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ABSTRACT 
 

The Discrete Wavelet Transform (DWT) is a popular tool in the field of image and video 

compression applications. Because of its multi-resolution representation capability, the DWT has 

been used effectively in applications such as transient signal analysis, computer vision, texture 

analysis, cell detection, and image compression. Daubechies wavelets are one of the popular 

transforms in the wavelet family. Daubechies filters provide excellent spatial and spectral 

locality-properties which make them useful in image compression. 

 

 In this thesis, we present an efficient implementation of a shared hardware core to compute two 

8-point Daubechies wavelet transforms. The architecture is based on a new two-level folded 

mapping technique, an improved version of the Algebraic Integer Quantization (AIQ). The 

scheme is developed on the factorization and decomposition of the transform coefficients that 

exploits the symmetrical and wrapping structure of the matrices. The proposed architecture is 

parallel, pipelined, and multiplexed. Compared to existing designs, the proposed scheme reduces 

significantly the hardware cost, critical path delay and power consumption with a higher 

throughput rate. 

 

Later, we have briefly presented a new mapping scheme to error-freely compute the Daubechies-

8 tap wavelet transform, which is the next transform of Daubechies-6 in the Daubechies wavelet 

series. The multidimensional technique maps the irrational transformation basis coefficients with 

integers and results in considerable reduction in hardware and power consumption, and 

significant improvement in image reconstruction quality.  
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Chapter 1 

Introduction 

  
 

1.1 Introduction 

The Discrete Wavelet Transform (DWT) [1, 2] has extensively been used in a wide 

range of applications, including image and video coding, pattern recognition, etc. After 

its inclusion in JPEG2000 compression standard [3], significant research has been done 

to optimize the DWT implementation to reduce the computational complexity, as most 

applications using it demand real-time processing. The Cohen-Daubechies-Feauveau 9/7 

bi-orthogonal [4] and the Daubechies wavelets (DAUB2-DAUB20) [5] are the two 

highly popular types of basis functions. Most of the research work to reduce the 

hardware complexity is inclined towards multiplierless implementations by 

maneuvering the filter banks [6, 7] or using lifting schemes [8, 9, 10, 11]. In all these 

designs, the use of conventional fixed-point (FP) binary representation to implement the 

irrational transform coefficients introduces round-off error at the beginning of the 

process, which then transmits throughout the entire computation process and degrades 

image reconstruction. In some cases, the Integer Wavelet Transform (IWT) is used, but 

the need for large bit-width adder tree and complex control circuitry leads to higher 

implementation cost, as well as poor reconstruction [12, 13, 14]. 
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1.2 Motivation 

In order to eliminate the round-off error for DWT, Wahid et al. [15, 16] proposed an 

Algebraic Integer Quantization (AIQ) technique to compute the Daubechies-4 tap and 

Daubechies-6 tap filter coefficients, where the irrational transform basis functions are 

mapped with integers, resulting in very efficient computation. The AIQ representation 

of the wavelet coefficients provides error-free calculations until the final reconstruction 

step. This also makes the hardware architecture simple, multiplication-free and 

inherently parallel. However, in this technique a direct (one-level) AIQ mapping is 

utilized which involves large number of internal computing elements that result in high 

cost of hardware resources and silicon area and low throughput. 

 

In our work, we propose a new two-level encoding, called folded mapping, which 

combines the error-free AIQ scheme and matrix decomposition techniques to compute 

the DAUB4 and DAUB6 wavelet coefficients. This new scheme enables resource 

sharing and yields lower hardware cost and power consumption, and higher process 

throughput. The AIQ-encoded forward basis transformation matrices are first 

decomposed into multiple sub-matrices; the common structures of the sub-matrices are 

identified and later shared for implementation. The design has been prototyped onto 

FPGA and VLSI using 0.18μm CMOS standard cells. 

 

The architecture houses both DAUB4 and DAUB6, where the user selects the desired 

transform unit based on the application and end user’s requirement. For slowly varying 

signals, the DAUB4 gives the best results; while for rapidly varying signals, the DAUB6 
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performs well at high noise levels [4]. The DAUB6 also provides better details of 

medical images than the DAUB4, but at the expense of consuming more power. It suits 

nicely in an image compressor for applications like the wireless capsule endoscopy [32]. 

When the capsule passes through human gastrointestinal tract, having two transforms in 

one chip will provide the physicians with an added feature of using DAUB6 when 

images of finer details are desired, and then switching back to DAUB4 for unimportant 

and/or unconcerned regions (to save power consumption and battery life). 

 

Later, we apply a one-level AIQ scheme to implement the Daubechies-8 wavelet 

transform. The use of conventional fixed-point binary representation for implementing 

Daubechies wavelets, introduces round-off or approximation errors at the very 

beginning of the process due to the lack of exact representation of the irrational numbers 

that form the coefficient basis. These errors tend to increase as the calculations progress 

through the architecture, degrading the quality of the image reconstruction. The AIQ 

mapping helps to reduce the computational and approximation error. 

 

1.3 Thesis objective 

This thesis work is directed towards the design of two DWT processors using two-level 

folded AIQ and one-level AIQ schemes. There are three general objectives behind this 

research. 

 

1) To investigate the folded AIQ representation of Daubechies-4 & Daubechies-

6 tap wavelet coefficients. The motivation for using folded AIQ to represent 
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Daubechies-4 and Daubechies-6 filter coefficients comes from studying the conjugate 

structure of the coefficients in closed form representation. The new scheme leads to 

develop the architecture, and implementation on FPGA and VLSI platform. 

 

2) To investigate the one-level AIQ representation of Daubechies-8 tap wavelet 

coefficients.  

 

3) To demonstrate the potential performance advantages of these architectures in 

terms of reduced hardware cost and improved image reconstruction. 

 

All details of these implementations, especially the different design units, will be  

developed in this thesis work. The results of a final simulation, using a standard image, 

will be discussed in terms of image reconstruction, hardware complexity and achievable 

precision. These results will be targeted towards the general area of image compression 

applications. 

 

1.4 Thesis organization 

This thesis is organized into six chapters. In Chapter 2, we briefly discuss the DWT 

algorithm and present the matrix representation of Daubechies-4, Daubechies-6, and 

Daubechies-8 wavelet transform. The application of AIQ to implement Daubechies 

wavelet coefficients is presented in Chapter 3. Chapter 4 presents the proposed folded 

AIQ algorithm for the Daubechies-4 and Duabechies-6 filter banks. Later, an AIQ based 

algorithm and architecture of Daubechies-8 is presented. The architectural details, 
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hardware mapping, FPGA and VLSI simulation, synthesis and fabrication results along 

with performance analysis are summarized in Chapter 5. Chapter 6 concludes the thesis 

by summarizing the accomplishment of the research work and giving recommendations 

for future exploration. 
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Chapter 2 

Discrete Wavelet Transform 

    
 

2.1  Introduction 

This chapter presents a brief description to the Discrete Wavelet Transform (DWT). Low 

bit-rate image compression is essential for the transmission and storage of digital images. 

A number of different techniques for image coding have been proposed, but due to some 

very attractive characteristics, the DWT has proven to be very useful. The DWT has 

extensively been used in a wide range of applications, including numerical analysis, image 

and video coding, pattern recognition, etc. For many years the Discrete Cosine Transform 

(DCT) [17] has been the core transform for image compression algorithms. The DCT is 

used in the JPEG [18] image compression standard. Despite all the advantages of JPEG 

compression schemes based on the DCT, there are noticeable and annoying “blocking 

artifacts” particularly at low bit rates due to the inherent characteristics of DCT. To apply 

DCT the input image needs to be “blocked”, which results in correlation across the block 

boundaries. In case of DWT, the transform is applied to the entire image. As a result, there 

are no blocking artifacts. The DWT transforms discrete signal from the time domain into 

time frequency domain. The transformation product is a set of coefficients organized in the 

way that enables not only spectrum analysis of the signal also spectral behavior of the 

signal in time. The wavelet transform has emerged as a cutting edge technology, within the 

http://en.wikipedia.org/wiki/JPEG
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field of image compression. Wavelet-based coding provides substantial improvements in 

picture quality at higher compression ratios [19]. In addition, wavelet coding is better 

matched to the characteristics of the Human Visual System (HVS). Because of their 

inherent multiresolution nature [20], wavelet coding schemes are especially suitable for 

applications where scalability and tolerable degradation are important. After its inclusion 

in JPEG2000 compression standard, ISO/ITU-T standard for still image coding, etc. 

significant research has been done to optimize the DWT implementation to reduce the 

computational complexity, as most applications using it demand real-time processing. 

 

2.2  Definition of Wavelets 
 

Wavelets are functions defined over a finite interval and having an average value of zero 

[21]. The basic idea of any wavelet transform is to represent an arbitrary function, x(t), as a 

superposition of a set of such wavelets or basis functions. These basis functions or baby 

wavelets are obtained from a single prototype wavelet called the mother wavelet, by 

dilations or contractions (scaling) and translations (shifts). The Wavelet Transform of a 

finite length signal, x(t), is given by Eqn. (2.1). 

                                     01
( , ) ( ) ( )





   

t
s x t dt

s s
                                   (2.1) 

Here,  = translation and s = scaling. 

 

 In spatial domain image processing, the operation is discretized. The Discrete Finite 

Wavelet Transform can be represented as a matrix, ( )c and the DWT coefficients can be 

obtained by taking the inner product between the input signals and the wavelet matrix. 
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Since the basis functions are the translated and dilated versions of each other, the DWT 

coefficients of one stage can be calculated from the DWT coefficients of the previous 

stage. 

 

2.2.1 Subband Coding  
 

Subband coding [22] has been used extensively in speech coding and in image coding 

because of its inherent advantages; namely, variable bit assignment among the subbands 

and coding error confinement within the subbands. The DWT, due to based on subband 

coding, reduces the computation time and resources required. In subband coding, an image 

is decomposed into a set of band limited components, called subband. The decomposition 

and reconstruction are performed by digital filters. Therefore, in DWT, a time-scale 

representation of the digital signal is obtained using digital filtering techniques.  

 

Filters are one of the most important functions in signal processing. Wavelets can be 

implemented by iteration of filters with rescaling. The resolution of the signal (a measure 

of the amount of detail information in the signal) is determined by the filtering operations, 

and the scale is determined by subsampling (upsampling and downsampling) operations. 

The DWT is computed by successive highpass and lowpass filtering of the discrete time-

domain signal as shown in Figure 2.1. This is known as the Mallat algorithm or Mallat-tree 

decomposition [23]. It has the significance of connecting the continuous-time 

mutiresolution to discrete-time filters. In Figure 2.1, the input signal is denoted by the 

sequence X[n], where n is an integer. The low pass filter is denoted by LOW while the 

high pass filter is denoted by HIGH. The first level of decomposition extracts the details 
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(high frequency components, d[n]) of the signal while the second and all the subsequent 

decompositions extract progressively coarser information (low frequency components, 

a[n]).  

 

2

2

2

2

2

X[n]

Input

Input

HIGH

LOW

HIGH

LOW

HIGH

LOW

d1(n)

d2(n)

d3(n)

a3(n)

 

Figure 2.1 Three-level decomposition of wavelet algorithm 

 

 

This decomposition halves the time resolution since only half the number of samples now 

characterizes the entire signal. After passing the original signal through a half band 

lowpass filter, according to Nyquist’s rule, half of the samples can be eliminated [24]. 

Since the signal now has a highest frequency of ω /2 radians instead of ω. The signal can 

therefore be subsampled by 2, simply by discarding every other sample. The above 

procedure can be repeated for further decomposition until the desired level is reached. The 

number of levels depends on the length of the signal. The original signal is then realized by 

concatenating all the coefficients, a[n] and d[n], starting from the last level of 

decomposition. Figure 2.2 shows the rebuilding of the original signal from the wavelet 

coefficients. In Figure 2.2, the output signal is denoted by the sequence Y[n], where n is an 

integer. The reconstruction is basically the reverse process of decomposition. The detail, 
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d[n] and approximation coefficients, a[n] at every level are up-sampled by two, passed 

through the high pass and low pass synthesis filters and then added. This process requires 

the same number of levels as in the decomposition process to obtain the original signal.  

 

2

2

HIGH

LOW

d3(n)

a3(n)

2

2

HIGH

LOW

d2(n)

2

2

HIGH

LOW

d1(n)

Y[n]

 

 

 

Figure 2.2 Three-level reconstruction of wavelet algorithm 
 

 

Image processing is vastly benefitted from this particular property of the wavelet 

transform. DWT can be applied to reduce the image size without losing much of the 

resolution. For a given image, DWT of each row can be computed, and all values in the 

DWT that are less than a certain threshold can be discarded. Only those DWT coefficients 

that are above the threshold for each row can be saved, and used to reconstruct the original 

image by simply padding each row with as many zeros as the number of discarded 

coefficients, and then apply the inverse DWT to reconstruct each row of the original 

image. 
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Figure 2.3 shows the 3-level decomposition of benchmark “Lena” image using 2-D 

Daubechies-6 wavelet transform. 

    
 

Figure 2.3 (a) Original “Lena” Image; (b) 3-level decomposition of DWT; (c) Decomposed 

“Lena” image. 

 

 

 

 

2.3  Daubechies Wavelet Transform 
 

Special families of wavelet functions are developed for the DWT. These wavelets are 

compactly supported, orthogonal or biorthogonal and are characterized by high-pass and 

low-pass analysis and synthesis filters. The Daubechies wavelets are a family of 

orthogonal wavelets defining a DWT. The Daubechies family is named after Ingrid 

Daubechies (a Belgian physicist and mathematician) who invented the compactly 

supported orthonormal wavelets, making wavelet analysis in discrete time possible. The 

research work presented in this thesis is restricted to Daubechies wavelets because they 

immediately lend themselves to AIQ implementation, and are also useful, having class 

members ranging from highly localized to highly smooth and providing excellent 

performance in image compression applications. Daubechies wavelet coefficients are based 

http://en.wikipedia.org/wiki/Orthogonal_wavelet
http://en.wikipedia.org/wiki/Discrete_wavelet_transform
http://en.wikipedia.org/wiki/Belgium
http://en.wikipedia.org/wiki/Physicist
http://en.wikipedia.org/wiki/Mathematician
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on computing wavelet coefficients, Cn (where n = 0, 1, 2. . . N-1 and N is the number of 

coefficients) to satisfy the following conditions [25]: 

(1) The conservation of area under  ( ) : 2 n

n

x t C  

(2) The accuracy conditions:  ( 1) 0 ( 0, 1, 2, ........., 1 )
2

    
n m

nn

N
n C w here m P and P  

 (3) The perfect reconstruction conditions: 2

2
2 . 0


  n n n mn n

C and C C  

Then the low-pass filter is ( )
2


n

C
h n  and the high-pass filter is

1
( ) ( 1) ( 1)


   

n
g n h n N . 

Daubechies coefficients range from Daubechies-2 (in short, DAUB2 with 2 coefficients) to 

Daubechies-20 (DAUB20, 20 coefficients). In this research work, we study the hardware 

architectures associated with implementing Daubechies-4 (DAUB4), Daubechies-6 

(DAUB6) and Daubechies-8 (DAUB8). 

 

2.3.1 DAUB4 Wavelet Transform 

 

The simplest and most localized member in Daubechies family is the DAUB4, which has 

four coefficients, 
0 1 2 3

C , C , C and C [26] as given in Eqn. (2.2). 

 

                  
0 1

2 3

(1 3 ) / 4 2 (3 3 ) / 4 2

(3 3 ) / 4 2 (1 3 ) / 4 2

C C

C C

   

   

                                      (2.2) 

 

For a 8x8 input data, the DAUB4 forward transform is shown in Eqn. (2.3). In the forward 

transform matrix, the odd row coefficients, 
0 1 2 3

C , C , C and C implement a low-pass filter 
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and the even row coefficients, 
3 2 1 0

C , C , C and C    implement a high-pass filter. Also, the 

DWT is orthogonal and invertible - the inverse transform, is simply the transpose of the 

forward transform matrix. 

  

                   

0 1 2 3

3 2 1 0

0 1 2 3

3 2 1 0

4

0 1 2 3

3 2 1 0

2 3 0 1

1 0 3 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
( )

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



 

 
 

 

 

 
  


 

 
  

 

 
   

C C C C

C C C C

C C C C

C C C C
C

C C C C

C C C C

C C C C

C C C C

                               (2.3) 

 

 

2.3.2 DAUB6 Wavelet Transform 

 

The DAUB6, which performs well at high noise levels compare to DAUB4 [15] has six 

coefficients, 
0 1 2 3 4 5

C , C , C , C , C and C  [26] as given in Eqn. (2.4). 

  

0 1

2 3

4 5

(1 10 5 2 10 ) (5 10 3 5 2 10 )

16 2 16 2

(10 2 10 2 5 2 10 ) (10 2 10 2 5 2 10 )

16 2 16 2

(5 10 3 5 2 10 ) (1 10 5 2 10 )

16 2 16 2

     
 

     
 

     
 

C C

C C

C C

                           (2.4) 
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For a 8x8 input data, the Daubechies-6 forward transform matrix is shown in Eqn. (2.5). 

 

               

0 1 2 3 4 5

5 4 3 2 1 0

0 1 2 3 4 5

5 4 3 2 1 0

6

4 5 0 1 2 3

1 0 5 4 3 2

2 3 4 5 0 1

3 2 1 0 5 4

0 0

0 0

0 0

0 0
( )

0 0

0 0

0 0

0 0

C C C C C C

C C C C C C

C C C C C C

C C C C C C
C

C C C C C C

C C C C C C

C C C C C C

C C C C C C



 

 
  

 

 

 
   


 

 
   

 

 
    

                           (2.5) 

 
 

2.3.3 DAUB8 Wavelet Transform 

 

The DAUB8 has eight coefficients
0 1 2 3 4 5 6 7

C , C , C , C , C , C , C and C  [27] as given in Eqn. 

(2.6). 

0 0 1 1 0

2 2 1 0 3 3 2 1 0

4 0 1 2 1 5 1 2 3

6 2 3 7 3

/ 32 2 ( 4 ) / 32 2

( 4 6 ) / 32 2 ( 4 6 4 ) / 32 2

( 4 6 4 ) / 32 2 ( 4 6 ) / 32 2

( 4 ) / 32 2 / 32 2

  

      

      

  

C a C a a

C a a a C a a a a

C a a a a C a a a

C a a C a

      (2.6) 

 

Where 0 1 1 3

5 5
, 2 140 , 2 140 ,a a a a 

 
          

 

Where α is the root of the following polynomial 
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4 3 2
2(1 35 ) 40 10(1 35 ) 25 0           

The polynomial has a pair of conjugate complex roots and two different real 

roots 1
 and 2

 . The value of 1
 is given by: 

1 1

3

1 1 1 3 1
35 3

2 2 6 6

v
s

u

      

The value of 1
 is approximately 10.4257, gives the “minimum phase” orthonormal 

scaling function (this is the normal choice). The value of 2
 is given by: 

2 1

3

1 1 1 3 1
35 3

2 2 6 6
    

v
s

u

 

The value of 2
 is approximately 1.4583, gives the “least asymmetric” orthonormal 

scaling function. 

 

For both of the above expressions, 

700 210 15u    

1 1 2 1

3 3 3 328 70.2 (2 ) 6 . 35v u u u     

1 1 2 1

3 3 3 3

1

3

56 70.2 (2 ) 12 35 336 3 48 105u v v u v u v u v
s

u v

    
  
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For a 8x8 input data, the DAUB8 forward transform matrix  is shown in Eqn. (2.7). 

 

                  

0 1 2 3 4 5 6 7

7 6 5 4 3 2 1 0

6 7 0 1 2 3 4 5

1 0 7 6 5 4 3 2

8

4 5 6 7 0 1 2 3

3 2 1 0 7 6 5 4

2 3 4 5 6 7 0 1

5 4 3 2 1 0 7 6

( )

C C C C C C C C

C C C C C C C C

C C C C C C C C

C C C C C C C C
C

C C C C C C C C

C C C C C C C C

C C C C C C C C

C C C C C C C C



 

 
   

 

 

 
    


 

 
    

 

 
     

                              (2.7) 

 
 

2.4 Summary 
 

In this chapter, we have presented the fundamentals of wavelets, subband coding 

(decompositions of signals in subbands) and Daubechies wavelet transforms. In the final 

part, the properties and mathematical expressions of Daubechies-4, 6 and 8 coefficients are 

presented which are helpful for the error-free encoding to be presented later in this thesis. 
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Chapter 3 
  

Algebraic Integer Quantization 

  

  

3.1 Introduction 

This chapter presents a brief description to Algebraic Integer Quantization (AIQ) [28]. 

The idea of using AIQ in DSP applications is first explored by Cozzens and Finkelstein 

[29]. The use of any conventional number representation introduces approximation 

errors at the very beginning of the process due to the lack of exact representation of the 

irrational numbers that form the coefficient basis. These errors tend to propagate 

through the wavelet transform computation and degrade the quality of image 

reconstruction. The AIQ mapping helps to reduce the computational cost and 

approximation errors. 

 

3.2  Algebraic Integer Quantization (AIQ)  

AIQ is defined by real numbers that are roots of monic polynomials with integer 

coefficients [30]. As an example, let 

2 j

16e



  denote a primitive 16
th

 root of unity over 

the ring of complex numbers. Then  satisfies the equation 
8

1 0 x . If  is 

adjoined to the rational numbers, then the associated ring of algebraic integers is 

denoted by Z[ ] .The ring Z[ ]  can be regarded as consisting of polynomials in  of 
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degree 7 with integer coefficients. The elements of Z[ ]  are added and multiplied as 

polynomials, except that the rule 
8

1    is used in the product to reduce the degree of 

powers of  to below 8. For an integer M, 
M

Z[ ]  is used to denote the elements of 

Z[ ]  with coefficients between M

2
  and  M

2

 .  

A real number x in Z[ ]  can be written in the form  

 

          
0 1 2 3

2 2 2 2 2     x a a a a         (3.1) 

 

The ring of all such elements is denoted by [ 2 2 ]Z . If 2 2   , then   is a root 

of the polynomial 
4 2

4 2 x x  and the elements of Z( )  have a polynomial form, 

where the relation 4 2
4 2     is used to reduce power of   above three. The elements 

of Z( ) are used to process separately the real and imaginary part of Z[ ] . In summary, 

algebraic integers of an extension of degree n can be assumed to be of the form 

 

                             
0 0 1 1 1 1

...
 

  
n n

a a a                                                     (3.2) 

 

Where 
0 1 n 1

{ , , ..., }


    is called the algebraic-integer basis and the coefficients 
i

a  are 

integers. 
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3.3  Past Work of AIQ  

The past work is restricted to DAUB4 and DAUB6 wavelet transforms. The AIQ-based 

DAUB4 and DAUB6 transform proposed by Wahid et al. [15], [16] is studied in the 

following sections.  

 

3.3.1 AIQ encoding of DAUB4  

From Eqn. 2.2, if 3z , all the coefficients can be expressed (scaled by 4 2 ) as a 

first degree polynomial in z with integer coefficients, as follows [16]: 

0 1 2 3
1 3 3 1       C z C z C z and C z             (3.3) 

In this case, the polynomial has the form: 
0 1

( )  f z a a z  where 
0 1
,a a  are integers. The 

codes for the DAUB4 coefficients are shown in Table 3.1. By manipulating these 

polynomial representations of the coefficients, instead of the usual approximate binary 

representations, any errors can be eliminated in the calculations until the final 

reconstruction step.  

                      Table 3.1 Exact representation of DAUB4 coefficients 

Coefficients 0
a  

1
a  

0
C  1 1 

1
C  3 1 

2
C  3 -1 

3
C  1 -1 



 

19 
 

The input data of the corresponding pixels are coded with integers and all the processing 

required is very simple and, most importantly, inherently parallel. Using the same 

polynomial expansion both forward and inverse mappings can be performed.  

 

3.3.2 AIQ encoding of DAUB6 

The polynomial expansion of DAUB6 coefficients can be generalized into polynomials 

of two variables. This gives the advantages in terms of choosing the optimal form such 

that the equivalent representation scheme is as sparse as possible, and, having several 

different combinations of applicable pairs of parameters, provides considerable 

flexibility of choice. From an architectural point of view the final reconstruction step 

can be accomplished by making use of systolic architectures for polynomial evaluations. 

 

If 
1

10z  and 
2

5 2 10 z and considering the 2-D polynomial expansion: 

                            1 2 1 2

0 0

( , )

 

  
K L

i j

ij

i j

f z z a z z                               (3.4) 

 

For the DWT and the IDWT implementations, K = 1 and L = 1 can be chosen to 

guarantee error-free encoding, and the corresponding coefficients,
ij

a , are encoded in the 

form 00 10

01 11

 

 
 

a a

a a
 . 

Therefore all the DAUB6 coefficients can be exactly encoded (scaled by16 2 ) as 

shown in Eqn. (3.5) and summarized in Table 3.2 [16]. 
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0 1 2

3 4 5

1 1 5 1 10 2

1 0 3 0 2 0

10 2 5 1 1 1

2 0 3 0 1 0

     
       
     

     
       

       

C C C

C C C

                           (3.5) 

 

 

Table 3.2 Exact representation of DAUB6 coefficients 

Coefficients 00
a  

1 0
a  

0 1
a  

1 1
a  

0
C  1 1 1 0 

1
C  5 1 3 0 

2
C  10 -2 2 0 

3
C  10 -2 -2 0 

4
C  5 1 -3 0 

5
C  1 1 -1 0 
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3.3.3 Final Reconstruction Step (FRS) 

For the final reconstruction, Horner’s rule is used [31]. For the computation of DWT or 

IDWT, the integer part of the result and the most significant bit of the fractional part 

need to be recovered, in order to allow correct rounding. Since the final result is in an 

error-free format, the precision to guarantee sufficient accuracy can be easily estimated. 

As an example, if the input and output data are to be represented within 8-bits per pixel 

(bpp), then the representation of z as: 

 

2 8
3 10.01001 2 2 2

 
    z (DAUB4)                 (3.6) 

3 5

1
10 11.001010 3 2 2

 
    z (DAUB6)                                         (3.7) 

1 3

2
5 2 10 100.10100 4 2 2z

 
      (DAUB6)                              (3.8) 

 

is sufficient. The signed-digit encoding errors for 8-bit word-lengths are 0.0913%, 

0.19% and 0.0569% for Z, Z1 and Z2, respectively [16]. 

 

 

3.3.4 DAUB4 Architecture 

The DAUB4 architecture has three parallel channels through which data flows 

independently and also very simple scheduling is required. No quantization errors are 

incurred in the main part of the algorithm, only in the final reconstruction step (where z 

is substituted) and which uses one multiplier. The substitution precision can be chosen 
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in such a way as to get the best reconstruction. Since z is a fixed value in the FRS, 

general multiplier uses can be avoided. A total of 16 adders are needed, and several 

registers are also required to hold the intermediate partial results. One of the most 

important aspects of the DWT architecture is its potential for real-time operations. The 

proposed pipelined architecture computes N coefficients in N clock cycles and achieves 

real-time operation through pipelining. The architecture has a latency of 5Ta (Ta = 

latency for addition operation). In Figure 3.1, L0 is the low pass filter output and H0 is 

the high pass filter output. 

 

a0

a1

a2

a3

L0

3 Z

3 Z

H0
 

 

Figure 3.1 AlQ-based DAUB4 filter architecture 

 

3.3.5 DAUB6 Architecture 

A total of 42 adders are required to implement the DAUB6 architecture and is shown in 

Figure 3.2. The architecture has a latency of 6Ta. 
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a0

a1

a2

a3

a4

a5

5

3

10

-2

Z1

5 10

-3

-2

2

Z2

Z2

-2

Z1

L0

H0

 

 

Figure 3.2 AIQ-based DAUB6 filter architecture 

 

 

3.4 Summary 

In this chapter, encoding and architecture of one-level AIQ-based DWT is discussed. 

The one-level AIQ implementation is simple, multiplication-free and inherently parallel. 

In the next chapter, we will explore the folded features of the AIQ mapping. 
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Chapter 4 

Folded AIQ Mapping 
 

4.1  Introduction 

This chapter presents an introduction to the folded AIQ mapping scheme. Here we 

propose a new two-level encoding, called folded mapping, which combines the error-

free AIQ scheme and matrix decomposition techniques to compute the DAUB4 and 

DAUB6 wavelet coefficients. This new scheme enables resource sharing and yields 

lower hardware cost and power consumption, and higher process throughput. The AIQ 

encoded forward basis transformation matrices are first decomposed into multiple sub-

matrices; the common structures of the sub-matrices are identified and later shared for 

implementation.  

 

In order to eliminate the round-off error for the DWT implementations, AIQ technique 

is proposed at Wahid et al. [15, 16] to compute the DAUB4 and DAUB6 filter 

coefficients, where the irrational transform basis functions are mapped with integers, 

resulting in very efficient computation. However, in those cases a direct (one-level) AIQ 

mapping is utilized which involves large number of internal computing elements that 

results in high cost of hardware resources and silicon area and low throughput. The 

folded scheme adds a two-level AIQ mapping that reduces the number of algebraic 

integers in the polynomial representation compared to its predecessor. Therefore, 
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compared to existing designs, the proposed scheme reduces significantly the hardware 

cost, critical path delay and power consumption with a higher throughput rate. 

 

Later, we proposed a one-level AIQ scheme to implement DAUB8 transform which 

performs better than the fixed-point implementation. The use of conventional fixed-

point binary (or any other weighted) representation for implementing Daubechies 

wavelets, introduces round-off or approximation errors at the very beginning of the 

process due to the lack of exact representation of the irrational numbers that form the 

coefficient basis. These errors tend to increase as the calculations progress through the 

architecture, degrading the quality of the image reconstruction. Here, our aim is to 

eliminate these errors until we need to convert from the AIQ representation. The AIQ 

technique eliminates the requirements to approximate the eight transformation matrix 

elements. Rather, by using one-level AIQ, it is possible to obtain considerable 

improvement in image reconstruction accuracy with mapping four new coefficients; 

through reducing error-introducing calculation steps. 

 

4.2  Folded AIQ mapping 

Folded AIQ mapping is a new two-level folded mapping technique, an improved version 

of the AIQ. The scheme is developed on the factorization and decomposition of the 

transform coefficients that exploits the symmetrical and wrapping structure of the 

matrices. The technique is very efficient in DSP applications having complex numbers 

or the coefficients that are in the conjugate form. 

 



                                        

26 

 

4.2.1  Folded AIQ mapping of DAUB4 

The four DAUB4 transform coefficients (
0 3
, ...,C C ) are expressed below using one-level 

AIQ mapping (where 3Z   and the scaling factor is 4 2 ):         

0 1 2 3
1 ; 3 ; 3 ; 1C Z C Z C Z C Z                                               (4.1) 

Considering the periodicity of the coefficients in Eqn. (2.3), we decompose the matrix 

into four sub-matrices as shown below in Eqn. (4.2):   

         
4 0 1 2 3
( ) (4) (4) (4) (4)

T

C                                               (4.2)  

Where, 
0 0
(4)

G
I

H


 
  
 

, 
0

(4) [ (4)]
k j

  , {0,1, 2, 3}k , 2j k  is the column number, 

0 1 2 3
[ ]G C C C C  and 

3 2 1 0
[ ]H C C C C    are the low-pass (smoothing) and 

the high pass (non-smoothing) filters, respectively, and 
0

I  is a 2x4 null matrix.  

After plugging Eqn. (4.1) into 
0
(4) and decomposing the matrix, we find the new 

expression as shown below in Eqn. (4.3): 

 

        0 0 0 0 0 0 0 1 0
(4) 3F I F I Z F I F I                                        (4.3) 

Where, 
0

1 0 0 1

1 0 0 1
F

 
  

 

, and 
1

0 1 1 0

0 1 1 0
F

 
  

 

.  

 

This enables folding of the input data. The forward filter can now be implemented using 

two independent and parallel datapaths. We will use Eqn. (4.3) for the hardware 

implementation. 
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4.2.2  Folded AIQ mapping of DAUB6 

We follow similar procedure for the DAUB6 wavelet. Like DAUB4, considering the 

periodicity of the coefficients in Eqn. (2.5), we decompose the matrix into four sub-

matrices as shown below in Eqn. (4.4): 

 

                          
6 0 1 2 3
( ) (6) (6) (6) (6)    

T

C          (4.4) 

 

Where, 
0 0
(6)

 
  
 

G
I

H
, 

0
(6) [ (6)] 

k j
, {0,1, 2, 3}k , 2j k  is the column 

number,  0 1 2 3 4 5
G C C C C C C  and  5 4 3 2 1 0

   H C C C C C C  

are the low-pass (smoothing) and the high-pass (non-smoothing) filters, respectively, 

and 
0

I  is a 4x2 null matrix.  

The coefficients and their encoded forms (using one-level AIQ) are given below (where, 

1
10Z  , 2

5 2 10Z   ): 

 

                                                          

0

1

2

1

3

2

4

5

1 1 1

5 1 3
1

10 2 2

10 2 2

5 1 3

1 1 1

   
   
     
     

               
   

    

C

C

C
Z

C
Z

C

C

                                    (4.5) 

 

Now, by applying similar decomposition technique as presented earlier, the folded 

expressions for DAUB6 can be found as expressed below in Eqn. (4.6):  
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         

 

' ' '

0 0 0 1 0 2 0

' ' '

1 0 0 1 0 2 0

' ' '

2 0 0 1 0 2 0

(6) 5 10

2

3 2

          
     

         
     

         
     

F I F I F I

Z F I F I F I

Z F I F I F I

                                                  (4.6) 

 

Where, 
'

0 0

1 1

1 1
F I

 
  

 

,   
'

1 0

0 1 1 0

0 1 1 0
F I

 
  

 

,   
'

2 0 0

1 1

1 1
F I I

 
   

 

, and 
0

I   

is a 2x2 null matrix. Like Eqn. (4.3), Eqn. (4.6) allows the folding of the input data, and 

the forward filter can be implemented using three independent and parallel datapaths. 

We will use Eqn. (4.6) for the hardware implementation which is described in the 

following section. 

 

4.2.3  Architecture of DAUB4 and DAUB6 

The signal flow graphs of the DAUB4 and DAUB6 filter banks are translated from Eqn. 

(4.3) and (4.6), and shown in Figure 4.2 and 4.3 respectively, where 
0

L is the low-pass 

and 
0

H  is the high-pass coefficient. A control pin ( /a s ) is used to toggle the two 

operations, addition/subtraction in alternate clock cycles.  

 

The folded scheme adds a two-level AIQ mapping that reduces the number of AIQ 

operations in the polynomial representation compared to its predecessor. As a result, the 

number of adders required to perform DAUB4 is just 9, compared to 16 in the direct 

mapping [16] (a saving of 44%). 
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z

3

L0/H0





x0

x3

x2

x1

 

Figure 4.1 Folded AIQ-based DAUB4 filter architecture 

 

In the case of DAUB6, the saving is even higher (57%) as the proposed scheme requires 

only 18 adders compared to 42 in the one-level design [16]. 

10

3

2

z2

z1

L0/H0







x0

x5

x4

x1

x2

x3

5

    

Figure 4.2 Folded AIQ-based DAUB6 filter architecture 
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Table 4.1 Comparison between 1-level AIQ and folded AIQ 

Coefficients Algorithm No. of Adders 

DAUB4 

1-level AIQ 16 

Folded AIQ 9 

DAUB6 

1-level AIQ 42 

Folded AIQ 18 

 

 

 

4.3  AIQ encoding of DAUB8 

In this section, we will discuss the fixed-point (FP), and AIQ mapping scheme of 

DAUB8.  

 

4.3.1  Fixed Point Implementation 

Considering the periodicity of the coefficients in Eqn. (2.7), we decompose the matrix 

into four sub-matrices as shown below in Eqn. (4.7):   

                    
8 0 1 2 3
( ) (8) (8) (8) (8)

T

C                                                      (4.7) 

Where,
0
(8)

 
  
 

G

H
 , 

0
(8) [ (8)]

k j
  , {0,1, 2, 3}k , 2j k  is the column number, 

0 1 2 3 4 5 6 7
[ ]G C C C C C C C C

 
and 

7 6 5 4 3 2 1 0
[ ]H C C C C C C C C      are 

the low-pass (smoothing) and the high-pass (non-smoothing) filters, respectively. 
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Low_filter_output, 
7

0

0

i i

i

L x C



  , High_filter_output, 
7

0 7

0

( 1)
i

i i

i

H x C




    

 

4.3.2  AIQ mapping of DAUB8 

The eight DAUB8 transform coefficients 
0 7

( , ... ... ..., )C C can be encoded using 4 real 

coefficients as shown in Eqn.(4.8) [27] and summarized in Table 4.2. 

0 1 2 3 4 5 6 7 0 1 2 3

1
( , , , , , , , ) (1, 4, 6, 4,1) ( , , , )

32 2
 C C C C C C C C a a a a

                        (4.8)
 

Low and high filter outputs using one-level AIQ mapping are 

Low_filter_output, 
3

0 1 2 3 4

0

( 4 6 4 )
i i i i i i

i

L x x x x x a
   



       

High_filter_output,
3

0 1 2 3 4 3

0

( 4 6 4 )
i i i i i i

i

H x x x x x a
    



     
 

Where, 
0 1 2 3

5 5
, 2 140 , 2 140 , ,a a a a 

 
        

 

Here, 10.4257   is the exact solutions of Daubechies 8 orthonormal scaling 

coefficients. 

 

In Table 4.2, the polynomial has the form: 
0 0 1 1 2 2 3 3

( )    f z a z a z a z a z where 

0 1 2 3
, , ,a a a a  are integers. 
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Table 4.2 Exact representation of DAUB8 coefficients 

Coefficients 0
a  

1
a  

2
a  

3
a  

0
C  1 0 0 0 

1
C  4 1 0 0 

2
C  6 4 1 0 

3
C  4 6 4 1 

4
C  1 4 6 4 

5
C  0 1 4 6 

6
C  0 0 1 4 

7
C  0 0 0 1 

 

 

 

4.3.3  AIQ-based Architecture 

The signal flow graphs of FP and AIQ are shown in Figure 4.4 and 4.5. The 

addition/subtraction operation is achieved simply by the adder/subtractor circuit 

previously shown in Figure 4.1. A control pin ( /a s ) is used to toggle the addition and 

subtraction operations which are performed at even and odd clock pulses (CPs) 

respectively.  
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Fixed point architecture is implemented with 8 finite precision coefficients 

0 1 2 3 4 5 6 7
( , , , , , , , )C C C C C C C C  whereas AIQ is implemented with 4 finite precision 

coefficients
0 1 2 3

( , , , )a a a a . All the coefficients or multipliers are constant in nature, and 

hence can be computed using sequential addition and shift operations only.  
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Figure 4.3 Signal flow graph of FP-based DAUB8 
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Figure 4.4 Signal flow graph of AIQ-based DAUB8 
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4.4  Summary 

In this chapter, a new folded AIQ scheme to compute DAUB4 and DAUB6 transform 

coefficients is discussed. The folded AIQ scheme enables simpler implementation and 

yields lesser hardware compared to previous one-level AIQ scheme. The last section of 

this chapter describes the one-level AIQ mapping of the DAUB8 transform. 
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Chapter 5 

Folded AIQ-Based Architecture 

  

   

5.1   Introduction 

In this work, we present an efficient implementation of a shared hardware core to 

compute two 8-point Daubechies wavelet transforms. The architecture is based on a new 

two-level folded mapping technique, an improved version of the AIQ. The scheme is 

developed on the factorization and decomposition of the transform coefficients that 

exploits the symmetrical and wrapping structure of the matrices. The proposed 

architecture is parallel, pipelined, and multiplexed. The proposed scheme reduces 

significantly the hardware cost, critical path delay and power consumption with a higher 

throughput rate. The design has been prototyped onto FPGA and ASIC level using 

0.18um CMOS standard cells. 

 

Later, we apply a first level AIQ scheme to compute the DAUB8 wavelet coefficients. 

The use of conventional fixed-point (FP) binary representation to implement the 

irrational transform coefficients introduces round-off error at the beginning of the 

process. These errors tend to increase as the calculations progress through the 

architecture, degrading the quality of the image reconstruction. The one-level AIQ 

technique eliminates the requirements to approximate the eight transformation matrix 
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elements as in FP. Using AIQ, it is possible to obtain considerable improvement in 

image reconstruction accuracy with mapping four new coefficients. 

 

5.2  Folded AIQ-based DAUB4 and Daub6  

The proposed dual-core architecture is organized as a linear parallel and double-datapath 

path pipeline to achieve high throughput, where 2’s complement arithmetic has been 

used to handle the negative numbers. The input is fed to the hardware at a rate of one 

element per 8-bits per clock cycle through serial in parallel out operation. The transform 

(DUAB4/DAUB6) low and high pass filter coefficients are outputted serially in double 

path at 12 bits per coefficient per clock cycle. The parallel outputted data at delay line 

are folded before feeding them to the filter banks. The transform to be performed is set 

externally by the user selective Daub_sel pin. The processor core consists of four major 

components: Delay line, Delay line/Shifter, DAUB4 and DAUB6 filter banks, and 

controller. 

Controller

D
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M
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X

DAUB4 

AIQ 

Mapping 

Delay 

Line
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[7:0]

Start

Daub_sel
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Figure 5.1: Block diagram of the entire system 
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5.2.1  Delay Line/ Shifter 

The input is fed to the hardware at a rate of one sample (8-bit) per clock cycle through 

serial-in parallel-out operation. This operation is achieved by ping-pong buffer that 

follows a data shifter which consists of eight processing elements (PE). The architecture 

is shown in Figure 5.2(a) and 5.2(b). The delay line buffer and the shifter are controlled 

using selection and enable pins by the controller. The outputs from the shifter at 

different clock pulses (CP) are shown in Figure 5.3. Note that, for DAUB4 operation, x4 

and x5 are not passed into the next module. 

in
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1
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2
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3
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4
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Figure 5.2 (a) Shifter for input scheduling, (b) Processing elements (PE) 
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Figure 5.3 Output from shifter at different CP 

 

5.2.2  DAUB4 and DAUB6 filter banks 

For both filters, the hardware architecture has been developed using five cascaded stages 

(as shown in Figure 5.4 and 5.5): Fold & Latch, AIQ mapping, Pipeline Register bank, 

Reconstruction, and Output. 
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Figure 5.4 DAUB4 filter bank 
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Using the proposed folded mapping scheme, the number of adders required to perform 

DAUB4 is just 9, compared to 16 as in the direct mapping [16], which is a savings of 

44%. In the case of DAUB6, the savings are even higher (57%) as the proposed two-

level scheme requires only 18 adders compared to 42 in the one-level design [16]. 

 

 

 

Z1

R1

R2 R5

RL L0

x0

x5

x4

x1

R3

x2

x3

R6 R9
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Reconstruction OutputFold & Latch

       

Figure 5.5 DAUB6 filter bank 

 

After the initial fold operation, the intermittent data is latched and then forwarded to the 

AIQ mapping stage, where the desired shifting and addition operations are performed. 

The final conversion from algebraic integer to binary also takes place in this stage. 

Interestingly, all the multipliers are constant in nature, and hence can be computed using 

sequential addition and shift operations only. Moreover, to reduce the number of 

addition operations, canonical signed digit (CSD) [33] representation is used.  
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A precision of 8-bit is used in the multipliers to minimize the hardware and optimize the 

operation, which is completed in one clock pulse (CP). Internally to the multiplier, all 

significant bits are retained to guarantee the highest precision of the calculation; 

however, the multiplier outputs are truncated to discard the fractional part.  

 

5.2.3 Coefficient Multiplier 

The forward coefficients of the transforms are constant in nature; hence can be pre-

computed and implemented with sequential add/shift operation to make the architecture 

totally multiplication-free. Also to reduce the number of addition operations, canonical 

signed digit (CSD) encoding is used in designing the constant multipliers. As an 

example, the coefficient C1 (
2

cos( ) (0.1111101)
16

  ) can be implemented with only 2 

addition operations as shown in Figure 5.6.  

 

enable

a_in

reset

clk

Register

1 bit 

shift
6 bit 

shift

Temp

2's compliment
Product

 

Figure 5.6 Internal circuitry of coefficient multiplier, C1 
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Note that, the proposed scheme is error-free until this final conversion stage; however, 

the error introduced at this stage is very small and can be further minimized using higher 

precision AIQ multipliers. We have performed an error analysis that shows the error 

incurred for different bit-length of the AIQ multipliers. The error is computed taking a 

multiplier of 16-bit width as reference. It can be found from the error plot (in Figure 5.7) 

that the normalized computation error for the proposed DAUB6 multiplier coefficient, 

1
Z at 8-bit precision is 2.0×10

−3
. The normalized computation errors for 

2
Z (DAUB6) and 

Z (DAUB4) at 8-bit precision are 1.8×10
−3

 and 0.5×10
−3

. The total accuracy of the 

architecture is reported in performance analysis section. 

 

Figure 5.7 Normalized errors incurred for different multiplier precision  
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After the conversion is completed, the intermittent data are latched into the Pipelining 

Registers. In order to get the low-pass and high-pass wavelet coefficients 

simultaneously, a two-level pipelining stage is used.  The data are combined in the 

Reconstruction stage and finally latched into the output registers. 

 

5.2.4  Controller 

The controller generates the signals to control various stages, selects datapaths, and 

indicates the input and output data validity. The internal operations, registers’ contents 

and data validity at different CPs are shown in Figure 5.8 and 5.9. These figures show 

an operation that starts at the Nth timing instance. The pipelined implementation allows 

the mapping to start at the (N+1)th CP; at the (N+3)th CP, the system outputs the first 

set of low and high-pass Daubechies coefficients. Thus, we can see that both DAUB4 

and DAUB6 take only four clock cycles to complete, and there is no data congestion 

inside the pipeline, which makes the scheme very suitable for real-time applications. In 

the next four clock cycles, the input data are reordered accordingly (by the shifter) for 

further processing. 
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Figure 5.8 Timing diagram of folded AIQ-based DAUB4 
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Figure 5.9 Timing diagram of folded AIQ-based DAUB6 

 

The transformed low- and high-pass coefficients are both outputted serially at the same 

time at a rate of one sample (12-bits/coefficient) per clock cycle. 

 

5.3  Hardware Synthesis 

The architecture is coded in Verilog 2001 [34], [35] and prototyped first onto Xilinx 

VirtexE [36] FPGA to assess the performance. The architecture is later implemented 

using CMOS 0.18μm standard cell library and fabricated from Canadian Micro 

Corporation (CMC) using CMOS 0.18μm TSMC technology. 

 

5.3.1  FPGA Synthesis 

Field Programmable Gate Array (FPGA) is used to synthesize the architecture in this 

thesis. FPGAs are programmable logic devices made up of routing channels and arrays 

of logic cells. FPGAs can be used to implement any logical function that an ASIC could 

perform with an added advantage that they are reprogrammable. Therefore, new features 

and modifications can be easily added and they can be used as a tool for comparing 

different architectures before implementing the final design in ASIC. Currently, Xilinx 
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Corporation and Altera Corporation are the leading vendors of programmable devices. 

The architecture of FPGA is vendor specific. 

 

The typical design cycle for FPGAs using Computer Aided Design (CAD) tools is 

shown in Figure in 5.10. The design is first entered using text entry or graphic entry. 

Functionality of the design is extracted in next stage. Then the design is targeted on a 

selected FPGA device and its timing is extracted. In the final stage the actual hardware 

device is programmed. Appropriate verification is done at every stage to check the 

working of the design. For design entry, text is popular as it allows more control over 

the design compared to graphic design entry. 

Design Entry

 -VHDL or Verilog 

Encoding

Function Extraction

  -Functional netlist

Design Implementation

-Logic synthesis

-Logic fitting

-Timing extraction

-Programming file

Device programming

 

Figure 5.10 CAD design cycle 
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Table 5.1 presents the comparison of the synthesized results with the previous DAUB-4 

and 6 fixed-point (FP) and the one-level AIQ designs [16]. It can be seen from the table 

that the proposed folded scheme costs lesser hardware resources and has lower critical 

path delay. The design is synthesized in Xilinx VirtexE (xcv300epq240-8) FPGA;
  
here 

D4 = DAUB4; D6 = DAUB6; Tm = latency for multiply operation; Ta = latency for 

addition operation
 

 

Table 5.1 FPGA implementation and hardware comparison 

 
Scheme Fixed-point 

[16] 

One-level 

AIQ [16] 

Proposed two-level 

folded AIQ 

Overall 

savings (%) 

D4 D6 D4 D6 D4 D6 Dual 

(D4+D6) 

vs. FP vs. 1-

AIQ 

 

 

FPGA 

Datapath 4 6 3 6 2 3 3 70 66 

Adders 32 44  16 42 9 18 27 65 53 

Logic 

cells 

536 728 248 680 106 254 311 75 66 

Registers 422 520 200 494 115 196 360 62 48 

Critical 

path 

Tm+

2Ta 

Tm+

3Ta 

5Ta 6Ta 3Ta 5Ta 5Ta -- -- 

 
 

 
 

5.3.2 VLSI implementation and chip fabrication 
  

The architecture is implemented using CMOS (Complementary Metal–Oxide–

Semiconductor) 0.18μm standard cell library and CMOSP18 design kit. The VLSI 

design (Design run code: 0903CF and Full design ID: ICFSKASH) is later fabricated 

from CMC using CMOS 0.18μm TSMC technology. VLSI implementation and Chip 
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fabrication preparation is done according to CMC’s “Digital IC design flow” [37], 

which is shown in Figure 5.12. 

  

The micrograph of the fabricated chip is shown in Figure 5.11 and the core features are 

summarized in Table 5.3. The power consumptions for both DAUB4 and DAUB6 filters 

are reported in Table 5.2. The maximum power consumption occurs for the DAUB6 

(while running at 50MHz with 1.6V supply voltage), and hence, is reported as the chip 

power. When compared to the previous designs [16] at ASIC level, the proposed two-

level design consumes much less silicon area and power (as seen from Table 5.2). 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.11 Final layout of the folded AIQ-based wavelet transform 
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Figure 5.12 VLSI Design Flow [37] 
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Table 5.2 VLSI implementation and hardware comparison 

 
Scheme Fixed-point 

[16] 

One-level AIQ 

[16] 

Proposed two-level 

Folded AIQ 

Overall 

savings (%) 

D4 D6 D4 D6 D4 D6 Dual 

(D4+D6) 

vs. 

FP 

vs. 1-

AIQ 

VLSI Gate 

count 

7,096 9,032 3,934 10,050 3,424 5,048 7,533 53 46 

Power 

(mW) 

16.01 17.41 15.94 22.29 2.46 4.51 4.51 -- -- 

 

Table 5.3 Chip specification 

Inputs / Outputs 8 bits / 12 bits 

Technology 0.18 μm CMOS 

Number of gates / cells 7,533 / 1,705 

Core / Chip size 0.60 mm x 0.57 mm (core)
 

1.3 mm x 1.6 mm (chip)
 

Power consumption 4.51 mW @ 50 MHz  

Latency 8 CC 

Throughput (per cycle) 2-inputs/output 

Maximum frequency 100 MHz 

 

In Table 5.4, we compare our results with other architectures in terms of hardware cost 

(i.e. number of multipliers, adders, and registers), critical path delay, and throughput 

rate. From the popularity and applications perspective, we have limited our study to 

schemes of Duabechies-4 and -6, and 5/3 and 9/7 IWT. As found from Table 5.4 that 
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due to the two-level integer mapping and data folding, the proposed folded AIQ scheme 

outperforms other designs as it requires no multipliers and lesser registers; the critical 

path delay is also the least with a high process throughput.  

 

 

Table 5.5 shows the comparison among different designs at the ASIC level. The 

technology used is different in some cases; nevertheless, it gives us a rough estimate and 

a relative position of our design compared to other schemes. The RISC IWT 5/3 and 9/7 

bi-orthogonal filters in [12] require multiplication of kernels of large size which makes 

the control circuitry complicated, but integer nature results in faster operational 

Table 5.4 Hardware comparison of filter 
 

Scheme Mult Add Reg. Throughput 

(input/output) 

[6] – 

D4/D6 

8/12 6/10 -- -- 

[12] 4 12 -- -- 

[13] 0 19 9 1 / 1 

[8] 2 4 10 1 / 1 

[9] 4 8 22 2 / 1 

[10] 4 8 4 2 / 1 

[38] 2 4 20 1 / 1 

[11] 4 8 28 2 / 1 

Prop. D4 0 9 8 2 / 1 

Prop. D6 0 18 11 2 / 1 
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frequency. Compared to [12], our proposed design is based on a small kernel size (8x8) 

with much simpler control signaling yielding the least silicon area and power 

consumption; however, the final conversion limits the frequency of operation. The 

presented scheme performs better compared to other reported designs. Note that, the 

processor core houses two Daubechies wavelet transforms. The dual core chip has been 

tested with the lab setup as shown in Figure 5.13. In this lab setup, the ring power 

supply has been set at 3.3 V, and the core power supply has been set at 1.62 V. A fixed 

test input vector (8’b00011111 at each clock cycle) has been used to measure the core 

power consumption with a 50 MHz clock frequency. An ammeter has been used to 

record the current consumption by the core. In this testing, DAUB6 filter consumes the 

maximum power, 4.51 mW at 50 MHz, which is reported as the core power. DAUB4 

consumes 2.46 mW at 50 MHz with the given test input vector. 

 

Table 5.5: Performance comparison in VLSI 

Scheme Tech. (um) Chip Area 

(mm
2
) 

Power 

(mW) 

Max. Freq. 

(MHz) 

[7] 0.13 6.5 4.68 100 

[14] 0.13 -- 12.88 -- 

[12] 0.18 4.84 197.6 459 

[9] 0.18 2.16 102.6 100 

Proposed – 

Dual 

0.18 2.08 4.51
1
 100 

1
Measured at 50MHz 
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                                             Figure 5.13 Chip testing setup 

5.3.3 Performance Analysis 

The output of the proposed design has been verified using a benchmark image (Lena), 

and the results for the DAUB4 and DAUB6 are shown in Table 5.6. In this verification 

process, Modelsim simulation has been used to process the forward transform and the 

image has been restored performing inverse transform in Matlab. The reconstructed 

Lena images are shown in Figure 5.14. 

 

PSNR: A useful measure of the accuracy of the DWT coefficients is the Peak-Signal-to-

Noise-Ratio (PSNR) [39]. Here, the signal is represented by the floating-point DWT 

coefficients and the noise is the difference between the floating-point and finite-

precision approximations. In the remainder of this thesis, PSNR is used as a measure of 

image reconstruction. The PSNR is defined by equation 5.1. 

       

, ,

1 1

255 255
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                                      (5.1) 

Where, W is the width of the frame, H is the height of the frame, 
,m n

c  and 
,m n

c  are the 

pixel values of the original and the reconstructed image respectively.  
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To compute PSNR, we performed forward wavelet transform (using both transforms) on 

the 128x128 standard “Lena” image, and then computed the inverse transform on the 

transformed coefficients to recover the original image data. 

Table 5.6   PSNR of DAUB4 and DAUB6 

Transform Benchmark Image PSNR(dB) 

DAUB4 

Lena 

82 

DAUB6 85 

 

          

                                         

(a)                                               (b)                                             (c) 

Figure 5.14 (a) Original “Lena” image, (b) DAUB4 implementation, and  

(c) DAUB6 implementation 

 

5.4 DAUB8 Architecture 

In this work, we apply both the fixed-point (FP) and one-level AIQ scheme to compute 

the DAUB8 wavelet coefficients. The AIQ scheme enables a better reconstruction of 

image compared to fixed-point architecture. Both designs are prototyped onto FPGA 

with 8, 10, 12-bit precision of the coefficients and compared with their reconstruction 

errors. 
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The proposed architecture is organized as parallel double-datapath pipeline to achieve 

high throughput. 2’s complement arithmetic has been used to handle the negative 

numbers. The processor core consists of four major components: Delay line / shifter, 

DAUB8 FP /AIQ filter banks, and controller. 

 

5.4.1 Delay Line / Shifter 

The input is fed to the hardware at a rate of one sample (8-bit) per clock cycle through 

serial-in-parallel-out operation. This operation is achieved by ping-pong buffer that 

follows a data shifter which consists of eight processing elements (PE). The architecture 

is shown in Figure 5.15(a) and 5.15(b). The delay line buffer and the shifter are 

controlled using selection and enable pins by the controller. The outputs from the shifter 

at different clock pulses (CP) are shown in Figure 5.16.  
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1

PE

7
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0

X0

X1

ensel

To 
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D
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(b)

0

1

 

Figure 5.15 Hardware diagrams: (a) Shifter for input scheduling; (b) Processing 

element (PE); 
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Figure 5.16 Output from shifter at different CP 

 

5.4.2 FP and AIQ-based DAUB8 Filter Banks 

Fixed point architecture is implemented with 8 finite precision coefficients whereas AIQ 

is implemented with 4 finite precision coefficients. All the coefficients or multipliers are 

constant in nature, and hence can be computed using sequential addition and shift 

operations only. Moreover, to reduce the number of addition operations, CSD 

representation is used in both architectures.  

 

8-bit, 10-bit and 12-bit precision are used in the multipliers. In each of the three cases 

the multiplication is completed in one clock pulse (CP). Internally to the multiplier, all 

significant bits are retained to guarantee the highest precision of the calculation; 

however, the multiplier outputs are truncated to discard the fractional part. The error 

introduced at this stage is compared in between the two architectures and minimized 

using higher precision. The architecture of DAUB8 FP filter bank and AIQ filter bank 

are shown in Figure 5.17 and Figure 5.18.  
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Figure 5.17 DAUB8 FP filter bank 
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Figure 5.18 (a) DAUB8 AIQ filter bank, (b) Filter_0 architecture 

 

 

5.4.3 Controller 

The controller generates the signals to control various stages, selects datapaths, and 

indicates the input and output data validity. The pipelined implementation allows the 

mapping to start at the (N+1)th CP; at the (N+3)th CP, the system outputs the first set of 

low and high-pass Daubechies coefficients. Thus, we can see that both FP and AIQ take 
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only four clock pulses to complete, and there is no data congestion inside the pipeline. 

In the next four clock pulses, the input data are reordered accordingly (by the shifter) for 

further processing. The transformed low- and high-pass coefficients are both output 

serially in alternate CP at a rate of one sample per clock pulse. 

 

5.4.4 Comparisons 

Our results are based on the reconstruction of standard 8-bit “Lena” image using fixed 

point and AIQ scheme. We compare a complete n-bit (n=8, 10, 12) FP calculation for 

the entire wavelet transform (i.e. no vector quantization) with an AIQ computation. In 

comparison to FP architecture where it has eight coefficients to map, AIQ uses four 

coefficients which effectively reduce down the error-introducing steps. The hardware 

comparison results (in terms of Logic cells, Registers & frequency) are summarised in 

Table 5.6 where we provide a comparison of the arithmetic hardware complexity for the 

AIQ implementation against the fixed-point binary (FP) implementation.   

 

Two of the error metrics used to compare the various image compression techniques are 

the Peak Signal to Noise Ratio (PSNR) and Root Mean Square Error (RMSE) [39]. The 

RMSE is the cumulative squared root error between the reconstructed and the original 

image. The mathematical formula for RMSE is:  

 

2

, ,

1 1

1
( )

 

 
  
  


W H
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RM SE c c
W H

                                             (5.2) 
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Where, W is the width of the frame, H is the height of the frame, 
,m n

c  and 
,m n

c  are the 

pixel values of the original and the reconstructed image respectively.  

 

An interesting comparison between the architecture is to select similar or near to similar 

performance and then compare the hardware consumption to attain that quality. An 

example of this from Table 5.7 & 5.8 is, to attain a PSNR of 89.5db required number of 

logic cells in AIQ-based transform is 518; whereas required number of logic cells is 546 

to achieve 86 db PSNR in FP architecture.  

 

In Figure 5.20 the image reconstruction of “Lena” image with 8-bit AIQ and 8-bit FP 

scheme is presented.  

 

Moreover, from Figure 5.19 it is clearly understood the AIQ encoding scheme has better 

accuracy in image reconstruction compared to fixed point with less hardware 

consumption; which allows multiplication-free, parallel, and real time hardware 

implementation. DAUB8 AIQ architecture is very suitable for application like finger 

print detection [40] and ECG signal denoising [41] where higher precision of image or 

signal reconstruction is required.   

 

In Table 5.9 we compare our design with other architectures. Compared to [40] and [41] 

our FP and AIQ architectures consume less hardware. Please note that [40] and [41] 

reported only low FIR filter implementation results. Studying the mathematical 

algorithm of DAUB8 from chapter 3 it is obvious High FIR filter will require almost the 
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same number of logic cells for the corresponding architecture. So the hardware 

consumption in [40, 41] are extended for HIGH FIR filter in Table 5.9 for a rational 

comparison.  

 

 

Table 5.7   FPGA implementation & hardware costs between FP and AIQ 

 

 

 

 

Table 5.8   Image quality at different bit precision between FP and AIQ 

 

Quality Fixed-point  Proposed AIQ 

8-bit 10-bit 12-bit 8-bit 10-bit 12-bit 

RMSE 0.0261 0.0130 0.0067 0.0085 0.0063 0.0061 

PSNR 80 86 91.5 89.5 92 92.5 

 

Scheme Fixed-point  Proposed AIQ 

8-bit 10-bit 12-bit 8-bit 10-bit 12-bit 

Logic Cells 490 546 631 518 572 637 

Registers 255 255 262 186 186 187 

Frequency 95 83 74 71 64 54 
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Figure 5.19:  Harwdare cost of FP and AIQ at corresponding PSNR  

 

                                       

             (a)                                              (b)                                                   (c) 

 

Figure 5.20 (a) original “Lena” image; (b) 8-bit AIQ (PSNR = 89.5 dB); and 

 

 (c) 8-bit FP (PSNR = 80 dB) implementation  
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Table 5.9 Comparison of hardware between different architectures 

 

Scheme Architecture 
Logic 

Cells 

Speed 

(MHz) 

Input 

Word 

Length 

Coefficient 

Bit Length 

[40] 

Conventional 1,120 54.3 9 9 

Distributed 

Arithmetic 
748 72.7 9 9 

[41] 

Hard Router 900 161 9 8 

Benkrid 

architecture with 

adder tree 

632 159 9 8 

Prop. 
FP 490 95 8 8 

AIQ 518 71 8 8 

 

 

5.6 Summary 

In this chapter, the implementation of the proposed folded DAUB4 and DAUB6 

architecture is discussed. The architecture is implemented using the mathematical 

expressions and signal flow graphs developed in Chapter 4. The hardware synthesized 

results are then presented and compared with one-level AIQ which shows significant 

reduction in hardware due to efficient folded technique. The fabricated chip 

performances are compared with other reported designs, which shows the presented 

scheme performs strongly. 
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Later, a fixed-point DAUB8 DWT and its proposed AIQ based architectures are 

implemented.  The image reconstruction accuracy and required hardware consumption 

is compared in between fixed-point and AIQ scheme. At fixed PSNR, AIQ scheme 

consumes less hardware compared to fixed-point. DAUB8 transform can reconstruct the 

image with finer details. So the AIQ-based DAUB8 transform is very suitable in such 

applications (e.g., finger print, ECG signal denoising) where higher accuracy is required.  
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Chapter 6 

Conclusion and Future Work 

  

  

6.1   Summary of Accomplishments 

In this thesis, we have presented an area and power efficient architecture to compute two 

8-point wavelet transforms: four- and six-tap Daubechies orthonormal wavelet filters. 

The architecture is developed using a two-level folded mapping technique that is based 

on the factorization and decomposition of the transform matrices. The use of multi-

dimensional AIQ encoding reduces computation error. The architecture is fabricated 

using 0.18μm CMOS process. Performance comparisons indicate that, the proposed 

scheme provides an efficient alternative with much lesser computational complexity, 

silicon area, critical path delay and power consumption, and higher throughput. 

 

DAUB4 and DAUB6 architectures are implemented as a shared hardware core in FPGA 

and 0.18μm CMOS technology When fabricated in 0.18 μm CMOS technology, the chip 

area of the dual-DWT processor is 2.08 sq. mm, the maximum frequency is 100 MHz, 

the gate count is 7,533, and the power consumption is 4.51 mW. Compared to existing 

designs, the proposed scheme reduces significantly the hardware cost, critical path delay 

and power consumption with a higher throughput rate.  
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Later, both FP and AIQ architecture of DAUB8 is implemented in FPGA and compared 

their performances. At required PSNR, AIQ performs better with less hardware 

consumption.  The architecture is also compared with other designs to assess the 

hardware cost. Compared to existing designs, the AIQ architecture consumes less 

hardware. 

 

 In Table 6.1 the three architectures are arranged in order of high, medium, low with 

indexes - (i) Image reconstruction capability, and (ii) Hardware cost. Here the idea is to 

compare the three architectures among themselves and choosing the right transform for 

appropriate applications. 

 

Table 6.1 Degree of performance and hardware cost 

 

Degree Image 

Reconstruction 

Hardware Cost 

High DAUB8 DAUB8 

Medium DAUB6 DAUB6 

Low DAUB4 DAUB4 

 

 

In case of moderate image reconstruction, DAUB4 would be an excellent choice to save 

area and power compare to any other architectures studied in this work. At high noise 

level we propose DAUB6 as an efficient architecture with good image reconstruction 

capability. In application where we need detail pixels information (e.g., finger print, 
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ECG signal denoising) we propose DAUB8 which is able to reconstruct the image with 

finer details. 

 

 

6.2  Recommendations for future work 

Future work needs to be directed towards the detailed design and VLSI fabrication of 

the two-level AIQ-based DAUB8 wavelet transform.  

 

Also, the efficient scheduling of the input datapath and timing operations can be used to 

implement the one-level AIQ-based DAUB8 architecture. That will reduce the number 

of sub filter banks used from four to one and will significantly reduce the hardware cost. 

 

Finally, very recently the Finite Ridgelet Transform (FRIT) has been introduced [44] as 

a sparse expansion of functions on both continuous and discrete spaces that are smooth 

away from discontinuities along lines. To compute the FRIT, a 1-D DWT is used in the 

intermediate stage as a secondary transform. So, it would be very useful to investigate 

the potential benefits of using an AIQ implementation of a 1-D Daubechies wavelet 

transform in the FRIT application. 
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