
HARDWARE IMPLEMENTATION OF DAUBECHIES

WAVELET TRANSFORMS USING FOLDED AIQ MAPPING

A Thesis Submitted to the College of

Graduate Studies and Research

In Partial Fulfillment of the Requirements

For the Degree of Master of Science

In the Department of Electrical and Computer Engineering

University of Saskatchewan

Saskatoon

By

Md Ashraful Islam

© Copyright Md Ashraful Islam, August, 2010. All rights reserved

i

PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree

from the University of Saskatchewan, I agree that the Libraries of this University may

make it freely available for inspection. I further agree that permission for copying of this

thesis in any manner, in whole or in part, for scholarly purposes may be granted by the

professor or professors who supervised my thesis work or, in their absence, by the Head

of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for

financial gain shall not be allowed without my written permission. It is also understood

that due recognition shall be given to me and to the University of Saskatchewan in any

scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or

part should be addressed to:

 Head of the Department of Electrical and Computer Engineering

 57 Campus Drive

 University of Saskatchewan

 Saskatoon, Saskatchewan

 Canada

 S7N 5A9

ii

ABSTRACT

The Discrete Wavelet Transform (DWT) is a popular tool in the field of image and video

compression applications. Because of its multi-resolution representation capability, the DWT has

been used effectively in applications such as transient signal analysis, computer vision, texture

analysis, cell detection, and image compression. Daubechies wavelets are one of the popular

transforms in the wavelet family. Daubechies filters provide excellent spatial and spectral

locality-properties which make them useful in image compression.

 In this thesis, we present an efficient implementation of a shared hardware core to compute two

8-point Daubechies wavelet transforms. The architecture is based on a new two-level folded

mapping technique, an improved version of the Algebraic Integer Quantization (AIQ). The

scheme is developed on the factorization and decomposition of the transform coefficients that

exploits the symmetrical and wrapping structure of the matrices. The proposed architecture is

parallel, pipelined, and multiplexed. Compared to existing designs, the proposed scheme reduces

significantly the hardware cost, critical path delay and power consumption with a higher

throughput rate.

Later, we have briefly presented a new mapping scheme to error-freely compute the Daubechies-

8 tap wavelet transform, which is the next transform of Daubechies-6 in the Daubechies wavelet

series. The multidimensional technique maps the irrational transformation basis coefficients with

integers and results in considerable reduction in hardware and power consumption, and

significant improvement in image reconstruction quality.

iii

ACKNOWLEDGEMENTS

First, I would like to express my gratitude to my supervisor, Dr. Khan A.Wahid for

introducing me to this research field and for his continuous support, inspiration, and

guidance throughout the project. His vast knowledge and expertise in this field added

considerably to my graduate experience.

Then, I would like to thank my thesis committee for their guidance and insightful

comments.

I would also like to acknowledge the financial support from NSERC, Graduate Studies

and Research, University of Saskatchewan and Department of Electrical and Computer

Engineering, University of Saskatchewan.

Finally, I would like to thank my family for their love, encouragement, and support.

iv

This thesis is dedicated to my loving parents.

v

TABLE OF CONTENTS

PERMISSION TO USE ... i

ABSTRACT .. ii

ACKNOWLEDGEMENTS ... iii

TABLE OF CONTENTS ...v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

LIST OF ABBREVIATIONS .. xi

CHAPTER 1 INTRODUCTION ..1

1.1 Introduction ..1

1.2 Motivation ..2

1.3 Thesis Objective ...3

1.4 Theis Organization ...4

CHAPTER 2 DISCRETE WAVELET TRANSFORM ..5

2.1 Introduction ...5

2.2 Definition of Wavelets ..6

2.2.1 Subband Coding ...7

2.3 Daubechies Wavelet Transform ..10

2.3.1 DAUB4 Wavelet Transform ...11

2.3.2 DAUB6 Wavelet Transform ...12

2.3.3 DAUB8 Wavelet Transform ...13

vi

 2.4 Summary ...15

CHAPTER 3 ALGEBRAIC INTEGER QUANTIZATION ...16

 3.1 Introduction ...16

 3.2 Algebraic Integer Quantization (AIQ) ..16

 3.3 Past work of AIQ ..18

3.3.1 AIQ Encoding of DAUB4 ..18

3.3.2 AIQ Encoding of DAUB6 ..19

3.3.3 Final Reconstruction Step ...21

3.3.4 DAUB4 Architecture ..21

3.3.5 DAUB6 Architecture ..22

 3.4 Summary ...23

CHAPTER 4 FOLDED AIQ MAPPING ...24

4.1 Introduction ..24

4.2 Folded AIQ Mapping ...25

4.2.1 Folded AIQ Mapping of DAUB4 ...26

4.2.2 Folded AIQ Mapping of DAUB6 ...27

 4.2.3 Architecture of DAUB4 and DAUB6 ...28

4.3 AIQ Encoding of DAUB8 ..30

4.3.1 Fixed-Point Implementation ...30

4.3.2 AIQ Mapping of DAUB8 ...31

4.3.3 AIQ-based Architecture ..32

4.4 Summary ...35

vii

CHAPTER 5 FOLDED AIQ-BASED ARCHITECTURE ..36

5.1 Introduction ...36

5.2 Folded AIQ-based DAUB4 and DAUB6 ..38

5.2.1 Delay Line/Shifter ..38

5.2.2 DAUB4 and DAUB6 Filter Banks ...39

5.2.3 Coefficient Multiplier ...41

5.2.4 Controller ..43

5.3 Hardware Synthesis ...44

5.3.1 FPGA Synthesis ..44

5.3.2 VLSI Implementation and Chip Fabrication ..46

5.3.3 Perfomance Analysis ..52

5.4 DAUB8 Architecture ...53

5.4.1 Delay Line/Shifter of DAUB8 ..54

5.4.2 FP and AIQ-based DAUB8 Filter Banks ...55

5.4.3 Controller ..57

5.4.4 Comparisons ...58

5.5 Summary ..62

CHAPTER 6 CONCLUSION AND FUTURE WORK ..64

6.1 Summary of Accomplishments ...64

6.2 Recommendations for Future Work ..66

REFERENCES ...67

viii

LIST OF TABLES

3.1 Exact representation of DAUB4 coefficients .. 18

3.2 Exact representation of DAUB6 coefficients .. 20

4.1 Comparison between 1-level AIQ and folded AIQ .. 31

4.2 Exact representation of DAUB8 coefficients .. 33

5.1 FPGA implementation and hardware comparison .. 46

5.2 VLSI implementation and hardware comparison ... 49

5.3 Chip specification ... 49

5.4 Hardware comparison of filter ... 50

5.5 Performance comparison in VLSI ... 51

5.6 PSNR of DAUB4 and DAUB6 ... 53

5.7 FPGA implementation & hardware costs between FP and AIQ 60

5.8 Image quality at different bit precision between FP and AIQ 60

5.9 Comparison of hardware between different architectures .. 62

6.1 Degree of performance and hardware cost ... 65

ix

LIST OF FIGURES

2.1 Three-level decomposition of wavelet algorithm ..8

2.2 Three-level reconstruction of wavelet algorithm ...9

2.3 (a) Original "Lena" image; (b) 3-level decomposition of DWT; (c) Decomposed

"Lena" Image ...10

3.1 AIQ-based DAUB4 filter architecture ...22

3.2 AIQ-based DAUB6 filter architecture ...23

4.1 Folded AIQ-based DAUB4 filter architecture ...30

4.2 Folded AIQ-based DAUB6 filter architecture ...30

4.3 DAUB8 FP signal flow graph ..34

4.4 DAUB8 AIQ signal flow graph ...35

5.1 Block diagram of the entire system ..37

5.2 (a) Shifter for input scheduling, (b) Processing elements (PE)38

5.3 Output from shifter at different CP ..39

5.4 DAUB4 filter bank ...39

5.5 DAUB6 filter bank ...40

5.6 Internal circuitry of coefficient multiplier, C1 ...41

5.7 Normalized errors incurred for different multiplier precision42

5.8 Timing diagram of folded AIQ-based DAUB4 ...43

5.9 Timing diagram of folded AIQ-based DAUB6 ...44

5.10 CAD design cycle ..45

5.11 Final layout of the folded AIQ-based wavelet transform.......................................47

5.12 VLSI design flow ...48

5.13 Chip testing setup ...52

5.14 (a) Original “Lena” image, (b) DAUB4 implementation, (c) DAUB6

implementation ...53

5.15 Hardware diagrams: (a) Shifter for input scheduling; (b) Processing element(PE)54

5.16 Output from shifter at different CP ..55

x

5.17 DAUB8 FP filter bank ...56

5.18 (a) DAUB8 AIQ filter bank, (b) Filter_0 architecture ...57

5.19 Hardware cost of DAUB8 FP and AIQ at corresponding PSNR61

5.20 (a) original “Lena” image; (b) 8-bit AIQ (PSNR = 89.5 dB); and (c) 8-bit FP

(PSNR = 80 dB) implementation ..61

xi

LIST OF ABBREVIATIONS

ASIC Application Specific Integrated Circuit

AIQ Algebraic Integer Quantization

CAD Computer Aided Design

DCT Discrete Cosine Transform

DWT Discrete Wavelet Transform

FP Fixed-Point

FRS Final Reconstruction Step

FPGA Field Programmable Gate Array

HVS Human Visual System

IWT Integer Wavelet Transform

ISO International Organization for Standardization

ITU International Telecommunication Union

JPEG Joint Photographic Experts Group

VLSI Very Large Scale Integration

1

Chapter 1

Introduction

1.1 Introduction

The Discrete Wavelet Transform (DWT) [1, 2] has extensively been used in a wide

range of applications, including image and video coding, pattern recognition, etc. After

its inclusion in JPEG2000 compression standard [3], significant research has been done

to optimize the DWT implementation to reduce the computational complexity, as most

applications using it demand real-time processing. The Cohen-Daubechies-Feauveau 9/7

bi-orthogonal [4] and the Daubechies wavelets (DAUB2-DAUB20) [5] are the two

highly popular types of basis functions. Most of the research work to reduce the

hardware complexity is inclined towards multiplierless implementations by

maneuvering the filter banks [6, 7] or using lifting schemes [8, 9, 10, 11]. In all these

designs, the use of conventional fixed-point (FP) binary representation to implement the

irrational transform coefficients introduces round-off error at the beginning of the

process, which then transmits throughout the entire computation process and degrades

image reconstruction. In some cases, the Integer Wavelet Transform (IWT) is used, but

the need for large bit-width adder tree and complex control circuitry leads to higher

implementation cost, as well as poor reconstruction [12, 13, 14].

2

1.2 Motivation

In order to eliminate the round-off error for DWT, Wahid et al. [15, 16] proposed an

Algebraic Integer Quantization (AIQ) technique to compute the Daubechies-4 tap and

Daubechies-6 tap filter coefficients, where the irrational transform basis functions are

mapped with integers, resulting in very efficient computation. The AIQ representation

of the wavelet coefficients provides error-free calculations until the final reconstruction

step. This also makes the hardware architecture simple, multiplication-free and

inherently parallel. However, in this technique a direct (one-level) AIQ mapping is

utilized which involves large number of internal computing elements that result in high

cost of hardware resources and silicon area and low throughput.

In our work, we propose a new two-level encoding, called folded mapping, which

combines the error-free AIQ scheme and matrix decomposition techniques to compute

the DAUB4 and DAUB6 wavelet coefficients. This new scheme enables resource

sharing and yields lower hardware cost and power consumption, and higher process

throughput. The AIQ-encoded forward basis transformation matrices are first

decomposed into multiple sub-matrices; the common structures of the sub-matrices are

identified and later shared for implementation. The design has been prototyped onto

FPGA and VLSI using 0.18μm CMOS standard cells.

The architecture houses both DAUB4 and DAUB6, where the user selects the desired

transform unit based on the application and end user’s requirement. For slowly varying

signals, the DAUB4 gives the best results; while for rapidly varying signals, the DAUB6

3

performs well at high noise levels [4]. The DAUB6 also provides better details of

medical images than the DAUB4, but at the expense of consuming more power. It suits

nicely in an image compressor for applications like the wireless capsule endoscopy [32].

When the capsule passes through human gastrointestinal tract, having two transforms in

one chip will provide the physicians with an added feature of using DAUB6 when

images of finer details are desired, and then switching back to DAUB4 for unimportant

and/or unconcerned regions (to save power consumption and battery life).

Later, we apply a one-level AIQ scheme to implement the Daubechies-8 wavelet

transform. The use of conventional fixed-point binary representation for implementing

Daubechies wavelets, introduces round-off or approximation errors at the very

beginning of the process due to the lack of exact representation of the irrational numbers

that form the coefficient basis. These errors tend to increase as the calculations progress

through the architecture, degrading the quality of the image reconstruction. The AIQ

mapping helps to reduce the computational and approximation error.

1.3 Thesis objective

This thesis work is directed towards the design of two DWT processors using two-level

folded AIQ and one-level AIQ schemes. There are three general objectives behind this

research.

1) To investigate the folded AIQ representation of Daubechies-4 & Daubechies-

6 tap wavelet coefficients. The motivation for using folded AIQ to represent

4

Daubechies-4 and Daubechies-6 filter coefficients comes from studying the conjugate

structure of the coefficients in closed form representation. The new scheme leads to

develop the architecture, and implementation on FPGA and VLSI platform.

2) To investigate the one-level AIQ representation of Daubechies-8 tap wavelet

coefficients.

3) To demonstrate the potential performance advantages of these architectures in

terms of reduced hardware cost and improved image reconstruction.

All details of these implementations, especially the different design units, will be

developed in this thesis work. The results of a final simulation, using a standard image,

will be discussed in terms of image reconstruction, hardware complexity and achievable

precision. These results will be targeted towards the general area of image compression

applications.

1.4 Thesis organization

This thesis is organized into six chapters. In Chapter 2, we briefly discuss the DWT

algorithm and present the matrix representation of Daubechies-4, Daubechies-6, and

Daubechies-8 wavelet transform. The application of AIQ to implement Daubechies

wavelet coefficients is presented in Chapter 3. Chapter 4 presents the proposed folded

AIQ algorithm for the Daubechies-4 and Duabechies-6 filter banks. Later, an AIQ based

algorithm and architecture of Daubechies-8 is presented. The architectural details,

5

hardware mapping, FPGA and VLSI simulation, synthesis and fabrication results along

with performance analysis are summarized in Chapter 5. Chapter 6 concludes the thesis

by summarizing the accomplishment of the research work and giving recommendations

for future exploration.

5

Chapter 2

Discrete Wavelet Transform

2.1 Introduction

This chapter presents a brief description to the Discrete Wavelet Transform (DWT). Low

bit-rate image compression is essential for the transmission and storage of digital images.

A number of different techniques for image coding have been proposed, but due to some

very attractive characteristics, the DWT has proven to be very useful. The DWT has

extensively been used in a wide range of applications, including numerical analysis, image

and video coding, pattern recognition, etc. For many years the Discrete Cosine Transform

(DCT) [17] has been the core transform for image compression algorithms. The DCT is

used in the JPEG [18] image compression standard. Despite all the advantages of JPEG

compression schemes based on the DCT, there are noticeable and annoying “blocking

artifacts” particularly at low bit rates due to the inherent characteristics of DCT. To apply

DCT the input image needs to be “blocked”, which results in correlation across the block

boundaries. In case of DWT, the transform is applied to the entire image. As a result, there

are no blocking artifacts. The DWT transforms discrete signal from the time domain into

time frequency domain. The transformation product is a set of coefficients organized in the

way that enables not only spectrum analysis of the signal also spectral behavior of the

signal in time. The wavelet transform has emerged as a cutting edge technology, within the

http://en.wikipedia.org/wiki/JPEG

6

field of image compression. Wavelet-based coding provides substantial improvements in

picture quality at higher compression ratios [19]. In addition, wavelet coding is better

matched to the characteristics of the Human Visual System (HVS). Because of their

inherent multiresolution nature [20], wavelet coding schemes are especially suitable for

applications where scalability and tolerable degradation are important. After its inclusion

in JPEG2000 compression standard, ISO/ITU-T standard for still image coding, etc.

significant research has been done to optimize the DWT implementation to reduce the

computational complexity, as most applications using it demand real-time processing.

2.2 Definition of Wavelets

Wavelets are functions defined over a finite interval and having an average value of zero

[21]. The basic idea of any wavelet transform is to represent an arbitrary function, x(t), as a

superposition of a set of such wavelets or basis functions. These basis functions or baby

wavelets are obtained from a single prototype wavelet called the mother wavelet, by

dilations or contractions (scaling) and translations (shifts). The Wavelet Transform of a

finite length signal, x(t), is given by Eqn. (2.1).

 01
(,) () ()





   

t
s x t dt

s s
 (2.1)

Here,  = translation and s = scaling.

 In spatial domain image processing, the operation is discretized. The Discrete Finite

Wavelet Transform can be represented as a matrix, ()c and the DWT coefficients can be

obtained by taking the inner product between the input signals and the wavelet matrix.

7

Since the basis functions are the translated and dilated versions of each other, the DWT

coefficients of one stage can be calculated from the DWT coefficients of the previous

stage.

2.2.1 Subband Coding

Subband coding [22] has been used extensively in speech coding and in image coding

because of its inherent advantages; namely, variable bit assignment among the subbands

and coding error confinement within the subbands. The DWT, due to based on subband

coding, reduces the computation time and resources required. In subband coding, an image

is decomposed into a set of band limited components, called subband. The decomposition

and reconstruction are performed by digital filters. Therefore, in DWT, a time-scale

representation of the digital signal is obtained using digital filtering techniques.

Filters are one of the most important functions in signal processing. Wavelets can be

implemented by iteration of filters with rescaling. The resolution of the signal (a measure

of the amount of detail information in the signal) is determined by the filtering operations,

and the scale is determined by subsampling (upsampling and downsampling) operations.

The DWT is computed by successive highpass and lowpass filtering of the discrete time-

domain signal as shown in Figure 2.1. This is known as the Mallat algorithm or Mallat-tree

decomposition [23]. It has the significance of connecting the continuous-time

mutiresolution to discrete-time filters. In Figure 2.1, the input signal is denoted by the

sequence X[n], where n is an integer. The low pass filter is denoted by LOW while the

high pass filter is denoted by HIGH. The first level of decomposition extracts the details

8

(high frequency components, d[n]) of the signal while the second and all the subsequent

decompositions extract progressively coarser information (low frequency components,

a[n]).

2

2

2

2

2

X[n]

Input

Input

HIGH

LOW

HIGH

LOW

HIGH

LOW

d1(n)

d2(n)

d3(n)

a3(n)

Figure 2.1 Three-level decomposition of wavelet algorithm

This decomposition halves the time resolution since only half the number of samples now

characterizes the entire signal. After passing the original signal through a half band

lowpass filter, according to Nyquist’s rule, half of the samples can be eliminated [24].

Since the signal now has a highest frequency of ω /2 radians instead of ω. The signal can

therefore be subsampled by 2, simply by discarding every other sample. The above

procedure can be repeated for further decomposition until the desired level is reached. The

number of levels depends on the length of the signal. The original signal is then realized by

concatenating all the coefficients, a[n] and d[n], starting from the last level of

decomposition. Figure 2.2 shows the rebuilding of the original signal from the wavelet

coefficients. In Figure 2.2, the output signal is denoted by the sequence Y[n], where n is an

integer. The reconstruction is basically the reverse process of decomposition. The detail,

9

d[n] and approximation coefficients, a[n] at every level are up-sampled by two, passed

through the high pass and low pass synthesis filters and then added. This process requires

the same number of levels as in the decomposition process to obtain the original signal.

2

2

HIGH

LOW

d3(n)

a3(n)

2

2

HIGH

LOW

d2(n)

2

2

HIGH

LOW

d1(n)

Y[n]

Figure 2.2 Three-level reconstruction of wavelet algorithm

Image processing is vastly benefitted from this particular property of the wavelet

transform. DWT can be applied to reduce the image size without losing much of the

resolution. For a given image, DWT of each row can be computed, and all values in the

DWT that are less than a certain threshold can be discarded. Only those DWT coefficients

that are above the threshold for each row can be saved, and used to reconstruct the original

image by simply padding each row with as many zeros as the number of discarded

coefficients, and then apply the inverse DWT to reconstruct each row of the original

image.

10

Figure 2.3 shows the 3-level decomposition of benchmark “Lena” image using 2-D

Daubechies-6 wavelet transform.

Figure 2.3 (a) Original “Lena” Image; (b) 3-level decomposition of DWT; (c) Decomposed

“Lena” image.

2.3 Daubechies Wavelet Transform

Special families of wavelet functions are developed for the DWT. These wavelets are

compactly supported, orthogonal or biorthogonal and are characterized by high-pass and

low-pass analysis and synthesis filters. The Daubechies wavelets are a family of

orthogonal wavelets defining a DWT. The Daubechies family is named after Ingrid

Daubechies (a Belgian physicist and mathematician) who invented the compactly

supported orthonormal wavelets, making wavelet analysis in discrete time possible. The

research work presented in this thesis is restricted to Daubechies wavelets because they

immediately lend themselves to AIQ implementation, and are also useful, having class

members ranging from highly localized to highly smooth and providing excellent

performance in image compression applications. Daubechies wavelet coefficients are based

http://en.wikipedia.org/wiki/Orthogonal_wavelet
http://en.wikipedia.org/wiki/Discrete_wavelet_transform
http://en.wikipedia.org/wiki/Belgium
http://en.wikipedia.org/wiki/Physicist
http://en.wikipedia.org/wiki/Mathematician

11

on computing wavelet coefficients, Cn (where n = 0, 1, 2. . . N-1 and N is the number of

coefficients) to satisfy the following conditions [25]:

(1) The conservation of area under () : 2 n

n

x t C

(2) The accuracy conditions: (1) 0 (0, 1, 2,, 1)
2

    
n m

nn

N
n C w here m P and P

 (3) The perfect reconstruction conditions: 2

2
2 . 0


  n n n mn n

C and C C

Then the low-pass filter is ()
2


n

C
h n and the high-pass filter is

1
() (1) (1)


   

n
g n h n N .

Daubechies coefficients range from Daubechies-2 (in short, DAUB2 with 2 coefficients) to

Daubechies-20 (DAUB20, 20 coefficients). In this research work, we study the hardware

architectures associated with implementing Daubechies-4 (DAUB4), Daubechies-6

(DAUB6) and Daubechies-8 (DAUB8).

2.3.1 DAUB4 Wavelet Transform

The simplest and most localized member in Daubechies family is the DAUB4, which has

four coefficients,
0 1 2 3

C , C , C and C [26] as given in Eqn. (2.2).

0 1

2 3

(1 3) / 4 2 (3 3) / 4 2

(3 3) / 4 2 (1 3) / 4 2

C C

C C

   

   

 (2.2)

For a 8x8 input data, the DAUB4 forward transform is shown in Eqn. (2.3). In the forward

transform matrix, the odd row coefficients,
0 1 2 3

C , C , C and C implement a low-pass filter

12

and the even row coefficients,
3 2 1 0

C , C , C and C  implement a high-pass filter. Also, the

DWT is orthogonal and invertible - the inverse transform, is simply the transpose of the

forward transform matrix.

0 1 2 3

3 2 1 0

0 1 2 3

3 2 1 0

4

0 1 2 3

3 2 1 0

2 3 0 1

1 0 3 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
()

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



 

 
 

 

 

 
  


 

 
  

 

 
   

C C C C

C C C C

C C C C

C C C C
C

C C C C

C C C C

C C C C

C C C C

 (2.3)

2.3.2 DAUB6 Wavelet Transform

The DAUB6, which performs well at high noise levels compare to DAUB4 [15] has six

coefficients,
0 1 2 3 4 5

C , C , C , C , C and C [26] as given in Eqn. (2.4).

0 1

2 3

4 5

(1 10 5 2 10) (5 10 3 5 2 10)

16 2 16 2

(10 2 10 2 5 2 10) (10 2 10 2 5 2 10)

16 2 16 2

(5 10 3 5 2 10) (1 10 5 2 10)

16 2 16 2

     
 

     
 

     
 

C C

C C

C C

 (2.4)

13

For a 8x8 input data, the Daubechies-6 forward transform matrix is shown in Eqn. (2.5).

0 1 2 3 4 5

5 4 3 2 1 0

0 1 2 3 4 5

5 4 3 2 1 0

6

4 5 0 1 2 3

1 0 5 4 3 2

2 3 4 5 0 1

3 2 1 0 5 4

0 0

0 0

0 0

0 0
()

0 0

0 0

0 0

0 0

C C C C C C

C C C C C C

C C C C C C

C C C C C C
C

C C C C C C

C C C C C C

C C C C C C

C C C C C C



 

 
  

 

 

 
   


 

 
   

 

 
    

 (2.5)

2.3.3 DAUB8 Wavelet Transform

The DAUB8 has eight coefficients
0 1 2 3 4 5 6 7

C , C , C , C , C , C , C and C [27] as given in Eqn.

(2.6).

0 0 1 1 0

2 2 1 0 3 3 2 1 0

4 0 1 2 1 5 1 2 3

6 2 3 7 3

/ 32 2 (4) / 32 2

(4 6) / 32 2 (4 6 4) / 32 2

(4 6 4) / 32 2 (4 6) / 32 2

(4) / 32 2 / 32 2

  

      

      

  

C a C a a

C a a a C a a a a

C a a a a C a a a

C a a C a

 (2.6)

Where 0 1 1 3

5 5
, 2 140 , 2 140 ,a a a a 

 
        

Where α is the root of the following polynomial

14

4 3 2
2(1 35) 40 10(1 35) 25 0         

The polynomial has a pair of conjugate complex roots and two different real

roots 1
 and 2

 . The value of 1
 is given by:

1 1

3

1 1 1 3 1
35 3

2 2 6 6

v
s

u

    

The value of 1
 is approximately 10.4257, gives the “minimum phase” orthonormal

scaling function (this is the normal choice). The value of 2
 is given by:

2 1

3

1 1 1 3 1
35 3

2 2 6 6
    

v
s

u

The value of 2
 is approximately 1.4583, gives the “least asymmetric” orthonormal

scaling function.

For both of the above expressions,

700 210 15u  

1 1 2 1

3 3 3 328 70.2 (2) 6 . 35v u u u   

1 1 2 1

3 3 3 3

1

3

56 70.2 (2) 12 35 336 3 48 105u v v u v u v u v
s

u v

    


15

For a 8x8 input data, the DAUB8 forward transform matrix is shown in Eqn. (2.7).

0 1 2 3 4 5 6 7

7 6 5 4 3 2 1 0

6 7 0 1 2 3 4 5

1 0 7 6 5 4 3 2

8

4 5 6 7 0 1 2 3

3 2 1 0 7 6 5 4

2 3 4 5 6 7 0 1

5 4 3 2 1 0 7 6

()

C C C C C C C C

C C C C C C C C

C C C C C C C C

C C C C C C C C
C

C C C C C C C C

C C C C C C C C

C C C C C C C C

C C C C C C C C



 

 
   

 

 

 
    


 

 
    

 

 
     

 (2.7)

2.4 Summary

In this chapter, we have presented the fundamentals of wavelets, subband coding

(decompositions of signals in subbands) and Daubechies wavelet transforms. In the final

part, the properties and mathematical expressions of Daubechies-4, 6 and 8 coefficients are

presented which are helpful for the error-free encoding to be presented later in this thesis.

16

Chapter 3

Algebraic Integer Quantization

3.1 Introduction

This chapter presents a brief description to Algebraic Integer Quantization (AIQ) [28].

The idea of using AIQ in DSP applications is first explored by Cozzens and Finkelstein

[29]. The use of any conventional number representation introduces approximation

errors at the very beginning of the process due to the lack of exact representation of the

irrational numbers that form the coefficient basis. These errors tend to propagate

through the wavelet transform computation and degrade the quality of image

reconstruction. The AIQ mapping helps to reduce the computational cost and

approximation errors.

3.2 Algebraic Integer Quantization (AIQ)

AIQ is defined by real numbers that are roots of monic polynomials with integer

coefficients [30]. As an example, let

2 j

16e



  denote a primitive 16
th

 root of unity over

the ring of complex numbers. Then  satisfies the equation
8

1 0 x . If  is

adjoined to the rational numbers, then the associated ring of algebraic integers is

denoted by Z[] .The ring Z[] can be regarded as consisting of polynomials in  of

17

degree 7 with integer coefficients. The elements of Z[] are added and multiplied as

polynomials, except that the rule
8

1   is used in the product to reduce the degree of

powers of  to below 8. For an integer M,
M

Z[] is used to denote the elements of

Z[] with coefficients between M

2
 and M

2

 .

A real number x in Z[] can be written in the form

0 1 2 3

2 2 2 2 2     x a a a a (3.1)

The ring of all such elements is denoted by [2 2]Z . If 2 2   , then  is a root

of the polynomial
4 2

4 2 x x and the elements of Z() have a polynomial form,

where the relation 4 2
4 2    is used to reduce power of  above three. The elements

of Z() are used to process separately the real and imaginary part of Z[] . In summary,

algebraic integers of an extension of degree n can be assumed to be of the form

0 0 1 1 1 1

...
 

  
n n

a a a   (3.2)

Where
0 1 n 1

{ , , ..., }


   is called the algebraic-integer basis and the coefficients
i

a are

integers.

18

3.3 Past Work of AIQ

The past work is restricted to DAUB4 and DAUB6 wavelet transforms. The AIQ-based

DAUB4 and DAUB6 transform proposed by Wahid et al. [15], [16] is studied in the

following sections.

3.3.1 AIQ encoding of DAUB4

From Eqn. 2.2, if 3z , all the coefficients can be expressed (scaled by 4 2) as a

first degree polynomial in z with integer coefficients, as follows [16]:

0 1 2 3
1 3 3 1       C z C z C z and C z (3.3)

In this case, the polynomial has the form:
0 1

()  f z a a z where
0 1
,a a are integers. The

codes for the DAUB4 coefficients are shown in Table 3.1. By manipulating these

polynomial representations of the coefficients, instead of the usual approximate binary

representations, any errors can be eliminated in the calculations until the final

reconstruction step.

 Table 3.1 Exact representation of DAUB4 coefficients

Coefficients 0
a

1
a

0
C 1 1

1
C 3 1

2
C 3 -1

3
C 1 -1

19

The input data of the corresponding pixels are coded with integers and all the processing

required is very simple and, most importantly, inherently parallel. Using the same

polynomial expansion both forward and inverse mappings can be performed.

3.3.2 AIQ encoding of DAUB6

The polynomial expansion of DAUB6 coefficients can be generalized into polynomials

of two variables. This gives the advantages in terms of choosing the optimal form such

that the equivalent representation scheme is as sparse as possible, and, having several

different combinations of applicable pairs of parameters, provides considerable

flexibility of choice. From an architectural point of view the final reconstruction step

can be accomplished by making use of systolic architectures for polynomial evaluations.

If
1

10z and
2

5 2 10 z and considering the 2-D polynomial expansion:

 1 2 1 2

0 0

(,)

 

  
K L

i j

ij

i j

f z z a z z (3.4)

For the DWT and the IDWT implementations, K = 1 and L = 1 can be chosen to

guarantee error-free encoding, and the corresponding coefficients,
ij

a , are encoded in the

form 00 10

01 11

 

 
 

a a

a a
 .

Therefore all the DAUB6 coefficients can be exactly encoded (scaled by16 2) as

shown in Eqn. (3.5) and summarized in Table 3.2 [16].

20

0 1 2

3 4 5

1 1 5 1 10 2

1 0 3 0 2 0

10 2 5 1 1 1

2 0 3 0 1 0

     
       
     

     
       

       

C C C

C C C

 (3.5)

Table 3.2 Exact representation of DAUB6 coefficients

Coefficients 00
a

1 0
a

0 1
a

1 1
a

0
C 1 1 1 0

1
C 5 1 3 0

2
C 10 -2 2 0

3
C 10 -2 -2 0

4
C 5 1 -3 0

5
C 1 1 -1 0

21

3.3.3 Final Reconstruction Step (FRS)

For the final reconstruction, Horner’s rule is used [31]. For the computation of DWT or

IDWT, the integer part of the result and the most significant bit of the fractional part

need to be recovered, in order to allow correct rounding. Since the final result is in an

error-free format, the precision to guarantee sufficient accuracy can be easily estimated.

As an example, if the input and output data are to be represented within 8-bits per pixel

(bpp), then the representation of z as:

2 8
3 10.01001 2 2 2

 
    z (DAUB4) (3.6)

3 5

1
10 11.001010 3 2 2

 
    z (DAUB6) (3.7)

1 3

2
5 2 10 100.10100 4 2 2z

 
      (DAUB6) (3.8)

is sufficient. The signed-digit encoding errors for 8-bit word-lengths are 0.0913%,

0.19% and 0.0569% for Z, Z1 and Z2, respectively [16].

3.3.4 DAUB4 Architecture

The DAUB4 architecture has three parallel channels through which data flows

independently and also very simple scheduling is required. No quantization errors are

incurred in the main part of the algorithm, only in the final reconstruction step (where z

is substituted) and which uses one multiplier. The substitution precision can be chosen

22

in such a way as to get the best reconstruction. Since z is a fixed value in the FRS,

general multiplier uses can be avoided. A total of 16 adders are needed, and several

registers are also required to hold the intermediate partial results. One of the most

important aspects of the DWT architecture is its potential for real-time operations. The

proposed pipelined architecture computes N coefficients in N clock cycles and achieves

real-time operation through pipelining. The architecture has a latency of 5Ta (Ta =

latency for addition operation). In Figure 3.1, L0 is the low pass filter output and H0 is

the high pass filter output.

a0

a1

a2

a3

L0

3 Z

3 Z

H0

Figure 3.1 AlQ-based DAUB4 filter architecture

3.3.5 DAUB6 Architecture

A total of 42 adders are required to implement the DAUB6 architecture and is shown in

Figure 3.2. The architecture has a latency of 6Ta.

23

a0

a1

a2

a3

a4

a5

5

3

10

-2

Z1

5 10

-3

-2

2

Z2

Z2

-2

Z1

L0

H0

Figure 3.2 AIQ-based DAUB6 filter architecture

3.4 Summary

In this chapter, encoding and architecture of one-level AIQ-based DWT is discussed.

The one-level AIQ implementation is simple, multiplication-free and inherently parallel.

In the next chapter, we will explore the folded features of the AIQ mapping.

24

Chapter 4

Folded AIQ Mapping

4.1 Introduction

This chapter presents an introduction to the folded AIQ mapping scheme. Here we

propose a new two-level encoding, called folded mapping, which combines the error-

free AIQ scheme and matrix decomposition techniques to compute the DAUB4 and

DAUB6 wavelet coefficients. This new scheme enables resource sharing and yields

lower hardware cost and power consumption, and higher process throughput. The AIQ

encoded forward basis transformation matrices are first decomposed into multiple sub-

matrices; the common structures of the sub-matrices are identified and later shared for

implementation.

In order to eliminate the round-off error for the DWT implementations, AIQ technique

is proposed at Wahid et al. [15, 16] to compute the DAUB4 and DAUB6 filter

coefficients, where the irrational transform basis functions are mapped with integers,

resulting in very efficient computation. However, in those cases a direct (one-level) AIQ

mapping is utilized which involves large number of internal computing elements that

results in high cost of hardware resources and silicon area and low throughput. The

folded scheme adds a two-level AIQ mapping that reduces the number of algebraic

integers in the polynomial representation compared to its predecessor. Therefore,

25

compared to existing designs, the proposed scheme reduces significantly the hardware

cost, critical path delay and power consumption with a higher throughput rate.

Later, we proposed a one-level AIQ scheme to implement DAUB8 transform which

performs better than the fixed-point implementation. The use of conventional fixed-

point binary (or any other weighted) representation for implementing Daubechies

wavelets, introduces round-off or approximation errors at the very beginning of the

process due to the lack of exact representation of the irrational numbers that form the

coefficient basis. These errors tend to increase as the calculations progress through the

architecture, degrading the quality of the image reconstruction. Here, our aim is to

eliminate these errors until we need to convert from the AIQ representation. The AIQ

technique eliminates the requirements to approximate the eight transformation matrix

elements. Rather, by using one-level AIQ, it is possible to obtain considerable

improvement in image reconstruction accuracy with mapping four new coefficients;

through reducing error-introducing calculation steps.

4.2 Folded AIQ mapping

Folded AIQ mapping is a new two-level folded mapping technique, an improved version

of the AIQ. The scheme is developed on the factorization and decomposition of the

transform coefficients that exploits the symmetrical and wrapping structure of the

matrices. The technique is very efficient in DSP applications having complex numbers

or the coefficients that are in the conjugate form.

26

4.2.1 Folded AIQ mapping of DAUB4

The four DAUB4 transform coefficients (
0 3
, ...,C C) are expressed below using one-level

AIQ mapping (where 3Z  and the scaling factor is 4 2):

0 1 2 3
1 ; 3 ; 3 ; 1C Z C Z C Z C Z        (4.1)

Considering the periodicity of the coefficients in Eqn. (2.3), we decompose the matrix

into four sub-matrices as shown below in Eqn. (4.2):

  
4 0 1 2 3
() (4) (4) (4) (4)

T

C     (4.2)

Where,
0 0
(4)

G
I

H


 
  
 

,
0

(4) [(4)]
k j

  , {0,1, 2, 3}k , 2j k is the column number,

0 1 2 3
[]G C C C C and

3 2 1 0
[]H C C C C   are the low-pass (smoothing) and

the high pass (non-smoothing) filters, respectively, and
0

I is a 2x4 null matrix.

After plugging Eqn. (4.1) into
0
(4) and decomposing the matrix, we find the new

expression as shown below in Eqn. (4.3):

        0 0 0 0 0 0 0 1 0
(4) 3F I F I Z F I F I       (4.3)

Where,
0

1 0 0 1

1 0 0 1
F

 
  

 

, and
1

0 1 1 0

0 1 1 0
F

 
  

 

.

This enables folding of the input data. The forward filter can now be implemented using

two independent and parallel datapaths. We will use Eqn. (4.3) for the hardware

implementation.

27

4.2.2 Folded AIQ mapping of DAUB6

We follow similar procedure for the DAUB6 wavelet. Like DAUB4, considering the

periodicity of the coefficients in Eqn. (2.5), we decompose the matrix into four sub-

matrices as shown below in Eqn. (4.4):

  
6 0 1 2 3
() (6) (6) (6) (6)    

T

C (4.4)

Where,
0 0
(6)

 
  
 

G
I

H
,

0
(6) [(6)] 

k j
, {0,1, 2, 3}k , 2j k is the column

number,  0 1 2 3 4 5
G C C C C C C and  5 4 3 2 1 0

   H C C C C C C

are the low-pass (smoothing) and the high-pass (non-smoothing) filters, respectively,

and
0

I is a 4x2 null matrix.

The coefficients and their encoded forms (using one-level AIQ) are given below (where,

1
10Z  , 2

5 2 10Z  ):

0

1

2

1

3

2

4

5

1 1 1

5 1 3
1

10 2 2

10 2 2

5 1 3

1 1 1

   
   
     
     

               
   

    

C

C

C
Z

C
Z

C

C

 (4.5)

Now, by applying similar decomposition technique as presented earlier, the folded

expressions for DAUB6 can be found as expressed below in Eqn. (4.6):

28

  

 

' ' '

0 0 0 1 0 2 0

' ' '

1 0 0 1 0 2 0

' ' '

2 0 0 1 0 2 0

(6) 5 10

2

3 2

          
     

         
     

         
     

F I F I F I

Z F I F I F I

Z F I F I F I

 (4.6)

Where,
'

0 0

1 1

1 1
F I

 
  

 

,
'

1 0

0 1 1 0

0 1 1 0
F I

 
  

 

,
'

2 0 0

1 1

1 1
F I I

 
   

 

, and
0

I 

is a 2x2 null matrix. Like Eqn. (4.3), Eqn. (4.6) allows the folding of the input data, and

the forward filter can be implemented using three independent and parallel datapaths.

We will use Eqn. (4.6) for the hardware implementation which is described in the

following section.

4.2.3 Architecture of DAUB4 and DAUB6

The signal flow graphs of the DAUB4 and DAUB6 filter banks are translated from Eqn.

(4.3) and (4.6), and shown in Figure 4.2 and 4.3 respectively, where
0

L is the low-pass

and
0

H is the high-pass coefficient. A control pin (/a s) is used to toggle the two

operations, addition/subtraction in alternate clock cycles.

The folded scheme adds a two-level AIQ mapping that reduces the number of AIQ

operations in the polynomial representation compared to its predecessor. As a result, the

number of adders required to perform DAUB4 is just 9, compared to 16 in the direct

mapping [16] (a saving of 44%).

29

z

3

L0/H0





x0

x3

x2

x1

Figure 4.1 Folded AIQ-based DAUB4 filter architecture

In the case of DAUB6, the saving is even higher (57%) as the proposed scheme requires

only 18 adders compared to 42 in the one-level design [16].

10

3

2

z2

z1

L0/H0







x0

x5

x4

x1

x2

x3

5

Figure 4.2 Folded AIQ-based DAUB6 filter architecture

30

Table 4.1 Comparison between 1-level AIQ and folded AIQ

Coefficients Algorithm No. of Adders

DAUB4

1-level AIQ 16

Folded AIQ 9

DAUB6

1-level AIQ 42

Folded AIQ 18

4.3 AIQ encoding of DAUB8

In this section, we will discuss the fixed-point (FP), and AIQ mapping scheme of

DAUB8.

4.3.1 Fixed Point Implementation

Considering the periodicity of the coefficients in Eqn. (2.7), we decompose the matrix

into four sub-matrices as shown below in Eqn. (4.7):

  
8 0 1 2 3
() (8) (8) (8) (8)

T

C     (4.7)

Where,
0
(8)

 
  
 

G

H
 ,

0
(8) [(8)]

k j
  , {0,1, 2, 3}k , 2j k is the column number,

0 1 2 3 4 5 6 7
[]G C C C C C C C C

and

7 6 5 4 3 2 1 0
[]H C C C C C C C C     are

the low-pass (smoothing) and the high-pass (non-smoothing) filters, respectively.

31

Low_filter_output,
7

0

0

i i

i

L x C



  , High_filter_output,
7

0 7

0

(1)
i

i i

i

H x C




 

4.3.2 AIQ mapping of DAUB8

The eight DAUB8 transform coefficients
0 7

(,,)C C can be encoded using 4 real

coefficients as shown in Eqn.(4.8) [27] and summarized in Table 4.2.

0 1 2 3 4 5 6 7 0 1 2 3

1
(, , , , , , ,) (1, 4, 6, 4,1) (, , ,)

32 2
 C C C C C C C C a a a a

 (4.8)

Low and high filter outputs using one-level AIQ mapping are

Low_filter_output,
3

0 1 2 3 4

0

(4 6 4)
i i i i i i

i

L x x x x x a
   



     

High_filter_output,
3

0 1 2 3 4 3

0

(4 6 4)
i i i i i i

i

H x x x x x a
    



     

Where,
0 1 2 3

5 5
, 2 140 , 2 140 , ,a a a a 

 
        

Here, 10.4257  is the exact solutions of Daubechies 8 orthonormal scaling

coefficients.

In Table 4.2, the polynomial has the form:
0 0 1 1 2 2 3 3

()    f z a z a z a z a z where

0 1 2 3
, , ,a a a a are integers.

32

Table 4.2 Exact representation of DAUB8 coefficients

Coefficients 0
a

1
a

2
a

3
a

0
C 1 0 0 0

1
C 4 1 0 0

2
C 6 4 1 0

3
C 4 6 4 1

4
C 1 4 6 4

5
C 0 1 4 6

6
C 0 0 1 4

7
C 0 0 0 1

4.3.3 AIQ-based Architecture

The signal flow graphs of FP and AIQ are shown in Figure 4.4 and 4.5. The

addition/subtraction operation is achieved simply by the adder/subtractor circuit

previously shown in Figure 4.1. A control pin (/a s) is used to toggle the addition and

subtraction operations which are performed at even and odd clock pulses (CPs)

respectively.

33

Fixed point architecture is implemented with 8 finite precision coefficients

0 1 2 3 4 5 6 7
(, , , , , , ,)C C C C C C C C whereas AIQ is implemented with 4 finite precision

coefficients
0 1 2 3

(, , ,)a a a a . All the coefficients or multipliers are constant in nature, and

hence can be computed using sequential addition and shift operations only.

SW3

SW3

SW2

SW1

X0

X7


C7

C0

X1

X6


C6

C1

X2

X5


C5

C2

X3

X4


C4

C3



 L0/H0



SW0

0

1

0

1

X3

X4
s

Figure 4.3 Signal flow graph of FP-based DAUB8

34

Filter 3

X3

X7

X4

X6

X5

6

4



Xi...Xi+4


a0

a3

L0/H0

Filter 0

Xi+1...Xi+5 Filter 1

Xi+2...Xi+6


a1

a2

Filter 2

Xi+3...Xi+7 Filter 3

SW0

SW1

Figure 4.4 Signal flow graph of AIQ-based DAUB8

35

4.4 Summary

In this chapter, a new folded AIQ scheme to compute DAUB4 and DAUB6 transform

coefficients is discussed. The folded AIQ scheme enables simpler implementation and

yields lesser hardware compared to previous one-level AIQ scheme. The last section of

this chapter describes the one-level AIQ mapping of the DAUB8 transform.

36

Chapter 5

Folded AIQ-Based Architecture

5.1 Introduction

In this work, we present an efficient implementation of a shared hardware core to

compute two 8-point Daubechies wavelet transforms. The architecture is based on a new

two-level folded mapping technique, an improved version of the AIQ. The scheme is

developed on the factorization and decomposition of the transform coefficients that

exploits the symmetrical and wrapping structure of the matrices. The proposed

architecture is parallel, pipelined, and multiplexed. The proposed scheme reduces

significantly the hardware cost, critical path delay and power consumption with a higher

throughput rate. The design has been prototyped onto FPGA and ASIC level using

0.18um CMOS standard cells.

Later, we apply a first level AIQ scheme to compute the DAUB8 wavelet coefficients.

The use of conventional fixed-point (FP) binary representation to implement the

irrational transform coefficients introduces round-off error at the beginning of the

process. These errors tend to increase as the calculations progress through the

architecture, degrading the quality of the image reconstruction. The one-level AIQ

technique eliminates the requirements to approximate the eight transformation matrix

37

elements as in FP. Using AIQ, it is possible to obtain considerable improvement in

image reconstruction accuracy with mapping four new coefficients.

5.2 Folded AIQ-based DAUB4 and Daub6

The proposed dual-core architecture is organized as a linear parallel and double-datapath

path pipeline to achieve high throughput, where 2’s complement arithmetic has been

used to handle the negative numbers. The input is fed to the hardware at a rate of one

element per 8-bits per clock cycle through serial in parallel out operation. The transform

(DUAB4/DAUB6) low and high pass filter coefficients are outputted serially in double

path at 12 bits per coefficient per clock cycle. The parallel outputted data at delay line

are folded before feeding them to the filter banks. The transform to be performed is set

externally by the user selective Daub_sel pin. The processor core consists of four major

components: Delay line, Delay line/Shifter, DAUB4 and DAUB6 filter banks, and

controller.

Controller

D
E

M
U

X

DAUB4

AIQ

Mapping

Delay

Line

Data_in

[7:0]

Start

Daub_sel

Clock

Shifter

Fold

&

Latch

P

&

R

R

e

g

RL[11:0]

RH[11:0]

P - Pipelining Register; R - Reconstruction

R

e

g

DAUB6

AIQ

Mapping

Figure 5.1: Block diagram of the entire system

38

5.2.1 Delay Line/ Shifter

The input is fed to the hardware at a rate of one sample (8-bit) per clock cycle through

serial-in parallel-out operation. This operation is achieved by ping-pong buffer that

follows a data shifter which consists of eight processing elements (PE). The architecture

is shown in Figure 5.2(a) and 5.2(b). The delay line buffer and the shifter are controlled

using selection and enable pins by the controller. The outputs from the shifter at

different clock pulses (CP) are shown in Figure 5.3. Note that, for DAUB4 operation, x4

and x5 are not passed into the next module.

in

F0

F1

F2

F3

F4

F5

F6

F7

PE

1

PE

2

PE

3

PE

4

PE

5

PE

6

PE

7

PE

0

X0

X1

X2

X3

X4

X5

ensel

To

Fold &

Latch

PE6

D

(b)

0

1

(a)

Figure 5.2 (a) Shifter for input scheduling, (b) Processing elements (PE)

39

N+0 N+2 N+4 N+6

x0

x1

x2

x3

x4

x5

x6

x7

x0

x1

x2

x3

x4

x5

x6

x7

x4

x5

x0

x1

x6

x7

x2

x3

Figure 5.3 Output from shifter at different CP

5.2.2 DAUB4 and DAUB6 filter banks

For both filters, the hardware architecture has been developed using five cascaded stages

(as shown in Figure 5.4 and 5.5): Fold & Latch, AIQ mapping, Pipeline Register bank,

Reconstruction, and Output.

R1 R3

3
R2 R4 R6

R5
RL

RH

L0

H0

x0

x3

x2

x1

Z

Fold & Latch AIQ mapping Pipelining

Register

Reconstruction Output

Figure 5.4 DAUB4 filter bank

40

Using the proposed folded mapping scheme, the number of adders required to perform

DAUB4 is just 9, compared to 16 as in the direct mapping [16], which is a savings of

44%. In the case of DAUB6, the savings are even higher (57%) as the proposed two-

level scheme requires only 18 adders compared to 42 in the one-level design [16].

Z1

R1

R2 R5

RL L0

x0

x5

x4

x1

R3

x2

x3

R6 R9

R4Z2

R8

R7

RH H0

10

5
3

2

AIQ mapping Pipelining

Register

Reconstruction OutputFold & Latch

Figure 5.5 DAUB6 filter bank

After the initial fold operation, the intermittent data is latched and then forwarded to the

AIQ mapping stage, where the desired shifting and addition operations are performed.

The final conversion from algebraic integer to binary also takes place in this stage.

Interestingly, all the multipliers are constant in nature, and hence can be computed using

sequential addition and shift operations only. Moreover, to reduce the number of

addition operations, canonical signed digit (CSD) [33] representation is used.

41

A precision of 8-bit is used in the multipliers to minimize the hardware and optimize the

operation, which is completed in one clock pulse (CP). Internally to the multiplier, all

significant bits are retained to guarantee the highest precision of the calculation;

however, the multiplier outputs are truncated to discard the fractional part.

5.2.3 Coefficient Multiplier

The forward coefficients of the transforms are constant in nature; hence can be pre-

computed and implemented with sequential add/shift operation to make the architecture

totally multiplication-free. Also to reduce the number of addition operations, canonical

signed digit (CSD) encoding is used in designing the constant multipliers. As an

example, the coefficient C1 (
2

cos() (0.1111101)
16

 ) can be implemented with only 2

addition operations as shown in Figure 5.6.

enable

a_in

reset

clk

Register

1 bit

shift
6 bit

shift

Temp

2's compliment
Product

Figure 5.6 Internal circuitry of coefficient multiplier, C1

42

Note that, the proposed scheme is error-free until this final conversion stage; however,

the error introduced at this stage is very small and can be further minimized using higher

precision AIQ multipliers. We have performed an error analysis that shows the error

incurred for different bit-length of the AIQ multipliers. The error is computed taking a

multiplier of 16-bit width as reference. It can be found from the error plot (in Figure 5.7)

that the normalized computation error for the proposed DAUB6 multiplier coefficient,

1
Z at 8-bit precision is 2.0×10

−3
. The normalized computation errors for

2
Z (DAUB6) and

Z (DAUB4) at 8-bit precision are 1.8×10
−3

 and 0.5×10
−3

. The total accuracy of the

architecture is reported in performance analysis section.

Figure 5.7 Normalized errors incurred for different multiplier precision

43

After the conversion is completed, the intermittent data are latched into the Pipelining

Registers. In order to get the low-pass and high-pass wavelet coefficients

simultaneously, a two-level pipelining stage is used. The data are combined in the

Reconstruction stage and finally latched into the output registers.

5.2.4 Controller

The controller generates the signals to control various stages, selects datapaths, and

indicates the input and output data validity. The internal operations, registers’ contents

and data validity at different CPs are shown in Figure 5.8 and 5.9. These figures show

an operation that starts at the Nth timing instance. The pipelined implementation allows

the mapping to start at the (N+1)th CP; at the (N+3)th CP, the system outputs the first

set of low and high-pass Daubechies coefficients. Thus, we can see that both DAUB4

and DAUB6 take only four clock cycles to complete, and there is no data congestion

inside the pipeline, which makes the scheme very suitable for real-time applications. In

the next four clock cycles, the input data are reordered accordingly (by the shifter) for

further processing.

X0+X3 X2+X1

X0-X3 X2-X1 [-(X0+X3)+(X2+X1)].Z (X0+X3)+3(X2+X1)

[-(X0-X3)+(X2-X1)].Z (X0-X3)+3(X2-X1)

L0=R3+R6 H0=R4+R5

X2+X5 X4+X3

X2-X5 X4-X3

N+0

R1 R2 R3 R4 R5 R6 RL RHCP

N+1

N+2

N+3

[-(X0+X3)+(X2+X1)].Z (X0+X3)+3(X2+X1)

N+4

N+5

X4+X7 X6+X5

X4-X7 X6-X5

[-(X2+X5)+(X4+X3)].Z

[-(X2-X5)+(X4-X3)].Z

(X2+X5)+3(X4+X3)

(X2-X5)+3(X4-X3) [-(X2+X5)+(X4+X3)].Z (X2+X5)+3(X4+X3)

L1=R3+R6 H1=R4+R5

Valid

Y

Y

N

N

N

N

L0=R3+R6 H0=R4+R5

[-(X0-X3)+(X2-X1)].Z (X0-X3)+3(X2-X1)

[-(X4+X7)+(X6+X5)].Z (X4+X7)+3(X6+X5) [-(X2-X5)+(X4-X3)].Z (X2-X5)+3(X4-X3)

Figure 5.8 Timing diagram of folded AIQ-based DAUB4

44

X0+X5 X4+X1 X2+X3N+0

X0-X5 X4-X1 X2-X3

[(X0+X5)-

3(X4+X1)+

2(X2+X3)].Z2

[(X0+X5)+

(X4+X1)-

2(X2+X3).Z1

(X0+X5)+

5(X4+X1)-

10(X2+X3)

[(X0-X5)-3(X4-

X1)+

2(X2-X3)].Z2

[(X0-X5)+

(X4-X1)

-2(X2-X3)].Z1

(X0-X5)+

5(X4-X1)

-10(X2-X3)

R1 R2 R3

X2+X7 X6+X3 X4+X5

X2-X7 X6-X3 X4-X5

R4 R5 R6

L0=R5+R6+R7 H0=R4+R8+R9

R7 R8 R9 RL RHCP

N+1

N+2

[(X0+X5)-

3(X4+X1)+

2(X2+X3)].Z2

[(X0+X5)+

(X4+X1)-

2(X2+X3).Z1

(X0+X5)+

5(X4+X1)-

10(X2+X3)

N+3

[(X2+X7)-

3(X6+X3)+

2(X4+X5)].Z2

[(X2+X7)+

(X6+X3)-

2(X4+X5).Z1

(X2+X7)+

5(X6+X3)-

10(X4+X5)

Valid

Y

N

N

N

[(X0-X5)-3(X4-

X1)+

2(X2-X3)].Z2

[(X0-X5)+

(X4-X1)

-2(X2-X3)].Z1

(X0-X5)+

5(X4-X1)

-10(X2-X3)

Figure 5.9 Timing diagram of folded AIQ-based DAUB6

The transformed low- and high-pass coefficients are both outputted serially at the same

time at a rate of one sample (12-bits/coefficient) per clock cycle.

5.3 Hardware Synthesis

The architecture is coded in Verilog 2001 [34], [35] and prototyped first onto Xilinx

VirtexE [36] FPGA to assess the performance. The architecture is later implemented

using CMOS 0.18μm standard cell library and fabricated from Canadian Micro

Corporation (CMC) using CMOS 0.18μm TSMC technology.

5.3.1 FPGA Synthesis

Field Programmable Gate Array (FPGA) is used to synthesize the architecture in this

thesis. FPGAs are programmable logic devices made up of routing channels and arrays

of logic cells. FPGAs can be used to implement any logical function that an ASIC could

perform with an added advantage that they are reprogrammable. Therefore, new features

and modifications can be easily added and they can be used as a tool for comparing

different architectures before implementing the final design in ASIC. Currently, Xilinx

45

Corporation and Altera Corporation are the leading vendors of programmable devices.

The architecture of FPGA is vendor specific.

The typical design cycle for FPGAs using Computer Aided Design (CAD) tools is

shown in Figure in 5.10. The design is first entered using text entry or graphic entry.

Functionality of the design is extracted in next stage. Then the design is targeted on a

selected FPGA device and its timing is extracted. In the final stage the actual hardware

device is programmed. Appropriate verification is done at every stage to check the

working of the design. For design entry, text is popular as it allows more control over

the design compared to graphic design entry.

Design Entry

 -VHDL or Verilog

Encoding

Function Extraction

 -Functional netlist

Design Implementation

-Logic synthesis

-Logic fitting

-Timing extraction

-Programming file

Device programming

Figure 5.10 CAD design cycle

46

Table 5.1 presents the comparison of the synthesized results with the previous DAUB-4

and 6 fixed-point (FP) and the one-level AIQ designs [16]. It can be seen from the table

that the proposed folded scheme costs lesser hardware resources and has lower critical

path delay. The design is synthesized in Xilinx VirtexE (xcv300epq240-8) FPGA;

here

D4 = DAUB4; D6 = DAUB6; Tm = latency for multiply operation; Ta = latency for

addition operation

Table 5.1 FPGA implementation and hardware comparison

Scheme Fixed-point

[16]

One-level

AIQ [16]

Proposed two-level

folded AIQ

Overall

savings (%)

D4 D6 D4 D6 D4 D6 Dual

(D4+D6)

vs. FP vs. 1-

AIQ

FPGA

Datapath 4 6 3 6 2 3 3 70 66

Adders 32 44 16 42 9 18 27 65 53

Logic

cells

536 728 248 680 106 254 311 75 66

Registers 422 520 200 494 115 196 360 62 48

Critical

path

Tm+

2Ta

Tm+

3Ta

5Ta 6Ta 3Ta 5Ta 5Ta -- --

5.3.2 VLSI implementation and chip fabrication

The architecture is implemented using CMOS (Complementary Metal–Oxide–

Semiconductor) 0.18μm standard cell library and CMOSP18 design kit. The VLSI

design (Design run code: 0903CF and Full design ID: ICFSKASH) is later fabricated

from CMC using CMOS 0.18μm TSMC technology. VLSI implementation and Chip

47

fabrication preparation is done according to CMC’s “Digital IC design flow” [37],

which is shown in Figure 5.12.

The micrograph of the fabricated chip is shown in Figure 5.11 and the core features are

summarized in Table 5.3. The power consumptions for both DAUB4 and DAUB6 filters

are reported in Table 5.2. The maximum power consumption occurs for the DAUB6

(while running at 50MHz with 1.6V supply voltage), and hence, is reported as the chip

power. When compared to the previous designs [16] at ASIC level, the proposed two-

level design consumes much less silicon area and power (as seen from Table 5.2).

Figure 5.11 Final layout of the folded AIQ-based wavelet transform

48

Design Synthesis

And

Verification

Placement, Routing

And

Optimaztion

Layout

Vs.

Schematic

Design Rule Checking

Prepare for Fabrication

Main Tasks:

a. Functional and Gate Level Simulation

b. Synthesis

c. DFT Insertion & Pattern Generation

d. I/O Cells Insertion

e. Create Constraints File

Main Tasks:

a. Place I/O Cells and Import Design

b. Power Planning, and placement

c. Clock tree insertion

d. Exporting final netlist

e. Final routing and verification

Main Tasks:

a. Import final netlist

b. Import final layout

c. Design extraction

d. Perform LVS

Main Tasks:

a. Import final netlist

b. Import final layout

c. Design extraction

d. Perform LVS

Main Tasks:

a. Add logo for ID

purposes

Figure 5.12 VLSI Design Flow [37]

49

Table 5.2 VLSI implementation and hardware comparison

Scheme Fixed-point

[16]

One-level AIQ

[16]

Proposed two-level

Folded AIQ

Overall

savings (%)

D4 D6 D4 D6 D4 D6 Dual

(D4+D6)

vs.

FP

vs. 1-

AIQ

VLSI Gate

count

7,096 9,032 3,934 10,050 3,424 5,048 7,533 53 46

Power

(mW)

16.01 17.41 15.94 22.29 2.46 4.51 4.51 -- --

Table 5.3 Chip specification

Inputs / Outputs 8 bits / 12 bits

Technology 0.18 μm CMOS

Number of gates / cells 7,533 / 1,705

Core / Chip size 0.60 mm x 0.57 mm (core)

1.3 mm x 1.6 mm (chip)

Power consumption 4.51 mW @ 50 MHz

Latency 8 CC

Throughput (per cycle) 2-inputs/output

Maximum frequency 100 MHz

In Table 5.4, we compare our results with other architectures in terms of hardware cost

(i.e. number of multipliers, adders, and registers), critical path delay, and throughput

rate. From the popularity and applications perspective, we have limited our study to

schemes of Duabechies-4 and -6, and 5/3 and 9/7 IWT. As found from Table 5.4 that

50

due to the two-level integer mapping and data folding, the proposed folded AIQ scheme

outperforms other designs as it requires no multipliers and lesser registers; the critical

path delay is also the least with a high process throughput.

Table 5.5 shows the comparison among different designs at the ASIC level. The

technology used is different in some cases; nevertheless, it gives us a rough estimate and

a relative position of our design compared to other schemes. The RISC IWT 5/3 and 9/7

bi-orthogonal filters in [12] require multiplication of kernels of large size which makes

the control circuitry complicated, but integer nature results in faster operational

Table 5.4 Hardware comparison of filter

Scheme Mult Add Reg. Throughput

(input/output)

[6] –

D4/D6

8/12 6/10 -- --

[12] 4 12 -- --

[13] 0 19 9 1 / 1

[8] 2 4 10 1 / 1

[9] 4 8 22 2 / 1

[10] 4 8 4 2 / 1

[38] 2 4 20 1 / 1

[11] 4 8 28 2 / 1

Prop. D4 0 9 8 2 / 1

Prop. D6 0 18 11 2 / 1

51

frequency. Compared to [12], our proposed design is based on a small kernel size (8x8)

with much simpler control signaling yielding the least silicon area and power

consumption; however, the final conversion limits the frequency of operation. The

presented scheme performs better compared to other reported designs. Note that, the

processor core houses two Daubechies wavelet transforms. The dual core chip has been

tested with the lab setup as shown in Figure 5.13. In this lab setup, the ring power

supply has been set at 3.3 V, and the core power supply has been set at 1.62 V. A fixed

test input vector (8’b00011111 at each clock cycle) has been used to measure the core

power consumption with a 50 MHz clock frequency. An ammeter has been used to

record the current consumption by the core. In this testing, DAUB6 filter consumes the

maximum power, 4.51 mW at 50 MHz, which is reported as the core power. DAUB4

consumes 2.46 mW at 50 MHz with the given test input vector.

Table 5.5: Performance comparison in VLSI

Scheme Tech. (um) Chip Area

(mm
2
)

Power

(mW)

Max. Freq.

(MHz)

[7] 0.13 6.5 4.68 100

[14] 0.13 -- 12.88 --

[12] 0.18 4.84 197.6 459

[9] 0.18 2.16 102.6 100

Proposed –

Dual

0.18 2.08 4.51
1
 100

1
Measured at 50MHz

52

White Board

Logic

Analyzer

Power

Supply

Signal

Generator

Chip

Clk

 Figure 5.13 Chip testing setup

5.3.3 Performance Analysis

The output of the proposed design has been verified using a benchmark image (Lena),

and the results for the DAUB4 and DAUB6 are shown in Table 5.6. In this verification

process, Modelsim simulation has been used to process the forward transform and the

image has been restored performing inverse transform in Matlab. The reconstructed

Lena images are shown in Figure 5.14.

PSNR: A useful measure of the accuracy of the DWT coefficients is the Peak-Signal-to-

Noise-Ratio (PSNR) [39]. Here, the signal is represented by the floating-point DWT

coefficients and the noise is the difference between the floating-point and finite-

precision approximations. In the remainder of this thesis, PSNR is used as a measure of

image reconstruction. The PSNR is defined by equation 5.1.

, ,

1 1

255 255
10 log

1
()

 

 

 
 

 


  
 
W H

m n m n

m n

PSN R

c c
W H

 (5.1)

Where, W is the width of the frame, H is the height of the frame,
,m n

c and
,m n

c are the

pixel values of the original and the reconstructed image respectively.

53

To compute PSNR, we performed forward wavelet transform (using both transforms) on

the 128x128 standard “Lena” image, and then computed the inverse transform on the

transformed coefficients to recover the original image data.

Table 5.6 PSNR of DAUB4 and DAUB6

Transform Benchmark Image PSNR(dB)

DAUB4

Lena

82

DAUB6 85

(a) (b) (c)

Figure 5.14 (a) Original “Lena” image, (b) DAUB4 implementation, and

(c) DAUB6 implementation

5.4 DAUB8 Architecture

In this work, we apply both the fixed-point (FP) and one-level AIQ scheme to compute

the DAUB8 wavelet coefficients. The AIQ scheme enables a better reconstruction of

image compared to fixed-point architecture. Both designs are prototyped onto FPGA

with 8, 10, 12-bit precision of the coefficients and compared with their reconstruction

errors.

54

The proposed architecture is organized as parallel double-datapath pipeline to achieve

high throughput. 2’s complement arithmetic has been used to handle the negative

numbers. The processor core consists of four major components: Delay line / shifter,

DAUB8 FP /AIQ filter banks, and controller.

5.4.1 Delay Line / Shifter

The input is fed to the hardware at a rate of one sample (8-bit) per clock cycle through

serial-in-parallel-out operation. This operation is achieved by ping-pong buffer that

follows a data shifter which consists of eight processing elements (PE). The architecture

is shown in Figure 5.15(a) and 5.15(b). The delay line buffer and the shifter are

controlled using selection and enable pins by the controller. The outputs from the shifter

at different clock pulses (CP) are shown in Figure 5.16.

X7

in

F0

F1

F7

PE

1

PE

7

PE

0

X0

X1

ensel

To

Filter

Bank

PE6

D

(a)

(b)

0

1

Figure 5.15 Hardware diagrams: (a) Shifter for input scheduling; (b) Processing

element (PE);

55

N+0 N+2 N+4 N+6

x0

x1

x2

x3

x4

x5

x6

x7

x0

x1

x2

x3

x4

x5

x6

x7

x4

x5

x0

x1

x6

x7

x2

x3

x6

x7

x0

x1

x2

x3

x4

x5

Figure 5.16 Output from shifter at different CP

5.4.2 FP and AIQ-based DAUB8 Filter Banks

Fixed point architecture is implemented with 8 finite precision coefficients whereas AIQ

is implemented with 4 finite precision coefficients. All the coefficients or multipliers are

constant in nature, and hence can be computed using sequential addition and shift

operations only. Moreover, to reduce the number of addition operations, CSD

representation is used in both architectures.

8-bit, 10-bit and 12-bit precision are used in the multipliers. In each of the three cases

the multiplication is completed in one clock pulse (CP). Internally to the multiplier, all

significant bits are retained to guarantee the highest precision of the calculation;

however, the multiplier outputs are truncated to discard the fractional part. The error

introduced at this stage is compared in between the two architectures and minimized

using higher precision. The architecture of DAUB8 FP filter bank and AIQ filter bank

are shown in Figure 5.17 and Figure 5.18.

56

SW0

0

1

0

1

s

C0

C7

x0

x4

x3

x7

x1

x5

x2

x6

SW1

0

1

0

1

s

C1

C6

SW2

0

1

0

1

s

C2

C5

SW3

0

1

0

1

s

C3

C4

R1

R3

R2

R4

R5

R7

R6

R8

L0/H0

R9

Figure 5.17 DAUB8 FP filter bank

57

x0

x4

Filter

_0

x3

x7

Filter

_1

x1

x5

Filter

_2

x2

x6

Filter

_3

R1

R3

R2

R4

SW0

0

1

0

1

s

SW1

0

1

0

1

s

a0

a3

a1

a2

L0/H0

R5

(a)

x0

x4

x1

x3

x2

(b)

Figure 5.18 (a) DAUB8 AIQ filter bank, (b) Filter_0 architecture

5.4.3 Controller

The controller generates the signals to control various stages, selects datapaths, and

indicates the input and output data validity. The pipelined implementation allows the

mapping to start at the (N+1)th CP; at the (N+3)th CP, the system outputs the first set of

low and high-pass Daubechies coefficients. Thus, we can see that both FP and AIQ take

58

only four clock pulses to complete, and there is no data congestion inside the pipeline.

In the next four clock pulses, the input data are reordered accordingly (by the shifter) for

further processing. The transformed low- and high-pass coefficients are both output

serially in alternate CP at a rate of one sample per clock pulse.

5.4.4 Comparisons

Our results are based on the reconstruction of standard 8-bit “Lena” image using fixed

point and AIQ scheme. We compare a complete n-bit (n=8, 10, 12) FP calculation for

the entire wavelet transform (i.e. no vector quantization) with an AIQ computation. In

comparison to FP architecture where it has eight coefficients to map, AIQ uses four

coefficients which effectively reduce down the error-introducing steps. The hardware

comparison results (in terms of Logic cells, Registers & frequency) are summarised in

Table 5.6 where we provide a comparison of the arithmetic hardware complexity for the

AIQ implementation against the fixed-point binary (FP) implementation.

Two of the error metrics used to compare the various image compression techniques are

the Peak Signal to Noise Ratio (PSNR) and Root Mean Square Error (RMSE) [39]. The

RMSE is the cumulative squared root error between the reconstructed and the original

image. The mathematical formula for RMSE is:

2

, ,

1 1

1
()

 

 
  
  


W H

m n m n

m n

RM SE c c
W H

 (5.2)

59

Where, W is the width of the frame, H is the height of the frame,
,m n

c and
,m n

c are the

pixel values of the original and the reconstructed image respectively.

An interesting comparison between the architecture is to select similar or near to similar

performance and then compare the hardware consumption to attain that quality. An

example of this from Table 5.7 & 5.8 is, to attain a PSNR of 89.5db required number of

logic cells in AIQ-based transform is 518; whereas required number of logic cells is 546

to achieve 86 db PSNR in FP architecture.

In Figure 5.20 the image reconstruction of “Lena” image with 8-bit AIQ and 8-bit FP

scheme is presented.

Moreover, from Figure 5.19 it is clearly understood the AIQ encoding scheme has better

accuracy in image reconstruction compared to fixed point with less hardware

consumption; which allows multiplication-free, parallel, and real time hardware

implementation. DAUB8 AIQ architecture is very suitable for application like finger

print detection [40] and ECG signal denoising [41] where higher precision of image or

signal reconstruction is required.

In Table 5.9 we compare our design with other architectures. Compared to [40] and [41]

our FP and AIQ architectures consume less hardware. Please note that [40] and [41]

reported only low FIR filter implementation results. Studying the mathematical

algorithm of DAUB8 from chapter 3 it is obvious High FIR filter will require almost the

60

same number of logic cells for the corresponding architecture. So the hardware

consumption in [40, 41] are extended for HIGH FIR filter in Table 5.9 for a rational

comparison.

Table 5.7 FPGA implementation & hardware costs between FP and AIQ

Table 5.8 Image quality at different bit precision between FP and AIQ

Quality Fixed-point Proposed AIQ

8-bit 10-bit 12-bit 8-bit 10-bit 12-bit

RMSE 0.0261 0.0130 0.0067 0.0085 0.0063 0.0061

PSNR 80 86 91.5 89.5 92 92.5

Scheme Fixed-point Proposed AIQ

8-bit 10-bit 12-bit 8-bit 10-bit 12-bit

Logic Cells 490 546 631 518 572 637

Registers 255 255 262 186 186 187

Frequency 95 83 74 71 64 54

61

Figure 5.19: Harwdare cost of FP and AIQ at corresponding PSNR

 (a) (b) (c)

Figure 5.20 (a) original “Lena” image; (b) 8-bit AIQ (PSNR = 89.5 dB); and

 (c) 8-bit FP (PSNR = 80 dB) implementation

62

Table 5.9 Comparison of hardware between different architectures

Scheme Architecture
Logic

Cells

Speed

(MHz)

Input

Word

Length

Coefficient

Bit Length

[40]

Conventional 1,120 54.3 9 9

Distributed

Arithmetic
748 72.7 9 9

[41]

Hard Router 900 161 9 8

Benkrid

architecture with

adder tree

632 159 9 8

Prop.
FP 490 95 8 8

AIQ 518 71 8 8

5.6 Summary

In this chapter, the implementation of the proposed folded DAUB4 and DAUB6

architecture is discussed. The architecture is implemented using the mathematical

expressions and signal flow graphs developed in Chapter 4. The hardware synthesized

results are then presented and compared with one-level AIQ which shows significant

reduction in hardware due to efficient folded technique. The fabricated chip

performances are compared with other reported designs, which shows the presented

scheme performs strongly.

63

Later, a fixed-point DAUB8 DWT and its proposed AIQ based architectures are

implemented. The image reconstruction accuracy and required hardware consumption

is compared in between fixed-point and AIQ scheme. At fixed PSNR, AIQ scheme

consumes less hardware compared to fixed-point. DAUB8 transform can reconstruct the

image with finer details. So the AIQ-based DAUB8 transform is very suitable in such

applications (e.g., finger print, ECG signal denoising) where higher accuracy is required.

64

Chapter 6

Conclusion and Future Work

6.1 Summary of Accomplishments

In this thesis, we have presented an area and power efficient architecture to compute two

8-point wavelet transforms: four- and six-tap Daubechies orthonormal wavelet filters.

The architecture is developed using a two-level folded mapping technique that is based

on the factorization and decomposition of the transform matrices. The use of multi-

dimensional AIQ encoding reduces computation error. The architecture is fabricated

using 0.18μm CMOS process. Performance comparisons indicate that, the proposed

scheme provides an efficient alternative with much lesser computational complexity,

silicon area, critical path delay and power consumption, and higher throughput.

DAUB4 and DAUB6 architectures are implemented as a shared hardware core in FPGA

and 0.18μm CMOS technology When fabricated in 0.18 μm CMOS technology, the chip

area of the dual-DWT processor is 2.08 sq. mm, the maximum frequency is 100 MHz,

the gate count is 7,533, and the power consumption is 4.51 mW. Compared to existing

designs, the proposed scheme reduces significantly the hardware cost, critical path delay

and power consumption with a higher throughput rate.

65

Later, both FP and AIQ architecture of DAUB8 is implemented in FPGA and compared

their performances. At required PSNR, AIQ performs better with less hardware

consumption. The architecture is also compared with other designs to assess the

hardware cost. Compared to existing designs, the AIQ architecture consumes less

hardware.

 In Table 6.1 the three architectures are arranged in order of high, medium, low with

indexes - (i) Image reconstruction capability, and (ii) Hardware cost. Here the idea is to

compare the three architectures among themselves and choosing the right transform for

appropriate applications.

Table 6.1 Degree of performance and hardware cost

Degree Image

Reconstruction

Hardware Cost

High DAUB8 DAUB8

Medium DAUB6 DAUB6

Low DAUB4 DAUB4

In case of moderate image reconstruction, DAUB4 would be an excellent choice to save

area and power compare to any other architectures studied in this work. At high noise

level we propose DAUB6 as an efficient architecture with good image reconstruction

capability. In application where we need detail pixels information (e.g., finger print,

66

ECG signal denoising) we propose DAUB8 which is able to reconstruct the image with

finer details.

6.2 Recommendations for future work

Future work needs to be directed towards the detailed design and VLSI fabrication of

the two-level AIQ-based DAUB8 wavelet transform.

Also, the efficient scheduling of the input datapath and timing operations can be used to

implement the one-level AIQ-based DAUB8 architecture. That will reduce the number

of sub filter banks used from four to one and will significantly reduce the hardware cost.

Finally, very recently the Finite Ridgelet Transform (FRIT) has been introduced [44] as

a sparse expansion of functions on both continuous and discrete spaces that are smooth

away from discontinuities along lines. To compute the FRIT, a 1-D DWT is used in the

intermediate stage as a secondary transform. So, it would be very useful to investigate

the potential benefits of using an AIQ implementation of a 1-D Daubechies wavelet

transform in the FRIT application.

67

REFERENCES

1. S. Mallat, A wavelet tour of signal processing. New York: Academic, 1998.

2. I. Daubechies, “The Wavelet Transform Time-Frequency Localization and

Signal Analysis,” IEEE Trans. Information Theory, vol. 36, pp. 961-1005, Sept.

1990.

3. JPEG2000 Image Coding System, ISO/IEC/JTC1/SC29/WG1 N390R, March

1997.

4. J. Walker, A primer on wavelets and their scientific applications. CRC Press

LLC, 1999.

5. I. Daubechies, Ten Lectures on Wavelets. Philadelphia: SIAM, 1992.

6. Q. Dai, X. Chen, and C. Lin, “A novel VLSI architecture for multidimensional

discrete wavelet transform,” IEEE Trans. Circuits and Systems for Video

Technology, vol. 14, pp. 1105-1110, Aug. 2004.

7. A. Acharyya, K. Maharatna, B. Al-Hashimi, S. Gunn, “Memory reduction

methodology for distributed arithmetic based DWT/IDWT exploiting data

symmetry,” IEEE Trans. Circuits and Systems II, vol. 56, pp. 285-289, April

2009.

8. G. Shi, W. Liu, L. Zhang, F. Li, “An efficient folded architecture for lifting-

based discrete wavelet transform,” IEEE Trans. Circuits and Systems II, vol. 56,

pp. 290-294, April 2009.

9. Y. Lai, L. Chen, Y. Shih, “A high-performance and memory-efficient VLSI

architecture with parallel scanning method for 2-D lifting-based discrete wavelet

transform,” IEEE Trans. Consumer Electronics, vol. 55, pp. 400 – 407, May

2009.

10. C. Huang, P. Tseng, and L. Chen, “Flipping structure: an efficient VLSI

architecture for lifting based discrete wavelet transform,” IEEE Trans. Signal

Processing, vol. 52, pp. 1080–1089, April 2004.

11. Y. Seo, and D. Kim, “VLSI architecture of line-based lifting wavelet transform

for motion JPEG2000,” IEEE J. of Solid-State Circuits, vol. 42, pp. 431-440,

Feb. 2007.

12. S. Lee and S. Lim, “VLSI design of a wavelet processing core,” IEEE Trans.

Circuits and Systems for Video Technology, vol. 16, pp. 1350-1360, Nov. 2006.

 68

13. M. Martina and G. Masera, “Multiplierless, folded 9/7-5/3 wavelet VLSI

architecture,” IEEE Trans. Circuits and Systems II, 54, pp. 770-774, Sept. 2007.

14. M. Martina and G. Masera, “Low-complexity, efficient 9/7 wavelet filters VLSI

implementation,” IEEE Trans. Circuits and Systems II, vol. 53, pp. 1289–1293,

Nov. 2006.

15. K. Wahid, V. Dimitrov, G. Jullien and W. Badawy, “Error-Free computation of

Daubechies wavelets for image compression applications,” Electronic Letters,

vol. 39, no. 5, pp. 428-429, May 2003.

16. K. Wahid, V. Dimitrov, and G. Jullien, “VLSI architectures of Daubechies

wavelet transforms using algebraic integers,” J. Circuits, Systems, and

Computers, vol. 13, no.6, pp. 1251-1270, June 2004.

17. N. Ahmed, T. Natarajan and K. Rao, “Discrete Cosine Transform,” IEEE Trans.

Computers, vol. 23, pp. 90-93, Jan. 1974.

18. JPEG Committee Draft CD10918, ISO/IEC JTC1/SC29/WG10, Oct. 1991.

19. V.Srinivasa Rao, Dr P.Rajesh Kumar, G.V.H.Prasad, M.Prema Kumar, and

S.Ravichand, “Discrete Cosine Transform Vs Discrete Wavelet Transform: An

Objective Comparison of Image Compression Techniques for JPEG Encoder,”

Int. J. Advanced Engineering & Applications, Jan. 2010

20. S. Mallat, “Multifrequency Channel Decompositions of Images Wavelet

Models,” IEEE Trans. Acoustics, Speech and Signal Processing, vol. 37, pp.

2091-2110, Dec. 1989.

21. A. Primer, Introduction to Wavelets and Wavelet Transforms. Prentice Hall,

1998.

22. Rafael C. Gonzalez, and Richard E. Woods, Digital Image Processing. New

Jersey: Pearson Prentice Hall, 2008.

23. S. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet

Representation,” IEEE Trans. Pattern Analysis and Machine Intelligence,

vol.11, pp. 674-693, July 1989.

24. Robi Polikar (January 12, 2001), The Wavelet Tutorial (2nd ed.) [Online].

Available: http://users.rowan.edu/~polikar/WAVELETS/WTtutorial.html).

Access: Aug. 2010.

http://users.rowan.edu/~polikar/WAVELETS/WTtutorial.html

 69

25. I. Daubechies, "Orthonormal bases of compactly supported wavelets," Commun.

Pure Appl. Math. Vol. 41, pp. 909-996, 1988.

26. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical

Recipes in C, 2nd ed. Cambridge University Press, 1999.

27. W. Shann, and C. Yen, “Exact Solutions for Daubechies Orthonormal Scaling

Coefficients,” Dept. Mathematics, National Central University, Tech. Rep. TR-

9704, Sept. 13, 1997.

28. Richard Dedekind, Theory of Algebraic Integers, Translated and introduced by

John Stillwell. Cambridge University Press, Sept. 1996.

29. J. H. Cozzens and L. A. Finkelstein, “Computing the Discrete Fourier Transform

using Residue Number Systems in a Ring of Algebraic Integers,” IEEE Trans.

Information Theory, vol. 31, pp. 580-588, Sept. 1985.

30. K. A. Wahid, V. S. Dimitrov, and G. A. Jullien, “Error-Free Arithmetic for

Discrete Wavelet Transforms using Algebraic Integers,” in Proc. of the IEEE

Symp. Computer Arithmetic, Spain 2003, pp. 238-244.

31. D. Knuth, The Art of Computer Programming, Seminumerical Algorithms, 3rd

ed., vol. 2. Addison-Wesley,1981.

32. K. Wahid, S-B. Ko, and D. Teng, “Efficient hardware implementation of an

image compressor for wireless capsule endoscopy applications,” in Proc. of the

IEEE Int. Joint Conf. Neural Network, Hong Kong, 2008, pp. 2761-2765.

33. R. Hewlitt and E. Swartzlander. “Canonical signed digit representation for FIR

digital filters,” in Proc. of the IEEE workshop on Signal Processing Systems,

Lafayette, LA , USA, 2000, pp. 416-426.

34. 1364-1995 IEEE Standard for Verilog Hardware Description Language, IEEE,

1995.

35. Wikipedia: Verilog, Wikimedia Foundation Inc. Available:

http://en.wikipedia.org/wiki/Verilog. Access: July 23, 2010.

36. Synthesis and Simulation Design Guide, Xilinx Development System, Xilinx

Inc., 2008.

37. JL Derome, “A tutorial on RMC’s Digital Design Flow (based on CMOSP18

Artisan),” Version (5.0D) for Cadence 2006a, January 28, 2008.

http://en.wikipedia.org/wiki/Verilog

 70

38. B. Wu and C. Lin, “A high-performance and memory-efficient pipeline

architecture for the 5/3 and 9/7 discrete wavelet transform of JPEG2000 codec,”

IEEE Trans. Circuits and Systems for Video Technology, vol. 15, pp. 1615-1628,

Dec. 2005.

39. S. Winkler, Digital Video Quality: Vision Models and Metrics. UK: Wiley,

2005.

40. M. Tico, E. Immonen, P. Ramo, P. Kuosmanen, and J. Saarinen, “Fingerprint

Recognition Using Wavelet Features,” in Proc. of IEEE Int. Symp. Circuits and

Systems, vol. 2, Sydney, NSW 2001, pp. 21- 24.

41. B. Singh, and A. Tiwari, “Optimal selection of wavelet basis function applied to

ECG signal denoising,” Digital Signal Processing, Elsevier, vol. 16, issue. 3, pp.

275–287, May 2006.

42. A. M. Al-Haj, “Fast Discrete Wavelet Transformation Using FPGAs and

Distributed Arithmetic,” Int. J. Applied Science and Engineering, vol. 1, no. 2,

pp. 160-171, July 2003.

43. Benkrid, K. Benkrid and D. Crookes, “A novel FIR filter architecture for

efficient signal boundary handling on Xilinx VIRTEX FPGAs,” in Proc. 11th

IEEE symp. Field-Programmable Custom Computing Machines, pp. 273-275,

Sept. 2003.

44. M. Do, and M. Vetterli, “The Finite Ridgelet Transform for Image

Representation,” IEEE Trans. Image Processing, vol. 12, pp. 16-28, Jan. 2003.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8700
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8700

	Theis_title.pdf
	permission.pdf
	abstract.pdf
	acknowledgement.pdf
	dedicate.pdf
	Table of contents.pdf
	Thesis_tables.pdf
	Thesis_figures.pdf
	Table of abbreviation.pdf
	Thesis_Chapter1.pdf
	Thesis_Chapter2_draft2.pdf
	Thesis_Chapter3_draft2.pdf
	Thesis_Chapter4_draft2.pdf
	Thesis_Chapter5_draft2.pdf
	Thesis_Chapter6_draft 2.pdf
	Thesis_References_updated.pdf

