spring wheat that was seeded near infected 

winter wheat than a crop seeded near another spring wheat crop. 

In 2000, Pst was reported for the first time in Manitoba and eastern 

Saskatchewan (Kutcher et al. 2012; Fetch et al. 2011). In the same year Pst occurred in 

at least 20 states and was the most widespread and severe epidemic in the United 

States (Chen et al. 2002; Chen 2005). New and more aggressive races are now 

common in the PNW (Markell and Milus 2008). The new Pst races are adapted to 

warmer temperatures and are more aggressive than previously reported races 

(HovmØller et al. 2010). For instance, Milus et al. (2009) found that isolates collected 

since 2000 have shorter latent periods and spore germination occurs more rapidly at 

warmer temperatures than isolates collected before 2000. 
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2.2.2 Life Cycle 

 

Wheat rusts are biotrophic organisms of the phylum Basidiomycota, class 

Urediniomycetes, order Uredinales, family Puccinaceae, and genus Puccinia (Chen et 

al. 2014). Stripe rust of wheat caused by Pst belongs to a special form or forma 

specialis (f. sp.) tritici. There are other formae speciales that infect specific hosts such 

as barley (P. striiformis f. sp. hordei), and rye (P. striiformis f. sp. secalis) (Wellings 

2007). 

Puccinia striiformis is heteroecious and macrocyclic (Fig. 1) and requires two 

different hosts to complete its life cycle, although it completes the asexual infection 

cycle several times within a season (Roelfs et al. 1992).  Puccinia striiformis f. sp. tritici 

(Pst) can produce five types of spores: urediniospores, teliospores and basidiospores in 

wheat and pycniospores and aeciospores on alternate hosts. 

Urediniospores are single celled and are released from the uredia; they can be 

carried by the wind short or long distances spreading the pathogen locally or over large 

geographical areas. Urediniospores land on the leaves and germination occurs within a 

few hours under favourable temperatures (0 to 15°C) (Roelfs et al. 1992). Once on the 

leaf a germ tube grows toward the stomata and forms an appressorium with a 

penetration peg that enters through the stomata and into the intercellular space of the 

leaf where the infective hyphae will spread, colonizing and forming the haustorium 

between 12 to 24 hours (Hu and Rijkenberg 1998). The haustorium is responsible for 

obtaining nutrients from the living host cells. The fungus will continue to spread within 

the leaf for approximately 14 days post inoculation, when the first sign of uredinial 
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development becomes evident. The uredia erupt through the leaf surface to release 

urediniospores.  

 

 

Fig. 2.1. Life cycle of Puccinia striiformis f. sp. tritici. Adapted from the Puccinia 

graminis f. sp. tritici life cycle (Kolmer 2013). Original illustration from Jacolyn A. 

Morrison at the USDA-ARS Cereal Disease Laboratory, St Paul, MN, USA. (Kolmer 

2013). 

 

The teliospores of Pst are two-celled structures produced in telia. During 

teliospore formation, karyogamy occurs between each haploid cell to form a diploid 

nucleus, which undergoes meiosis to form a promycelium from which four basidiospores 

are produced. The basidiospores lack the ability to re-infect wheat, but rather infect the 

alternate host to complete the sexual phase. The basidiospores are wind-blown to the 
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alternate host and germinate forming another infective structure on the upper leaf 

surface.  These are called pycnia, within which pycniospores are produced.  Pycnia are 

of two mating types that must cross fertilize to give rise to a new structure called aecia 

on the lower leaf surface of the alternate host, in which aeciospores are produced, 

which have the capacity to re-infect wheat (Bolton et al. 2008). 

Basidiospores of Pst can only infect certain species of Berberis spp. as: B. 

chinensis, B. holstii, B. koreana and B. vulgaris and Oregon grape (Mahonia aquifolium) 

(Jin et al. 2010; Wang and Chen 2013). The eradication of the alternate host (barberry) 

eliminates sexual reproduction of Pst. 

2.2.3 Epidemiology 

 

Infection of wheat plants by Pst can occur anytime from plant emergence until 

maturity as long as green tissue is available (Chen 2005). Stripe rust symptoms are 

usually observed after the tillering stage. The first symptoms appear on leaves as 

narrow, yellow-orange rows of pustules, which are the uredia that are parallel to the leaf 

veins, and on the leaf sheaths, glumes and awns of susceptible wheat cultivars. On 

seedlings, the uredia emerge on infected tissue in all directions, potentially covering the 

entire leaf (Chen et al. 2014).  
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Fig. 2.2 Early symptoms of stripe rust on wheat leaves in the field. Adult plant 

infection on a susceptible cultivar. Photo credit J.T. Vera. 

The spores of stripe rust require moisture to germinate and infect in the form of 

dew or precipitation for a minimum continuous leaf wetness period of between 4 to 6 

hours. Urediniospores are unable to survive when the wet period is interrupted during 

germination and penetration. Conversely, un-germinated, dry spores are not affected by 

dry conditions (De Vallavieille-Pope et al. 1995). Rain can also disperse spores by 

direct impact or by splashing, resulting in spread to upper plant parts and to 

neighbouring plants (Chen 2005).  

Another factor that can influence the development of stripe rust is temperature. It 

can affect spore germination, infection, latent period, spore survival and host resistance. 
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Cool temperatures are favorable for the development of Pst, leading to early disease 

development compared with the other rusts or leaf spot diseases, and can increase 

infectivity throughout the season (Rapilly 1979). The optimum temperature for Pst is 

11°C and the highest rate of urediniospore germination occurs between 5 to 14°C, with 

a maximum limit of 21°C (Fetch et al. 2011). Sporulation is a function of relative 

humidity, which needs to be >50% but can be inhibited by liquid water (Hau and De 

Vallavieille-Pope 1998). Temperature can affect winter survival. Temperatures below -

10°C may pause the development of the pathogen and cause winter kill of infected 

winter wheat tissue (Chen 2005; Rapilly 1979). Another factor that plays a major role in 

the spread of the pathogen is the wind, which dries the urediniospores and reduces 

germination and infection. Pst is well adapted for long-distance dispersal either by short 

or long-distance movement within the same growing season (Chen et al. 2014). 

2.3 Control of Stripe Rust of Wheat 

 

The occurrence of stripe rust is usually associated with the capability of the 

pathogen to overwinter, which can lead to early infection and damage to spring wheat 

cultivars. For these reasons, it is important to control stripe rust. The most common 

control measures are the use of resistant wheat cultivars and the application of foliar 

fungicides (Chen 2005).  
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2.3.1 Cultivar Resistance 

 

2.3.1.1 Sources of stripe rust resistance 

 

The most beneficial, relatively economical and environmentally friendly method to 

control stripe rust is the use of resistant cultivars (Kumar et al 2012; Line and Chen 

1995). Wheat breeders are always looking for sources of germplasm that can be used 

to improve resistance to stripe rust. 

There are several sources of stripe rust resistance: one source is the use of 

commercial cultivars, which carry effective genes for the control of stripe rust and are 

currently available. Another source it is the use of old cultivars that carry effective genes 

specific for certain geographic locations. Other sources are species that can be 

intercrossed with common wheat cultivars, for example, spelt wheat, which has been 

crossed with common bread wheat to transfer Yr5 for resistance to stripe rust. Wild 

wheat relatives can be used as sources of resistance; however, their use can transfer 

undesirable botanic and agronomic traits and slow the development of new resistant 

cultivars in a breeding program. However, some genes effective against stripe rust have 

been successfully extracted from wild relatives and are used in commercial cultivars 

such as Yr5, Yr9, Yr10, Yr15, Yr17, Yr24/26, and Yr76 (Wang and Chen 2017).  

Currently there are close to 80 genes officially designated as Yr genes in wheat; 

most of these genes are race-specific and follow the gene-for-gene theory of host-

pathogen interactions (Cloutier et al 2007; McIntosh 1992).  

  



15 
 

2.3.1.2 All stage resistance  

 

Specific resistance is referred to as ASR, which usually means that resistance to 

the pathogen is effective at the seedling stage and throughout the life of the plant. 

Breeding for specific resistance against stripe rust is inherited according to Mendelian 

genetics (Mehta 2014; Line and Chen 1995). This type of resistance was first observed 

by Biffen (1905), who reported that resistance in wheat segregated in a 3 resistant: 1 

susceptible ratio, indicating it was governed by a single dominant gene or simple 

combinations of single genes. This type of resistance can be easily observed as a low 

infection type (IT) or no rust symptoms in seedling tests. However, the durability of this 

resistance is usually limited due to pathogen evolution over time, sometimes as short as 

3-4 years after the release of a resistant cultivar (Line and Chen 1995).  There are 

several examples of race-specific disease resistance breakdown. Virulent stripe rust 

races overcame the resistance of the gene Yr10 for the first time in 1968, and in 2005 

the breakdown of this gene in the PNW of the USA occurred rapidly (Line and Qayoum 

1992; Chen et al. 2010). In western Canada in 2010, during the stripe rust epidemic in 

southern Alberta, races overcame Yr10, which resulted in heavy infection of cultivars 

carrying this gene such as ‘Radiant’ (Puchalski and Gaudet 2011; Kutcher et al. 2012). 

In Saskatchewan, the first report of a race virulent on Yr10 was in 2013 (Brar and 

Kutcher 2016); however, the ASR genes Yr5 and Yr15 are still very effective in Canada 

and in most countries where the disease is present (Sharma-Poudyal et al. 2013). 

There are tools or strategies that may prolong the effectiveness of ASR to the disease 

when new races appear. 
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Using multiline cultivars or gene pyramiding, it is possible to extend the life-span 

of ASR. One example of a multiline cultivar is cv. ‘Rely’, which is composed of more 

than ten different resistance genes (Chen 2007). This cultivar, which is cultivated in the 

PNW of the USA, has maintained resistance since 1991. Another strategy to increase 

the lifespan of stripe rust resistance genes is to use gene pyramiding. This method 

consists of the addition of several resistance genes into one variety using molecular 

markers to facilitate gene pyramiding. This has been used to add genes that are 

individually effective against Pst and can prolong resistance to stripe rust. 

 

2.3.1.3 Adult plant resistance  

 

Another type of resistance is associated with quantitative resistance regulated by 

major genes and/or minor genes, which confer partial resistance or a slow-rusting 

phenotype. Some sources of quantitative resistance are characterized by their response 

to temperature, as high-temperature adult plant (HTAP) resistance genes.  As the plant 

grows and the temperature increases, the effectiveness of the genes increase, in 

contrast to the reaction of the same genes at the seedling stage and at low 

temperatures (Wang and Chen 2017).   

One of the characteristics of APR is that most are non-race specific and have 

been effective for more than 30 years; although, some of the APR genes can be race 

specific such as Yr11, Yr12, Yr13 and Yr14 (HovmØller 2007; Line and Chen 1995). 

Among the classes of western Canadian wheat, Canada Western Red Spring (CWRS) 

cultivars have a range of reactions from susceptible to highly resistant to stripe rust. The 

presence of genes such as Yr11 Yr14, Yr16, Yr18, Yr29, Yr30 and Yr36 is attributed to 
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APR (Randhawa et al. 2012; Chen 2014).  Those cultivars carrying the APR gene Yr18 

have a moderate level of resistance, not just to stripe rust, but also to other biotrophic 

pathogens including leaf rust (for which Yr18 is also known as Lr34) and powdery 

mildew (Yr18 = Pm38).  The Yr18 gene also conditions leaf tip necrosis (Ltn1), which is 

a visual marker to identify lines that may carry APR genes. Other examples of this 

composite resistance are Lr46/Yr29/Pm39/Ltn2, and Lr67/Yr46 (Singh et al. 1992).  

Another APR gene effective for resistance to stripe rust is Yr36, which was isolated and 

characterized from wild T. dicoccoides and is linked to the high grain protein content 

gene Gpc-B1. (Randhawa et al. 2012; Yuan et al. 2012).  

The pyramiding of APR genes into cultivars is believed to result in highly durable 

rust resistance, but little is known of this genes benefits, or the interaction of these types 

of genes with ASR (Hiebert et al. 2010). Pyramiding genes can provide higher levels of 

resistance than any one gene alone, as these genes are believed to act in an additive 

manner (Rosewarne et al. 2006). 

2.3.2 Chemical control 

 

The use of fungicides is a practical and sometimes necessary response to 

control stripe rust and mitigate yield loss on susceptible wheat cultivars and in some 

circumstances on moderately resistant cultivars (Chen 2007). There are several 

fungicides with a broad spectrum of disease control and efficacy at different plant 

stages that can protect the plant against the pathogen depending on the degree of 

disease severity. However, the use of pesticides to control diseases is not 
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environmentally friendly, and can be expensive for the farmer. Furthermore, the 

pathogen can develop resistance to the active ingredient.  

Using a resistant cultivar is the most inexpensive, environmentally friendly and 

efficient disease management strategy to minimize yield losses. The use of resistant 

cultivars can reduce yield losses by up to 90%. However, depending on yield potential, 

the price of wheat and the fungicide, even a relatively small percentage (10%) yield loss 

may be significant for a commercial grower; therefore, a fungicide application may be 

necessary (Chen 2014). 

The first effective commercial application of fungicides to control Pst was in 1981 

with the active ingredient triadimefon, which prevented millions of dollars of losses in the 

PNW of the USA (Line 2002). Nowadays, there are several fungicides registered to 

control stripe rust that consist of a number of active ingredients. Many are triazoles 

(flutriafol, propiconazole, tebuconazole, and triadimefon) (Table 2.1), all of which are in 

fungicide Group 3, the demethylation-inhibitors (DMI). These Group 3 DMI fungicides 

prevent the formation of sterols needed in fungal cell membranes.  They are usually 

systemic to some degree as they penetrate the plant cuticle and are transported in the 

xylem (Murray et al. 2005; Chen 2014). The DMI fungicides inhibit the development of 

stripe rust in leaf tissues by altering the structure of the hyphae and haustoria and 

increasing vacuolation, causing changes in cell wall thickness, degeneration of the 

cytoplasm and breakdown of hyphae and haustoria (Han et al. 2006).  

Triazoles are often combined with strobilurin fungicides, also known as Quinone 

outside inhibitor (Qol) fungicides. Strobilurins are assigned to Group 11 (azoxystrobin, 

kresoxim-methyl, pyraclostrobin, and trifloxystrobin). This type of fungicide was 
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developed from isolates of Strobilurus tenacellus, a wood rotting mushroom fungus. 

Some Qol fungicides exhibit translaminar movement meaning that once applied the 

active ingredient is held on or within the cuticle of the leaf surface and xylem systemic 

(Vincelli 2002). 

There are several foliar fungicides registered to control stripe rust of wheat in 

Canada (Table 2.1). And there are some co-formulations of triazoles and strobilurins are 

registered for use in Canada that are effective to control stripe rust and other foliar 

diseases of cereals, some of them are, azoxystrobin + propiconazole (Quilt®, 

Topnotch®, TrivaproA®), propiconazole + picoxystrobin (Cerefit®) (Chen and Kang 

2017; Murray et al. 2005; Anonymous 2018).  

Fungicide application timing is important for effective control of stripe rust; this is 

determined by the environmental conditions, the winter survival of the pathogen in each 

region and season, and the early development of the disease (Chen 2014). Disease 

severity is also affected by the susceptibility of the cultivar and previous fungicide used. 

Most of the fungicides registered to control stripe rust cannot be applied after flowering 

and some cannot be used 30-40 days before harvest (Chen and Kang 2017).  

Some of these fungicides were tested using various application timings by 

several researchers in North America. In the 2000s, the use of foliar fungicides in Texas 

reduced yield losses by 41% compared with the unsprayed control (Reid and Swart 

2004). In the PNW area in 2013, foliar fungicide applications at 10.5 on the Feekes 

scale (Large 1954) or mid-flowering stage (GS61) based on the BBCH wheat scale 

(Lancashire et al 1991) significantly reduced stripe rust severity on naturally infected 

wheat. Using azoxystrobin + propiconazole as active ingredients, disease severity was 
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reduced by almost 93% on susceptible cultivars and yield increased by 15%. In that 

study, disease development was slow, and symptoms appeared late due to hot, dry 

environmental conditions (Chen 2014). 

During the years 2016 and 2017, severe stripe rust epidemics occurred in the 

PNW. In 2016, stripe rust appeared in late May, which was earlier in the season than 

usual and the spring wheat was at the early tillering stage (GS20). Two fungicide 

applications were required to achieve a disease reduction of 92% and a yield increase 

of 40% on a susceptible cultivar compared with the unsprayed control (Chen and Kang 

2017).  In 2017, fungicide was applied when there was no sign of stripe rust at stem 

elongation or jointing (GS30). During that year, disease pressure was high in the PNW 

early in the season and the fungicide decreased disease severity by 83% on a 

susceptible cultivar and increased yield from 19 to 93% over the unsprayed control. 

Several other foliar fungicides with diverse active ingredients were evaluated that 

significantly reduced disease severity between 56 and 92% on the susceptible cultivar 

‘Avocet S’ when the fungicides were applied before or at the flowering stage (GS 60) 

and resulted in increased yield (Chen and Kang 2017). 

Other strategies suggested to reduce stripe rust are the use of seed treatment to 

delay the onset of the disease at seedling stages (Line 2002). Effective volunteer 

control is recommended because volunteer wheat provides a green bridge between 

seasons that facilitates overwintering of the pathogen and provides inoculum for the 

following growing season. The latter can be achieved using cultivars not prone to 

shattering and use of tillage or chemfallow. Excess irrigation should be avoided 

because moisture is essential for the development of the pathogen. With stripe rust 
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conducive temperatures, spring wheat crops will be more vulnerable to infection. 

Therefore, it is important to grow resistant cultivars and use subsurface or drip irrigation 

instead of sprinkler irrigation (Chen and Kang 2017). 

As stripe rust is adapting to changing environmental conditions and due to the 

lack of highly effective resistances in spring wheat cultivars, there is a need to 

investigate different ways to control this pathogen and the lack of highly effective and 

durable stripe rust resistance is a long-term issue for wheat breeding programs. The 

residual effects of defeated resistance genes in wheat could provide another tool to 

develop durable resistance with existing Yr genes and this study could provide much 

needed insight into the presence and effectiveness of this effect in the wheat-stripe rust 

pathosystem.  And the use of fungicides with different active ingredients can control 

stripe rust on susceptible cultivars and reduce yield losses and it is a widely effective 

practice worldwide.  
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Table 2.1. Fungicides registered to control stripe rust in Saskatchewan 2019 (Anonymous 
2018). 
Trade name Active ingredient Chemical 

family 
Group Rate 

(ml/ha) 
Application timing 
according to label 

Acapela®  picoxystrobin  
250 g/L 

strobilurin 11 432 to 
865 

Prior to disease 
development to Flag 
leaf  

Tilt 250*® 
 

propiconazole  
250 g/L 

triazole 3 494 Tillering, stem 
elongation up to half 
emergence of the head 

Caramba® metconazole  
90 g/L 

triazole 3 494 to 
692 

Apply before the onset 
of the disease 

Folicur® tebuconazole  
250 g/L 

triazole 3 370 to 
494 

Apply when disease 
symptoms appear 

Nexicor® fluxapyroxad 30g/L;  
pyraclostrobin 125 
g/L; propiconazole 
125 g/L 

carboxamide; 
strobilurin; 
triazol  

3,7 494  Apply prior to disease 
development or at the 
onset of disease 

Priaxor® fluxapyroxad 1 
67 g/L;  
pyraclostrobin  
333 g/L  

carboxamide; 
strobilurin 

7,11 222 to 
297 

Apply prior to disease 
development or at the 
onset of disease 
symptoms 

Prosaro® prothioconazole 
125 g/L; 
tebuconazole  
125 g/L 

triazole 3 803 Apply within the at least 
75% of the heads are 
fully emerged to when 
50% of heads are in 
flower 

Quilt® azoxystrobin 75g/L; 
propiconazole  
125 g/L 

strobilurin; 
triazole 

3,11 751 to 
1000 

Apply between stem 
elongation and half 
head emergence 

Topnotch® azoxystrobin 143 
g/L; propiconazole 
124 g/L 

strobilurin; 
triazole 

3,11 529 Apply between stem 
elongation and half 
head emergence 

Trivapro 
A**® 

azoxystrobin 75g/L; 
propiconazole 125 
g/L 

strobilurin; 
triazole 

3,11 988 Apply between stem 
elongation and head 
half emergence up until 
flag leaf stage 

Twinline® pyraclostrobin 130 
g/L;  
metconazole 80 g/L 

strobilurin; 
triazole 

3,11 370 to 
494 

Apply prior to disease 
development or at onset 
of disease. Optimal 
timing is at leaf stage 

*Other trade names: Tilt 250E/Bumper 432 EC/Pivot 418 EC/Propel/Nufarm Propiconazole 
Fungicide/Propi Super 25 EC/Fitness 
**Trivapro A and B is a co-pack product 
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CHAPTER 3 

3. FUNGICIDE APPLICATION AND CULTIVAR RESISTANCE ARE EFFECTIVE 

STRIPE RUST CONTROL STRATEGIES 

3.1 Introduction 

An effective method of stripe rust control is the use of resistant cultivars (Kumar 

et al 2012; Line and Chen 1995). It is an inexpensive, environmentally friendly and 

efficient disease management strategy to minimize yield losses. The use of stripe rust 

resistant cultivars can lead to a reduction of up to 90% in stripe rust severity and reduce 

yield losses by at least 20%. However, even a 20% yield loss caused by this disease 

may be significant for a commercial grower; therefore, a fungicide application may be 

beneficial even on resistant cultivars (Chen, 2014). 

The use of fungicides is a practical and necessary response to stripe rust to 

mitigate yield losses on susceptible wheat cultivars and in some circumstances on 

moderately resistant cultivars (Chen, 2007). There are several fungicides with a broad 

spectrum of disease control that can protect the plant against the pathogen at different 

plant stages depending on the degree of disease severity. There are several fungicides 

registered to control stripe rust; the triazoles are group 3 demethylation-inhibitors (DMI) 

fungicides (flutriafol, propiconazole, tebuconazole, and triadimefon) commonly used for 

stripe rust control. The DMI fungicides prevent the formation of sterols that are needed 

in fungal cell membranes.  These fungicides penetrate the plant cuticle, and are 
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transported in the xylem making them systemic fungicides (Murray et al., 2005, Chen, 

2014). The DMI fungicides inhibit the development of stripe rust in leaf tissues by 

altering the structure of the hyphae and haustoria and increasing vacuolation, causing 

changes in cell wall thickness, degeneration of the cytoplasm and breakdown of hyphae 

and haustoria (Han et al., 2006).  

The timing of fungicide application is important for effective stripe rust control and 

the most appropriate timing depends on environmental conditions. Application may be 

warranted at an early stage of crop development if the pathogen has overwintered, and 

disease development begins early in the season (Chen, 2014). Relatively cool, damp 

conditions are conducive to stripe rust, which is common in the spring in North America. 

Disease severity is also affected by the susceptibility of the cultivar and the previous 

fungicide used. Most of the fungicides registered for control of stripe rust cannot be 

applied after flowering due to a requirement for a pre-harvest interval of 30-40 days 

(Chen and Kang, 2017).  

3.2 Hypotheses and objective 

3.2.1 Hypotheses 

 

1) Foliar fungicide application at mid-flower (50% anthers visible) is the optimum 

time to control stripe rust on susceptible bread wheat cultivars.  

2) The benefit of foliar fungicide will vary among wheat cultivars depending on 

their resistance to stripe rust.  
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3.2.2 Objective 

 

To assess the effectiveness of tebuconazole fungicide (Folicur® 250 EW) to 

control stripe rust when applied at three crop growth stages on three bread wheat 

cultivars representing a range of resistance to stripe rust in field plot experiments at two 

seeding dates, over multiple site-years. 

3.3  Materials and methods 

3.3.1 Experimental locations and field trials 

 

The field studies were conducted under a no-till seeding system from 2012 to 

2016 at three sites in Saskatchewan: Pike Lake, SK at the Bayer CropScience 

Research Farm (51°49’24.672”N 106°46’17.184”W) from 2013 to 2016; Saskatoon, SK 

at the University of Saskatchewan East Sutherland Crop Research Farm 

(52°10’0.984”N 106°31’3.3744”W) from 2012 to 2016; and Melfort, SK at the 

Agriculture and Agri-food Canada  Research Farm (52°49’05.2”N 104°35’31.3”W) in 

2013 and 2014. The trials were usually established in fields with canola or pea stubble. 

Soil samples were collected at each site-year and fertilizer was applied based on 

recommended target yields for each site. At all sites prior to and after seeding, 

herbicides were applied to suppress weeds as necessary. Herbicides were applied pre-

seeding, pre-emergence and before the 3 to 4 leaf stage of the wheat to control weeds.  

The plot size was 2 x 8 m2 at all locations and the seeding rate was 250 seeds 

per m2. The plant density was measured two weeks after seeding by counting the 

number of seedlings in 1 m of two rows per plot. A spreader row consisted of a mix of 
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stripe rust susceptible wheat cultivars ‘AC Barrie’ and ‘AC Morroco’ was grown between 

replicates and surrounding each trial.  

To increase the stripe rust severity in the field, the spreader rows and borders 

were inoculated using a controlled droplet applicator (Herbeflex®), two or three times at 

the three leaf stage with a span of 4 days between inoculations with a Saskatchewan 

stripe rust mix of isolates (Table 3.1) suspended in light mineral oil (Bayol 55, Imperial 

Oil, Toronto, ON, Canada) at the 2-4 leaf stage (GS 12-14). After inoculation, the 

spreader rows were watered and covered with tarps for 24 hours to increase humidity 

around the plants under the tarp and promote infection. The trials at Saskatoon were 

irrigated periodically in the late afternoon during the growing season to maintain the 

high night-time humidity. 

Table 3.1. Saskatchewan mix of isolates used for artificial inoculation at all site years. 

Characterization to race by Brar et al. (2016).  

Isolate Host Year collected Location Race 

W002 Wheat 2011 Denholm, SK C-PST-16 

W003 Wheat 2011 Kinley, SK C-PST-2 

W004 Wheat 2011 Hanley, SK C-PST-1 

3.3.2 Experimental design 

 

Each site-year consisted of two trials: 1) a mid-May seeding date, and 2) an early 

June seeding date. Each trial was a split-plot design with 4 replications, with fungicide 

application treatments as the main plots and cultivars the sub-plot treatment factor.   
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The fungicide application timing treatments were at stem elongation, GS31 of the 

BBCH scale (Lancashire et al. 1991); mid-flower, GS 65; early milk, GS73; and a 

multiple application treatment that included applications at all three stages (GS 31, 65 

and 73) to attempt a disease-free control; and an unsprayed control (Table 3.2). The 

commercial fungicide used was Folicur® 250EW, active ingredient tebuconazole, 

applied at a rate of 250 g per L of active ingredient per hectare. Three Canada Western 

Red Spring (CWRS) wheat cultivars were selected based on their stripe rust resistance: 

‘AC Barrie’ - susceptible (S), ‘CDC Imagine’ - moderate resistant (MR) and ‘Lillian’ - 

resistant (R).  

Table 3.2. Fungicide application treatment timings 

Treatment Description 

1 Unsprayed control 

2 Stem elongation (GS 31) 

3 Mid-flower (GS 65) 

4 Early milk (GS 73) 

5 Multiple applications (GS 31+65+73) 

3.3.3 Disease assessments 

 

Disease severity was assessed on each plot before the first fungicide application 

plus a final assessment at the soft dough stage (GS 85). Leaf spot diseases were 

assessed on the Horsfall – Barratt scale (Horsfall and Barratt 1945) (Fig. 3.1). For 

stripe rust severity the modified Cobb scale, which describes the percentage of leaf 
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tissue covered by stripe rust per leaf (Peterson et al.1948), was used to estimate the 

mean percentage of leaf tissue affected on 10 flag leaves and 10 penultimate leaves 

(Fig. 3.2).  

 

Fig. 3.1. Leaf spots rating scale describing 12 grades based on diseased and 

healthy leaf area (Horsfall and Barratt 1945). 

 

Fig. 3.2. Modified Cobb scale for stripe rust severity described as the percentage 

of leaf tissue covered by stripe rust pustules per leaf (Peterson et al.1948) 

At maturity, each plot was harvested mechanically with a small plot combined 
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and the grain bagged. Samples were air-dried for 24 hours or until the seed reached 

14% moisture and then cleaned. After cleaning, the grain from each plot was processed 

to determine yield (kg ha-1), test weight (kg/hL) and thousand kernel weight (g). A sub-

sample of 250 g per plot was analyzed to determine the percent moisture content and 

10 g were ground to determine protein content using a LECO® Nitrogen Food protein 

analyzer. Environmental conditions (precipitation and temperature) were recorded 

using meteorological stations inside the field trials and/or from Environment Canada 

data. 

3.3.4 Data Analysis  

Site-years were grouped according to severity of stripe rust. Levene’s test was 

performed to determine the homogeneity of variances for the high and low stripe rust 

disease severity site-year groups.  For the two groups using the MIXED procedure of 

SAS software 9.4 (SAS Institute Inc., Cary, NC, USA) with the fungicide application 

treatments and cultivars considered as fixed effects. Replications and replication by 

fungicide treatments effect were considered as random effects from each site -year, 

and for grouped data site-year, replication nested in site-years and replication by 

fungicide treatments nested in site-years were considered random effects for all 

variables. In cases where the ANOVA F-tests were significant for fixed effects, 

treatment means were compared using Tukey's test at a significance threshold of 

P≤0.05. Pearson’s correlation coefficients were calculated using the CORR procedure 

of SAS for all variables in the low and high stripe rust severity groups. 
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3.4   Results  

3.4.1 Environmental conditions 

Precipitation was recorded for each growing season from May to September 

(Table 3.3). Saskatoon and Pike Lake during the years 2014 and 2016, and Melfort 

2014 had above average rainfall at 230 and 390 mm compared with Melfort 2013, and 

Saskatoon and Pike Lake 2015, where precipitation was lower and ranged from 170 to 

250 mm. 

Table 3.3.  Growing season precipitation (mm) between May and September of 2012 to 

2016 at Saskatoon, Pike Lake and Melfort, Saskatchewan.  

Site Year 
Precipitation (mm) 

May  June  July   August September Total 

        

Saskatoon 2012 148 107 93 63  1  412 

 2013 16 118 36 15 1 184 

 2014 61 95 45 19 11 230 

 2015 6 20 85 58 51 221 

 2016 43 47 77 70 25 261 

        

Pike Lake  2013 60 103 78 15 40 296 

 2014 50 106 115 98 22 391 

 2015 - 30 50 41 50 173 

 2016 - - - - - - 

        

Melfort 2013 19 98 103 12 18 250 

  2014 24 167 39 58 9 298 
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The mean temperatures during the growing season were above normal during 

the years 2015 and 2016 at Saskatoon and Pike Lake, and near normal during 2012, 

2013 and 2014 at all sites (Table 3.4). 

 

Table 3.4.  Growing season mean temperatures (°C) between May and September of 

2012 to 2016 at Saskatoon, Pike Lake and Melfort, Saskatchewan. 

Site Year 
Temperature (°C) 

May June July August September Mean 

        

Saskatoon 2012 9.9 15.8 19.7 17.7 13.2 15.3 

 2013 12.9 15.7 17.5 18.6 15.1 15.9 

 2014 10.1 14.1 18.3 17.9 12.4 14.6 

 2015 11.3 18.1 20.1 18.6 12.9 16.2 

 2016 14.7 18.5 19.3 16.9 11.8 16.2 

        

Pike Lake  2013 14 16.1 17.4 18.1 14.7 16.1 

 2014 14.4 14.5 17.9 17.5 11.7 15.2 

 2015 12.3 17.5 18.9 17.4 11.6 15.5 

 2016 - - - - - - 

        

Melfort 2013 12.0 15.4 16.4 17.7 14.4 15.2 

  2014 10 14.0 17.5 17.6 11.9 14.2 
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3.4.2 Mid-May seeding date 

 

Based on the stripe rust severity of the unsprayed susceptible cultivar ‘AC Barrie’ 

the site-years were classified into ‘high’ or ‘low’ stripe rust severity groups (Table 3.5). 

The stripe rust severity control treatment of individual site-years comprising the high 

stripe rust severity group (referred to henceforth as the high group) ranged from 60 to 

100%.  Site-years where the unsprayed cultivars ‘AC Barrie’ had <13% stripe rust 

severity (e.g. no symptoms were observed at Melfort) were classified into the low stripe 

rust severity group (henceforth referred to as the low group). Disease severity of the 

unsprayed ‘AC Barrie’ treatment was 87% in the high group and 5% in the low group. 

 

Table 3.5. High and low stripe rust severity site-year groups based on severity of the 

unsprayed treatment of ‘AC Barrie’ (susceptible) for the normal seeding date (mid--May) 

experiments. 

Group Site-Year 

High stripe rust severity Saskatoon 2012, 2013, 2014 and 2016 

Pike Lake 2014 and 2016 

Low stripe rust severity Saskatoon 2015 

Pike Lake 2013 and 2015 

Melfort 2013 and 2014 
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3.4.2.1 High stripe rust severity group 

Stripe rust severity (%) 

There was an interaction between cultivar and application timing (P<0.0001) in the 

high group (Table 3.6). Stripe rust severity for the susceptible cultivar ‘AC Barrie’ was 

87% and was reduced to 58% when the fungicide was applied at stem elongation and 

to 26% when the fungicide was applied at mid-flower (Table 3.7). Fungicide applied at 

the early milk stage of ‘AC Barrie” resulted in a stripe rust severity of 77%, which was 

not different from the unsprayed control. As expected, the multiple fungicide application 

treatment had the lowest disease severity (11%). The moderately resistant cultivar 

‘CDC Imagine’ had a stripe rust severity of 54% for the unsprayed fungicide treatment 

and a reduction to 28% was observed when fungicide was applied at stem elongation. 

Fungicide application at mid-flower of ‘CDC Imagine’ reduced disease severity to 14% 

and for the multiple application treatment to 4%. Stripe rust severity was very low for 

the resistant cultivar ‘Lillian’ for all fungicide treatments.  The unsprayed treatment for 

‘Lillian’ had a stripe rust severity of 1% and fungicide treated plots did not differ 

statistically from the unsprayed control. No differences among treatments were 

detected for this cultivar. 
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Table 3.6. P values from the analysis of variance for fixed effects of bread wheat 

cultivar (C), fungicide application timing (T) and their interaction (C x T) on stripe rust 

severity, leaf spot severity, yield, test weight (TW), thousand kernel weight (TKW) and 

protein content at all site-years.  

 Group  

Stripe 
rust 

Leaf 
spot 

Yield TW TKW 
Protein 
content 

Mid-May 
seeding 
date 

High 
Stripe rust 
severity 
group 

Cultivar (C)   <0.0001         

Time (T)  <0.0001     

C X T <0.0001 NS <0.0001 <0.0001 <0.0001 <0.0001 

Low stripe 
rust 
severity 
group 

Cultivar (C) NS NS 0.0168 <0.0001 0.0348 <0.0001 

Time (T)   0.0445 0.0106 0.0003 0.0004 <0.0001 NS 

C X T NS NS NS NS NS NS 

Early 
June 
seeding 
date 

High 
Stripe rust 
severity 
group 

Cultivar (C)   NS   <0.0001     

Time (T)  <0.0001  0.0161   

C X T <0.0001 NS <0.0001 NS <0.0001   0.0019 

Low stripe 
rust 
severity 
group 

Cultivar (C)  NS 0.0033 <0.0001 <0.0001 <0.0001 

Time (T)  0.0204 0.0028 <0.0001 <0.0001 0.001 

C X T <0.0001 NS NS NS NS NS 

“NS” = non-significant (P > 0.05). 

 

Leaf spot disease severity (%)  

There was no interaction between cultivar and fungicide application timing 

(P=0.0823) for leaf spot severity; however, differences among wheat cultivars and 

among application timings were detected (P<0.0001) (Table 3.6 and Table 3.8). The 

unsprayed treatment of the susceptible cultivar ‘AC Barrie’ had the highest leaf spot 

severity at 25%; and decreased when the fungicide was applied at mid-flower to 11%. 

The multiple fungicide application treatment resulted in a leaf spot disease severity of 
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only 9% in ‘AC Barrie’. Furthermore, the cultivar ‘Lillian’ suffered somewhat greater leaf 

spot severity (22%) than ‘CDC Imagine’ (15%), but neither ‘Lillian’, nor ‘CDC Imagine’ 

were different from ‘AC Barrie’ (18%). 

 

Yield (kg ha-1) 

There was an interaction between application timing and cultivar (P<0.0001) for 

yield of wheat (Table 3.6). The yield of ‘AC Barrie’ was 4373 kg/ha when fungicide was 

applied at mid-flower, a 60% increase over the control treatment, which had a yield of 

2733 kg ha-1 (Table 3.7). When the fungicide was applied at stem elongation a yield 

increase of 32% was observed (3595 kg ha-1). As expected, the multiple fungicide 

application treatment had the highest yield of 4911 kg ha-1 in ‘AC Barrie’, although it was 

not statistically different from fungicide applied at mid-flower. No differences among 

fungicide application timing treatments at stem elongation, mid-flower, or early milk 

were detected for ‘CDC Imagine’, although yield of the treatment when fungicide was 

applied at mid-flower (3914 kg ha-1) was much greater than the unsprayed treatment 

(2966 kg ha-1). The mid-flower treatment was similar to the multiple application 

treatment (4248 kg ha-1). No field differences among fungicide treatments were 

detected for ‘Lillian’. 

Thousand kernel weight (g)  

There was an interaction between application timing and cultivar (P<0.0001) for 

thousand kernel weight (TKW) (Table 3.6). The TKW of the stripe rust susceptible 

cultivar ‘AC Barrie’ had a mean of 32.6 g for the unsprayed control, which increased to 

38.2 g when fungicide was applied at mid-flower and to 35.6 g when the fungicide was 
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applied at stem elongation (Table 3.7). Fungicide applied at early milk stage resulted in 

a TKW of 34.9 g, which was similar to the unsprayed treatment and the fungicide 

applied at stem elongation. As expected, the multiple application treatment had the 

highest TKW (39.3 g). For the stripe rust moderately resistant cultivar, ‘CDC Imagine’, 

the multiple fungicide application treatment (38.7 g) and fungicide applied at mid-flower 

(38 g) differed from the unsprayed control (35.7 g) and the other two fungicide 

application treatments. The TKW for the unsprayed control of cultivar ‘Lillian’ (37.4 g) 

differed from fungicide applied at mid-flower (38.7 g) and the multiple application 

treatment (39.3 g). 

Test weight (kg hL-1) 

For this group of site-years, there was an interaction between application timing and 

cultivar (P<0.0001) (Table 3.6). The TW for the control treatment ‘AC Barrie’ was 77.5 

kg hL-1 and it was increased to 79.9 kg hL-1when the fungicide was applied at mid-flower 

to 80.1 kg hL-1 with the multiple application treatment (Table 3.7). The fungicide 

applications at stem elongation and early milk increased TW to 78.8 kg hL-1 and they 

differ from fungicide applied at mid-flower and the multiple application treatment. For the 

moderately resistant cultivar ‘CDC Imagine’, there were no differences among fungicide 

application timing treatments at stem elongation and early milk compared with the 

unsprayed control (75.9 kg hL-1). Although, TW of the fungicide applied at mid-flower 

treatment (77.4 kg hL-1) was greater than the unsprayed control and similar to the 

multiple application treatment (77.5 kg hL-1). Differences between the unsprayed control 

(76.1 kg hL-1) and the multiple application treatment (77.3 kg hL-1) were detected for the 

cultivar ‘Lillian’. 
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Protein content (%) 

For this group, there was an interaction between application timing and cultivar for 

protein content (P<0.0001) (Table 3.6).  The protein content for ‘AC Barrie’ was 15.7% 

for the multiple fungicide application treatment, 15.5% for the mid-flower treatment, and 

15.1% for the stem elongation fungicide application timing, which were higher than the 

unsprayed treatment with a mean of 14.3% (Table 3.7). For the moderately resistant 

cultivar ‘CDC Imagine’, the multiple application treatment had a protein content of 

15.7%, which differed from the unsprayed treatment at 15%. No differences among 

application timings were detected for the cultivar ‘Lillian’ with protein content varying 

only between 16.6 and 16.8% (Table 3.6).  
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Table 3.7.  High stripe rust severity site-years group at the mid-May seeding date and effect of fungicide application 

timing, wheat cultivar and their interaction on stripe rust severity, yield, thousand-kernel weight (TKW), test weight (TW) 

and protein content. Cultivars: ‘AC Barrie’ (stripe rust susceptible), ‘CDC Imagine’ (moderately resistant) and ‘Lillian’ 

(resistant); fungicide application timing: unsprayed, stem elongation (GS 31), mid-flower (GS 65), early milk (GS 73), and 

multiple application control (three fungicide applications, GS 31, 65 and 73) 

Cultivar Variable/treatment Unsprayed Stem 
elongation 

Mid-flower Early milk Multiple 
application 

‘AC Barrie’ Stripe rust severity (%) 87.3  a 58.3 b     26.3 c 77.4 ab 11.4 d 

Yield (kg/ha)       2733  c     3595 b     4347 a   3091 bc 4911 a 

TKW (g) 32.6 c 35.6 b     38.2 a 34.9 bc 39.3 a 

TW (kg/hL) 77.5 c 78.8 b    79.9 a 78.8 b 80.1 a 

Protein content (%) 14.3 b 15.1 a    15.5 a 14.3 b 15.7 a 

CDC Imagine Stripe rust severity (%) 54.4 a 28.4  bc 14.3  cd 37.6 ab 4.2 d 

Yield (kg/ha)     2966 c    3362  bc  3914  ab   3365  bc 4248  a 

TKW (g) 35.7 b      36.7 b    38.0 a 36.3 b 38.7 a 

TW (kg/hL) 75.9 b 76.1 b 77.4 a  76.8 ab 77.5 a 

Protein content (%) 15.0 b 15.6  ab   15.4 ab 15.1 b 15.7 a 

Lillian Stripe rust severity (%)   1.3 a 0.5 a       0.6 a  0.1  a  0.8  a 

Yield (kg/ha)     3870 a 3930 a 4282 a 3782 a 4458  a 

TKW (g) 37.4 b      37.6 ab     38.7 a   37.9 ab 39.3 a 

TW (kg/hL) 76.1 b 76.2 b      77.0ab   76.7 ab 77.3 a 

Protein content (%) 16.6 a 16.8 a     16.6 a 16.7 a 16.8 a 

Note: treatment means followed by the same letter in each row are not significantly different according to Tukey’s test (P>0.05).
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Table 3.8. High stripe rust severity site-years at the mid-May seeding date and effect of 

fungicide application timing and wheat cultivar on leaf spot severity. Cultivars: ‘AC 

Barrie’ (stripe rust susceptible), ‘CDC Imagine’ (moderately resistant) and ‘Lillian’ 

(resistant); fungicide application timing: unsprayed, stem elongation (GS 31), mid-flower 

(GS 65), early milk (GS 73), and multiple application control (three fungicide 

applications, GS 31, 65 and 73). 

Treatment/Cultivar Leaf spot severity (%) 

Fungicide application timing 

Unsprayed control 25.1 a 

Stem elongation 21.6 a 

Mid-flower 11.1 b 

Early milk 25.4 a 

Multiple application 8.5 b 

Cultivar 

‘AC Barrie’ 18.2 ab 

‘CDC Imagine’ 14.9 b 

‘Lillian’ 21.9 a 

Note: treatment means followed by the same letter are not significantly different according to 
Tukey’s test (P>0.05). 
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3.4.2.2 Low stripe rust severity group 

 

Stripe rust severity (%) 

For the low group of site-years with little stripe rust severity there was no 

statistical interaction between cultivar and application timing (P=0.2555) or differences 

among cultivars (P=0.2360), although differences among application timings were 

detected (P=0.0445) for stripe rust severity (Table 3.6). Stripe rust severity for these 

site-years was low and at some site-years no symptoms were observed, the average 

was 5% for the unsprayed treatment (mean of the three cultivars), which was not 

different from the stem elongation and early milk treatments (Table 3.9). The mid-flower 

fungicide application differed from the unsprayed treatment from 5% to 0.3% stripe rust 

severity. No stripe rust symptoms were observed in the multiple application treatment. 

Leaf spot disease severity (%) 

There were no differences among cultivars (P=0.5421) and no interaction 

between cultivar and application timing (P=0.7214) for leaf spot severity (Table 3.6). 

There were differences among application timings (P=0.0106), but only between the 

unsprayed (5%) and multiple application treatment (10%). None of the other fungicide 

applications differed from the unsprayed treatment (Table 3.9). 

Yield effect (kg/ha)  

No interaction was detected between cultivar and application timing (P=0.9482); 

however, differences among application timings (P=0.0003) and among cultivars 

(P=0.0168) were observed for this group (Table 3.6). Among fungicide application 
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timings, the unsprayed treatment had lower yield (3857 kg/ha) than fungicide treatments 

at mid-flower (4325 kg/ha), early milk (4286 kg/ha) and the multiple application 

treatment (4484 kg/ha), none of which differed from each other (Table 3.9). The stem 

elongation timing did not differ from the unsprayed. Furthermore, ‘AC Barrie’ had a 

greater yield (4299 kg/ha) than ‘CDC Imagine’ (4089 kg/ha), but ‘CDC Imagine’ did not 

differ from ‘Lillian’ (4180 kg/ha).  

Thousand kernel weight (g) 

There was no interaction between cultivar and application timing (P=0.6084) 

(Table 3.6). Differences were detected among application timings (P<0.0001) and 

among wheat cultivars (P=0.0348). The TKW for the unsprayed treatment was 37.4 g, 

which differed from fungicide applied at mid-flower (38.5 g), fungicide applied at early 

milk stage (39 g) and the multiple application treatment (39.3 g) (Table 3.9). The stripe 

rust resistant cultivar ‘Lillian’ had higher TKW (38.7 g) than the moderately resistant 

cultivar ‘CDC Imagine’ (38.2 g), but neither ‘Lillian’, nor ‘CDC Imagine’ differed from ‘AC 

Barrie’ (38.4 g). 

Test weight (kg/hL) 

No interaction between cultivar and application timing (P=0.7544) for TW was 

detected in the low group seeded in mid-May (Table 3.6); however, differences among 

timings (P=0.0004) and among cultivars (P<0.0001) were observed for this group. 

Among the fungicide application timings, the unsprayed treatment had lower TW (79.2 

g) than fungicide treatment at mid-flower (79.9 g) or the multiple application treatment 

(79.7 g), which did not differ from each other or the early milk treatment (79.7 g) (Table 
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3.9). The stem elongation timing (79.4 g) did not differ from the unsprayed control or 

the other fungicide application timings except for the multiple application treatment. 

Moreover, ‘AC Barrie’ had a greater TW (80.7 g) than ‘CDC Imagine’ (78.9 g) and 

‘Lillian’ (79.3 g). 

Protein content (%) 

For this group, there were no differences among fungicide application timings 

(P=0.0695) and no interaction between cultivar and application timing (P=0.8097) for 

protein content (Table 3.6).  There were differences among cultivars (P<0.0001); the 

protein content of ‘Lillian’ was 15.5%, which was higher than that of ‘CDC Imagine’ 

(14.5%) or ‘AC Barrie’ (14.4%) (Table 3.9). 
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Table 3.9. Low stripe rust severity site-years at the mid-May seeding date and effect of 

fungicide application timing and wheat cultivar on stripe rust severity, leaf spot disease 

severity, yield, thousand kernel weight (TKW), test weight (TW) and protein content. 

Cultivars: ‘AC Barrie’ (stripe rust susceptible), ‘CDC Imagine’ (moderately resistant) and 

‘Lillian’ (resistant); fungicide application timing: unsprayed control, stem elongation (GS 

31), mid-flower (GS 65), early milk (GS 73), and multiple application treatment (three 

fungicide applications, GS 31, 65 and 73). 

Treatment/Cultivar Stripe rust 

severity 

(%) 

Leaf spot 

severity 

(%) 

Yield 

(kg/ha) 

TKW 

(g) 

TW 

(kg/hL) 

Protein 

content 

(%) 

Fungicide application timing     

Unsprayed  4.9 a 10.4 a 3857 c 37.4 c 79.2 c 15.0 a 

Stem elongation 3.8 a   7.8 ab 3993 bc 37.9 bc 79.4 bc 15.4 a 

Mid-flower 0.3 b   7.3 ab 4325 a 38.5 ab 79.9 ab 15.6 a 

Early milk  2.3 ab   7.1 ab 4286 ab 39.0 a 79.7 abc 15.2 a 

Multiple application 0    b   4.5 b 4484 a 39.3 a 80.1 a 15.4 a 

Cultivar             

‘AC Barrie’ ns ns 4299 a 38.4 ab 80.7 a 14.4 b 

‘CDC Imagine’ ns ns 4089 b 38.2 b 78.9 b 14.5 b 

‘Lillian’ ns ns 4180 ab 38.7 a 79.3 b 15.5 a 

Note: means followed by the same letter in each column do not differ significantly according 
to Tukey's test (P≥0.05). ns: not significant. 
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3.4.2.3 Correlations between variables measured at the mid-May seeding   

 date 

 

Pearson’s correlation coefficients were calculated using the CORR procedure of 

SAS for the two groups at the mid-May seeding date. 

High stripe rust severity site-years  

For the high group, Pearson’s correlation coefficients indicated a moderate 

inverse correlation between stripe rust severity and yield (r=-0.4534), TKW (r=-0.6390) 

and protein content (r=-0.70804) all at P<0.0001. However, the correlations were not 

significant between stripe rust severity and leaf spot severity (P=0.6842) or between 

stripe rust severity and TW (P=0.2765).  

Low stripe rust severity site-years  

Pearson’s correlation coefficients were not significant between stripe rust severity 

and leaf spot severity (P=0.7469), yield (P=0.6705), TKW (P=0.865), TW (P=0.0745) or 

protein content (P=0.1686). 

3.4.3 Early June seeding date 

Based on the stripe rust severity of the control treatment (unsprayed susceptible 

cultivar, ‘AC Barrie’), site-years were classified into ‘high’ or ‘low’ stripe rust severity 

groups (Table 3.10). The mean stripe rust severity of individual site-years comprising 

the high group ranged from 60 to 97%.  Site-years where the control treatment was 

10% or lower (no symptoms detected at Melfort) were classified as low stripe rust 

severity site-years. Disease severity for the high group was 87% for the control 

treatment, and 10% in the low group. 
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Table 3.10. High and low stripe rust severity site-year groups based on severity of the 

unsprayed treatment of ‘AC Barrie’ (susceptible) for the early June seeding date 

experiments. 

Group Site-Year 

High stripe rust severity Saskatoon 2013, 2014 and 2016 

Pike Lake 2014 and 2016 

Low stripe rust severity Saskatoon 2012 and 2015 

Pike Lake 2013 and 2015 

Melfort 2013 and 2014 

 

3.4.3.1 High stripe rust severity group 

 

Stripe rust severity (%)  

There was an interaction between cultivar and application timing (P=<0.0001) for 

stripe rust severity (Table 3.6).  The susceptible cultivar ‘AC Barrie’ had a mean stripe 

rust severity of 87% for the unsprayed control (Table 3.11). Stripe rust severity was 

reduced to 51% on ‘AC Barrie’ when fungicide was applied at mid-flower and to 54% 

when the fungicide was applied at stem elongation. As expected, the multiple 

application treatment had the lowest disease severity at 12%. The moderately resistant 

cultivar, ‘CDC Imagine’, had a mean stripe rust severity of 31% for the unsprayed 

treatment and a reduction to 20% was observed when fungicide was applied at stem 
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elongation and to 14% when fungicide was applied at mid-flower. Stripe rust severity 

was very low for the resistant cultivar ’Lilian’ for all fungicide treatments. The unsprayed 

control had a disease severity of 0.2% and fungicide treatments did not differ 

statistically from the unsprayed treatment.  

Leaf spot disease severity (%)  

There was no interaction between cultivar and application timing (P=0.1670) or 

among cultivars (P=0.3507) for leaf spot severity (Table 3.6). Differences among 

application timings were detected (P<.0001). The unsprayed treatment had the highest 

leaf spot severity at 22%; when fungicide was applied at stem elongation, the mean 

disease level was 16% and at mid-flower 13% (Table 3.12). The multiple application 

treatment had a disease severity of 10%. 

Yield response (kg/ha)  

For this group, there was an interaction between application timing and cultivar 

(P=<0.0001) for yield of wheat (Table 3.6). The yield of ‘AC Barrie’ was 3576 kg/ha 

when fungicide was applied at stem elongation, a 53% increase over the unsprayed 

treatment (2342 kg/ha) (Table 3.11). When the fungicide was applied at mid-flower a 

yield increase of 46% was observed and the yield for this treatment was 3429 kg/ha. As 

expected, the multiple application treatment had the highest yield at 4334 kg/ha. No 

statistical differences among fungicide application timing treatments at stem elongation, 

mid-flower and early milk and the unsprayed treatment were detected for ‘CDC 

Imagine’, although the yield of the treatment when fungicide was applied at mid-flower 

(3767 kg/ha) appeared to be much greater than the unsprayed treatment (3202 kg/ha). 
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The multiple application treatment had a yield of 4191 kg/ha and was significantly higher 

than the other treatments. No differences among fungicide treatments were detected for 

the cultivar Lillian. 

Thousand kernel weight (g) 

For this group there was an interaction between cultivar and fungicide 

application timing (P<0.0001) for TKW (Table 3.6). The TKW of the stripe rust 

susceptible cultivar ‘AC Barrie’ had a mean of 30.5 g for the unsprayed treatment, 

which was greatly increased when the fungicide was applied at mid-flower (35.3 g) and 

by the multiple application treatment (37.7 g) (Table 3.11). Fungicide treatments at the 

early milk stage of wheat (32.5 g) and stem elongation (33.9 g) were similar to the 

unsprayed treatment. The multiple application treatment for ‘CDC Imagine’ had a TKW 

of 36.4 g, which differed from the fungicide application treatments at stem elongation 

(35.1 g), early milk (35.2 g), mid-flower (36 g) and the unsprayed treatment (34.6 g). 

For ‘Lillian’, the TKW for the unsprayed treatment of 35.9 g differed only from the 

multiple application treatment at 38 g.  

Test weight (kg hL-1) 

There was no interaction between wheat cultivar and application timing (P=0.1614) 

for TW; however, differences among timings (P=0.0161) and among cultivars 

(P<0.0001) were observed (Table 3.6). Among the fungicide application timings, the 

unsprayed treatment had a TW of 77.3 kg/hL-1, which was slightly less than fungicide 

treatment at mid-flower (77.9 kg/hL-1) (Table 3.12). Furthermore, ‘AC Barrie’ had 

greater TW (79.1 kg/hL-1) than ‘CDC Imagine’ (76.6 kg/hL-1) or ‘Lillian’ (76.7 kg/hL-1). 



48 
 

Protein content (%) 

For the high group, there was an interaction between cultivar and fungicide 

application timing (P=0.0019) for protein content of wheat (Table 3.6). For ‘AC Barrie’, 

the unsprayed treatment had the lowest protein content at 13.1%, compared with 

fungicide application timings at mid-flower or stem elongation (both 13.9%) (Table 

3.11). The multiple application treatment had the highest protein content at 14.8%. For 

‘CDC Imagine’, the multiple application treatment was 14.6% and differed only from the 

unsprayed treatment at 13.5%. No differences among fungicide application treatments 

at stem elongation (14.3%), mid-flower (14.2%) or early milk (14.2%) wheat growth 

stages nor from the unsprayed treatment were detected. Furthermore, for the resistant 

cultivar ‘Lillian’ no difference among application timings were detected. 
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Table 3.11.  High stripe rust severity site-years at the early June seeding date and effect of fungicide application timing, 

wheat cultivar and their interaction on stripe rust severity, yield, thousand-kernel weight (TKW) and protein content. 

Cultivars: ‘AC Barrie’ (stripe rust susceptible), ‘CDC Imagine’ (moderately resistant) and ‘Lillian’ (resistant); fungicide 

application timing: unsprayed treatment, stem elongation (GS 31), mid-flower (GS 65), early milk (GS 73), and multiple 

application control (three fungicide applications, GS 31, 65 and 73). 

Cultivar Variable Unsprayed 
control 

Stem 
elongation 

Mid-flower 
Early  
milk  

Multiple 
application 

‘AC Barrie’ Stripe rust severity (%)     87.1 a     54.2 b     50.6 bc     86.8 a     11.5 c 

Yield (kg/ha)    2342 d    3576 b    3429 bc    2788 cd       4334 a 

TKW (g)     30.5 c     33.9 bc     35.3 b     32.5 c     37.7 a 

Protein content (%)     13.1 c     13.9 b     13.9 b     13.1 c     14.8 a 

‘CDC 
Imagine’ 

Stripe rust severity (%)     30.9 ab     20.2 ab     13.7 bc     33.2 a       4.5 c 

Yield (kg/ha)    3202  b    3525 ab    3767 ab    3315 b       4192 a 

TKW (g)     34.6  b     35.1 b     36.0 ab     35.2 b     36.4 a 

Protein content (%)     13.5  b     14.3 ab     14.2 ab     14.2 ab     14.6 a 

‘Lillian’ Stripe rust severity (%)       0.2  a       0.2 a       0    a       0.2 a        0    a 

Yield (kg/ha)    3339  a    3329 a    3561 a    3439 a       3741 a 

TKW (g)     35.9  b     36.6 ab     37.5 ab     36.8 ab      38.0 a 

Protein content (%)     15.3  a     15.6 a     15.4 a     16.0 a    15.9 a 

Note: treatment means followed by the same letter in each row are not significantly different according to Tukey’s test (P>0.05).
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Table 3.12. High stripe rust severity site-years at the early June seeding date and effect 

of fungicide application timing and wheat cultivars on leaf spot disease severity and test 

weight (TW). Cultivars: ‘AC Barrie’ (stripe rust susceptible), ‘CDC Imagine’ (moderately 

resistant) and ‘Lillian’ (resistant); fungicide application timing: unsprayed treatment, 

stem elongation (GS 31), mid-flower (GS 65), early milk (GS 73), and multiple 

application treatment (three fungicide applications, GS 31, 65 and 73) 

Treatment/Cultivar Leaf spot severity  

(%) 

TW  

(kg/hL) 

Fungicide application timing 

Unsprayed 21.8 a 77.3 b 

Stem elongation 15.8 b 77.3 b 

Mid-flower 13.3 bc 77.9 a 

Early milk  17.5 ab 77.0 ab 

Multiple application   9.9 c 77.8 ab 

Cultivar     

‘AC Barrie’ ns 79.1 a 

‘CDC Imagine’ ns 76.6 b 

‘Lillian’ ns 76.7 b 

Note: means followed by the same letter in each column are not significantly 
different according to Tukey’s test (P>0.05). ns: not significant. 
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3.4.3.2 Low stripe rust severity group 

 

Stripe rust severity (%) 

In the low group there were differences among fungicide application timings and 

among cultivars (P<0.0001) for stripe rust severity (Table 3.6). The unsprayed treatment 

for ‘AC Barrie’ had 10% stripe rust, which was reduced when fungicide was applied at 

mid-flower (1%) and at stem elongation (2%) (Table 3.13).  For the moderately resistant 

cultivar, ‘CDC Imagine’, low stripe rust severity was observed in the unsprayed control 

(3%) and decreased with the fungicide application timings (to 1% and 0%). No stripe 

rust was observed on the resistant cultivar ‘Lillian’. 

Table 3.13.  Low stripe rust severity site-years at the early June seeding date and effect 

of fungicide application timing, wheat cultivar and their interaction on stripe rust severity 

(%). Cultivars: ‘AC Barrie’ (stripe rust susceptible), ‘CDC Imagine’ (moderately resistant) 

and ‘Lillian’ (resistant); fungicide application timing: unsprayed treatment, stem 

elongation (GS 31), mid-flower (GS 65), early milk (GS 73), and multiple application 

control (three fungicide applications, GS 31, 65 and 73). 

Cultivar Unsprayed 
Stem 

elongation 
Mid-

flower 
Early 
milk 

Multiple 
application 

‘AC Barrie’ 9.8 a 2.4 c 1.0 cd 7.5 ab 0.3 d 

‘CDC Imagine’ 2.8 a 0.7 b 0.1 b 2.7 a 0.1 b 

‘Lillian’ 0.1 a 0.6 a 0.1 a 0.1 a 0.2 a 

Note: treatment means followed by the same letter in each row are not significantly 
different according to Tukey's test (P>0.05). 

 



52 
 

Leaf spot disease severity (%) 

 No differences among cultivars (P=0.2077) and no interaction between cultivar 

and application timing were observed (P=0.3727) for leaf spot severity (Table 3.6). 

Differences among fungicide application timings between unsprayed and multiple 

application treatment were detected (P=0.0204) (Table 3.14). 

Yield response (kg ha-1) 

No interaction between cultivar and application timing was detected (P=0.9042). 

Differences among fungicide application timings (P=0.0028) and among wheat cultivars 

(P=0.0033) were observed (Table 3.6). No differences were detected between the 

unsprayed treatment (3443 kg ha-1), and the fungicide applications timings at stem 

elongation (3747 kg ha-1), mid-flower (3908 kg ha-1) or early milk (3647 kg ha-1); 

however, the unsprayed treatment did differ from the multiple application treatment 

(4285 kg ha-1). The yield of ‘AC Barrie’ (4023 kg ha-1) was higher than ‘Lillian’ (3599 kg 

ha-1), but not different from’ CDC Imagine’ (3796 kg ha-1) (Table 3.14). 

Thousand kernel weight (g) 

There were no interactions between cultivar and application timing (P=0.2478) 

for TKW. Differences among application timings and among wheat cultivars (P<0.0001) 

were detected (Table 3.6). The TKW for the unsprayed treatment (36.4 g) did not differ 

from fungicide application at stem elongation (37.3 g) or at early milk (37.2 g). The 

multiple application treatment (39.1 g) and the application at mid-flower (37.8 g) 

differed from the unsprayed treatment, however. Additionally, the susceptible cultivar 
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‘AC Barrie’ and the resistant cultivar ‘Lillian’ had higher TKW at 37.8 g compared with 

‘CDC Imagine’ 37 g (Table 3.14). 

Test weight (kg hL-1) 

No interaction between cultivar and application timing (P=0.9383) was detected for TW; 

however, differences among timings and among cultivars (P<0.0001) were observed for 

the high group (Table 3.6). Among the fungicide application timings, the unsprayed 

treatment had lower TW (78 kg hL-1) than fungicide treatments at mid-flower (78.8 kg 

hL-1) or the multiple application treatment (79.3 kg hL-1). Additionally, ‘AC Barrie’ had 

greater TW (80 kg/hL) than ‘CDC Imagine’ (77.6 kg hL-1), and both differed from ‘Lillian’ 

(78.3 kg hL-1) (Table 3.14). 

Protein content (%)  

No interaction between cultivar and application timing (P=0.3022) for protein 

content was detected (Table 3.6); however, differences among wheat cultivars 

(P<.0001) and fungicide application timings (P=0.001) were observed. The unsprayed 

treatment at 14.7% differed only from the multiple application treatment at 15.6%; no 

differences among the application timings at stem elongation (15.3%), mid-flower 

(15.3%) and early milk (15.1%) were detected. Additionally, the cultivar ‘Lillian’ had a 

high protein content of 15.6% compared with the other two cultivars both at 15% (Table 

3.14). 
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Table 3.14 Low stripe rust severity site-years at the early June seeding date and 

effect of fungicide application timing and wheat cultivar on leaf spot disease 

severity, yield, thousand kernel weight (TKW), test weight (TW) and protein 

content. Cultivars: ‘AC Barrie’ (stripe rust susceptible), ‘CDC Imagine’ (moderately 

resistant) and ‘Lillian’ (resistant); fungicide application timing: unsprayed treatment, 

stem elongation (GS 31), mid-flower (GS 65), early milk (GS 73), and multiple 

application treatment (three fungicide applications, GS 31, 65 and 73). 

Treatment/Cultivar Leaf spot 

severity  

(%) 

Yield 

(kg/ha) 

TKW  

(g) 

TW 

(kg/hL) 

Protein 

content 

(%) 

Fungicide application timing 

Unsprayed  16.7 ab 3443 b 36.4 c 78.0 c 14.7 b 

Stem elongation 18.9 a 3747 ab 37.3 bc 78.6 bc 15.3 ab 

Mid-flower 11.4 b 3908 ab 37.8 b 78.8 b 15.3 ab 

Early milk  19.8 a 3647 b 37.2 bc 78.5 bc 15.1 ab 

Multiple application 12.9 b 4285 a 39.1 a 79.3 a 15.6 a 

Cultivar       

‘AC Barrie’ ns 4023 a 37.8 a 80.0 a 15.0 b 

‘CDC Imagine’ ns 3796 ab 37.0 b 77.6 c 15.0 b 

‘Lillian’ ns 3599 b 37.8 a 78.3 b 15.6 a 

Note: means with the same letter in each column are not significantly different according to 
Tukey’s test (P>0.05). ns: no significant effect 
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3.4.3.3 Correlations among variables measured at the early June seeding date 

 

Pearson’s correlation coefficients were calculated using the CORR procedure of 

SAS for the two groups at the early June seeding date. 

High stripe rust severity   

For the high group the Pearson’s correlation coefficient indicated a weak to 

moderate inverse correlation between stripe rust severity and yield (r=-0.32224, 

P<0.0001), and a moderate to strong negative correlation between stripe rust severity 

and TKW (r=-0.65179; P<0.0001) and between stripe rust severity and protein content 

(r=-0.50106, P<0.0001) and there was a low correlation between stripe rust and TW 

(r=0.28208, P<0.0001). There was no correlation between stripe rust severity and leaf 

spot severity (P=0.2036). 

Low stripe rust severity 

For this group the Pearson’s correlation coefficients suggested a weak to 

moderate inverse correlation between stripe rust severity and yield (r=-0.3209, 

P<0.0001) and a low correlation between stripe rust with TKW (r==0.26066, P<0.0001) 

There was no correlation between stripe rust severity and leaf spot severity (P=0.3173), 

stripe rust severity with TW (P=0.5977) or stripe rust severity with protein content 

(P=0.1686). 
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3.5 Discussion 

 

  Stripe rust of wheat has a detrimental effect on yield and quality when 

susceptible cultivars are grown (Chen 2014). The use of DMI fungicides (Group 3) can 

reduce disease severity and increase yield in wheat cultivars when applied alone or 

when more than one active ingredient within that group are combined, such as 

tebuconazole, prothioconazole and propiconazole (Jorgensen et al. 2018, Lopez et al. 

2015, Barro et al 2017).  The application of tebuconazole alone can offer a high level of 

protection of the leaf area due to its slow degradation, thus providing a long period of 

plant protection from leaf diseases (Lehoczki‐Krsjak 2013).  This was observed in my 

field trials when tebuconazole was applied at site years with high stripe rust severity.  

Both stripe rust and leaf spot severity were reduced compared with the unsprayed 

treatment of each cultivar. However, fungicide application treatments had no effect on 

stripe rust severity, but some effect was shown on yield when disease pressure was low 

or at trace levels. It was observed that at site-years with low disease pressure, 

environmental factors, such as precipitation were below normal and temperatures 

above normal during the months of May to July. Conditions such as warm nights and 

low humidity likely played a role at site-years with low stripe rust severity during the 

growing season (Chen, 2005).  

 If environmental conditions are conducive for the development of stripe rust 

during the field season, yield losses may occur on susceptible and moderately resistant 

cultivars without fungicide application. Several studies have demonstrated this. For 

example, in 40 field trials over 2 years in 10 European countries, fungicide application of 

four azole fungicides were made on winter wheat to control Septoria leaf blotch, stripe 
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rust and leaf rust (Jorgensen et al. 2018). The fungicides applied at the flag leaf stage 

provided effective control of stripe rust (80 to 90% reduction in symptoms) in 10 site-

years when the disease was present, and yield increased between 19 to 32% as a 

result of the treatments. In South Africa in the late 1990s, fungicide application of 

tebuconazole and propiconazole at the flag leaf stage to control stripe rust in winter and 

spring wheat increased yield from 7 to 56% on stripe rust susceptible wheat cultivars 

(Boshoff et al. 2002). My results support previous reports that fungicides applied on the 

susceptible or moderately resistant wheat cultivars improved yield by 32 to 60% 

compared with the unsprayed control when stripe rust severity was high. 

 The crop growth stage at the time of fungicide application and the number of 

fungicide applications were critical to reduced stripe rust severity in my study.  When 

stripe rust severity was high, a single fungicide application made at mid-flower or at 

stem elongation growth stages (GS 65 - GS31) to the susceptible cultivar ‘AC Barrie’ or 

to the moderately resistant cultivar ‘CDC Imagine’ greatly reduced severity of stripe rust. 

This effect was greater at the mid-May seeding date compared with the early June 

seeding date. When the fungicide was applied to the stripe rust resistant cultivar ‘Lillian’ 

in high stripe rust severity site-years seeded mid-May, there was no effect on stripe rust 

at either growth stage because little disease occurred. However, yield of ‘Lillian’ was 

increased when the fungicide was applied compared with the unsprayed control. This 

can be explained by the leaf spots that occurred on this stripe rust resistant cultivar, 

which happened to be moderately susceptible to leaf spots.  

 The multiple application treatment reduced stripe rust symptoms on the 

susceptible and moderately resistant cultivars in the site-years with high stripe rust 
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severity at either seeding date.  However, whether this increase would be economically 

beneficial for a farmer requires further economic study to investigate the return on 

investment for more than a single application of fungicide. Multiple applications would 

have a negative economic impact for growers under low stripe rust or leaf spot severity. 

In Alberta, Kumar et al. (2019), reported that a single fungicide application of 

propiconazole (Tilt®) to wheat when stripe rust was observed at late heading stage 

(GS59) generally reduced stripe rust symptoms and increased yield under high to 

moderate levels of disease severity on susceptible cultivars in naturally infected field 

tests. In Portugal, Gomes et al. (2018) applied a foliar fungicide (a.i. bixafen and 

prothioconazole) twice, at stem elongation (GS31) and at booting stage (GS44) and 

reported reduced stripe rust severity and increased yield of up to 70% on susceptible 

wheat cultivars. However, if the fungicide was applied to cultivars with a moderately 

resistant and /or slow rusting response, a single fungicide application at stem elongation 

(GS34) was enough to control stripe rust and increase yield.  

 Most wheat produced is for human consumption; thus, quality is an important 

factor (Shewry and Hey 2015). The main effect of a foliar fungicide is to maintain green 

leaf area, which is critical for kernel development and grain fill, and desirable for flour 

extraction in milling (Rosewarne et al. 2006). In my study, both TKW and TW were 

improved when the fungicide was applied at both stem elongation and at mid-flower 

growth stages on the susceptible stripe rust cultivar ‘AC Barrie’ and on the moderately 

resistant cultivar ‘CDC Imagine’ in site-years where disease pressure was high. These 

seed quality factors were improved even when stripe rust pressure was low at both 

seeding dates.  A similar trend was reported by Chen (2014), with an increase in TW of 
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close to 2% on spring wheat cultivars after fungicide application at flowering and boot 

stages. Kumar et al. (2019) also reported increased TKW and TW when fungicide was 

applied to susceptible and moderately resistant cultivars. Similarly, fungicide application 

to control stripe rust on the susceptible cultivar increased protein content at both 

seeding dates compared with the unsprayed control. This increase in protein content 

was observed when the fungicide was applied at mid-flower and at stem elongation 

stages when disease pressure was high. However, for the moderately resistant and 

resistant cultivar protein content did not differ.  

 The cultivar response to fungicide application largely depended on the stripe rust 

resistance level of the cultivar. For instance, the stripe rust susceptible cultivar ‘AC 

Barrie’ had the largest responses to fungicide in terms of reduction of stripe rust severity 

and improvement in yield and quality. This cultivar does not have any known stripe rust 

resistance genes, but it was one of the most popular CWRS cultivars grown in the 

prairies for many years because of its high yield and protein content, and because 

growers appreciated its short, strong straw (McCallum and DePauw 2008). The cultivar 

‘CDC Imagine’ has moderate resistance to stripe rust; however, there was an increase 

in yield and quality when fungicide was applied, although not as much as for ‘AC Barrie’. 

Cultivar ‘CDC Imagine’ carries the important adult plant resistance gene Yr18, which 

confers partial resistance to stripe rust and has been widely used in Canadian cultivars 

and breeding programs (McCallum et al. 2012). This pleiotropic APR gene is also 

known as Lr34, Sr57 and Pm38 because it confers resistance to other pathogens 

including Puccinia triticina, Puccinia graminis f. sp. tritici and Erysiphe graminis causal 

pathogens of leaf rust and powdery mildew. Resistance is enhanced when Yr18 
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interacts with other unlinked genes as is the case for the resistant cultivar “Lillian'', 

which carries the APR genes Yr18 and Yr36 (Randhawa et al. 2012). In addition, some 

researchers have suggested that this resistant cultivar may carry other unknown 

resistance genes against the most prevalent races in western Canada (Brar and 

Kutcher 2016). The gene Yr36 has been linked to the high grain protein content gene 

Gpc-B1, which could explain the protein content in my study.  Even though the protein 

levels of the stripe rust susceptible and moderately resistant cultivars increased when 

the fungicide was applied, the protein content of the resistant cultivar ‘Lillian’ was 

highest. 

 The use of a fungicide to control stripe rust of wheat was affected by seeding 

date in this study. When wheat was seeded in mid-May and stripe rust infection was 

severe, the effect on yield and stripe rust severity was greatest if the fungicide was 

applied at the mid-flower stage on susceptible and moderately resistant wheat cultivars. 

These results agree with De Wolf et al. (2012) from Kansas, who stated that foliar 

fungicide applications in between flag leaf emergence and anthesis (flowering) growth 

stages to control stripe rust are effective because it is at these stages that the plant 

uses energy for grain development and yield formation. However, in my study, when the 

wheat was planted late (early June) and stripe rust severity was high, fungicide 

application at stem elongation had the same effect as an application at mid-flower 

stage. This effect can be attributed to an early onset of the disease in relation to crop 

growth stage; the severity of stripe rust infection on the lower leaves of wheat planted in 

early June was higher than on plants seeded in mid-May. These observations from our 

field study are in line with Braithwaite et al. (1998), who indicate that if stripe rust was 
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observed after heading the most effective time to control stripe rust was at the flowering 

stage (GS65) rather than at the stem elongation stage. This indicates that the time of 

onset of stripe rust is critical when defining the optimum growth stage for an effective 

fungicide application to control the disease. 

 In summary, this study demonstrated that the application of a foliar fungicide may 

be beneficial to protect moderately resistant and susceptible cultivars when there is the 

potential for severe stripe rust. A single fungicide application at mid-flower on 

susceptible and moderately resistant bread wheat cultivars seeded in mid-May in 

central-Saskatchewan had beneficial effects on yield and other factors such as TW, 

TKW and protein content under high stripe rust severity conditions. However, if the 

same susceptible and moderately resistant cultivars were seeded in early June and 

there was high stripe rust severity, fungicide application timing was equally beneficial at 

the stem elongation and the mid-flower growth stages of wheat. There was no benefit to 

applying fungicide to the resistant cultivar regardless of seeding date. The use of 

resistant cultivars should be one of the main considerations for wheat growers before 

planting as the use of a fungicide should be avoided or limited to reduce input costs and 

impact on the environment. These results should be useful to help western Canadian 

wheat growers make practical decisions on when to apply fungicides to control stripe 

rust with consideration for seeding date, growth stage and environmental conditions, as 

well as the history of stripe rust occurrence on their farm.  
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CHAPTER 4 

4. INHERITANCE OF RESISTANCE TO STRIPE RUST (CAUSED BY Puccinia 

striiformis f. sp. tritici) IN TWO CROSSES OF SPELT AND SPRING WHEAT 

4.1  Introduction  

Stripe rust caused by Puccinia striiformis f. sp. tritici is one of the most 

devastating diseases of wheat, particularly in cool and temperate areas of the world. 

Favorable environmental conditions for the development of stripe rust can significantly 

reduce yield and quality in susceptible wheat cultivars (Chen et al. 2002). The most 

common control measures are the use of resistant wheat cultivars and the application of 

foliar fungicides (Chen 2005). 

Breeding for resistance is the most environmentally and economically effective 

approach to control stripe of wheat (Line and Chen 1995). However, it is an ongoing 

task to breed for stripe rust resistance because resistant cultivars usually do not remain 

resistant for long. The period of time a cultivar maintains effective resistance depends 

on the frequency of virulence shifts in the Pst populations.  Currently, there are close to 

80 officially designated Yr genes in wheat; some of these genes are expressed at all 

growth stages (ASR), and are race-specific and follow the gene-for-gene theory of host-

pathogen interactions. Others are adult plant resistance genes (APR), which are 

expressed at the adult plant stage. This resistance is non-race specific (Cloutier 2007; 

McIntosh 1992). Rapid virulence changes in the pathogen population can overcome the 
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resistance of cultivars and result in epidemics. Race characterization of 59 Pst isolates 

from western Canada by Brar and Kutcher (2016) found 33 races (31%), of which race 

C-PST-1 was the most frequently detected.  It is avirulent on genes Yr1, Yr5, Yr10, 

Yr15, Yr24/26, YrSP, YrTye, and Hybrid 46; C-PST-2 was less frequently detected (7%) 

and was avirulent on Yr1, Yr5, Yr10, Yr15, Yr24/26, Yr32, YrSP, YrSu, YrTye, Hybrid 

46, Nord Deprez, and Lillian.  

Spelt (Triticum aestivum ssp. spelta) is one of the oldest sub-species of wheat; 

commercial cultivars of spelt have been developed based on its health benefits and high 

nutritional value. It has been included in varietal development breeding programs 

because it has a unique genetic composition that it makes it easy to cross with bread 

wheat.  It is a source of important traits for bread wheat, such as high grain quality and 

resistance to pathogens such as Pst (Packa et al. 2019).  The gene Yr5 was derived 

from T. spelta var. album, a hexaploid wheat that has been reported to confer 

resistance to almost all isolates of Pst world-wide and its combination with other ASR 

and APR genes should provide effective and durable resistance to stripe rust (Kema 

1992b).  

4.2    Hypothesis and objectives 

4.2.1 Hypothesis 

 Stripe rust resistance in the crosses of spelt (T. aestivum subp. spelta) with 

bread wheat (T. aestivum) is simply inherited. 
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4.2.2 Objective 

Determine the inheritance of adult plant resistance to stripe rust derived from two spelt 

crosses x bread wheat under controlled conditions. 

4.3   Materials and methods 

4.3.1 Plant material 

The experimental plant material comprised F2:3 breeding lines obtained from two 

stripe rust resistant spring spelt genotypes (‘CDC Silex’ and 10Spelt17) and the 

susceptible stripe rust bread wheat cultivar ‘Avocet’. The spelt parent lines had high yield, 

early maturity, resistance to leaf rust, and other inherent spelt wheat traits such as 

susceptibility to stem rust and the requirement for dehulling. The crosses were made in 

2014. The F1 generation was grown in 2015 and each plant harvested separately to form 

6 populations per cross. Per population, 150-200 F2 seeds were grown in the greenhouse 

and three weeks later hand transplanted to the field. Seventy-two F2 adult plants were 

harvested individually per cross and screened for stripe rust resistance at the adult plant 

stage to verify segregation in the F2:3 generation. 

4.3.2 Inoculum production  

From a set of Pst isolates collected from the Cereal and Flax Pathology program 

at the University of Saskatchewan, one isolate, W003, was selected to test the material. 

This isolate belongs to race C-PST-2, which is the second most frequently identified race 

in the Brar and Kutcher (2016) study.  The isolate was collected in Kinley Saskatchewan 

in 2011 by the Cereals and Flax laboratory of the University of Saskatchewan.  

The susceptible cultivar ‘Avocet’ was used for inoculum production. Nine kernels 

were sown in 10-inch pots containing potting mix and kept in a rust-free growth cabinet 
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with a photoperiod of 16 hours and a day-time temperature of 21ºC and a night-time 

temperature of 16ºC. At the second leaf stage the plants were inoculated with a 

suspension of W003 urediniospores and mineral oil (Bayol®️) inside gelatin caps to 

disperse the mix evenly across the leaf area using a compressed air inoculator and a 

small compressor. The plants were left to dry for 2 hours at room temperature and placed 

in a humidity chamber at 10ºC for 24 hours in the dark at 100% RH. Plants were then 

transferred to a growth chamber with a photoperiod of 16 hours and day and night 

temperatures of 17 and 10ºC, respectively. Sporulation occurred 14 days after 

inoculation and the spores were harvested daily by tapping the leaves gently over 

aluminum foil and dried for 24 hours in a desiccator with silica gel beads and stored in 

plastic vials at -80ºC until use. Once the urediniospores were ready to be used, they 

were heat-shocked in a water bath for 5 minutes at 40ºC to break dormancy. 

4.3.3 Screening procedures  

A total of 18 F3 adult plants per cross/population were tested including the two spelt 

and bread wheat parental lines, ‘10Spelt17’, ‘CDC Silex” and ‘Avocet’, as well as four 

bread wheat cultivars varying in stripe rust resistance as controls, ‘AC Barrie' (S), 'CDC 

Imagine' (MR), 'Lillian' (R) and ‘Avocet-Yr5’ (R). The material was sown in 1-gallon pots 

with three plants in each and arranged in the growth chamber with a photoperiod of 16 

hours and 21 / 16ºC day/night temperatures. The flag and penultimate leaves were 

inoculated with 100 ul of spore suspension per leaf once the flag leaf was fully extended, 

approximately at booting stage (GS45) with the Pst isolate W003 using the procedure 

described previously.. Disease severity and infection type assessments were conducted 

weekly on each plant beginning when the susceptible checks showed symptoms of stripe 
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rust, until the susceptible check reached 80 to 100% disease severity on the Modified 

Cobb’s scale (Peterson et al., 1948) on both flag and penultimate leaves.  

4.3.4 Data analysis 

To determine whether the data fit the ratios for one or two loci conferring 

resistance to stripe rust, the Chi -Square test using the Yates correction equation was 

used to determine the goodness of fit.  

4.4  Results 

The parental spring spelt lines showed high resistance to isolate W003 with no or 

trace levels of stripe rust severity. The susceptible cultivars ‘AC Barrie’ and the parental 

line ‘Avocet’ had stripe rust severities of 85 and 89%, respectively. Based on CDC 

Imagine, which carried gene Yr18 conferring moderate resistance to stripe rust, lines 

were accepted as resistant when the disease severity was ≤ 20% (Figure 4.1). 
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Fig. 4.1. Stripe rust severity of check cultivars and parental lines evaluated at the adult 

plant stage after inoculation with Puccinia striiformis f. sp. tritici race C-PST-2 (isolate 

W003). 

 

 The evaluation of the progenies in the F2:3 generation for the crosses ‘Silex’ X 

‘Avocet’ and ‘10Spelt17’X ‘Avocet’ exhibited stripe rust resistance to Pst  race C-PST-2 

(isolate W003) with observed population means of 69 and 71 showing some grade of 

resistance respectively (Table 4.1).  
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Table 4.1. Disease reaction of F2:3 progenies from crosses of spelt lines (CDC Silex and 

10Spelt17) and spring wheat (Avocet) to Puccinia striiformis f. sp. tritici race C-PST-2 

(isolate W003); critical X2 value = 3.8441.   

Cross Stripe rust 

reaction 

Expected 

Ratio 

Expected Observed Chi-

Square 

P value 

Silex X 

Avocet 

Ra 3 54 69  17.241 <0.0001 

Sb 1 18 3   

Total     72    

R 15 67.5 69  0.904 0.3417 

S 1 4.5 3   

Total     72    

10Spelt17 X 

Avocet 

R 3 54 71  22.555 <0.0001 

S 1 18 1   

Total     72    

R 15 67.5 71  3.688 0.0547 

S 1 4.5 1   

Total     72    

a - resistant reaction; b - susceptible reaction. 

 

Based on a significance level of 5% and critical Chi-square (X2) value of 3.8441, 

stripe rust resistance in the crosses did not fit a 3:1 ratio but were consistent with a 15:1 

ratio indicating that it is possible that there are at least two loci conferring adult plant 

resistance in these crosses of spring spelt and bread wheat. 

4.5   Discussion 

  

 The use of resistant cultivars is the most effective and environmentally friendly 

method to control stripe rust. All stage resistance to stripe rust is non-durable and race-
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specific. Rapid development of new races of the pathogen can cause epidemics due to 

the narrow genetic diversity of most wheat cultivars (Gao et al. 2011). The use of other 

sources of resistance to stripe rust can increase diversity as is the case for spelt (Triticum 

aestivum ssp. spelta), which has the well known and excellent ASR gene, Yr5, that is 

avirulent to all known races of stripe rust in Canada (Yan et al. 2003).  

 This study demonstrated the nature of APR to stripe rust in the two spelt 

genotypes CDC Silex and 10Spelt17, which were crossed with a susceptible bread 

wheat cultivar. Few studies have determined the inheritance of adult plant stripe rust 

resistance in spelt. Kema (1992b) tested seven European and Iranian spelt wheat 

accessions hybridized with a susceptible bread wheat cultivar to study the genetics of 

resistance to stripe rust at the seedling stage.  Six of these accessions tested with 

several Pst races at the F1, F2 and BC1F1 stages were found to carry a monogenic mode 

of resistance attributed to the geneYr5 from T. aestivum ssp. spelta. However, the 

response to each race was variable for some crosses in the F2 revealing no susceptible 

plants, and in other cases segregation for two independent dominant resistance factors, 

similar to what I observed in my study. The inheritance of resistance will depend on the 

Pst race and the parents of the cross.  

 The goodness of fit of my F2:3 lines to a 15:1 ratio suggests that the genotypes 

CDC Silex and 10Spelt 17 each possess two genes controlling stripe rust resistance to 

race C-PST-2. It is possible that the genotypes used in this study have a combination of 

other effective and non-race specific adult plant resistance genes. However, there is a 

need for further testing with additional races and different populations from these crosses 

to determine the genes conditioning this adult plant resistance to stripe rust. 
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CHAPTER 5 
 

5 GENERAL DISCUSSION AND FUTURE WORK 

 

Stripe rust of wheat can have a detrimental effect on yield and quality. This disease 

commonly occurs in spring and winter wheat cultivars grown in Saskatchewan when 

environmental conditions are conducive. Fungicide applications are an effective solution 

to control this disease when susceptible cultivars are grown (Chen 2014). The focus of 

this project was to determine the effect of tebuconazole fungicide applied to three bread 

wheat cultivars that varied in susceptibility to stripe rust from susceptible to resistant. 

Fungicide was applied at three growth stages and included an unsprayed control and a 

multiple application treatment.  Two experiments that differed in seeding date (mid-May 

and early June) were established at each of 11 site-years. Site-years were divided into 

two groups (high and low) based on stripe rust severity of the unsprayed susceptible 

cultivar ‘AC Barrie’. When environmental conditions were conducive for the 

development of the disease, high stripe rust pressure was observed in the mid-May 

seeding date. A single fungicide application at mid-flower growth stage of wheat (GS65) 

decreased disease severity in the susceptible cultivar ‘AC Barrie’ and the moderately 

resistant cultivar ‘CDC Imagine’, compared with the unsprayed treatments of these 

cultivars. There was a significant increase in yield, test weight, thousand kernel weight 
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and protein content of each cultivar. Furthermore, when the experiment was seeded in 

early June and there was high stripe rust pressure, a single fungicide application at 

stem elongation stage had the same effect as an application at mid-flower stage. Stripe 

rust severity was reduced on both the susceptible and moderately resistant cultivars; 

however, yield and quality were improved only for the susceptible cultivar, not the 

moderately resistant cultivar. This effect was attributed to the onset of the disease at 

early crop growth stages. At the same time, for the site-years where the disease 

pressure was low, fungicide application treatments had little effect on stripe rust 

symptoms or yield. Low stripe rust severity site-years were associated with low 

precipitation and higher than normal temperatures during the growing season, 

particularly the months of May to July.  

For the resistant wheat cultivar ‘Lillian’ there was no effect of fungicide 

application due of the low levels of stripe rust in the field. However, there was an 

increase in yield, which can be explained by reduced leaf spot severity due to the 

fungicide application that occurred on this cultivar, which happens to be moderately 

susceptible to the leaf spot complex. The multiple fungicide application treatment had 

the greatest reduction in stripe rust severity, and increased grain yield and quality of the 

susceptible cultivar in the site-years with high stripe rust severity at either seeding date.  

The cost of the fungicide tebuconazole is $32.48 ha-1 for the product and 

approximately $14.82 ha-1 for the application cost for a total of $47.30 ha-1 (Jason 

McMartin, Bayer CropScience representative, personal communication April, 2021). In 

this study, the single fungicide application at mid-flowering and the multiple application 

treatment increased yield by 1614 and 2178 kg ha-1, respectively compared with the 
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unsprayed treatment for the susceptible cultivar ‘AC Barrie’ in the high stripe rust 

severity group when seeded in mid-May. Considering a wheat price of $262 per metric 

tonne, this resulted in additional income of $451.47 ha-1 and in the case of a multiple 

fungicide application an additional income of $581.87 ha-1. Similarly, when the fungicide 

was applied at the stem elongation stage in the early June seeding date to the 

susceptible cultivar ‘AC Barrie’, yield increased by 1234 kg ha-1 compared with the 

unsprayed control, with additional income of $341.27 ha-1. The multiple fungicide 

application treatment increased yield by 1992 kg ha-1 resulting in additional income of 

$527.93 ha-1. 

However, when the fungicide was applied to the moderately resistant cultivar 

‘CDC Imagine’, multiple applications were not worth the cost compared with a single 

application at mid-flowering or at stem elongation. Therefore, a single fungicide 

application and multiple applications could be profitable when a susceptible bread 

wheat cultivar is grown and there is high disease pressure in the field. A single fungicide 

application may be cost effective when a moderately resistant cultivar is grown. 

However, these costs are associated only with the fungicide application so the net 

return from growing wheat depends on each farmer’s situation and practices and other 

costs may need to be considered.  

These results should be useful to develop recommendations for fungicide 

application timing and cultivar selection that will optimize economic returns for growers, 

and for growers to make practical and environmentally friendly decisions on when to 

apply fungicides to control stripe rust. Consideration should also be given to seeding 



73 
 

date, growth stage and environmental conditions, as well as the history or risk of stripe 

rust on growers’ farms. 

The purpose of the second study in this thesis was to determine if the inheritance 

of stripe rust resistance of two spelt genotypes crossed with a susceptible bread wheat 

cultivar was simply inherited. Stripe rust resistance in the spelt genotypes examined 

indicated that the effective resistance observed at the adult plant stage was due to two 

genes. It is possible that the genotypes used in this study have a combination of other 

effective and non-race specific adult plant resistance genes. Additional Pst races from 

different locations in Canada should be tested at the seedling and adult stages for these 

two crosses in advanced generations. It would be interesting to characterize the disease 

resistance observed in this study using molecular markers to confirm that it is two genes 

conditioning resistance at the adult plant stage, or if the inheritance of resistance is 

more complex.     

The use of a cultivar with a single ASR gene can be compromised due to the 

genetic variability of the pathogen. Using durable resistance, as is hypothesized to be 

the case for most APR genes to stripe rust, can be conditioned by additive and/or 

epistatic effects of multiple genes. Most breeding programs in western Canada are 

incorporating these APR genes into their germplasm because this resistance is 

expected to be durable. Farmer adoption of these newly developed cultivars could 

reduce fungicide costs by $32.48.30 ha-1or more. As observed in the previous fungicide 

study, the yield of the resistant cultivar ‘Lillian’ was 41% higher than the susceptible 

cultivar ‘AC Barrie’ when stripe rust was severe. Therefore, growing a resistant cultivar 

is the most cost-effective and environmentally friendly means to control stripe rust. 
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In the future, the study of fungicides to control stripe rust could include fungicides 

with different active ingredients and modes of action in addition to the single foliar 

fungicide used in this study, as well as a selection of more recently registered cultivars 

that vary in resistance to stripe rust. Finally, future research might include a more in-

depth economic analysis of single and multiple fungicide applications on susceptible 

and moderately resistant cultivars. 
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APPENDIX 

 

 

Fig A1. Distribution of stripe rust severity means in growth chamber for the cross 

10spelt17 x Avocet, for the F2:3 plants tested after inoculation with Puccinia striiformis 

f.sp. tritici race C-PST 2 (isolate W003). Severity scores are based on the modified 

Cobb scale (Peterson et al. 1948).  

 

Fig A2. Distribution of stripe rust severity means in growth chamber for the cross CDC 

Silex x Avocet, for the total of F2:3 plants tested  after inoculation with Puccinia striiformis 

f.sp. tritici race C-Pst 2 (isolate W003). Severity scores are based on the modified Cobb 

scale (Peterson et al. 1948).  
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