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ABSTRACT

One obtains orders of higher level in a commutative ring A by pulling back the higher
level orders in the residue fields of its prime ideals. Since inclusion relationships can
hold amongst the higher level orders in a field (unlike the level 1 situation), there
may exist orders in the ring A which are not contained in a unique order maximal
with respect to inclusion. However, if the specializations of an order P are defined
to be those orders @ 2 P such that @ ~ P C Q@ N —@Q, every higher level order in
A is contained in a unique maximal specialization. The real spectrum of A relative
to a higher level preorder T is defined to be the set SperrA of all orders in A
containing 7. As with the ordinary real spectrum of Coste and Roy, SperrA is
given a compact topology in which the closed points are precisely the orders in
A maximal with respect to specialization. For 2-primary level, we show that an
abstract higher level version of the Hormander-Lojasiewicz Inequality holds and
use it to characterize the basic sets in Sperr A.

A higher level signature on a commutative ring A is a pull-back o of a higher -
level signature on the residue field of some prime ideal p with o(p) = 0. If T
is a higher level preorder in A and o(T') = {0,1} then o is called a T-signature.
Specializations of T-signatures are defined just as for orders and every T'-signature
is shown to have a unique maximal specialization. Each T-signature o determines
a unique order in A containing T which is maximal with respect to specialization iff
o is. Generalizing a result of M. Marshall, we show for a higher level preorder T' in
a commutative ring satisfying a certain simple axiom, the space Xr of all maximal
T-signatures can be embedded in the character group of a suitable abelian group
G of finite even exponent and under this embedding, the pair (X7, Gr) is a space
of signatures in the sense of Mulcahy and Marshall.
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INTRODUCTION

The concept of an ordered field originated with Hilbert’s work on the foundations of
geometry, around 1898, but it was Artin’s solution to Hilbert’s 17th Problem that
led to the development of the theory of formally real fields beginning with the 1927
papers of Artin and Schreier. In these papers, it was shown that fields admitting
orders were precisely those fields in which —1 is not a sum of squares, the formally
real fields, and further, that an element of a field is a sum of squares if and only if
it is positive at every order in that field. The important class of real closed fields,
the formally real fields which have no formally real proper algebraic extension, were
introduced and it was shown that every real closed field R admits the unique order
R? := {22 | = € R} and every ordered field has a unique (up to isomorphism)
real closed algebraic extension R where R? extends the given order. In 1931, van
der Waerden acknowledged the importance of the Artin-Schreier theory of ordered
fields by including it in his text “Moderne Algebra” and it has remained a part of
standard algebra texts to this day.

The theory of ordered fields has played an important role in many areas of
mathematics. Artin’s proof of Hilbert’s 17th Problem related for the first time the
theory of ordered fields and real algebraic geometry. This relationship is clear in
Lang’s proof (1965) of the Hilbert problem using his Homomorphism Theorem which
later leads to the Real Nullstellensatz of Dubois and Risler (1970). Tarski’s discovery
of his famous Tarski Principle in 1948 and Robinson’s later proof of the model
completeness of the elementary theory of real closed fields contributed significantly
to the development of model theory. There is also the application of the Artin-
Schreier theory to the algebraic theory of quadratic forms.

The relationship between orders and quadratic forms is defined by the notion
of a signature: for any order P and any quadratic form ¢ over a formally real field

F, one defines the signature sgnp(y) just as Sylvester defined the signature of a

quadratic form over R. In 1966, Pfister showed that the signatures of the form ¢




with respect to all the different orders in F' completely determines the Witt class of
¢ up to torsion. Thus the study of the reduced Witt ring (the Witt ring modulo its
torsion ideal) is intimately tied to the study of the space of orders of the underlying
field. Specifically, we endow the set of orderings Sper F' with the smallest topology
for which the non-zero field elements represent continuous functions into the discrete
space {£1} C Z. The reduced Witt ring is simply the ring of continuous Z-valued
functions on Sper F' generated by the non-zero field elements.

The study of both the space of orders and the Witt ring of a field leads naturally
to the consideration of the (Krull) valuations of that field. The importance of
valuations to the study of orders seems to have been recognized from the start.
Although the language of valuation theory was not yet available, the idea of pushing
down an order P to the residue field of the valuation ring A(P) already appears in
the papers of Artin and Schreier [2]. In 1973, Prestel [45] introduced the concept
of a semiorder in a field and showed that it, too, gives rise to a valuation ring.
This relationship between valuations and semiorders is the key to the important
Local-global Criterion for Isotropy [8, Theorem 3.3] due to Brocker and to Prestel.

In [4], Becker extended the notions of orders and semiorders to higher level,
replacing “sums of squares” with “sums of 2™-th powers”, for arbitrary m, and
later, in [5]-[7], with “sums of 2k-th powers;’ for arbitrary k. In a joint work with
Rosenberg [12], this higher level theory of orders is shown to lead to a corresponding
higher level reduced theory of forms. Signatures again establish the connection
between the higher level orders and forms of higher degree but unlike the original
level 1 situation, each order does not determine a unique signature.

Surprisingly, Becker was able to show that the same relationship between orders
and valuations exists in the higher level setting. The results are presented here
in sections 1.3-1.5. Even more surprising is the extension of the result of Prestel
concerning semiorders and valuations (1.3.9). As observed by Becker in [7]: “there
is no simple proof this time.” Essential to establishing this connection between

the valuations of a field and the higher level orders and semiorders in that field is

the Kadison-Dubois Representation Theorem [5], [21], [23] concerning archimedean




partial orders in commutative rings. In section 1.2, a simple, self-contained proof
is given which is simply a translation of the one given by Becker and Schwartz in
[13].

As Becker was developing his higher level theory, Knebusch [25], Kleinstein and
Rosenberg [24] and others were extending the theory of quadratic forms to semi-
local rings. Later it was shown to extend to rings with many units in [17] and [48].
In the series of papers [29]-[34], Marshall develops an axiomatic approach to the
reduced theory of quadratic forms. Fields, semi-local rings and rings with many
units all give rise to spaces of orderings in the terminology of [32].

Although signatures of a semi-local ring were already being considered as early
as 1971 in [26], it was not until the joint paper of Coste and Roy [20] that the
correct notion of a (non-higher level) order in an arbitrary commutative ring was
formulated. Just as for fields in the non-higher level case, signatures and orders in
a semi-local ring (or a ring with many units) are essentially the same thing. Thus
the work of Coste and Roy did not produce anything new where the reduced theory
of forms was concerned but the real spectrum introduced in [20] has had significant
applications to real algebraic geometry. This is a result of the previously mentioned
Tarski Principle: one may identify semi-algebraic subsets of a real algebraic vari-
ety with the constructible subsets of the real spectrum of the coordinate ring [15,
Théoreme 7.2.3].

For example, consider the following situation. Let F' be a formally real field, P
an order in F and R a real closed extension of (F, P). Fix an algebraic set V =
{z =(21,...,2s) € R"| fi(z) =--- = fi(z) = 0}, where fi,..., fx are polynomials
with coefficients in F'. A subset S C V is semi-algebraic if it is defined by means of
a finite number of polynomial inequalities. One is interested in determining bounds
on the number of polynomial inequalities required. Using Tarski’s Principle, this
problem is equated to one of determining bounds on the number of inequalities

required to define constructible subsets in the real spectrum of a commutative ring.

The solution to this problem is Brocker’s theory of the complexity of constructible

sets [16], [18], [28], [35], [47]. A more general problem is to determine bounds on




the number of inequalities required if we insist the polynomials take their coefficients
from the base field F. In [39], bounds are determined for basic semi-algebraic sets
defined over F' by translating the problem to an equivalent one concerning the
complexity of constructible sets in the real spectrum of a ring. Using the results of
this thesis, a beginning has been made in the generalization of Brocker’s complexity
theory to higher level. Whether this will have an application to real algebraic
geometry is still an open question.

This thesis is concerned with developing a higher level theory for commutative
rings. In chapter 1, Becker’s higher level orders are extended to an arbitrary com-
mutative ring. The results of the first section have already appeared in [38]. The
main theorem of section 1.1 is the weak local-global principle (1.1.7) which is a
generalization of a similar result in [19] both to higher level and to an arbitrary
preorder.

Sections 1.2 through 1.5 are a survey of results contained in the papers of
Becker [5]-[7], Becker-Harman-Rosenberg [10], Becker-Rosenberg [12] and Becker-
Schwartz [13]. They are included not only to make this thesis as self-contained as
possible but also to bring together, for the first time, all of these results in the same
place.

Orders and maximal orders of higher level are defined for commutative rings
in section 1.6. The notions of specialization and maximal orders for non-2-primary
orders were not understood at the time the paper [38] was written. Applying (1.6.9)
to a ring with many units, one can show that for any maximal order P and any
preorder T in a ring with many units, 7* C P* iff T C P. (This was shown to hold
for 2-primary preorders in [38] and is proved in a more general form in chapter 2.)
This, together with the results of section 1.6, yields improved versions of results in
[38] in several instances (see chapter 3.)

One of the consequences of Theorem 1.1.7 is the Positivstellensatz of section 1.7.
A weaker version of (1.7.2) is due to Berr [14] who, in turn, was extending a result

of Becker-Gondard in [9]. The full strength of the Positivstellensatz as it appears

here is required in chapter 3.




The notion of a signature of higher level is defined for an arbitrary commutative
ring in chapter 2. This generalizes the signatures of higher level already defined for
fields in [10], [12] and for rings with many units in [38]. Just as for fields, the space
of higher level signatures plays a prominent role in the reduced theory of higher
degree forms (see chapter 3) and is distinct from the higher level real spectrum.
Specializations and maximal signatures are defined in section 2.1 and in section 2.2,
the set of signatures Sig A of a ring A is given a suitable “Harrison” topology in
which the maximal signatures are precisely the closed points of Sig A thus arriving
at one possible generalization of the real spectrum of Coste and Roy. In fact, Sig A
is essentially the real spectrum R,-spec A of S. Barton defined in (3].

Marshall’s abstract theory of spaces of orderings has been successfully general-
ized to the higher level theory of spaces of signatures by Mulcahy and Marshall [37],
[41]. (See also the joint work with Becker and Rosenberg [11] and the papers of
Powers [43], [44].) In [36], Marshall gives a simple axiom for a level 1 preorder T
in a commutative ring sufficient for T to give rise to a space of orderings. We show
that a higher level version of this axiom is sufficient for higher level preorders to give
rise to spaces of signatures. A necessary first step is to show the T-signatures of a
ring A can be viewed as characters on an appropriate abelian group Gt whenever
T satisfies Marshall’s axiom. This is done in section 2.3. In chapter 3, a reduced
theory of higher level forms is developed for preorders satisfying this axiom and we
show for any such preorder T, (X7, G7) is a space of signatures, where Xt is the set
of maximal T-signatures of A. Since this axiom holds for preorders in a ring with
many units, we have new, somewhat simpler, proofs of the main results of [38].

In chapter 4, the task of generalizing Coste and Roy’s real spectrum to higher
level is completed by defining higher level analogues of the Tychonoff, Harrison and
Zariski topologies. In section 4.1, it is shown that the higher level real spectrum
with these topologies has the desired properties. In section 4.2, the constructible
subsets of the real spectrum are considered. In the non-higher level real spectrum,

a subset S is called constructible if it can be obtained from the Harrison sub-basic

sets by means of a finite number of unions, intersections and complements. The




constructible subsets are then shown to be precisely the Tychonoff clopen (closed
and open) subsets. We have precisely the same situation if we consider only orders
of 2-power level. In order to achieve this characterization in the more general
situation, the sub-base given in section 4.1 must be modified. In the last section, the
characterizations of basic constructible sets given in [16], [35] are shown to extend

to higher level in the 2-primary case. As in level 1, the proof requires an abstract

version of the Hormander-Lojasiewicz Inequality for semi-algebraic functions {15,

Corollaire 2.6.7].




Chapter 1

Orders of Higher Level

In the sequence of papers [4]-[7], E. Becker has developed a theory of higher level
orders for fields, generalizing the ordered fields of Artin and Schreier. In [38], a
beginning was made in extending this theory to commutative rings. (See also [9]
and [14]. Orders of higher level are also defined for commutative rings in [3] but
the approach taken there corresponds more closely to the theory of higher level
signatures developed in chapter 2 of this thesis.) Although the notions of preorders
and orders of arbitrary level were defined for commutative rings in [38], the theory
was really only developed for 2-primary level. In sections 1.6 and 1.7 below, this
theory is extended to include the non-2-primary case.

The material of the first five sections of this chapter is drawn from [5]-[7},[12],
[18] and [38]. Note that the terminology used here is not always consistent with

the original papers.

1.1 Preorders and semiorders of higher level

Let A be a commutative ring and fix a positive even integer n called the fized

ezponent. A preorder (of ezponent n) in A is a subset T' C A satisfying
T+TCT, T-TCT, A"CT.

If, in addition, —1 ¢ T, we say T is a proper preorder. We denote the group of
units of the ring A by A* and for any subset T C A, write T* for TN A*. If T is
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a preorder then T™ is a subgroup of A* and A*/T™* is of exponent n. (An abelian
group G is said to be of exponent k, where k is a positive integer, if G* = 0. The
smallest positive integer k for which GF = 0 is called the ezact exponent of G.)

Denote by LA™ the set of all finite sums Xz7, z; € A. It is the unique smallest
preorder in A of exponent n.

Let T C A be a preorder. A T-module is a subset M C A such that
M+MCM, T-MCM, 1eM.

A T-module M is proper if —1 ¢ M. A T-semiorder is a proper T-module S |
satisfying S U —S = A. Clearly T itself is a T-module and for any T-module M,
TCM.

1.1.1 Proposition. If T —T = A then M N —M 1is an ideal for any T-module M.

Proof. Clearly, M N —M is an additive group and T(M N —M) C M N —M. Since
T —T = A, it follows that AMN-M)C MnNn-M. O

Using the identity ([22, Theorem 8.2.2])
ol n—1
(1.1.2) nlz = Z(—l)""l"h( L ) [(z +R)" = A",
h=0

it is clear every proper preorder T in a field K satisfies T — T = K. (Note that if
—1 ¢ ©K™ then the characteristic of K must be 0.) For the ring A, n! need not be
a unit so it may be necessary to slightly enlarge T in order to assume T — 7T = A.

For any T-module M, define
Me¢:={z € A|(n!)z € M for some r > 0} .

Then T° is a preorder and M® is a T¢-module which is proper iff M is proper. If
n! € A* then M° = M. In particular, this holds for any proper T-module M in a
field K.

1.1.3 Proposition. For any preorder T C A, T* —T° = A.




Proof. Let z € A. By (1.1.2), nlz = y — 2z where y,z € ¥A" so nl(z + 2) =
y—z+nlz=y+(n!—1)z € ZA" C T and therefore, z = (z+2)—ze€T°*-T°. O

1.1.4 Theorem. If S is a mazimal proper T-module then S is a T-semiorder and

SN =S is a prime ideal of A.

Proof. Since S is maximal, S = 5S¢ so S is a T*-module and therefore, p := SN -5
is an ideal of A.

Suppose a € A and a ¢ SU—S. Then —1 € S+ ¢T and —1 € § — aT so there
exists 81,39 € 5, t1,t; € T such that

—1 =381 +at; and —1=39—al;.

Then —(t;+1t3) = t1(sy—atz)+ta(s1+at;) = t1sa+t281 € S so —t; = —(t14+1t3)+t; €
S and therefore, t; € p. But then —1 = 5y + at; € S+ p C 5, a contradiction.
Therefore, S is a T-semiorder.

Suppose a,b € A, ab € p. Then —a™b" = —(ab)” € p C S If —a™ ¢ S then
—~1 € § — a™T so there exists s € S, t € T such that —1 = s — a™t and therefore,
—b" = b"s — a"b™t € S. So at least one of a”,b" is in p, say a™ € p. Pick m such

that n < 2™. Then a?” € p so it suffices to prove the following claim.
Claim. a* € p=a € p.

Suppose a? € p and a ¢ p. Replacing a by —a if necessary, we can assume a ¢ S.
By the maximality of S, —1 € S+ aT so there exists s € S, ¢t € T with —1 = s+ at,
that is, at = —(1+s). Since a*#? € p, (1+at)" = 14+nat+---+(at)" =1+nat+z
for some z € p. Then 1 —n(l+s) =1+ nat = (1 +at)* —z € S and therefore,
—1=(1-n(l+s))+ns+n—2¢€S, acontradiction. [

Let M be a T-module. Since ¥A™ C T, M may also be viewed as a LA"-
module. As in [12], we define the level of M, denoted s(M), to be the smallest
positive integer £ such that M is a £ A%*-module. If s(M) is a power of 2, we say

M is 2-primary.




1.1.5 Corollary. If P is a mazimal proper preorder of level 1 then
(i) PU-P=A,
(i) PN —P is a prime ideal of A.

Proof. By (1.1.4), it suffices to show P is also maximal as a P-module. Suppose M
is a proper P-module. For any z € M, we have P C P + zP C M. Since z* € P,
P + zP is a proper preorder so P = P + zP and therefore, z € P. Thus P is the

only proper P-module and hence is certainly maximal. [J

Level 1 preorders P C A satisfying (i) and (ii) of (1.1.5) are simply called orders
in much of the literature. Here they will be referred to as orders of level 1. (Orders
of higher level will be defined in sections 1.5 and 1.6.)

Let ¢ : A — B be a ring homomorphism. For any preorder T C B and any T'-
module M C B, ¢ }(T) is clearly a preorder in A and ¢~*(M) is a ¢~ !(T)-module.
Conversely, if T' is a preorder in A and M is a T-module, we denote by LB™p(M)
the set of all finite sums YyPo(z;), y; € B, z; € M. Then ¥B"¢(T) is a preorder
in B and ¥B"p(M) is a B™o(T)-module. XB"p(M) is called the extension of M
to B and we say the ring homomorphism ¢ is M-compatible if —1 ¢ LB"p(M).

1.1.6 Remarks. Let T C A be a preorder, M a T-module. If S7'A is the local-
ization of A at some multiplicative set S C A then the extension of M to S™'A
is
5""M:={:—nl xEM,sGS}.
If S is generated by an element a € A then S~'A is denoted by A[l/a] and S™"M
is denoted by M([1/a™].
For an ideal a C A, the extension of M to A/a is

M/a:={z+a|ze M}.

If p is a prime ideal of A, the residue field of A at p (that is, the field of fractions of

the domain A/p) is denoted by F(p) and o, : A — F(p) denotes the natural map
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A — A/p C F(p). The extension of M to F(p) is denoted by M(p). We say p is
M -compatible if a, is M-compatible, that is, if —1 ¢ M(p).

By Zorn’s Lemma, every proper T-module M is contained in a maximal proper
T-module S. By (1.1.4), p := SN —S is a prime ideal. If —1 € M(p) then there
exists a € A\ p such that —a® € M +p C S. But then a" € SN -5 = p,

contradiction. Therefore, we have the following weak local-global principle.

1.1.7 Theorem ([38, Theorem 1.6]). For any proper T-module M, there exists

an M -compatible prime.

We therefore have the following extension of {19, Theorem 1].

1.1.8 Corollary. If U is a subset of A with 1 € U then the following are equiva-

lent:
(i) —1 = Zuw;a?, for some u; € U, a; € A.

(ii) For each primep C A, —1 = Soyp(u;)z?, for someu; € U, z; € F(p).

Proof. (i) = (ii) is clear. For (ii) = (i), just apply (1.1.7) to the ¥ A"-module
generated by U. O

A field K is called formally real if —1 ¢ TK?.

1.1.9 Corollary. For any commutative ring A, the following are equivalent:

(i) A admits a proper preorder of exponent n.
(i1) A admits an order of level 1.

(iii) F(p) is formally real for some prime p C A.

Proof. Taking U = {1} in (1.1.8), we have —1 € ZA™ iff —1 € L F(p)" for all primes

p C A. Since n is an arbitrary positive even integer, this holds for n = 2 as well.

By [22, Theorem 6.15] (or by (1.4.6) below), —1 ¢ SF(p)" iff —1 ¢ ZF(p)>. O
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1.2 Kadison-Dubois Representation Theorem

This section is essentially a translation of the paper [13] by E. Becker and
N. Schwartz and provides a simple, self-contained proof of the Kadison-Dubois
Representation Theorem (see [5], [21], [23].)

Let A be a commutative ring, T C A a proper preorder. A proper T-module M
is said to be archimedean if for all a € A, there exists k € N such that k —a € M.

Fix an archimedean preorder ' C A and let M be a T-module. Set

X(M) :={¢ € Hom(4,R) | (M) = 0}
and

Arch(M):={a€ A| for all k € N, m(1 + ka) € M for some m € N'}

where Hom( A, R) is the set of all ring homomorphisms from A to R.

1.2.1 Theorem. For each T-semiorder S C A, there exists a unique ring homo-

morphism ¢ : A — R such that ¢(S) > 0. Moreover,
(i) kero=I(S):={a€ A|1+kaec S forall k € N},
(i) ¢ Y (RH)=8SUI(S)={ac A|1l+kaeS forall k€ N}

Proof. (Uniqueness of ¢) Let a € A. Since T is archimedean, there exists (r,s) €
Z x N with r —sa € T C S. For any (r,s) € Z x N such that r — sa € S, we have
r — sp(a) > 0. Thus,

w(a) < ¥(a) :=inf{§ | (r,s) €Z x Nandr—sac¢€ S}.

Suppose (u,v) € Zx Nwith % < ¢(a). Then u—va ¢ S so va—u € S and therefore,
vp(a) > u, that is, ¢(a) > %. Thus ¢ = ¢ which is uniquely determined by 5.

(Ezistence of ¢) For a € A, define

w(a) :=inf{§l(r,s)EZxNandr—saES}.




Pick t € N such that t +a € T. Suppose (r,s) € Z x N and r —sa € S. Then
st+sa€T CSsor+steS. Since —1 ¢ S, r+ st is a non-negative integer so
L > —t. Thus, ¢(a) > —t and hence, is in R. Note that if a € S then r is necessarily
non-negative so p(a) > 0.

Suppose r—sa,u—v(—a) € S,r,u € Z,s,v € N. Then rv+us € Ssorv+us >0
and therefore, £ > —Z. Thus, ¢(—a) > —¢(a). Suppose (u,v) € Z x N such that
Y < ¢o(—a). Then u+va = u—v(—a) ¢ Sso —u—va € S and therefore, p(a) < —%.
Thus ¢(—a) < —p(a) and hence, p(—a) = —p(a).

Suppose r —sa,u—vb€ S, r,u € Z,s,v € N. Then (rv+us)—sv(a+b) € S so

rv + us r Uu
= -4 -
] v

pla+b) <
Sv

and therefore, ¢(a + b) < ¢(a) + p(b). Using ¢(—a) = —p(a), it follows that
ol +b) = o(a) + o(b).

From the definition of ¢(1), we clearly have (1) < 1. If r—s-1 € Sthenr—s
must be a non-negative integer so £ > 1. Thus ¢(1) = 1.

In order to show ¢(ab) = p(a)p(b), it suffices to consider the case b € T' (since
A = T — T and ¢ is additive.) Suppose (r,s) € Z x N, r —sa € S. Then
rb — sab € S so rp(b) — sp(ab) > 0 and therefore, p(ab) < L(b). Since ¢(b) > 0,
we have p(ab) < ¢(a)p(b). Similarily, for —a we have —p(ab) < —p(a)p(b) so
@(ab) = ¢(a)@(b). Thus, ¢ is a ring homomorphism with ¢(S) > 0 as required.

(i) Note that if a ¢ S then —¢(a) = p(—a) > 0 so a € S whenever ¢(a) > 0.
Suppose p(a) = 0. Then for all k € N, ¢(1 + ka) = 1so 1+ ka € S. Conversely,
suppose 1 & ka € S for all k € N. Then 1 > k |p(a)| for all k£ so ¢(a) = 0.

(i) If p(a) > 0 then either ¢(a) = 0 so a € I(S) or ¢(a) > 0 so a € S. Therefore,
¢ Y(R?) C SUI(S). Clearly, SUI(S) C {a € A|1+ka e Sforall k € Nj.
Now suppose 1 + ka € S for all k € N. Then 1 + k¢(a) > 0 for all £ and therefore
¢(a) > 0, which completes the proof. [

1.2.2 Remark. Any archimedean level 1 order P in a field K can also be viewed

as a P-semiorder. Applying (1.2.1) in this special case, we get a unique embedding
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¢ : K — R such that ¢(P) > 0. Thus we have the well-known result that every

archimedean ordered field is order isomorphic to a subfield of R.

1.2.3 Proposition. ¢ « ¢ 1(R?) gives a 1-1 correspondence between X(M) and

the set of mazimal proper T-modules lying over M.

Proof. For each ¢ € X(M) the set p~1(R?) is clearly a T-semiorder (in fact, a level
1 order) lying over M and by (1.2.1), ¢ is the unique ring homomorphism with
©(p~'(R?)) > 0. This shows ¢ — ¢~ (R?) is 1-1 and ¢~} (R?) & ¢¥~}(R?) if ¢ # .
Let S be a maximal proper T-module lying over M. Since S is a T-semiorder,
there exists a unique ¢ € X(M) with § C ¥ }(R?. By the maximality of S,
S=y¢7Y(R?). O

1.2.4 Proposition. Arch(M)= () ¢ *(R?.
pEX (M)

Proof. Let S be a maximal proper T-module lying over M.
Claim 1. S = Arch(95).

Clearly, S C Arch(S). We show Arch(S) is a proper T-module. Then S =
Arch(S) follows from the maximality of S.

Let a,b € Arch(S), k € N. Then there exists {,m € Nsuch that {(1+2ka), m(1+
2kb) € S so 2lm(1 + k(a + b)) € S and therefore, a + b € Arch(S). Let t € T. Pick
I,m € Nsuch that [ —¢ € T and m(1+lka) € S. Then Im(1+ kta) = mt(1+lka)+
m(l —t) € S so ta € Arch(S). If —1 € Arch(S) then m(1 +2(-1)) = —m € S for
some m € N and therefore, —1 € S, a contradiction. Since 1 is clearly in Arch(S),

Arch(S) is a proper T-module, which proves the claim.

Claim 2. If a ¢ Arch(M) there exists a mazimal proper T-module S 2 M with
—a€S.

If =1 € M — aT then there exists t € T such that at —1 € M. Pick k£ € N such
that £ —t € T. Consider the set

2:={§| r,sENandr—{-saeM}.
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Since T' is archimedean, ¥ # (. Suppose £ € X. Then kr — s + ksa = (k — ¢)(r +
sa)+s(ta—1)+rt € M. If 2 > L then kr —s > 0 s0 =2

L — 2 € X. Otherwise,
< %sos—kr-l—r > 0 and hence, r + ksa = kr —s+ ksa+s—kr+r € M.
Therefore, f% € ¥. This shows 0 = inf ¥. But then for each £ € N, there exists
L€ ¥ with L < sos(1+ka) = k(r+sa)+s—rk € M. This shows a € Arch(M),
a contradiction. Thus —1 ¢ M — aT so take S to be any maximal proper T-module
lying over M — aT. This proves the claim.

By claim 1, Arch(M) C Arch(S) = S for all maximal proper T-modules S 2 M.
Conversely, suppose a € S, for all maximal proper T-modules S 2 M. Let £ € N.
If 1+ (k+ 1)a ¢ Arch(M) then, by claim 2, there exists a maximal proper 7-
module S 2 M with —1 — (k + 1)a € S, a contradiction since a € S. Thus,
1+ (k+ 1)a € Arch(M) so there exists m € N such that m(1 + k(1 + (k + 1)a)) =
m(k+1)(1+ka) € M. Thus, a € Arch(M). The result now follows from (1.2.3). O

For each a € A, we denote the evaluation map ¢ — ¢(a) by 4. We give X(M)
the weakest topology such that the evaluation maps G, a € A, are continuous. Then

a — a defines a ring homomorphism
Oy A— C(X(M),R)

where C(X(M),R) denotes the ring of all continuous R-valued functions on X (M).

1.2.5 Theorem (Kadison-Dubois Representation Theorem). Suppose T' C
A 1is an archimedean preorder. For any proper T-module M,

(i) X(M) is a non-empty compact Hausdorff space,

(ii) Arch(M)={a € A|a(X(M)) >0},

(i) ker @pr = Arch(M) N — Arch(M),

(iv) Q- ®p(A) is dense in C(X(M),R).

Proof. X(M) is non-empty by (1.2.3). For each a € A, pick k, € N such that
k, £ a € T and therefore, a(X(M)) C [~kq, k;]. Thus, we have an embedding

X(M) = T[[=ka, ka]

a€A
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given by ¢ — (¢(a))aca. This is a closed mapping so X(M) is compact and
Hausdorff. (ii) is just (1.2.4), (iii) follows from (ii) and (iv) follows from the Stone-
Weierstrass theorem since ®r(A) clearly seperates points of X(M). O

1.3 Compatible valuations

Let K be a field, v a Krull valuation of K (written additively.) We denote the
valuation ring of v by A,, the maximal ideal of A, by m, and the residue field
A,/m, by k,. For any S C K, the set S, := (4, NS +m,)/m, in k, is called the
push-down of S (along v).

Let T C K be a proper preorder. Clearly T, is a preorder in the residue field
k, with s(T,) < s(T). Following [4] and [27], we say T is compatible with the
valuation ring A, (or with the valuation v), written T ~ A,, if T, is proper, that
is, if —1 ¢ T,. T is said to be fully compatible with A, (or with v) if 1 + m, C T.
Clearly, if T is fully compatible with A, then T ~ A,. Denote by T the smallest

preorder in K containing 7" which is fully compatible with v.
1.3.1 Proposition. If T ~ A, then

v(ti+ - +tp) =min{v(t) i =1,...,m}
for any t1,...,t, € T™.

Proof. Let s =t +-- -+t and assume v(t;) < v(¢;) for all ¢. Then s/t; € 14+(T'N
A,). Since T is compatible with A,, s/t; € A% and therefore, v(s) = v(t;). O

1.3.2 Proposition. Suppose U is a subgroup of K* with 1+m, C U. Then A;NU
is additively closed iff Uis additively closed.

Proof. Suppose AXNU is additively closed and u € U. Clearly, 1+u € U if u € m,.

If 1/u € m, then 1 +u = u(1 + %) € U(1+ m,) C U. Otherwise, u € Aj so
l14+u € AxNU CU. Thus 1 + U C U which, of course, implies U is additively
closed. Conversely, suppose U + U C U and u € A7 NU. If 1 +u ¢ A} then
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l1+u€em,so—-u€l+m, CU and therefore, 0 = u + (—u) € U, a contradiction.

Thus, 1+u€ A;NU. O

1.3.3 Corollary. Suppose Q O T, is a proper preorder in k,. Then the wedge
product of T and (@) is defined to be

TAQ:=T-{acA}|aeQ}.

It is a proper preorder in K fully compatible with v which pushes down to Q).

Proof. Clearly (T A Q)" is a subgroup of K* containing 14+ m, and (TAQ)N A} =
{a € A2 | @ € Q} is additively closed so, by (1.3.2), T A Q is additively closed and
hence, a proper preorder fully compatible with v which pushes down to Q. O

1.3.4 Remark. Suppose v is a valuation of K such that —1 ¢ XkP. For any
z € (ZK™") N A;, write £ = 27 + - - - + z} where zy,...,z¢ € K* and v(z;) < v(z;)
for all i. If z; ¢ A, then 27" € m, s0 0 =1+ @} +...a} for some as,...,a; € Ay,
a contradiction. Thus, z; € A, for all 1 and T = T} +...7} € Zkj. It follows that
—1 ¢ ©K™ and the push-down of TK™ is £k". If Q C k, is any proper preorder of
exponent n then

T:=SK"AQ

is a proper preorder in K which is fully compatible with v and T}, = Q.

1.3.5 Corollary. If T ~ A, then T =T - (1+m,) = T AT, is a proper preorder
and we have the exact sequence

k: : I{* U U(K*)

1—)T—J—>TU*—> U(T*)

— 0,

where 1(aT) = aT" and v(zT"") = v(z) + v(T™).

Proof. {a € Az |aeT,} =(TNA%)-(1+m,)so TAT, =T-(14+m,) S T". Since
T AT, is a proper preorder fully compatible with A,, T¥ = T A T,. It is now easily

seen that the given sequence is exact. O
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For a proper T-module M, set

A(M) :={.1:€KIrixEMforsomer€Q+},
IM):={ceK|rtzeMioralreQty,

where Qt denotes the positive rationals.

1.3.6 Theorem ([5, Theorem 3.7(i),(ii)]). For any proper preorder T C K,
(i) A(T) is a Prifer domain with quotient field K,
(i1) I(T) is a proper ideal of A(T),

(iii) A(T) is generated as a ring by the elements 1, t € T.
Proof. Since
(1.3.7) rsk oy = H(r+2)(s £ y) + (r = 2)(s Fu)],
it is clear A(T) is a subring of K and I(T) is a proper ideal. If t € T, 1+ 75,1415 €
T so ~,:5 € A(T). Now let a € A(T). There exists k,m € N such that
k+aeT*NAT)and m — (k+a) € T. Then 3> =1+ ¢ for some ¢ € T so
a = {3 — k. This proves (iii). To prove (ii), we must show the localization A(T),

of A(T) at any prime ideal p is a valuation ring.
Suppose p C A(T) is prime. Let t € T*. If o5 ¢ pthen 1+1 € A(T), and
hence, t € A(T)y. Otherwise {- ¢ psol = 1—_1‘_—5 - 14t ¢ pA(T)p. In particular, for

14t
all z € K*,
(*) a" ¢ A(T)p = 1/z" € pA(T),.

Let B be the integral closure of A(T), in K. It follows from (*) that B is a valuation
ring. Let m be the unique maximal ideal of B. Then m N A(T'), = pA(T)y so for
any ¢ € B, 1/z" ¢ pA(T), and therefore, 2" € A(T)p. Thus, EB™ C A(T),. Since
Q C B, BC A(T), by (1.1.2) and hence, B = A(T),. O

1.3.8 Proposition. For any valuation v of K, the following are equivalent:

(i) T ~ A..




(i1) TV is a proper preorder.

(iii) A(T) C A,.

Proof. (i) = (ii) by (1.3.5).

(ii) = (iii) Forany z € m,, r£z =r(1£r'z) € T*(1+m,) = T" for all r € Q*.
Thus, m,, C I(T"). Suppose a € A(T). Pick m € N such that m —a™ € T*. Then
L _ L ¢T"so = ¢ I(T) and therefore, - ¢ m,.

(iii) = (i) Let t € TN A,. Then l—-l—i—;:: '1% € T so 5 € A(T) € A, and
therefore, 1 + ¢ € Ay. This shows —1 ¢ T,,. O

If S C K is a T-semiorder and v is a valuation of K then the push-down S, is
clearly a T,-module satisfying k, = S, U —S,. Following [27] (rather than [7]), we
say S is compatible with A, and write S ~ A, if —1 ¢ S,. Since T' C §, this implies
-1¢T,s0S~A,iff T~ A, and S, is a T,,-semiorder.

In [45], Prestel shows that for any ¥ K?-semiorder S, the set A(S) is a valuation
ring compatible with S and, moreover, that the push-down of S to the residue field
is an order of level 1. In [7], Becker shows this is also the case for any higher level
semiorder. His proof is given below. One should note, however, that the level 1 case

has a much easier proof. See, for example, [27, Theorems 15.5 and 15.6].

1.3.9 Theorem ([7, Theorem 1.2]). If S C K is a T-semiorder then
(i) A(S) is a valuation ring with mazimal ideal I(S),
(i) (1+I(S)(AS)»NS)CS,
(iii) The push-down S of S to the residue field k of A(S) is a level 1 order in k.

Proof. By (1.3.7), it is clear that A(S) and I(S) are both A(T)-modules. Then
p := A(T) N I(S) is a proper ideal in A(T). We show p is prime, A(S) = A(T),
and I(S) = pA(T),. Then, by (1.3.6), A(S) is a valuation ring with maximal ideal
I(S).

Let P := (A(T)NT)+p. Suppose —1 € P, say —1 =t+z, where t € A(T)NT
and z € p C I(S). Since —1 ¢ I(S),t # 0. Then -1 =t"'(1 +2z) € TS C 5,
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a contradiction. Therefore, P is a proper a,rchilmedean preorder in A(T') so we can
apply the Kadison-Dubois Representation Theorem (1.2.5) to P.

Suppose a € Arch(P)N— Arch(P) C A(T) and k is a positive integer. 3. +a € P
so there exists t € A(T)NT,z € p C I(S) such that 1 +a=t+5+z€T+SCS.
Similarily, + —a € S so a € A(T)N I(S) = p. Since p S P C Arch(P), we have
p = Arch(P) N — Arch(P). Suppose a,b € A(T) \ p. By (1.2.5(iii)), a™,b" ¢ p =
A(T) N I(S) so there exists k € N such that t —a” ¢ S and ; —b" ¢ S. Then
a"—%,b"—1 € Sand a®+1,b"+ 1 € T so by (1.3.7), a™b" — & € S and therefore,
amb™ ¢ I(S). It follows that ab ¢ p. Thus, p is a prime ideal in A(T).

Let z € A(T),. Then there exists a € A(T), s € A(T) \ p such that z = %.
Since s ¢ I(S), there exists k € N such that L — s® ¢ S and therefore, k — & =
£(s"—1)€ S. Let b € I(S). Since I(S) is an A(T)-module, ab € I(S) so for any
m > 0, -+ ab € S and therefore, L + b = (k- %)+ &(5; £ab) € S s0
zb € I(S). This shows I(S) is an A(T'),-module. Similarily, one shows A(S) is an
A(T)p-module.

For any @ € K, a”'a =1 ¢ I(S) so, a € I(S) = a~ ! ¢ A(T),. Since A(T),
is a valuation ring, this shows I(S) C pA(T),. Since p C I(S) and I(S) is a
A(T)p-module, pA(T), = I(S).

Suppose there exists a € A(S) with a ¢ A(T),. Replacing a by —a if necessary,
we may assume a € S. Consider the T-semiorder S’ := S%. We can apply the above
arguments to S’ to get the prime ideal p’ := A(T') N I(S’) and the valuation ring
A(T)y with maximal ideal I(S") = p'A(T)p.

Suppose z € I(S"). For any k > 0, ka € A(S) so there exists m € N such that
m + ka € S and therefore, £ + az = 2(m — ka) + a(5; £ ) € S+aS" C S. This
shows al(S’) C I(S). Similarily, one shows aA(S’) C A(S).

Since a ¢ A(T)y, L € pA(T), = I(S). Thus, I(S") € 21(S) € I(S) so p’ C p.

a

A(S") is a A(T)y-module so we have

A(T)y € A(T)y C A(S") € FA(S) S A(S).

Since % € I(S),r — & € S for any r € QF so a" ¢ A(S). However, a € A(S)
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so there exists m > 0 such that m — a € S and therefore, % - i— €S -‘1; = S’. Then
L ¢ I(S") =p'A(T)p s0 a € A(T)y. But then a™ € A(T)y C A(S), a contradiction.
Thus, A(S) C A(T),. Since A(S) is a A(T)p-module, the reverse inclusion holds.
Therefore, A(S) = A(T), which proves (i).

Suppose z € I(S), a € A(S)*NS. Then r —a ¢ S for some r € Qt and
ar € I(S)so (1+z)a=a+azx=(a—r)+(r+az)€ S+ S CS. This proves (ii).

Suppose a,b € A(S)*NS. Then a,b ¢ I(S) so there exists r € QF such that
L—a,2—-b¢S. Then(a+b)—r=(a—L)+(b—35)€S+SC Ssoa+bé¢ I(S).
This shows A(S)* N S is additively closed and therefore, —1 ¢ S.

Suppose a € A(T) \ p. By (1.2.5(ii)), a* C Arch(P) so for any k > 0, there
exists t € A(T)NT,z € p C I(S) such that L +a’=t+zso t+a’ =g +t+z=
t+(3x+y)€T+SCS. If a®> € —S then 2 —a? € S for all k> 0 and hence,
a’ € A(T)N I(S) = p, a contradiction. Thus, a®> € A(S)*N S. Since A(S)* NS is
additively closed, + + a® € A(S)*N S. Therefore,

(2 +a®)(A(S)*NS) CAS)* NS

for any £ > 0.

Suppose z € A(S)*, s,t € A(S)* N S such that z?s = —t. Since A(S) = A(T)y,
there exists a,b € A(T) \ p such that ¢ = %. Then a’s = —b*"t and 6"t ¢ I(9).
Pick k,m € N such that k+s € S and L —5*t ¢ S. Then b*"t — % = (bt — 1) +
#(k —s5) € Sand = — bt = = +a’s= (ﬁ +a?)s C A(S)*N S, a contradiction.
Therefore,

A(S)(A(S)* N S) C AS)* N S.

This shows S is an archimedean Yk?-semiorder. It remains only to prove the

following result due to Prestel [46, Theorem 1.20].
Claim. Any archimedean Lk%-semiorder is a level 1 order.

We need only show S is closed under multiplication. Let s,t € S”. Then
st = [(t + s)? — (t — s)?] so it suffices to show for any a,b € k,

a,b—a€el = ¥ —-a?€s.
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If a = 0 or a = b the result is trivial so assume a,b—a € 5. Then

ab(b—a) = a*(b— a)za(bl_)_ )
*) =a'(b—a) E t3 - a]

which is clearly in S. Suppose a € £k?. Then, multiplying (x) by %, we have
b(b—a) € S and therefore, b — a? = b2 —ab+ ab—a® = b(b—a) +a(b—a) €
S+ (2k?)S C S. Similarily, if b € $k?, we get b —a? € S. Thus, it suffices to show
there exists r € Qt withb—rr—a € S.

Since S is archimedean we can pick k¥ > 0 such that k — ;== € S”. Since
= (b—b__':—)z € 57, it follows from (*) that £-(k — ;&) € S. Multiplying by ib—';'iﬁ,
we have k(b—a) — 1 € S. Pick m € Z minimal with respect to m — ka € S". Then
kb—m = (k(b—a)=1)+(ka—(m—1)) € Ssob— 2,2 —a € S. This completes
the proof. O

1.3.10 Proposition. For a valuation v of K and a T-semiorder S C K, the fol-
lowing are equivalent:

(i) A(S) C A,.

(ii) S~ A,.

(iii) (1 +my,)(A;NS)CS.

(iv) 1+m, CS.

Proof. (i) = (ii) If —1 € S, then there exists s € A5 N S, z € m, such that
~1=s+z = (1 +s'z)s. Sincem, C I(S), 1 +s7'z € 1+ I(S) S A(S)"
Since —1 € A(S)*, we must have s € A(S)*. But then —1 € S by (1.3.9(ii)), a

contradiction.

(i) = (iii) Suppose there exists s € A* N S, z € m, such that (1 + z)s € —5.
Then 5 € S,N -8, and 5 # 0 so by (1.1.1), S, N =S, = k, and hence, -1 € S, a

contradiction.




(iii) = (iv) is clear.

(iv) = (i) For any z € my, 2+ 2 = L(1+mz) € T(1+m,) C S for all integers
m > 0. Thus, m, C I(S) so A(S) C A,. O '

1.3.11 Theorem ([12, Theorem 3.1]). Suppose S C K is a T-semiorder. If
ai,...,a, € S* such that a; ¢ A(S)*T* for at least one ¢ then there exists a valuation

ring A compatible with S such that

(i) (1 +m)a; C S for all i, where m is the mazimal ideal of A,

(i1) a; ¢ A*T™* for some 1.

Proof. Consider the family {A,} of all valuation rings of K containing A(S) with
a; ¢ AT* for some i. Since A(S) is a valuation ring, this family is linearly ordered
by inclusion so that A := UA, is again a valuation ring of K containing A(S) with
a; ¢ A*T* for at least one i. Let m denote the maximal ideal of A. We show
(1 +m)a; € S for all .

Suppose B is a valuation ring properly containing A. Then A(S) € A C B and
a; € B*T*N S = (B*N S)T* for each i so, by (1.3.10), (1 +mp)a; C (1 + mp)(B*N
S)T* C S, where mp is the maximal ideal of B.

Consider now the family {Bs} of valuation rings of K which properly contain A
and let B = NBg. If A= B we are done since then m is the union of the maximal
ideals mg C Bs. So assume A G B. Then B = By for some § so a; € (B*N ST~
for all ;. Let 7= denote the natural homomorphism of B onto its residue field £ and
let §:=7(BNS). If (1+7(m))S C S then (1+m)(B*NS)C Sso(l+mla; €S
for each 7. Therefore, it remains only to show (1 4+ 7(m))S C S.

7(A) is a valuation ring of k of (Krull) dimension 1 and 7(m) is its maximal
ideal. Since 1 +m C A*NSCB*NS,1+7(m)C S. Let k denote the completion
of k with respect to 7(A) and S denote the closure of S in k. Clearly, S is a Tk"-
module. Suppose —1 € S. Then there exists s € 5 such that | —1—s| < 1 so

—1—s € n(m) and therefore, —s € 1 4+ r(m) C S, a contradiction. Thus, Sisa
proper Lk"-module in & (in fact, S is a semiorder.) By (1.1.1), Sn -3 = {0} so
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SNk =T. Forany z € n(m), |z| < 1 so (1+z)# € k. Then (14+7(m))$ Ck*5C S
and therefore, (1 + r(m))SC SNk=35. O

1.4 Complete preorders

If G # 0 is an abelian group of finite exponent, the 2-primary part of G is defined
to be the subgroup H; consisting of all elements whose order is a power of 2.
A proper preorder P in a field K is called complete if the 2-primary part of

K*/P* is cyclic. For example, every order of level 1 is complete.

1.4.1 Proposition. A proper preorder P C K is complete iff for all x € K,

(%) ?cP=>gecPU-P.

Proof. If the 2-primary part of K*/P* is cyclic then K*/P* has a unique element
of order 2 and hence, (%) holds. Conversely, suppose (*) holds. Pick z € K™ such
that zP* generates the 2-primary part of K*/P*. If y € K* has order 2°*" modulo
P* s >0, then y2° P* has order 2 so by (x), y* P* = —P* = z¥ P~, where 2"t is
the order of zP*, and hence, (aczr_sy)2s € P*. By induction on s, 22y P* = zF P*

and hence, y = 257" P*. O

1.4.2 Proposition. Any mazimal proper preorder is complete. Conversely, if P is

a 2-primary complete preorder then P is mazimal.

Proof. Suppose there exists £ € K such that 2 € T and z ¢ T U —T. Then
—1 ¢ T + zT since otherwise, —1 = s + zt, where s,t € T , t # 0, and hence,
—z = -}(1 + s) € T. Therefore, T + zT is a proper preorder properly containing T'
so T is not maximal. Conversely, suppose T' C T are proper 2-primary preorders
and z € T" ~ T. Replacing = with a suitable power we can assume z* € T, z ¢ T

Since TN —T' = {0}, —z ¢ T and hence, T is not complete. [

1.4.3 Lemma. If T C K is a proper preorder which is not complete then

T={T+aT|a*€T,a¢ TU-T}.
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Proof. Since T is not complete there exists a € K with a? € T,a ¢ TU -T.
Suppose z € T + aT for all a®> € T, a ¢ T U —T. For any such a, there exists
81,82,t1,t2 € T such that = s; + as, and = = t; — aty. Then (s182 + t1t2)z? =
s182(t2 —2at ta+atl) +t1ta(s2+2as,5,+a?s2) = sysati+titasi+a?(s189t3+11t083) €
T. Suppose = ¢ T. Then none of the s;, t; are 0 so sys; + t1t2 # 0 and therefore,
e €T. Sincea=42¢ T,z ¢ ~T. But then z € T — 2T so z = s — =zt for some

s,t € T and therefore, z = ;3; € T, a contradiction. [

1.4.4 Theorem. Every proper preorder in K is the intersection of the complete

preorders lying over it.

Proof. Suppose T is a proper preorder in K and = ¢ T. Let P 2 T be a proper
preorder maximal with respect to z ¢ P. Then z € P + aP for all a € K such that
a’> € P,a ¢ PU—P. By (1.4.3), P is complete since otherwise, z € N{P + aP |
ae PbLa¢ PU-P}=P. O

1.4.5 Theorem ([5, Theorem 3.4]). If P C K is a complete preorder then A(P)
is a valuation ring, I[(P) is the unique mazimal ideal and the push-down of P to the

residue field of A(P) is an archimedean level 1 order.

Proof. Since P N A(P) is an archimedean preorder in A(P), we can apply the
Kadison-Dubois Representation Theorem (1.2.5). Set

X := X(P N A(P)) = {¢ € Hom(A(P),R) | ¢(P N A(P)) > 0} .

For a € A(P), & denotes the evaluation map X — R given by ¢ + ¢(a). Then
acI(P)iffa=0on X and @ >0o0n X iffforall k € N, 1 + ka € P.

Suppose a € A(P), a ¢ I(P). Then (a?) > 0 for some ¢ € X, say p(a?) > £,
k€N Setb=a>—1 € A(P). So ¢(b) > 0. Suppose s = 2"m, m odd, is the
order of bin K*/P*. If r > 1 then b* '™ € —P so (¥ ™) < 0, a contradiction.
Thus ™ € P so 5™ > 0 on X. Since m is odd, 5> 0 on X. Thus,a?=1+b€ P

and > — & = % +b € Pso2k+a? € P and hence, a=> € A(P). It follows
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that a=' € A(P) so a € A(P)*. Therefore, I(P) is the unique maximal ideal of the
Priifer ring A(P) so A(P) = A(P)yp) is a valuation ring. We have already seen
a € A(P) \ I(P) implies a® € P so A(P)* C PU —P and hence, the push-down P

of P is an archimedean level 1 order. [J

In section 1.1, we used a result in [22] to show —1 ¢ K™ iff K is formally real.

We are now in a position to prove this directly.
1.4.6 Corollary. —1 ¢ TK? iff —1 ¢ TK".

Proof. If —1 ¢ SK™ then K has a complete preorder P of exponent n by (1.4.2).
Let v be the valuation associated with A(P). Since P, is a level‘ 1 order in k,,

—1 ¢ Zk2. By (1.3.4), —1 ¢ LK?. The converse is clear. [

1.4.7 Corollary. Let P C K be a complete preorder. For any valuation v of K,
P ~ A, iff P is fully compatible with A,. If P ~ A, then the push-down P, is

complete.

Proof. By (1.3.8), if P ~ A, then A(P) C A, s0ol+m, C 1+ I(P) < P and
hence, P = P¥. By (1.3.5), k};/ P} is embedded in K*/P* so k}/P; necessarily has

a unique element of order 2 and hence, is complete. O

1.4.8 Corollary. For any proper preorder T' C K,
A(T)=({A(P) | P 2 T is a mazimal proper preorder} .

Proof. Let m be a maximal ideal of A(T'). Since A(T) is a Priifer domain, A(T)m
is a valuation ring. Let v denote the associated valuation. It follows from (1.3.8)
that 7V is a proper preorder. Let P be a maximal proper preorder lying over 1™.
Since 1 + mA(T)n € T¥ € P, P ~ A(T)m and therefore, A(P) € A(T)m. P
is complete so A(P) is a valuation ring and therefore, m C mA(T)n C I(P) so
m = I(P) N A(T) and hence, A(P) = A(T)m. Since A(T) = NA(T)m where m runs

through all maximal ideals of A(T'), this completes the proof. O




Let P C K be a complete preorder of level s(P) = 2°m, s > 0, m > 1 odd, and
let v be a valuation of K such that P, is a level 1 order in k,. (For example, take

v to be the valuation associated with A(P).) Let G := v(K*), Go := v(P*).

1.4.9 Lemma. There ezists a homomorphism p : G/nG — K*/K** such that
Tou = td, where U denotes the homomorphism K*/K** — G/nG induced by v.

Proof. Write n = p{* - - - p;* where py, ..., p; are distinct primes and r; > 0 for all <.
For any abelian group G, G/nG = G/p*G x --- x G[p;*G so it suffices to consider
the case k = 1, that is, where n = p” for some prime p and r > 0.

Let {g; + pG} be a Z/pZ-basis for G/pG. We show that G/p’G is the direct
sum of the cyclic subgroups generated by the g; + p"G. For then we can define u
by ¢; + p"G — z;K**" where the z; € K* are chosen so that v(z;) = g; for each ¢.

Clearly the g; + p"G generate G/p"G. Let e; € Z, h € G such that Ye;g; = p"h
and suppose for some 0 < s < r, p°le; for all :. Then p*(p"~*h — Eﬁ%gi) = 0. Since
G is the value group of the valuation v, 0 is the only element of finite order in G.
Thus, £2¢; = p"~*h € pG. Since the g; are Z/pZ-independent, plﬁ'; so p**lle; for
all 7. By induction, p"|e; for all 7 and hence, €;g; =0 mod p’G for all :. O

Choose a set of representatives 2 C K* for u(G/nG), taking 1 € 2. Note that
forae A, z € K*, u(v(z) +nG) = aK*™ iff z = acy™ for some ¢ € A}, y € K*. For
any z € P*, define

Xp : Go — {£1}

by x,(v(z)) = €P7, where ¢ € A’ such that ¢ = acy” for some a € A, y € K™
Suppose z; = a;e;y" € P*, where a; € U, ¢; € A%, y; € K*,1=1,2. fv(z1) = v(z2)
then ¢, K** = p(v(z1) + nG) = p(v(zs) + nG) = a2 K*" s0 a; = a3 and €;1/e; =
1y} /2y} € P* 50 x,(v(z1)) = B1 PF = 5P = x,(v(z2)). There exists b € 2 such
that a1a2K*" = p(v(z122) + nG) = bK*™. Then 1z, = beye22" for some z € K*

and hence, x,(v(z1) + v(z2)) = ©15: P = xp(v(z1))xp(v(z2)). For any y € K™,

xp(v(y™)) = 1 since 1 € A. Therefore, x, is a character with x,(nG) = 1.
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P is completely determined by the group Go and the character x, since
P =|J{aM,K" |a € AN v~ (Go)}

where M, := {€ € A} | ac € P} = {e € A} | x,(v(a)) =EP}}.
By (1.3.5), the sequence

K —)—Ci—>0

1 - {£1} — P e

is exact. Since the 2-primary part of K*/P* is cyclic of order 2°*!, the 2-primary
part of G/Gy is cyclic of order 2°. Suppose s > 1. Let ¢ € K™ such that = has order
2+1 modulo P*. P is complete so —z% € P*. Write 22~ = aey” where a € 2,
e € A,y € K*. Then —z% = —a%%y? = —be?y?2" for some b € A, z € K* so
Xp(2°v(z)) = xp(v(—2*)) = —82P* = —1 and therefore, x,(Go N 2°G) # 1.

We have proved one half of the following.

1.4.10 Theorem ([6, Satz 2.4]). Let v be a valuation of K, G = v(K*), v :
K*/K*™ — G/nG the induced homomorphism. Let u : G/nG — K*/K*" be a
homomorphism such that U o u = id and fir a set of representatives A C K* for
w(G/nG) with 1 € A.

Suppose Gq is a subgroup of G containing nG such that the 2-primary part of
G/Gy is cyclic of order 2°, s > 0, and x : Go — {x1} is a character such that
x(nG) =1 and x(GoN2°G) #1 if s > 1.

Let P be a level 1 order in k, and set M, := {e € A% | x(v(a)) =EP"} for each
a € ANv~YGo). Then

P = U{aMaK“ laeAN v H(Go)}

is a complete preorder with P, = P and Gy = v(P*) and every complete preorder

in K pushing down to P is obtained in this way.

Proof. 1t is easy to see that P- P C P and PN —P = {0}. Since 1 € A, K" C P
and My ={e € A |§€ P} CP. Then AsNP=M; =P and 1 +m, C P.

Suppose z € P*. f zr e m, then1+z€1+m, CP. lfz ¢ A, thenl+z =




t(l+z ) e P*(1+m,)C P . Ifzc A>thenT € P so1+Z € P and therefore,
l+z¢€ M; CP. Thus, 14+ P C P and hence, P+ P C P. So P is a proper
preorder with P, = P.

Let v(z) € Go. Write 2 = aey”, where a € U, ¢ € A} and y € K*. Then
v(a) € Go so for any n € M, C A%, any™ € P* and v(z) = v(any™). Thus,
Go C v(P*). Clearly v(P*) C Gy so v(P*) = Gy. Note that since P, = P has level
1, Az C P*U —P* and therefore, v(z) € Gy iff z € P* U —P~.

Suppose there exists z € K* such that 22 € P* and = ¢ P*U—P*. Then v(z)+
Go has order 2 so the 2-primary part of G/Gj is non-trivial. Let u € K™ such that
2°v(u) € Gy and x(2°v(u)) = —1. Write u?"” = aey™ wherea € U, c € A%,y € K~
Let b € 2, z € K* such that a® = bz". Then v* = a’¢’y™" = bey* 2™, v(b) € Go
and X(v(b)) = x(2°v(u)) = =1 = =8P so —¢? € M, and —u? = —be?y?"z" € P*.
Thus, u?*™ ¢ P*U —P* so 2°"'v(u) ¢ G, and therefore, v(u) + Go generates the
2-primary part of G/Gy. Since v(z) + G has order 2, v(z) + Go = 2°"'v(u) 4+ Go
and hence, v(zu? ™) = v(z) + 2°"'v(u) = 0 mod G. Therefore, zu®~ € P*U—P*
so z2u?’ € P*. But 2% € P* so u*’ € P*, a contradiction. Therefore, P is complete.

Since we have already seen that every complete preorder can be obtained in this

way, this completes the proof. O

1.5 Orders of higher level in fields

An order in a field K is a proper preorder P C K such that K*/P* is cyclic.
Clearly, orders are complete and any 2-primary complete preorder is an order.

The set of all orders of exponent n in K is called the (higher level) real spectrum
of K and is denoted Sper K. If T is a preorder in K, Sper 7K denotes the set of all

orders in Sper K containing 7.

1.5.1 Example. In R(X), the only complete preorders are orders and R(X) has

precisely the following orders:

(i) For each even integer s > 2, R(X) has a unique order Py-, of level s

compatible with the valuation ring R[IY](_;?) and for each a € R, a unique
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order P,- , of level s compatible with the valuation ring R[X](x-a).

(ii) For each odd integer m > 1, there exists ezactly two orders Py,- ., and P+ ,,
of level m in R(X) compatible with the valuation ring R[)I—(](Fx{_) and for each
a € R, ezactly two orders P,- ,, and P,+,, of level m compatible with the

valuation ring R[X]x_a).

Proof. Since R[X](x-a), @ € R, and R[i—](%) are the only valuation rings of R(X)
with a formally real residue field, every order in R(X) must be compatible with one
of these valuation rings and must push down to the order P := R? on the residue
field. Let s = 2"m, where r > 0 and m > 1 is odd, and set n = 2s. We use (1.4.10)
to determine all the orders in R(X) of level s.

Let a € R, Ay := R[X](x-q). A, is the valuation ring of the valuation v :
R(X)* — Z defined by v(f/g) = k iff ‘gt =(X - a,)k‘gL,' for some f’, ¢’ € R[X] with
f'(a)g'(a) # 0. Set

= ‘f" an a a
Ta--{g‘f,geR[X] a fi )g()>o}

soT,={e€ Az |z€ P} and A" = T, U ~T,. Define y : Z/nZ — R(X)*/R(X)*"
by u(k +nZ) = (X — a)* + R(X)™ and take % := {1, X —a,...,(X —a)""'}.

To obtain a complete preorder of level s, the only possible choice for the subgroup
Go is sG. Then A Nv~Y(Go) = {1,(X — a)*}, G/Go is cyclic of order s and
Go/nG = ZJ2Z. Let x : Go — {£1} be the character for which x(v((X — a)®) =
x(2"v((X — a)™)) = —=1. Then My =T, and M(x_a)s = =1, so

Py = (T,U—(X —a)’T,) R(X)*

is a complete preorder in R(X) of level s compatible with R[X](x_,). Since Go =
v(P;-,) and G/Gy is cyclic, P,- , is an order in R(X).

The only other character is the character X’ which is identically 1 on Go. If s
is even, that is, 7 > 0, we cannot use Y’ to define an order in R(X). However, if

r = 0, the 2-primary part of G/Gy is trivial so we can use x’. In this case, s =m

is odd and M1 = M(X_a)m = Ta SO

Pt = (T, U(X —a)"T,) R(X)*™
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is a complete preorder in R(X) of level m compatible with R[X](x_a).
Now let A, := R[—;?](%). A, is valuation ring of the valuation v : R(X)* — Z
defined by v(f/g) = deg(g) — deg(f) for any non-zero f,g € R[X]. Define

d d
T := {g f=>aX', g=3 bX withd>0, azbs > 0}
=0 1=0
soTy, = {c € A% |2€ P} and A = To,U—Ts,. Define i : Z/nZ — R(X)*/R(X)*"
by u(k +nZ) = %k + R(X)*™ and take % := {1, +,..., ¥n-1}.
We again have G = Z and Gp = sG so AN v HGo) = {1, 5}, G/Go is cyclic
of order s and Go/nG = Z/2Z. For the character x : Go — {1} defined by

X(U('}l{—‘?)) = X(2rv(%m)) = -*—1, Ml — Too and Mjl(_s = —1 4 SO
Po-y o= (Too U = 14T ) R(X)™

is an order in R(X) of level s compatible with R[—;(-]( 1)
If r = 0, the character which is identically 1 on Gy also defines an order. In this

case, M1=M%m =Ty so
Pot o += (Too U 2mToo) R(X)™™

is an order in R(X) of level m compatible with R[—IX]( - O

b

For a preorder T C K and an integer m > 1, we define
TM ={zecK|z™eT}.
Clearly for 2-primary preorders, T™ = T for all odd integers m.

1.5.2 Theorem. Suppose T C K is a proper preorder and m > 1 is an odd integer.
Then

(i) T™ is a proper preorder,
(i) A(T)=A(T™),

(iii) T is complete iff T is complete,

(iv) if n = 2°v where v is odd then T is 2-primary.




Proof. (i) Clearly, T C T®™, Tt . T™ C T®™ and since m is odd, —1 ¢ T™. We
must show T is additively closed. By (1.4.4), we may assume T is complete.
Let U = T™* and consider the valuation ring A(T). We have 1+I(T) CT* C U
so (1.3.2) applies. Since A(T)* N T pushes down to a level 1 order on the residue
field, (A(T)*NT)U—(A(T)*NT) = A(T)*. 1t follows that A(T)*NU = A(T)*NT
(since —1 ¢ U and T* C U.) Clearly A(T)*NT is additively closed so U is additively

closed.

(ii) Clearly, A(T) C A(T®™) since T C T®™. If P is a maximal proper preorder
containing T then P = P™ D T so A(P) D A(T®™) and therefore, by (1.4.8),
A(T) D A(T™).

(iii) Every z € T™* has odd order modulo T* so the 2-primary parts of K*/T ()

and K*/T* are isomorphic.

(iv) Forany € K, ()" =z" € Tso 2’ € TY. O
1.5.3 Corollary. For orders P, Q in K, P C Q iff @ = P™ for some odd m > 1.

1.5.4 Corollary. For any proper preorder T C K, SperrK # 0. In particular, T

is contained in a 2-primary order.

Proof. By Zorn’s lemma, T is contained in a maximal proper preorder P. By (1.4.2)

and (1.5.2), P is complete and 2-primary and hence, an order. O

1.5.5 Theorem ([6, Satz 2.17]). Every proper preorder in K is the intersection

of the orders lying over it.

Proof. By (1.4.4), we need only consider complete preorders.

Let P be a complete preorder and let v be the valuation associated with A(P).
Set G := v(K*), Go := v(P*). Suppose s(P) = 2"m, where r > 0, m odd. Then
the 2-primary part of K*/P* is cyclic of order 2"t and G/G, decomposes as the

direct sum

G
—:‘Hr Hm,
Go or @D
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where H,- is cyclic of order 2" and H,, is the subgroup consisting of all elements of
odd order.

Let U be a subgroup of H,, such that H,,/U is cyclic and let Gy 2 Gp be a
subgroup of G such that Gj/Go = U. Then G/Gy = Hyr ® Hy, /U is cyclic. Define
x @ Gy — k*/P* by x(v(z)) = x,(v(z™)). Since P, has level 1 and m is odd,
x(v(z)) = x,(v(z))™ = xp(v(z)) for all z € P*. Therefore, x(nG) = x,(nG) =1
and (G4 N 2"G) 2 x,(Go N 2"G). By (1.4.10), there exists a complete preorder ¢
in K with @, = P, and v(Q*) = G}. Suppose = acy™ € P*, wherea € 2, € € A},
y € K*. Then v(a) € Gy, x(v(a)) = x(v(z)) = xp(v(z)) = EP; so ¢ € M, and
therefore, x € @*. Thus, P C Q. Since the sequence

K~ G

l1—-{£l} — — — =0
{ } Q* G6

is exact and Q is complete, the 2-primary part of K*/Q* is cyclic of order 2"*! and
its subgroup of elements of odd order is isomorphic to H,,/U which is also cyclic.
Then K*/Q* is cyclic so @ is an order containing P such that v(Q*)/v(P*) = U.
Suppose the theorem is false. Then there exists z € K* such that z € Q* for all
orders Q 2 P and z ¢ P. If u(z) € v(P*) then z € P*A;, C P*U—P*so z* € P.
But then —z € P* C Q* for any order Q D P, a contradiction. Thus, v(z) ¢ v(P*).

Therefore,
({U | U is a subgroup of H,, with H, /U cyclic} #0.

Suppose H,, = @IC’i, where each C; is a cyclic subgroup of H,,,. If U; := .62.0]‘ then
1€ J#F
H,./U; = C;, for each ¢ and therefore, ‘QIUi = 0, a contradiction. Since mH,, =0,

it suffices to prove the following.
Claim. Every abelian group of finite exponent is a direct sum of cyclic subgroups.

Suppose H is an abelian group and mH = 0. Write m = pi'...p;*, where
p1,...,px are distinct primes, r; > 0. Then H is the direct sum of the subgroups
H,, := {z € H | pi’z = 0} so we may as well assume m = p"*!, for some prime

p,7>0. Let P:={z € H|pz =0}. Foreachz=0,...,r, PnpH/PNp*tH

is a Z/pZ-vector space so we can find z;; € H such that {p‘z;;} is a Z/pZ-basis
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of PN p'H modulo P Np** H. Then H is the direct sum of the cyclic subgroups
generated by the z; ;. O

1.6 Orders of higher level in commutative rings

As in [38], we define an order in a commutative ring A to be a proper preorder
P C A (of exponent n) such that there exists a prime p C A and an order P C F(p)
with P = o Y(P). We have p := PN —P, called the support of P and denoted by
supp P, P := P(p) and s(P) = s(P(p)) = ;[F(p)" : P(p)7].

The set of all orders of exponent n in A is called the (higher level) real spectrum
of A and is denoted Sper A. If T is a preorder in A, SperrA denotes the set of all

orders in Sper A containing 7.

1.6.1 Theorem. SpertA # 0 for any proper preorder T C A. In particular, any

mazimal proper preorder is a 2-primary order.

Proof. Let T be a maximal proper preorder. By (1.1.7), there exists a primep C A
such that T(p) is proper. By (1.5.4), there exists a 2-primary order P C F(p)

containing T'(p). Since T is maximal, T = o' (P). O

1.6.2 Remarks. Let ¢ : A — B be a ring homomorphism, 7' C B a preorder.
Then ¢~}(T) is a preorder in A and P +— ¢~!(P) defines a map ¢* : SperrB —
Sper ,-1(1)A. For any preorder T C A, Sper zpryr)B = ¢*~(Sperr A).

If B = S"'A is a localization of A at some multiplicative set S then ¢* :
Sperg-npS~'A — SperrA is 1-1 with image {P € SpertA | SNsupp P = 0}. If
B = A/a where a C A is an ideal, ¢* identifies SperzA/a with {P € SperrA|a C
supp P}.

For any primeideal p C A, we identify Sper r(,) F'(p) with the set {P € Sper7A |
p = supp P}. Then

Sperr A = | Sper r(») F(p)
|4

where p runs through all primes of A.
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For any preorder T and for any odd integer m > 1, define
T .= {ze A|as™eT}.

1.6.3 Proposition. Let P be an order in A and m > 1 is an odd integer.

(i) P™ is an order in A with supp P™ = supp P and s(P™) = (ATPL))’ where
(a,b) denotes the greatest common divisor of a,b.

(ii) If @ 2 P is an order in A with supp @ = supp P then Q = P®™  where

s(P)
m= 5@

(iii) Ifn = 2°v, v odd, then PY is a 2-primary order containing P®™ for all odd
m > 1. IfQ D P is any 2-primary order then Q O P® . We call PO the
2-primary part of P and denote it by P(2).

Proof. Let p = supp P.

(i) By (1.5.2), P(p)®™ is an order in F(p) so P™ = a;l(P(p)(m)) is an order in
A with support p. Clearly, 2s(P™) | —281% and [P(p)®™* : P(p)*] | (m,s(P)) so
5(P) = (P )(m, s(P)).

(ii) Since [Q(p)* : P(p)*] = m, Q(p) € P(p)™ and from (i), we have s(Q(p)) =
s(P(p)™). Thus, Q(p) = P(p)®™ and therefore, @ = P .

(iii) Write s(P) = 2"u where r < s and u | v. Then P® has level (%-?,—ﬁ = f{—iﬁ =

2. If Q D P is 2-primary then (v,5(Q)) =150 Q =Q¥ D P¥. O

Let P, @ be orders in A. We say @ specializes P and write P < Q if Q =
P Usupp@.

1.6.4 Theorem. If P C Q are 2-primary orders in A then P < Q.

Proof. Suppose a € @ ~ P. Replacing a by a suitable power of a we may assume

a® € P. Let p = suppP. Then @ € P(p), @ ¢ P(p). Since P(p) is complete,

—a € P(p) so —a € P C @ and hence, a € supp@Q. O
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1.6.5 Theorem. Let P be an order in A, p = supp P, q a P-compatible prime.
Then there exists a place w : F(p) — k U {oo} extending the natural map Afp —
F(q). The valuation ring n~1(k) is compatible with P(p) and if P(p), denotes the
push-down of P(p) to k then

(%) Q = a7 (P(p)o N F(a))

is an order in A with support q which specializes P.

To prove (1.6.5), we require the following proposition.

1.6.6 Proposition. Suppose K is a field, P C K is an order and B is a subring
of K. Define

A(B,P):={z€ K |btzx € P for somebe BN P},

I(B,P):={c€K|Z;£z€P forallbc BNP}.

Then
(i) A(B, P) is a valuation ring compatible with P with I(B, P) its mazimal ideal,

(iii) if B is a local ring whose mazimal ideal m is P-convez (that is, s,t € BN P

and s+t € m=s,t €m) then BNI(B,P)=m.

Proof. For convenience, set B = A(B, P), t» = I(B, P). Using (1.3.7), it is easy
to see that B is a ring and since A(P) = A(Z, P) C B, B is a valuation ring of K
which is compafible with P by (1.3.8). If b € B then clearly b" € B and therefore,
b€ B. Thus, B- A(P) C B. Conversely, if z € B then there exists b € BN P* such
that b+ z € P and therefore, 2/b € A(P) so z € B - A(P). This proves (i).
Suppose z € i and y € B. Let ¢ € BN P such that (1+¢)+y € P. For
any b€ BN P,V := (1+c)(1+b)—1€BﬂPsol—4l_—b:i:xy: %fj:txyEPby

(1.3.7) and therefore, zy € . Since —1 ¢ P, 1 ¢ . Since th is clearly closed under

addition, m is a proper ideal of B. lfze K*and 1/z ¢ B then, for any b€ BN P,




(1—+1b); ¢ A(P)sol+(l+b)z € P. Sincel +b € P*, 1;4-1; + z € P and therefore,
z € . Thus, f is the maximal ideal of B, which proves (ii).

Now suppose B is a local ring whose maximal ideal m is P-convex. Suppose
z€m,z#0. Then, forany b€ BNP, (ba" —1)+1 =bz" € mand 1 ¢ m so
bz" —1¢ P. Thus,b— L ¢ Pforallbe BNPso ¢ B. Therefore, m C thN B.

Since m is maximal, this proves (iii). O

Proof of (1.6.5). Let B be the localization of A/p at the prime q/p and let m be
its maximal ideal. We show m is P(p)-convex. Since q is P-compatible, there exists
an order Q) D P such that q = supp Q. Suppose z,y € BN P(p), z +y € m. Then
there exists s,s',t € P, s € q, t ¢ q such that z = 3’/ and ¢ + y = 5/t. Since
y € P(p),s—s"€ PC Q. Since s € q =supp @, s’ € @ so s’ € q. Therefore,
rem.

The existence of the place 7 follows now from (1.6.6). Define @ as in (*). Clearly
Q@ is an order in A with support q. Since @ = (7o)~ (P(p)y), it is also clear that
P C Q. Suppose a € Q ~ suppQ. Then 7 o ap(a) € P(p); so ap(a) € P(p) and
therefore, a € P. O

1.6.7 Corollary. If P C Q are orders in A then there exists an odd m > 1 such
that P™ < Q.

Proof. Since q = supp Q is P-compatible, P U q is an order in A. By (1.6.3(ii)),

_ m _ pm) _ s(Puq) __ s(P(q))
@=(PUq)™ =P" Uq, where m = S5" = [5q)- U

1.6.8 Theorem. The orders specializing a given order form a chain.

Proof. Let Q, Q' be orders in A specializing P. Then P@2) C Q2), P(2) € Q'(2.
Suppose there exists £ € Q) ~ Q'(@), ¥ € Q'@ \ Q). Replacing z and y by
suitable powers, we may assume —z € Q’(2) and —y € Q(2). Then y —z € Q'(2). If
y—z € P2) then y = y — z + = € Q(2), a contradiction. By (1.6.4), P2) < Q'2)
so y — z € supp Q'(2) and therefore, = y — (y — z) € Q'(2), another contradiction.

Thus, we may assume Q(2) C Q’(2). Then supp@ Csupp@’'so Q € Q'. O
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We say an order P in A is mazimal if P < @ implies P = . Of course,

2-primary orders are maximal iff they are maximal with respect to inclusion.

1.6.9 Theorem. Suppose P is an order in A, p = supp P. Then the following are

equivalent:
(i) P(2) is mazimal.
(ii) P is mazimal.
(iii) p is the only P-compatible prime.
(iv) F(p) = A/p- A(P(p))-

Proof. (i) = (i1)) Suppose P < Q. Then P(2) C Q(2). Since P(2) is maximal,
P(2) = Q(2) and therefore, supp P = supp @ so P = Q.

(ii) = (i) Suppose P(2) < Q. Then supp Q is P-compatible. By (1.6.5), P Usupp @
is an order so, by the maximality of P, supp @ C P C P(2) and therefore, P(2) = Q.

(i1) & (iii) follows from (1.6.5).

(iii) = (iv) Let 7 : F(p) — kU {0} be the place associated with the valuation ring
Alp - A(P(p)). By (1.3.8), 7 is compatible with P(p) so the kernel of 7 o oy is a

P-compatible prime. Since p is the only P-compatible prime, 7 is trivial.

(iv) = (iii) Suppose q is a P-compatible prime. By (1.6.5), there exists a place
7 : F(p) — kU {oo} compatible with P(p) which extends A/p — F(q). Then both
A/p and A(P(p)) are contained in the valuation ring of 7 so = is trivial. It follows

that q=p. O

1.6.10 Theorem. For each order P C A, there exists a unique mazimal order

specializing P.

Proof. Let Q' be a maximal proper preorder containing P(2). By (1.6.1), @' is a
2-primary order. Let Q = PUsupp Q’. Then Q(2) = P2Usupp Q' = Q. By (1.6.9),

Q is maximal. The uniqueness follows from (1.6.8). O
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Denote the set of all maximal orders in A by Spermax A and set SpermaxrA =
Sperr A N Spermax A for any preorder T C A. By (1.6.10), we have a canonical
specialization map p : Sper A —» Spermax A. Note that for a field K, Sper K =
Spermax K.

1.6.11 Example. R[X] has precisely the following orders of higher level:

(i) The mazimal orders
P, :={f € R[X]| f(a) 2 0}
of level 1 with support (X — a) for each a € R, the mazrimal orders
Po- s NR[X]
of level s with support 0 for each integer s > 1 and the mazimal orders
Pt m NR{X]

of odd level m with support 0 for each odd integer m > 1.
(ii) For each a € R, the following orders having support 0 and P, as their

unique mazimal specialization. For each integer s > 1, the orders
Pre . AR[X]
of level s and for each odd integer m > 1, the orders
P+ m NRX]
of odd level m.
Proof. All the orders on R(X) intersect down to support 0 orders on R[X]. The

only other primes of R[X] compatible with SR[X|" are the maximal ideals (X — a)
for each a € R. The residue field of R[X] at (X — a) is R which has only the level 1

order R? and oy 1(R?%) = P,. These orders are clearly maximal since their supports
are maximal ideals. Let a € R. For any f € R[X], f ¢ P, iff f(a) <0iff —f €T,
and f € P, ~ supp P, iff f(a) > 0 iff f € T,. Therefore, P, specializes the orders
P, Ifb> a"then f(X)=X"—b¢ P,. Since X" —b= X"(1 - 2n) € Pt s,
the orders P+, N R[X] are maximal. [J




1.7 Null- and Positivstellensatz

1.7.1 Theorem (Nullstellensatz). Let T C A be a preorder, a € A. Then a €
supp P for all P € SpertA iff —a™ € T for some integer k > 0.

Proof. Consider the localization A[l/a] and the preorder T'[1/a™] C A[l/a] extend-
ing T. If a € supp P for all P € SperrA then Sperrp/.mA[l/a] = 0. By (1.6.1),
T[1/a™ is not proper so there exists t € T', k > 0 such that —a™ = t. The converse

is clear. O

In [14], Berr generalized the Positivstellensatz of Stengle to preorders of higher

level. The following version is slightly stronger than the one appearing in [14].

1.7.2 Theorem (Positivstellensatz). Suppose T C A is a preorder, a € A.
(i) a€ P~ suppP for all P € SperrA iffa(l1+s)=1+1 for somes,t€T.
(ii) a € P for all P € Sper7A iff (a™ + s)a = a™ + ¢ for some s,t € T, k > 0.

Proof. (i) Suppose a € P\ supp P for all P € Sper7A. Consider the ¥ A"-module
M := T — aXA™. Suppose —1 ¢ M. By (1.1.7), there exists an M-compatible
prime p C A. Since T C M, p is also T-compatible so Sperrp)F(p) # 0. Then
a € Q for all Q € Sperr)F(p) so, by (1.5.5), @ € T(p) € M(p). But —a € M so
@€ M(p) N —M(p) and hence, a € p, a contradiction. Therefore, —1 € M so there
exists s' € LA™ such that as’ € 1 + T. Clearly s’ ¢ supp P for all P € SpertA so
the preorder T — s'T must contain —1. Then —(1 — s’) € T — s'T so there exists
s,t € T such that —(1 — s') = s — s't and therefore, a(1 +s) = as'(1+t) € 1 +T.

(ii) If a € P for all P € SperA then a € @ ~ supp Q for all Q € Spery/.mA[l/al.
By (i), there exists s', ¢’ € T[1/a™] such that a(1+s') = 14+t'. Clearing denominators,

we get s,t € T, k > 0, such that a(a™ 4+ s) =a™ +t. O
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Chapter 2

Signatures of Higher Level

Given an order P of level 1 in a field K, one defines a character sgnp : K* — {£1}
by sgnp(z) = 1 iff z € P*. sgnp is called a signature of K. Generalizing this to
higher level, a signature was defined in [10] to be a character o : K* — Q such that
kero U {0} is an order of exponent n, where Q denotes the group of n-th roots of
unity. If P is any order of exponent n in K then K*/P* is cyclic of order dividing

n so there exists signatures of K with kernel P*.

In [38], signatures were defined for a certain class of commutative rings called
rings with many units. A polynomial f € A[Xy,...,X;] is said to have unit values
if there exists z,,...,z, € A such that f(z,...,z,) € A*. f is said to have local
unit values if for every maximal ideal m C A, there exists z1,...,2, € A such that
f(zy,...,z,) ¢ m. The ring A is called a ring with many units if every polynomial
with local unit values also has unit values. Examples include semi-local rings and
von Neumann regular rings, see [40], [48]. If A is a ring with many units, a signature
of A is a character o : A* — Q such that kero = P* for some order P € Sper A.
The problem with this definition for arbitrary commutative rings is that the unit
group may be much too small. Consider, for example, the ring R[X]. The unit
group of R[X]is R* and R has exactly one order P := R? so Q* = P* for every
order Q € Sper R[X]. We need a signature to be defined on the whole ring, not

just for units.

Returning to our ring with many units, let o be a signature of A. Pick P €
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Sper A such that kero = P* and let p := supp P. Then the signature o lifts to a
character & : F(p)* — Q with ker& = P(p)* so the signatures of A are precisely
those characters o : A* — ) for which there exists a prime p C A and a signature
7 of the residue field F(p) such that o is the composite map G o ap : A* — Q. We

extend this definition to an arbitrary commutative ring (cf. the higher level orders

defined in [3].)

2.1 Higher level signatures of a commutative ring

Let A be a commutative ring and T C A a proper preorder. Denote by {2 the
group of n-th roots of unity in C and set Q, := QU {0}. A T-signature of A is
amap o : A — Q, such that o(T) = {0,1}, p := ¢7*(0) is a T-compatible prime
ideal and there exists a character @ : F(p)* —  with ker7 additively closed and
o =Goa,on A\ p. Note that if we extend 7 to F(p) by @(0) = 0 then 7 is a
T(p)-signature on F(p). We denote by Sigr A the set of all T-signatures of A.

For any T-compatible prime p, we have the injection o : Sigr() F'(p) — SigrA

given by @ — 7 o o and

(2.1.1) SIgTA = Ua;(SigT(p)F(p))
P
where p runs through all T-compatible primes.

2.1.2 Theorem. For every o € SigrA, there exists a unique order F, € SperrA
with
F,=07'({0,1}).

The map Sigr A — Sper7A defined by o — P, is surjective. In particular, SigrA #
0 for any proper preorder T'.

Proof. Let o € SigrA, say ¢ = & o a, where p is a T-compatible prime and & €
SigT(p)F(p). Since the kernel of the character 7 is additively closed, F; := s i(Hu
{0} is an order in F(p) with T(p) C P. Then P, := ¢7*({0,1}) = o;'(B) and

hence, is an order in A containing T'.
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Conversely, for any order P in A with support p, F(p)*/P(p)* is cyclic so there
exists a character on F'(p)* with kernel P(p)* and therefore, a signature o € SigrA
with P =P. 0O

2.1.3 Theorem. Suppose o € SigrA and m > 1 is an odd integer. Then o™ €
SigrA and B = P™ .

Proof. Suppose & € Sigr(y)F(p) such that o = Foay. Clearly, P = kero™ so o™

is a T'(p)-signature and therefore, o™ = ™oq is a T-signature with P, = Pf”. O
We define the level s(o) of a signature o to be the level of the order F,.

2.1.4 Proposition. For o,7 € Sigr A, the following are equivalent:
(i) B=P

[ T?

(i1) 7 = o™ for some odd integer m relatively prime to s(o).

Proof. Suppose G € Sigrp) F(p), T € Sigr(q)F(q) such that 6 =T oap, 7 =T o0 ay.

(i) = (ii) We have p = q and B = B so ker@ = ker7. Therefore, there exists
an odd integer m relatively prime to s(7) = s(¢) such that 7 = 3" and therefore,

T=0".

(ii) = (i) P. = P.m = P™ = P, since m is relatively prime to s(o) = s(E,). O

Let 0,7 € SigrA. We say T specializes o and write ¢ < 7 if for all a € A,
7(a) # 0 = 7(a) = o(a). If 0 < 7 then clearly P, < P..

2.1.5 Proposition. Suppose ¢ € SigrA and q is a P,-compatible prime. Define
T:A—Q, byr(a)=0(a) ifa€ AN q, 7(a) =0 otherwise. Then T € SigTA and

oc=<T.

Proof. Set @ = P, U q. Suppose a,a’ € A~ q and a —a’ € q. Then @@ =a" €
Q(q) so a'a™ ! € Q@ \ q C P, and therefore, o(a) = o(a’). Define 7 : F(q)* — Q by

F(%) = f'}(%% Clearly, 7 € Hom(F(q)*,) and ker7 = Q(q)* so 7 is a T'(q)-signature

and T =Toqq € SigrA. O
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2.1.6 Theorem. The signatures specializing a given signature form a chain.

Proof. Suppose ¢ < 7 and ¢ < 7. Then P,

g

we may asume P, < P, so 77'(0) C 757'(0). If m2(a) # O then 7y(a) # 0 and

T2

m(a) = o(a) =n(a). O

P

< P and F, < B,. By (1.6.8),

A signature o € SigrA is said to be mazimal if 0 < 7 = o = 7, for all

T € SigrA. Define

SigmaxTA := {0 € SigrA | 0 is maximal } .

2.1.7 Theorem. o € SigmaxrtA iff P, is mazimal. If o is mazimal then so is o™

for any odd integer m > 0.

Proof. Let ¢ € SigmaxTA and suppose P, < Q. Define 7 as in (2.1.5), where
q = supp@. Then o < 7 so ¢ = T and therefore, supp P, = supp@ so B, = Q.
Conversely, suppose P, is maximal and 0 < 7. We have P, < P. so P, = F.
and therefore, 071(0) = 771(0). Since o < 7, for all @ € A such that 7(a) # 0,
7(a) = o(a) and thus, o = 7.

By (1.6.9), P, is maximal iff P, (2) is maximal and F,(2) = P™ (2) = P.(2) for
any odd integer m > 0. O

2.1.8 Theorem. For all ¢ € SigTA, there exists a unique mazimal signature T
such that o < 7. Hence, we have a well-defined specialization map u : SigrA —»

SigmaxTA.

Proof. Let Q be the unique maximal order specializing P, and let ¢ = supp Q.
Define 7 as in (2.1.5). Then ¢ <7 and P. = P, Uq = Q. By (2.1.7), 7 is maximal.
The uniqueness follows from (2.1.6). O

2.2 Topologies on SigrA

Give Q4 the product topology (where 0, has the discrete topology.) The sets

Uai,...,ar;0a0) := {0 € SigrA | o(a;) = aoa;) fori=1,...,7},




where ay,...,a, € A, ap € Q4, form a basis for the subspace topology on SigrA.

2.2.1 Theorem. SigrA is closed in Q4.

Proof. Suppose T € Q4 is in the closure of SigrA. For any a,b € A, t € T, there
exists ¢ € U(a,b,ab,a + b,t,—1;7) N SigrA. Clearly, 7(ab) = o(ab) = o(a)o(b) =
7(a)7(b) and if 7(b) = 0 then o(b) = 0 and 7(a + b) = o(a + b) = o(a) = 7(a).
It follows that p := 771(0) is a prime ideal, T C 77*({0,1}) and 7 : F(p)* — Q
defined by F(%) = %g(%% is a well-defined character with 7(—1) = —1 and 7 = 7 o a.
Since T'(p)* C 771(1), —1 ¢ T(p)* so p is T-compatible. It remains only to show
that ker ¥ is additively closed.

Let a,b,z,y € A\ p such that ?(%) = ’r‘(%) = 1. Then 7(a) = 7(b) # 0 and
7(z) = 7(y) # 0. Pick ¢ = G0 aq € U(a,b,z,y,ay + bz, by;7) N Sigr A. Clearly,
a(%) =1, E(ij_-) =1s07(% +%) = 1. Then 7(ay +bz) = o(ay + bz) = o(by) = 7(by)
and therefore, 7(2 + 2) =1. O

We define the Harrison topology on SigrA by taking as a sub-base the sets
U(a;0), where a € A and o € SigrA such that o(a) # 0. This is coarser than
the product topology on SigrA so SigrA is compact in the Harrison topology.
(Of course, if K is a field then the Harrison topology coincides with the product
topology.) Unless otherwise stated, the topology on SigrA will be assumed to be
the Harrison topology. For a subset U C Sigr A, we denote the closure of U (in the
Harrison topology) by U.

2.2.2 Theorem.
(i) Foro,7 € SigrA, 7€ {o} iff o < T.

(ii) The mazimal signatures are precisely the closed points of Sigr A.

Proof. (i) 7 € {0} iff ¢ € U(a;7) for all a € A such that 7(a) # 0 iff for all a € 4,
7(a) # 0 implies o(a) = 7(a). (ii) follows from (i). O

2.2.3 Proposition. For 0,7 € Sigr A, the following are equivalent:
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(i) o ATandt Ao.

(i1) There ezists disjoint open sets U, V in SigrA such thatc € U, 7 € V.

Proof. (i) = (ii) Since o 4 T, there exists a € A such that 7(a) # 0 and 7(a) # o(a).
If o(a) # 0 then take U = U(a;0) and V = U(a;7). So assume o(b) = 0 whenever
7(b) # 0 and 7(b) # o(b). Since 7 £ o, there exists b € A such that o(b) # 0
and o(b) # 7(b) and hence, 7(b) = 0. Then o(a™ — b*) = o(—b") = —1 and
T(a® —b") = 7(a"™) = 1 so take U = U(a™ —b";0) and V = U(a™ — b%; 7). (ii) = (i)
follows from (2.2.2). O

2.2.4 Corollary. IfC, D are disjoint closed sets in Sig A then there exists disjoint
opens sets U, V in SigrA such that C CU and D CV.

2.2.5 Theorem. SigmaxrtA is compact and Hausdorff. The specialization map u

is a closed mapping.

Proof. Suppose aq¢ € SigTA, 70 = p(go). Let Uy be an open neighborhood of 7 and
set C = SigrA \ Up. Since 7o is maximal, {79} is closed so by (2.2.4) we can find
disjoint open sets U, V in SigrA such that o € U and C C V. By (2.2.2),00 € U
and p(U) C Up. Therefore, p is continuous. SigmaxrtA is Hausdorff by (2.2.3). It

follows that Sigmax7A is compact and g is a closed mapping. O

2.3 The group Gy

Let T be a proper preorder in A and consider the restricﬁon map from Sigr A
to Hom(A*,Q). If 0,7 € SigrA and ¢ < 7 then o and 7 agree on A*. Thus,
the restriction map factors through Sigmax7A. If A is a ring with many units (in
particular, if A is a field), the image of this map is the set of signatures defined
in [10], [12] and [38]. We show for rings with many units, this restriction map
is also 1-1 on SigmaxrA and hence, the signatures defined in [38] are precisely

the maximal signatures defined here. More generally, we show for a certain class

of preorders (including the preorders in rings with many units) SigmaxrA can be
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embedded into a character group Hom(Gr,{?), where G is an abelian group of
exponent n depending on A and T'. Inspired by [36], we define G as follows.

Let A be a commutative ring and T a proper preorder of A. Set
Ar:={a€ A|o(a)#0for all 0 € Sigr A}

and

T:={a€Alac P foraloeSigrA}.

T is a proper preorder in A containing 7T (Note that since T° C T.T-T=A
by (1.1.3).) Ar is a multiplicative semigroup and 1+ 7T C T'N Ar C T N Ar are
subsemigroups of Ar. Suppose a € TNAz. Thena € P~supp P for all P € Sperr A
so, by the Positivstellensatz, there exists s,t € T such that a(1 +s) = 1 +%. It

follows that
AT At AT

G = = = — .
T71+T " TnAr TnAgp

Since a™ € T N A7 for all a € A7, Gt is a group of exponent n. If a € Az, we let
[a] denote the class of a in G7r.

For any o € SigrA, U(T N Ar) = 1 so we get a natural map
SigTA — HOIII(GT, Q)

which factors through SigmaxrA.

2.3.1 Remarks.

(i) We can always replace A by its localization at the multiplicative set 1 + T'.
This leaves Sigr A unchanged but Ar gets identified with A*. If 1 +T C A*
then T* = T* by the Positivstellensatz so Gy = A*/T* and A =T~ T".

(ii) For a level 1 preorder T', Spermax A is identified with SigmaxrA via P —
sgnp. In [36], it is shown the restriction map SigmaxrA — Hom(G7, {£1})

is an embedding if the natural maps Gr — G are surjective for every proper

preorder 7" D T.
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2.3.2 Proposition. If A is a ring with many units then for any a € A, there exists
b € A* such that for all o € SigrA,

a"-1€P. = o(a)=0(b).
Proof. Let a € A and consider the polynomial
(%) (X, Y)Y=(a—1)X" +aY".

For any maximal ideal m C A, there exists z,y € A such that f(z,y) ¢ m. (In fact,
we can always take z,y € {0,1}.) Since A has many units, there exists z,y € A
such that b:= f(z,y) € A*.

Let o € SigrA and suppose a" —1 € P. If a € P, then factoring a™ — 1,
we see a — 1 € P, and therefore, a,b € P* so o(a) = 1 = o(b). If —a € F,
then —b = —a(z" + y") + 2" € P* s0 o(a) = —1 = o(b). Assume a® ¢ P,. Let
p = supp P. The pushdown of P,(p) is a level 1 order so a ¢ A(E,(p))*. Since
a"+1€ P,1+% € F(p) and therefore, 1 € I(F,(p)). Then 1 — 3 € E(p) so
=7"+7"(1 — 1) € F,(p) and hence, o(a) = o(b) in this case as well. O

Sl gl

2.3.3 Corollary. If A is a ring with many units then Gp = A T* IfT-T=A
then T* = T* so Gr = A*/T*.

Proof. Let a € Ar. By the Positivstellensatz, there exists s € T such that a”(1+s) €
1+T. Replacing a with a(1 +s) we may assume a™ € 1+ T. By (2.3.2), there exists
a unit b such that o(a) = o(b) for all ¢ € SigrA and therefore, ab™' € T n Ar.
Thus, the natural injection A*/T* < G is surjective.

Suppose T — T = A and a € T*. Let t;,t, € T such that —a = t; — t5. By the
Positivstellensatz, there exists s; € 1 + T, s, € T such that as; = 1 + s;. Consider
the polynomial

f(X) =51 X"+s1t1+1.

Let m C A be a maximal ideal. If sy, + 1 ¢ m then f(0) ¢ m; otherwise, s; ¢ m so
f(1) ¢ m. Since A has many units, there exists ¢ € A such that u := s;z"+s181+1 €

T*. Since au =ty + 2" + sa(t1 + ™) € T*, a € T*. O
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Proposition 2.3.2 suggests the following generalization of [36, Theorem 2.1].

2.3.4 Theorem. For any proper preorder T C A, the following are equivalent:
(1) The natural map Gy — G+ is surjective for each proper preorder T' C A
containing T'.
(i1) For all a € A, there exists b € Ar such that for each (mazimal) signature
o € SigrA, a" —1 € P. = o(a) = a(b).

Proof. (i) = (ii) Let T" be the smallest preorder of A containing T and o™ — 1. (ii)
is vacuous if 7" is not proper so assume T” is a proper preorder. By (i), there exists
b € Ar such that [a] = [b] in Gpv. If a™ — 1 € P, then o € Sigr A and therefore,
o(a) = a(b).

(ii) = (i) Let a € Ar. By the Positivstellensatz, there exists s,t € T’ such that
a™(1+s) = 1+t. Replacing a by a(1+s) we may assume a™ —1 € T". By (ii), there
exists b € Ar such that for all o € Sigrv A, o(a) = o(b). Then ab®! € T' N Aps so
[@] =[b] in Gp». O

2.3.5 Examples.

(1) By (2.3.2), any proper preorder in a ring with many units satisfies (2.3.4(ii)).

Of course, if A = K is a field then for any proper preorder T', K7 = K* and -

Gr = K*/T* so (2.3.4(i)) is obvious.
(2) IfT is a proper preorder such that only finitely many primes occur as the sup-
port of a maximal order then T satisfies the equivalent conditions of (2.3.4).

This follows from (1) by semi-localizing A at this finite set of supports.

(3) If we replace the hypothesis that A has many units in Proposition 2.3.2 with
Brocker’s Ul axiom of [17],

(a,0)=A = (aT+T)NA"#0

then the same proof shows Gr = A*/T* and T satisfies (2.3.4(ii)). Note,

however, that we really only require the polynomial f in (*) to have values
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in At so the full-strength of Brocker’s Ul is not needed. Any preorder T in

a commutative ring satisfying
(@aT +(a-1)T)NAr #0

for every a € A also satisfies (2.3.4(ii)). It is not clear under what conditions

the converse is true.

2.3.6 Proposition. Ifp is the only T-compatible prime occurring as the support of
a mazimal order containing T then the natural map Gt — F(p)*/T(p)* is an iso-
morphism, SigmaxTA = o} (Sigp)F(p)) and T satisfies the equivalent conditions
of Theorem 2.3.4.

Proof. Ar = A \ p so the natural map Gr — F(p)*/T(p)* is surjective. Suppose
a € Ar and @ € T(p)*. Let Q € SperrA and let P be the unique maximal order
specializing Q. Then @ € T(p)* C P(p)* soa € P~ p C Q. Thus, a € TN Ar and
therefore, Gr = F(p)*/T(p)*.

T satisfies (2.3.4(ii)) by (2.3.5(2)) but it is obvious in this case: if ¢ € A and
a"—1 € P, for some o € Sig7 A then necessarily a € ANp = Ar. op(Sigrp) F(p)) =
Sigmax 7 A follows from (2.1.1). O

2.3.7 Theorem. Let T C A be a proper preorder satisfying the equivalent cond:i-
tions of Theorem 2.3.4.

(i) For any preorder T O T and any P € SpermaxTtA,
T"NnArCcP = T CP.
(i) The natural map SigmaxtA — Hom(Gr, Q) is an embedding.

Proof. (i) Suppose a € T' \ P(2). Replacing a by a suitable power we may assume

—a € P(2). By (1.6.4) and (1.6.9), P(2) is maximal with respect to inclusion so, by

the Positivstellensatz, there exists s € P(2) such that —a(l + s)" € 1 + P(2). Set
u:=2a(l+s)"+1. Thenu € 1+ T, —u€ 1+ P, u"—1€T'NP@. By (2.3.4),




there exists b € At such that —b € P(2) and o(b) = o(u) = 1 for all & € Sig7'A so
beT'NAr CPC P(2), a contradiction. Therefore, T' C P(2).

Suppose a € T' \ P. Let p := supp P. By (1.6.9), there exists b€ A\ p, v €
A(P(p)) such that 1/@ = zb. Since T' C P(2), —a ¢ P so @ ¢ P(p) and therefore,
@ ¢ A(P(p))*. Ifa e I(P(p)) then b ¢ A(P(p)) so azb’ = b ¢ A(P(p)) and
hence, @b" ¢ A(P(p)). Replacing a by ab” if necessary, we may assume @ ¢ A(P(p)).
Then 1+ 3,1 £ gF5= € P(p) so L +a ¢ P and (1 +a)" —1 € P. Since T" also
contains (1 + a)™ — 1, there exists b € Ar such that 5¢ P and o(b) = o(14+a) =1
for all o € SigvA, that is, b € "N A7 C P, a contradiction.

(ii) Let o, 7 € SigmaxrA such that o4, = 7ja,. Then F, N Ar = B, N A7 so
P := P = P. by (i). Let p := suppP. By (2.3.6), Gp = F(p)*/P(p)* so by
(2.3.4), we can pick a € Ar such that @P(p)* generates F'(p)*/P(p)*. Since a € Ar,

o(a) = 7(a) and hence, o =7. O
Just as for fields, we call T complete if the 2-primary part of Gr is cyclic.

2.3.8 Corollary. Suppose T' is a complete preorder satisfying the equivalent condi-
tions of Theorem 2.3.4. Then T is contained in a unique mazimal 2-primary order
P, Gr = F(p)*/T(p)* where p = supp P, SigmaxtA = a(Sigrp) F(p)) and T(p)

is a complete preorder in F(p).

Proof. Assume the 2-primary part of Gt is cyclic. Let P be a maximal 2-primary
order containing T. If ¢ € Ar such that [a] has order 2" in G then [a]* ™ =[-1]
in Gr so —a? ' € T C P and therefore, [a] has order 2" in Gp as well. Since Gp
is cyclic of 2-power order, the kernel Ar N P of the natural map Gr — Gp is the
subgroup H of all elements of G7 of odd order. If P’ is another maximal 2-primary
order containing T then A7 NP = H = Ar N P’ so, by (2.3.7(1)), P = P'. Thus, P

is the only maximal 2-primary order containing 7. For any maximal order @ 2 T,

we have Q(2) = P so supp Q = supp Q(2) = supp P. The result now follows from
(2.3.6). O
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Chapter 3

A Reduced Theory of Higher Level Forms

There is a natural map of the Witt ring W(K) of a field K to the ring C(X,C) of
all locally constant functions f : X — C where X = Spersi2 K (the set of all level
lordersin K.) If a € K*, the 1-dimensional form determined by a is mapped to the
function @ : X — {#1} defined by a(P) = sgnp(a). Pfister’s famous Local-global
Principle states that the kernel of this map is the torsion ideal of W(K) so the
reduced Witt ring can be identified with the subring of C(X,C) generated by the
a,a € K~

In [12], Becker and Rosenberg used the higher level signatures of {10] to develop
an analogous theory of higher level reduced forms on a field. For each a € K*,
we have the map a : Sig K — C given by o — ¢(a) and the reduced Witt ring of
higher level is defined to be the subring of C'(Sig K, C) generated by the @, a € K*.
Replacing Sig K with Sigr K, one defines the reduced Witt ring Wr(K) for an
arbitrary preorder T' C K.

Reduced Witt rings for level 1 preorders in a semi-local ring or a ring with many
units were defined in [17], [25], [48] and for higher level preorders in a ring with
many units in [38].

Marshall’s theory of spaces of orderings provides an axiomatic approach to the
(level 1) reduced theory of quadratic forms. In [37] and [41], spaces of orderings
are generalized to the higher level spaces of signatures with higher level preorders

in fields and rings with many units providing examples. Recently Marshall has
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shown (SpermaxrA,Gr) is a space of orderings whenever T is a level 1 preorder
in a commutative ring A satisfying condition (i) of Theorem 2.3.4. In this chapter,
we show this is also the case for higher level preorders. Specifically, if T' C A is a
preorder of higher level satisfying the equivalent conditions of Theorem 2.3.4 then
(SigmaxrA,Gr) is a space of signatures in the sense of [37]. Since preorders in a
ring with many units always satisfy these conditions, the results of [38] are obtained
as a special case.

The results of the first section of this chapter hold for any preorder in a commuta-
tive ring. The proofs are modeled on those given in [12] and [38]. The field-theoretic
results of section 3.2 have been drawn from [10] and [12] and are included in order

to make this thesis self-contained.

3.1 Reduced forms and reduced Witt rings of higher level

Let A be a commutative ring and T a proper preorder of A. A T-form of
dimension r over A is an r-tuple ¢ = (ay,...,a,), where ay,...,a, € Ar. The sum

and product of the T-forms ¢ = (ay,...,a,) and ¢ = (by,...,b;) are given by

ﬂp@w= (al,...,ar,bl,...,‘bs)

and

(2 ®'(/) = (albl,. . .,albs, e ,arbl, oo ,Gu,-bs).

The T-form ¢ @ --- @ ¢ (k times) is denoted k X ¢ and for ¢ € Ar, the T-form
(c) ® o is denoted co.

Set X7 = SigmaxtA. Let C(Xr,C) denote the ring of locally constant functions
f : X7 — C (that is, the ring of continuous functions where C is given the discrete
topology.) For a € Ar, define @ : X7 — C by a(0) = o(a). For each 0 € X7,
a~Y(a(o)) = U(a;0) N Sigmax A is a basic open set in Xr so a € C(Xr,C). For a
T-form ¢ = (a1, ...,a,), define $ := £d;. (If ¢ is the empty form () then ¢ :=0.)
For any T-forms ¢, 1,

e ——

e®P=¢+7p and o = @b
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so the set
Wr(4) := {4 | ¢ is a T-form)
is a subring of C'(X7,C) which we call the reduced Witt ring of higher level for T

3.1.1 Remark. Let p C A be a T-compatible prime. For a T-form ¢ = (a4, ...,a,),
we define oy() to be the T'(p)-form (ay(a1),. .., ap(ar)). Clearly, for any T'-forms
@, ¥, ¢ = ¢ in Wr(A) iff Z\c:(-;) = m in Wr)(F(p)) for every T-compatible

prime p in A. Thus, we have a natural injective ring homomorphism
Wr(A) = [[Wr)(F(p)
3
where p runs through all T-compatible primes.

If o, are T-forms with ¢ = ¢ and dimy = dim1, we say ¢ and 1 are T'-

isometric and write ¢ =7 .

3.1.2 Proposition. If ¢,p are T-forms with ¢ = p and dimyp > dimp then
dim¢ = dim p mod 2 and ¢ =7 p® m x (1,-1), for some m > 0.

Proof. Pick o € X7. There exists an odd integer v > 0 such that B,2) = P¥ = B,
so 0¥ € Xr has 2-primary level, say s(¢¥) = 2. Let w be a primitive 2°*-th root

of unity. Then there exists m; € Z, m;, > 0 such that

2t+1_1 2ttl_q
(@=p)o¥)= > my w* and dim(p—p)= Y. my.
k=0 k=0

Since w? = —1,

2t-1

( kaw +Zm2s+kw
2t 1
= Z (mk - m2t+k)w

k=0
The minimal polynomial of w over Q is X% + 1 so 1,w,...,w? ~! are independent
over Q. Therefore, if ¢ = p, we must have my = mqeyy forall k =0,...,2' — 1 and
hence,

2t-1

dim(¢ — p) E?mk—o mod 2.
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3.1.3 Lemmma. Let K be a field.

(i) For anyz € K*, x # —1, and for any [,m € N,

x2m + 1 x2l—1 +1
2 +1 r2m-1 +1

(i1) For any a,b€ K*, a+b# 0, and for any ,m € N,
‘ a2lb+ ab2l azmb+ (Ib2m
g a?! 4 b2 =g a?m 4 p2m :

Proof. (i1) follows from (i) using £ = a~1b. To prove (i), let

€ XK".

p2m +1 $2l——1 +1
2 +1 g?m-l 4 1’
By (1.5.5), it suffices to show that u € P for all P € Sper K. If x € I(P) then
l+2' €1+ I(P)C P*foralli>0soué& P*. Since

zZm +1 :1221_1 +1 _ (x—1)2m+1 (m—l)2l-—1 +1

841 gm-141 (x—l)ZI +1 (z-1)2m-1 41 ?
z~! € I(P) also implies u € P*. Assume z € A(P)*. Clearly u € P*if x € P* so
assume z ¢ P. Then z € —P* and

_ x2m + 1 (_$)2l—l -1 c

T ordg (—z)2m-1 -1

u =

P.

3.1.4 Proposition.
(i) (a) Zr (ta) for alla € Ar, t € TN Ar.
(i) (a,b) =7 (a+b,a™b+ ab™) for all a,b € Ar witha +b € Ar.

Proof. (i) is clear. To prove (ii), we may assume A = K is a field by (3.1.1). Scaling

by a~!, we may assume ¢ = 1 and b # —1. Let o € X7. It suffices to show

(%) 14 a(b) =o(14b)+a(b)o(l+5"71).

If b € I(P) then o(1 +b) = o(1 + ") = 1 so (%) is clear. If b=' € I(F)
then o(1 + b) = o(b) and o(1 + b*"!) = o(b""!) so again () is clear. Finally,

suppose b € A(P,)*. Then b* € P, so o(b) = 1 and o(1 + ¥*) = 1. By (3.1.3),
o(b+ ) =o(b+b") so o(1 +b) = (1 + b 1) and therefore, (*) holds in this case

as well. O
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For ¢ = (a1,...,a,), the set of elements of A represented by ¢ is Dr(p) =
aT +---+a,T.

3.1.5 Theorem. Let b € Ar. The following are equivalent:
(i) There exists t € T such that b(1 +t) € Dr{a,...,a,).

(i) op(b) € Drgy(ap(ar),...,ap(a,)) for all T-compatible primes p C A.

Proof. Suppose (ii) holds. Then, for every T-compatible prime p,
ap(£8") € T(p) + ap(—ard" )T (p) + - - + cp(—a-b""")T(p)

so, by (1.1.7), =1 € T + (—a10" )T + - - - + (—a,b" )T and therefore, b € —bT" +
arT +---+a,T. (i) = (ii) is clear. O

A T-form ¢ = (ay,...,a,) is said to be T-isotropic if there exists t1,...,t, € T
such that a;t; + -+ a,t, = 0 and at least one ¢; is in A7. ¢ is called T'-anisotropic

if it is not T'-isotropic.

3.1.6 Theorem. For a T-form ¢, the following are equivalent:
(1) ¢ is T-isotropic.
(i) ap(p) is T(p)-isotropic for all T-compatible primes p C A.
(iii) For all a € Ar, there exists t € T such that a(1 +1t) € Dr(p).
)

(iv) There exists a € At such that a,—a € Dr(p).

Proof. Let p = (ay,...,a,) where ay,...,a, € Ar. (i) = (ii) is clear.

(ii) = (iii) Let @ € Az, p C A a T-compatible prime. By (3.1.5), it suffices
to show that ap(a) € Drg)(ap(p)). Since ap(p) is T(p)-isotropic, there exists
t,...,t, € T such that ay(aiti) + - + ap(ast,) = 0 and t; ¢ p for some «. It
follows that —ap(a;) € Drg)(ap(e)). By (1.1.3), ap(ai)ey(a) € T(p) — T(p) so
p(a) € ay(a)T(F) — ap(a)T() € Drgy(as():

(iii) = (iv) is clear.




(iv) = (i) Let a € Ar such that a,—a € Dr(p). Since T — T = A, there exists
s,t € 1+ T such that a"lq; = s — ¢. By the Positivstellensatz, we can assume
s,t € 1 + T by scaling a by an element of 1 + 7' if necessary. Then a(l + s) =
a1a” + a(l +t). Let s1,...,8, € T such that a = a;s;. Then a(l + s) = a1(a”™ +
s1(14+1t)) +azs2(1+t)+---+ars,(1+¢t) and a™+ s1(1 +¢t) € Ar so we may assume
s1 € Ar. Let ty,...,t, € T such that —a = Za;t;. Then 0 = La;(s; +1;) and clearly,
51+t € Ar. O

3.2 T-forms and compatible valuations

Let K be afield, T C K a proper preorder. Denote by V7 the set of all valuations
of K compatible with T'.

For an abelian group G of exponent n, X(G) denotes the dual group Hom(G, ).
If H is a subgroup of G, we identify X(G/H) with the subgroup of X(G) consisting
of all characters x with x(H) = 1.

Since the group of all complex roots of unity is divisible, the functor G — X(G)
is exact in the category of abelian groups of exponent n. Therefore, for any v € Vr,
(1.3.5) induces the exact sequence

(3.2.1) 1—X (Z((I;))) %X (ﬁ) X (:’;—:) -1

where v*(7y) := v o v and *(x)(@) := x(a) for a € A].

We say a character x € X(K*/T*) is compatible with a valuation v, written
x ~ Ay, if 1 +m, C kerx, that is, if x is in the subgroup X(K*/T"*) of X(K*/T™).
The character :*(x), where x € X(K*/T"*), is called the push down of x (along
v). Conversely, suppose x € X(K*/T*) and ¢ € X(k:/T;) with x(a) = £(@), for all
a € A*. Then 1+m, C ker x so x is compatible with v and ¢*(x) = £. In this case,
we call x a pull-back of ¢ (along v).

3.2.2 Theorem. For all £ € X(k/TY),

(i) € has a pull-back along v,
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(i1) of x is a fized pull-back of £, all other pull-backs are given by x - (y o v) with
v running through X(v(K*)/v(T*)).

Proof. This follows from the exactness of (3.2.1). O

3.2.3 Theorem. A character x € X(K*/T"") induces a T-signature on K iff its

push-down induces a T, -signature on k.

Proof. Let X = *(x). X induces a T,-signature iff ker¥ is additively closed iff
A*Nkerx = {a € A* | x(a) = X(a@) = 1} is additively closed. By (1.3.2), this is the
case iff ker x is additively closed. [0

3.2.4 Corollary. There is a (non-canonical) bijection

S , v(K”)
SigreK — Sigr,k x X (U(T*)) .

Let ¢ be a T-form, v € V7. For any a € K*, we define the a-th residue class T),-
form @, as follows. Let ay,...,a; be the entries in ¢ with v(a;) = v(a) mod v(T™)
and set

e = (aay,...,a  ax) .
If no such entries exist then ¢, is the empty form (). For: =1,...,k, pick u; € A},

such that ¢ 'a; = u; mod T* and set

¢a= (ﬂl,,..,Uk).

Note that the T,-isometry class of %, does not depend on the choice of u;.

3.2.5 Theorem. Let v € Vr. If ¢, p are T-forms with ¢ = p on X7 then 3, = P,
on Xr, for all a € K*.

Proof. Since (¢ & p)s = —@, D P,, it suffices to show that ¢ = 0 implies %, =0
for alla € K*. Let ¢y,...,¢, € K* such that 3, ,...,@,, are the distinct non-empty

residue class T,-forms of ¢. Then ¢ = X¢& @.,. Let 7 € X7, and let 0 € X7v be
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a pull-back of 7. For any v € X(v(K*)/v(T*)), - (7 ov) is a T"-signature with

push-down @ and

0= (v00))
= (T &¢a) (0 (y00))
=Y o(e)r(9:)%.,()
= (X o(c)%.,(@)) (7)

where ¢; := v(¢;) + v(T*) and §; denotes the image of g; in the double dual
X (X(%)) Since distinct characters are linearly independent over C, 3,,(7) = 0
forall:. O

3.2.6 Theorem ([12, Theorem 2.11]). Let v € V7. A T-form ¢ is T"-isotropic

iff at least one residue class form @, is T,-isotropic.

Proof. Suppose ¢ = (ay,...,a,) and there exists t1,...,t, € T, not all zero, such
that Yt;a; = 0. Assume t;, # 0 and v(t;a;,) = min{v(t;a;)}. We show @, is

: . -1 -1
T,-isotropic. ., = (l,a; a;,...,a; a;,), where a;,,...,a;

s @iy are the entries of ¢

4

with v(a;,) = v(a;,) mod v(T*). If v(a;) # v(ai,) mod v(T™) then t;a;/t; a;, € m,

SO

Let uq,...,u, € A} such that a{lla,-k = ur mod T*. Then there exists s1,...,5, €
A, NT" such that s; € A} and
p
Z SpUr €m, .
k=1
Since B,, = (U1, ..., Up), this shows P, is Ty-isotropic. |
Conversely, assume 3, is T,-isotropic. @, = (a a;,,...,a 'a;,), where v(a;,) =
v(a) mod v(T*). Let u, € A%, t, € T* such that a'a;, = t;'ur and P, =
(@1, ...,Up). Pick s1,...,8, € A, NT, not all in m,, such that

p
Skt
T = Z SpUp =
k=1

ki
* cm,.
a

4

k

1
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If s; € A} then

0= sjtjaij —az + Z Sktra;, .
: k#j

-1, -1 *
sjtiai, — ax = sjt;(1 — s7'ui z)a;; € T*(1 +my)ai; = T ay; so (ai;,...,a;,), and

hence, ¢, is TV-isotropic. [J

A T-form ¢ = (ay,...,a,) is said to be o-definite for ¢ € X7 if o(a;) = o(a;)
forall1 <:<j<r.

3.2.7 Lemma. A T-form ¢ is o-definite iff (o) = dimep.

Proof. Suppose ¢ = (ai,...,a,). Set w; = o(a;) € Q for s = 1,...,r and assume
|Sw;| = r. If r = 2 then (w; +ws)(@) +&2) = 4 50 2 = WD, + W1w2 = 2Re(w1@2) =
2Re(wiw; ') and therefore, wyw;! = 1. For r > 2, we have for any ¢ # j
r= |Zw,-| < ws + wj| + | Z wi| < Jwi +wi| +r—2.
i k#i,j

Thus, 2 < |w; +w;| <2 s0 w; = w; by the case r = 2. The converse is clear. O

For ay,...,a, € K*, define

Xr(ay,...,a,) = {0 € X7 | a; = a; mod A(R,)*T" for all 2,5},
Vr(ay,...,a.) = {v € Vr | v(a;) # v(a;) mod v(T™) for some 7 # j}.

3.2.8 Theorem ([12, Theorem 3.3]). A T-form ¢ = (a4,...,a,) is T-isotropic
i
(i) @ is o-indefinite for all o € X7(a4,...,a,) and

(ii) ¢ is T¥-isotropic for all v € Vy(ay,...,a,).

Proof. Suppose 0 = at; + - - - + a,t,, where t1,...,¢, € T and t; # 0. Clearly ¢ is
T*-isotropic for all v € V. If ¢ is o-definite for some o € X7 then o(a7't7 ait;) €
{0,1} for each 7 so 0 = Say't7 a;t; € 1 + B, C P7, a contradiction.

Conversely, suppose ¢ is T-anisotropic. Scaling by ay' we may assume a; = L.

By (1.1.4), there exists a T-semiorder with ay,...,a, € S. Let v be the valuation
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associated with the valuation ring A(S). Clearly v € V7. Since S, is a level 1 order
on the residue field k, of A(S), there is a unique signature & on k, with B = S,.
Pull it back along v to get a T-signature o € SigrvK. Since o is compatible with
A(S), A(P,) € A(S) and A(R) = A(P,)/I(S). But B = S, is archimedean so
k, = A(E;) and therefore, A(P,) = A(S).

Suppose o € Xr(1,az,...,a,). Then, for all ¢ = 1,...,r, a; = u;t; for some
ti € T*, u; € A(S)* N S and therefore, o(a;) = o(u;) = a(w) = 1. Thus, ¢ is
o-definite.

Assume now that o ¢ X7(1,az,...,a,). Then there exists ¢« # j such that
v(a;) % v(a;) mod v(T*) s0 v € Vir(1,as, ..., ar). In particular, v(a;) ¢ v(T*) for
some 7. By (1.3.11), there exists a valuation v’ € Vr(1,ay,...,a,) with (14+m’)a; C S
for all 7, where m’ is the maximal ideal of the valuation ring associated with v'. Then
a;T” C S for all i so Dy(p) C S and therefore, —1 ¢ Dy (p). It follows from
(3.1.6) that ¢ is TV'-anisotropic. O

A preorder 7" C K is said to be of finite index if [K* : T*| < co. If T" is of finite
index and v € Vv then the exact sequence (1.3.5) shows the push-down T} is also

of finite index and [v(K™) : v(T*)] < oo.

3.2.9 Proposition. Let v € Vr and ay,...,a, € K* such that v(a;) # v(a;) mod
v(T*) for all i # j. Then there exists a preorder T' 2O TV of finite index with
v(a;) # v(a;) mod v(T"™) for all i # j.

Proof. For each ¢ # j, there exists characters v;; € X(v(K*)/v(T*)) such that
¥i;(v(ai)) # vi;(v(a;)). Fix o € SigrvK and set 0;; = 0+ (i 0v) € SigreK
by (3.2.2) and (3.2.3). Let " = n{F, | + < j} N E,. Clearly, T¥ C T
and since K*/T" embeds in [[;; K*/E; x K*/F; which is finite, T is of fi-
nite index. Suppose v(a;) = v(a;) mod v(T") for some 1 # j. Let t € T,
u € A* such that a; = ajtu. Then o(a)y;(v(ai)) = o0ij(a:) = oij(a;tu) =

0ii(a;)oii(w) = a(a;)vi;(v(e;))o(u) = o(ai)yi;(v(a;)) so vij(v(a)) = vi(v(aj)),

a contradiction. [
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3.2.10 Theorem ([12, Theorem 3.6]). A T-form ¢ = (ay,...,a,) is T-isotropic
iff ¢ is T'-isotropic for all preorders T' DO T of finite indez.

Proof. Clearly if ¢ is T-isotropic then ¢ is T'-isotropic for every preorder 77 2 T.
Suppose ¢ is T-anisotropic. If ¢ is o-definite for some o € Xr(ay,...,a,) then, for
all t4,...,t, € T with t; # 0, Za7*t7 ait; € 1 + P, C P’ so ¢ is P,-anisotropic and
we are done. So assume ¢ is o-indefinite for all & € X7(ay,...,a,). By (3.2.8), ¢
is T*-anisotropic for some v € Vr(ay,...,a,). Let @y,..., %, be the distinct non-
trivial residue class T,-forms of . We have s > 2 so dim®; < r for each . By
(3.2.6), each p; is T,-anisotropic. By induction on the dimension of ¢, there exists
preorders T; D T, of finite index in the residue field k of v with 3; T';-anisotropic.
Set T = NT;. Then T is a preorder of finite index in k containing T, and each @;
is T-anisotropic. For each #; € Sigzk C Sigr, k, choose a pull-back o; € Sigrs K
and set 7" = NF, . Then T" is a preorder of finite index in K containing Tv and
T"=T. Let i1,...,i, € {1,...,7} be such that v(a;,) + v(T™),...,v(a;,) + v(T)
are all distinct. By (3.2.9), there exists a preorder 7" 2 TV of finite index with
v(ay) + v(T"),...,v(a;,) + v(T") still all distinct. Let T" = T" N T™ which is
clearly a preorder of finite index containing 7. The residue class forms of the T"-
form ¢ are still ,,...,%, which are T"-anisotropic since T/, C T. By (3.2.6), ¢ is
T’-anisotropic. This completes the proof. [

3.2.11 Theorem. Let ¢,p be T-forms. If ¢ = p and dimyp > dimp then ¢ is

T -isotropic.

Proof. We proceed by induction on dim¢. By (3.1.2), the first case is where ‘p = ()
and dim¢ = 2, say ¢ = (a,b). Then ¢ = 0 so g(—a~'b) =1 for all ¢ € X7 and
therefore, —a~'b € T. This shows ¢ is T-isotropic. Suppose the result holds for
T-forms of dimension less than r and ¢ = {(ay,...,a,). We use (3.2.8) to show ¢ is
T-isotropic.

For any o € Xr(ai,...,a,), |¢(c)] = |p(c)] < dimp < dim¢ and therefore, ¢ is
o-indefinite. Suppose v € Vr(ay,...,a,). Let c1,...,cs € K* such that §,,..., @,
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are the distinct non-empty residue class T,-forms of ¢. We have s > 2 so dimp,, <

dim ¢ for all 7. By (3.2.5), ¥, = p,, for all 4. Since
Z dim®,, = dimy > dimp > Zdim‘p’c,.,

dim®,, > dimp, for some i. By induction, @, is T,-isotropic and therefore, by
(3.2.6), ¢ is T¥-isotropic. Thus, ¢ satisfies both (i) and (ii) of (3.2.8) so ¢ is T-

isotropic. O
3.2.12 Corollary. If ¢ and p are T-isometric forms then Dr(p) = Dr(p).

Proof. Let ¢ = (ay,...,a,), p = (b1,...,b,). Then

——— e—

pd(—ar) = (a1,...,0r-1)

so by (3.2.11), p & (—a,) is T-isotropic and therefore, there exists sy,...,s,,t € T,.
not all zero, such that ta, = Eé’;;bi € Dr(p). If t = 0 then p is T-isotropic so
Dr(p) = K by (3.1.6). In any case, a, € Dr(p). Similarily, a; € Dz(p) for all ¢ so
Dr(p) C Dr(p) and reversing the roles of ¢ and p, we get Dr(p) C Dr(p). O

3.3 The space of signatures of certain preorders

Throughout this section, we assume that 7' satisfies the equivalent conditions of

Theorem 2.3.4.

3.3.1 Lemma. Suppose K is a field, = € K. For any order P € Sper K, either
z € —P or

(1+z)e(1-L)+P,

for any integer m > 0.

Proof. Let P € Sper K and consider the valuation ring A(P). If z € I(P) then for
any integer k > 0, 1+ = (1 — %)+% (1+kz) € (1 — %)+P so (1+z)" € (1-3)"+
P. Given m > 0, choose k such that 1 —(1—})" < +. If ¢ ¢ A(P) then l+z ¢ A(P)
S0 (1+IT)n € I(P) and therefore, (1 +z)" —1 = (1 + z)" (1 - Zrlz)?) € P. Finally, if
z € A(P)* and z ¢ —P then z € P and therefore, (1+2z)* € (1+P)*C1+P. O




3.3.2 Theorem. Ifa,,...,a, € Ar,r > 2, and b € Dr{ay,...,a,) N Ar then there
ezistst € T, s € TN Ar and z € Dr{ay,...,a,) N At such that b(1 +t) = sa, + z.

Proof. By (2.3.1(i)), we can pass to the localization (1 + 7')"'A and therefore,
assume Ar = A* and A = T* — T*. Scaling by 6!, we may assume b = 1. Scaling
each a; by 1 + (a%)", we may assume a € 2" 4+ T for all :.

Write 1 = s'a; + y, where s’ € T and y € DT(aé, ...yar). By (2.3.1(i)), there
exists s,t € T* such that a;+ay = s—t. Then s = a;+t+a; = a1 +t(s'a1+y)+az =
(14 ts')a1 + a2 + ty. Replacing a; by (1 + ts')a; and y by ty, we may assume

s=a;+az+y

for some s € T*, y € Dr{ay,...,a,). (Note westill have a € 2"+T'.) Let z := az+y.
Using (2.3.4(ii1)), pick @ € A* such that for any P € SpertA, 2" —1 € P implies
z[a € P.

Claim. For each T-compatible prime p C A,

(%) a € DT(p)(L —51> n DT(,,)<52, .. ,‘d}) .

If z € p then both forms are T'(p)-isotropic so (*) follows from (3.1.6). If y € p
then, for all orders P € SperrA withp =supp P, 2" € af+pC2"+T+pC 14+ P
so z/a € P and therefore, z/@ € T'(p). Thus (*) holds in this case as well.

Assume Z # 0 and 7 # 0. By (3.1.4(ii)),

(@2,9) Z1p) (7,02) and (1, —@1) Erg (5, =) Z1() (7,62)
for some a, 8 € F(p)*. Let o € Xz(, and suppose o(a@;) + o(7) # 0. By (3.3.1),
(1+Z)" € 3:+F,. Thenz" =a3(1+Z)" € 1+F, s0 Z/a € F, and therefore, 0(2) =
o(@). If o(a@;) + o(¥) = 0 then o(a) = —1 so o(Z) + o(a)o(Z) = 0(@) + o(a)o(a).
Thus,
(@2,7) 1) (Z,0%) S (@,0a) .

Similarily one shows

(1, —a@1) =1 (7, BZ) 1) (@ Ba)
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which proves the claim.

Since 1 + T C A*, it follows from (3.1.5) that a € Dr(l,—a1) N Dr{ay,...,a:).
Let s',t' € T such that a = s’ — t'a;. Write 1—‘;“-1 = u — v where u,v € T*. Then
ua=1—-ar+va=1—a;+v(s —ta;)=(1+vs)—(1+vthaysol =sa;+7z

where s = % € T* and ¢ = ;%4 € Dr(ag,...,a,) N A*. O

3.3.3 Theorem. For any b € Dr(p @) N Ar, there exists t € T, x € Dr(p) N Ar
and y € Dr(¢) N Ar such that b(1+t) =z +y.

Proof. Let ¢ = (ay,...,a,). By (3.3.2), we can write b(1+t') = s'ay+c wheret' € T,
s' € TNAr and c € Dr({az,...,a,)®Y)NAr. If r = 1 we are done so assume r > 2.
By induction, there exists t’ € T', u € Dr{as...,a.), ¥y € Dr(¥b) N A such that
c(1+t") =u+y' Then b(1+#)(1+¢") = s'(1+t")ar+u+y' € Dr(p® (y')) N Ar.
Applying (3.3.2) again, we get t € T, s € T N A7 and = € Dr(p) N Ar such that
b(l+t)=z+sy sotakey =ty’' € Dr(¢)NAr. O

3.3.4 Theorem. Let ay,...,a,,b; € Ap. The following are equivalent:
(i) &(1+1t) € Dr{as,...,a,) for somet € T.

(ii) There exists by, ...,b, € Ar such that {(ai,...,a:) =1 (b1,...,b;).

Proof. Suppose (i) holds. If » = 1 this is clear so assume r > 2. By (3.3.2), there
exists s € TN Az, ' € T, € Dr(as,...,a,) N Ar such that b(1 +¢') = sa; + =.
By induction, there exists bs,...,b, € Ar such that {(as,...,ar) =7 (z,bs,...,b).
By (3.1.4), (a1, z) =7 (b1, by) where by := (sa;1)"z + (sa1)z™ and therefore,

(ah. .. ,ar> ET (al,ﬂf,bg,. ..,b,.> gT (bl,b2, . ..,b,,->.

The converse follows from (3.2.12) and (3.1.5). O

3.3.5 Corollary. A T-form ¢ = (ay,...,a,) is T-isotropic iff p = p for some

T-form p with dimp < dim¢.




Proof. Suppose ¢ is T-isotropic. By (3.1.6), —a;(1 +t') € Dr(yp) for some t' € T.
Let s; € T be such that —ay(1 + ¢') = Xs;a; so —ai(1 +t) € Dr(as,...,a,) for
some ¢t € T. By (3.3.4), there exists a form p of dimension r — 2 such that ¢ =7
(a1,—a1) ® p =1 (1,—1) ® p and hence, ¢ = p.

Conversely, if ¢ = p and dim p < dim¢ then, by (3.1.2), ¢ Er p® m x (1,-1)
for some integer m > 0. Then, by (3.2.12), £1 € Dy, (ap(y)) for all T-compatible
primes p C A and therefore, ¢ is T-isotropic by (3.1.6). O

Putting it all together, we have proved the following generalization of [36, Corol-
lary 2.3] (terminology as in [37].)

3.3.6 Theorem. For every preorder T C A satisfying the equivalent conditions of
Theorem 2.3.4, the pair (Xr,Gr) is a space of signatures.

Proof. We need only check Sy-S4 as given in [37]. So: If 0 € X7 then o™ € Xr
for all odd integers m. This is (2.1.7). S;: X7 is closed in Hom(Gr, ). This is
(2.3.7(ii)) together with (2.2.5). Sy: o(=1) = —1lforall 0 € X7. S3: If 0(a) =1
for all o € Xr then [a] = 1 in Gr. These are clear. Sy: If @ € Dr(p ® ) N Ar
then there exists b € Dr(p) N Az, ¢ € Dr(¢) N Ar such that a € Dr(b,c). This is
(3.3.3) together with (3.3.4). O

As a consequence of (3.3.3), we have the following description of the image of

Xr in the character group Hom(Gr, Q).

3.3.7 Theorem. For o € Hom(Gr,?), the following are equivalent:
(i) o€ Xr.
(ii) o([=1]) = =1 and for every a,b,c € Ar with a =b+ ¢, o([b]) =1 = o([c])
implies o([a]) = 1. |

Proof. Suppose 0 € Hom(Gr, () satisfies (ii). Let 7, be the smallest preorder in
A containing T and the set {a € Ar | o([a]) = 1}. Suppose a € T, N Ar. We
show o([a]) = 1. Write a = tya; + --- + t,a, where r > 1, ¢t; € T and a; € Ar
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such that o([a;]) = 1. Then a € Dz{ay,...,a,) N Ar. If r =1 then ¢; € TN Ar
so o([a]) = o([a1]) = 1. Suppose r > 1. By (3.3.3) and induction on r, a = b+ ¢
where b,¢ € Ar and o([b]) = o([c]) = 1 and hence, o([a]) = 1. Thus, T, N Ar =
{a € A7 | o([a]) = 1} so Gr, = Gr/kero which is cyclic. (Note T, is proper since
o(=1) = —1.) By (2.3.8), there exists a T-compatible prime p such that Az, = A\p
and Gr, = F(p)*/T,(p)*. Since Gr, is cyclic, T,(p) is an order in F(p). Thus, the
character @ on F(p)* induced by o is a T'(p)-signature and o = Goa, in Hom(G7, 2).

The converse is clear. [

We also get the usual inductive description of isometry and therefore, the usual

description of the Witt ring Wr(A) as a quotient of the integral group ring Z[Gr].

3.3.8 Proposition.

() (a) =r (8) iff [a] = [8] in Gr.

(i) (a,b) =71 (c,d) iff there exists s,t € T N Ar such that [c] = [sa + tb] and
[d] = [sa(tb)"” + (sa)™b] in Gr.

(iii) (a1,...,a,) = (by,...,b,) where r > 3 iff there exists a,b,cs,...,c, € Ar
such that (a1,a) =7 (b, ), (ag,...,a.) =1 (a,c3,...,¢) and (by,...,b) =1

(byczy...ycr).

3.3.9 Corollary. The kernel of the natural ring epimorphism Z[Gr] - Wr(A) is
additively generated by [1] + [—1] and all the elements of the form

(o] + [8] = [a+ 8] — [ab" + "]
where a,b,a+ b € Ar.
Let Y be a non-empty subset of X7. Set
A:={la]€eGr|o(a)=1forallc €Y}

and

At = {x € Hom(Gr,Q) | x(A) =1} .
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Clearly, Y C X7 N AL If Y = Xr N AL, we say Y is a subspace of Xr. We show
the subspaces of Xt are precisely the subsets X7 where T" is a proper preorder
containing T'. Note this implicitly requires the natural homomorphism Gr — Gr-
to be surjective so our hypothesis that T satisfies (2.3.4(i)) is not particularily

restrictive.

3.3.10 Proposition. Every subspace Y C Xt is of the form X/ for some proper

preorder T’ D T'. Conversely, for any proper preorder T' 2 T, X1+ is a subspace of
Xr.

Proof. Suppose T is a proper preorder containing T'. By (2.3.7(i)), o(T'NAr) =1
iff 7" C P, for any o € Xr. Thus,

_ T'HAT
- TNAT

A

for Y = X7+ and therefore, X7 N At = {¢ € X7 | T' C P} = Xp.
Conversely, for a subspace Y C X7, define T’ := N{P, | 0 € Y}. Then A =
T'NAr/T N Ar SOY=XT0AJ‘={0‘€XT|T'QB,} =Xpr. O

We say a locally constant function f : X7 — C is represented by a form over T' if
there exists a T-form ¢ such that f = ¢ on X7. The following theorem characterizes
Wr(A) as a subring of C(Xr,C). It is a straightforward generalization of [38,
Theorem 4.4].

3.3.11 Theorem. Suppose f : X7 — C is locally constant. Then f is represented
by a form over T iff

(%) for each T-compatible prime p C A, foap : Xr(p) — C is represented by a
form @, over T(p) and dim ¢, = dimp, mod 2 for all T-compatible primes p, q in
A.

Proof. Suppose f : X7 — C is a locally constant function satisfying (*) and f is not

represented by a form over T'. Consider the family of subspaces Y C X7 such that
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f is not represented by a form on Y. Let {¥;} be a family of such subspaces linearly
ordered by inclusion. Then Y = QK is a subspace of X7. Suppose f =g on Y for
some T-form ¢. By the continuity of f — &, there exists an open set U 2 Y such
that f —@ = 0 on U. Since the Y; are closed in X7 and Xt is compact, U 2 Y; for
some j. But this means f = ¢ on Yj, a contradiction. Thus, f is not represented
by a form on Y either. By Zorn’s Lemma, there exists some subspace ¥ C X7
minimal with respect to the property that f is not represented on Y. By (3.3.10),
Y = X7 for some proper preorder T’ O T. Replacing T by 7', we may assume f
is not represented by a form over T but f is represented by a form on every proper
subspace of Xr. (Since X7 = X5, we may assume T’ = T.)

It follows from (2.3.8) that T is not complete, that is, the 2-primary part of
Gt is not cyclic. Therefore, Gt has at least two elements of order 2 (see the claim
in the proof of (1.5.5).) Let a € Ar such that [a]* = [1] but [a] # [£1]. Then
a’? € Tbut as ¢ TU —T for all s € TN Ar. It follows that T + aT, T — aT are
both proper preorders properly containing T so f is represented by a form %, on
Xr4or = {0 € X7 | 0(a) = 1} and by a form ¥ on Xr_7 = {0 € X1 | 0(a) = —1}.
On Xr, we have f- (1 + a) =$1-(1+&) and f- (1 —a) =zﬁ2-(1——&) so 2f is
represented by the form p :=; ® (1,a) ® ¥, ® (1, —a) over T.

e — —

Let p C A be a T-compatible prime. Since foa; = ¢y on Xr(y), ap(p) =2 x @,
on X7(;). By (3.3.5), we may assume ¢, is T'(p)-anisotropic by replacing it, if
necessary, by a lower dimensional form. Thus, there exists an integer my > 0 such

that
ap(p) Zrp) 2 X @p @my x (1,-1).

By (*), m, = mg mod 2 for all T-compatible primes p, q. If m; is odd then ay(p)
is T'(p)-isotropic for all T-compatible primes p so by (3.1.6), p is T-isotropic. By
(3.3.5), we may replace p by a lower dimensional T-anisotropic form and hence,
assume my, is even for all T-compatible primes p. Therefore, there exists s, > 0

such that

ap(p) Z1p) 2 X (0p @ sp x (1,—1)) .
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Suppose b, € Dr(p) N Ar. By (3.3.4),
p=r (b)) ®p
for some T-form p'. Let p be a T-compatible prime. Then
ap(p) Zr(p) (ap(b1)) ® ap(p') -
Since ap(b1) € Drg)(ap(p)) = Drp)(ee @ sp x (1,-1)),
ap(p) Z1(p) 2 X (0p B 8p X (1, =1)) Zr(p) (p(b1), .- ) D (p(b1), ...}

Therefore, ay(b1) € Dy (ay(p')) for every T-compatible prime p. By (3.1.5), bi(1+
t) € Dr(p’) for some t € T and hence,

p =1 (b)) ®p' =1 (b1, 01) ® p"

for some T-form p”. Thus, 2(f — 131) is represented by p” on Xr. Repeating this
argument, we eventually obtain by, ...,b, € Ar such that 2(f — (b +---+5,)) =0
on X7 and therefore, f is represented by the form (by,...,b,) over T, a contradic-

tion. [J

3.3.12 Remark. To determine whether the function f o oy : Xr() — C is repre-

sented over T'(p), one can use the valuation-theoretic criteria in [11] or [12].




Chapter 4

The Higher Level Real Spectrum

As already seen in chapter 1, the theory of higher level orders on a commutative
ring A is remarkably similar to Coste and Roy’s theory of the real spectrum in
[20]. In this chapter, we continue the process of generalizing this theory to higher
level by appropriately defining the Tychonoff, Harrison and Zariski topologies for
SperrA. We then consider the constructible (Tychonoff clopen) sets in SperrA.
Justifying the term “constructible”, we show that there is indeed a sub-base for the
Harrison topology for which the constructible sets are precisely the sets obtained
from this sub-base using a finite number of Boolean operations. In the last section,
we generalize the characterizations of basic sets given in [16] and [35] for level 1 to
arbitrary 2-primary level.

The question of whether Brocker’s theory of the complexity of constructible
sets in the level 1 real spectrum can be successfully generalized to higher level
remains open. Some preliminary results have been obtained jointly with Marshall
that suggest this may be possible. Whether this will have any application to real

algebraic geometry remains to be seen.

4.1 Topologies on SpertA

Let A be a commutative ring, T C A a proper preorder. SpertA is naturally
identified with a subset of the product space {0,1}# by the map that sends an

order P to its characteristic function. The induced subspace topology is called the
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Tychonoff topology on SpertA. The sets of the form
Wr(a) :=={P € SperrA| a€ P}, a€A

together with their complements W%(a) form a sub-base for this topology.

4.1.1 Theorem. The map SigrA - Sperr A given by o — P, is closed. SpertA
with the Tychonoff topology is compact, Hausdorff and totally disconnected.

Proof. Immediate from (2.2.1). O

We consider a second topology on SperA: the Harrison topology. It is defined
by taking as a sub-base the sets W(a) together with the sets

Ur(a) := {P € SperrA| a€ P~suppP}, a€A.

Since Ur(a) = Wr(a)N'W%(—a), the Harrison topology is coarser than the Tychonoff
topology so SperrA is also compact in the Harrison topology. Of course, if A is
a field then the Harrison and the Tychonoff topologies coincide. Unless otherwise
stated, the topology on SpertA will be assumed to be the Harrison topology.

For any subset S C Sper7A, S denotes the closure of S in the Harrison topology.

4.1.2 Theorem. Let P, Q € SperrA. Then Q € {P} iff P < Q. The closed

points in Spert A are precisely the mazimal orders.

Proof. Suppose Q € {P}. If a € P then P ¢ W5(a) so Q@ ¢ W%(a). Thus, P C Q.
If a € Q \ supp @ then @ € Ur(a) so P € Ur(a) and hence, a € P. Therefore,

P < @. The converse is clear. O

4.1.3 Theorem. If S C SperrA is Tychonoff closed then

S ={Q € SperrA| P < Q for some P € S}.

Proof. Suppose Q € S. Since S is compact,

n N NWs(b)NS # 0.
seo MppoUr(@) N D Wr(6) N 5 # 0




Thus, there exists P € S such that P C @ and @ ~ supp@ € P, that is, P < Q.

The reverse inclusion is clear. [

4.1.4 Proposition. For P, ) € Spert A, the following are equivalent:
(i) PAQand Q £ P.
(i1) There ezists disjoint (sub-basic) open sets U,V in SpertA such that P € U
and Q@ € V.

Proof. (i) = (ii) Without loss of generality, assume P € Q. Fixa € P\ Q. If
a ¢ supp P then P € Ur(a) and @ € W5(a) so assume P \ @ C supp P. Since
Q@ AP, QZP. Pickbe Q~P. If b¢ supp@ then @ € Ur(b) and P € W5(b).
Otherwise, @ € Ur(a™ — b") and P € W5(a™ — b").

(ii) = (i) follows from (4.1.2). O

4.1.5 Corollary. If C, D C SpertA are disjoint closed sets then there exists dis-
joint open sets U, V in SperrA such that C CU and D C V.

4.1.6 Theorem. SpermaxrtA is compact and Hausdorff. The specialization map

i : Sperr A — SpermaxtA is a closed mapping.

Proof. Suppose Py € SpertA, Qo = u(FP). Let Uy be an open neighborhood of
Qo and set C = Sper7A \ Up. Since Qo is maximal, {Qo} is closed. Therefore,
by (4.1.5), there exists disjoint open sets U, V such that Qo € U and C C V. By
(4.1.2), we must have Py € U and p(U) C U so g is continuous. SpermaxrA
is Hausdorff by (4.1.4). It follows that SpermaxrA is compact and p is a closed
mapping. [

We also have the Zariski topology on SperrA. For a € A, define
Zr(a) := {P € SperrA | a € supp P}.

The sets Sperr A~ Zr(a) = Ur(a™), a € A, form a basis for this topology and closed

sets have the form Zr(a) := {P € SperrA | a C supp P}, where a is an ideal of A.
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For § C SperrA, the Zariski-closure of S is denoted by z-cl(.S). Clearly,
z-cl(S) = Zr (PQS supp P) .

4.1.7 Theorem. If S C SperrA is Tychonoff closed then any minimal prime p
lying over the ideal N{supp P | P € S} is of the form p = supp P for some P € S.
Thus,

z-cl(S) = {Q € Sperr A | supp @ 2 supp P for some P € S}.

Proof. Let p be a minimal prime lying over a := PQS suppP. If a € A < p then
a ¢ aso SNur(a®) # 0. By compactness,

aeg\purp(a") NS #40.

Any P in this intersection satisfies a C supp P C p so p = supp P by the minimality
ofp. O

4.2 Constructible sets

Let A be a commutative ring, T C A a proper preorder. A subset S C SperrA
is called constructible if it is clopen (closed and open) in the Tychonoff topology.
For all a,ay,...,a, € A and all positive integers m,my, ..., m,, define |

Ur(a;m) := Ur(a™) N dl;l W(a?)
d#m
and

Ur(at,...,ar;my,...,my) 1= QUT(%‘; m;) .

These sets form a basis for the Harrison topology on SperrA and are called basic

open sets. Similarily, we define

Wr(a;m) == Wr(a™) N I"W Sperr A~ Ur(a?) = Ur(a;m) U Zr(a)
djm
d#m

and

Wr(ai, ..., a:;5my,...,m,) = 0NWr(ai; m;)

1
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for a,aq,...,a, € A, m,mq,...,m, positive integers. These sets are called basic
closed sets. A set S C SperrA is said to be basic if

S =wr(ay,...,ar;my,...,m;) N UT(by,...,bs;n1,...,n;)

where a,,...,0a,,by,...,b, € Aand mq,...,m,,ny,...,n, are positive integers. The

basic sets form a basis for the Tychonoff topology on SperrA.

4.2.1 Remarks.

(i) Note that for any a € A, m > 0, Ur(a;m) is the set of orders P € Sperr A
such that a ¢ p and @P(p)* has order m in F(p)*/P(p)* where p = supp P.

For even m
Ur(a;m) = Ur(—a?;1)
so we may always assume m is an odd integer.

(ii) If T is a 2-primary preorder then Ur(a;m) = @ for all odd m > 1. Thus, in

the 2-primary case we may always take m = 1.

4.2.2 Theorem.

(i) Any open constructible set is a finite union of basic open sets.
(i1) Any closed constructible set is a finite union of basic closed sets.

(ili) Any constructible set is a finite union of sets of the form
Ur(ay,...,ar;my,...,m.) N Z7(b)
where ay,...,a,,b € A and my,...,m, are positive integers.

Proof. (i) follows from the compactness of constructible sets. For (ii), note that

Sperr A\ Ur(a;m) = U Wr(a;d)

din
d#m
for any a € A and integer m > 0. Since
Wr(ay,...,a;my,...,m,) =Ur(ay,...,a;my,...,my)UZ7r(ar...a.),

(iii) is clear from the compactness of constructible sets. O




4.3 Hormander-Lojasiewicz Inequality and characterizing

basic sets

Let A be a commutativering, T C A a proper 2-primary preorder. By (4.2.1(ii)),
the sets of the form

UT(al, ey a,) = uT(al) NN UT(a-,-)
are the basic open sets in Sper7A and the sets of the form
WT(al, ceny a,,) = WT(al) Nn---N WT(a.,-)

are the basic closed sets in SperrA. Note that any basic set Ur(aq,...,a,) N

Wr(by,...,bs) can be expressed as
uT(a?"'a?) ﬂWT(al,..,,ar,bl,...,bs).

If a1,...,a, € A denote by T[ay,...,a,| the smallest preorder in A containing
T and a4,...,a,. Then Wr(ay,...,a,) = Spery,,...qo,]A so any closed constructible
set in SperrA is a finite union of sets of the form Sper'A where T" is a preorder
lying over T'.

We extend the characterizations of basic sets given in [16] and [35] to 2-primary
preorders. Just as for level 1, we use an abstract version of the Hormander—

Lojasiewicz Inequality for semi-algebraic functions [15, Corollaire 2.6.7]. (See also

(1], [16], [35].)

4.3.1 Theorem. Suppose S C SpertA is a closed constructible set, f,g € A such
that S N Zr(g) C 27(f). Then there exists a € T, m > 0 such that for all P € 5,

agn+fnm+1 EP

Proof. Write S = Spert, AU---USpert, A where Ty, ..., T, are preorders lying over
T. Applying the Nullstellensatz to the preorder T; C A/(g") induced by T;, we
have —f ' € T; for some m; > 0. Multiplying by suitable powers of 7", we may

assume m := my = --- = m,. Then for each ¢, there exists s; € T}, a; € A such that

—fnm =8; — aig".
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By (1.1.3), there exists s,t,p;,q; € T° such that f = s — ¢ and a; = p; — ¢; for each

t. Let o’ = t¥p; € T°. Then

WG+ [ =t (S pig” — )+ 7+ )
=1 [(ij - ai)gn +aig" — fnm] +sf™m
=t [(ZP;’ + qz‘)g" + 3:‘] + sf*
J#
which is an element of 77 for each :. Let ¢ > 0 be an integer such that a :=ca’ € T..
Then ag™ + f*™*! = (¢ — 1)a’g"™ + a’g" + f~™+! € T¢ for each 7. For any P € S,
Tf# C P® = P for some ¢ and therefore, ag™ + fr™t' € P. O

4.3.2 Proposition. Suppose S C SperrA is a closed constructible set, f,g € A
such that S N 27(g9) € Wr(f). Then there exists fi € A such that S C Wr(f1) and

wr(f) N2r(g) = Wr(f1) N Zz(g)-

Proof. Let S’ = S \ Ur(f). Then S’ is a closed constructible set such that S’ N
2r(9) € Zr(f). By (4.3.1), there exists a € T, m > 0 such that f; := ag™+ f"*! €
P for all P € S'. Clearly if P € Ur(f) then f; € P so S C Wr(f1). The remaining

statement is clear.

If p is a prime ideal of A we identify Sperr(,)F(p) with the set of orders in
Spert A with support p. For any set S C SperrA we define

S(p) =5N SperT(,,)F(p) .

4.3.3 Proposition. Suppose S C SpertA is a closed constructible set, p C A is a
prime ideal and f € A such that S(p) C Wr(f). Then there exists fi € A such that

S CWr(f1) and Wr(f) N Sperzp) F(p) = Wr(f1) N Sperzp) F(p).

Proof. Note that

S(p) = SN Sperr F(p) = SN 0 2r(9) N hQPuT(hn) :
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Since S(p) € Wr(f), by compactness, there exists g € p, h ¢ p such that SN
Zr(g) N Ur(h™) € Wr(f). Replacing f by fA™ we may assume h = 1. Now apply
(4.3.2). O

4.3.4 Theorem. For any constructible set S C Spert A, the following are equiva-
lent:
(i) S is basic closed in SperrA.
(i1) S is basic and closed in SperrA.
(iii) S is closed in SpertA and S(p) is basic in Speryp)F(p) for each prime
pC A

Proof. (1) = (i1) = (iii) is trivial.

(iii) = (i) Suppose P € SperrA, P ¢ S. Let p = supp P. By (iii), there exists
f € A such that S(p) C Wr(f) and f ¢ P. By (4.3.3), there exists f; € A with
S C wWr(f1) and f; ¢ P. Thus S = NWr(f) where f runs through all elements
f € A such that S C Wr(f). By compactness, there exists fi,..., f, € A such that
S =wr(f1,.... fr). O

4.3.5 Theorem. For any constructible set S C Sperrt A, the following are equiva-

lent:
(i) S is basic in SperrA.
(ii) SNz-cl(S\S) =0 and S(p) is basic in Sperr) F(p) for each primep C A.

Proof. (i) = (ii) Write S = Ur(a®)NWr(cy,...,ck). If P € S\ S then P ¢ Ur(a™).
Thus, S\.S C Zr(a) so SNz-cl(S\ ) C SNZr(a) and SNZr(a) = §. The remaining

assertion is clear.

(ii) = (i) Set a = O suppP. Then z-cl(S \ S) = Zr(a) = QZT(G)- By

PeS\S a “_
compactness, there exists ay, ..., a, € asuch that NZr(a;)NS = SNz-cl(S\.S) = 0.
Set a = Ya?. Then Zr(a)N S = 0.

Consider the preorder T[1/a"] C A[l/a] induced by T. We have S C Ur(a™)

so we can identify S with a closed set in Sperrq/.nA[l/a]. By (4.3.4), there exists
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¢y, .., ¢ € A[l/a] such that S is identified with Wrp1/an)(c, ..., c}). After clearing

denominators, we get S = Ur(a™) N Wr(cy,...,cx) for some ¢q,...,cxk € A. O

4.3.6 Theorem. For any constructible set S C Spert A, the following are equiva-

lent:
(i) S is basic open in SperrA.
(ii) S is basic and open in SpertA.

(iii) S is open in SperrA, SNz-cl(S~\ S) =0 and S(p) is basic in Sper () F(p)
for each prime p C A.

Proof. (i) = (ii) is clear and (ii) < (iii) follows from (4.3.5).

(ii) = (i) By compactness, it suffices to show for each P € SperrA \ S, there
exists a € A such that S C Ur(a) and P ¢ Ur(a). Since S is basic, we can write
S = Up(d™) N Wr(ey,...,ck) for some b,cy,...,cx € A. If P ¢ Urp(b"), take a = b"
so assume P € Ur(b). |

Consider the localization A[1/b] and the preorder T[1/b"] C A[l'/ b. S =
Wr(i/en (€1, - - -, Ck) is a clopen set in Sper (157 A[1/b] and P € Sperzy/sm A[1/0]\ S
since SperrpemA[1/b] = Ur(b"). Let @ € Sperp enA[1/b] be the unique maximal
order specializing P. Since Sperrp/pmA[l/b] \ S is closed, @ ¢ S. Then ¢; ¢ Q@
for some i. Since @ is 2-primary, —c™ € @ \ supp @ for some m > 1. By the

Positivstellensatz, there exists s, € () such that

—cMl4s)=1+t.

Let @' :=142c"(1+s)" = — [2(1 + s)""1(1 + ¢) — 1]. Clearly S C Ugp1/m(a’) and
Q@ € Urp en(—a’). Since P < Q, P € Ugppmy(—a'). Let a € A, k > 0 such that
a' = a/b™. Then S C Ur(a) and P € Up(—a). O
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