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ABSTRACT 

 The Quaking (qk) gene has been implicated in the development of 

oligodendroglial cells which are the primary source of myelin in the mammalian central 

nervous system (CNS). Qk encodes three alternatively spliced variants, QKI-5, QKI-6 

and QKI-7, all of which are RNA binding proteins. Loss of QKI-6 and QKI-7 results in a 

dysmyelination phenotype that is present shortly after birth while loss of QKI-5 results 

in embryonic lethality. CG4 oligodendroglial cells were transfected with either pIRES2-

QKI5 to up regulate QKI-5 expression or a QKI-5 specific siRNA to down regulate QKI-

5. Cells were cultured for 6d in differentiation medium (DM) following which total 

RNA and protein was collected from the cell cultures, and coverslips with attached cells 

were processed for immunofluorescence. Increased QKI-5 expression following 

transfection with pIRES2-QKI5 resulted in increased Sirt2 and Plp mRNA expression, 

but did not affect SIRT2 and PLP protein expression. Down regulation of QKI-5 

expression had no significant effect on mRNA or protein levels for QKI-6, QKI-7, Plp or 

Sirt2. Immunocytochemistry revealed that up regulation of QKI-5 resulted in 

significantly higher percentage of A2B5+ cells and a lower percentage of GalC+ cells, 

whereas siRNA treatment resulted in an increase in the percentage of GalC+ cells. Our 

results suggest QKI-5 regulates CG4 oligodendroglial differentiation and modulates the 

transcription and availability of target mRNAs, such as Sirt2 and Plp, for translation. In 

order to gain a more complete understanding of the relationship between qk and both 

Sirt2 and Plp, future studies would include RNA coimmunoprecipitation, miRNA 

studies, and expanding the list of target genes to include various cell cycle components.  
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I INTRODUCTION 

The Quaking (Qk) gene has been implicated in the development of a number of 

different tissues. The use of several N-ethyl-N-nitrosourea (ENU)-induced or knockout 

alleles of Qk, have resulted in defects in vascular development (Noveroske et al., 2002), 

heart defects, cranial defects, disorganization along the anterior-posterior axis (Justice 

and Bode 1988), with many of the defects resulting in embryonic lethality. Along with 

the various developmental defects, there are also numerous nervous system defects. 

These include hypomyelination in both the central and peripheral nervous system 

(Noveroske et al., 2005), early onset seizures, severe ataxia and Purkinje cell axonal 

swellings (Sidman et al., 1964). 

The homozygous quaking viable (Qkv/Qkv) mutant contains a recessive mutation 

that results in the loss of a large portion of the promoter and enhancer sequences for the 

Qk gene. Qkv/Qkv mutants thus exhibit a hypomyelination phenotype due to diminished 

QKI mRNA and subsequent decrease in QKI protein expression, specifically in 

oligodendrocytes (OL) (Hardy et al., 1996; Bockbrader and Feng 2008). Any myelin that 

is present is thin and malformed. Qk encodes three alternatively spliced variants, QKI-5, 

QKI-6, and QKI-7. All three variants contain the same K homology KH RNA binding 

domain, with the main difference being the presence of a nuclear localization signal in 

the C-terminal region of QKI-5. As a result, QKI-5 is mainly localized to the nucleus 

while QKI-6 and QKI-7 mainly localize to the cytoplasm. QKI-5 is not only highly 

expressed in OLs, but can also be found in the heart, smooth muscle, and testis 

(Ebersole et al., 1996; Matsumoto et al., 1999; Li et al., 2003). 

QKI is a member of the signal transduction and activation of RNA (STAR) family 

of proteins. STAR proteins are involved in pre-mRNA splicing, mRNA localization, 

mRNA transport, mRNA stability, and translation efficiency (Galarneau and Richard 
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2009). An increase in QKI-5 causes partial nuclear retention of myelin basic protein 

(MBP) mRNA in the nucleus (Larocque et al., 2002), which results in a reduction in MBP 

protein leading to myelination defects. In contrast, QKI-6 is able to enhance MBP 

protein expression and rescue the hypomyelination phenotype seen in the QkV/QkV 

mutant (Zhao et al., 2006b). QKI-5 has been implicated in the control of alternative 

splicing of a number of different mRNA targets. QKI-5 has been shown to bind an 

intronic sequence element in myelin associated glycoprotein (MAG) in vitro and 

regulate alternative exon inclusion from a modified MAG minigene reporter (Wu et al., 

2002). Induced expression of the cytoplasmic isoform, QKI-6, was sufficient to rescue 

the dysregulation of alternative splicing of MAG pre-mRNA in the QkV/QkV mutant. As 

well, QKI-6 specifically suppressed translation of the splicing factor heterogeneous 

nuclear ribonucleoprotein A1 (hnRNPA1) (Zhao et al., 2010). Since hnRNPA1 regulates 

MAG alternative splicing (Zhao et al., 2010) it is possible that QKI proteins may both 

directly and indirectly regulate target RNA metabolism.  

Two target genes that have been shown to be regulated by QKI in OLs is 

proteolipid protein 1 (Plp) and sirtuin 2 (Sirt2). Plp accounts for approximately 50% of 

the myelin protein in CNS and is necessary for OL differentiation and proper 

compaction of the myelin sheath (Griffiths et al., 1998; Le Bras et al., 2005; Werner et al., 

2007; Karim et al., 2010). In the CNS, Sirt2 is expressed predominantly in OLs and is up-

regulated during myelination (Li et al., 2007; Southwood et al., 2007). The over 

expression of Sirt2 in primary cell cultures resulted in a reduction in α-tubulin 

acetylation, MBP expression, and cell process arborization (Li et al., 2007), suggesting 

the ability of Sirt2 to impede OL differentiation. However, a more recent study has 

shown that an increase in Sirt2 expression resulted in enhanced MBP expression along 

with facilitating CG4 OL differentiation by generating more cellular processes (Ji et al., 

2011). In the Plp-ISEdel mutant mouse, the deletion of a critical splicing enhancer results 
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in a severe reduction in Plp but not in DM20, an alternatively spliced isoform of Plp 

(Wang et al., 2008). In this model, SIRT2 protein but not its mRNA is severely reduced, 

suggesting that Plp but not DM20 is required for SIRT2 protein expression (Zhu et al., 

2012). Sirt2 also co-localizes with Plp to the compact myelin and is absent from the 

myelin proteome in the Plp1 knockout mouse (Li et al., 2007; Werner et al., 2007). In the 

QkV mutant, re-expression of the QKI-6 isoform is sufficient to rescue most of the QKI 

targets, including Plp and Sirt2, and is also able to correct the hypomyelination 

phenotype (Zhao et al., 2006b). In the QkV mutant, SIRT2 protein levels are reduced but 

mRNA levels are unaffected. This can be corrected by re-expression of QKI-6, through 

an increase in Plp expression (Zhu et al., 2012).  

The majority of research regarding QKI and its role in myelin formation has 

focused on QKI-6. Since QKI-5 and QKI-6 have been proposed to play differential roles 

on the same mRNA targets, such as MBP, we decided to examine the function of QKI-5 

with respect to regulating OL differentiation. The identification of a QKI-6-Plp pathway 

to regulate Sirt2 expression provides a firm basis to work from. While it is unlikely that 

QKI-5 can completely inhibit differentiation, it is possible that QKI-5 may slow down 

the differentiation of OLs. While the differentiation of OLs is crucial to the proper 

formation of myelin in adequate quantities, the ability to hold OLs in an earlier 

progenitor state would allow the nervous system to tightly control the timing of 

myelinogenesis as well as the proper targeting and induction of remyelination.  
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1.1 HYPOTHESIS 

1. The up regulation of QKI-5 will inhibit Sirt2 and Plp expression, resulting in a 

delay in CG4 OL differentiation 

2. The down regulation of QKI-5 will enhance Sirt2 and Plp expression, driving the 

differentiation of CG4 OLs. 

1.2 OBJECTIVES 

1. Changes in the Plp and Sirt2 mRNA and protein levels will be determined in 

CG4 OLs following overexpression or knockdown of QKI-5 over a six day period 

of differentiation. 

2. Cell differentiation using two cell markers, A2B5 for early stage oligodendrocyte 

progenitors (OPCs) and GalC for mature, myelinating OLs will be determined in 

CG4 OLs following overexpression or knockdown of QKI-5 over a six day period 

of differentiation.  
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II LITERATURE REVIEW 

2.1 MYELINOGENESIS  

In vertebrates, the neural tube gives rise to the central nervous system (CNS), 

including all CNS glia cells such as oligodendrocytes and astrocytes (Doetsch et al., 

1997). The main function of glial cells is to provide support and protection for neurons. 

Astrocytes are important for regulation of synaptic transmissions, although they carry 

out a variety of active functions in the CNS. The OLs are a specialized glial cell type 

whose main function is the production and maintenance of the myelin sheath. In 

humans, myelination production begins in the fourteenth week of fetal development, 

although total myelin levels remain low until birth. Myelination is predominantly a 

post-natal process, with the vast majority of myelination occurring in infancy and 

continuing until adolescence. OL myelination continues de novo in white matter of 

prefrontal, parietal, and temporal areas of the human brain well into the fifth decade of 

life (Bartzokis 2004a; Bartzokis 2004b; Bartzokis et al., 2004).  

Myelin is an electrically insulating membrane that forms around the axon of 

neurons. The presence of myelin decreases the capacitance of the axonal membrane, 

resulting in the ability to both efficiently propagate electrical signals as well as give 

them directionality. The plasma membrane of OLs extends outward and wraps multiple 

times around the axon, forming a multilayered myelin sheath that both protects and 

insulates the axon. The myelin sheath forms alternating regions of covered regions 

along the axon. Voltage-gated sodium channels cluster in uncovered gaps in the myelin 

sheath, termed the nodes of Ranvier, where saltatory nerve conduction (Latin saltare, ‘to 

jump’) takes place. This insulation, along with the proper spacing of nodes of Ranvier, 

is necessary for the proper propagation of action potentials which leap from one node 

to the next, allowing for rapid intercellular communication. Without myelin, electrical 
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impulses would move in waves along the axon membrane. This is both slow and 

inefficient. The resistance provided by the myelin sheath forces the electrical impulses 

to leap from one node to the next, allowing for much greater rates of conduction. The 

impulse speed of myelinated axons increases linearly along with axon diameter 

compared to unmyelinated axons where speed increases with the square root of the 

axon diameter. Thus, the presence of the myelin sheath maintains a small axonal 

diameter while still allowing electrical signals to travel at sufficient speeds. The 

formation and maintenance of myelin is crucial for proper development of the nervous 

system. The myriad of demyelinating conditions highlights the large number of ways 

that myelin degeneration can affect neuron structure and survival. As well, 

dysmyelinating diseases where the myelin sheath structure is defective rather than 

deteriorated emphasize the importance of myelin sheath formation to development as 

most dysmyelinating diseases are fatal with treatment generally being therapeutic 

rather than curative.  

Myelin is a multilayered structure consisting of OL plasma membrane which 

wraps multiple times around the axon. When viewed in cross-section, myelin sheath 

appears as alternating thin, dark lines and thick, pale lines. The darker, thinner, major 

period line is the phospholipid bilayer fused on the cytoplasmic surface. The paler, 

thicker, interperiod line is the apposed outer layer of the cell membrane (Figure 1A). 

Internodes are the myelinated segments of an axon, and their length varies according to 

axon diameter. Each internode is separated by a node of Ranvier (Figure 1B), which are 

unmyelinated segments of the axon. The portion of myelin bordering each node is 

termed the paranodal region. Here, the cytoplasmic surfaces of myelin are not 

compacted and OL cell cytoplasm is included within the myelin sheath. In the 

paranodal region, the myelin sheath forms a loop-shaped structure called lateral loops, 
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which are the open major dense lines at the edge of the sheath and are filled with cell 

cytoplasm (Figure 1B) 

Formation of the myelin membrane requires significant alteration of the plasma 

membrane. OLs must produce myelin specific proteins and coordinate their delivery to 

the myelin sheath. Following specific targeting of myelin proteins to the membrane, 

they must then be assembled into an organized structure of multilayered membrane 

stacks. For example, MBP mRNA is targeted to the myelin membrane during 

compaction of the myelin sheath. MBP mRNA is transported to the growing myelin 

membrane in granules and upon reaching its target destination it is then locally 

translated following integrin activation (White et al., 2008; Laursen et al., 2011). 

Following translation, the highly positively-charged MBP protein immediately binds to 

the negatively-charged myelin membrane, which brings the cytoplasmic faces of the 

myelin membrane together resulting in compaction of the myelin sheath. Similarly, Plp 

inserts into the membrane and by binding to other copies of itself in adjacent 

membranes helps compact the extracellular surfaces of the myelin membrane, forming 

the intraperiod line (Siegel et al., 2011).  
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Figure 1. The structure of the myelin sheath. A. Schematic representation 

of the major myelin components. Myelin is compacted by removal of the 

cytoplasm and subsequent layering of the cytoplasmic plasma membrane 

surfaces (intraperiod line) and the extracellular plasma membrane surfaces 

(major dense line). Various proteins such as MBP are able to tightly fasten the 

cytoplasmic layers together while other proteins such as PLP and SIRT2 insert 

into the plasma membrane and help to secure the extracellular surfaces to one 

another. B. The compact myelin sheath expands the closer it is to the Node of 

Ranvier. This region, termed the paranodal region, consists of non-compacted 

myelin sheath. The myelin sheath forms a loop shaped structure, termed lateral 

loops, which is filled with cytoplasm. These lateral loops have been found to 

form organized channels which allow for the distribution of nutrients and 

metabolites throughout the compact myelin sheath. (Adopted from (Aggarwal et 

al., 2011) 
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2.1.1 Oligodendrocytes 

Within the vertebrate nervous system, the propagation of electrical signaling 

relies on myelin. Myelin is a specialized structure that is formed by specialized glial 

cells; OLs in the CNS and Schwann cells in the peripheral nervous system (PNS). OLs 

arise from subventricular cells found within the brain and spinal cord and are the last 

cell type generated in the developing CNS (Thomas et al., 2000). These eventually 

differentiate into committed oligodendrocyte progenitor cells (OPCs) that migrate in 

waves throughout the CNS. The main function of OLs is to support neurons and 

insulate axons. OLs are distinguishable from other glial cells by their distinct 

morphology. They extend many processes, each of which contacts and envelopes a 

specific segment of an axon. The subsequent compaction of the membrane forms the 

myelin sheath around each segment of axon. In contrast, Schwann cells only extend a 

single process and thus each Schwann cell is only able to myelinate a single axon.  

A2B5 is a monoclonal antibody developed by Raff et al. (Raff et al., 1983), that 

recognizes an epitope on a cell surface ganglioside expressed by OPCs as well as by 

thymic epithelial cells and neuroendocrine cells (Raff et al., 1983). The expression of this 

ganglioside in OPCs allows for in vitro identification by the A2B5 monoclonal antibody. 

OPCs that are A2B5+ have the potential to differentiate into both OLs and type 2 

astrocytes, depending on growth media conditions (Raff et al., 1983). A2B5 is a useful in 

vitro marker for OPCs but in vivo identification is generally accomplished using platelet-

derived growth factor-α receptor (PDGFαR) and the sulfated proteoglycan (NG2) 

(Nishiyama et al., 1996; Levine et al., 2001). However, both NG2+ and A2B5+ cells arise 

from overlapping cell populations, with NG2+ cells occurring earlier than A2B5+ cells. 

NG2+ cells can eventually give rise to A2B5+ cells, suggesting that NG2+/A2B5- cells are 

potentially O2A progenitors or pre-OPCs (Baracskay et al., 2007).  
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Galactosylceramide (GalC) is a glycosphingolipid that is highly enriched in the 

myelin membrane. GalC along with sulfatide, the sulfated version of GalC, comprises 

almost a third of the total lipid mass in myelin (Marcus and Popko 2002). GalC is 

expressed later than A2B5, mainly in differentiating OLs (Ranscht et al., 1982; Schaeren-

Wiemers et al., 1995). Blocking GalC function through the use of anti-GalC antibodies 

has been shown to disrupt myelination, both in vitro and in vivo (Ranscht et al., 1987; 

Owens and Bunge 1990; Rosenbluth et al., 1994). Interestingly, mutant mice which lack 

uridine diphosphate (UDP)-galactose:ceramide galactosyltransferase (CGT) the 

synthase responsible for GalC formation (Coetzee et al., 1996b), were able to myelinate 

axons but the myelin sheaths were thinner, displayed an immature morphology, altered 

myelin lipid composition and improper targeting of contact proteins to the paranodal 

region (Bosio et al., 1996; Coetzee et al., 1996a; Dupree et al., 1999; Poliak et al., 2001). 

GalC appears to be essential for the proper maintenance of axo-glial interactions as well 

as compaction of the myelin sheath (Boggs et al., 2010). However, the absence of GalC 

does not impact the formation of myelin. This suggests a dysmyelination phenotype 

with defects in the myelin sheath structure as myelin still developed and is able to 

myelinate axons. Indeed, CGT-null mutant mice develop severe clinical symptoms with 

tremors starting around 2 weeks after birth as well as paralysis and eventually early 

death (Marcus and Popko 2002).  

An additional function of GalC is as a signal transmitter, able to regulate OL 

differentiation by influencing cytoplasmic microtubule polymerization (Boggs and 

Wang 2001), membrane organization and myelin protein expression (Bansal and 

Pfeiffer 1989; Bansal and Pfeiffer 1994). The location of GalC along with the effects of 

anti-GalC antibodies suggests that GalC may function in transmitting signals across the 

myelin membrane. The ability of GalC to interact with both homo- and hetero-

carbohydrate polymers has the ability to drive clustering of GalC on the extracellular 
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side of the membrane, as well as aggregation of MBP, Plp and myelin/oligodendrocyte 

glycoprotein (MOG) on the cytoplasmic side of the membrane (Boggs and Wang 2004; 

Boggs et al., 2004; Boggs et al., 2008). This suggests a role for GalC in guidance and 

organization of membrane rafts. Several proteins involved in signal transduction, such 

as mitogen activated protein kinase (MAPK) and some phosphotyrosine-containing 

proteins also clustered with GalC and MBP. The ‘activation’ of these membrane rafts, 

using GalC-containing liposomes, was able to cause depolymerization of microtubules 

and actin filaments within the myelin membrane sheets, suggesting that extracellular 

surface GalC may facilitate trans membrane signal transduction and possibly influence 

morphological changes (Boggs and Wang 2004).  

2.1.1.1 Intracellular Kinase Cascades in Developing OL 

Mitogen-activated protein kinases (MAPKs) are serine/threonine-specific kinases 

which are activated in response to a myriad of extracellular signals. MAP kinases, such 

as p38MAPK, are activated via phosphorylation by upstream MAPK kinases (MAPKK). 

p38MAPK is a stress response mediator in neural cells (Stariha and Kim 2001) and 

regulates several cellular processes including cell growth and survival (Zetser et al., 

1999; Zhang et al., 2006; Ventura et al., 2007). Specifically, p38MAPK has been shown to 

affect both cell proliferation and differentiation in the presence of platelet-derived 

growth factor (PDGF) and fibroblast growth factor 2 (FGF-2) (Baron et al., 2000). A role 

for p38MAPK in OL maturation and initiation of myelination has also been discovered, 

both in Schwann cells (Fragoso et al., 2003) and in OLs (Fragoso et al., 2007). As well, 

inhibition of p38MAPK resulted in a reduction in OL-specific antigen expression (i.e., 

GalC) and protein expression (i.e., MBP, MAG) (Bhat et al., 2007). It is involved in both 

myelin-specific lipid synthesis as well as myelin-specific protein expression, making 

p38 essential for early stage OL differentiation.  
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Forskolin is an agent that increases intracellular cyclic adenosine monophosphate 

(cAMP) and induces cAMP response element-binding (CREB) protein phosphorylation 

by activating protein kinase A (PKA), ultimately leading to OL differentiation (Bhat et 

al., 2007). However, inhibition of p38MAPK can block forskolin-induced CREB 

phosphorylation as well as suppress MBP expression at both the translational and 

transcriptional level (Bhat et al., 2007). This suggests a potential link between PKA and 

p38 pathways in the differentiation of OLs. p38MAPK is important during OPC 

transition to the preoligodendrocyte stage, as inhibition of p38MAPK during this time 

point reduced myelin gene expression (Fragoso et al., 2007). The phosphorylation of 

p38MAPK coincides temporally with MBP protein expression in CNS white matter, and 

its detection at P11 in CC1+ OLs (Chew et al., 2010), supports a role in promoting OL 

differentiation. It was also shown that p38MAPK activity stimulates Sox enhancer and 

MBP promoter activity, as well as promoting Sox10 function (Chew et al., 2010). While 

the study only examined the role of p38MAPK and Sox10 on MBP promoter binding, it 

is also possible that since Sox10 has been linked with both MBP and Plp gene expression 

(Stolt et al., 2002) that QKI regulates Plp gene expression via the p38MAPK pathway. 

Further to this, inhibition of p38MAPK resulted in a reduction in Sox10 mRNA as well 

as decreasing p27KIP1 protein accumulation (Fragoso et al., 2007). The ability of QKI to 

bind p27KIP1 mRNA leading to enhanced MBP promoter activity specifically in OLs 

(Miskimins et al., 2002) combined with requirement of Sox10 expression for MBP 

promoter activation through p27KIP1 (Wei et al., 2004) provides another pathway 

through which QKI can affect myelin-specific gene expression. 

2.1.2 Proteolipid protein 1 

Proteolipid protein 1 (Plp) is the most abundant myelin protein found within the 

CNS. It constitutes approximately 50% of the total myelin protein (Dubois-Dalcq et al., 
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1986). Plp is a 4 transmembrane domain protein that inserts into the plasma membrane 

and is a structural constituent of the myelin sheath. By binding to other copies of itself it 

facilitates the compaction of the myelin layers (Figure 1). The Plp gene is located on the 

X chromosome in man, mouse and rat and consists of 7 exons spanning ~17kb 

(Campagnoni and Skoff 2001). The Plp1 gene encodes for two slice variants, Plp and 

DM20. Both arise from the same primary transcript but through alternative splicing, the 

final DM20 protein differs from Plp by an internal deletion of 35 amino acids (Nave et 

al., 1987). However, Plp is the more abundant protein isoform in the mammalian post-

natal brain and its expression is unique to myelin. The exclusion of exon 3B by DM20 

results in loss of axo-glial interaction signaling (Stecca et al., 2000; Gudz et al., 2002). 

The ratio of Plp/DM20 has been shown to be important in many processes including 

myelin-axon integrity, stabilization of the myelin sheath, and axonal transport (Griffiths 

et al., 1998; Yin et al., 2006; Werner et al., 2007; Regis et al., 2009). The abundance of Plp 

to DM20 coupled with the unique ability of Plp to interact with axons and glial cells 

points to the importance of Plp rather than DM20 in myelinogenesis. In the quaking 

viable mutant mouse brain, Plp mRNA but not DM20 mRNA is severely reduced. Up 

regulation of QKI-6 is able to rescue the shortage of Plp mRNA in the Qkv/Qkv mutant 

(Zhu et al., 2012). While the main function of Plp is generally based around structural 

integrity of myelin, there exists a role for Plp as a signal transduction molecule. The 

selective regulation of Sirt2 by Plp suggests that the two proteins are able to interact 

with each other (Zhu et al., 2012). However, the exact nature of this interaction has yet 

to be determined. However, since QKI has been demonstrated to regulate Plp 

expression, it is possible that QKI, via Plp, can ultimately regulate Sirt2 expression. 
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2.1.3 NAD-dependent deacetylase sirtuin-2 

Sirtuins (Sirt) are nicotinamide adenine-dinucleotide (NAD)-dependent 

deacetylases that regulate cellular function via protein deacetylation (Michan and 

Sinclair 2007). There are 7 sirtuins, with Sirt2 being predominantly expressed in OLs 

(Tang and Chua 2008). Sirtuins belong to a larger group of proteins called histone 

deacetylases (HDACs), which have been shown to be involved in neuron and glial cell 

development (Gray and Ekstrom 2001). SIRT1 has been shown to regulate energy 

metabolism and extension of lifespan in both yeast and Drosophila (Denu 2005; Donmez 

and Guarente 2010). Excess of SIRT2 protein may be harmful for neurons (Suzuki and 

Koike 2007; Pfister et al., 2008). Indeed, pharmological inhibition of Sirt2 has been 

demonstrated to have neuroprotective effects in varying models of neurodegenerative 

disease, including Parkinson’s disease (Outeiro et al., 2007; Luthi-Carter et al., 2010) and 

Huntington’s disease (Luthi-Carter et al., 2010). Sirt2 has been shown to function as an 

α-tubulin deacetylase and is involved in both cell division and differentiation (Dryden 

et al., 2003; North et al., 2003; Li et al., 2007). The majority of studies on neuronal 

microtubule acetylation have focused on HDAC6 activity (Hubbert et al., 2002; 

Matsuyama et al., 2002; Zhang et al., 2003a), however Sirt2 has the highest RNA levels 

in postnatal brain tissue of all the 18 characterized HDACs and sirtuins (Pandithage et 

al., 2008). One of the protein isoforms of Sirt2, SIRT2.2, is preferentially expressed in the 

brain and spinal cord (Maxwell et al., 2011). As well, there is an age-dependent 

accumulation of SIRT2 in the CNS of wild-type mice (Maxwell et al., 2011). The larger 

SIRT2.1 isoform is generally expressed in non-neuronal cell types and immortalized 

cells in culture (Maxwell et al., 2011) rather than in neurons. Strong Sirt2 

immunoreactivity is associated with focal areas of decreased acetylated α-tubulin 

staining in neurons, along with the preferential expression of Sirt2 in the CNS, suggests 

a role for SIRT2.2 in regulating microtubule acetylation in mature neurons (Maxwell et 
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al., 2011). The functions of Sirt2 combined with the presence of a QKI binding site in 

Sirt2 mRNA (our laboratory data) make Sirt2 a prime candidate to be regulated by QKI 

protein in the developing CNS. 

Sirt2 is upregulated during myelinogenesis and is now considered an essential 

component of the myelin proteome (Southwood et al., 2007; Werner et al., 2007). The 

alternatively spliced variant Sirt2 variant 2 (v2) localizes to the paranodal and compact 

myelin in close proximity of Plp (Li et al., 2007; Southwood et al., 2007; Werner et al., 

2007). In the Plp1 gene knockout mouse brain in which both PLP and DM20 are absent, 

SIRT2v2 protein, but not mRNA, is severely reduced. Its absence from the myelin 

proteome as well suggests that PLP/DM20 is required both for the correct transport of 

SIRT2 to the myelin membrane, as well as the stabilization of SIRT2. SIRT2 protein has 

also been shown to control process arborization in differentiating OLs in vitro, by 

regulating α–tubulin acetylation. Although most researchers, including work done in 

our lab (Ji et al., 2011) have shown that Sirt2 enhances OL differentiation, one group has 

shown that by deacetylating α–tubulin, Sirt2 was able to delay OL differentiation (Li et 

al., 2007). Since process arborization in OLs is crucial in vivo for the proper myelination 

of axons, it suggests an important role for Sirt2 in regulating the development of OLs.  

In the quaking viable mutant mouse brain, SIRT2v2 protein, but not mRNA, is 

severely reduced but can be rescued by up regulation of QKI-6 (Zhu et al., 2012). It was 

also shown that SIRT2 abundance in myelin is dependent on PLP dosage, but not DM20 

(Zhu et al., 2012), providing further evidence that PLP regulates the transport and/or 

stability of SIRT2 in the myelin membrane. The same group also demonstrated that 

hypomyelination is not sufficient to cause a reduction in SIRT2, but rather that the 

specific reduction of PLP due to QKI-6 deficiency affects SIRT2 regulation (Zhu et al., 

2012). Furthermore, when PLP, but not DM20 was selectively reduced, SIRT2 

accumulated in OL cell bodies instead of transporting to the membrane periphery (Zhu 
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et al., 2012). The end result is an abundance of SIRT2 in the OL cell bodies due to 

defective transport of SIRT2 to the myelin membrane via PLP. This defective targeting 

of SIRT2 suggests a crucial role for PLP in regulating OL development.  

2.2 STAR PROTEINS  

The signal transduction and activation of RNA (STAR) family is a class of 

evolutionarily conserved proteins that link signal transduction with RNA metabolism. 

Members of the STAR family include the Drosophila melanogaster gene held out wings 

(HOW) and KH encompassing protein 1 (KEP1) proteins, the Caenorhabditis elegans 

germline development defective 1 (GLD-1) protein, and the mammalian Src-associated 

in mitosis (SAM68) and quaking (QKI) proteins (Lukong and Richard 2003). The 

common feature among all STAR proteins is the presence of a triple domain structure, 

referred to as the STAR domain (Vernet and Artzt 1997). The STAR domain consists of 

an uncommon single expanded KH RNA binding domain (Maxi-KH), flanked by two 

conserved domains: QUA1 (amino terminal) and QUA2 (carboxyl terminal). The KH 

domain is present in a variety of nucleic acid-binding proteins and is able to bind either 

RNA or single stranded DNA (Garcia-Mayoral et al., 2007). The QUA1 domain is both 

necessary and sufficient for dimerization and that dimerization is crucial for proper 

function. The QUA1 domain is necessary for homo/heterodimerization and aids in 

stabilizing RNA binding (Chen and Richard 1998; Wu et al., 1999). Dimerization is 

necessary for successful RNA binding as most other RNA binding proteins contain 

multiple KH domains, which stabilize binding, while STAR proteins contain only a 

single KH domain. The KH and QUA2 domain form an extended RNA-binding 

interface, able to bind to short penta- or hexanucleotide consensus sequences (Ryder et 

al., 2004; Galarneau and Richard 2005). KH and QUA2 domains are sufficient for RNA-

binding activity, with the QUA2 domain facilitating high affinity binding (Ryder et al., 

2004). Dimerization improves affinity, likely mediated by direct interactions with RNA 



 

18 

 

from both subunits of the dimer, although exactly how this influences binding is 

unresolved. One other aspect that is shared among the STAR proteins is the presence of 

a various signal transduction elements including proline-rich regions or Src homology 3 

domain (SH3) and WW-binding sites (Lukong and Richard 2003; Rajan et al., 2008a).  

Functionally, all of the STAR proteins are involved in regulating developmental 

differentiation. In D. melanogaster, HOW is involved in the development of the heart, 

somatic muscles, and tendons (Volk et al., 2008). In C. elegans, GLD-1 is required for the 

advancement of germ line cells through the prophase of meiosis (Hansen and Schedl 

2006). The mammalian SAM68 and QKI protein are the most well characterized of the 

STAR family proteins. The mouse SAM68 was the first characterized STAR protein and 

is a phosphoprotein that is found downstream of SRC (Fumagalli et al., 1994) and FYN 

(Fusaki et al., 1997). It is involved developmentally in bone metabolism, male fertility, 

and locomotion (reviewed in Sette et al., (2010)). Tyrosine phosphorylation by Src 

during mitosis suggests that SAM68 additionally plays a role in cell cycle regulation 

and signaling. The other major mammalian STAR protein, QKI, has a well described 

role in myelinogenesis during CNS development.  

One other similarity among STAR proteins is the presence of alternative splice 

sites within their mRNA transcripts and the generation of multiple isoforms. Both the 

mammalian Qk and the Drosophila homologue how generate multiple splice forms 

(Ebersole et al., 1996; Nabel-Rosen et al., 2002). Two opposing isoforms of the RNA-

binding protein HOW regulate Stripe, a key protein in the differentiation of tendon 

cells. The isoform How(L) is a negative regulator while How(S) elevates Stripe levels 

through binding of the 3′-UTR of stripe mRNA. How(S) is able to neutralize the 

repression of Stripe by How(L) when both isoforms are coexpressed. Binding of How(L) 

to stripe mRNA leads to increased degradation while binding of How(S) stabilizes the 

target mRNA (Nabel-Rosen et al., 2002). The interesting thing about How(L) activity is 



 

19 

 

that the nuclear retention signal present in the 3′-UTR of How(L) is necessary for its 

ability to repress Stripe expression (Nabel-Rosen et al., 2002). This is quite similar to the 

role of QKI-5, which also contains a nuclear localization signal in its 3′-UTR, which has 

been implicated in the regulation of alternative splicing of MAG. While a role for QKI-5 

in the degradation of mRNA targets has not yet been described, the ability of QKI-6 to 

stabilize mRNA targets through 3′-UTR binding (Larocque et al., 2005; Zhao et al., 

2006a) is strikingly similar to the function of How(S). Below I provide a review of the 

various functions of STAR proteins as well as the quaking mutation and the role of the 

quaking gene in regulating RNA metabolism and oligodendrocyte differentiation. 

2.2.1 Post-Transcriptional Regulation by STAR Proteins 

STAR proteins are involved with pre-mRNA splicing, mRNA localization, 

transport, and mRNA stability and translation efficiency (Galarneau and Richard 2005). 

QKI regulates nuclear retention of MBP mRNA and transport to the myelinating 

membranes (Li et al., 2000; Larocque et al., 2002). C. elegans GLD-1 protein controls gene 

expression by acting through a hexanucleotide sequence (NACUCA) called TGE in the 

target 3′ UTR to repress translation of Tra-1 protein (Jan et al., 1999). QKI-6 acts in a 

similar manner through the Gli1 mRNA to repress translation (Saccomanno et al., 1999; 

Lakiza et al., 2005). Another level of regulation in Qk is through its very long and 

conserved 3′-UTR that theoretically contains a large variety of miRNA binding sites 

(57% of the 677 defined human miRNAs). QKI belongs to a small group of genes (<40 

cDNAs that contain more than 350 different miRNA sites) that have the highest 

predicted number of miRNA binding sites in the human genome (Artzt and Wu 2010). 

This provides great flexibility in the regulation of QKI in many different tissues, 

resulting in the ability of cells to exercise precise spatial and temporal control. There is 

also the possibility of transcriptional control with possibly several alternate tissue-
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specific promoters (Hardy et al., 1996). This high number of potential miRNA binding 

sites is actually unique to QKI as its 3′-UTR has 3 times as many potential binding 

partners as the next STAR protein, splicing factor 1 (Artzt and Wu 2010). 

By studying several ENU-induced or knockout alleles of Qk, a number of mutant 

phenotypes were created. These include mice with abnormal somites, heart defects, 

cranial defects, and a disorganized anterior-posterior axis (Justice and Bode 1988), lack 

of vascular development (Lorenzetti et al., 2004a), mis-regulation of visceral endoderm 

function (Bohnsack et al., 2006), smooth muscle cell differentiation, kinky and open 

neural tubes (Li et al., 2003). The presence of viable alleles point out important functions 

in the nervous system, mainly the lack of myelination in both CNS and PNS (Sidman et 

al., 1964), but also include, early-onset seizures, severe ataxia, dramatically reduced 

lifespan and Purkinje cell axonal swellings indicative of neurodegeneration (Noveroske 

et al., 2005).  

2.2.2 RNA Recognition by STAR Domain Proteins 

In situ crosslinking studies in cell culture demonstrate that QKI self-associates 

(Chen and Richard 1998). Self-association requires the QUA1 region, shown through 

mutagenesis. A single point mutation within the QUA1 region of QKI eliminates 

dimerization both in vitro and in cell culture and causes an embryonic lethal phenotype 

in mice (Chen and Richard 1998). ENU-induced point mutations within the KH and 

QUA2 domains of QKI yield an embryonic lethal phenotype, thus, both regions are 

required for proper function (Justice and Bode 1988). QKI is homologous to GLD-1 and 

is capable of binding to TGE RNA in vitro and QKI-6 can functionally substitute for 

GLD-1 in a reporter assay in worms (Saccomanno et al., 1999; Ryder and Williamson 

2004). A consensus sequence, termed the STAR-binding element (SBE) is 5′ - 

NA(A/C)UAA – 3′, is found within the KH domain, which has also been identified in 
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QKI (Ryder and Williamson 2004). In an independent study, binding specificity of QKI 

was determined using an in vitro SELEX protocol (Galarneau and Richard 2005). This 

led to the identification of a number of aptamer sequences, many of which contained 

separate “core” 5′ - NACUAAY – 3′ and “halfsite” 5′ - YAAY – 3′ motifs with variable 

spacing (Galarneau and Richard 2005). The discovery that the QKI consensus sequence 

contained a bipartite RNA motif lead to the discovery that SLM-2, SAM68, and GLD-1 

protein also bind bipartite RNA direct repeats (Galarneau and Richard 2009) 

2.2.3 Post-Translational Regulation of STAR Proteins 

Sam68 is the most well characterized STAR protein when it comes to post-

translational modification. Sam68 enhances export and cytoplasmic utilization of viral 

RNAs (Li et al., 2002a; Coyle et al., 2003) modulates transcription of target genes (Hong 

et al., 2002), and alternative splicing (Rajan et al., 2008b). It has been shown to regulate 

the choice of alternatively spliced exons in CD44, Bul-x and a subset of transcripts 

required for neurogenesis (Matter et al., 2002; Paronetto et al., 2007; Chawla et al., 2009). 

It is detected in primary neurons (Ben Fredj et al., 2004; Grange et al., 2009), germ cells 

(Paronetto et al., 2011; Messina et al., 2012), where it associated with the translation 

initiation complex eIF4F and polyribosomes, thereby enhancing translation. Many 

varied tasks in different cell types (activity and localization) needs to be fine-tuned 

according to the specific requirements of the cell. Human breast tumor kinase (BRK) 

associates with and phosphorylates Sam68 tyrosine residues (Derry et al., 2000). BRK 

localized to the nucleus and accumulates in the same nuclear bodies as Sam68. Tyrosine 

phosphorylation of Sam68 leads to decreased affinity for RNA (Wang et al., 1995; Derry 

et al., 2000). BRK-mediated tyrosine phosphorylation of Sam68 promotes its nuclear 

translocation in breast cancer cells under stimulation with epidermal growth factor 

(EGF) (Lukong et al., 2005). BRK is aberrantly regulated in prostate cancer (Derry et al., 
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2003), a tumor type in which Sam68 is upregulated (Busa et al., 2007) and 

hyperphosphorylated (Paronetto et al., 2004) and its expression supports growth and 

survival of the neoplastic cells (Busa et al., 2007). Serine phosphorylation of Sam68 by 

ERK1/2 (extracellular regulated kinases 1 and 2, a member of the MAPK family) 

affected the splicing activity, enhancing inclusion of the variable exon 5 (v5) in the 

CD44 mRNA (Matter et al., 2002). ERK1/2 mediated phosphorylation was the main 

regulator of the association of Sam68 with the translational machinery (Paronetto et al., 

2006). Translocation of Sam68 to the cytoplasm and its association with polyribosomes 

was required for translational activation of a subset of mRNAs that are a target in germ 

cells (Paronetto et al., 2009; Paronetto et al., 2011). Thus, serine/threonine mainly affects 

its RNA-binding activity. 

Similar to Sam68, phosphorylation of the C-terminal tyrosine residues in QKI 

proteins by Src or Fyn decreased their affinity for target RNA in vivo and in vitro (Zhang 

et al., 2003b). Tyrosine phosphorylation of QKI proteins was maximal at 7d postnatal 

and rapidly declined from 7d to 20d, concomitantly with the strong induction in MBP 

mRNA and protein levels and with myelinogenesis (Zhang et al., 2003b). Expression of 

Fyn was elevated in OPCs, whereas the activity of this Src family kinase declined later 

on during myelin accumulation (Lu et al., 2005). Fyn and QKI activity also seemed to 

antagonistically regulate alternative splicing of MBP mRNA isoforms (Lu et al., 2005).  

2.3 QK GENE  

The Qk gene codes for a STAR family, RNA-binding protein that is responsible 

for post-transcriptional regulation of RNA targets. It was first discovered following the 

characterization of a viable mutant strain in mice that resulted in a homozygous 

recessive deletion. Mice with this deletion exhibited a ‘quaking’ phenotype (Sidman et 

al., 1964), whole body tremors that presented shortly after birth. This ~1Mbp deletion 
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resulted in a reduction in expression of myelin proteins as well as severe 

hypomyelination in the CNS (Hardy 1998), and it was eventually found that a gene 

directly downstream of the deletion was responsible for the dysmyelination phenotype. 

The recessive mutation first reported by Sidman et al., (1964) results in the loss of a 

promoter/enhancer region for a gene immediately downstream of the deletion, which 

was termed the quaking gene.  

The mouse Qk gene was cloned in 1996 by Artzt’s group (Ebersole et al., 1996). 

The coding sequence and genomic organization are highly conserved in mammals 

(Matsumoto et al., 1999; Li et al., 2002b). There are 3 major isoforms which arise from 

alternative splicing (Ebersole et al., 1996), named according to the length of the mRNA 

sequence, QKI-5, QKI-6, and QKI-7. All 3 isoforms share the same N-terminus, which 

contains an extended hnRNP K homology (KH) domain which is responsible for RNA-

binding. Each isoform has a distinct C-terminus that determines their subcellular 

localization. QKI-5 contains a nuclear localization signal (Wu et al., 1999) while QKI-6 

and QKI-7 are mainly found within the cytoplasm. QKI isoforms have similar 

selectivity and affinity to similar mRNA ligands in vitro (Zhang et al., 2003b; Galarneau 

and Richard 2005) and their separate cellular localization is thought to result in 

differential and perhaps even opposing influences. QKI plays an essential role in 

controlling proliferation and differentiation of myelinating glial cells (Larocque et al., 

2005; Chen et al., 2007), as well as in the actual ensheathment of axons by the 

specialized myelin membrane (Li et al., 2000; Wu et al., 2001; Zhao et al., 2006b). A lack 

of QKI in the white matter also may contribute to impairment in cognitive diseases such 

as schizophrenia and depression (Aberg et al., 2006a; Aberg et al., 2006b; Haroutunian 

et al., 2006; Klempan et al., 2009). 

The quaking gene consists of nine exons which are distributed over ~65kb (Matsumoto et 

al., 1999). The first 5 exons are shared by all the transcripts and it is the last 4 exons 
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along with the 3ʹ-UTRs that give rise to the splice variants. Exons 2-5 encode the 

conserved QUA1, KH, and QUA2 domains. All 3 isoforms, QKI-5, QKI-6, and QKI-7, 

contain the same N-terminal region, as well as a QUA1, KH, and QUA2 domains. Exon 

9 provides the 3′-UTR for QKI-5, the 3′-UTR of QKI-6 is formed from part of exon 7 and 

the whole of exons 8 and 9, while the majority of exon 7 forms the 3′-UTR of QKI-7 

(Figure 2). However, exon 7, contains an internal stop codon that is normally spliced 

out of the QKI-5 message, can sometimes be partially included in a 5-kb message. This 

results in a protein produced by this 5-kb message that is identical to QKI-6 but its 

mRNA contains a 3′-UTR that is the same as QKI-5. Interestingly, because of the stop 

codons found within exon 7, QKI-5 actually contains the largest coding sequence and 

shortest 3′-UTR, while QKI-7 contains the shortest coding sequence and the largest 3′-

UTR. 

Since the RNA binding domain is shared by all 3 transcripts, theoretically all 3 

isoforms are able to bind the same mRNA targets. However, the presence of a nuclear 

localization signal in the C-terminal region of QKI-5 (Wu et al., 1999) results in it being 

predominantly found in the nucleus while QKI-6 and QKI-7 are predominantly found 

within the cytoplasm. As previously mentioned there are transcripts that code for the 

QKI-6 but contain the 3′-UTR from QKI-5 and thus are able to be shuttled into the 

nucleus. QKI mainly functions in pre-mRNA splicing, mRNA localization, transport, 

mRNA stability, and translation efficiency (Galarneau and Richard 2009). The 

expression of quaking is abundant in myelinating glial cells in both the CNS and PNS. 

As well, QKI proteins have been found in Bergmann glia and astrocytes, but their 

expression is absent from CNS neurons (Hardy et al., 1996). The expression profile of 

QKI also follows a developmental profile. QKI mRNA transcripts can be detected early 

in embryonic development and their expression continues on until well past birth. In 

mouse development, the QKI-5 isoform is expressed earliest, with expression 
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Figure 2. Organization of the QKI gene. Schematic representation of the 

QKI gene. Shown up top are the 9 exons that make up the entire QKI gene along 

with the sizes for each exon. The regions that code for the QUA1, KH, and 

QUA2 domains are also marked. There are four isoforms generated through 

alternative splicing. All four isoforms contain the same RNA binding domains 

with the main difference being the coding sequence of their 3′-UTR. There is also 

the possibility of an isoform being generated that contains the coding sequence 

for QKI-6 but with the 3′-UTR of QKI-5. 
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expression decreasing by P14 (Ebersole et al., 1996). On the other hand, QKI-6 and QKI-

7 are not expressed until closer to birth, reaching the peak of expression at P14 in mice, 

which correlates with the peak of myelination (Ebersole et al., 1996). Specifically, 

mRNA transcripts for all three isoforms can be detected from total embryonic RNA at 

E5.5, but by E7.5 expression is limited to the extraembryonic visceral endoderm and is 

absent from the mesoderm (Bohnsack et al., 2006). The expression of QKI-5 in particular 

is limited to the visceral endodermal layer and is absent from both mesodermal-derived 

endothelial and mesenchymal cells (Noveroske et al., 2002). In mutant mice that do not 

express QKI-5, a reduction in QKI-6 and QKI-7 transcript and protein levels was also 

observed, suggesting that QKI-5 may regulate QKI-6 and QKI-7 expression during early 

development (Bohnsack et al., 2006).  

QKI has been proposed to regulate myelin formation by three different 

mechanisms. The first is that QKI stabilizes various mRNAs required for proper 

myelinogenesis. These include MBP, Plp, microtubule associated protein 1B (Map1B), 

and p27Kip1 (Li et al., 2000; Larocque et al., 2005; Zhao et al., 2006a). The second is that 

QKI controls the cellular localization of target mRNAs. The discovery of a QRE in the 3′-

UTR of Mbp mRNA combined with EMSA and UV-crosslinking assays showed that all 

three QKI isoforms can directly bind Mbp mRNA (Larocque et al., 2002). The 

overexpression of QKI-5 in primary mouse OL cultures resulted in both mislocalization 

of Mbp mRNA and lowered protein expression. The majority of Mbp mRNA was found 

to be retained in the nucleus, with little mRNA being present in OL processes (Larocque 

et al., 2002). This is evident when Mbp mRNA is retained within the nucleus following 

up regulation of the nuclear isoform, QKI-5 (Larocque et al., 2002). The third 

mechanism is the regulation of alternative splicing. QKI has been demonstrated to 

regulate alternative splicing of Mbp, Plp1, and Mag (Wu et al., 2002). There is an 

imbalance in the ratio of alternative splice variants for Mbp, Plp1, and Mag in the 
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homozygous QkV/QkV mutant. It appears that the location of the QRE and subsequently 

the location at which QKI binds the target mRNA is a main determinant of the 

mechanism by which QKI regulates the target mRNA. When the QRE exists in the 3’-

UTR, we see stabilization of these targets as well possible mislocalization of the target 

transcripts. However, when the QRE is present in the coding region, usually at a splice 

site, then we see the effect of QKI as regulating alternative splicing. In Mag RNA, the 

QRE is present at the 5′ splice site of exon 12 and inclusion of Mag exon 12 is repressed 

in a substrate specific manner by QKI-5 (Wu et al., 2002). Since the only difference 

between the three QKI isoforms is their 3’-UTR sequences, the distinctive functional 

differences between the three isoforms is largely attributed to the location of the QRE in 

the target mRNA sequence, combined with the differences both spatially and 

temporally in the expression of the three isoforms. 

More recently, QKI has been increasingly linked with other RNA binding 

proteins such as hnRNPA1. By binding to the 3ʹ-UTR of hnRNPA1, QKI is able to 

enhance hnRNPA1 mRNA stability (Zearfoss et al., 2011). Additionally, hnRNPA1 and 

QKI both regulate a subset of myelin-related mRNAs (Zearfoss et al., 2011). Thus, QKI 

is able to indirectly regulate the expression of a larger variety of myelin related genes by 

modulating the expression of hnRNPA1. QKI is able to have two opposing effects on 

Mbp and Hnrnpa1, chiefly by increasing mRNA abundance and inhibiting translational 

efficiency (Zearfoss et al., 2011). This suggests a mode of action whereby QKI targets are 

transcribed but then kept in a translationally inactive but stable state. This would enable 

the cell to respond rapidly to a signal, perhaps by allowing the translation of 

sequestered target mRNAs.  

  



 

29 

 

2.3.1 The Quaking viable mutant 

The homozygous quaking viable (QkV/QkV) mutant mice carry a recessive 

mutation which affects three different genes; deletion of the entire parkin coregulated 

gene (Lockhart et al., 2004; Lorenzetti et al., 2004b), deletion of part of the parkin gene 

(Lockhart et al., 2004; Lorenzetti et al., 2004a), and deletion of the promoter and 

enhancer region of the qk gene (Ebersole et al., 1996; Matsumoto et al., 1999). Mice with 

this deletion exhibited a ‘quaking’ phenotype, typically whole body tremors that 

presented shortly after birth. It was eventually found that this deletion resulted in a 

reduction in expression of myelin proteins as well as severe hypomyelination in the 

CNS (Hardy 1998). The QkV mutation leads to development of whole body tremors or 

‘quaking’, which manifests itself around 10 days after birth (Sidman et al., 1964). The 

resulting dysmyelination phenotype is as a result of a reduced number of mature OLs 

in the CNS, defects in Schwann cell maturation, the reduced number of myelin lamellae 

produced and the failure of the resulting myelin to compact (Hardy 1998; Chenard and 

Richard 2008). The severity of the dysmyelination phenotype exhibited by QkV mutant 

mice is not globally distributed. Tracts in the forebrain, such as the corpus callosum, are 

more severely dysmyelinated while tracts in the caudal region of the brain, such as the 

medulla and optic nerve, are less severely affected (Friedrich 1975). This rostral-caudal 

gradient is unusual among dysmyelinating mutants and it is not entirely clear what is 

the root cause. However, there is a correlation with QKI-5 expression in the QkV mutant. 

Expression of QKI-5 is present in almost all OLs in the medulla and optic nerve, while 

QKI-5 is virtually nonexistent in the corpus callosum or anterior commissure (Hardy et 

al., 1996). The expression of QKI-6 and QKI-7 do not follow the dysmyelination 

gradient, as almost all OLs do not express either protein. These changes in QKI protein 

expression are unique to the QkV mutant, as examination of other dysmyelinating 

mutants such as shiverer and jimpy reveal normal QKI protein expression in OLs (Hardy 
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et al., 1996). While expression of QKI-6 and QKI-7 are severely reduced in myelinating 

cells, their expression appears to be unaffected in astrocytes and Bergmann glia.  

It is interesting to note that the QkV deletion results in specific down regulation of 

QKI proteins in OLs, but not in other cell types. When QKI proteins, specifically QKI-5, 

is absent during development, the mice are embryonically lethal (Cox et al., 1999). This 

suggests a broader role for Qk beyond myelination. Combined with the fact that Qk 

mRNAs have been found in tissues outside of the CNS, including the heart, lung, and 

testes (Ebersole et al., 1996) and it is becoming increasingly clear that Qk is important 

for proper embryonic development.  

The embryonic defects associated with down regulation of QKI-5 are absent in 

the QkV mutant mice. The QkV mutant mice are viable, able to survive past birth and 

even produce offspring. As well, the only mutant phenotypes expressed in QkV mutant 

mice are a dysmyelination phenotype and male sterility. Due to the close proximity of 

Qk to the mutation site and the down regulation in QKI protein expression in OLs, it 

has been speculated that the mutation results in the loss of a promoter/enhancer 

sequence for Qk. However, only QKI-6 and QKI-7 are greatly affected in QkV mutants 

with QKI-5 expression still present in OLs. The exact mechanism by which QKI-5 

expression is unaffected by the QkV mutation is largely unknown, but most likely has a 

basis in misregulation of alternative splicing resulting in the sole production of QKI-5. 

Expression of Qk is still regulated in a time and tissue-specific manner in QkV 

homozygotes (Ebersole et al., 1996), indicating that qk is still being expressed but is 

unable to reach the same levels as seen in wild-type mice. In the QkV mutant part of the 

enhancer/promoter region of qk is deleted (Ebersole et al., 1992) which results in a 

reduction in QKI-6 and QKI-7 protein expression in OLs and myelinating Schwann cells 

(Hardy et al., 1996). However, expression of QKI-6 is comparable in astrocytes to wild-
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type levels. This down regulation does not affect QKI-5, the main isoform found within 

the nucleus. However, QKI-5 abundance did correlate with the severity of 

dysmyelination, with the OLs in the most severely affected CNS regions completely 

lacking QKI-5 protein (Hardy et al., 1996). Expression of only QKI-6 specifically in OLs 

in vivo was sufficient to rescue the hypomyelination phenotype arising from the QkV 

mutation (Zhao et al., 2006b). This implicated QKI-6 as the main isoform involved in 

myelinogenesis, and suggested a possible role for QKI-5 in embryogenesis but its 

overall function is less well characterized than QKI-6. While QKI expression is vastly 

reduced in OLs, astrocytes in the QkV mutant still exhibit wildtype levels of QKI protein 

expression (Hardy et al., 1996). The OL-specific down regulation of QKI-6 in the 

quaking mutant is likely the cause of the dysmyelination phenotype. However, QKI-5 

may still play a role both in oligodendrogenesis as well as myelinogenesis.  

Various myelin gene transcripts are also drastically reduced in QkV mutants, 

including MBP mRNA, MAG mRNA, and Plp mRNA (Roth et al., 1985; Sorg et al., 1986; 

Sorg et al., 1987; Li et al., 2000). This reduction has been attributed to destabilization and 

metabolism of the target transcript, as transcription of MBP and Plp mRNA was not 

affected (Li et al., 2000). The OLs in the QkV mutation are defective in their export of 

MBP mRNA from the nucleus, with the majority of the MBP mRNA being localized to 

the nuclei and perinuclear region. However, the cause of nuclear accumulation of MBP 

mRNA in QkV mutants has been attributed to maturation defects rather than an 

imbalance in QKI-5 to QKI-6 ratio (Larocque et al., 2002). Expression of MBP in the 

corpus callosum is down regulated in vivo following overexpression of QKI-5 protein 

(Larocque et al., 2002). This suggests that the loss of MBP expression in the QkV 

mutation is not a result of nuclear retention of MBP mRNA but rather is likely 

dependent on other post-transcriptional defects, which may result indirectly from an 

inability of OLs in QkV mutants from maturing in a timely manner.  
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2.3.2 QKI and Cell Signaling 

There is also evidence to suggest QKI has a role in tumorigenesis and in human 

glioma (Ichimura et al., 2006; Mulholland et al., 2006; Yin et al., 2009) and colon cancer 

(Yang et al., 2010). RNA-binding activity of QKI is regulated by Src-PTK-dependent 

tyrosine phosphorylation (Kirla et al., 2003). Several proline-rich SH3-binding motifs 

exist in all vertebrate QKI isoforms, leading to the hypothesis that QKI is a target of Src-

PTKs (Vernet and Artzt 1997) and that RNA-binding activity may be governed by Src-

PTK-dependent phosphorylation similar to SAM68 (Paronetto et al., 2007). A cluster of 

5 tyrosine residues is located immediately downstream of the SH3-binding motifs in 

QKI. The C-terminal tyrosine cluster, but not tyrosines in the KH domain or at the N-

terminus mediate phosphorylation of QKI by Src-PTKs in vitro, in transfected cells and 

in isolated myelin during brain development (Zhang et al., 2003b). The predicated SH3-

binding motifs are important for Src-dependent QKI phosphorylation (Zhang et al., 

2003b), but does not form a stable complex with Src-PTKs, suggesting a transient 

interaction. QKI phosphorylation negatively affects binding to MBP mRNA (Zhang et 

al., 2003b; Zhao et al., 2006b). QKI deficiency causes destabilization of many mRNAs 

that encode key factors for OL differentiation and myelin synthesis (Li et al., 2000). 

Presumably, Src-PTK-dependent phosphorylation of QKI-5 may release nuclear 

retention of mRNA ligands, while phosphorylation of cytoplasmic QKIs may influence 

translation levels. Fyn is the only Src-PTK member whose activity and expression are 

increased upon OL differentiation (Osterhout et al., 1999). This is accompanied by a 

general down regulation of the rest of the Src-PTKs (Lu et al., 2005). Fyn is essential for 

early OL differentiation as shown by pharmacological inhibition and siRNA-mediated 

knockdown of Fyn attenuate OL differentiation (Osterhout et al., 1999; Colognato et al., 

2004). Initiation of active myelin formation results in decline in Fyn activity (Umemori 

et al., 1994). Lack of the Fyn-QKI mediated acceleration mechanism leads to slow 
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accumulation of the MBP mRNA, delayed myelin development and hypomyelination in 

both the Fyn knockout mice and the QkV mutant (Li et al., 2000; Lu et al., 2005).  

The QKI locus is frequently deleted in a subpopulation of human glioma 

(Mulholland et al., 2006; Yin et al., 2009). Even when it is not deleted, QKI mRNA is 

severely diminished (Li et al., 2002b) which suggests that post-transcriptional 

dysregulation of QKI may occur. It is possible it acts through p27KIP1 dysregulation in 

glioma (Kirla et al., 2003; Zagzag et al., 2003). Reduced QKI expression has also reported 

in human colon cancer, partly due to hypermethylation of the QKI promoter (Yang et 

al., 2010). The same study also found that forced expression of QKI blocks cell cycle 

progression and reduces proliferation and tumorigenesis ability of colon epithelia (Yang 

et al., 2010). Loss-of-function of QKI has recently been linked with white matter 

impairment and myelin deficits in a number of cognitive disorders, including 

schizophrenics, major depression patients and suicide populations (Aberg et al., 2006b; 

Klempan et al., 2009). No deletion of QKI promoter or coding region is found in the 

above diseases. Instead, a single nucleotide polymorphism (SNP) in the intron upstream 

of an alternatively spliced exon for QKI-5 was reported to segregate with probands in a 

large schizophrenia family (Aberg et al., 2006a). This could possibly be due to 

epigenetic mechanisms affecting transcription. SNPs in the Fyn gene and aberrant Fyn 

signaling are also found to be associated with schizophrenia (Rybakowski et al., 2007; 

Hattori et al., 2009).  

2.3.3 Roles of Quaking in Mammalian Embryonic Development 

The role of QKI in myelination has been the main focus of study, mainly due to 

the circumstances surrounding the discovery of the gene in QkV mutant mice. However, 

a series of ENU-induced point mutations have also been found to cause embryonic 

death at midgestation due to cardiovascular failure (Cox et al., 1999; Li et al., 2003). The 
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majority of these point mutations were embryonically lethal, with the time of arrest for 

each allele ranging between E8.5 to E13.5, suggesting a broader role for QKI in 

development beyond myelination. The qkl-1 allele results in an A to G nucleotide 

conversion, which results in the generation of a new splice site upstream of the QKI-5 

nuclear localization signal, resulting in the elimination of the QKI-5 isoform and 

embryonic lethality (Cox et al., 1999). The qkk2 allele features a T to A conversion in the 

KH domain of all three isoforms resulting in an amino acid change from a valine to a 

glutamic acid which negatively affects RNA-binding (Cox et al., 1999). Homozygous 

qkk2/qkk2 embryos show defective blood vessel formation prior to the presentation of 

neural defects (Noveroske et al., 2002), suggesting an essential role for QKI during 

vascular development.  

Vasculogenesis is the formation of mammalian blood vessels through 

differentiation of endothelial cells. It initiates shortly after gastrulation in the yolk sac 

mesoderm which lies adjacent to the visceral endoderm (Tam et al., 2001). The visceral 

endoderm sends cues to mesodermal progenitors to direct their differentiation into 

primitive endothelial and hematopoietic cells (Flamme et al., 1997). Later stages of 

vasculogenesis result in the formation of vascular channels and a capillary plexus, 

which is then remodeled via angiogenesis, into a circulatory network composed of 

specialized endothelial cell types (i.e., arterial, venous) (Hopper and Hart 1985; Lucitti 

et al., 2007). By E9.5, wildtype mice yolk sacs have a well-developed vascular system 

composed of epithelial cell tubes surrounded by mural cells. QKI-5 is not expressed in 

endothelial or smooth muscle cells that form the vasculature, but rather is expressed in 

the endoderm adjacent to vascular cells in the yolk sac at E8.5 and E9.5, thus a cell 

autonomous role in endothelial and/or mural cell development for QKI-5 is not likely. 

In qkk2 mutant mice, which contain a T to A transition in the KH domain and are 

embryonically lethal by E11.5 at the latest (Cox et al., 1999), cardiac function and heart 
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tissue differentiation occurs normally, with the primary defect being vascular 

development (Noveroske et al., 2002). Closer examination of qkk2 mutants as well as qkI-1 

mutants, which does not express QKI-5 due to loss of the QKI-5 splice site (Cox et al., 

1999), using whole-mount immunostaining revealed a lack of mature vascular 

definition in both the head and in between the somites. Vessel structures were 

disorganized and lacking definition, with large vitelline vessels not forming, as well as 

failure of the capillaries to remodel (Bohnsack et al., 2006). Defects in the vascular 

network were eventually traced back to a defect in local retinoic acid production due to 

a decrease in expression of Raldh2, an enzyme necessary for retinoic acid (RA) 

production (Mic et al., 2002). Closer examination of E8.5 qkk2 mutants showed a 2-fold 

increase in mitotic cells in the yolk sac compared to wild-type littermates, with the 

majority of the proliferating cells being identified as endothelial cells (Bohnsack et al., 

2006). The addition of biologically active retinoic acid to the food of pregnant qkk2/qkk2 

mutants restored the number of mitotic cells to wildtype levels and promoted proper 

endothelial cell maturation without having an effect on mesenchymal differentiation. 

However, retinoic acid was not able to rescue vascular patterning nor was it able to 

affect the survivability of qkk2/qkk2 mutants despite the integrity of the visceral endoderm 

being restored. The ability of QKI, an intracellular protein, to potentially regulate RA 

synthesis may also have effects on developmental processes of the surrounding 

mesodermal cells through the activation of retinoic acid receptors. Defects in QKI 

protein may thus result in a secondary deficiency in RA leading to improper endothelial 

cell growth and maturation. This suggests that QKI has direct targets within the visceral 

endoderm which are independent of retinoic acid-mediated signaling in the mesoderm, 

that are necessary and required for vascular patterning and embryonic development.  

Another aspect of embryonic development that QKI is potentially involved in is 

angiogenesis. The discovery that QKI-6 and QKI-7 is expressed in both the endothelial 
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cells as well as the vascular smooth muscle cells (Van Mil et al., 2012) suggests that QKI 

has a role to play in both vascular patterning and angiogenesis. A deficiency in QKI 

resulted in a decrease in both vascular endothelial growth factor A (VEGFA) and basic 

fibroblast growth factor (Bohnsack et al., 2006). QKI down regulation also resulted in a 

decrease in endothelial cell sprout length as well as a reduction in the release of 

angiogenic growth factors including the above mentioned VEGFA, basic fibroblast 

growth factor, and platelet-derived growth factor (Van Mil et al., 2012). As well, miR-

214 has been shown to directly target QKI and is able to efficiently repress the 

translation and affect the mRNA stability of all three QKI isoforms (Van Mil et al., 2012). 

Co-transfection of endothelial cells with both QKI siRNA and anti-miR-214 was not able 

to rescue the reduction in sprouting length, suggesting that the ability of miR-214 to 

target QKI is largely responsible (Van Mil et al., 2012). However, Van Mil et al., (2012) 

were not able to demonstrate direct binding of QKI to VEGFA mRNA, which does not 

rule out the possibility of QKI binding to various other molecules such as transcription 

factors or protein kinases. 

It has been observed that in schizophrenia patients, there is a decrease in OL 

density in the white matter of the cortex as well as in the hippocampus (Haroutunian et 

al., 2006). Many of the defects observed in QkV mutant mice such as a lack of compaction 

of the myelin sheath and a reduction in the number of myelin lamellae have also been 

observed in patients with schizophrenia (Stewart and Davis 2004). As well, several 

myelin-associated genes were down regulated in the white matter of schizophrenia 

patients, including MBP, Plp and QKI (Aberg et al., 2006a; Aberg et al., 2006b) 

It was observed that myelin and OL defects may contribute to the development 

of schizophrenia (Stewart and Davis 2004). A decreased OL density in the white matter 

of schizophrenia patients and other alterations in schizophrenia brains resemble those 

observed in the QkV mice (Haroutunian et al., 2006). A schizophrenia susceptibility locus 
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was mapped to chromosome 6q25-6q26, the location of the QKI gene (Aberg et al., 

2006a; Aberg et al., 2006b; Haroutunian et al., 2006). The QKI isoforms link ataxia with 

the QkV and Qke5 mice and show Purkinje cell axonal swelling, indicative of neuronal 

degeneration (Noveroske et al., 2005).  

In conclusion, the recent discovery of a QKI-6-Plp pathway, the link between Plp 

and Sirt2, as well as the role of Sirt2 in OL differentiation, provides a novel pathway 

through which QKI-6 is able to influence OL differentiation. This in addition to the 

ability of QKI to influence cell cycle factors provides many interesting possibilities 

regarding the role of QKI and glial cell development. As well, the limited research that 

has been completed on QKI-5, the potential difference in function and temporal 

expression profiles between QKI-5 and QKI-6, lead to the potential for QKI-5 to play a 

prominent role in early glial cell development as well as overall embryonic 

development.  
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III MATERIALS & METHODS 

3.1 CLONING OF FULL LENGTH QKI-5  MRNA  AND PLASMID CONSTRUCTION  

CG4 cells were grown to confluency as mentioned below. Cells were harvested 

once they reached confluency and RNA was isolated from the harvested CG4 cells 

using TRIZOL reagent according to manufacturer's instructions. cDNA was generated 

by Reverse Transcriptase II (Invitrogen, Burlington, Ontario) according to 

manufacturer's instructions. Full length QKI-5 sequence was cloned in vitro from cDNA 

generated from total RNA isolates of CG4 cells. The QKI-5 sequence was analyzed 

using the Primer-BLAST software available through NCBI. Identified PCR primer pairs 

were used to directly clone the full length QKI-5 mRNA sequence.  

The primers used are:  

QK1 Forward (5′-GGATCCATGGTCGGGGAAATGGAAACG-3′) 

QK3 Reverse (5′-GAATTCTCATAGGTTAGTTGCCGGTGG-3′) 

 

Pfx polymerase was used in all PCR reactions as it has higher fidelity than Taq 

polymerase and there would be fewer errors introduced into the amplified sequence. 

PCR reaction mixtures were prepared according to manufacturer's instructions with 100 

ng of DNA template and 0.1 µm of each primer set. PCR cycling parameters: “hot start” 

at 95°C for 5 min, followed by 25 cycles of denaturation at 94°C for 40 sec, annealing at 

54°C for 30 sec, extension at 68°C for 90 sec, and a final extension at 72°C for 10 min. In 

order to generate poly A+ ends, all PCR amplified products were incubated with 1 U 

Taq and 150 µm dATP for 2 h at 72°C. Purified PCR products were ligated with 50 ng 

pGEM T-easy vector and 1 U T4 DNA ligase in 5X reaction buffer [250 mM Tris-HCl 

(pH 7.6), 50 mM MgCl2 , 5 mM ATP, 5 mM DTT, 25% (w/v) polyethylene glycol-8000] 

at 15°C overnight. Ligase was heat inactivated by incubating the sample for 10 min at 
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70°C. DH5α E.coli cells (Invitrogen) were transformed according to manufacturer's 

instructions with the ligation products to generate large amounts of plasmid and to 

facilitate long-term storage. Recombinant DNA was purified using PureLink™ Gel 

Extraction Kit (Invitrogen) according to manufacturer's instructions. Recovered plasmid 

was verified to be the correct size by restriction digest with EcoRI in 10X REact® 3 

Buffer (Invitrogen) at 37°C for 1.5 h and enzyme inactivation by addition of 10X DNA 

loading buffer [Bromophenol Blue, EDTA, glycerol]. Accuracy of cDNA sequence was 

confirmed by DNA sequencing using ABI 3730XL capillary electrophoresis DNA 

analyzer (PBI, Saskatoon, Saskatchewan). Plasmids that contained the gene of interest 

were then digested with EcoRI and BamHI in 1X REact® 3 Buffer (Invitrogen) at 37°C 

for 1.5 h to generate sequences with directional specificity for ligation into the 

expression vector pLEGFP-C1 (Clontech, Mountainview, California). Digestion with 

XhoI and SalI in 1X REact® 2 Buffer (Invitrogen) at 37°C for 1.5 h for ligation into 

pIRES2-EGFP expression vector (BD Biosciences, Mississauga, Ontario). All ligation 

reactions were performed according to manufacturer’s instructions and similar to 

above.  

3.2 CG4  CELL CULTURE AND TRANSFECTION  

CG4 cells were previously obtained from Dr. Doucettes’s laboratory, with a 

stable line established and maintained in our own lab. In all experiments, wild-type 

CG4 cells were cultured and maintained according to protocols previously described 

(Wang et al., 2011). For detection of the expression level of both protein and mRNA, 

wild-type CG4 cells (2 x 105 cells) were seeded onto three 15 mm2 coverslips on Poly-D-

Lysine (Sigma, Oakville, Ontario) coated 60mm dishes. Each dish was cultured 

overnight in growth media (GM) composed of DMEM (Sigma), 50 µg/mL transferrin 

(Sigma), 5 µg/mL insulin (Sigma), 10 pg/mL biotin (Sigma), 50 ng/mL selenium (Sigma) 

and 30% B104 conditioned medium. The B104 conditioned medium is crucial for 
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maintenance of the CG4 cells in an early, proliferative developmental state. Details 

regarding the production and composition of B104 conditioned medium were taken 

from Wang et al., (2011). Briefly, for the production of B104 conditioned medium, B104 

neuroblastoma cells were plated in DMEM:F12 (1:1) with 10% FBS until they reached 

90% confluency. Once the cells reached confluency, the medium was switched to 

defined medium composed of DMEM (Dulbecco’s modified eagle medium) and 1% 

TPPS (1 mg of holo-transferrin bovine; 1.0 mM of putrescine; 2 mM of progesterone and 

30 μM of sodium selenite). After incubation for 3 days, the serum-free defined medium 

was collected and stored at -80 °C.  

CG4 cells were transfected the following morning with the appropriate vector 

(5.5 µg plasmid DNA per dish) or siRNA (220 pmol siRNA per dish). Cell culture media 

was changed after 6-8h following transfection to differentiation media (DM), composed 

of DMEM, 0.4% FBS (Sigma), 50 μg/mL of transferrin, 2.5 μg/mL of insulin, 10 pg/mL of 

biotin and 50 ng/mL of selenium. Cell culture media was replaced with fresh media 

every 24h. Transfected cells were cultured for up to 6 days in DM, with one dish being 

collected for samples on each day. Cells which were to be cultured for 4d, 5d, or 6d 

were transfected again on day 3 (Figure 4). All transfections were performed with 

Lipofectamine™ 2000 (Invitrogen) according to manufacturer’s instructions. Plasmids 

used for transfection were purified using the EndoFree Plasmid Maxi Kit (Qiagen, 

Mississauga, Ontario).  

 

QKI siRNA sequences 

 Sense Anti-Sense 

siRNA 1 5ʹ-CCAAAGAUUCUGAGGUUUAUU-3ʹ 5ʹ-UAAACCUCAGAAUCUUUGGUU-3ʹ 

siRNA 2 5ʹ-CCACCGGCAACUAACCUAUGACCUU-3ʹ 5ʹ-AAGGUCAUAGGUUAGUUGCCGGUGG-3ʹ 

siRNA 3 5ʹ-AGUUCGAAGGCACGAUAUG-3ʹ 5ʹ-CAUAUCGUGCCUUCGAACU-3ʹ 
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3.3 RNA Isolation and RT-PCR 

In order to validate the efficacy and specificity of each plasmid and siRNA 

treatment, CG4 cells were seeded overnight in 6 separate 60mm dishes. Each dish was 

transfected with 5.5 µg of plasmid DNA in GM; the GM was changed 6-8h after 

transfection to DM (Figure 4). 

Total RNA was obtained from cells using the RNeasy Mini Kit (Qiagen) and 1 µg 

of RNA for each sample was reverse transcribed into cDNAs using the Quantitect 

Reverse Transcription Kit (Qiagen). The synthesized cDNAs were then used as 

templates in PCR amplification using sequence specific primers for the genes of interest. 

PCR was carried out similar to protocols previously described by Brady et al. (2012) but 

PCR was only run for 25 cycles. PCR products were visualized on ethidium bromide 

stained 1% agarose gel. Integrated density values (the sum of the values of the pixels) 

were determined for each band with AlphaView® imaging software and normalized to 

β–actin levels, then again to the mean 1 day wildtype levels. All values are reported as 

mean ± SEM. 

RT-PCR primer pairs 

 Forward Reverse 

QKI-5 5ʹ-CCTTGCCTTTTCTCTTGCAG-3ʹ 5ʹ-CAGGCATGGTCAGGTCATCA-3ʹ 

QKI-6 5ʹ-CCTTGCCTTTTCTCTTGCAG-3ʹ 5ʹ-GCCTTTCGTTGGGAAAGCCATA-3ʹ 

QKI-7 5ʹ-CCTTGCCTTTTCTCTTGCAG-3ʹ 5ʹ-TAAAACAGTGGGGTTGCACA-3ʹ 

Plp 5ʹ-TGCTCTGCTGTGCCTGTGTAC-3ʹ 5ʹ-TCTATGGGAGATCAGAACTTG-3ʹ 

Sirt2 5′-AGCAAGGCACCACTAGCCACC-3′ 5′-TGTTCCTCTTTCTCTTTGGTC-3′ 

β-Actin 5ʹ-ATTGTAACCAACTGGGACG-3ʹ 5ʹ-TTGCCGATAGTGATGACCT-3ʹ 
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3.4 WESTERN BLOT ANALYSES 

For detection of the expression level of QKI protein as well as PLP and SIRT2 

protein, cells were cultured as above, harvested and lysed with RIPA buffer (150 mM 

NaCl, 0.5% SDS, 1% Trition-100, 0.1% deoxycholate, 10 mM Tris-HCl [pH 7.2], 5 mM 

EDTA). Protein quantification, electrophoresis, and subsequent protein detection was 

performed as described previously (Ji et al. 2011). Briefly, protein samples were 

separated on 12% SDS-PAGE. Proteins were then transferred to a PVDF membrane, 

blocked overnight with 3% skim milk solution, incubated for 1 h with primary 

antibody, washed with PBS, incubated with secondary antibody for 1 h and then 

visualized with Immobilon™ Western HRP Substrate (Millipore, Billerica, 

Massachusetts). The following primary antibodies were used: anti-QKI (1:1000, 

Proteintech Group, Chicago, Illinois), β-Actin (1:1000, Santa Cruz, Dallas, Texas), Plp 

(1:500, Santa Cruz), and Sirt2 (1:1000, Acris antibodies GmbH, San Diego, California). 

Secondary antibodies utilized include Pierce® goat anti-mouse Poly-HRP (1:3000, 

Thermo Scientific, Lafayette, Colorado), goat anti-rabbit IgG-HRP conjugate (1:3000, 

BioRad, Mississauga, Ontario), and rabbit anti-goat IgG-HRP conjugate (1:3000, 

BioRad).  

3.5 IMMUNOCYTOCHEMISTRY  

Immunocytochemistry was carried as previously described (Wang et al., 2011). 

CG4 cells were sub-cultured from the same passage and seeded onto 15mm2 coverslips 

at 2 x 105 cells per 60mm dish. Cells were cultured in the same dishes as those used to 

collect protein and RNA samples. Cells were fixed to coverslips using 4% 

paraformaldehyde solution and then incubated for 1h with the primary antibody. 

Coverslips were then incubated for 1h with the secondary antibody and finally stained 

with Hoescht® stain. All coverslips were washed with PBS in between each staining 

step. The following primary antibodies used were; A2B5 (1:100, ATCC, Manassas, 
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Virginia), anti-galactocerebroside (GalC) (1:100, hybridoma (Ranscht et al. 1982), anti-

GFP (1:100, Novus Biologicals, Oakville, Ontario). The secondary antibodies utilized 

include Alexa Fluor® 488 goat anti-rabbit IgG (1:100, Molecular Probes, Eugene, 

Oregon), Alexa Fluor® 594 goat anti-mouse IgG (1:100, Molecular Probes) and Alexa 

Fluor® 488 goat anti-mouse IgG (1:100, Molecular Probes). In all immunocytochemical 

stainings, nuclei were visualized with Hoechst® stain (Sigma).  

3.6 BLINDED CELL COUNTS 

Upon completion of the immunofluorescent staining, each cell group was 

assigned an alphanumeric code and all cell counts were done blindly (Wang et al., 

2011). For immunostaining experiments, 10–12 microscopic fields on each coverslip 

were selected for each cell group (A2B5+, GalC+, GFP+ or Hoescht+ cells), with cell count 

data collected (>1500 cells) from three replicates. Total number of A2B5+, GalC+, and 

GFP+ cells was determined for each image. The total number of Hoechst+ nuclei was also 

determined for each image. These cell counts were done using the software program 

Image Pro® Plus 6.2 (Olympus Canada Inc., Markham, Ontario). 

 

3.7 STATISTICS 

All assays were performed in triplicate and quantitative data were statistically 

compared using a two-way analysis of variance (ANOVA) (Prism® Software 

Corporation). For the RT-PCR data, the optical density ratio between each target band 

and the internal control band (β-actin) was obtained using the AlphaImager™ Gel 

Imaging Software. Multiple post hoc comparisons were performed with Bonferonni’s 

multiple comparisons post-test (Prism software program). The significance level for 
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both the ANOVA and the post-test was set at p < 0.05. Mean data values are expressed 

as mean ± standard error mean (SEM).  
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IV RESULTS 

4.1 CLONING  

The full length QKI-5 mRNA sequence was cloned into both the pLEGFP-C1 

vector and pIRES2-EGFP vector. This was confirmed through a double restriction digest 

to confirm proper orientation of the insert as well as through DNA sequencing to 

confirm insert sequence was correct (Figure 3). The pLEGFP-C1 retroviral vector was 

originally the first choice vector for over expression of QKI-5 in CG4 cells due to the 

carboxy-terminal fusion of EGFP to QKI-5. pIRES2-EGFP allows for both QKI-5 and 

EGFP to be translated from a single bicistronic mRNA. This allows for specific selection 

of transiently transfected cells, but it can be difficult to determine whether EGFP is 

expressed in the same cellular location as the target gene due to processing of mRNA 

prior to translation. However, it can be advantageous to use a bicistronic vector since 

there is no fusion of GFP to the target protein. This minimizes any interaction between 

GFP and the target protein that might impact the proper function and localization of the 

target protein. Eventually, the pIRES2-QKI5 construct was chosen due to difficulties 

encountered with transfecting using the pLEGFP-C1 vector.  
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Figure 3. Cloning QKI-5 mRNA sequence into two separate expression vectors. A) 

Sequencing results from pIRES2-EGFP+QKI-5 construct. Primers used to sequence the 

construct were QK1 and QK3. The underlined indicates the coding sequence of QKI-5. 

B) 1% Agarose gel electrophoresis of pIRES22-EGFP+QKI-5 and pLEGFP-C1+QKI-5 

plasmid constructs, visualized by ethidium bromide-staining. Plasmid constructs were 

run either uncut, double cut with XhoI + SalI for pIRES2-EGFP+QKI-5 or double cut 

with EcoRI + BamHI for pLEGFP-C1+QKI-5. A ~1kb band corresponding to the 

expected size of the QKI-5 coding sequence was isolated from both plasmid constructs. 
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4.2 TRANSFECTION EFFICIENCY  

Initial culture of CG4 oligodendroglial cells were grown to confluency (~90-95%) 

in growth media. Upon reaching confluency, CG4 cells were passed into 6 separate 

60mm dishes at a density of 2 x 105 cells per dish (Figure 4). Cells were cultured 

overnight in GM and then transfected with the appropriate plasmid or siRNA the 

following day. Media was removed and replaced with DM after 16 h. Each day three 

coverslips, total protein and total RNA was collected from a single dish. After the 3rd 

day, the remaining 3 dishes, representing the 4d, 5d, and 6d time points, were 

transfected for a second time (Figure 4). Each time point was grown in a separate dish. 
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Figure 4. Schematic diagram of the experimental design. Initial culture of CG4 

oligodendroglial cells were grown to confluency (~90-95%) in growth media. Upon 

reaching confluency, CG4 cells were passed into 6 separate 60mm dishes at a density of 

2 x 105 cells per dish. Cells were cultured overnight in growth media and then 

transfected the following day. Media was removed and replaced with differentiation 

media after 16 h. Each day coverslips, total protein and total RNA was collected from a 

single dish. After the 3rd day, the remaining 3 dishes, representing the 4d, 5d, and 6d 

time points, were transfected for a second time. Each treatment was done in triplicate. 
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To determine the efficiency of transfection, GFP+ cells from blank pIRES2 

plasmid transfected and pIRES2-QKI5 plasmid transfected were imaged and counted 

using fluorescence microscopy (Figure 5). Transfection efficiency was determined the 

day after transfection using the formula, (# GFP+/ # Hoechst+)(100). Transfection 

efficiency was determined as 37.74 ± 4.86 % in blank pIRES2 plasmid transfected 

cultures, 1d after transfection (Figure 5). In 1d pIRES2-QKI5 transfected cultures, the 

transfection efficiency was determined as 38.51 ± 3.61 %. The transfection efficiency was 

maintained following the second round of transfection after 3d; 38.11 ± 5.98 % in the 4d 

blank pIRES2 plasmid transfected cultures and 37.89 ± 4.47 % in 4d pIRES2-QKI5 

plasmid transfected cultures (Figure 5). While the transfection efficiency was not 

optimal, our attempts to increase the transfection efficiency resulted in an increase in 

cell death (data not shown) which made it difficult to properly evaluate total RNA and 

protein as well as have sufficient cell numbers for immunocytochemistry. 
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Figure 5. Transfection efficiency of pIRES2 plasmid. The transfection efficiency 

of A) 1d and B) 4d blank pIRES2 plasmid as well as C) 1d and D) 4d pIRES2-QKI5 

plasmid was determined using immunocytochemistry. GFP staining is shown on the 

top, with GFP+Hoescht staining shown on the bottom. Transfection efficiency was 

determined by (# GFP+/ # Hoechst+)(100) (n=3). Scale bar = 100 µm. 
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4.3 QKI-5  AND QKI-6  MRNA  LEVELS INCREASE OVER TIME 

To assess the efficacy of the pIRES2-QKI5 recombinant vector, CG4 cells were 

transfected with 5.5 µg of DNA and cultured for up to 6d in DM. Following 

transfection, total RNA was collected after each day and RT-PCR was performed to 

determine mRNA levels of the three QKI isoforms. A 4-fold increase in QKI-5 mRNA 

levels was observed one day following transfection in pIRES2-QKI5 transfected cell 

cultures compared to 1d wildtype untreated CG4 cell cultures (Figure 6A). QKI-5 

mRNA expression showed almost a 3-fold increase over 6 days in pIRES2-QKI5 

transfected cells versus 6d wildtype untreated CG4 cell cultures (8-fold increase versus 

3-fold increase, compared to day 1 wildtype) (Figure 6A). Culturing the CG4 cells for 6d 

in DM, did not significantly affect QKI-6 and -7 mRNA levels by either the transfection 

reagent (1.98 ± 0.06 and 1.19 ± 0.06, respectively, p <0.05) or the addition of the pIRES2-

QKI5 plasmid (2.15 ± 0.07 and 1.10 ± 0.11, respectively, p <0.05) compared to the 

wildtype untreated CG4 cell cultures (1.91 ± 0.08 and 0.99 ± 0.06, respectively, p <0.05) 

(Figure 6B & 6C). Transfection with pIRES2-QKI5 recombinant vector was able to 

significantly increase QKI-5 mRNA levels without affecting either QKI-6 or QKI-7 

mRNA expression. 

There was also a significant increase observed in QKI-5 and QKI-6 mRNA levels 

over the course of cell differentiation, when QKI-5 was not upregulated. By day 4 there 

was a 2.5-fold increase in wildtype QKI-5 mRNA levels compared to day 1 (1.01 ± 0.18 

increasing to 2.73 ± 0.18, p <0.05) which eventually rose to a 3-fold increase by day 6 

(3.11 ± 0.22, p <0.05) (Figure 6A). This trend was mirrored in both blank pIRES2 plasmid 

transfected and to a lesser extent in the pIRES-QKI5 plasmid transfected CG4 cell 

cultures. This increase during cell differentiation was also seen in QKI-6 mRNA levels, 

with an eventual 2-fold increase being observed by the 6 day time point (1.00 ± 0.08 

increasing to 1.91 ± 0.08, p <0.05) (Figure 6B). There was no significant change in QKI-7 
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mRNA expression over the course of differentiation (Figure 6C). Thus, during CG4 

cellular differentiation, QKI-5 and QKI-6 mRNA levels increase, but not QKI-7 mRNA. 

Upon transfection with the pIRES2-QKI5 plasmid, QKI-5 mRNA levels were 

significantly increased without affecting either QKI-6 or QKI-7 mRNA levels.  
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Figure 6. QKI-5 mRNA is up regulated following transfection with pIRES2-

QKI5. CG4 cells were cultured for 6d in differentiation media, total RNA was collected 

and then RT-PCR for QKI-5, QKI-6, and QKI-7 was performed. A) QKI-5 mRNA levels 

were significantly higher at each day in pIRES2-QKI5 transfected cultures versus 

wildtype or blank pIRES2 plasmid transfected cultures. B) QKI-6 mRNA levels showed 

no change following transfection with either plasmid but there was in time-dependent 

increase. C) QKI-7 mRNA levels were unchanged regardless of culture time or up 

regulation of QKI-5 mRNA. Densitometer measurements were performed using 

AlphaImager software in order to quantify mRNA levels. Measurements were first 

normalized to the β-actin measurement for that day, and then all days were normalized 

to 1d wildtype and plotted as histograms. Representative gel images are shown on the 

right. Error bars indicate mean ± SEM (n=3). Asterisks denote significance compared to 

wildtype and control blank plasmid mean values (p < 0.05). The colored brackets 

indicate time-dependent significance within the same treatment groups (green = 

wildtype, red = blank vector, blue = plasmid treated) (Bonferroni’s post-test; p < 0.05). 
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Treatment with QKI-5 specific siRNA was sufficient to knockdown QKI-5 mRNA 

levels compared to wild-type and control siRNA treatment (Figure 7). A 0.7-fold change 

in QKI-5 mRNA levels was observed one day following siRNA transfection (0.31 ± 0.10 

compared to 1.00 ± 0.09 in the wildtype, p <0.05). By day 6, the difference had grown to 

a 2.2-fold change in QKI-5 mRNA expression (0.34 ± 0.06 compared to 2.54 ± 0.15, p 

<0.05) (Figure 7A). Treatment with the QKI-5 specific siRNA abolished the time 

dependent increase seen in the control treated cells. Similar to the blank vector controls, 

treatment with control siRNA resulted in a time dependent increase in QKI-5 mRNA 

levels (2.70 ± 0.10 at 6d compared to 1.25 ± 0.10, p<0.05) (Figure 7A). However, in the 

siRNA treated cells this increase during differentiation was not present, with the 6d 

siRNA treated cells not significantly different from the 1d siRNA treated cells (0.34 ± 

0.06 at 6d compared to 0.36 ± 0.10, p<0.05) (Figure 7A). The siRNA treatment was 

specific to QKI-5 as both QKI-6 and QKI-7 mRNA levels were not significantly different 

from control siRNA treated levels at any time point (Figure 7B & C). An increase during 

differentiation was still evident in QKI-6 mRNA expression, (1.89 ± 0.09 at 6d siRNA 

treated compared to 0.96 ± 0.07 at 1d siRNA treated, p<0.05) (Figure 7B), with a similar 

trend being seen in both wildtype and control siRNA treated cells. Treatment with QKI-

5 specific siRNA was sufficient to down regulate QKI-5 mRNA levels at all time points 

without having an effect on QKI-6 or QKI-7 mRNA expression levels.  
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Figure 7. QKI-5 specific siRNA is able to decrease QKI-5 mRNA levels but not 

QKI-6 or -7. CG4 cells were cultured for 6d in differentiation media, total RNA was 

collected and then RT-PCR for QKI-5, QKI-6, and QKI-7 was performed. A) QKI-5 

mRNA levels were significantly lower at each day in QKI-5 specific siRNA transfected 

cultures versus wildtype or control siRNA transfected cultures. B) QKI-6 mRNA levels 

showed no change following transfection with siRNA but there was a time-dependent 

increase. C) QKI-7 mRNA levels were unchanged regardless of culture time or 

transfection with either siRNA. Densitometer measurements were performed using 

AlphaImager software in order to quantify mRNA levels. Measurements were first 

normalized to the β-actin measurement for that day, and then all days were normalized 

to 1d wildtype and plotted as histograms. Representative gel images are shown on the 

right. Error bars indicate mean ± SEM (n=3). Asterisks denote significance compared to 

wildtype and control siRNA mean values (p < 0.05). The colored brackets indicate time-

dependent significance within the same treatment groups (green = wildtype, red = 

negative control, blue = siRNA treated) (Bonferroni’s post-test; p < 0.05). 
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4.4 QKI-5  UP REGULATION RESULTED IN UP REGULATION OF PLP AND  SIRT2  

MRNA 

Changes in Plp and Sirt2 mRNA levels were also examined following up 

regulation of QKI-5. Interestingly, Plp mRNA levels followed a similar pattern as QKI-5, 

with a significant increase in Plp mRNA levels following pIRES2-QKI5 transfection (p 

<0.05) (Figure 8A). A 2-fold increase in Plp mRNA levels was observed one day 

following transfection (2.28 ± 0.12 at 1d pIRES2-QKI5 versus 1.00 ± 0.15 at 1d blank 

vector, p <0.05) and rose to a 5.5-fold increase by day 6 (5.50 ± 0.23 at 6d pIRES2-QKI5 

versus 0.97 ± 0.17 at 6d blank vector, p <0.05). This increase during differentiation in Plp 

mRNA levels, while present in all three treatment groups, was only significant in the 

pIRES2-QKI5 transfected cell cultures (Figure 8). In both the wildtype and control blank 

vector transfected cultures, there was no significant change in Plp mRNA levels 

following exposure to DM for 6d (1.46 ± 0.15 at 6d blank vector compared to 0.81 ± 0.11 

at 1d blank vector, p<0.05). While culturing in DM was not sufficient to increase Plp 

mRNA expression, transfection with pIRES2-QKI5 along with exposure to DM did 

significantly increase Plp mRNA levels.  

Sirt2 mRNA levels in pIRES2-QKI-5 transfected CG4 cells were also elevated but 

only starting at 4d and onwards. At day 1 and day 2, there was no significant change in 

Sirt2 mRNA levels following transfection with pIRES2-QKI5 vector but at day 3 a 2-fold 

increase was observed (2.23 ± 0.23 at 2d pIRES2-QKI5 compared to 1.38 ± 0.18 at 2d 

blank vector, p <0.05). By day 6 a five-fold increase in Sirt2 mRNA was observed (5.45 ± 

0.24 at 6d pIRES2-QKI5 compared to 1.16 ± 0.15 at 6d blank vector, p <0.05) (Figure 8B). 

There was an increase during differentiation in Sirt2 mRNA levels but only in the 

pIRES2-QKI5 transfected cell cultures (Figure 8B). In both the wildtype and control 

blank vector transfected cultures, there was no significant change in mRNA levels 

following exposure to DM for 6d (1.19 ± 0.20 at 6d blank vector compared to 1.09 ± 0.23 
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at 1d blank vector, p<0.05). Similar to Plp, up regulation of QKI-5 is able to significantly 

increase Sirt2 mRNA levels during differentiation. 
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Figure 8. Plp and Sirt2 mRNA is up regulated following transfection with 

pIRES2-QKI5. CG4 cells were cultured for 6d in differentiation media, total RNA was 

collected and then RT-PCR for Plp and Sirt2 was performed. A) Plp mRNA levels were 

significantly higher at each day in pIRES2-QKI5 transfected cultures versus wildtype or 

blank pIRES2 plasmid transfected cultures. B) Sirt2 mRNA levels were significantly 

higher at each day in pIRES2-QKI5 transfected cultures versus wildtype or blank 

pIRES2 plasmid transfected cultures. Densitometer measurements were performed 

using AlphaImager software in order to quantify mRNA levels. Measurements were 

first normalized to the β-actin measurement for that day, and then all days were 

normalized to 1d wildtype and plotted as histograms. Representative gel images are 

shown on the right. Error bars indicate mean ± SEM (n=3). Asterisks denote significance 

compared to wildtype and control blank plasmid mean values (p < 0.05). Double 

asterisks indicate significance compared to only the wildtype mean (p < 0.05). The 

colored brackets indicate time-dependent significance within the same treatment 

groups (blue = plasmid treated) (Bonferroni’s post-test; p < 0.05). 
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Treatment with QKI-5 specific siRNA, had no effect on either Plp or Sirt2 mRNA 

levels at any time point (p <0.05) (Figure 9). This is interesting to note as up regulation 

of QKI-5 was able to increase both Plp and Sirt2 mRNA levels. However, when QKI-5 

was down regulated, there was no effect on either Plp or Sirt2 mRNA expression levels. 

This suggests either that QKI-5 is not necessary for transcription of Plp or Sirt2 or that 

another protein is able to compensate for the loss of QKI-5. Since QKI-6 expression is 

not affected by down regulation of QKI-5, it is likely that QKI-6 is able to compensate 

for the lack of QKI-5 expression. There was also no effect on Plp or Sirt2 mRNA levels 

during differentiation when CG4 cells were treated with either control siRNA or QKI-5 

specific siRNA (p <0.05) (Figure 9). Thus, the loss of QKI-5 does not appear to affect 

transcription of either Plp or Sirt2, but elevated QKI-5 levels can increase mRNA levels 

for both genes. 
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Figure 9. QKI-5 specific siRNA has no effect on Plp or Sirt2 mRNA expression 

levels. CG4 cells were cultured for 6d in differentiation media, total RNA was collected 

and then RT-PCR for Plp and Sirt2 was performed. A) Plp mRNA levels were not 

significantly different between QKI-5 specific siRNA treated cell cultures versus 

wildtype or control siRNA transfected cultures. B) Sirt2 mRNA levels were not 

significantly different between QKI-5 specific siRNA treated versus wildtype or control 

siRNA transfected cultures. There was also no increase in either Plp or Sirt2 mRNA 

levels over time. Densitometer measurements were performed using AlphaImager 

software in order to quantify mRNA levels. Measurements were first normalized to the 

β-actin measurement for that day, and then all days were normalized to 1d wildtype 

and plotted as histograms. Representative gel images are shown on the right. Error bars 

indicate mean ± SEM (N=3). 
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4.5 QKI-5  PROTEIN LEVELS INCREASE FOLLOWING PIRES-QKI-5  

TRANSFECTION  

To determine if protein levels followed the mRNA expression levels, western 

blots were performed on protein lysates from each time point for each treatment. 

Similar to mRNA levels, following transfection with pIRES2-QKI5, QKI-5 protein levels 

were also elevated at each time point (day 1 to day 6) compared to wildtype levels. The 

greatest change observed was a 3-fold increase at day 6 (p <0.05)(Figure 10), although 

QKI-5 protein levels were elevated at all time points compared to wildtype and blank 

vector transfected cells. However, QKI-6 and QKI-7 levels showed no significant change 

in protein levels which is consistent with their mRNA expression levels. QKI-7 migrates 

at the same molecular weight as QKI-5, which is why only 2 bands are observed 

following Western blot. Curiously enough, the increase during differentiation in both 

QKI-5 and QKI-6 mRNA expression in wildtype CG4 cells (Figure 6) did not result in a 

corresponding increase in either QKI-5 or QKI-6 protein levels (Figure 10). However, 

treatment with the pIRES2-QKI5 plasmid resulted in a significant increase over the 6 

day time period, following a similar pattern as QKI-5 mRNA levels (Figure 10). 

Transfection with pIRES2-QKI5 is able to cause a significant increase in QKI-5 protein 

levels over the course of differentiation. However, differentiation by itself is not 

sufficient to increase QKI-5, QKI-6, or QKI-7 protein levels. 
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Figure 10. QKI-5 protein levels are elevated following pIRES2-QKI5 

transfection. CG4 cells were cultured for 6d in differentiation media. Protein lysates 

were collected following cell lysis. Protein samples were separated out on 12% 

polyacrylamide gels using SDS-PAGE. Following the transfer of proteins to a PVDF 

membrane, membranes were probed with a QKI antibody. A) QKI-5 & 7 protein levels 

were elevated following transfection with pIRES2-QKI5 at all time points compared to 

wildtype and control blank pIRES2 vector transfected cultures. B) QKI-6 protein levels 

were unaffected by transfection with blank pIRES2 vector or by time. A representative 

blot showing QKI-5 and QKI-6 protein levels following transfection with either blank 

pIRES2 plasmid or pIRES2-QKI5 plasmid is shown on the right. Protein levels were 

quantified using AlphaImager software and normalized to β–actin levels. This value 

was again normalized to the 1d wildtype value and plotted as histograms. Note the 

different y-axis in A) and B). Error bars indicate mean ± SEM (n=3). Asterisks denote 

significance compared to either wildtype or control blank plasmid transfected cells (p < 

0.05). The colored brackets indicate time-dependent significance within the same 

treatment groups (blue = plasmid treated) (Bonferroni’s post-test; p < 0.05). 
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QKI-5 protein was specifically down regulated throughout the duration of the 

experiment (day 1 to 6) following QKI-5 siRNA treatment, with a consistent 0.5 to 0.75-

fold change in protein levels (0.56 ± 0.06 at day 6 siRNA treated samples compared to 

1.28 ± 0.03 in the day 6 wildtype samples, p <0.05) (Figure 11). While the QKI-5 specific 

siRNA was able to successfully down regulate QKI-5 mRNA and protein levels, there 

was no significant effect on either QKI-6 or QKI-7 protein levels (Figure 11A & 11B). In 

contrast to treatment with pIRES2-QKI-5 which resulted in a gradual increase in QKI-5 

protein levels during differentiation, treatment with the QKI-5 specific siRNA 

maintained QKI-5 protein levels below both corresponding wildtype and control siRNA 

levels. There was no increase in either QKI-5 or QKI-6 and QKI-7 protein levels, 

regardless of treatment (Figure 11). Thus, the QKI-5 specific siRNA was sufficient and 

specifically able to knock down QKI-5 protein levels without affecting QKI-6 or QKI-7 

protein levels. The culturing of CG4 cells in DM is not able to significantly increase the 

protein levels of any of the three QKI isoforms. 
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Figure 11. QKI-5 protein levels are reduced following QKI-5 specific siRNA 

transfection. CG4 cells were cultured for 6d in differentiation media. Protein lysates 

were collected following cell lysis. Protein samples were separated out on 12% 

polyacrylamide gels using SDS-PAGE. Following the transfer of proteins to a PVDF 

membrane, membranes were probed with a QKI antibody. A) QKI-5 protein levels were 

reduced following transfection with QKI-5 specific siRNA at all time points compared 

to wildtype and control siRNA transfected cultures. B) Neither time nor siRNA 

transfection had any effect on QKI-6 protein levels. A representative blot showing QKI-

5 and QKI-6 protein levels following transfection with either control siRNA or QKI-5 

specific siRNA is shown on the right. Protein levels were quantified using AlphaImager 

software and normalized to β–actin levels. This value was again normalized to the 1d 

wildtype value and plotted as histograms. Error bars indicate mean ± SEM (n=3). 

Asterisks denote significance compared to either wildtype or blank plasmid transfected 

cells (p < 0.05).  
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4.6 INCREASE IN PLP  AND SIRT2  PROTEIN EXPRESSION DURING 

DIFFERENTIATION  

Since QKI-5 was able to increase both Plp and Sirt2 mRNA expression, we next 

examined the ability of QKI-5 up regulation to affect PLP and SIRT2 protein expression. 

Similar to the above experiments, total protein was collected from each day from cells 

transfected with pIRES2-QKI5 and cultured up to 6d in DM. Western blots were then 

performed to examine both PLP and SIRT2 protein levels. An increase during 

differentiation in both PLP and SIRT2 protein was observed in cultures from day 1 to 

day 6 which was not affected by either up or down regulation of QKI-5 (p <0.05) (Figure 

12 and Figure 13). PLP and SIRT2 protein levels showed approximately 2.5-fold and 

2.75-fold increase, respectively, in untreated wild-type by day 6 (Figure 12). This 

increase was also seen in blank pIRES2 and pIRES2-QKI5 transfected CG4 cells. 

However, transfection with either vector did not significantly affect PLP or SIRT2 

protein levels during differentiation compared to wildtype levels. This is interesting to 

note, as an increase in mRNA levels is generally associated with an increase in protein 

levels. In contrast, both Plp and Sirt2 mRNA levels did not exhibit a significant increase 

in mRNA levels (p >0.05) during differentiation. Thus, during the course of 

differentiation, Plp and Sirt2 mRNA levels do not increase but PLP and SIRT2 protein 

levels do show a significant increase.  
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Figure 12. PLP and SIRT2 protein levels increase over time during culture and 

are not affected following pIRES-QKI-5 transfection. CG4 cells were cultured for 6d in 

differentiation media. Protein lysates were collected following cell lysis. Protein 

samples were separated out on 12% polyacrylamide gels using SDS-PAGE. Following 

the transfer of proteins to a PVDF membrane, membranes were probed with either a A) 

Plp-specific or B) Sirt2-specific antibody. Neither Plp nor Sirt2 protein levels were 

affected by pIRES-QKI-5 transfection. However, protein levels were elevated over time. 

A representative blot showing PLP and SIRT2 protein levels following transfection with 

either blank pIRES2 plasmid or pIRES2-QKI5 plasmid is shown on the right. Protein 

levels were quantified using AlphaImager software and normalized to β–actin levels. 

This value was again normalized to the 1d wildtype value and plotted as histograms. 

Error bars indicate mean ± SEM (n=3). Asterisks denote significance compared to either 

wildtype or control blank plasmid transfected cells (p < 0.05). The colored brackets 

indicate time-dependent significance within the same treatment groups (green = 

wildtype, red = blank vector, blue = plasmid treated) (Bonferroni’s post-test; p < 0.05). 
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4.7 QKI-5  DOES NOT IMPACT PLP  OR SIRT2  PROTEIN LEVELS  

QKI-5 protein levels increased following transfection with the pIRES2-QKI5 

plasmid (Figure 10), although this did not result in a significant change in either PLP or 

SIRT2 protein levels (Figure 12) between treatments with blank vector or untreated 

wildtype cells at similar time points. This is in contrast to both Plp and Sirt2 mRNA, as 

both showed significant increases following transfection with pIRES2-QKI5 (Figure 8). 

Thus, while QKI-5 is able to increase mRNA levels of both Plp and Sirt2, this increase in 

mRNA does not translate into a similar increase in protein levels for both genes. 

Additionally, following QKI-5 siRNA treatment, QKI-6, QKI-7, Plp or Sirt2 

protein did not exhibit a change in expression levels from wild-type or control siRNA 

treated cells (p <0.05 )(Figure 11 and Figure 13). 
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Figure 13. PLP and SIRT2 protein levels increase over time regardless of QKI-5 

specific siRNA transfection. CG4 cells were cultured for 6d in differentiation media. 

Protein lysates were collected following cell lysis. Protein samples were separated out 

on 12% polyacrylamide gels using SDS-PAGE. Following the transfer of proteins to a 

PVDF membrane, membranes were probed with either a A) Plp-specific or B) Sirt2-

specific antibody. Neither Plp nor Sirt2 protein levels were affected by QKI-5 specific 

siRNA transfection. However, protein levels were elevated over time. A representative 

blot showing PLP and SIRT2 protein levels following transfection with either negative 

control siRNA or QKI-5 specific siRNA is shown on the right. Protein levels were 

quantified using AlphaImager software and normalized to β–actin levels. This value 

was again normalized to the 1d wildtype value and plotted as histograms. Error bars 

indicate mean ± SEM (n=3). The colored brackets indicate time-dependent significance 

within the same treatment groups (green = wildtype, red = control siRNA, blue = siRNA 

treated) (Bonferroni’s post-test; p < 0.05).  
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4.8 QKI-5  UP REGULATION INHIBITS GALC  EXPRESSION AND PROMOTES A2B5  

EXPRESSION  

In order to evaluate differentiation in the entire cell population, CG4 cells were 

probed with either A2B5 or GalC antibodies and stained. A2B5 is a cell surface 

ganglioside epitope expressed on OPCs (Raff et al., 1983). A2B5 is commonly used as an 

early stage cellular marker for OPCs while GalC is used to mark OPCs that have 

differentiated into pre-myelinating OLs and is still present on myelinating OLs. The 

percentage of cells expressing A2B5 increased following QKI-5 up regulation (Figure 

14). From day one to day three there was little change in the percentage of cells 

expressing A2B5 between treatments. Starting at day 4, in CG4 cells transfected with 

pIRES2-QKI5, there was a significantly higher percentage of A2B5+ve cells (60.4 ± 4.4%) 

versus blank plasmid transfected cells (35.5 ± 2.2%) (p<0.05). By day 6 the percentages 

had dropped (44.6 ± 2.7%) in pIRES2-QKI5 transfected CG4 cells but was still 

significantly higher than the percentage of A2B5+ve (26.4 ± 1.9%) in blank plasmid 

transfected CG4 cells (p<0.05). Conversely, the percentage of cells expressing GalC, the 

major glycolipid in myelin (Marcus and Popko 2002), decreased following QKI-5 up 

regulation (Figure 15). Starting at day 3 the percentage of GalC+ (11.9 ± 1.3%) in pIRES2-

QKI5 transfected was significantly lower than blank plasmid transfected cells (25.2 ± 

1.6%) (p<0.05). The percentage of GalC+ cells stayed consistently lower than controls, all 

the way through day 6; 43.2 ± 3.7 % compared to 58.5 ± 4.5 % (p<0.05) in control 6d 

blank plasmid transfected cultures. Up regulation of QKI-5 appears to drive cells to 

express A2B5 for a longer period of time, suggesting that QKI-5 serves to inhibit 

differentiation in CG4 cells. 
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Figure 14. Cell counts of A2B5+ cells after 6d in DM. CG4 cells were either A) 

untransfected (wildtype) and transfected with either B) blank pIRES2 plasmid (negative 

control), C) pIRES2-QKI5 plasmid, D) control siRNA, or E) QKI-5 specific siRNA, and 

cultured for 6d in DM on coverslips. After fixing coverslips were stained with 

antibodies against A2B5. Hoechst stain was used to visualize the cell nuclei. Fluorescent 

microscope images taken at 100X resolution. Cell counts were performed blind, as 

previously described in Nicolay, 2004. A2B5 is stained red and Hoechst is stained blue. 

Scale bar = 100 µm. Average cell counts (n=3) are graphed in F) and G). Error bars 

indicate mean ± SEM (n=3). Asterisks denote significance compared to either wildtype 

or negative control transfected cells (p < 0.05). The colored brackets indicate time-

dependent significance within the same treatment groups (green = wildtype, red = blank 

pIRES2/negative control, blue = plasmid/siRNA treated) (Bonferroni’s post-test; p < 0.05). 

Approximately 1500 cells were counted from each experiment time point.  
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Figure 15. Cell density of GalC+ cells after 6d in DM. CG4 cells were either A) 

untransfected (wildtype) and transfected with either B) blank pIRES2 plasmid (negative 

control), C) pIRES2-QKI5 plasmid, D) control siRNA, or E) QKI-5 specific siRNA, and 

cultured for 6d in DM on coverslips. After fixing coverslips were stained with 

antibodies against A2B5. Hoechst stain was used to visualize the cell nuclei. 

Fluorescence microscope images taken at 100X resolution. Cell counts were performed 

blind, as previously described in Nicolay, 2004. A2B5 is stained red and Hoechst is 

stained blue. Scale bar = 100 µm. Average cell counts (n=3) are graphed in F) and G). 

Error bars indicate mean ± SEM (n=3). Asterisks denote significance compared to either 

wildtype or negative control transfected cells (p < 0.05). The colored brackets indicate 

time-dependent significance within the same treatment groups (green = wildtype, red = 

blank pIRES2/negative control, blue = plasmid/siRNA treated) (Bonferroni’s post-test; p 

< 0.05). Approximately 1500 cells were counted from each experiment time point.  
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Down regulation of QKI-5 did not have a significant effect on the number of cells 

expressing A2B5 (Figure 14). At day 6 the percentage of A2B5+ cells in cultures 

transfected with QKI-5 specific siRNA was 26.0 ± 3.7 % compared to 24.0 ± 3.1 % 

(p<0.05) in the 6d control siRNA sample. However, GalC+ cell counts were affected by 

QKI-5 specific siRNA transfection (Figure 15). Starting at day 4, the percentage of GalC+ 

cells in the QKI-5 specific siRNA treated cultures was significantly higher (40.4 ± 1.8 %) 

compared to control siRNA treated cultures (27.7 ± 1.7 %) (p<0.05). This trend continued 

to day 6 with the percentage rising to 67.7 ± 4.3 % compared to 55.1 ± 3.4 % (p<0.05) in 

the 6d control siRNA sample.  
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V DISCUSSION 

A significant role for QKI in myelination has been well established. Additionally, 

more recent research has begun to highlight the importance of QKI in embryonic 

development. This is not surprising as other STAR proteins regulate a variety of 

developmental processes including bone metabolism, germline differentiation, and 

male fertility. However, the function of QKI in early embryonic development has not 

been well described. There are three mechanisms by which QKI is able to regulate 

mRNA metabolism, stabilization, localization, and proper generation of mRNA variants 

via alternative splicing. All of these mechanisms affect translation of mRNA targets. In 

this context, the aim of this research project was to further expand on the role of QKI-5 

in oligodendrocyte development. 

In the course of this work, I established that there is an increase in QKI-5 and 

QKI-6 mRNA, but not in QKI-7, Plp or Sirt2 mRNA, during cell differentiation in 

wildtype CG4 cells. In contrast to the mRNA expression profile, QKI-5 protein does not 

increase during CG4 cell differentiation. However, QKI-6, PLP and SIRT2 protein levels 

all increased during differentiation of wildtype CG4 cells. QKI-7 protein levels are 

difficult to examine as it migrates at the same size as QKI-5. Following transfection with 

pIRES2-QKI5, QKI-5 mRNA and protein levels were elevated throughout the 

experimental time course, from day 1 through til day 6. Over expression of QKI-5 

resulted in an increase in both Plp and Sirt2 mRNA but did not result in an increase in 

either PLP or SIRT2 protein levels. Whereas treatment with QKI-5 siRNA, while able to 

significantly and specifically decrease QKI-5 mRNA and protein levels, it did not 

impact QKI-6, QKI-7, Plp or Sirt2 mRNA and protein levels. As well, up regulation of 

QKI-5 induced an increase in A2B5+ cells and decrease in GalC+ cells, suggesting that 

QKI-5 inhibits CG4 OL cell differentiation. 
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5.1 EFFECT OF OVER-EXPRESSION OF QKI-5  ON MRNA  EXPRESSION LEVELS  

An increase in QKI-5 and QKI-6 levels has been shown to correlate with OL 

differentiation (Chen et al. 2007; Larocque et al. 2009). Since the CG4 OL cells were 

cultured in DM, it was expected that both QKI-5 and QKI-6 mRNA levels would 

increase over the 6d time period. In both wildtype and control transfected cell cultures, 

QKI-5 and QKI-6 mRNA levels did in fact increase when cultured for 6d in DM. 

However, QKI-7 mRNA levels remained stable even after 6d of growth in DM. When 

CG4 cells were transfected with pIRES2-QKI5, there was a significant increase in QKI-5 

mRNA levels at every time point although there was no change in QKI-6 or QKI-7 

mRNA levels. Likewise, when CG4 cells were transfected with a QKI-5 specific siRNA, 

there was a significant decrease observed in QKI-5 mRNA levels but QKI-6 and QKI-7 

mRNA levels were not affected.  

During differentiation of wildtype or control CG4 cells, Plp or Sirt2 mRNA levels 

did not change even after 6 days in DM. However, overexpression of QKI-5 induced an 

increase in Plp and in Sirt2 mRNA levels. Increases in PLP and SIRT2 protein levels 

have been associated with OL differentiation (Ji et al., 2011) although it would appear 

that an increase in Plp or Sirt2 mRNA levels are not needed in order for protein levels to 

increase. There is evidence that QKI-6 can stabilize mRNA targets, preventing their 

degradation (Li et al., 2000; Lakiza et al., 2005). Hence, it is possible that CG4 OL growth 

in DM results in stabilization of Plp and/or Sirt2 mRNA, negating the need for an 

increase in transcription during differentiation. Another explanation for this would be 

the ability of QKI-5 to sequester Plp and Sirt2 mRNA to the nucleus. Elevation of QKI-5 

levels may cause an increase in Plp and Sirt2 transcription but then restrict the export of 

Plp and Sirt2 mRNA into the cytoplasm. So while the pIRES2-QKI5 transfected cultures 

show elevated Plp and Sirt2 mRNA levels, the amount of mRNA that is available to be 

translated is similar to the wildtype and control CG4 cells. However, treatment with a 
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QKI-5 specific siRNA did not affect Plp or Sirt2 mRNA and protein levels, this may 

imply that while QKI-5 is able to increase transcription of these target genes, it is not 

essential for proper transcription or translation. It has been shown that Sirt2 expression 

proceeds normally even in the absence of Plp in pre-myelinating OLs (Zhu et al. 2012). 

However, a QRE has been identified in the 3’ UTR of Plp transcripts (Macklin et al. 

1987) as well as a QRE in Sirt2 (unpublished data), leaving open the possibility that 

QKI-5 may regulate availability and translation of Plp and Sirt2 mRNA through binding 

of the QREs.  

5.2 EFFECT OF OVER-EXPRESSION OF QKI-5  ON PROTEIN LEVELS  

After demonstrating that QKI-5 expression can affect both Plp and Sirt2 mRNA 

levels, we wanted to examine the effect of QKI-5 on protein levels. First we looked at 

protein levels for the three QKI isoforms. Protein levels for QKI-5 correlated with the 

increase in mRNA following differentiation of the CG4 cells, regardless of treatment. 

However, QKI-6 protein levels did not follow the increase in QKI-6 mRNA levels 

during differentiation. The fact that QKI-6 protein did not increase during CG4 cell 

differentiation may indicate that the CG4 cells were not fully differentiated. The 

antibody we used is unable to differentiate between QKI-5 and QKI-7 protein levels, 

however, QKI-6 and QKI-7 have similar expression profiles, are both negatively affected 

in the QkV/QkV mutant, and have similar effects on both Schwann cells and OLs (Hardy 

et al., 1996; Larocque et al., 2009) . We also observed no change in QKI-7 mRNA levels. 

One possible explanation is that QKI-5 is binding the excess QKI-6 mRNA, sequestering 

it in the nucleus and preventing its transport out into the cytoplasm, thereby indirectly 

inhibiting translation. Another possibility is the stabilization of QKI-6 mRNA by QKI-5 

protein. Thus, even though transcription proceeds normally, there is reduced 

degradation resulting in accumulation of QKI-6 mRNA.  
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Plp is a four transmembrane domain protein that acts as a major scaffolding 

protein within the myelin sheath. It is encoded by the Plp1 gene, which codes for 7 

exons and generates two isoforms, Plp and DM20. DM20 is missing exon 3B which is 

crucial for axo-glial interaction (Stecca et al., 2000). Plp is expressed in differentiated 

OLs which explains the increase in PLP and SIRT2 protein levels we observed during 

CG4 cell differentiation. While protein levels for PLP and SIRT2 were observed to 

increase during growth in DM they were not affected by QKI-5 over expression. 

Regardless of treatment, both PLP and SIRT2 protein levels show a time dependent 

increase during differentiation from day 1 to day 6. However, over expression of QKI-5 

did not significantly increase Plp or Sirt2 protein levels compared to wildtype or control 

culture levels. This is in contrast to changes observed in mRNA expression for both 

genes, where over expression of QKI-5 resulted in an increase in both Plp and Sirt2 

mRNA levels although normal cellular differentiation did not appear to have an effect 

on mRNA levels. Generally, when mRNA levels increase, protein levels similarly 

increase. One explanation is that QKI-6 activity is responsible for the increase in Plp and 

Sirt2 mRNA, as QKI-6 has been previously described to play a regulatory role in mRNA 

translation and stabilization (Lakiza et al. 2005; Saccomanno et al. 1999). An alternative 

explanation is that, similar to QKI-6 mRNA, QKI-5 binds to and sequesters Plp and Sirt2 

mRNA within the nucleus, thus resulting in mRNA accumulation without a subsequent 

increase in protein levels.  

Transfection with a QKI-5 specific siRNA did not impact QKI-6, QKI-7, Plp, or 

Sirt2 mRNA and protein levels. A possible explanation is that baseline transcription of 

these genes are still able to proceed with transcription even when QKI-5 levels are low, 

suggesting that while QKI-5 may not be essential for Plp or Sirt2 transcription. 

Although it is still able to induce transcription of both genes. While QKI-5 expression 

was impacted by siRNA treatment, QKI-6 and QKI-7 mRNA levels were still at 
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wildtype levels. Thus it is possible that QKI-6 and -7 are able to compensate for a 

reduction in QKI-5. However, when ENU-induced alleles examined loss of function by 

abolishing QKI dimerization or through the loss of a splice site necessary for proper 

QKI-5 transcript production, there was either a loss of QKI protein function or a 

complete absence of the nuclear isoform, QKI-5. In contrast, our study only diminished 

QKI-5 expression and was unable to completely remove QKI-5 expression. It is possible 

that low levels of QKI-5 are sufficient to maintain OL viability without negatively 

impacting differentiation.  

Plp and Sirt2 mRNA are affected by QKI-5 over expression but not by normal 

growth in wildtype CG4 cells in DM. There was a significant increase in both Plp and 

Sirt2 mRNA levels following over expression of QKI-5. However, protein levels for Plp 

and Sirt2 were not affected by QKI-5 over expression but were observed to increase 

during normal growth in wildtype CG4 cells in DM. One explanation for this is, 

perhaps sequestering of Plp and Sirt2 mRNA in the nucleus by QKI-5. Elevation of QKI-

5 levels may cause an increase in Plp and Sirt2 transcription but then restrict the export 

of Plp and Sirt2 mRNA into the cytoplasm. So while the pIRES2-QKI5 transfected 

cultures show elevated Plp and Sirt2 mRNA levels, the amounts of mRNA that is 

available to be translated is similar to the wildtype and control cultures. However, 

treatment with a QKI-5 specific siRNA was unable to affect Plp and Sirt2 mRNA and 

protein levels indicating that while QKI-5 is able to increase transcription of these target 

genes, it is not essential for proper transcription or translation. It has been shown that 

Sirt2 expression proceeds normally even in the absence of Plp in pre-myelinating OLs 

(Zhu et al. 2012). However, a QRE has been identified in the 3’ UTR of Plp transcripts 

(Macklin et al. 1987) as well as a QRE in Sirt2 (our laboratory unpublished data), leaving 

open the possibility that QKI-5 may regulate availability and translation of Plp and Sirt2 

mRNA through binding and sequestering within the nucleus.  
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5.3 IMPACT OF UP-REGULATION OF QKI  ON OL  DIFFERENTIATION  

In order to evaluate the effect of QKI-5 on OL differentiation, CG4 cells were 

transfected with pIRES2-QKI5 and immunostained with antibodies against A2B5 and 

GalC. A2B5 is an antibody that recognizes an epitope on a cell surface ganglioside 

expressed by OPCs. GalC is a glycosphingolipid that is highly expressed in the myelin 

sheath. GalC is expressed later than A2B5 and is specific to differentiated OLs. The 

percentage of cells expressing A2B5 provides us with a baseline while percentage of 

cells expressing GalC was used to evaluate differentiation of CG4 cells. Transfection of 

CG4 OL with the pIRES2-QKI5 plasmid resulted in a higher percentage of A2B5+ cells, 

compared to wildtype or control vector transfected cells. As well, the percentage of 

GalC+ cells was lower compared to wildtype and control cultures. The increase in A2B5+ 

cells coupled with a decrease in GalC+ cells points to the ability of QKI-5 to delay 

differentiation when over expressed in CG4 OL cells. It is possible that QKI-5 can bind 

to mRNAs that encode for enhancers of OPC differentiation, thus retaining them within 

the nucleus and inhibiting OPC differentiation.  

The increase in Plp and Sirt2 mRNA expression may be an indirect result of the 

delay in differentiation. A delay in differentiation could drive increased transcription of 

Plp and Sirt2 mRNA as a feedback mechanism or result in accumulation of mRNA 

transcripts. Also, since PLP and SIRT2 protein levels remain unchanged, it is possible 

that the change in timing of OL differentiation is due to a separate pathway. Up 

regulation of Sirt2 has been found to enhance differentiation (Ji et al. 2011). As well, Ji et 

al. found that knockdown of Sirt2 inhibited MBP expression. While the up regulation of 

QKI-5 did not have an effect on SIRT2 protein levels, the increase observed in all 

treatment groups during the 6d time course can be attributed to growth in DM and 

subsequent differentiation.  
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There was no change in the percentage of A2B5+ cells following siRNA treatment. 

One explanation why a decrease in the number of A2B5+ cells is not observed is that 

A2B5 is one of the earliest markers of OPCs and the fate of some cells have already been 

determined. However, the percentage of GalC+ cells was significantly increased from 4d 

onward. Since the knockdown of QKI-5 is unable to impact QKI-6, QKI-7, PLP, or SIRT2 

protein levels, it is likely that the baseline transcription, mentioned previously, is 

similarly able to compensate for the decrease in QKI-5 protein. Also, the markers 

examined are mainly end stage differentiation markers, so it is possible that the cells are 

differentiating but have not reached the point at which Plp, Sirt2 mRNA or GalC are up 

regulated. Examination of a differentiation marker that is expressed in between A2B5 

and GalC may provide insight to the rate at which knockdown of QKI-5 impacts 

cellular differentiation.  

While QKI-5 has been shown to have alternative splicing activity (Wu et al., 

2002), QKI-6 has been implicated in cellular differentiation through mediation of 

mRNA translation and stabilization. While this role has not been described for QKI-5, it 

is possible that it could mediate mRNA translation since all QKI isoforms contain the 

same RNA binding domain and thus can bind the same targets. In contrast to QKI-6, 

which stabilizes mRNAs by binding and preventing degradation via RNases, QKI-5 

likely prevents translation by sequestering target mRNAs in the nucleus. This would 

allow the cell to quickly respond to extracellular signals by rapidly translating the large 

pool of available mRNAs, thereby producing a large number of proteins in a short 

period of time. That QKI-5 protein levels steadily increases up until shortly after the 

onset of myelination (Hardy et al., 1996), suggests the ability of OLs to stockpile 

necessary myelin mRNAs in the nucleus prior to the onset of myelination. The fact that 

QKI-6 levels increase once QKI-5 levels begin to decline suggests that competition 

between the two differentially localized isoforms controls the availability of target 
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mRNAs and is one mechanism by which OLs can tightly regulate the translation of 

mRNAs required for myelinogenesis.  

The ability of QKI-5 to bind to both Plp and Sirt2 mRNA combined with the 

presence of a nuclear localization signal could result in the sequestering of Plp and Sirt2 

mRNA to the nucleus. By sequestering mRNA in the nucleus, it would prevent 

translation of the target mRNA. This would explain the stockpiling of mRNA with little 

change in protein levels. Indeed, QKI-5 has been shown to retain MBP mRNA in the 

nucleus (Larocque et al. 2002) and it is conceivable that QKI-5 can retain other mRNA 

targets. Since QKI-5 and QKI-6 have differing expression profiles over time, it is 

possible that the cell may use QKI as an aid in the proper timing of cell cycle 

progression through switching expression from QKI-5 to QKI-6 resulting in the release 

and translation of a large quantity of mRNA in a short period of time. QKI may also act 

through other downstream targets, such as p27KIP1 (Larocque et al. 2005), to regulate cell 

cycle progression and cellular differentiation.  
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Table 1. Summary of gene expression changes following changes in QKI-5 expression 

Up regulation of QKI-5 Knock down of QKI-5 

QKI-5 mRNA levels increase QKI-5 mRNA levels similar to wildtype 

QKI-5/QKI-7 protein levels increase 
QKI-5/QKI-7 protein levels similar to 

wildtype 

QKI-6 mRNA and protein levels similar 

to wildtype 

QKI-6 mRNA and protein levels similar 

to wildtype 

Plp mRNA levels increase Plp mRNA levels similar to wildtype 

Sirt2 mRNA levels increase Sirt2 mRNA levels similar to wildtype 

PLP protein levels similar to wildtype PLP protin levels similar to wildtype 

SIRT2 protein levels similar to wildtype SIRT2 protein levels similar to wildtype 

Increase in % of A2B5+ve cells % of A2B5+ve cells similar to wildtype 

Decrease in % of GalC+ve cells Increase in % of GalC+ve cells 
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Table 1. Summary of gene expression changes following changes in QKI-5 

expression. Summary of various gene expression changes including mRNA and protein 

levels following either upregulation or knockdown of QKI-5 expression. Genes 

examined include QKI-6, Plp, Sirt2 as well as ganglioside markers A2B5 and GalC.  
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5.4 FUTURE DIRECTIONS  

In the present work, I focused mainly on the impact of elevated QKI-5 on CG4 

OL cell differentiation. Down regulation of QKI-5 was also examined but results were 

limited compared to the up regulation studies. The first is that CG4 cells were allowed 

to differentiate for up to 6 days in DM. The experiment did not go beyond 6 days 

because of cell confluency and the inability to stain and count individual cells. Based on 

previous studies from our lab (Ji et al., 2011), 6 days was determined to be the 

appropriate time to allow for CG4 cells to differentiate to a stage of maturity where they 

would begin to express MBP proteins. While (Ji et al., ) was able to show an increase in 

MBP after growth for 6d in DM, I was unable to detect MBP using either western blots 

or immunocytochemistry after a similar time period. This could either be an issue with 

the DM or else the cells just need to be cultured for a longer period of time. These 

culture problems are important to overcome in order to fully describe the effect of QKI-

5 on PLP and SIRT2 protein expression patterns. Another aspect of the study that could 

be improved would be the use of primary OL cells or perhaps even QKI-5 over 

expression in vivo, to both validate and expand upon the results presented here. 

There is evidence linking QKI to cell cycling machinery and it would be 

interesting to further investigate the relationships between cell cycle components and 

QKI-5. A recent study has also linked QKI with glioblastoma via microRNA (miRNA) 

regulation (Chen et al., 2012). The study by Chen et al., described the association of QKI 

with miRNA-20a, leading to stabilization of the miRNA target and the discovery of a 

novel tumor suppression mechanism. Another study also discovered that U343 cells 

that were deficient in QKI had elevated levels of miRNA-7 which resulted in defects in 

cellular proliferation (Wang et al., 2013). Further investigation of the links between 

miRNA and QKI would provide insight into another mechanism by which QKI may 

regulate glial cell proliferation and function. 
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In addition, further experiments that describe the mRNA targets that QKI is able 

to bind directly are needed. Initial RNA coimmunoprecipitation studies performed in 

our lab (unpublished) have provided us with a clearer picture of the interaction 

between QKI protein and Plp and Sirt2 mRNA. CG4 cells that were fully differentiated 

showed higher levels of Plp mRNA were bound to QKI protein compared to IgG 

controls. In cells cultured in GM, Plp expression is lower and this is reflected in lower 

levels of mRNA precipitating out with QKI protein. In the CG4 cells grown in DM, we 

again see increased binding of QKI protein to Sirt2 mRNA when compared to IgG 

controls. This demonstrates the ability of QKI protein to directly bind both Plp and Sirt2 

mRNA in CG4 OL cells. The cellular location of binding has yet to be determined and 

will provide greater insight on the role of QKI on Plp and Sirt2 mRNA. It will be 

interesting to see if the majority of binding occurs in the nucleus or cytoplasm and if 

QKI-5 is able to shuttle back and forth between the nucleus and cytoplasm while bound 

to either Plp or Sirt2 mRNA. As well, the investigation of a greater number of mRNA 

targets bound by QKI-5 will also provide further insight into the role of QKI-5 and glial 

cell proliferation. Previous bioinformatics studies have highlighted some potential 

targets of QKI (Galarneau and Richard 2005) but outside of one or two popular targets 

(MBP and MAG) there is a lack of data on both the in vitro and in vivo binding targets of 

QKI. The recent discovery that QKI can also regulate miRNA metabolism has further 

increased the number of possible binding targets (Wang et al., 2013). 
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APPENDIX I MAP OF THE PIRES2-EGFP VECTOR (CLONTECH) 
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APPENDIX II RESULTS OF TWO WAY ANOVA TEST FOR RT-PCR DATA OF QKI-5 

TRANSCRIPTION  

Two way ANOVA test for RT-PCR data of QKI-5 in DM (Figure 6) 

Source of Variation % of total 

variation 

P value   

  Interaction 1.68 0.0184   

  Time 20.22 < 0.0001   

  Treatment 74.97 < 0.0001   

  Subjects (matching) 1.2409 0.0132   

     

Source of Variation P value summary Significant?   

  Interaction * Yes   

  Time *** Yes   

  Treatment *** Yes   

  Subjects (matching) * Yes   

     

Source of Variation Df Sum-of-

squares 

Mean 

square 

F 

  Interaction 10 4.582 0.4582 2.666 

  Time 5 55.22 11.04 64.26 

  Treatment 2 204.7 102.4 181.2 

  Subjects (matching) 6 3.389 0.5648 3.287 

  Residual 30 5.156 0.1719  

     

Number of missing 

values 

0    

 

Bonferroni post hoc test 

wildtype vs blank plasmid     

Treatment wildtype blank plasmid Difference 95% CI of diff. 

  1d 1.070 0.8612 -0.2092 -1.487 to 1.068 

  2d 1.710 1.181 -0.5284 -1.806 to 0.7492 

  3d 1.801 1.761 -0.04044 -1.318 to 1.237 

  4d 2.731 2.611 -0.1200 -1.398 to 1.158 

  5d 2.898 3.114 0.2158 -1.062 to 1.493 

  6d 3.105 3.203 0.09829 -1.179 to 1.376 

 

Treatment Difference t P value Summary 

  1d -0.2092 0.5260 P > 0.05 ns 

  2d -0.5284 1.328 P > 0.05 ns 

  3d -0.04044 0.1017 P > 0.05 ns 
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  4d -0.1200 0.3018 P > 0.05 ns 

  5d 0.2158 0.5426 P > 0.05 ns 

  6d 0.09829 0.2471 P > 0.05 ns 

 

wildtype vs plasmid     

Treatment wildtype plasmid Difference 95% CI of diff. 

  1d 1.070 4.317 3.247 1.969 to 4.524 

  2d 1.710 5.082 3.372 2.095 to 4.650 

  3d 1.801 5.628 3.827 2.549 to 5.105 

  4d 2.731 6.936 4.205 2.927 to 5.483 

  5d 2.898 7.642 4.744 3.466 to 6.021 

  6d 3.105 8.197 5.092 3.815 to 6.370 

 

Treatment Difference t P value Summary 

  1d 3.247 8.162 P<0.001 *** 

  2d 3.372 8.478 P<0.001 *** 

  3d 3.827 9.621 P<0.001 *** 

  4d 4.205 10.57 P<0.001 *** 

  5d 4.744 11.92 P<0.001 *** 

  6d 5.092 12.80 P<0.001 *** 

     

blank plasmid vs plasmid     

Treatment blank plasmid plasmid Difference 95% CI of diff. 

  1d 0.8612 4.317 3.456 2.178 to 4.734 

  2d 1.181 5.082 3.901 2.623 to 5.178 

  3d 1.761 5.628 3.867 2.590 to 5.145 

  4d 2.611 6.936 4.325 3.047 to 5.603 

  5d 3.114 7.642 4.528 3.250 to 5.805 

  6d 3.203 8.197 4.994 3.716 to 6.271 

 

Treatment Difference t P value Summary 

  1d 3.456 8.688 P<0.001 *** 

  2d 3.901 9.806 P<0.001 *** 

  3d 3.867 9.722 P<0.001 *** 

  4d 4.325 10.87 P<0.001 *** 

  5d 4.528 11.38 P<0.001 *** 

  6d 4.994 12.55 P<0.001 *** 
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Two way ANOVA test for RT-PCR data of QKI-5; siRNA treatment in DM (Figure 7) 

Source of Variation % of total 

variation 

P value   

  Interaction 6.92 0.0005   

  Time 16.78 < 0.0001   

  Treatment 71.11 < 0.0001   

  Subjects (matching) 0.7562 0.5406   

     

Source of Variation P value summary Significant?   

  Interaction *** Yes   

  Time *** Yes   

  Treatment *** Yes   

  Subjects (matching) ns No   

     

Source of Variation Df Sum-of-

squares 

Mean 

square 

F 

  Interaction 10 2.487 0.2487 4.680 

  Time 5 6.029 1.206 22.69 

  Treatment 2 25.56 12.78 282.1 

  Subjects (matching) 6 0.2718 0.04529 0.8521 

  Residual 30 1.595 0.05315  

     

Number of missing 

values 

0    

 

Bonferroni post hoc test 

wildtype vs control siRNA     

Treatment wildtype control siRNA Difference 95% CI of diff. 

  1d 1.170 1.250 0.08017 -0.5169 to 0.6773 

  2d 1.509 1.505 -0.003751 -0.6008 to 0.5933 

  3d 1.734 1.700 -0.03382 -0.6309 to 0.5633 

  4d 1.931 1.888 -0.04233 -0.6394 to 0.5548 

  5d 2.167 2.434 0.2671 -0.3300 to 0.8642 

  6d 2.538 2.706 0.1688 -0.4283 to 0.7658 

 

Treatment Difference t P value Summary 

  1d 0.08017 0.4312 P > 0.05 ns 

  2d -0.003751 0.02017 P > 0.05 ns 

  3d -0.03382 0.1819 P > 0.05 ns 

  4d -0.04233 0.2277 P > 0.05 ns 

  5d 0.2671 1.437 P > 0.05 ns 
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  6d 0.1688 0.9077 P > 0.05 ns 

 

wildtype vs siRNA     

Treatment wildtype siRNA Difference 95% CI of diff. 

  1d 1.170 0.3564 -0.8137 -1.411 to -0.2167 

  2d 1.509 0.2398 -1.269 -1.866 to -0.6717 

  3d 1.734 0.3726 -1.362 -1.959 to -0.7646 

  4d 1.931 0.6168 -1.314 -1.911 to -0.7170 

  5d 2.167 0.5957 -1.571 -2.168 to -0.9742 

  6d 2.538 0.3375 -2.200 -2.797 to -1.603 

 

Treatment Difference t P value Summary 

  1d -0.8137 4.377 P<0.001 *** 

  2d -1.269 6.825 P<0.001 *** 

  3d -1.362 7.325 P<0.001 *** 

  4d -1.314 7.068 P<0.001 *** 

  5d -1.571 8.452 P<0.001 *** 

  6d -2.200 11.83 P<0.001 *** 

 

control siRNA vs siRNA     

Treatment control siRNA siRNA Difference 95% CI of diff. 

  1d 1.250 0.3564 -0.8939 -1.491 to -0.2968 

  2d 1.505 0.2398 -1.265 -1.862 to -0.6680 

  3d 1.700 0.3726 -1.328 -1.925 to -0.7308 

  4d 1.888 0.6168 -1.272 -1.869 to -0.6746 

  5d 2.434 0.5957 -1.838 -2.435 to -1.241 

  6d 2.706 0.3375 -2.369 -2.966 to -1.772 

 

Treatment Difference t P value Summary 

  1d -0.8939 4.808 P<0.001 *** 

  2d -1.265 6.805 P<0.001 *** 

  3d -1.328 7.143 P<0.001 *** 

  4d -1.272 6.841 P<0.001 *** 

  5d -1.838 9.888 P<0.001 *** 

  6d -2.369 12.74 P<0.001 *** 
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APPENDIX III RESULTS OF TWO WAY ANOVA TEST FOR RT-PCR DATA OF QKI-6 

TRANSCRIPTION 

Two way ANOVA test for RT-PCR data of QKI-6 in DM (Figure 6) 

Source of Variation % of total variation P value   

  Interaction 3.65 0.2611   

  Time 84.07 < 0.0001   

  Treatment 1.37 0.2882   

  Subjects (matching) 2.6733 0.1754   

     

Source of Variation P value summary Significant?   

  Interaction ns No   

  Time *** Yes   

  Treatment ns No   

  Subjects (matching) ns No   

     

Source of Variation Df Sum-of-squares Mean square F 

  Interaction 10 0.3081 0.03081 1.328 

  Time 5 7.106 1.421 61.23 

  Treatment 2 0.1161 0.05806 1.542 

  Subjects (matching) 6 0.2259 0.03766 1.623 

  Residual 30 0.6963 0.02321  

     

Number of missing values 0    

 

Bonferroni post hoc test 

wildtype vs blank plasmid     

Treatment wildtype blank plasmid Difference 95% CI of diff. 

  1d 1.000 0.9646 -0.03540 -0.4551 to 0.3843 

  2d 1.101 1.149 0.04787 -0.3719 to 0.4676 

  3d 1.024 1.198 0.1735 -0.2462 to 0.5933 

  4d 1.365 1.620 0.2554 -0.1643 to 0.6751 

  5d 1.507 1.526 0.01877 -0.4010 to 0.4385 

  6d 1.913 1.977 0.06414 -0.3556 to 0.4839 

 

Treatment Difference t P value Summary 

  1d -0.03540 0.2709 P > 0.05 ns 

  2d 0.04787 0.3663 P > 0.05 ns 

  3d 0.1735 1.328 P > 0.05 ns 

  4d 0.2554 1.954 P > 0.05 ns 

  5d 0.01877 0.1436 P > 0.05 ns 
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  6d 0.06414 0.4908 P > 0.05 ns 

 

 

wildtype vs plasmid     

Treatment wildtype plasmid Difference 95% CI of diff. 

  1d 1.000 0.9489 -0.05107 -0.4708 to 0.3686 

  2d 1.101 1.005 -0.09597 -0.5157 to 0.3238 

  3d 1.024 1.143 0.1191 -0.3006 to 0.5389 

  4d 1.365 1.510 0.1446 -0.2752 to 0.5643 

  5d 1.507 1.789 0.2819 -0.1379 to 0.7016 

  6d 1.913 2.154 0.2408 -0.1790 to 0.6605 

 

Treatment Difference t P value Summary 

  1d -0.05107 0.3908 P > 0.05 ns 

  2d -0.09597 0.7344 P > 0.05 ns 

  3d 0.1191 0.9116 P > 0.05 ns 

  4d 0.1446 1.106 P > 0.05 ns 

  5d 0.2819 2.157 P > 0.05 ns 

  6d 0.2408 1.842 P > 0.05 ns 

 

blank plasmid vs plasmid     

Treatment blank plasmid plasmid Difference 95% CI of diff. 

  1d 0.9646 0.9489 -0.01568 -0.4354 to 0.4040 

  2d 1.149 1.005 -0.1438 -0.5636 to 0.2759 

  3d 1.198 1.143 -0.05440 -0.4741 to 0.3653 

  4d 1.620 1.510 -0.1108 -0.5305 to 0.3089 

  5d 1.526 1.789 0.2631 -0.1566 to 0.6828 

  6d 1.977 2.154 0.1766 -0.2431 to 0.5963 

 

Treatment Difference t P value Summary 

  1d -0.01568 0.1200 P > 0.05 ns 

  2d -0.1438 1.101 P > 0.05 ns 

  3d -0.05440 0.4163 P > 0.05 ns 

  4d -0.1108 0.8480 P > 0.05 ns 

  5d 0.2631 2.013 P > 0.05 ns 

  6d 0.1766 1.352 P > 0.05 ns 

 

Two way ANOVA test for RT-PCR data of QKI-6; siRNA treatment in DM (Figure 7) 

Source of Variation % of total variation P value   

  Interaction 2.87 0.6654   

  Time 84.33 < 0.0001   
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  Treatment 0.18 0.6639   

  Subjects (matching) 1.2574 0.7632   

     

Source of Variation P value summary Significant?   

  Interaction ns No   

  Time *** Yes   

  Treatment ns No   

  Subjects (matching) ns No   

Source of Variation Df Sum-of-squares Mean square F 

  Interaction 10 0.1778 0.01778 0.7591 

  Time 5 5.220 1.044 44.57 

  Treatment 2 0.01139 0.005693 0.4389 

  Subjects (matching) 6 0.07783 0.01297 0.5538 

  Residual 30 0.7027 0.02342  

 

Number of missing values 0    

 

Bonferroni post hoc test 

wildtype vs control     

Treatment wildtype control Difference 95% CI of diff. 

  1d 1.000 1.076 0.07637 -0.3098 to 0.4625 

  2d 1.101 1.014 -0.08754 -0.4737 to 0.2986 

  3d 1.143 1.152 0.008790 -0.3774 to 0.3949 

  4d 1.484 1.592 0.1083 -0.2778 to 0.4945 

  5d 1.531 1.472 -0.05903 -0.4452 to 0.3271 

  6d 1.771 1.842 0.07150 -0.3146 to 0.4576 

 

Treatment Difference t P value Summary 

  1d 0.07637 0.6352 P > 0.05 ns 

  2d -0.08754 0.7281 P > 0.05 ns 

  3d 0.008790 0.07311 P > 0.05 ns 

  4d 0.1083 0.9010 P > 0.05 ns 

  5d -0.05903 0.4910 P > 0.05 ns 

  6d 0.07150 0.5947 P > 0.05 ns 

 

wildtype vs siRNA     

Treatment wildtype siRNA Difference 95% CI of diff. 

  1d 1.000 0.9607 -0.03932 -0.4255 to 0.3468 

  2d 1.101 1.026 -0.07542 -0.4616 to 0.3107 

  3d 1.143 0.9444 -0.1986 -0.5847 to 0.1875 

  4d 1.484 1.500 0.01627 -0.3699 to 0.4024 
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  5d 1.531 1.611 0.07994 -0.3062 to 0.4661 

  6d 1.771 1.893 0.1226 -0.2636 to 0.5087 

 

Treatment Difference t P value Summary 

  1d -0.03932 0.3270 P > 0.05 ns 

  2d -0.07542 0.6273 P > 0.05 ns 

  3d -0.1986 1.652 P > 0.05 ns 

  4d 0.01627 0.1353 P > 0.05 ns 

  5d 0.07994 0.6649 P > 0.05 ns 

  6d 0.1226 1.020 P > 0.05 ns 

 

control vs siRNA     

Treatment control siRNA Difference 95% CI of diff. 

  1d 1.076 0.9607 -0.1157 -0.5018 to 0.2705 

  2d 1.014 1.026 0.01212 -0.3740 to 0.3983 

  3d 1.152 0.9444 -0.2074 -0.5935 to 0.1788 

  4d 1.592 1.500 -0.09205 -0.4782 to 0.2941 

  5d 1.472 1.611 0.1390 -0.2472 to 0.5251 

  6d 1.842 1.893 0.05107 -0.3351 to 0.4372 

 

Treatment Difference t P value Summary 

  1d -0.1157 0.9623 P > 0.05 ns 

  2d 0.01212 0.1008 P > 0.05 ns 

  3d -0.2074 1.725 P > 0.05 ns 

  4d -0.09205 0.7657 P > 0.05 ns 

  5d 0.1390 1.156 P > 0.05 ns 

  6d 0.05107 0.4248 P > 0.05 ns 
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APPENDIX IV RESULTS OF TWO WAY ANOVA TEST FOR RT-PCR DATA OF QKI-7 

TRANSCRIPTION 

Two way ANOVA test for RT-PCR data of QKI-7 in DM (Figure 6) 

Source of Variation % of total variation P value   

  Interaction 15.49 0.4739   

  Time 9.13 0.3489   

  Treatment 1.37 0.8623   

  Subjects (matching) 27.0410 0.0246   

 

Source of Variation P value summary Significant?   

  Interaction ns No   

  Time ns No   

  Treatment ns No   

  Subjects (matching) * Yes   

 

Source of Variation Df Sum-of-squares Mean square F 

  Interaction 10 0.3541 0.03541 0.9888 

  Time 5 0.2087 0.04174 1.166 

  Treatment 2 0.03130 0.01565 0.1519 

  Subjects (matching) 6 0.6183 0.1031 2.878 

  Residual 30 1.074 0.03581  

 

Number of missing values 0    

 

Bonferroni post hoc test 

wildtype vs blank plasmid     

Treatment wildtype blank plasmid Difference 95% CI of diff. 

  1d 1.000 0.8430 -0.1570 -0.6987 to 0.3847 

  2d 0.8751 1.026 0.1505 -0.3912 to 0.6922 

  3d 1.002 0.9320 -0.06964 -0.6114 to 0.4721 

  4d 0.9830 1.213 0.2298 -0.3119 to 0.7716 

  5d 0.9225 0.9083 -0.01419 -0.5559 to 0.5275 

  6d 0.9901 1.191 0.2005 -0.3412 to 0.7423 

 

Treatment Difference t P value Summary 

  1d -0.1570 0.8869 P > 0.05 ns 

  2d 0.1505 0.8500 P > 0.05 ns 

  3d -0.06964 0.3934 P > 0.05 ns 

  4d 0.2298 1.298 P > 0.05 ns 

  5d -0.01419 0.08015 P > 0.05 ns 

  6d 0.2005 1.133 P > 0.05 ns 
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wildtype vs plasmid     

Treatment wildtype plasmid Difference 95% CI of diff. 

  1d 1.000 1.097 0.09709 -0.4446 to 0.6388 

  2d 0.8751 1.103 0.2274 -0.3143 to 0.7691 

  3d 1.002 0.8934 -0.1083 -0.6500 to 0.4334 

  4d 0.9830 0.9445 -0.03846 -0.5802 to 0.5033 

  5d 0.9225 0.8898 -0.03267 -0.5744 to 0.5091 

  6d 0.9901 1.100 0.1098 -0.4319 to 0.6515 

 

Treatment Difference t P value Summary 

  1d 0.09709 0.5484 P > 0.05 ns 

  2d 0.2274 1.284 P > 0.05 ns 

  3d -0.1083 0.6117 P > 0.05 ns 

  4d -0.03846 0.2172 P > 0.05 ns 

  5d -0.03267 0.1845 P > 0.05 ns 

  6d 0.1098 0.6201 P > 0.05 ns 

 

Two way ANOVA test for RT-PCR data of QKI-7; siRNA treatment in DM (Figure 7) 

Source of Variation % of total variation P value   

  Interaction 2.79 0.9880   

  Time 8.56 0.2139   

  Treatment 3.85 0.8038   

  Subjects (matching) 50.9816 < 0.0001   

 

Source of Variation P value summary Significant?   

  Interaction ns No   

  Time ns No   

  Treatment ns No   

  Subjects (matching) *** Yes   

 

Source of Variation Df Sum-of-squares Mean square F 

  Interaction 10 0.1197 0.01197 0.2471 

  Time 5 0.3678 0.07356 1.518 

  Treatment 2 0.1654 0.08270 0.2265 

  Subjects (matching) 6 2.191 0.3651 7.536 

  Residual 30 1.454 0.04845  

 

Number of missing values 0    
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Bonferroni post hoc test 

wildtype vs blank plasmid     

Treatment wildtype blank plasmid Difference 95% CI of diff. 

  1d 1.000 0.8217 -0.1783 -0.9732 to 0.6166 

  2d 0.9855 0.9264 -0.05908 -0.8540 to 0.7358 

  3d 1.128 0.9710 -0.1571 -0.9520 to 0.6378 

  4d 1.065 1.055 -0.009672 -0.8046 to 0.7852 

  5d 0.9548 0.7803 -0.1745 -0.9694 to 0.6204 

  6d 1.052 1.008 -0.04416 -0.8391 to 0.7507 

 

Treatment Difference t P value Summary 

  1d -0.1783 0.6863 P > 0.05 ns 

  2d -0.05908 0.2274 P > 0.05 ns 

  3d -0.1571 0.6046 P > 0.05 ns 

  4d -0.009672 0.03723 P > 0.05 ns 

  5d -0.1745 0.6718 P > 0.05 ns 

  6d -0.04416 0.1700 P > 0.05 ns 

 

wildtype vs plasmid     

Treatment wildtype plasmid Difference 95% CI of diff. 

  1d 1.000 0.7492 -0.2508 -1.046 to 0.5441 

  2d 0.9855 0.7904 -0.1951 -0.9900 to 0.5998 

  3d 1.128 0.9708 -0.1573 -0.9522 to 0.6376 

  4d 1.065 0.9666 -0.09840 -0.8933 to 0.6965 

  5d 0.9548 0.8482 -0.1066 -0.9015 to 0.6883 

  6d 1.052 1.096 0.04373 -0.7512 to 0.8386 

 

Treatment Difference t P value Summary 

  1d -0.2508 0.9656 P > 0.05 ns 

  2d -0.1951 0.7511 P > 0.05 ns 

  3d -0.1573 0.6054 P > 0.05 ns 

  4d -0.09840 0.3788 P > 0.05 ns 

  5d -0.1066 0.4103 P > 0.05 ns 

  6d 0.04373 0.1683 P > 0.05 ns 
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APPENDIX V RESULTS OF TWO WAY ANOVA TEST FOR RT-PCR DATA OF PLP TRANSCRIPTION 

Two way ANOVA test for RT-PCR data of Plp in DM (Figure 8) 

Source of Variation % of total variation P value   

  Interaction 17.32 < 0.0001   

  Time 12.72 < 0.0001   

  Treatment 65.97 < 0.0001   

  Subjects (matching) 2.0132 0.0010   

 

Source of Variation P value summary Significant?   

  Interaction *** Yes   

  Time *** Yes   

  Treatment *** Yes   

  Subjects (matching) ** Yes   

 

Source of Variation Df Sum-of-squares Mean square F 

  Interaction 10 17.95 1.795 26.30 

  Time 5 13.18 2.636 38.61 

  Treatment 2 68.37 34.18 98.31 

  Subjects (matching) 6 2.086 0.3477 5.094 

  Residual 30 2.048 0.06826  

 

Number of missing values 0    

 

Bonferroni post hoc test 

wildtype vs blank plasmid     

Treatment wildtype blank plasmid Difference 95% CI of diff. 

  1d 1.000 0.8101 -0.1899 -1.079 to 0.6988 

  2d 1.097 1.249 0.1511 -0.7376 to 1.040 

  3d 1.125 1.141 0.01589 -0.8728 to 0.9046 

  4d 1.093 1.294 0.2002 -0.6885 to 1.089 

  5d 1.130 1.523 0.3934 -0.4953 to 1.282 

  6d 0.9670 1.461 0.4939 -0.3948 to 1.383 

 

Treatment Difference t P value Summary 

  1d -0.1899 0.6863 P > 0.05 ns 

  2d 0.1511 0.5460 P > 0.05 ns 

  3d 0.01589 0.05744 P > 0.05 ns 

  4d 0.2002 0.7236 P > 0.05 ns 

  5d 0.3934 1.422 P > 0.05 ns 

  6d 0.4939 1.785 P > 0.05 ns 
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wildtype vs plasmid     

Treatment wildtype plasmid Difference 95% CI of diff. 

  1d 1.000 2.283 1.283 0.3939 to 2.171 

  2d 1.097 2.479 1.381 0.4928 to 2.270 

  3d 1.125 2.669 1.544 0.6550 to 2.432 

  4d 1.093 3.162 2.068 1.180 to 2.957 

  5d 1.130 5.144 4.014 3.126 to 4.903 

  6d 0.9670 5.501 4.534 3.645 to 5.423 

 

Treatment Difference t P value Summary 

  1d 1.283 4.635 P<0.001 *** 

  2d 1.381 4.993 P<0.001 *** 

  3d 1.544 5.579 P<0.001 *** 

  4d 2.068 7.475 P<0.001 *** 

  5d 4.014 14.51 P<0.001 *** 

  6d 4.534 16.39 P<0.001 *** 

 

blank plasmid vs plasmid     

Treatment blank plasmid plasmid Difference 95% CI of diff. 

  1d 0.8101 2.283 1.472 0.5838 to 2.361 

  2d 1.249 2.479 1.230 0.3417 to 2.119 

  3d 1.141 2.669 1.528 0.6391 to 2.416 

  4d 1.294 3.162 1.868 0.9794 to 2.757 

  5d 1.523 5.144 3.621 2.732 to 4.510 

  6d 1.461 5.501 4.040 3.151 to 4.929 

 

Treatment Difference t P value Summary 

  1d 1.472 5.322 P<0.001 *** 

  2d 1.230 4.447 P<0.001 *** 

  3d 1.528 5.522 P<0.001 *** 

  4d 1.868 6.752 P<0.001 *** 

  5d 3.621 13.09 P<0.001 *** 

  6d 4.040 14.60 P<0.001 *** 

 

Two way ANOVA test for RT-PCR data of Plp; siRNA treatment in DM (Figure 9) 

Source of Variation % of total variation P value   

  Interaction 12.15 0.7458   

  Time 10.34 0.3639   

  Treatment 5.42 0.4434   

  Subjects (matching) 17.3976 0.1843   

 

Source of Variation P value summary Significant?   
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  Interaction ns No   

  Time ns No   

  Treatment ns No   

  Subjects (matching) ns No   

Source of Variation Df Sum-of-squares Mean square F 

  Interaction 10 0.4163 0.04163 0.6663 

  Time 5 0.3544 0.07088 1.134 

  Treatment 2 0.1856 0.09281 0.9341 

  Subjects (matching) 6 0.5962 0.09936 1.590 

  Residual 30 1.874 0.06248  

 

Number of missing values 0    

 

Bonferroni post hoc test 

wildtype vs control siRNA     

Treatment wildtype control siRNA Difference 95% CI of diff. 

  1d 1.000 0.8027 -0.1973 -0.8843 to 0.4897 

  2d 1.097 1.089 -0.008462 -0.6954 to 0.6785 

  3d 1.125 1.289 0.1639 -0.5231 to 0.8509 

  4d 1.093 1.371 0.2778 -0.4092 to 0.9648 

  5d 1.130 1.311 0.1814 -0.5056 to 0.8684 

  6d 0.9670 1.184 0.2171 -0.4698 to 0.9041 

 

Treatment Difference t P value Summary 

  1d -0.1973 0.9225 P > 0.05 ns 

  2d -0.008462 0.03956 P > 0.05 ns 

  3d 0.1639 0.7662 P > 0.05 ns 

  4d 0.2778 1.299 P > 0.05 ns 

  5d 0.1814 0.8482 P > 0.05 ns 

  6d 0.2171 1.015 P > 0.05 ns 

 

wildtype vs siRNA     

Treatment wildtype siRNA Difference 95% CI of diff. 

  1d 1.000 1.165 0.1652 -0.5218 to 0.8522 

  2d 1.097 1.240 0.1423 -0.5447 to 0.8293 

  3d 1.125 1.297 0.1717 -0.5153 to 0.8587 

  4d 1.093 1.144 0.05057 -0.6364 to 0.7375 

  5d 1.130 1.161 0.03158 -0.6554 to 0.7186 

  6d 0.9670 1.228 0.2608 -0.4262 to 0.9478 

 

Treatment Difference t P value Summary 
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  1d 0.1652 0.7724 P > 0.05 ns 

  2d 0.1423 0.6653 P > 0.05 ns 

  3d 0.1717 0.8028 P > 0.05 ns 

  4d 0.05057 0.2364 P > 0.05 ns 

  5d 0.03158 0.1476 P > 0.05 ns 

  6d 0.2608 1.219 P > 0.05 ns 

 

control siRNA vs siRNA     

Treatment control siRNA siRNA Difference 95% CI of diff. 

  1d 0.8027 1.165 0.3625 -0.3244 to 1.050 

  2d 1.089 1.240 0.1508 -0.5362 to 0.8377 

  3d 1.289 1.297 0.007843 -0.6791 to 0.6948 

  4d 1.371 1.144 -0.2272 -0.9142 to 0.4597 

  5d 1.311 1.161 -0.1498 -0.8368 to 0.5371 

  6d 1.184 1.228 0.04365 -0.6433 to 0.7306 

 

Treatment Difference t P value Summary 

  1d 0.3625 1.695 P > 0.05 ns 

  2d 0.1508 0.7049 P > 0.05 ns 

  3d 0.007843 0.03667 P > 0.05 ns 

  4d -0.2272 1.062 P > 0.05 ns 

  5d -0.1498 0.7006 P > 0.05 ns 

  6d 0.04365 0.2041 P > 0.05 ns 
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APPENDIX VI RESULTS OF TWO WAY ANOVA TEST FOR RT-PCR DATA OF SIRT2 TRANSCRIPTION 

TWO WAY ANOVA TEST FOR RT-PCR DATA OF SIRT2 IN DM (Figure 8) 

Source of Variation % of total variation P value   

  Interaction 31.67 < 0.0001   

  Time 20.51 < 0.0001   

  Treatment 42.72 0.0003   

  Subjects (matching) 3.0652 < 0.0001   

 

Source of Variation P value summary Significant?   

  Interaction *** Yes   

  Time *** Yes   

  Treatment *** Yes   

  Subjects (matching) *** Yes   

 

Source of Variation Df Sum-of-squares Mean square F 

  Interaction 10 38.81 3.881 46.67 

  Time 5 25.14 5.029 60.47 

  Treatment 2 52.36 26.18 41.81 

  Subjects (matching) 6 3.757 0.6262 7.530 

  Residual 30 2.495 0.08316  

 

Number of missing values 0    

 

Bonferroni post hoc test 

wildtype vs blank plasmid     

Treatment wildtype blank plasmid Difference 95% CI of diff. 

  1d 1.000 1.089 0.08899 -1.004 to 1.182 

  2d 1.103 0.9616 -0.1412 -1.234 to 0.9516 

  3d 0.9746 1.314 0.3393 -0.7535 to 1.432 

  4d 1.377 1.310 -0.06739 -1.160 to 1.025 

  5d 1.219 1.421 0.2024 -0.8904 to 1.295 

  6d 1.162 1.191 0.02943 -1.063 to 1.122 

 

Treatment Difference t P value Summary 

  1d 0.08899 0.2615 P > 0.05 ns 

  2d -0.1412 0.4150 P > 0.05 ns 

  3d 0.3393 0.9973 P > 0.05 ns 

  4d -0.06739 0.1981 P > 0.05 ns 

  5d 0.2024 0.5949 P > 0.05 ns 

  6d 0.02943 0.08648 P > 0.05 ns 
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wildtype vs plasmid     

Treatment wildtype plasmid Difference 95% CI of diff. 

  1d 1.000 1.318 0.3175 -0.7753 to 1.410 

  2d 1.103 1.652 0.5489 -0.5439 to 1.642 

  3d 0.9746 1.862 0.8875 -0.2053 to 1.980 

  4d 1.377 3.225 1.848 0.7555 to 2.941 

  5d 1.219 6.077 4.859 3.766 to 5.951 

  6d 1.162 5.454 4.292 3.200 to 5.385 

 

Treatment Difference t P value Summary 

  1d 0.3175 0.9332 P > 0.05 ns 

  2d 0.5489 1.613 P > 0.05 ns 

  3d 0.8875 2.608 P > 0.05 ns 

  4d 1.848 5.432 P<0.001 *** 

  5d 4.859 14.28 P<0.001 *** 

  6d 4.292 12.61 P<0.001 *** 

 

blank plasmid vs plasmid     

Treatment blank plasmid plasmid Difference 95% CI of diff. 

  1d 1.089 1.318 0.2285 -0.8643 to 1.321 

  2d 0.9616 1.652 0.6901 -0.4027 to 1.783 

  3d 1.314 1.862 0.5482 -0.5447 to 1.641 

  4d 1.310 3.225 1.916 0.8229 to 3.009 

  5d 1.421 6.077 4.656 3.563 to 5.749 

  6d 1.191 5.454 4.263 3.170 to 5.356 

 

Treatment Difference t P value Summary 

  1d 0.2285 0.6716 P > 0.05 ns 

  2d 0.6901 2.028 P > 0.05 ns 

  3d 0.5482 1.611 P > 0.05 ns 

  4d 1.916 5.630 P<0.001 *** 

  5d 4.656 13.68 P<0.001 *** 

  6d 4.263 12.53 P<0.001 *** 

 

TWO WAY ANOVA TEST FOR RT-PCR DATA OF SIRT2; SIRNA TREATMENT IN DM (Figure 9) 

Source of Variation % of total variation P value   

  Interaction 9.21 0.6779   

  Time 21.25 0.0142   

  Treatment 3.64 0.6998   

  Subjects (matching) 28.7990 0.0055   

 

Source of Variation P value summary Significant?   
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  Interaction ns No   

  Time * Yes   

  Treatment ns No   

  Subjects (matching) ** Yes   

Source of Variation Df Sum-of-squares Mean square F 

  Interaction 10 0.06048 0.006048 0.7447 

  Time 5 0.1395 0.02790 3.436 

  Treatment 2 0.02389 0.01195 0.3791 

  Subjects (matching) 6 0.1891 0.03152 3.881 

  Residual 30 0.2436 0.008121  

 

Number of missing values 0    

 

Bonferroni post hoc test 

wildtype vs control siRNA     

Treatment wildtype control siRNA Difference 95% CI of diff. 

  1d 1.033 1.053 0.01993 -0.2676 to 0.3074 

  2d 0.9925 1.176 0.1834 -0.1041 to 0.4709 

  3d 1.023 1.060 0.03712 -0.2504 to 0.3246 

  4d 1.171 1.125 -0.04609 -0.3336 to 0.2414 

  5d 1.138 1.146 0.008346 -0.2792 to 0.2959 

  6d 1.100 1.157 0.05633 -0.2312 to 0.3438 

 

Treatment Difference t P value Summary 

  1d 0.01993 0.2226 P > 0.05 ns 

  2d 0.1834 2.049 P > 0.05 ns 

  3d 0.03712 0.4147 P > 0.05 ns 

  4d -0.04609 0.5149 P > 0.05 ns 

  5d 0.008346 0.09323 P > 0.05 ns 

  6d 0.05633 0.6292 P > 0.05 ns 

 

wildtype vs siRNA     

Treatment wildtype siRNA Difference 95% CI of diff. 

  1d 1.033 1.020 -0.01350 -0.3010 to 0.2740 

  2d 0.9925 1.076 0.08309 -0.2044 to 0.3706 

  3d 1.023 0.9569 -0.06632 -0.3538 to 0.2212 

  4d 1.171 1.140 -0.03067 -0.3182 to 0.2568 

  5d 1.138 1.089 -0.04833 -0.3358 to 0.2392 

  6d 1.100 1.160 0.05912 -0.2284 to 0.3466 

 

Treatment Difference t P value Summary 
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  1d -0.01350 0.1508 P > 0.05 ns 

  2d 0.08309 0.9282 P > 0.05 ns 

  3d -0.06632 0.7408 P > 0.05 ns 

  4d -0.03067 0.3426 P > 0.05 ns 

  5d -0.04833 0.5399 P > 0.05 ns 

  6d 0.05912 0.6604 P > 0.05 ns 

 

control siRNA vs siRNA     

Treatment control siRNA siRNA Difference 95% CI of diff. 

  1d 1.053 1.020 -0.03343 -0.3209 to 0.2541 

  2d 1.176 1.076 -0.1003 -0.3878 to 0.1872 

  3d 1.060 0.9569 -0.1034 -0.3909 to 0.1841 

  4d 1.125 1.140 0.01542 -0.2721 to 0.3029 

  5d 1.146 1.089 -0.05668 -0.3442 to 0.2308 

  6d 1.157 1.160 0.002790 -0.2847 to 0.2903 

 

Treatment Difference t P value Summary 

  1d -0.03343 0.3735 P > 0.05 ns 

  2d -0.1003 1.121 P > 0.05 ns 

  3d -0.1034 1.156 P > 0.05 ns 

  4d 0.01542 0.1723 P > 0.05 ns 

  5d -0.05668 0.6331 P > 0.05 ns 

  6d 0.002790 0.03117 P > 0.05 ns 

  



 

136 
 

APPENDIX VII RESULTS OF TWO WAY ANOVA TEST FOR WESTERN BLOT DATA OF QKI-5 

PROTEIN 

Two way ANOVA test for Western Blot data of QKI-5 in DM (Figure 10) 

Source of Variation % of total variation P value   

  Interaction 8.68 < 0.0001   

  Time 10.09 < 0.0001   

  Treatment 76.04 < 0.0001   

  Subjects (matching) 1.3070 0.1594   

 

Source of Variation P value summary Significant?   

  Interaction *** Yes   

  Time *** Yes   

  Treatment *** Yes   

  Subjects (matching) ns No   

 

Source of Variation Df Sum-of-squares Mean square F 

  Interaction 10 2.788 0.2788 6.710 

  Time 5 3.242 0.6485 15.61 

  Treatment 2 24.43 12.21 174.5 

  Subjects (matching) 6 0.4198 0.06997 1.684 

  Residual 30 1.247 0.04155  

 

Number of missing values 0    

 

Bonferroni post hoc test 

wildtype vs blank plasmid     

Treatment wildtype blank plasmid Difference 95% CI of diff. 

  1d 1.000 0.9262 -0.07383 -0.6380 to 0.4904 

  2d 0.9759 1.005 0.02868 -0.5355 to 0.5929 

  3d 1.058 1.212 0.1543 -0.4099 to 0.7185 

  4d 0.9553 1.316 0.3608 -0.2034 to 0.9250 

  5d 1.168 1.134 -0.03378 -0.5980 to 0.5304 

  6d 1.344 1.131 -0.2137 -0.7779 to 0.3505 

 

Treatment Difference t P value Summary 

  1d -0.07383 0.4203 P > 0.05 ns 

  2d 0.02868 0.1633 P > 0.05 ns 

  3d 0.1543 0.8784 P > 0.05 ns 

  4d 0.3608 2.054 P > 0.05 ns 

  5d -0.03378 0.1923 P > 0.05 ns 

  6d -0.2137 1.217 P > 0.05 ns 
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wildtype vs plasmid     

Treatment wildtype plasmid Difference 95% CI of diff. 

  1d 1.000 1.667 0.6671 0.1029 to 1.231 

  2d 0.9759 2.034 1.058 0.4934 to 1.622 

  3d 1.058 2.604 1.546 0.9817 to 2.110 

  4d 0.9553 2.571 1.616 1.052 to 2.180 

  5d 1.168 3.006 1.838 1.273 to 2.402 

  6d 1.344 3.289 1.945 1.381 to 2.509 

 

Treatment Difference t P value Summary 

  1d 0.6671 3.797 P<0.01 ** 

  2d 1.058 6.020 P<0.001 *** 

  3d 1.546 8.800 P<0.001 *** 

  4d 1.616 9.199 P<0.001 *** 

  5d 1.838 10.46 P<0.001 *** 

  6d 1.945 11.07 P<0.001 *** 

 

blank plasmid vs plasmid     

Treatment blank plasmid plasmid Difference 95% CI of diff. 

  1d 0.9262 1.667 0.7409 0.1767 to 1.305 

  2d 1.005 2.034 1.029 0.4647 to 1.593 

  3d 1.212 2.604 1.392 0.8274 to 1.956 

  4d 1.316 2.571 1.255 0.6909 to 1.819 

  5d 1.134 3.006 1.871 1.307 to 2.436 

  6d 1.131 3.289 2.159 1.595 to 2.723 

 

Treatment Difference t P value Summary 

  1d 0.7409 4.218 P<0.001 *** 

  2d 1.029 5.857 P<0.001 *** 

  3d 1.392 7.921 P<0.001 *** 

  4d 1.255 7.145 P<0.001 *** 

  5d 1.871 10.65 P<0.001 *** 

  6d 2.159 12.29 P<0.001 *** 

 

Two way ANOVA test for Western Blot data of QKI-5; siRNA treatment in DM (Figure 11) 

Source of Variation % of total variation P value   

  Interaction 2.69 0.4281   

  Time 1.66 0.2915   

  Treatment 82.52 0.0002   

  Subjects (matching) 5.4421 0.0091   
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Source of Variation P value summary Significant?   

  Interaction ns No   

  Time ns No   

  Treatment *** Yes   

  Subjects (matching) ** Yes   

 

Source of Variation Df Sum-of-squares Mean square F 

  Interaction 10 0.1360 0.01360 1.050 

  Time 5 0.08398 0.01680 1.297 

  Treatment 2 4.170 2.085 45.49 

  Subjects (matching) 6 0.2750 0.04584 3.539 

  Residual 30 0.3885 0.01295  

 

Number of missing values 0    

 

Bonferroni post hoc test 

wildtype vs control siRNA     

Treatment wildtype control siRNA Difference 95% CI of diff. 

  1d 1.067 1.174 0.1069 -0.2492 to 0.4629 

  2d 1.073 1.194 0.1210 -0.2351 to 0.4770 

  3d 1.158 1.112 -0.04627 -0.4023 to 0.3098 

  4d 1.022 1.135 0.1127 -0.2433 to 0.4688 

  5d 1.101 1.205 0.1039 -0.2522 to 0.4599 

  6d 1.278 1.270 -0.007775 -0.3638 to 0.3483 

 

Treatment Difference t P value Summary 

  1d 0.1069 0.9640 P > 0.05 ns 

  2d 0.1210 1.091 P > 0.05 ns 

  3d -0.04627 0.4174 P > 0.05 ns 

  4d 0.1127 1.017 P > 0.05 ns 

  5d 0.1039 0.9371 P > 0.05 ns 

  6d -0.007775 0.07013 P > 0.05 ns 

 

wildtype vs siRNA     

Treatment wildtype siRNA Difference 95% CI of diff. 

  1d 1.067 0.5677 -0.4990 -0.8550 to -0.1429 

  2d 1.073 0.5551 -0.5175 -0.8735 to -0.1614 

  3d 1.158 0.6611 -0.4968 -0.8529 to -0.1408 

  4d 1.022 0.5087 -0.5133 -0.8693 to -0.1572 

  5d 1.101 0.5769 -0.5246 -0.8806 to -0.1685 

  6d 1.278 0.5031 -0.7745 -1.131 to -0.4185 
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Treatment Difference t P value Summary 

  1d -0.4990 4.501 P<0.001 *** 

  2d -0.5175 4.668 P<0.001 *** 

  3d -0.4968 4.482 P<0.001 *** 

  4d -0.5133 4.630 P<0.001 *** 

  5d -0.5246 4.732 P<0.001 *** 

  6d -0.7745 6.987 P<0.001 *** 

 

control siRNA vs siRNA     

Treatment control siRNA siRNA Difference 95% CI of diff. 

  1d 1.174 0.5677 -0.6058 -0.9619 to -0.2498 

  2d 1.194 0.5551 -0.6385 -0.9945 to -0.2824 

  3d 1.112 0.6611 -0.4506 -0.8066 to -0.09452 

  4d 1.135 0.5087 -0.6260 -0.9820 to -0.2700 

  5d 1.205 0.5769 -0.6285 -0.9845 to -0.2724 

  6d 1.270 0.5031 -0.7668 -1.123 to -0.4107 

 

Treatment Difference t P value Summary 

  1d -0.6058 5.465 P<0.001 *** 

  2d -0.6385 5.759 P<0.001 *** 

  3d -0.4506 4.064 P<0.01 ** 

  4d -0.6260 5.647 P<0.001 *** 

  5d -0.6285 5.669 P<0.001 *** 

  6d -0.7668 6.917 P<0.001 *** 
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APPENDIX VIII RESULTS OF TWO WAY ANOVA TEST FOR WESTERN BLOT DATA OF QKI-6 

PROTEIN 

Two way ANOVA test for Western Blot data of QKI-6 in DM (Figure 10) 

Source of Variation % of total variation P value   

  Interaction 8.22 0.8981   

  Time 26.61 0.0251   

  Treatment 1.87 0.6119   

  Subjects (matching) 10.4860 0.4480   

 

Source of Variation P value summary Significant?   

  Interaction ns No   

  Time * Yes   

  Treatment ns No   

  Subjects (matching) ns No   

 

Source of Variation Df Sum-of-squares Mean square F 

  Interaction 10 0.1837 0.01837 0.4670 

  Time 5 0.5945 0.1189 3.024 

  Treatment 2 0.04168 0.02084 0.5338 

  Subjects (matching) 6 0.2342 0.03904 0.9928 

  Residual 30 1.180 0.03933  

 

Number of missing values 0    

 

Bonferroni post hoc test 

wildtype vs blank plasmid     

Treatment wildtype blank plasmid Difference 95% CI of diff. 

  1d 0.9822 0.9262 -0.05604 -0.5758 to 0.4637 

  2d 0.9759 0.9879 0.01201 -0.5077 to 0.5317 

  3d 1.025 1.212 0.1876 -0.3321 to 0.7074 

  4d 0.9886 1.116 0.1275 -0.3922 to 0.6472 

  5d 1.135 1.158 0.02289 -0.4968 to 0.5426 

  6d 1.311 1.164 -0.1471 -0.6668 to 0.3727 

 

Treatment Difference t P value Summary 

  1d -0.05604 0.3463 P > 0.05 ns 

  2d 0.01201 0.07423 P > 0.05 ns 

  3d 0.1876 1.160 P > 0.05 ns 

  4d 0.1275 0.7879 P > 0.05 ns 

  5d 0.02289 0.1415 P > 0.05 ns 

  6d -0.1471 0.9088 P > 0.05 ns 
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wildtype vs plasmid     

Treatment wildtype plasmid Difference 95% CI of diff. 

  1d 0.9822 1.012 0.02938 -0.4904 to 0.5491 

  2d 0.9759 0.9912 0.01529 -0.5044 to 0.5350 

  3d 1.025 1.048 0.02345 -0.4963 to 0.5432 

  4d 0.9886 1.217 0.2281 -0.2916 to 0.7479 

  5d 1.135 1.179 0.04445 -0.4753 to 0.5642 

  6d 1.311 1.374 0.06268 -0.4570 to 0.5824 

 

Treatment Difference t P value Summary 

  1d 0.02938 0.1815 P > 0.05 ns 

  2d 0.01529 0.09450 P > 0.05 ns 

  3d 0.02345 0.1449 P > 0.05 ns 

  4d 0.2281 1.410 P > 0.05 ns 

  5d 0.04445 0.2747 P > 0.05 ns 

  6d 0.06268 0.3873 P > 0.05 ns 

 

blank plasmid vs plasmid     

Treatment blank plasmid plasmid Difference 95% CI of diff. 

  1d 0.9262 1.012 0.08542 -0.4343 to 0.6051 

  2d 0.9879 0.9912 0.003280 -0.5164 to 0.5230 

  3d 1.212 1.048 -0.1642 -0.6839 to 0.3555 

  4d 1.116 1.217 0.1006 -0.4191 to 0.6204 

  5d 1.158 1.179 0.02156 -0.4982 to 0.5413 

  6d 1.164 1.374 0.2097 -0.3100 to 0.7295 

 

Treatment Difference t P value Summary 

  1d 0.08542 0.5279 P > 0.05 ns 

  2d 0.003280 0.02027 P > 0.05 ns 

  3d -0.1642 1.015 P > 0.05 ns 

  4d 0.1006 0.6219 P > 0.05 ns 

  5d 0.02156 0.1333 P > 0.05 ns 

  6d 0.2097 1.296 P > 0.05 ns 

 

Two way ANOVA test for Western Blot data of QKI-6; siRNA treatment in DM (Figure 11) 

Source of Variation % of total variation P value   

  Interaction 3.65 0.9971   

  Time 18.87 0.1476   

  Treatment 4.30 0.3274   

  Subjects (matching) 9.5280 0.6155   
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Source of Variation P value summary Significant?   

  Interaction ns No   

  Time ns No   

  Treatment ns No   

  Subjects (matching) ns No   

 

Source of Variation Df Sum-of-squares Mean square F 

  Interaction 10 0.07050 0.007050 0.1718 

  Time 5 0.3647 0.07294 1.778 

  Treatment 2 0.08307 0.04153 1.353 

  Subjects (matching) 6 0.1842 0.03070 0.7483 

  Residual 30 1.231 0.04102  

 

Number of missing values 0    

 

Bonferroni post hoc test 

wildtype vs control siRNA     

Treatment wildtype control siRNA Difference 95% CI of diff. 

  1d 1.000 1.074 0.07352 -0.4464 to 0.5934 

  2d 1.043 1.194 0.1510 -0.3689 to 0.6709 

  3d 1.058 1.145 0.08707 -0.4328 to 0.6070 

  4d 1.155 1.235 0.07939 -0.4405 to 0.5993 

  5d 1.168 1.139 -0.02945 -0.5493 to 0.4904 

  6d 1.344 1.337 -0.007775 -0.5277 to 0.5121 

 

Treatment Difference t P value Summary 

  1d 0.07352 0.4542 P > 0.05 ns 

  2d 0.1510 0.9327 P > 0.05 ns 

  3d 0.08707 0.5379 P > 0.05 ns 

  4d 0.07939 0.4905 P > 0.05 ns 

  5d -0.02945 0.1819 P > 0.05 ns 

  6d -0.007775 0.04803 P > 0.05 ns 

 

wildtype vs siRNA     

Treatment wildtype siRNA Difference 95% CI of diff. 

  1d 1.000 1.168 0.1677 -0.3522 to 0.6876 

  2d 1.043 1.155 0.1125 -0.4074 to 0.6324 

  3d 1.058 1.161 0.1032 -0.4167 to 0.6231 

  4d 1.155 1.309 0.1534 -0.3665 to 0.6733 

  5d 1.168 1.244 0.07543 -0.4445 to 0.5953 

  6d 1.344 1.303 -0.04121 -0.5611 to 0.4787 
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Treatment Difference t P value Summary 

  1d 0.1677 1.036 P > 0.05 ns 

  2d 0.1125 0.6951 P > 0.05 ns 

  3d 0.1032 0.6374 P > 0.05 ns 

  4d 0.1534 0.9476 P > 0.05 ns 

  5d 0.07543 0.4660 P > 0.05 ns 

  6d -0.04121 0.2546 P > 0.05 ns 

 

control siRNA vs siRNA     

Treatment control siRNA siRNA Difference 95% CI of diff. 

  1d 1.074 1.168 0.09418 -0.4257 to 0.6141 

  2d 1.194 1.155 -0.03845 -0.5583 to 0.4814 

  3d 1.145 1.161 0.01612 -0.5038 to 0.5360 

  4d 1.235 1.309 0.07400 -0.4459 to 0.5939 

  5d 1.139 1.244 0.1049 -0.4150 to 0.6248 

  6d 1.337 1.303 -0.03344 -0.5533 to 0.4865 

 

Treatment Difference t P value Summary 

  1d 0.09418 0.5818 P > 0.05 ns 

  2d -0.03845 0.2375 P > 0.05 ns 

  3d 0.01612 0.09956 P > 0.05 ns 

  4d 0.07400 0.4571 P > 0.05 ns 

  5d 0.1049 0.6479 P > 0.05 ns 

  6d -0.03344 0.2066 P > 0.05 ns 
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APPENDIX IX RESULTS OF TWO WAY ANOVA TEST FOR WESTERN BLOT DATA OF PLP PROTEIN 

Two way ANOVA test for Western Blot data of Plp in DM (Figure 12) 

Source of Variation % of total variation P value   

  Interaction 1.91 0.6809   

  Time 88.55 < 0.0001   

  Treatment 0.38 0.4981   

  Subjects (matching) 1.4479 0.4826   

 

Source of Variation P value summary Significant?   

  Interaction ns No   

  Time *** Yes   

  Treatment ns No   

  Subjects (matching) ns No   

 

Source of Variation Df Sum-of-squares Mean square F 

  Interaction 10 0.2292 0.02292 0.7413 

  Time 5 10.65 2.129 68.85 

  Treatment 2 0.04553 0.02277 0.7847 

  Subjects (matching) 6 0.1741 0.02901 0.9382 

  Residual 30 0.9278 0.03093  

 

Number of missing values 0    

 

Bonferroni post hoc test 

wildtype vs blank plasmid     

Treatment wildtype blank plasmid Difference 95% CI of diff. 

  1d 1.000 0.8355 -0.1645 -0.6233 to 0.2943 

  2d 0.9010 1.117 0.2156 -0.2432 to 0.6744 

  3d 0.9518 0.9639 0.01212 -0.4467 to 0.4709 

  4d 1.444 1.436 -0.007621 -0.4664 to 0.4512 

  5d 1.750 1.865 0.1153 -0.3435 to 0.5741 

  6d 1.998 2.169 0.1712 -0.2876 to 0.6300 

 

Treatment Difference t P value Summary 

  1d -0.1645 1.152 P > 0.05 ns 

  2d 0.2156 1.509 P > 0.05 ns 

  3d 0.01212 0.08485 P > 0.05 ns 

  4d -0.007621 0.05335 P > 0.05 ns 

  5d 0.1153 0.8072 P > 0.05 ns 

  6d 0.1712 1.198 P > 0.05 ns 
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wildtype vs plasmid     

Treatment wildtype plasmid Difference 95% CI of diff. 

  1d 1.000 0.9453 -0.05472 -0.5135 to 0.4041 

  2d 0.9010 1.007 0.1062 -0.3526 to 0.5650 

  3d 0.9518 1.152 0.2001 -0.2587 to 0.6589 

  4d 1.444 1.389 -0.05483 -0.5136 to 0.4040 

  5d 1.750 1.771 0.02138 -0.4374 to 0.4802 

  6d 1.998 2.172 0.1740 -0.2848 to 0.6328 

 

Treatment Difference t P value Summary 

  1d -0.05472 0.3830 P > 0.05 ns 

  2d 0.1062 0.7435 P > 0.05 ns 

  3d 0.2001 1.401 P > 0.05 ns 

  4d -0.05483 0.3838 P > 0.05 ns 

  5d 0.02138 0.1497 P > 0.05 ns 

  6d 0.1740 1.218 P > 0.05 ns 

 

blank plasmid vs plasmid     

Treatment blank plasmid plasmid Difference 95% CI of diff. 

  1d 0.8355 0.9453 0.1098 -0.3490 to 0.5686 

  2d 1.117 1.007 -0.1094 -0.5682 to 0.3494 

  3d 0.9639 1.152 0.1879 -0.2708 to 0.6467 

  4d 1.436 1.389 -0.04721 -0.5060 to 0.4116 

  5d 1.865 1.771 -0.09392 -0.5527 to 0.3649 

  6d 2.169 2.172 0.002796 -0.4560 to 0.4616 

 

Treatment Difference t P value Summary 

  1d 0.1098 0.7688 P > 0.05 ns 

  2d -0.1094 0.7657 P > 0.05 ns 

  3d 0.1879 1.316 P > 0.05 ns 

  4d -0.04721 0.3305 P > 0.05 ns 

  5d -0.09392 0.6575 P > 0.05 ns 

  6d 0.002796 0.01957 P > 0.05 ns 

 

Two way ANOVA test for Western Blot data of Plp; siRNA treatment in DM (Figure 13) 

Source of Variation % of total variation P value   

  Interaction 0.67 0.9646   

  Time 92.19 < 0.0001   

  Treatment 0.35 0.3054   

  Subjects (matching) 0.7282 0.7270   

 

Source of Variation P value summary Significant?   
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  Interaction ns No   

  Time *** Yes   

  Treatment ns No   

  Subjects (matching) ns No   

 

Source of Variation Df Sum-of-squares Mean square F 

  Interaction 10 0.1053 0.01053 0.3339 

  Time 5 14.40 2.880 91.36 

  Treatment 2 0.05517 0.02759 1.455 

  Subjects (matching) 6 0.1138 0.01896 0.6013 

  Residual 30 0.9458 0.03153  

 

Number of missing values 0    

 

Bonferroni post hoc test 

wildtype vs control siRNA     

Treatment wildtype control siRNA Difference 95% CI of diff. 

  1d 1.000 0.8449 -0.1551 -0.6050 to 0.2948 

  2d 1.100 1.157 0.05776 -0.3921 to 0.5077 

  3d 1.230 1.314 0.08404 -0.3659 to 0.5339 

  4d 1.550 1.681 0.1309 -0.3190 to 0.5808 

  5d 2.091 2.165 0.07383 -0.3761 to 0.5237 

  6d 2.274 2.398 0.1245 -0.3254 to 0.5744 

 

Treatment Difference t P value Summary 

  1d -0.1551 1.107 P > 0.05 ns 

  2d 0.05776 0.4123 P > 0.05 ns 

  3d 0.08404 0.6000 P > 0.05 ns 

  4d 0.1309 0.9342 P > 0.05 ns 

  5d 0.07383 0.5270 P > 0.05 ns 

  6d 0.1245 0.8886 P > 0.05 ns 

 

wildtype vs siRNA     

Treatment wildtype siRNA Difference 95% CI of diff. 

  1d 1.000 0.9968 -0.003229 -0.4531 to 0.4467 

  2d 1.100 1.172 0.07289 -0.3770 to 0.5228 

  3d 1.230 1.351 0.1213 -0.3286 to 0.5712 

  4d 1.550 1.610 0.05991 -0.3900 to 0.5098 

  5d 2.091 2.127 0.03623 -0.4137 to 0.4861 

  6d 2.274 2.446 0.1720 -0.2779 to 0.6219 
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Treatment Difference t P value Summary 

  1d -0.003229 0.02305 P > 0.05 ns 

  2d 0.07289 0.5204 P > 0.05 ns 

  3d 0.1213 0.8658 P > 0.05 ns 

  4d 0.05991 0.4277 P > 0.05 ns 

  5d 0.03623 0.2587 P > 0.05 ns 

  6d 0.1720 1.228 P > 0.05 ns 

 

control siRNA vs siRNA     

Treatment control siRNA siRNA Difference 95% CI of diff. 

  1d 0.8449 0.9968 0.1519 -0.2980 to 0.6018 

  2d 1.157 1.172 0.01514 -0.4348 to 0.4650 

  3d 1.314 1.351 0.03724 -0.4127 to 0.4871 

  4d 1.681 1.610 -0.07096 -0.5209 to 0.3789 

  5d 2.165 2.127 -0.03760 -0.4875 to 0.4123 

  6d 2.398 2.446 0.04751 -0.4024 to 0.4974 

 

Treatment Difference t P value Summary 

  1d 0.1519 1.084 P > 0.05 ns 

  2d 0.01514 0.1081 P > 0.05 ns 

  3d 0.03724 0.2658 P > 0.05 ns 

  4d -0.07096 0.5065 P > 0.05 ns 

  5d -0.03760 0.2684 P > 0.05 ns 

  6d 0.04751 0.3392 P > 0.05 ns 
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APPENDIX X RESULTS OF TWO WAY ANOVA TEST FOR WESTERN BLOT DATA OF SIRT2 PROTEIN 

Two way ANOVA test for Western Blot data of Sirt2 in DM (Figure 12) 

Source of Variation % of total variation P value   

  Interaction 1.26 0.9590   

  Time 85.21 < 0.0001   

  Treatment 0.37 0.6345   

  Subjects (matching) 2.2783 0.4151   

 

Source of Variation P value summary Significant?   

  Interaction ns No   

  Time *** Yes   

  Treatment ns No   

  Subjects (matching) ns No   

 

Source of Variation Df Sum-of-squares Mean square F 

  Interaction 10 0.1976 0.01976 0.3487 

  Time 5 13.32 2.665 47.01 

  Treatment 2 0.05834 0.02917 0.4913 

  Subjects (matching) 6 0.3562 0.05937 1.048 

  Residual 30 1.700 0.05668  

 

Number of missing values 0    

 

Bonferroni post hoc test 

wildtype vs blank plasmid     

Treatment wildtype blank plasmid Difference 95% CI of diff. 

  1d 1.000 0.8053 -0.1947 -0.8215 to 0.4321 

  2d 0.9996 0.8921 -0.1075 -0.7343 to 0.5192 

  3d 1.469 1.556 0.08741 -0.5394 to 0.7142 

  4d 1.419 1.411 -0.008455 -0.6353 to 0.6183 

  5d 1.941 2.069 0.1279 -0.4989 to 0.7547 

  6d 2.156 2.346 0.1899 -0.4369 to 0.8167 

 

Treatment Difference t P value Summary 

  1d -0.1947 0.9978 P > 0.05 ns 

  2d -0.1075 0.5511 P > 0.05 ns 

  3d 0.08741 0.4479 P > 0.05 ns 

  4d -0.008455 0.04333 P > 0.05 ns 

  5d 0.1279 0.6555 P > 0.05 ns 

  6d 0.1899 0.9731 P > 0.05 ns 
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wildtype vs plasmid     

Treatment wildtype plasmid Difference 95% CI of diff. 

  1d 1.000 0.9806 -0.01941 -0.6462 to 0.6074 

  2d 0.9996 1.013 0.01302 -0.6138 to 0.6398 

  3d 1.469 1.595 0.1266 -0.5001 to 0.7534 

  4d 1.419 1.451 0.03153 -0.5953 to 0.6583 

  5d 1.941 2.169 0.2276 -0.3992 to 0.8544 

  6d 2.156 2.234 0.07811 -0.5487 to 0.7049 

 

Treatment Difference t P value Summary 

  1d -0.01941 0.09943 P > 0.05 ns 

  2d 0.01302 0.06671 P > 0.05 ns 

  3d 0.1266 0.6490 P > 0.05 ns 

  4d 0.03153 0.1615 P > 0.05 ns 

  5d 0.2276 1.166 P > 0.05 ns 

  6d 0.07811 0.4002 P > 0.05 ns 

 

blank plasmid vs plasmid     

Treatment blank plasmid plasmid Difference 95% CI of diff. 

  1d 0.8053 0.9806 0.1753 -0.4515 to 0.8021 

  2d 0.8921 1.013 0.1206 -0.5062 to 0.7474 

  3d 1.556 1.595 0.03924 -0.5876 to 0.6660 

  4d 1.411 1.451 0.03998 -0.5868 to 0.6668 

  5d 2.069 2.169 0.09970 -0.5271 to 0.7265 

  6d 2.346 2.234 -0.1118 -0.7386 to 0.5150 

 

Treatment Difference t P value Summary 

  1d 0.1753 0.8983 P > 0.05 ns 

  2d 0.1206 0.6178 P > 0.05 ns 

  3d 0.03924 0.2010 P > 0.05 ns 

  4d 0.03998 0.2049 P > 0.05 ns 

  5d 0.09970 0.5109 P > 0.05 ns 

  6d -0.1118 0.5729 P > 0.05 ns 

 

Two way ANOVA test for Western Blot data of Sirt2; siRNA treatment in DM (Figure 13) 

Source of Variation % of total variation P value   

  Interaction 1.07 0.9693   

  Time 85.30 < 0.0001   

  Treatment 1.27 0.2781   

  Subjects (matching) 2.3870 0.3350   

 

Source of Variation P value summary Significant?   
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  Interaction ns No   

  Time *** Yes   

  Treatment ns No   

  Subjects (matching) ns No   

 

Source of Variation Df Sum-of-squares Mean square F 

  Interaction 10 0.2237 0.02237 0.3204 

  Time 5 17.91 3.582 51.31 

  Treatment 2 0.2667 0.1333 1.596 

  Subjects (matching) 6 0.5012 0.08354 1.197 

  Residual 30 2.095 0.06982  

 

Number of missing values 0    

 

Bonferroni post hoc test 

wildtype vs control siRNA     

Treatment wildtype control siRNA Difference 95% CI of diff. 

  1d 1.000 0.9166 -0.08337 -0.7875 to 0.6208 

  2d 1.243 1.229 -0.01399 -0.7182 to 0.6902 

  3d 1.388 1.219 -0.1696 -0.8738 to 0.5346 

  4d 1.593 1.824 0.2309 -0.4733 to 0.9350 

  5d 2.296 2.247 -0.04935 -0.7535 to 0.6548 

  6d 2.447 2.614 0.1671 -0.5371 to 0.8713 

 

Treatment Difference t P value Summary 

  1d -0.08337 0.3803 P > 0.05 ns 

  2d -0.01399 0.06381 P > 0.05 ns 

  3d -0.1696 0.7736 P > 0.05 ns 

  4d 0.2309 1.053 P > 0.05 ns 

  5d -0.04935 0.2251 P > 0.05 ns 

  6d 0.1671 0.7621 P > 0.05 ns 

 

wildtype vs siRNA     

Treatment wildtype siRNA Difference 95% CI of diff. 

  1d 1.000 1.154 0.1543 -0.5499 to 0.8584 

  2d 1.243 1.264 0.02138 -0.6828 to 0.7255 

  3d 1.388 1.411 0.02244 -0.6817 to 0.7266 

  4d 1.593 1.907 0.3141 -0.3901 to 1.018 

  5d 2.296 2.448 0.1524 -0.5518 to 0.8565 

  6d 2.447 2.715 0.2680 -0.4362 to 0.9721 
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Treatment Difference t P value Summary 

  1d 0.1543 0.7036 P > 0.05 ns 

  2d 0.02138 0.09752 P > 0.05 ns 

  3d 0.02244 0.1024 P > 0.05 ns 

  4d 0.3141 1.433 P > 0.05 ns 

  5d 0.1524 0.6949 P > 0.05 ns 

  6d 0.2680 1.222 P > 0.05 ns 

 

control siRNA vs siRNA     

Treatment control siRNA siRNA Difference 95% CI of diff. 

  1d 0.9166 1.154 0.2376 -0.4665 to 0.9418 

  2d 1.229 1.264 0.03537 -0.6688 to 0.7395 

  3d 1.219 1.411 0.1921 -0.5121 to 0.8962 

  4d 1.824 1.907 0.08323 -0.6209 to 0.7874 

  5d 2.247 2.448 0.2017 -0.5025 to 0.9059 

  6d 2.614 2.715 0.1009 -0.6033 to 0.8050 

 

Treatment Difference t P value Summary 

  1d 0.2376 1.084 P > 0.05 ns 

  2d 0.03537 0.1613 P > 0.05 ns 

  3d 0.1921 0.8760 P > 0.05 ns 

  4d 0.08323 0.3796 P > 0.05 ns 

  5d 0.2017 0.9200 P > 0.05 ns 

  6d 0.1009 0.4601 P > 0.05 ns 
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APPENDIX XI RESULTS OF TWO WAY ANOVA TEST FOR CELL COUNT DATA OF A2B5+ CELLS  

Two way ANOVA test of A2B5+ve% in DM (Figure 14) 

Source of Variation % of total variation P value   

  Interaction 6.90 0.0014   

  Time 75.68 < 0.0001   

  Treatment 11.31 0.0005   

  Subjects (matching) 0.9994 0.4572   

 

Source of Variation P value summary Significant?   

  Interaction ** Yes   

  Time *** Yes   

  Treatment *** Yes   

  Subjects (matching) ns No   

 

Source of Variation Df Sum-of-squares Mean square F 

  Interaction 10 1428 142.8 4.050 

  Time 5 15660 3132 88.86 

  Treatment 2 2341 1170 33.96 

  Subjects (matching) 6 206.8 34.47 0.9779 

  Residual 30 1057 35.25  

 

Number of missing values 0    

 

Bonferroni post hoc test 

wildtype vs blank plasmid     

Treatment wildtype blank plasmid Difference 95% CI of diff. 

  1d 80.67 81.66 0.9967 -14.54 to 16.54 

  2d 69.92 67.59 -2.337 -17.88 to 13.20 

  3d 48.01 47.68 -0.3267 -15.87 to 15.21 

  4d 35.83 35.53 -0.3067 -15.85 to 15.23 

  5d 29.50 26.65 -2.847 -18.39 to 12.69 

  6d 29.17 26.38 -2.790 -18.33 to 12.75 

 

Treatment Difference t P value Summary 

  1d 0.9967 0.2060 P > 0.05 ns 

  2d -2.337 0.4829 P > 0.05 ns 

  3d -0.3267 0.06751 P > 0.05 ns 

  4d -0.3067 0.06338 P > 0.05 ns 

  5d -2.847 0.5883 P > 0.05 ns 

  6d -2.790 0.5766 P > 0.05 ns 
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wildtype vs plasmid     

Treatment wildtype plasmid Difference 95% CI of diff. 

  1d 80.67 77.76 -2.907 -18.45 to 12.63 

  2d 69.92 71.41 1.490 -14.05 to 17.03 

  3d 48.01 64.67 16.66 1.120 to 32.20 

  4d 35.83 60.37 24.54 8.997 to 40.08 

  5d 29.50 54.00 24.50 8.963 to 40.04 

  6d 29.17 44.62 15.45 -0.08658 to 30.99 

 

Treatment Difference t P value Summary 

  1d -2.907 0.6007 P > 0.05 ns 

  2d 1.490 0.3080 P > 0.05 ns 

  3d 16.66 3.443 P<0.01 ** 

  4d 24.54 5.071 P<0.001 *** 

  5d 24.50 5.064 P<0.001 *** 

  6d 15.45 3.194 P < 0.05 * 

 

blank plasmid vs plasmid     

Treatment blank plasmid plasmid Difference 95% CI of diff. 

  1d 81.66 77.76 -3.903 -19.44 to 11.64 

  2d 67.59 71.41 3.827 -11.71 to 19.37 

  3d 47.68 64.67 16.99 1.447 to 32.53 

  4d 35.53 60.37 24.84 9.303 to 40.38 

  5d 26.65 54.00 27.35 11.81 to 42.89 

  6d 26.38 44.62 18.24 2.703 to 33.78 

 

Treatment Difference t P value Summary 

  1d -3.903 0.8067 P > 0.05 ns 

  2d 3.827 0.7909 P > 0.05 ns 

  3d 16.99 3.511 P<0.01 ** 

  4d 24.84 5.135 P<0.001 *** 

  5d 27.35 5.653 P<0.001 *** 

  6d 18.24 3.771 P<0.01 ** 

 

Two way ANOVA test of A2B5+ve%; siRNA treatment in DM (Figure 14) 

Source of Variation % of total variation P value   

  Interaction 2.01 0.3551   

  Time 91.14 < 0.0001   

  Treatment 0.12 0.7971   

  Subjects (matching) 1.5218 0.2251   

 

Source of Variation P value summary Significant?   
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  Interaction ns No   

  Time *** Yes   

  Treatment ns No   

  Subjects (matching) ns No   

 

Source of Variation Df Sum-of-squares Mean square F 

  Interaction 10 460.9 46.09 1.159 

  Time 5 20879 4176 105.0 

  Treatment 2 27.38 13.69 0.2356 

  Subjects (matching) 6 348.6 58.11 1.461 

  Residual 30 1193 39.77  

 

Number of missing values 0    

 

Bonferroni post hoc test 

wildtype vs control siRNA     

Treatment wildtype control siRNA Difference 95% CI of diff. 

  1d 81.01 78.21 -2.797 -19.96 to 14.36 

  2d 70.34 73.33 2.993 -14.17 to 20.15 

  3d 51.51 58.05 6.547 -10.61 to 23.71 

  4d 35.47 35.46 -0.01334 -17.17 to 17.15 

  5d 29.52 26.69 -2.830 -19.99 to 14.33 

  6d 28.95 23.99 -4.960 -22.12 to 12.20 

 

Treatment Difference t P value Summary 

  1d -2.797 0.5234 P > 0.05 ns 

  2d 2.993 0.5602 P > 0.05 ns 

  3d 6.547 1.225 P > 0.05 ns 

  4d -0.01334 0.002496 P > 0.05 ns 

  5d -2.830 0.5296 P > 0.05 ns 

  6d -4.960 0.9283 P > 0.05 ns 

 

wildtype vs siRNA     

Treatment wildtype siRNA Difference 95% CI of diff. 

  1d 81.01 67.09 -13.92 -31.08 to 3.245 

  2d 70.34 69.84 -0.4933 -17.65 to 16.67 

  3d 51.51 56.97 5.463 -11.70 to 22.62 

  4d 35.47 36.33 0.8567 -16.30 to 18.02 

  5d 29.52 31.02 1.500 -15.66 to 18.66 

  6d 28.95 26.00 -2.957 -20.12 to 14.20 
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Treatment Difference t P value Summary 

  1d -13.92 2.604 P > 0.05 ns 

  2d -0.4933 0.09233 P > 0.05 ns 

  3d 5.463 1.022 P > 0.05 ns 

  4d 0.8567 0.1603 P > 0.05 ns 

  5d 1.500 0.2807 P > 0.05 ns 

  6d -2.957 0.5533 P > 0.05 ns 

 

control siRNA vs siRNA     

Treatment control siRNA siRNA Difference 95% CI of diff. 

  1d 78.21 67.09 -11.12 -28.28 to 6.042 

  2d 73.33 69.84 -3.487 -20.65 to 13.67 

  3d 58.05 56.97 -1.083 -18.24 to 16.08 

  4d 35.46 36.33 0.8700 -16.29 to 18.03 

  5d 26.69 31.02 4.330 -12.83 to 21.49 

  6d 23.99 26.00 2.003 -15.16 to 19.16 

 

Treatment Difference t P value Summary 

  1d -11.12 2.081 P > 0.05 ns 

  2d -3.487 0.6525 P > 0.05 ns 

  3d -1.083 0.2027 P > 0.05 ns 

  4d 0.8700 0.1628 P > 0.05 ns 

  5d 4.330 0.8104 P > 0.05 ns 

  6d 2.003 0.3749 P > 0.05 ns 
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APPENDIX XII RESULTS OF TWO WAY ANOVA TEST FOR CELL COUNT DATA OF GALC+ CELLS 

Two way ANOVA test of GalC+ve% in DM (Figure 15) 

Source of Variation % of total variation P value   

  Interaction 2.84 0.0076   

  Time 87.04 < 0.0001   

  Treatment 6.31 0.0031   

  Subjects (matching) 1.0718 0.1029   

 

Source of Variation P value summary Significant?   

  Interaction ** Yes   

  Time *** Yes   

  Treatment ** Yes   

  Subjects (matching) ns No   

 

Source of Variation Df Sum-of-squares Mean square F 

  Interaction 10 585.7 58.57 3.121 

  Time 5 17943 3589 191.2 

  Treatment 2 1301 650.6 17.67 

  Subjects (matching) 6 220.9 36.82 1.962 

  Residual 30 562.9 18.76  

 

Number of missing values 0    

 

Bonferroni post hoc test 

wildtype vs blank plasmid     

Treatment wildtype blank plasmid Difference 95% CI of diff. 

  1d 3.477 4.510 1.033 -11.20 to 13.27 

  2d 6.340 8.027 1.687 -10.55 to 13.92 

  3d 27.17 25.21 -1.960 -14.20 to 10.28 

  4d 32.43 34.45 2.023 -10.21 to 14.26 

  5d 49.46 48.44 -1.023 -13.26 to 11.21 

  6d 60.74 58.54 -2.203 -14.44 to 10.03 

 

Treatment Difference t P value Summary 

  1d 1.033 0.2712 P > 0.05 ns 

  2d 1.687 0.4427 P > 0.05 ns 

  3d -1.960 0.5144 P > 0.05 ns 

  4d 2.023 0.5311 P > 0.05 ns 

  5d -1.023 0.2686 P > 0.05 ns 

  6d -2.203 0.5783 P > 0.05 ns 
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wildtype vs plasmid     

Treatment wildtype plasmid Difference 95% CI of diff. 

  1d 3.477 5.087 1.610 -10.63 to 13.85 

  2d 6.340 4.090 -2.250 -14.49 to 9.987 

  3d 27.17 11.92 -15.24 -27.48 to -3.006 

  4d 32.43 19.65 -12.78 -25.01 to -0.5398 

  5d 49.46 32.96 -16.50 -28.74 to -4.263 

  6d 60.74 43.20 -17.54 -29.78 to -5.303 

 

Treatment Difference t P value Summary 

  1d 1.610 0.4226 P > 0.05 ns 

  2d -2.250 0.5905 P > 0.05 ns 

  3d -15.24 4.001 P<0.01 ** 

  4d -12.78 3.353 P < 0.05 * 

  5d -16.50 4.331 P<0.001 *** 

  6d -17.54 4.604 P<0.001 *** 

 

blank plasmid vs plasmid     

Treatment blank plasmid plasmid Difference 95% CI of diff. 

  1d 4.510 5.087 0.5767 -11.66 to 12.81 

  2d 8.027 4.090 -3.937 -16.17 to 8.300 

  3d 25.21 11.92 -13.28 -25.52 to -1.046 

  4d 34.45 19.65 -14.80 -27.04 to -2.563 

  5d 48.44 32.96 -15.48 -27.71 to -3.240 

  6d 58.54 43.20 -15.34 -27.57 to -3.100 

 

Treatment Difference t P value Summary 

  1d 0.5767 0.1514 P > 0.05 ns 

  2d -3.937 1.033 P > 0.05 ns 

  3d -13.28 3.486 P<0.01 ** 

  4d -14.80 3.885 P<0.01 ** 

  5d -15.48 4.062 P<0.01 ** 

  6d -15.34 4.025 P<0.01 ** 

 

Two way ANOVA test of GalC+ve%; siRNA treatment in DM (Figure 15) 

Source of Variation % of total variation P value   

  Interaction 1.89 0.0652   

  Time 91.74 < 0.0001   

  Treatment 3.19 0.0013   

  Subjects (matching) 0.3872 0.6567   

 

Source of Variation P value summary Significant?   
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  Interaction ns No   

  Time *** Yes   

  Treatment ** Yes   

  Subjects (matching) ns No   

 

Source of Variation Df Sum-of-squares Mean square F 

  Interaction 10 404.5 40.45 2.032 

  Time 5 19620 3924 197.1 

  Treatment 2 682.8 341.4 24.74 

  Subjects (matching) 6 82.81 13.80 0.6934 

  Residual 30 597.1 19.90  

 

Number of missing values 0    

 

Bonferroni post hoc test 

wildtype vs control siRNA     

Treatment wildtype control siRNA Difference 95% CI of diff. 

  1d 3.383 2.860 -0.5233 -11.92 to 10.87 

  2d 6.447 9.783 3.337 -8.060 to 14.73 

  3d 27.28 20.44 -6.847 -18.24 to 4.550 

  4d 29.01 27.68 -1.330 -12.73 to 10.07 

  5d 40.72 37.49 -3.230 -14.63 to 8.167 

  6d 54.10 55.06 0.9567 -10.44 to 12.35 

 

Treatment Difference t P value Summary 

  1d -0.5233 0.1475 P > 0.05 ns 

  2d 3.337 0.9403 P > 0.05 ns 

  3d -6.847 1.930 P > 0.05 ns 

  4d -1.330 0.3748 P > 0.05 ns 

  5d -3.230 0.9103 P > 0.05 ns 

  6d 0.9567 0.2696 P > 0.05 ns 

 

wildtype vs siRNA     

Treatment wildtype siRNA Difference 95% CI of diff. 

  1d 3.383 3.087 -0.2967 -11.69 to 11.10 

  2d 6.447 11.59 5.147 -6.250 to 16.54 

  3d 27.28 28.07 0.7833 -10.61 to 12.18 

  4d 29.01 40.43 11.42 0.02669 to 22.82 

  5d 40.72 51.00 10.27 -1.123 to 21.67 

  6d 54.10 67.73 13.63 2.230 to 25.02 
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Treatment Difference t P value Summary 

  1d -0.2967 0.08361 P > 0.05 ns 

  2d 5.147 1.450 P > 0.05 ns 

  3d 0.7833 0.2208 P > 0.05 ns 

  4d 11.42 3.219 P < 0.05 * 

  5d 10.27 2.895 P < 0.05 * 

  6d 13.63 3.840 P<0.01 ** 

 

control siRNA vs siRNA     

Treatment control siRNA siRNA Difference 95% CI of diff. 

  1d 2.860 3.087 0.2267 -11.17 to 11.62 

  2d 9.783 11.59 1.810 -9.587 to 13.21 

  3d 20.44 28.07 7.630 -3.767 to 19.03 

  4d 27.68 40.43 12.75 1.357 to 24.15 

  5d 37.49 51.00 13.50 2.107 to 24.90 

  6d 55.06 67.73 12.67 1.273 to 24.07 

 

Treatment Difference t P value Summary 

  1d 0.2267 0.06388 P > 0.05 ns 

  2d 1.810 0.5101 P > 0.05 ns 

  3d 7.630 2.150 P > 0.05 ns 

  4d 12.75 3.594 P<0.01 ** 

  5d 13.50 3.805 P<0.01 ** 

  6d 12.67 3.571 P<0.01 ** 

 


