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ABSTRACT  

 

Coating the joint surfaces with diamond like carbon (DLC) is a promising way to increase the 

service lifetime of hip joints made of CoCrMo alloy. DLC thin films have been attracted the most 

interest because of its extreme smoothness, low coefficient of friction, high hardness and 

excellent biocompatibility. One of the key issues that limit the use of DLC is its poor adhesion to 

commonly used biomedical alloys like CoCrMo. The low adhesion has been attributed to the 

high internal stress, and Nitrogen (N) doping is one of main approaches to minimize it. 

Nevertheless Nitrogen incorporation is being investigated due to the complex mechanism behind 

the formation of different chemical species in the amorphous DLC network by using different 

deposition techniques.    

In the present thesis work, micro-diamond particles were synthesized on CoCrMo alloy sheets by 

Microwave Plasma Enhanced Chemical Vapor Deposition (MPCVD) and nitrogen doped DLC 

thin films were then deposited on them by Inductively Coupled Plasma assisted Chemical Vapor 

Deposition (ICP-CVD) to improve DLC adhesion on CoCrMo sheets.  The effect of nitrogen 

doping and nanodiamond incorporation on the film adhesion was investigated by Rockwell 

indentation. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to 

analyze the chemical structure of the coatings. Morphology of the films was observed by 

Scanning electron microscopy (SEM) and optical profilometry. The mechanical properties of the 

films were measured by nanoindentation testing. Results showed that Nitrogen doping and 

diamond incorporation could improve the film adhesion significantly. Raman and XPS spectra 

showed an increase in sp
2
 bonding in N-DLC films with a consequent decrease in hardness 

according to nanoindentation measurements. Surface roughness decreased while nitrogen content 

increased according to optical profilometer images. The results have demonstrated that the 

modified DLC films are promising for total hip joint replacement application. 
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CHAPTER 1 ï INTRODUCTION  

1.1 Motivation  

One of the most critical and international public health issues is hip joint fracture [1]. The 

main cause of hip joint fracture is degeneration of the bones [2]. Limited mobility, hospital and 

social costs, and impairment in quality of life are some implications of hip joint fracture [3]. 

Total hip replacement, in which the head of the femur and its socket are replaced, is the main 

procedure to re-establish functions of fractured hips. The life time of the implants strongly 

depends on the design and quality of the materials used [4].  

One of the most common materials used for hip joint replacement is CoCrMo alloy because 

of its good corrosion and wear resistance, biocompatibility, and high strength. CoCrMo alloys 

comply the ASTM standard of F-75 for casting alloys and F-1537 for wrought alloys for surgical 

implants [5]. Over time, the implants become loose and release toxic ions due to the wear 

between moving surfaces and the corrosion in human fluids, which makes the implants fail [5]. In 

order to reduce the ion release and extend the life time of the implant, surface modification and 

coating have been investigated. Coatings can enhance surface characteristics and mechanical 

performance without altering the bulk properties of the implants and very promising to improve 

both the performance and the lifetime of the implants [6].  

Diamond like Carbon (DLC) thin films have been attracted the most interest because of its 

extreme smoothness, low coefficient of friction, high hardness and excellent biocompatibility[7-

9]. One of the key issues that limit the use of DLC is its poor adhesion to commonly used 

biomedical alloys like CoCrMo alloy [10]. The low adhesion has been attributed to the high 

internal stress of DLC due to the ion bombardment, and week interface between the substrate and 

coating. Surface substrate modification, interlayer between the substrate and coating, and doping 

elements into the coating to reduce internal stress are the main approaches to increase DLC 

adhesion [11ï15].   

Surface treatment with nitrogen plasma on CoCrMo alloy has formed a passive layer at low 

temperature with good corrosion resistance of DLC coatings but with a negative effect on 

tribology performance[16]. Further studies were performed by using a hip joint simulator wear 

test, concluding that neither nitrogen ion implantation nor pure DLC coatings can enhance wear 
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resistance of CoCrMo on polyethylene polymer for hip joint implant application[17]. Titanium 

interlayer deposited after nitrogen ion implantation on CoCrMo has improved surface hardness 

and wear resistance, but weak adhesion was observed[18]. A detailed X-ray photoelectron 

spectroscopy (XPS) analysis reported a formation of cobalt carbide at the less than 5 nm interface 

between the substrate and DLC coating, and suggested that metastable cobalt carbide might lower 

DLC adhesion[19].  

Recent studies have reported that diamond incorporation on Titanium alloys can enhance the 

interface with DLC and increase its adhesion[20,21]. Reduction of internal stress has been 

achieved by nitrogen doping DLC deposited on silicon, steel and glass substrates[22,23]. 

Consequently, the combination of diamond particles deposited on CoCrMo and nitrogen doped 

DLC deposition can be very promising for adhesion improvement and wear resistance of 

CoCrMo on polyethylene for artificial hip joint replacement. 

1.2 Objectives 

The primary objective of the present thesis work is to improve adhesion of DLC on CoCrMo 

alloy. In order to accomplish this goal, specific sub-objectives include the following:  

 

1. Improve DLC adhesion on CoCrMo alloys by microdiamond particle deposition by 

Microwave Plasma Chemical Vapor Deposition. 

2. Deposit nitrogen doped DLC coatings with different nitrogen content on diamond 

predeposited CoCrMo samples by Plasma-Enhanced Chemical Vapor Deposition.  

3. Analyze the chemical structure and morphology of N-DLC samples at different nitrogen 

concentrations. 

4. Measure the mechanical and tribological properties of the coatings, to understand the 

relationship between chemical structure and properties of the synthesized films. 
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1.3 Thesis Organization 

Chapter 1 covers motivation and objectives of the present research work and the 

organization of the present thesis.  

Chapter 2 presents a comprehensive review of CoCrMo alloy and DLC coatings. This 

chapter explains the chemical nature of carbon bonds, defines DLC and its properties, and 

describes the deposition techniques and mechanism of DLC growth.   

Chapter 3 introduces the experimental techniques and parameters used in this research 

related with deposition and characterization of the coatings.  

Chapter 4 consists in two sections. The first section 4.1 shows the results of adhesion 

improvement by diamond and nitrogen incorporation with an analysis of bonding structure, 

morphology and mechanical properties. The second section 4.2 explains further the effect of 

nitrogen doping DLC at different concentrations on chemical structure, morphology, 

adhesion, mechanical and tribological properties.  

Chapter 5 concludes the results presented in Chapter 4, and suggests direction for 

future work on this topic. 
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CHAPTER 2 - LITERATURE REVIEW  

 

Due to the extreme smoothness, low coefficient of friction, high hardness and excellent 

biocompatibility Diamond like Carbon (DLC) thin films have been attracted the most interest for 

biomedical applications[1-3] such as hip joint replacement. One of the key issues that limit the 

use of DLC is its poor adhesion to commonly used biomedical alloys like CoCrMo [10]. This 

chapter will provide a comprehensive review on CoCrMo alloy, diamond-related carbon 

materials structure and deposition techniques, diamond based coatings on CoCrMo, and 

principles and descriptions of characterization techniques. 

 

2.1 Overview of CoCrMo alloy 

 

Globally, one of the most severe and public health issues is hip joint fracture [1]. The main 

cause of hip joint fracture is degeneration of the bones [2]. Restricted mobility, hospital and 

social expenses, and decay in quality of life are some implications of hip joint fracture [3].Total 

hip replacement, in which the head of the femur and its socket are replaced, is the main procedure 

to re-establish functions of fractured hips.  

 

Figure 2.1 Injured hip joint and its artificial replacement[24] 
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The life time of the implants strongly depends on the design and quality of the materials used 

[4]. One of the most common materials used for hip joint replacement is CoCrMo alloy as a 

femoral head while Ultra High Molecular Weight Polyethylene (UHMWP) is used as a liner for 

the cup, both materials are in contact. CoCrMo has been widely used as the head for hip joint 

replacement because of its good corrosion and wear resistance, biocompatibility, and high 

strength. CoCrMo alloys comply the ASTM standard of F-75 for casting alloys and F-1537 for 

wrought alloys for surgical implants [5]. Table 2-1 shows the composition and Table 2-2 shows 

the magnitude of selected properties of CoCrMo ASTM F-1537 alloy [25]which was used in the 

present studies. 

Table 2.1 Composition of CoCrMo ASTM F-1537 [25] 

Element Composition (Wt%):  

    C 
0.05 

Mn 0.83 

Si 0.64 

P 0.003 

S 0.0005 

Cr 

Ni 

Mo 

Cu 

Co 

N 

W 

Fe 

27.82 

0.07 

5.48 

0.01 

64.68 

0.163 

0.02 

0.14 
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Table 2.2 Properties of CoCrMo ASTM F-1537 [25] 

Tensile 

Strength [MPa] 

Yield 

Strength [MPa] 

Elongation 

[%]  

Reduction 

of Area [%]  

1338.0 965.0 31.0 25 

 Over time, the implants become loose and release toxic ions due to the wear between moving 

surfaces and the corrosion in human fluids, which makes the implants fail [5]. In order to reduce 

the ion release and extend the life time of the implant, surface modification and coating have 

been investigated. 

 

2.2  Carbon materials 

Among other elements in the periodic table, carbon is one of the most abundant elements and 

principal component of earthôs life. Carbon can form different covalent bonds using its four 

valence electrons of 2s and 2p atomic orbitals.  

 

 

Figure 2.2 Ground state of Carbon 
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The combination of 2s and 2p orbitals originates the hybrid orbitals sp, sp
2
 and sp

3
. Figure 

2.3 shows the sp configuration. When 2s orbital combines with one of the 2p orbitals, the 

hybridization results in 2 sp-orbitals. This configuration allows forming triple bonds with other 

carbons of the same configuration (alkines). 

 

 

Figure 2.3 sp configuration of Carbon 

Sp
2
 hybridization takes place when two 2p orbitals mix with 2s orbital, resulting in 3 sp

2
-

orbitals and one p orbital. The 3 sp
2 
orbitals are in the same trigonal plane with an angle of 120° 

among them. A hexagonal arrangement of this sp
2
 configuration originates graphene in a single 

atom plane. The remaining 2p orbital can form a week Van der Waals bond with another 2p 

orbital from another plane, the accumulation of many planes with these week ˊ bonds forms 

graphite. Graphite is soft, it can be used as a dry solid lubricant, and its free electron migrates 

along the plane making it a good electrical conductor[12,13]. 

  

 
 

Figure 2.4 sp
2 
configuration of Carbon 

 



 

8 
 

The formation of four sp
3
 orbitals takes place when the 2s orbital hybridize with all the 2p 

orbitals. This hybridization is characterized by tetrahedral geometry. Diamond is based on this 

configuration and its properties are unique. Diamond is the hardest natural material on Earth, 

because of its strong ů bond among adjacent atoms[28], and has the smallest thermal expansion 

coefficient[29]. Because all the electrons are used in the ů bonds it does not have any free 

electron to travel, thus it is an electrical insulator. 

 

 

Figure 2.5 sp
3
 configuration of carbon 

This variety in chemical bonds makes carbon very unique among other elements in the 

periodic table. Consequently carbon can form up different atomic structures with amazing 

different properties. Some of the allotropes of carbon are fullerenes (buckyballs: C60, C540 and 

C70) and carbon nanotubes presenting sp
2
 configuration[30], Lonsdaleite (hexagonal diamond) is 

based on sp
3
 configuration[31], and amorphous carbon (a-C) has a mixture of both sp

2
 and 

sp
3
[32]. Amorphous carbon has different categories according to its structure and content of sp

2
 

and sp
3
 bonding. 
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Figure 2.6 Different atomic structures of carbon: a) Graphite, b) Diamond, , c) C60 

(Buckminsterfullerene), d) Single-wall carbon nanotube, and e) Graphene[33]. 

Amorphous carbon films are disordered networks constituted of a mixture of sp
2
 and sp

3
 

hybridized bonds. a-C properties are strongly related to the ratio of sp
2
 (graphite like) to sp

3
 

(diamond like) bonding configuration[34]. Among all the allotropes of carbon, just Diamond-

Like Carbon is investigated in detail in the present thesis work. 

 

2.3 Diamond Like Carbon Thin Films  

When the amount of sp3 bonds is considerable higher than the sp2 bonds the chemical nature 

of the amorphous carbon is more inclined to diamond and metastable, it is called Diamond-like 

Carbon (DLC)[35].  

 

   2.3.1 Structure and Properties of DLC 

DLC has been classified into two main categories of DLC: hydrogen-free DLC and 

hydrogenated DLC (a-C:H). Furthermore, when the sp
3
 content is significantly high (90%), it is 

called tetrahedral amorphous carbon (ta-C)[36].  Fig. 2.7 illustrates different types of DLC.  
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Figure 2.7 Ternary phase diagram of amorphous carbon with different sp
2
, sp

3
 and H content [35] 

It can be seen that graphitic and glassy carbon are located in the bottom left hand corner with 

the highest sp
2
 content and free of hydrogen. DLC can be created with sputtering techniques by 

increasing the sp
3
 content. Further escalation of sp

3 
bonds will lead to tetrahedral amorphous 

carbon (ta-C) which is hydrogen free. By using hydrocarbons as precursors, the presence of 

hydrogen is inevitable. This hydrogen leads two regions in the middle of the diagram, tetrahedral 

hydrogenated carbon (ta-C:H) and hydrogenated amorphous carbon (a-C:H). If the hydrogen 

content is increased even more, the formation of polymers takes place. Finally, when the amount 

of hydrogen is higher than carbon (bottom right hand corner) there are no formation of films.  

 

DLC has been investigated in the last four decades for its high hardness (approximately 80 

GPa in ta-C and 50 GPa in ta-C:H), chemical inertness (to acids and alkalis), optical transparency 

(approximate refractive index of 2) , high electrical resistivity, low coefficient of friction (0.05 to 

0.2 on steel depending on test conditions), high wear resistance and biocompatibility. Fig. 2.8 

simulates the structure of DLC with 10% of hydrogen, it can be seen sp
3
 and sp

2 
chemical 

bonds[37]. 
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Figure 2. 8 Molecular dynamic simulation of atomic structure of a-C:H film [37]. 

 

   2.3.2  DLC deposition techniques 

 

DLC was synthetized for the first time by using ion beam deposition in 1971[38]. Since that 

time, different chemical vapor deposition (CVD) methods and physical vapor deposition (PVD) 

have been developed for both laboratory and industrial scale production.  DLC can be 

manufactured by a wide variety of deposition techniques such as mass selected ion beam (MSIB), 

sputtering, filtered cathodic vacuum arc (FCVA), pulsed laser deposition (PLD), and plasma 

enhanced vapor deposition (PECVD).  

MSIB has a well control over the ion species and its energy, a filtering out of neutral species 

and specific ions, and the ability to dope by switching the ion species. MSIB drawbacks are low 

deposition rate, high cost and voluminous apparatus size[39]. For industrial production sputtering 

is the most common method due to its adaptability to scale up and versatility to sputter different 

many materials[40]. Magnetron sputtering is usually applied to increase the deposition rate of the 

process, nevertheless this technique usually has low ratio of energetic ions to neutral species, and 

as a consequence the sp
3
 content in the films is low. FCVA provides highly ionized plasma and 

high deposition rates, but the cathode spot is unstable and the insufficient filtering limits its 
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applications. PLD technique vaporizes many different materials including graphite to produce ta-

C (high sp
3
 content). This method is used mainly for research purposes since it is a laboratory 

scale technique, thus it has very limited industrial applications[41]. The most used method to 

deposit DLC at laboratory scale is PECVD, its description is given in Chapter 3. 

 

Figure 2.9 Diagrams of different DLC deposition techniques[35]. 
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   2.3.3 Deposition Mechanism 

 

Bombarding the surface with energetic particles during the deposition is the key in the 

formation of high fraction of sp
3
 C-C bonds, which provides the unique characteristics of 

metastable DLC[35,42]. Sub-plantation is the process in which energetic carbon ions are 

bombarded and implanted into atomic sites under the surface of the substrate. At the beginning of 

the process, the bombarded ions penetrate into the subsurface, then the incorporation of carbon 

and/or hydrogen induces local stress in the subsurface, followed of the creation of pure carbon 

level due to sputtering and dilution of target atoms, and the film continues growing with the 

formation of a new DLC layer from the successive bombardment[43].  

 

The energy needed for carbon ions in order to penetrate the surface of the substrate is called 

penetration threshold, Ep. An ion particle needs a minimum energy in order to displace a surface 

atom from its original location and create a stable vacancy-interstitial pair. This minimum energy 

is called displacement threshold, Ed. Besides, the energy that keeps surface ions tightly together 

is known as binding energy, Eb. Thus, the total penetration threshold for a group of carbon ions 

with certain critical energy is defined by 

 

 Ep ~ Ed - Eb                                                                                                                              (2.1)            

 

If an ion does not possess enough energy to overcome the penetration threshold energy, it will 

not be able to infiltrate into the subsurface layer. This ion remains on the surface in its low energy 

sp
2
 state. Only those ions with higher energy than Ep will be able to penetrate through the 

subsurface layer. Thus, this dynamic penetration of ions will increase the local density and 

energy, resulting in sp
3
 bonding. While increasing the ion energy, ions will acquire enough 

energy to penetrate deeper into the surface, therefore, groups of ions are involved in different 

atomic effects such as displacement, thermalisation and relaxation[35]. This reduces the local 

atomic density and declines sp
3
 bonding. Robertson [42] has reported an optimum ion energy 

value of 100 eV in order to form DLC thin film with high sp
3
 fraction. In this way, ions have 

enough energy to penetrate the surface of the substrate and increase sp
3
 bonding sites[44]. In 

others research work, it has reported 100 eV as the best approximate ion energy to achieve high 

sp
3
 fractions regardless of the deposition technique[35,37]. 
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2.3.3.1  Growth of Diamond-like carbon thin f ilm 

 

The growth mechanism of hydrogenated DLC is more complex than tetrahedral DLC. 

Although hydrogenated amorphous carbon formation follows the sub-plantation model, an 

important research effort is been focused to understand the growth mechanism and the role of 

hydrogen in the mechanism. When it comes to a-C:H deposition, different hydrocarbon sources 

can be utilized such as benzene, methane, ethane, propane and acetylene. The growth mechanism 

of hydrogenated DLC is divided into three major stages: 

 

        1.-Dissociation and ionization of precursor gases, plasma formation. 

        2.-Reaction of plasma with the growing film in the surface. 

        3.-Reaction in the subsurface layer of the film. 

 

It is necessary to understand the physical process of sub-plantation, as well as the chemical 

process related to the interaction of ions, neutral species, radicals, and dehydrogenation for 

studying the complex growth model of a-C:H. Ions, neutral species, un-ionized precursor gas, 

mono and di-radicals, other unsaturated species such as C2H4 or C2H2 interact during the 

formation of plasma and deposition.  

 

         Growth rate is usually thermal independent nevertheless it can affect etching and 

consequently minimize growth. It has been suggested that the energetic surface might be 

quenched due to the thermal difference between the surface and cold underlying substrate. Then 

metastable DLC is frozen-in by this process, suggesting that a condensation mechanism is the 

reason why DLC cannot be obtained at temperatures higher than 400°C. Diamond-like carbon net 

has been proposed to arise due to the transitory high pressure and temperature spikes when the 

ion flux is impacting the surface[45].  

 

The presence of hydrogen during the condensation of the film has been suggested to 

facilitate the formation of a carbonaceous amorphous structure with an average coordination 

number as close as a fully constrained network.  Hydrogen can penetrate deeper through the sub 
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layers of the surface due to its small radical size.  Since it has weak interaction with other atoms 

due to its chemical nature, it plays the role of a network terminator, decreasing the level of 

crosslinking and promoting the rearrangement of the network[46]. Hydrogen radicals can also 

form hydrogen molecules by bonding with other hydrogen atoms, leaving behind unsaturated 

dangling bonds on the subsurface. The overall process of a-C:H growth includes the physical 

process of sub-plantation, condensation of species in the subsurface, chemical interactions of 

different species in the plasma closed to the surface, and dehydrogenation-recombination. Figure 

2.10 illustrates the growth model of a-C:H thin film suggested by Robertson[35]. 

 

Figure 2.10 Growth mechanism of a-C:H[35]. 

 

   2.3.4  Stresses in DLC 

 

A significant amount of compressive stresses is introduced in the film due to the energetic 

ion bombardment. This stress increases in parallel with film thickness [47]. The introduction of 

stress in DLC is extremely adverse as it conducts to poor adhesion and consequent delamination 

of the coating. Good adhesion of DLC film is the basis of its successful industrial applications. 

Residual stress, ů, appeared in amorphous carbon films depends on three different classes 

according to its origin[48]:  
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(a) Thermal stress (ůth),  

 

      (b) Intrinsic stress (ůi) and  

 

(b) Extrinsic stress (ůe).  

 

The quantity of residual stresses can be calculated as follows:   

ů = ůth + ůi + ůe                                                                                                                    (2.2)      

       

          2.3.4.1 Thermal Stress  

 

The origin of this stress is due to significant differences between thermal expansion 

coefficients between the substrate and the film. It is important to consider the difference between 

the deposition temperature of the film and the temperature of the sample during determination of 

stress. Two main solutions have been investigated to minimize thermal stress in the films. The 

first approach is to deposit at room temperature, and the second one is to pre-deposit an interlayer 

with a thermal expansion coefficient between the film and the substrate[49]. 

 

          2.3.4.2 Intrinsic Stress 

 

Intrinsic stresses are created during deposition and are related to the morphology and 

microstructure of the films. Thus intrinsic stress is strongly depended on the deposition 

parameters. Intrinsic stresses in thin films can be classified into two types: tensile and 

compressive intrinsic stresses. Tensile intrinsic stresses are regularly originated by defects such 

as voids and vacancies in the films which are related to low energetic particles (0.1-1eV)[50]. 

Compressive stresses gradually rise to a certain value as the impact energy per atom increase 

(from 1eV to 25eV)[34,36]. Fig 2.11 shows the idealized behavior of intrinsic stress related to 

impact energy per atom [50]. 
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Figure 2.11 Idealized behavior of intrinsic stress with different impact energy per atom[50]. 

In order to explain the origin of compressive intrinsic stress in the coating a model was 

proposed known as knock-on process. In this model the implanted atoms under the surface 

through knock-on impacts create compressive intrinsic stresses. Then the energetic ions 

embedded into the subsurface transfer into a metastable location. On the other hand, energetic 

bombardment of other species provokes rapid local heating in certain zones while the energy is 

transmitted among surrounding atoms. Local heating energy or thermal spike supplies energy to 

the neighbor atoms to escape from their metastable position. After relaxation the subsurface 

started to cool down.  

 

The balance between implantation and relaxation plays an important role in compressive 

intrinsic stress because is proportional to the ratio of ion flux (ҿi) to deposition rate (ҿd) [48], 

[50]. In order to minimize the compressive intrinsic stress in the films, two approaches can be 

chosen. One of them is to prepare films with low normalized fluxes (ҿi /ҿd), low energetic 

particle flow and high deposition rate. Alternatively film preparation with either high normalized 

fluxes (ҿi /ҿd), or low deposition rates with high ion fluxes can reduce compressive intrinsic 

stress[51].  
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          2.3.4.3 Extrinsic Stress 

Extrinsic stresses are generated by the interaction between the film and external factors. 

These external factors can be impurities of oxygen and/or hydrogen, grain surface energy 

reduction and reactions generating a new phase with a different molar volume. This changes 

leads to lattice deformation and film volume expansion, consequently stress formation.  

 

2.4 Adhesion improvement of DLC on CoCrMo 

 

As mentioned previously, CoCrMo implants become loose and release toxic ions due to the 

wear between moving surfaces and the corrosion in human fluids, which makes the implants 

fail[5].  In order to reduce the ion release and extend the life time of the implant, surface 

modification and coating have been investigated. Coatings can enhance surface characteristics 

and mechanical performance without altering the bulk properties of the implants and very 

promising to improve both the performance and the lifetime of the implants[6]. Diamond like 

Carbon (DLC) thin films have been attracted the most interest because of its extreme smoothness, 

low coefficient of friction, high hardness and excellent biocompatibility[37]. One of the key 

issues that limit the use of DLC is its poor adhesion to commonly used biomedical alloys like 

CoCrMo.  The low adhesion has been attributed to the high compressive intrinsic stress of DLC 

due to the ion bombardment. Many approaches have been studied in order to minimize the 

stress[39ï43].  Doping an element that reduces the stress is one of the main approaches 

investigated and positive results have been achieved. Hence, doping of DLC will be discussed in 

the following sections. 

 

2.5  Doping of DLC 

 

      Doping is the incorporation of elements into films with diferent bonding states in order to 

modificate the structure and improve specific properties. Some elements can be doped into DLC, 

creating more flexible bonds in the coating, and consequently reducing compressive stresses[51]. 

It has been reported that doping different elements into DLC can minimize compressive stresses 
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without sacrificing its admirable properties[37]. Nevertheless it has been presented that hardness 

can be reduced or increased even with the same doped element but with different deposition 

techniques[44ï46]. 

 

One of the advantages of DLC is that due to its amorphous structure is possible to incorporate 

different elements in the carbonaceous net. As a result of doping DLC, different chemical 

bonding combinations leads to magnified properties for specific applications. It is crucial to 

consider the introduced amount, dispersion, and chemical nature of dopants during deposition in 

order to achieve the preferable properties and preserving the diamond-like characteristics in the 

film.  As mentioned previously, according to the desirable property, different elements can be 

used to doped DLC. Some dopants can be light elements such as Boron, Silicon, Nitrogen, and 

Oxygen, also metals can be doped such as Nickel, Titanium, Tungsten, Silver, and Cobalt. Even 

it is possible to mix elements and dope them at the same time. Figure 2.12 illustrates different 

dopants and their effect on improving DLC properties[37].   

 

Figure 2.12 Scheme of known DLC dopants to improve particular properties[37]. 
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2.6 Nitrogen doped DLC 

 

Among other elements, Nitrogen is one of the most studied elements to dope DLC due to its 

diverse applications which it has been attracted research attention in past decades[55]. The first 

carbon nitride films were synthesized by Cohen and his colleagues during 1990ôs[56]. They 

anticipated that crystalline ɓ-C3N4 structure could be harder than diamond. Despite of intense 

research effort, successful synthesis of ultra-hard ɓ-C3N4 has not yet been concluded, 

nevertheless nitrogenated DLC films became popular since then. It is possible to form sp
2
 and/or 

sp
3
 sites by incorporating Nitrogen in DLC films because Nitrogen can form many bonding 

configurations. Nevertheless when Nitrogen does not doped DLC structure; it can form non-

doping species such as Pyridine, pyrrole, and nitrile as shown in Fig. 2.13.  

 

Figure 2.13 Different Nitrogen-Carbon configurations[35]. 

When a certain amount of nitrogen is doped into amorphous carbon, pentagonal rings can be 

formed and cross-linking between graphitic planes can be promoted as shown in Fig. 2.14. Due to 

the strong three-dimensional covalently bonded network, films with high elasticity and enhanced 

toughness could be synthesized[57].  
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Figure 2. 14 Cross-linking of graphitic structures with formation of pentagons by increasing 

nitrogen concentration in the films from a) 5% to b) ~15%[57]. 

 

Less than 50 vol% of Nitrogen doping could form of sp
2 

configuration due to possible 

formation of isocyanate (N=C=O) or nitrile (CſN) groups, nitrile triple bond may terminate a 

chain[58]. Nitrogenated amorphous carbon with low sp
3
 content would be softer and with better 

tribological properties than undoped DLC[50ï52]. Under the appropriate deposition conditions 

and nitrogen content, other species with sp
2
 character can be present such as C=C and C=N[62]. 

Increasing the sp
2
 content by Nitrogen doping, decreases the average coordination number of 

carbon and consequently reduces the internal stress[58]. Thus Nitrogen doping is a potential 

approach to reduce residual stress and improve DLC adhesion[44-45]. Although many studies 

have been carried out on nitrogenated DLC due to its excellent mechanical properties and 

biocompatibility, limited studies have been reported using Plasma Enhanced Chemical Vapor 

Deposition on CoCrMo substrate. Therefore, by changing the content of Nitrogen in N-DLC 

would be benefitial to understand the relation between structure and properties and adhesion on 

CoCrMo. 
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2.6  Structural characterization of DLC thin films  

    2.6.1  Raman spectroscopy 

 

Raman spectroscopy is a non-destructive structural characterization technique based on the 

inelastic scattering of light by a specific matter[63]. Raman scattering comes from incident 

radiation inducing transitions in the atoms or molecules that create the scattering medium. These 

transitions can be rotational, vibrational, electronic, or their combination [64]. In a Raman test, 

the sample is irradiated with monochromatic radiation. The inelastically scattered light is 

collected and dispersed. The resulting Raman spectrum plots the intensity of the inelastically 

scattered light as a function of the shift in wavenumber of the radiation. The practical suitability 

of Raman spectroscopy consists in the fact that the Raman spectrum serves as a fingerprint of the 

scattering material.  

 

The information obtained from Raman spectroscopy includes the intensity of interatomic and 

intermolecular bonds, the mechanical strain existing in a solid, the composition of 

multicomponent matter, the crystallinity degree of a solid, and the effects of pressure and 

temperature on phase transformations. An important advantage of Raman spectroscopy 

(compared to x-ray diffraction) is the ability to provide detailed structural information of 

amorphous materials such as DLC[65]. Diamond has a single Raman active mode at 1332 cm
-1

. 

Single crystal graphite has a single Raman active mode at 1580cm
-1

 known as ñGò for ñgraphiteò. 

Disorder graphite has a second mode approximately at 1350cm
-1

 called ñDò for ñdisorderò[59, 

60]. 

These two G and D modes of graphite are dominated by scattering of sp
2
 sites. G mode is 

related to stretching vibration of sp
2
 bonds such as C=C chains or aromatic rings. De-convolution 

of D and G peaks provides detailed information about D and G peaks, Breit-Wigner-Fano (BWF) 

is extensively used to fit G peak and Lorentzian to fit D peak. Therefore, it is possible to study 

the structural information of DLC by using Raman spectroscopy[68]. Figure 2.15 shows different 

Raman spectra of different carbon structures [35]. 
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Figure 2.15 Raman spectra comparison of diamond and amorphous carbon structures [35]. 

 

    2.6.3  X-ray photoelectron spectroscopy 

 

X-ray photoelectron spectroscopy (XPS) uses X-rays of a characteristic wavelength to excite 

electrons from atomic orbitals. The photoelectrons emitted from the material are collected as a 

function of their kinetic energy. The number of photoelectrons measured in a certain time interval 

is plotted versus kinetic energy. Thus XPS spectrum consists in electron counts (number per 

second) versus electron kinetic energy (eV). Figure 2.16 illustrates the process of 

photoemission[69]. 
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Figure 2.16 Schematics of the excitation, photoemission and Auger processes [69]. 

Conservation of energy takes place in the photon absorption process. The kinetic energy (Ek) 

is equal to the incident photon energy (hᾇ) minus the initial binding energy (electronic ground 

states) of the electron (EB). 

 Ek= hᾇ- EB                                                                                                                            (2.3)  

Since initial energy of X-ray (hᾇ) and kinetic energy of released electrons (Ek) are known, the 

graph can be plotted in terms of binding energy (EB) which is characteristic for each element. The 

positions of the peaks identify the chemical bonds in the material. Peak areas are proportional to 

the number of orbitals in the analysis volume and are used to quantify elemental composition. 

The positions and shapes of the peaks in an XPS spectrum can also be analyzed in greater detail 

to determine the chemical state of the constituent elements in the material, including oxidation 

state, partial charge, and hybridization.  

XPS is a surface sensitive technique. The nominal analysis depth is on the range of 1 to 10 

nm (10 to 100 monolayers). For that reason this technique is not appropriate for bulk 

characterization. All elements with atomic number greater than three can be detected. The main 

limitation of XPS is the need for ultrahigh vacuum in the chamber during the test. Thus materials 

with low vapor pressure (<10
-8

 mbar) at room temperature cannot be analyzed. Some polymeric 

materials can also degrade under the x-ray flux. XPS is a widely used characterization technique 

for a-C:H [22,44,51,64ï67]. In DCL XPS spectra is dominated by Carbon states because the 

cross-section of Hydrogen states is week [35].  
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2.7  Mechanical characterization 

    2.7.1  Nanoindentation 

 

In order to measure a reliable bulk hardness value in a film, the film thickness should be 

numerous times greater (at least ten times) than the penetration depth of the indenter [74]. In this 

way the measured value of hardness will not be influenced by the substrate deformation below 

the film. Usually this criterion is difficult to accomplish using standard microhardness technique 

since many wear-resistant materials are often deposited in the range of 1ï5 µm thick such as 

DLC. Even when the indentation is kept within the 10% of film thickness, another deviation from 

the real hardness value is to ignore the effects of indentation size. Many ceramic materials and 

metals can show increased hardness values when the load is lower than 0.1 kgf[75] Some high 

hardness values cited in the literature might be influenced by the indentation size effect (ISE).  

There are two methods to measure the hardness of a coating: direct coating hardness 

measurement for thick coatings, and modeling the hardness behavior of thin films for thin 

coatings.  For thick coatings, measuring hardness in a range of loads allows to determine directly 

both the hardness value at a fixed indentation size (usually 10 µm), and the ISE index. On the 

other hand, for thin films a modeling approach must be used to determine the real coating 

hardness and ISE index due to the substrate effect on the measurement[76]. Although direct 

coating hardness measurement has been used habitually for many years, may not be possible to 

measure accurately the properties of a thin film independent of the substrate, unless the coating is 

very thick by using conventional testing equipment. Consequently, specialized instruments have 

been developed and have become commercially available, they are known as ultra-low load 

microhardness testers or nanoindenters.  

A common characteristic among nanoindenters is the continuous monitoring of the load and 

displacement as the indentation is penetrating the film. The projected area of the indentation 

needs to be determined from the load/displacement data, in order to calculate the hardness from 

such depth sensing indentation test. Elastic and plastic deformations are included in the measured 

displacements, thus it is necessary to eliminate the elastic contribution in order to calculate just 
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the plastic depth from which the area can be determined using the geometry of the indenter. 

Fig.2.17 shows a characteristic hardness plot for tetrahedral hydrogenated DLC[77].  

A tangent line is marked to the unloading curve from the maximum load point to the zero. 

The Youngôs modulus is related to the slope of this tangent line. The hardness H can be 

calculated as 

H=0.0378(Lmax/hp
2
)                                                                                                              (2.4) 

where hp is the deplastic deformation, Lmax corresponds to the maximum load, thus the elastic 

deformation is the difference between the maximum indent hmax and hp. Then, the Youngôs 

modulus E can be expressed as 

 Ὁ πȢρχω                                                                                                         (2.5) 

The accuracy strongly depends on the indentation depth and the thickness of the film. 

Another important consideration is that nanohardness testers can be very sensible to 

vibration and sample roughness.  

 

Figure 2.17 Typical loading unloading graph for ta-C:H Nano-hardness test[77] 
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    2.7.2 Rockwell C indentation 

Some of the most common direct methods to analyze adhesion are tensile (pull) test, peel test, 

scratch and tape test. Nevertheless these techniques don not provide information about the 

interface toughness, and some of them are design for low adhesion coatings like paint. Rockwell 

C indentation tester is a low cost qualitative technique commonly used for indirect adhesion 

measurement of diamond-like carbon coatings[72ï75]. A load of 1471 N is perpendicularly 

applied to the film with a diamond ñCò indenter, and the area around the indent is evaluated 

under microscope after indentation. The damage degree around the circular perimeter of 

indentation is compared with a well-established adhesion quality guideline known as VDI 

guidelines 3198[81]. Figure 2.18 shows the quality of adhesion strength from HF1 to HF6 

stages[82]. From HF1 to HF4 stages are considered as strong adhesion quality based on the VDI 

guidelines, while HF5 and HF6 correspond to insufficient adhesion quality. In the present study, 

Rockwell C testing was used to compare adhesion strength of different DLC samples by using a 

load of 1497N. 

 

 

Figure 2.18 Schematics of different adhesion stages according to VDI 3891 guideline[82]. 
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    2.7.3 Scratch test 

 

In scratch test a stylus draws a line over the sample surface under a stepwise or continuous 

mode while the normal force increases until the coating detaches. It is necessary to determine the 

critical load (Lc) associated to the adhesion of the coating during the test. Lc is the load at which 

the coating is removed in a regular way along the whole channel length. Delamination of the film 

can be detected in different individual or simultaneous ways: (a) optical or scanning electron 

microscopy, (b) acoustic emission, and (c) friction force measurement. The sensitivity of this 

method is relatively higher if the frictional force measurement is considered. Scratch test is 

widely used as a quantitative adhesion measurement for thin carbon hard coatings[83].  Figure 

2.19 shows a typical scratch test [84]. 

 

Figure 2.19 Schematic image of scratch test[84] 

    2.7.4 Friction and Wear resistance 

 

Friction is measured by the movement of surfaces in contact with each other while a load is 

applied over them. Static friction is measured during the application of the load, then the surfaces 

start to move and dynamic friction is analyzed. Friction strongly depends on the conditions of the 

test, in other words, it is not a fundamental property of a material. Friction measurements are 

sensitive to surface chemistry, hardness, and morphology.  

The coefficient of friction describes the ratio of the moving force between two surfaces and 

the applied load on them. Another extrinsic property of a material is wear. Wear is the 

deformation and loss of a material in dynamic contact with another material. Wear of a film can 
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be expressed by weight loss measurement, and/or wear tracks analysis. Wear is also sensitive to 

the conditions of the test such as temperature, humidity, materials in contact, etc. Thus most wear 

tests are designed according to the final application requirements. In the present work, friction 

and wear were measured under ball-on-disk configuration. Figure 2.20 shows a schematic of a 

ball-on-disk configuration.  

 

Figure 2.20 Schematic image of a Ball-on-disk configuration. 
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CHAPTER 3 ï MATERIALS AND METHODS  

 

3.1  Thin Film Deposition 

 

In the present research, microwave plasma enhanced chemical vapor deposition (MPCVD) 

was used to grow microdiamond particles before DLC and N-DLC films were deposited by 

plasma enhanced chemical vapor Deposition (PECVD). After deposition, structural 

characterization was performed with Raman spectroscopy and X-ray photoelectron spectroscopy 

(XPS). Surface morphology was observed by an optical profilometer. Mechanical properties were 

measured by nano-indentation tests by using universal testing machine (UTM), and tribological 

behavior was evaluated with a ball-on-disk configuration in the UTM.  The details of the 

procedures are explained in the following sections.  

 

   3.1.1  MPCVD System 

 

Microwave Plasma Chemical Vapor Deposition system (model: MWPECVD 1250UOS) 

manufactured by Plasmionique Inc. was used to grow microdiamond particles on CoCrMo alloy 

prior DLC deposition. The system consists of a ASTEXïtype 2.45 GHz microwave source, a 

stainless steel vacuum chamber, a pumping system, a gas flow system and a manual control 

system as represented in Figure 3.1. The microwave source can be tuned to provide maximum 

power up to 1.2 kW. The vacuum chamber contains a substrate stage that can be vertically 

adjusted to minimize microwave power reflection. The elevated temperature required for 

diamond deposition is reached through plasma heating and it is controlled by the microwave 

power. A mixture of hydrogen and methane (1 vol. %) with a total flow rate of 100 sccm were 

used as precursors, the flow rate was controlled by a multi-channel flow meter.  

CoCrMo samples were prepared by grounding with silicon carbide paper (800 grit size) and 

fine polished with diamond slurry of 9 ɛm, 3 ɛm, and 1 ɛm, sequentially. Then the CoCrMo 

samples were seeded ultrasonically in a nanodiamond particle suspension manufactured by Mark 



 

31 
 

V Laboratory for 40 min to improve the nucleation sites of diamond.  The microwave power used 

was 800 W and the growth was for 1 hour.   

 

Figure 3.1 Photograph of MPCVD System 

 

   3.1.2  Chemical Vapor Deposition System 

 

DLC deposition was carried out on both CoCrMo alloy samples and silicon (100) wafers 

using plasma enhanced Chemical vapor deposition (PECVD) reactor made by Plasmaionique 

Inc., located in room 0C17, Engineering building. The system consists of a high vacuum 

chamber, a pumping system composed of a mechanical and turbo pump, a rotating substrate 

holder, and two inductively couple plasma sources as shown schematically in Figure 3.2.   
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Figure 3.2 Schematic of PECVD 

The PECVD technique is one of the three methods available in the hybrid system; the other 

two are physical vapor deposition (PVD) and pulsed laser deposition (PLD) mentioned 

previously in chapter 2. PECVD combines physical and chemical process. There are two types of 

CVD reactions, homogeneous and heterogeneous. Homogeneous reactions take place in the gas 

phase, thus particles can form before deposition. This leads to low density films, poor adhesion 

and defects in the films. Homogeneous reactions usually lead to low deposition rates because 

they consume reactants. On the other hand, heterogeneous reactions happen in the surface of the 

substrate. These reactions are favored in the PECVD system and culminate in the formation of 

the desired film. The main advantage of PECVD is that films can be deposited at low 

temperatures where some reactions would not take place in thermal CVD. The low temperature 

during deposition is beneficial for substrates with low melting point or for materials with a big 

difference between thermal expansion coefficients such as CoCrMo alloy and DLC, reducing 

thermal stress and consequently better adhesion. Figure 3.3 shows a picture of the PECVD 

reactor used for DLC and NDLC deposition. 
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Figure 3.3 Photograph of plasma enhanced chemical vapor deposition system 

  

In the present thesis work, a mixture of methane (CH4), argon (Ar) and nitrogen (N2) were 

used as precursors. CH4 and Ar gas flow rates were kept at 40 sccm and 60 sccm respectively for 

pure DLC films while four different nitrogen flow rates were used (4 sccm, 8 sccm, 12 sccm and 

16 sccm) to synthesize films with different concentration of nitrogen. After changing one variable 

at a time, the best RF power used was 150 watts with a bias of 60 V, and they were kept constant 

for all the samples in order to maintain the same ion energy of all the depositions.  

The substrate temperature was set at room temperature nevertheless despite of the integrated 

cooling system in the chamber, the energetic ion bombardment increased slightly the substrate 

temperature at 30°C which was observed consistently for all the depositions. Although the 

recommendable substrate rotation speed by the manufacturing company of the equipment is 5 

rpm, it was found that the substrate rotation at 3 rpm provided a better coverage of the whole 

sample and was set constant for all the depositions. The working pressure was maintained at 10 

mTorr which was the best working pressure found for DLC deposition with the set values of the 

other variables. The deposition time was set for 2 hours, generating a film thickness between 600 

and 650 nanometers. Each sample was repeated 4 times in order to observe consistency in the 

deposition rate, have repeatability and enough samples for structural, mechanical and tribological 

characterization. The detailed deposition parameters are summarized in Table 3.1.  
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Table 3.1 Deposition parameters employed in DLC and NDLC films 

Sample 

Gas flow rate 

(sccm) 

 

Working 

Pressure 

(x 10
-6
 torr)  

Temperature 

(°C) 

Power 

(watts) 

Bias 

(Voltage) 

 

Thickness 

(µm) 

N2 CH4 Ar  

DLC 0 40 60 10 30 150 60 0.61 

D-NDLC-1 4 40 60 10 30 150 60 0.62 

D-NDLC-2 8 40 60 10 29 150 60 0.61 

D-NDLC-3 12 40 60 9 29 150 60 0.63 

D-NDLC-4 16 40 60 10 33 150 60 0.61 

 

3.2  Structural Characterization 

 

A Reinshaw 2000 Raman spectroscope was used to determine the type of carbon structure 

obtained and ration sp
2
 (graphite like) to sp

3
 (diamond like) bonding configuration in the 

coatings. The equipment is located at Saskatchewan Structural Science Center (SSSC), 

University of Saskatchewan. The measurements were taken at 514.5 nm wavelength with Ar ion 

laser in a spot size of 1.5 ɛm approximately.  Internal calibration with silicon standard was 

performed before every test. Three different spots were analyzed for each samples with the 

exposure time of 40s, accumulation of data was kept at 4 times to reduce noise in the lectures and 

cosmic rays removal mode was active in order to avoid suspicious peaks from cosmic rays. The 

background of the spectra was removed for all the samples in order to facilitate their analysis and 

comparison. Figure 3.4 shows the Raman instrument employed in the present work. 



 

35 
 

 

Figure 3.4 Reinshaw 2000 Raman spectroscope 

X-Ray photoelectron spectroscopy (XPS) measurements were performed at the Canadian 

Light source (CLS) with a monochromatized Al K (alpha) X-ray source to study the composition 

and bonding states of the deposited films. The measurements were carried out with the assistance 

and supervision of Dr. Ronny Saturto CLS scientist. XPS analysis requires an ultra-high vacuum 

in the range of x10
-9

 Torr which is reached in a small chamber. Consequently, sample dimensions 

were 4 mm
2
. By scanning each sample 5 times the noise was minimized and reproducibility was 

confirmed. Casa XPS software version 2.3.18 was employed to analyze the obtained data.  

 

3.3 Surface Morphology 

 

Zygo NewView 8000 optical profilometer located in room OC19 at Engineering building 

was used to study the surface topography and film thickness of the films. One of the intrinsic 

properties of diamond is optical transparency, high sp
3
 DLC inherit this property. For that reason 

a refractive index of 2 was set in the equipment in order to collect the data.  The Joel JSM-

6010LV scanning electron microscope (SEM) located in room 2C25 at Engineering building was 

used to observe the surface morphology after the Rockwell C indentations and wear testing.  
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This equipment was also employed to observe the distribution of microdiamond particles on 

cobalt alloy substrates prior deposition of DLC films. Figures 3.5 and 3.6 show the optical 

profilometer and the SEM respectively used in this study. 

 

 

Figure 3.5 Picture of Zygo NewView Optical profilometer 

 

 

Figure 3.6 Picture of JOEL JSM 6010 LV Scanning electron microscopy 
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3.4 Mechanical testing 

 

Hardness and Young modulus were measured by nano-indentation tests using a Universal 

Mechanical Tester (UMT) located in Room 1B22, Engineering Building. A 100 nm Berkovich 

indenter tip was placed perpendicular to the sample surface and entered into the sample by 

increasing the load to the desired value (loading). The indenter is left in this maximum load for 

60 seconds, in order to minimize any effect on the measurement due to possible creep of the 

material[80ï82]. The load then gradually decline to the origin where total or partial relaxation of 

the coating has occurred (unloading).  

In the present work, a matrix of 3 x 3 spots was set for each sample to ensure the 

reproducibility of the hardness data. After a scan test with variable loads from 2mN to 100mN, 

the load of 5mN was chosen because it guaranteed the indentation depth was less than 10% of the 

coating thickness to avoid any effect from the substrate as explained in section 2.7.1. Load and 

indentation depth data were constantly collected to calculate the film hardness and Youngôs 

modulus of the films by the software based on Oliver and Pharr method[88]. Figure 3.7 displays 

the picture of nano-indentation system.  

 

 

Figure 3.7 Picture of Universal Mechanical Tester for nano-indentation investigation 
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Rockwell C indentation was performed to evaluate qualitatively the adhesion strength of the 

coatings by applying a repetitive standard load of 1497 N. Three different regions were indented 

for each sample and then observed using the SEM for their analysis. According to VDI guideline 

a film with sufficient adhesion should present less spallation, damage and cracks around the 

circular imprint. Figure 3.8 shows the image of the Rockwell C equipment used located in room 

2C25, Engineering building. 

 

Figure 3.8 Rockwell C indenter 

 

3.5 Tribological Characterization 

 

Friction and wear analysis were effectuated using another Universal Testing Machine (UTM) 

placed in room 1B22, Engineering building. A ball-on-disk configuration was set by using Ultra 

High Molecular Weight Polyethylene (UHMWPE) balls immerse in distilled water at room 

temperature in contact with DLC and NDLC coatings (disk samples). A constant load of 10N was 

used for all the samples which is higher than other researches have been used at 1N[72] and 

2N[89ï91], nevertheless the ISO 14242 Implants for surgery- wear of total-hip joint 

prostheses[92], recommends a force range from 0.3kN to 3kN in a cyclic loading under simulated 
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body fluid at 37°C. The parameters in the present research work were set based on the 

capabilities of the equipment. A linear reciprocating motion was set, and the displacement length 

was constant at 2.5 mm. 10000 cycles were carried out for all the samples. Figure 3.9 shows the 

UTM with a configuration ball-on-disk for the DLC samples. 

 

Figure 3.9 UTM (left) and Ball-on-disk configuration for friction and wear tests (right). 
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CHAPTER 4 ï RESULTS AND DISCUSSION 

 

The present chapter is divided into two parts. Section 4.1 focuses on the comparison of 

adhesion among pure DLC, microdiamond particles and DLC, and microdiamond particles and 

nitrogenated DLC films. It emphasizes the effect of pre-deposited microdiamond particles and 

nitrogen doping on the adhesion of DLC. Section 4.2 describes the adhesion and tribological 

behavior of the nitrogen doped DLC with different nitrogen contents. 

 

4.1 Adhesion Enhancement of DLC on CoCrMo Alloy by Micro diamond particles and 

Nitrogen Incorporation.  

In this section it is presented how micro-diamond particles and nitrogen doping into DLC 

improved adhesion of the films on CoCrMo and their effects in surface morphology and 

mechanical properties. Further chemical analysis of NDLC coatings by X-Ray Photoelectron 

Spectroscopy is presented in section 4.2.  

 

   4.1.1 Chemical Characterization 

         4.1.1.1 Raman Spectra and SEM of Diamond micro-particles on CoCrMo 

Raman spectrum of CoCrMo samples after diamond deposition is shown in Figure 4.1. The 

peak at 1332 cm
ī 1

 indicates the presence of diamond microparticles on the surface while the 

peak at 1600 cm
ī 1 

coexists, indicating the formation of graphitic carbon. Figure 4.2 illustrates a 

SEM image of the samples after diamond deposition and it shows microdiamond particles 

uniformly grown on the CoCrMo substrate.  

 

 

http://www.sciencedirect.com/science/article/pii/S0257897215005241#f0005
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Figure 4.1 Raman spectra of micro-diamond particles on CoCrMo alloy 

 

 

Figure 4.2 SEM of deposited micro-diamond particles on CoCrMo alloy 

 

         4.1.1.2 Raman Spectra of DLC and N-DLC  

 

The Raman spectra obtained from deposited DLC and NDLC on silicon wafers are shown in 

Figure 4.3. The broad curves confirm the characteristic amorphous nature of the deposited films. 

Disordered D peak at around 1310 cm
-1

 and the graphitic G peak at around 1530 cm
-1 

are typical 

peaks of DLC present in all the spectra.  The ratio of their intensities (ID/IG) provides an estimate 

of the sp
2
/sp

3
 bonding ratio in DLC structure. If the ratio is high, the sp

2
 bonding percentage 
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increases in the film. DLC and NDLC deposited on silicon wafers show ID/IG ratios of 0.51 and 

0.89, respectively.  

 

Figure 4.3 Raman Spectra of (a) DLC and (b) NDLC on silicon 

Figure 4.4 shows the Raman spectra of DLC and N-DLC with the incorporation of diamond 

particles on CoCrMo specimens. It can be seen that microdiamond incorporation notably 

increases the intensity of D peak while ID/IG ratio is observed to be 0.67 and 1.38 for DLC and 

NDLC, respectively. This suggests that N doping also promotes sp
2
 bonding in DLC coatings. 

 

Figure 4.4 Raman Spectra of (a) D/DLC and (b) D/NDLC on CoCrMo alloy 

          

 

 

 

a b 

b a 
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  4.1.2 Surface Morphology  

 

Surface morphology of DLC films on CoCrMo samples with and without diamond 

incorporation was observed by SEM images. Figure 4.5 (a) shows spallation of DLC deposited 

directly on CoCrMo alloy whereas Figure 4.5 (b) exhibits smooth and uniform DLC on CoCrMo 

alloy substrates with pre-deposited diamond particles. These SEM images show that diamond 

incorporation can enhance adhesion of DLC on the CoCrMo alloys.  

  

Figure 4.5 SEM images of (a) DLC delamination and (b) D-DLC on CoCrMo alloy 

 

  4.1.3 Surface Profilometry 

 

Root Mean Squared (RMS) roughness of CoCrMo alloys with and without micro-diamond 

particles, DLC and NDLC coated alloys were measured by an optical profilometer. The RMS 

roughness value of mirror polished Cobalt alloy samples was 9.12 nm. After deposition of 

diamond-microparticles, the roughness value decreases to 6.17 nm. This roughness reduction 

might be resulted by the penetration of diamond particles at micro-cracks and grooves in the 

substrate surface resulting in a smooth and uniform film. However, DLC deposition on diamond 

particles slightly increased surface roughness to 7.96nm. This can be possible due to the initial 

energetic ion bombardment and existence C-H dangling bonds on the surface in a-C:H[93]. 

Nitrogen doping would reduce C-H dangling bonds and consequently decrease surface 

roughness. Figure 4.6 shows optical profilometer images with their corresponding RSM 

roughness values of bare and coated CoCrMo alloys. 

ŀ ō 
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Figure 4.6 Surface Roughness of bare and coated CoCrMo alloys 

 

  4.1.4 Mechanical Properties  

 

Hardness and Young's modulus values measured are shown in Table 4.1. DLC films presents 

the higher hardness and lower Youngôs modulus in comparison with bare CoCrMo and DLC 

coating doped with nitrogen. This is probably because nitrogen doping decreases the 

concentration of sp
3
 bonds in the films, as shown in Fig.4.4. Consequently, hardness and Youngôs 

modulus decrease with nitrogen doping, similar trend has been reported previously [52]. 
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Table 4.1 Hardness and Young's modulus of CoCrMo, DLC and D-NDLC coatings 

Sample Hardness  

(Gpa) 

Young modulus  

(GPa) 

CoCrMo 7.99 ± 0.4 258.63 ± 21.9 

DLC 14.1 ± 0.2 124.7 ± 9.6 

N-DLC-1 13.6 ± 0.4 131.6 ± 2.4 

 

  4.1.5 Adhesion  

 

Figure 4.7 shows the SEM images of DLC and D-NDLC films after Rockwell C 

indentation testing. Spallation and cracking of the films are observed in the areas around the 

imprint, particularly on DLC sample in which severe delamination occurs (see Fig. 4.7a). 

Adhesion slightly increases with deposition of micro-diamond particles although the coating 

gradually peels off outwards from the center (see Fig. 4.7b). This adhesion improvement might 

be attributed to three main reasons: 1) the high interfacial bonding strength between micro-

diamond particles and DLC due to its high chemical affinity, 2) strong mechanical interlocking to 

the amorphous carbon network[86,87], and it has been mentioned that depositing a fine grained 

diamond film can reduce surface tension and improve DLC adhesion[96]. Figure 4.7c shows a 

significant adhesion improvement on nitrogen doped DLC coatings. DLC adhesion increases 

considerably under the appropriate deposition conditions and Nitrogen content by increasing sp
2
 

chemical bonding in the film, as shown in the Raman spectra (see Figure 4.4). It has been 

reported that promoting sp
2
 content by Nitrogen doping reduces the average coordination number 

of the amorphous carbon network and consequently reduces the internal stress[58].  The results 

have demonstrated that diamond incorporation and nitrogen doping can increase DLC adhesion 

to CoCrMo alloys. 
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Figure 4.7 SEM images after Rockwell C indentation of (a) DLC on bare CoCrMo alloy, (b) 

D-DLC on CoCrMo alloy and (c) D-NDLC on CoCrMo alloy 

 

4.2  Effect of nitrogen content on tribological properties of D/NDLC films on CoCrMo 

substrates 

The previous section showed how the combination of micro-diamond particles and nitrogen 

doping into DLC increases adhesion significantly, reduces hardness and surface roughness of 

DLC films. This section presents a detailed X-Ray Photoelectron analysis of the chemical 

bonding of NDLC films that further explains the improvement in adhesion, mechanical properties 

and tribological behavior with different nitrogen concentrations. 

 

   4.2.1 Chemical Bonding and Structural Characterization  

         4.2.1.1 Raman Spectra nitrogen doped DLC films  

 

Raman spectra of diamond-like carbon materials are strongly influenced by G (graphite) peak 

located at 1580cm
-1

 and D (disorder) peak at 1350 cm
-1 

because of the scattering sp
2
 sites even 

for tetrahedral amorphous carbons (less than 15% of sp
2 

content)[35]. G peak arises from the 

stretching vibrations of sp
2
 C=C chains or aromatic rings. On the other hand, breathing vibrations 

of sp
2
 sites in rings are responsible for the presence of D peak[97].  

Raman spectra of N-DLC coatings on silicon and CoCrMo are presented in Figure 4.8 and 

Figure 4.9, respectively.  In the preparation of NDLC coatings, the gas flow rate of nitrogen was 
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increased gradually at 4 sccm, 8 sccm, 12 sccm, and 14 sccm while the other process parameters 

were kept constant as shown in Table 3.1. In order to obtain ID/IG ratio for each sample, all the 

Raman spectra were fitted by Wire 3.3 software using Gaussian-Lorenztian function. While 

increasing nitrogen content from 4sccm to 14sccm, G peak positions were found at 1524 cm
-1

 

,1526 cm
-1

, 1527 cm
-1

 and 1528 cm
-1

, corresponding to ID/IG ratios of 0.51, 0.68, 0.71 and 0.89, 

respectively as shown Figure 4.8.  

The same tendency can be observed in Figure 4.9, indicating that sp
2
 content in the film 

increases in parallel with the increase of nitrogen content. G peaks positions were located at 1527 

cm
-1

 ,1528 cm
-1

, 1528 cm
-1

 and 1530 cm
-1
, corresponding to ID/IG ratios of 0.67, 0.82, 1.21 and 

1.38, respectively. Nitrogen incorporation might facilitate clustering of sp
2
 chemical species into 

carbonaceous rings (instead of chains) since the intensity of the disorder ñDò peak is strongly 

influenced by the breathing vibration of aromatic rings [89ï91]. The shifting of G peak positions 

in both spectra might be attributed to the increase in the bond disorder of the film by Nitrogen 

doping.  This suggests that N doping causes a slight transition from sp
3
 to sp

2
 bonding vibrations 

in DLC films as reported previously by Hauert et al., and Hu et al. [47,93].  

 

Figure 4.8 Raman spectra NDLC coatings on silicon with a) 0sccm, b) 4sccm, c) 8sccm, d) 12 

sccm and e)16 sccm Nitrogen flow rate 
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Figure 4.9 Raman spectra NDLC coatings on micro-diamond CoCrMo alloys with a) 0sccm, 

b) 4sccm, c) 8sccm, d) 12 sccm and e)16 sccm Nitrogen flow rate 

 

         4.2.1.2 XPS of nitrogen doped DLC films  

 

CasaXPS software was used to de-convolate the XPS spectra using Gausian-Lorentzian 

function. Figure 4.10 shows the deconvoluted C1s XPS spectra of DLC on silicon. The highest 

peak corresponds to C-C at 285.64 eV indicating a high sp
3
 concentration in the sample 

confirming the results of the Raman spectra. The two other peaks at 284.97 eV and 286.78 eV 

correspond to C=C and C-N, respectively. Interestingly, C-N peak appeared at 286.78 eV in the 

spectra as a sign of contamination in the chamber, oxygen is more common to find as a 

contaminant [73] nevertheless the typical oxygen shoulder at 288.2 eV appears in the C1s spectra 

of D-NDLC-1 sample (see Figure 4.11a).  

It can be seen in Figure 4.11a that at a low concentration of nitrogen doped DLC the sp2 C=C 

peak at 284.92 eV is higher than the sp
3
 C-C at 285.46 eV, but the C=N at 286.01 eV content is 

slightly lower than C-N at 286.72 eV. On the other hand, Fig.4.11b shows higher content of both 

C=C and C=N at 284.95 eV and 285.96 eV, respectively. This confirms that nitrogen doping 

increases the sp
2
 concentration of the amorphous carbon films. Figure 4.12 shows the XPS 
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spectra in N1s of D-NDLC-1 (Figure 4.12a) and D-NDLC-4 (Figure 4.12b). In Figure 4.12b is 

confirmed that the higher the nitrogen incorporation the formation of sp
2
 C=N at 400.71 eV is 

more favorable instead of sp
3
 C-N at 399.25 eV. Table 4.2 summarizes the binding energies for 

C1s and N1s of DLC, D-NDLC-1, and D-NDLC-4. 

 

Figure 4.10 XPS C1s spectra of DLC on silicon 

 

 

Figure 4.11 De-convolution of C1s XPS spectra of a) D-NDLC-1, and b) D-NDLC-4 



 

50 
 

 

Figure 4.12 De-convolution of N1s XPS spectra of a) D-NDLC-1, and b) D-NDLC-4 

 

Table54.2. Binding energies of the different chemical states on DLC, D-NDLC-1, and D-NDLC-4. 

XPS 

Line 
Sample 

Chemical 

state 

Binding Energy 

(eV) 
Ratio 

C 1s 

DLC 

C=C 284.97 1 

C-C 285.64 1.93 

C-N 286.78 0.57 

D-NDLC-1 

C=C 284.92 2.16 

C-C 285.46 1.18 

C=N 286.01 0.97 

C-N 286.72 1 

C-O 288.21 0.4 

D-NDLC-4 

C=C 284.95 1 

C-C 285.37 0.22 

C=N 285.96 0.47 

C-N 286.82 0.21 

N 1s 

D-NDLC-1 
C-N 399.56 1 

C=N 400.63 0.82 

D-NDLC-4 
C-N 399.25 1 

C=N 400.71 1.24 

 



 

51 
 

 

   4.2.2 Surface Topography  

 

Some external factors can affect roughness such as surface preparation of samples prior 

deposition, energy of the ion bombardment during deposition and chemical structure in the 

surface. In order to reduce the effect of these factors all the alloys were mirror polished under the 

same conditions prior diamond incorporation, the process parameters were kept constant during 

deposition. Figure 4.13 shows RMS roughness values of DLC, nitrogen doped DLC films on 

diamond CoCrMo specimens. It can be seen that the increase on nitrogen content lowers the 

surface roughness. This can be due to the enhancement of surface migration of the adatoms 

during deposition[90] and/or reduction on sp
3
 C-H dangling bonds[93] by nitrogen doping. 

 

 

Figure 4.13 RMS Roughness of DLC and nitrogenated DLC films on CoCrMo alloys 
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   4.2.3 Mechanical Properties  

 

Hardness and Young's modulus are shown in Table 4.3. DLC films present the highest 

hardness among the other coatings. This is probably because before nitrogen incorporation the 

concentration of sp
3
 chemical bond was higher as it was observed in previous Raman spectra and 

XPS analysis. DLC contains sp
3
 C-C bonds and high amount of hydrogen in comparison with 

NDLC, hydrogen can increase sp
3
 content by saturating sp

2
 C=C bonds into sp

3
 -CH3. On the 

other hand, Nitrogen-doped coatings exhibit lower hardness, which is probably due to its higher 

sp
2
 C=N bonding concentration as shown in Figure 4.12. 

 

Table64.3. Hardness, Young's modulus of CoCrMo, DLC and ND-NDLC coatings 

Sample 
Hardness 

(Gpa) 

Young modulus 

(GPa) 

CoCrMo 7.9 ± 0.4 258.6 ± 21.9 

DLC 14.1 ± 0.2 124.7 ± 9.6 

D-NDLC-1 13.6 ± 0.4 131.6 ± 2.4 

D-NDLC-2 13.2 ± 0.6 134.5 ± 8.7 

D-NDLC-3 12.5 ± 0.5 135.7 ± 4.5 

D-NDLC-4 11.8 ± 0.3 141.6 ± 4.5 

 

   4.2.4 Adhesion  

 

Rockwell C indentation testing was conducted at a load of 1470 N to evaluate qualitatively 

the adhesion of microdiamond and nitrogen incorporation on DLC thin films grown on 

CoCrMo. Figure 4.14 shows the SEM images of D-N-DLC films after Rockwell C indentation 

testing. Spallation and cracking of the films are observed in the areas around the imprint, 

particularly on DLC sample in which severe delamination indicates poor adhesion 

(see Fig. 4.14a). However, the spallation and cracking area decreases gradually as the 

concentration of nitrogen increases. Slight spallation can be observed on samples D-NDLC-1, D-

NDLC-2. Still some microcracks can be observed on D-NDLC-3 sample. Delamination of DLC 

films occurs when the elastic energy stored in the film reaches a critical value which is closely 
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related with a critical film thickness. The adhesion improvement by nitrogen doping can be 

explained by Griffithôs law [103] 

hf ůf 
2

2Ef
Ò2ɔ                                                                                                                             (4.1)                                                                                  

where ɔ the surface fracture energy per unit area necessary to break the interface, hf is film 

thickness, compressive stress and elastic modulus in the film are given by ůf and Ef, respectively. 

When both sides of the equation are equal the coating delaminates[103]. Compressive stress is 

introduced in the film during deposition due to the energetic ion bombardment which also 

expands the substrate surface for the sub-plantation process describe in chapter 2. While stress 

increases, the elastic energy in the coating increases as well.  

Then shear forces in the interface of the coating and substrate starts delamination of the 

coating because the elastic energy exceeds the surface fracture energy. In Figure 4.14a DLC 

delaminates dramatically for the high residual stress in the coating. DLC adhesion improves 

significantly from Figure 4.14b to Figure 4.14e due to internal stress reduction by nitrogen 

incorporation which has been well documented before [40,55,96,97]. As shown in Table 4.3, 

Young modulus of NDLC films increases as the nitrogen content increases, this suggest that 

nitrogen doping allows elastic stretching of DLC film without exceeding the surface fracture 

energy. Furthermore, diamond particles deposited on CoCrMo alloy promotes a strong interface 

by mechanical interlocking and surface tension reduction.  

The results indicate that the cooperation of both diamond particles on CoCrMo alloys and 

nitrogen doping can increase DLC adhesion to CoCrMo alloys. The results are consistent with 

previous work for DLC and NDLC on different substrates[65,84,95]. Nevertheless, different 

deposition techniques (low energy ion beam deposition) and different substrate materials (Ti 

alloy) were used and much less nitrogen was doped in the work reported by us previously. This 

study further suggests that increasing nitrogen content into DLC coatings up to   27 % can further 

increase the adhesion of DLC on CoCrMo without a significant change in hardness. 
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Figure 4.14 SEM images after Rockwell C indentation of a) DLC, b) D-DLC-1, c) D-NDLC-

2, d) D-NDLC-3, and d) D-NDLC-4. 

 

   4.2.5 Friction and Wear  

 

A Ball-on-disk configuration was used to study friction and wear of DLC and NDLC coatings 

on CoCrMo alloy specimens. All the samples were immersing in distilled water at room 

temperature. A constant load of 10 N was applied in a reciprocating motion at a constant speed of 

5mm/sec. A total period of 10000 cycles was set to measure the Coefficient of friction (COF) of 

DLC and NDLC with ultra- high molecular weight polyethylene (UHWMPE) balls. No visible 

wear tracks of DLC and NDLC coatings against UHWMPE balls were found by using SEM 

microscope, suggesting very low wear from the coating.  

The wear area from the polyethylene balls was measured by optical microscope in order to 

calculate the volume loss and wear rate of polyethylene balls. COF values decreased as the 

nitrogen content increased. The highest COF value of 0.21 was observed for DLC coatings. The 

COF measured were 0.16, 0.13, 0.12, 0.11 for 4 sccm, 8 sccm, 12 sccm and 14 sccm nitrogen 

flow rate samples.  The results suggest that COF values decrease as the nitrogen content increase 
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probably due the reduction of sp
3
 C-H dangling bonds as discussed in XPS results, and smoother 

surface as observed in Figure 4.13.  

Wear tracks for UHMWPE balls on D-DLC and D-NDLC-4 samples are shown in Figure 

4.16. The reduction in the width of the wear tracks from 800µm to 638µm shows the volume loss 

from UHMWPE balls. The removal of a material during contact with another material, depends 

on adhesion, hardness, abrasion or oxidation[35].  Since the UHMWPE balls are softer than DLC 

coatings the wear is more severe for UHMWPE balls. Table 4.4 shows the average wear rates for 

UHMWPE balls on DLC and N-DLC coatings. Nitrogen doping reduces sp
3
 bonds in the film 

which are responsible for the hardness of DLC. With the reduction of hardness and surface 

roughness in NDLC coatings the wear rate of UHMWPE balls decreases which is beneficial for 

hip joint replacement application. 

 

 

Figure 4.15 Coefficient of Friction of DLC and NDLC films against UHMWPE balls. 
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Figure 4.16 SEM images of wear tracks on D-DLC and D-NDLC-4 samples, the white areas 

correspond to UHMWPE balls loss 

 

 

Table74.4 Wear rate values for UHMWPE balls against DLC and NDLC coatings 

Sample Average wear rates (x10
-5

 mm
3
/Nm) 

D-DLC 4.6 ± 0.2 

D-NDLC-1 3.2 ± 0.1 

D-NDLC-2 2.2 ± 0.1 

D-NDLC-3 1.1 ± 0.2 

D-NDLC-4 1.7 ± 0.1 
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CHAPTER 5 - CONCLUSIONS AND FUTURE WORK RECOMMENDATIONS  

 

5.1 Summary and Conclusions  

 

The mechanical and tribological properties of DLC thin films deposited on CoCrMo alloys 

by plasma enhanced chemical vapor deposition were investigated using different advanced 

techniques. The effects of diamond and nitrogen incorporation on adhesion enhancement of DLC 

alloy have been studied. The results and conclusions are summarized as follows: 

 

1. Pure DLC coatings on untreated CoCrMo alloy presented severe delamination. Both 

diamond and nitrogen incorporation into DLC increase the adhesion of DLC coatings on 

the alloy.  

2. Increasing doping concentration of nitrogen into the film promotes sp
2
 C=N bonding 

which results in the increase of DLC adhesion.  

3. Nitrogen doping reduces sp
3 
C-C and sp

3
 C-H bonds in the DLC films and thus decreases 

the roughness and hardness but increases the Youngôs Modulus of the films. 

4. Increasing the nitrogen content in the film decreases the COF of the films sliding against 

UHMWPE balls and the wear rates of UHMWPE balls.  

5. The incorporation of diamond and nitrogen into DLC improves the adhesion and 

decreases the COF and wear rates of the polymer balls, demonstrating that diamond and 

nitrogen incorporated DLC on CoCrMo alloy is very promising for hip joint replacement.  

 

5.3 Future work  

 

In the present study it has shown that microdiamond and nitrogen incorporation successfully 

improved DLC adhesion on CoCrMo alloy and wear rates of polyethylene balls were decreased. 

Since this combination is very promising for hip joint replacement, further systematic research on 

the process parameters is suggested to optimize the chemical structure of the coating for higher 

improvement on desire properties. The following future work is suggested:  
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1. It is important to investigate mechanical and tribological properties under simulated 

conditions as close as the ones in real service. Systematic studies of adhesion after 

immersion in simulated body fluid such as phosphate-buffered saline (PBS) solution over 

time is suggested to mimic an in-vivo environment. 

2. Detail X-ray Photoelectron Spectroscopy analysis of N-DLC after immersion in PBS 

solution over time would reveal chemical changes in the surface of the film. 

3. Friction and Wear studies of N-DLC under PBS solution at 37°C in order to simulate the 

conditions of the hip joint implant in its in vivo performance. 

4. Corrosion analysis of N-DLC in PBS solution would disclose if nitrogen incorporation 

affects the chemical inertness of DLC. 
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