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ABSTRACT 

One obtains orders of higher level in a commutative ring A by pulling back the higher 
level orders in the residue fields of its prime ideals. Since inclusion relationships can 
hold amongst the higher level orders in a field (unlike the level 1 situation), there 
may exist orders in the ring A which are not contained in a unique order maximal 
with respect to inclusion. However, if the specializations of an order P are defined 
to be those orders Q 2 P such that Q "P ~ Q n -Q, every higher level order in 
A is contained in a unique maximal specialization. The real spectrum of A relative 
to a higher level preorder T is defined to be the set Sper T A of all orders in A 
containing T. As with the ordinary real spectrum of Coste and Roy, SperrA is 
given a compact topology in which the closed points are precisely the orders in 
A maximal with respect to specialization. For 2-primary level, we show that an 
abstract higher level version of the Hormander-Lojasiewicz Inequality holds and 
use it to characterize the basic sets in SperrA. 

A higher level signature on a commutative ring A is a pull-back a of a higher 
level signature on the residue field of some prime ideal p with o-(p) = 0. If T 
is a higher level preorder in A and o-(T) = {0, 1} then a- is called a T-signature. 
Specializations of T -signatures are defined just as for orders and every T -signature 
is shown to have a unique maximal specialization. Each T -signature a determines 
a unique order in A containing T which is maximal with respect to specialization iff 
a is. Generalizing a result of M. Marshall, we show for a higher level preorder Tin 
a commutative ring satisfying a certain simple axiom, the space Xr of all maximal 
T-signatures can be embedded in the character group of a suitable abelian group 
Gr of finite even exponent and under this embedding, the pair (Xr, Gr) is a space 
of signatures in the sense of Mulcahy and Marshall. 
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INTRODUCTION 

The concept of an ordered field originated with Hilbert's work on the foundations of 

geometry, around 1898, but it was Artin's solution to Hilbert's 17th Problem that 

led to the development of the theory of formally real fields beginning with the 1927 

papers of Artin and Schreier. In these papers, it was shown that fields admitting 

orders were precisely those fields in which -1 is not a sum of squares, the formally 

real fields, and further, that an element of a field is a sum of squares if and only if 

it is positive at every order in that field. The important class of real closed fields, 

the formally real fields which have no formally real proper algebraic extension, were 

introduced and it was shown that every real closed field R admits the unique order 

R2 := {x2 I x E R} and every ordered field has a unique (up to isomorphism) 

real closed algebraic extension R where R2 extends the given order. In 1931, van 

der Waerden acknowledged the importance of the Artin-Schreier theory of ordered 

fields by including it in his text "Moderne Algebra" and it has remained a part of 

standard algebra texts to this day. 

The theory of ordered fields has played an important role in many areas of 

mathematics. Artin's proof of Hilbert's 17th Problem related for the first time the 

theory of ordered fields and real algebraic geometry. This relationship is clear in 

Lang's proof (1965) of the Hilbert problem using his Homomorphism Theorem which 

later leads to the Real Nullstellensatz of Dubois and Risler (1970). Tarski's discovery 

of his famous Tarski Principle in 1948 and Robinson's later proof of the model 

completeness of the elementary theory of real closed fields contributed significantly 

to the development of model theory. There is also the application of the Artin­

Schreier theory to the algebraic theory of quadratic forms. 

The relationship between orders and quadratic forms is defined by the notion 

of a signature: for any order P and any quadratic form 'P over a formally real field 

F, one defines the signature sgnp( 'P) just as Sylvester defined the signature of a 

quadratic form over JR. In 1966, Pfister showed that the signatures of the form 'P 
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with respect to all the different orders in F completely determines the Witt class of 

<pup to torsion. Thus the study of the reduced Witt ring (the Witt ring modulo its 

torsion ideal) is intimately tied to the study of the space of orders of the underlying 

field. Specifically, we endow the set of orderings Sper F with the smallest topology 

for which the non-zero field elements represent continuous functions into the discrete 

space {±1} ~ Z. The reduced Witt ring is simply the ring of continuous Z-valued 

functions on Sper F generated by the non-zero field elements. 

The study of both the space of orders and the Witt ring of a field leads naturally 

to the consideration of the (Krull) valuations of that field. The importance of 

valuations to the study of orders seems to have been recognized from the start. 

Although the language of valuation theory was not yet available, the idea of pushing 

down an order P to the residue field of the valuation ring A( P) already appears in 

the papers of Artin and Schreier [2]. In 1973, Prestel (45] introduced the concept 

of a semiorder in a field and showed that it, too, gives rise to a valuation ring. 

This relationship between valuations and semiorders is the key to the important 

Local-global Criterion for Isotropy [8, Theorem 3.3] due to Brocker and to Prestel. 

In (4], Becker extended the notions of orders and semiorders to higher level, 

replacing "sums of squares" with "sums of 2m-th powers", for arbitrary m, and 

later, in [5]-[7], with "sums of 2k-th powers" for arbitrary k. In a joint work with 

Rosenberg [12], this higher level theory of orders is shown to lead to a corresponding 

higher level reduced theory of forms. Signatures again establish the connection 

between the higher level orders and forms of higher degree but unlike the original 

level1 situation, each order does not determine a unique signature. 

Surprisingly, Becker was able to show that the same relationship between orders 

and valuations exists in the higher level setting. The results are presented here 

in sections 1.3-1.5. Even more surprising is the extension of the result of Prestel 

concerning semiorders and valuations (1.3.9). As observed by Becker in [7]: "there 

is no simple proof this time." Essential to establishing this connection between 

the valuations of a field and the higher level orders and semiorders in that field is 

the Kadison-Dubois Representation Theorem [5], [21], [23] concerning archimedean 
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partial orders in commutative rings. In section 1.2, a simple, self-contained proof 

is given which is simply a translation of the one given by Becker and Schwartz in 

[13]. 

As Becker was developing his higher level theory, Knebusch [25], Kleinstein and 

Rosenberg [24] and others were extending the theory of quadratic forms to semi­

local rings. Later it was shown to extend to rings with many units in [17] and [48]. 

In the series of papers [29]-[34], Marshall develops an axiomatic approach to the 

reduced theory of quadratic forms. Fields, semi-local rings and rings with many 

units all give rise to spaces of orderings in the terminology of [32]. 

Although signatures of a semi-local ring were already being considered as early 

as 1971 in [26], it was not until the joint paper of Coste and Roy [20] that the 

correct notion of a (non-higher level) order in an arbitrary commutative ring was 

formulated. Just as for fields in the non-higher level case, signatures and orders in 

a semi-local ring (or a ring with many units) are essentially the same thing. Thus 

the work of Coste and Roy did not produce anything new where the reduced theory 

of forms was concerned but the real spectrum introduced in [20] has had significant 

applications to real algebraic geometry. This is a result of the previously mentioned 

Tarski Principle: one may identify semi-algebraic subsets of a real algebraic vari­

ety with the constructible subsets of the real spectrum of the coordinate ring [15, 

Theoreme 7 .2.3]. 

For example, consider the following situation. Let F be a formally real field, P 

an order in F and R a real closed extension of (F, P). Fix an algebraic set V = 

{x = (xb ... ,xn) ERn I ft(x) = ··· = fk(x) = 0}, wherefb···,fk are polynomials 

with coefficients in F. A subset S ~ V is semi-algebraic if it is defined by means of 

a finite number of polynomial inequalities. One is interested in determining bounds 

on the number of polynomial inequalities required. Using Tarski's Principle, this 

problem is equated to one of determining bounds on the number of inequalities 

required to define constructible subsets in the real spectrum of a commutative ring. 

The solution to this problem is Brocker's theory of the complexity of constructible 

sets [16], (18], [28], [35], [47]. A more general problem is to determine bounds on 
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the number of inequalities required if we insist the polynomials take their coefficients 

from the base field F. In (39], bounds are determined for basic semi-algebraic sets 

defined over F by translating the problem to an equivalent one concerning the 

complexity of constructible sets in the real spectrum of a ring. Using the results of 

this thesis, a beginning has been made in the generalization of Brocker's complexity 

theory to higher level. Whether this will have an application to real algebraic 

geometry is still an open question. 

This thesis is concerned with developing a higher level theory for commutative 

rings. In chapter 1, Becker's higher level orders are extended to an arbitrary com­

mutative ring. The results of the first section have already appeared in [38]. The 

main theorem of section 1.1 is the weak local-global principle (1.1. 7) which is a 

generalization of a similar result in (19] both to higher level and to an arbitrary 

preorder. 

Sections 1.2 through 1.5 are a survey of results contained in the papers of 

Becker [5]-[7], Becker-Harman-Rosenberg [10], Becker-Rosenberg [12] and Becker­

Schwartz [13]. They are included not only to make this thesis as self-contained as 

possible but also to bring together, for the first time, all of these results in the same 

place. 

Orders and maximal orders of higher level are defined for commutative rings 

in section 1.6. The notions of specialization and maximal orders for non-2-primary 

orders were not understood at the time the paper [38] was written. Applying (1.6.9) 

to a ring with many units, one can show that for any maximal order P and any 

preorder Tin a ring with many units, T* ~ P* iff T ~ P. (This was shown to hold 

for 2-primary preorders in [38] and is proved in a more general form in chapter 2.) 

This, together with the results of section 1.6, yields improved versions of results in 

[38] in several instances (see chapter 3.) 

One of the consequences of Theorem 1.1.7 is the Positivstellensatz of section 1.7. 

A weaker version of (1. 7 .2) is due to Berr [14] who, in turn, was extending a result 

of Becker-Gondard in [9]. The full strength of the Positivstellensatz as it appears 

here is required in chapter 3. 
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The notion of a signature of higher level is defined for an arbitrary commutative 

ring in chapter 2. This generalizes the signatures of higher level already defined for 

fields in [10], [12] and for rings with many units in [38). Just as for fields, the space 

of higher level signatures plays a prominent role in the reduced theory of higher 

degree forms (see chapter 3) and is distinct from the higher level real spectrum. 

Specializations and maximal signatures are defined in section 2.1 and in section 2.2, 

the set of signatures Sig A of a ring A is given a suitable "Harrison" topology in 

which the maximal signatures are precisely the closed points of Sig A thus arriving 

at one possible generalization of the real spectrum of Coste and Roy. In fact, Sig A 

is essentially the real spectrum Rn-specA of S. Barton defined in [3]. 

Marshall's abstract theory of spaces of orderings has been successfully general­

ized to the higher level theory of spaces of signatures by Mulcahy and Marshall [37], 

(41]. (See also the joint work with Becker and Rosenberg [11] and the papers of 

Powers [43], (44].) In (36], Marshall gives a simple axiom for a level1 preorder T 

in a commutative ring sufficient forT to give rise to a space of orderings. We show 

that a higher level version of this axiom is sufficient for higher level preorders to give 

rise to spaces of signatures. A necessary first step is to show the T-signatures of a 

ring A can be viewed as characters on an appropriate abelian group GT whenever 

T satisfies Marshall's axiom. This is done in section 2.3. In chapter 3, a reduced 

theory of higher level forms is developed for preorders satisfying this axiom and we 

show for any such preorder T, (XT, GT) is a space of signatures, where XT is the set 

of maximal T-signatures of A. Since this axiom holds for preorders in a ring with 

many units, we have new, somewhat simpler, proofs of the main results of [38). 

In chapter 4, the task of generalizing Coste and Roy's real spectrum to higher 

level is completed by defining higher level analogues of the Tychonoff, Harrison and 

Zariski topologies. In section 4.1, it is shown that the higher level real spectrum 

with these topologies has the desired properties. In section 4.2, the constructible 

subsets of the real spectrum are considered. In the non-higher level real spectrum, 

a subset S is called constructible if it can be obtained from the Harrison sub-basic 

sets by means of a finite number of unions, intersections and complements. The 
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constructible subsets are then shown to .be precisely the Tychono:ff clopen (closed 

and open) subsets. We have precisely the same situation if we consider only ord~rs 

of 2-power level. In order to achieve this characterization in the more general 

situation, the sub-base given in section 4.1 must be modified. In the last section, the 

characterizations of basic constructible sets given in [16], [35] are shown to extend 

to higher level in the 2-primary case. As in levell, the proof requires an abstract 

version of the Hormander-Lojasiewicz Inequality for semi-algebraic functions [15, 

Corollaire 2.6. 7]. 
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Chapter 1 

Orders of Higher Level 

In the sequence of papers ( 4]-(7], E. Becker has developed a theory of higher level 

orders for fields, generalizing the ordered fields of Artin and Schreier. In [38], a 

beginning was made in extending this theory to commutative rings. (See also [9] 

and [14]. Orders of higher level are also defined for commutative rings in [3] but 

the approach taken there corresponds more closely to the theory of higher level 

signatures developed in chapter 2 of this thesis.) Although the notions of preorders 

and orders of arbitrary level were defined for commutative rings in [38], the theory 

was really only developed for 2-primary level. In sections 1.6 and 1. 7 below, this 

theory is extended to include the non-2-primary case. 

The material of the first five sections of this chapter is drawn from [5]-[7],[12], 

[13] and [38]. Note that the terminology used here is not always consistent with 

the original papers. 

1.1 Preorders and semiorders of higher level 

Let A be a commutative ring and fix a positive even integer n called the fixed 

exponent. A preorder (of exponent n) in A is a subset T ~ A satisfying 

T + T ~ T, T · T ~ T, An ~ T. 

If, in addition, -1 ¢:. T, we say T is a proper preorder. We denote the group of 

units of the ring A by A* and for any subset T ~ A, write T* for T n A*. If T is 
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a preorder then T* is a subgroup of A* and A* jT* is of exponent n. (An abelian 

group G is said to be of exponent k, where k is a positive integer, if Gk = 0. The 

smallest positive integer k for which Qk = 0 is called the exact exponent of G.) 

Denote by :EA n the set of all finite sums :Ex£, Xi E A. It is the unique smallest 

preorder in A of exponent n. 

LetT~ A be a preorder. AT-module is a subset M ~A such that 

M+M~M, T·M~M, lEM. 

A T-module M is proper if -1 ff. M. A T-semiorder is a proper T-module S 

satisfying S U -S = A. Clearly T itself is a T-module and for any T-module M, 

T~M. 

1.1.1 Proposition. lfT- T =A then M n -M is an ideal for any T-module M. 

Proof. Clearly, M n -M is an additive group and T(M n -M) ~ M n -M. Since 

T- T =A, it follows that A(M n -M) ~ M n -M. D 

Using the identity ([22, Theorem 8.2.2]) 

(1.1.2) n!x =I:( -1)n-l-h (n- 1) [(x + h)n- hn] ' 
h=O h 

it is clear every proper preorder T in a field K satisfies T - T = ]{. (Note that if 

-1 ff. :EKn then the characteristic of K must be 0.) For the ring A, n! need not be 

a unit so it may be necessary to slightly enlarge Tin order to assume T- T =A. 

For any T-module M, define 

Me:= {x E A I (n!Yx EM for some r ~ 0}. 

Then Te is a preorder and Me is a re-module which is proper iff M is proper. If 

n! E A* then Me = M. In particular, this holds for any proper T-module M in a 

field]{. 

1.1.3 Proposition. For any preorder T ~A, Te-Te= A. 
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Proof. Let x E A. By (1.1.2), n!x = y- z where y, z E I;An so n!(x + z) 

y-z+n!z = y+(n!-1)z E I;An ~ T and therefore, X= (x+z)-z E re-Te. 0 

1.1.4 Theorem. If S is a maximal proper T -module then S is aT -semiorder and 

S n -S is a prime ideal of A. 

Proof. Since Sis maximal, S = se so Sis aTe-module and therefore, p := S n -S 

is an ideal of A. 

Suppose a E A and artS U-S. Then -1 E S +aT and -1 E S-aT so there 

exists s1 , s2 E S, t 1 , t 2 E T such that 

Then -(it +t2) = t1(s2-at2)+t2(s1 +at1) = t1s2+t2s1 E S so -t1 = -(it +t2)+t2 E 

S and therefore, t1 E p. But then -1 = s1 + at1 E S + p ~ S, a contradiction. 

Therefore, S is a T -semi order. 

Suppose a, b E A, ab E p. Then -anbn = -( ab )n E p ~ S If -an rt S then 

-1 E S- anT so there exists s E S, t E T such that -1 = s- ant and therefore, 

-bn = bn s - anbnt E S. So at least one of an, bn is in p, say an E p. Pick m such 

that n ::; 2m. Then a 2m E p so it suffices to prove the following claim. 

Claim. a2 E p => a E p. 

Suppose a2 E panda rt p. Replacing a by -a if necessary, we can assume art S. 

By the maximality of S, -1 E S +aT so there exists s E S, t E T with -1 = s +at, 

that is, at= -(1+s). Since a2t2 E p, (1+at)n = 1+nat+·· ·+(at)n = 1+nat+x 

for some x E p. Then 1 - n(1 + s) = 1 +nat = (1 + at)n- x E S and therefore, 

-1 = (1- n(1 + s)) + ns + n- 2 E S, a contradiction. 0 

Let M be a T-module. Since I;An ~ T, M may also be viewed as a I;An­

module. As in [12], we define the level of M, denoted s(M), to be the smallest 

positive integer f such that M is a I;Au-module. If s(M) is a power of 2, we say 

M is 2-primary. 
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1.1.5 Corollary. If P is a maximal proper preorder of level 1 then 

(i) PU-P= A, 

(ii) P n -P is a prime ideal of A. 

Proof. By (1.1.4), it suffices to show Pis also maximal asaP-module. Suppose M 

is a proper P-module. For any x EM, we have P ~ P + xP ~ M. Since x2 E P, 

P + x P is a proper preorder so P = P + x P and therefore, x E P. Thus P is the 

only proper P-module and hence is certainly maximal. 0 

Levell preorders P ~ A satisfying (i) and (ii) of (1.1.5) are simply called orders 

in much of the literature. Here they will be referred to as orders of level 1. (Orders 

of higher level will be defined in sections 1.5 and 1.6.) 

Let r.p : A --t B be a ring homomorphism. For any preorder T ~ B and any T­

module M ~ B, r.p-1 (T) is clearly a preorder in A and r.p-1 (M) is a r.p-1 (T)-module. 

Conversely, if Tis a preorder in A and M is aT-module, we denote by 'EBnr.p(M) 

the set of all finite sums 'Eyfr.p(xi), Yi E B, Xi EM. Then 'EBnr.p(T) is a preorder 

in Band 'EBnr.p(M) is a 'EBnr.p(T)-module. 'EBnr.p(M) is called the extension of M 

to B and we say the ring homomorphism r.p is M -compatible if -1 t/:. 'EBnr.p(M). 

1.1.6 Remarks. Let T ~ A be a preorder, M a T-module. If s-1 A is the local­

ization of A at some multiplicative set S ~ A then the extension of M to s-1 A 

IS 

s-n M := {; I X E M, s E s} . 
If S is generated by an element a E A then s-1 A is denoted by A[l/ a] and s-n JVI 

is denoted by M[l/ an]. 

For an ideal a ~ A, the extension of M to A/ a is 

Mfa := {x +a I x EM}. 

If p is a prime ideal of A, the residue field of A at p (that is, the field of fractions of 

the domain A/p) is denoted by F(p) and ap : A --t F(p) denotes the natural map 
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A -+ Ajp ~ F(p ). The extension of M to F(p) is denoted by M(p ). We say p is 

M-compatible if ap isM-compatible, that is, if -1 ~ M(p). 

By Zorn's Lemma, every proper T-module M is contained in a maximal proper 

T-module S. By (1.1.4), p := S n -Sis a prime ideal. If -1 E M(p) then there 

exists a E A "- p such that -an E M + p ~ S. But then an E S n -S = p, 

contradiction. Therefore, we have the following weak local-global principle. 

1.1.7 Theorem {[38, Theorem 1.6]). For any proper T-module M, there exists 

an M -compatible prime. 

We therefore have the following extension of [19, Theorem 1]. 

1.1.8 Corollary. If U is a subset of A with 1 E U then the following are equiva­

lent: 

(i) -1 = Euiaf, for some Ui E U, ai EA. 

(ii) For each prime p ~A, -1 = Eap(ui)xi, for some Ui E U, Xi E F(p). 

Proof. (i) =} (ii) is clear. For (ii) =} (i), just apply (1.1.7) to the EAn-module 

generated by U. 0 

A field K is called formally real if -1 ~ EK2
• 

1.1.9 Corollary. For any commutative ring A, the following are equivalent: 

(i) A admits a proper preorder of exponent n. 

(ii) A admits an order of level 1. 

(iii) F(p) is formally real for some prime p ~ A. 

Proof. Taking U = {1} in (1.1.8), we have -1 E EAn iff -1 E EF(p)n for all primes 

p ~ A. Since n is an arbitrary positive even integer, this holds for n = 2 as well. 

By [22, Theorem 6.15] (or by (1.4.6) below), -1 ~ EF(p)n iff -1 ~ EF(p?. 0 
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1.2 Kadison-Dubois Representation Theorem 

This section is essentially a translation of the paper [13] by E. Becker and 

N. Schwartz and provides a simple, self-contained proof of the Kadison-Dubois 

Representation Theorem (see (5], (21], (23].) 

Let A be a commutative ring, T ~A a proper preorder. A proper T-module M 

is said to be archimedean if for all a E A, there exists k E N such that k - a E M. 

Fix an archimedean preorder T ~A and let M beaT-module. Set 

X(M) := { r.p E Hom( A, R) I r.p(M) 2::: 0} 

and 

Arch(M) :={a E A I for all kEN, m(l + ka) EM for some mEN·} 

where Hom( A, JR) is the set of all ring homomorphisms from A toR. 

1.2.1 Theorem. For each T -semiorder S ~ AJ there exists a unique ring homo­

morphism r.p: A--+ R such that r.p(S) 2::: 0. Moreover} 

(i) kerr.p = I(S) :={a E A 11 ±ka E S for all k E NL 

(ii) r.p-1 (R2
) = S U J(S) ={a E All+ ka E S for all kEN}. 

Proof. (Uniqueness of r.p) Let a E A. Since T is archimedean, there exists (r, s) E 

Z x N with r- sa E T ~ S. For any (r,s) E Z x N such that r- sa E S, we have 

r - s<.p( a) 2::: 0. Thus, 

<.p(a) ~ 'l/;(a) := inf {;I (r,s) E z X Nand r- sa E s}. 

Suppose (u, v) E Z x N with; < 'lj;(a). Then u-va t/:. S so va-u E Sand therefore, 

vr.p(a) 2::: u, that is, <.p(a) 2::: ;. Thus <.p = 'lj; which is uniquely determined by S. 

(Existence of <.p) For a E A, define 

<.p( a) := inf {; I ( r, s) E Z x N and r - sa E S} . 
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Pick t E N such that t +a E T. Suppose (r, s) E Z x Nand r- sa E S. Then 

st +sa E T ~ S so r + st E S. Since -1 tf. S, r + st is a non-negative integer so 

; ~ -t. Thus, cp( a) ~ -t and hence, is in JR.. Note that if a E S then r is necessarily 

non-negative so cp( a) ~ 0. 

Suppose r-sa, u-v( -a) E S, r, u E Z, s, v E N. Then rv+us E S so rv+us ~ 0 

and therefore,;~-;. Thus, cp(-a) ~ -cp(a). Suppose (u,v) E Z x N such that 

; < cp( -a). Then u+va = u-v( -a) tf. S so -u-va E Sand therefore, cp(a) ~ -;. 

Thus cp( -a) ~ -cp( a) and hence, cp( -a) = -cp( a). 

Suppose r-sa,u-vbE S, r,u E Z,s,v EN. Then (rv+us)-sv(a+b) E S so 

( b) 
rv +us r u 

cpa+ ~ =-+-
sv s v 

and therefore, cp(a +b) ~ cp(a) + cp(b). Using cp(-a) - -cp(a), it follows that 

cp(a +b)= cp(a) + cp(b). 

From the definition of cp(1), we clearly have cp(1) ~ 1. If r- s ·1 E S then r- s 

must be a non-negative integer so ; ~ 1. Thus cp(1) = 1. 

In order to show cp(ab) = cp(a)cp(b), it suffices to consider the case bET (since 

A = T- T and cp is additive.) Suppose (r,s) E Z x N, r- sa E S. Then 

rb - sab E S so rep( b) - scp( ab) ~ 0 and therefore, cp( ab) ~ ;cp( b). Since cp( b) ~ 0, 

we have cp(ab) ~ cp(a)cp(b). Similarily, for -a we have -cp(ab) ~ -cp(a)cp(b) so 

cp(ab) = cp(a)cp(b). Thus, cp is a ring homomorphism with cp(S) ~ 0 as required. 

(i) Note that if a rf. S then -cp( a) = cp( -a) ~ 0 so a E S whenever cp( a) > 0. 

Suppose cp(a) = 0. Then for all k E N, cp(1 ± ka) = 1 so 1 ± ka E S. Conversely, 

suppose 1 ± ka E S for all kEN. Then 1 ~ k lcp(a) I for all k so cp(a) = 0. 

(ii) If cp(a) ~ 0 then either cp(a) = 0 so a E I(S) or cp(a) > 0 so a E S. Therefore, 

cp-1 (JR.2) ~ S U I(S). Clearly, S U I(S) ~ {a E A I 1 + ka E S for all k E N}. 

Now suppose 1 + ka E S for all k E N. Then 1 + kcp( a) ~ 0 for all k and therefore 

cp( a) ~ 0, which completes the proof. 0 

1.2.2 Remark. Any archimedean level1 order P in a field [{ can also be viewed 

as a P-semiorder. Applying (1.2.1) in this special case, we get a unique embedding 
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r.p : K '--+ 1R such that r.p(P) ~ 0. Thus we have the well-known result that every 

archimedean ordered field is order isomorphic to a subfield of JR. 

1.2.3 Proposition. r.p f--* r.p-1 (1R2) gives a 1-1 correspondence between X(M) and 

the set of maximal proper T -modules lying over M. 

Proof. For each r.p E X(M) the set r.p-1 (1R2) is clearly a T-semiorder (in fact, a level 

1 order) lying over M and by (1.2.1), r.p is the unique ring homomorphism with 

r.p(r.p- 1 (1R2)) ~ 0. This shows r.p f-+ r.p-1 (1R2) is 1-1 and r.p-1 (1R2
) i ~-1 (1R2) if r.p =f.~· 

Let S be a maximal proper T -module lying over M. Since S is a T -semi order, 

there exists a unique ~ E X(M) with S ~ ~-1 (1R2). By the maximality of S, 

s = ~-l(JR2). 0 

1.2.4 Proposition. Arch(M) = n r.p-1 (1R2
). 

cpEX(M) 

Proof. Let S be a maximal proper T-module lying over M. 

Claim 1. S = Arch( S). 

Clearly, S ~ Arch(S). We show Arch(S) is a proper T-module. Then S = 
Arch(S) follows from the maximality of S. 

Let a, bE Arch(S), kEN. Then there exists 1, mEN such that l(1+2ka), m(1+ 

2kb) E S so 2lm(1 + k(a +b)) E Sand therefore, a+ bE Arch(S). Lett E T. Pick 

l, mEN such that l- t E T and m(1 + lka) E S. Then lm(1 + kta) = mt(1 + lka) + 

m(l- t) E S so ta E Arch(S). If -1 E Arch(S) then m(1 + 2( -1)) = -mE S for 

some m E Nand therefore, -1 E S, a contradiction. Since 1 is clearly in Arch(S), 

Arch( S) is a proper T -module, which proves the claim. 

Claim 2. If a f/:. Arch( M) there exists a maximal proper T -module S ~ M with 

-a E S. 

If -1 E M - aT then there exists t E T such that at - 1 E M. Pick k E N such 

that k - t E T. Consider the set 

I::={; I r,sENandr+saEM}. 
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Since Tis archimedean, ~ =f. 0. Suppose ; E ~. Then kr- s + ksa = (k- t)(r + 

sa)+ s(ta -1) + rt EM. If;> t then kr- s > 0 so k~~s =;- t E ~. Otherwise, 

; ~ t so s - kr + r > 0 and hence, r + ksa = kr - s + ksa + s - kr + r E M. 

Therefore, ;t E ~. This shows 0 = inf ~. But then for each k E N, there exists 

; E ~with; < t so s(1 + ka) = k(r +sa)+ s- rk EM. This shows a E Arch(M), 

a contradiction. Thus -1 t/. M-aT so take S to be any maximal proper T -module 

lying over M - aT. This proves the claim. 

By claim 1, Arch(M) ~ Arch(S) = S for all maximal proper T-modules S 2M. 

Conversely, suppose a E S, for all maximal proper T-modules S 2M. Let k E N. 

If 1 + ( k + 1 )a t/. Arch( M) then, by claim 2, there exists a maximal proper T­

module S 2 M with -1 - (k + 1)a E S, a contradiction since a E S. Thus, 

1 + (k + 1)a E Arch(M) so there exists mEN such that m(1 + k(1 + (k + 1)a)) = 

m(k+1)(1+ka) EM. Thus, a E Arch(M). The result now follows from (1.2.3). D 

For each a E A, we denote the evaluation map r.p ...-+ r.p( a) by a. We give X ( M) 

the weakest topology such that the evaluation maps a, a E A, are continuous. Then 

a t-+ a defines a ring homomorphism 

<PM : A--+ C(X(M), lR) 

where C(X(M), lR) denotes the ring of all continuous lR-valued functions on X(M). 

1.2.5 Theorem (Kadison-Dubois Representation Theorem). Suppose T C 

A is an archimedean preorder. For any proper T -module M, 

(i) X(M) is a non-empty compact Hausdorff space, 

(ii) Arch(M) ={a E A I a(X(M)) ~ 0}, 

(iii) ker <PM = Arch( M) n - Arch( M)' 

(iv) Q ·<PM( A) is dense in C(X(M), lR). 

Proof. X(M) is non-empty by (1.2.3). For each a E A, pick ka E N such that 

ka ±a E T and therefore, a(X(M)) ~ [-ka, ka]· Thus, we have an embedding 

X(M) ~ II [-ka, ka] 
aEA 
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given by <p ~ (r.p(a))aeA· This is a closed mapping so X(M) is compact and 

Hausdorff. (ii) is just (1.2.4), (iii) follows from (ii) and (iv) follows from the Stone­

Weierstrass theorem since <PM(A) clearly seperates points of X(M). 0 

1.3 Compatible valuations 

Let K be a field, v a Krull valuation of K (written additively.) We denote the 

valuation ring of v by Av, the maximal ideal of Av by mv and the residue field 

Av/mu by kv. For any S ~ K, the set Sv := (Av n S + mv)/mv in kv is called the 

push-down of S (along v). 

Let T ~ K be a proper preorder. Clearly Tv is a preorder in the residue field 

kv with s(Tv) ::=; s(T). Following [4] and [27], we say T is compatible with the 

valuation ring Av (or with the valuation v), written T f"V Av, if Tv is proper, that 

is, if -1 t:j Tv. T is said to be fully compatible with Av (or with v) if 1 + mv ~ T. 

Clearly, if T is fully compatible with Av then T f"V Av. Denote by Tv the smallest 

preorder inK containing T which is fully compatible with v. 

1.3.1 Proposition. If T f"V Av then 

v(t1 + · · · + tm) = min{v(ti) I i = 1, ... ,m} 

for any tb ... , tm E T*. 

Proof. Lets = t 1 + · · · + tm and assume v(tl) ::=; v(ti) for all i. Then s/h E 1 + (T n 

Av)· Since Tis compatible with Av, s/t1 E A~ and therefore, v(s) = v(tl). D 

1.3.2 Proposition. Suppose U is a subgroup of J{* with 1 + mv ~ U. Then A~ n U 

is additively closed iff U is additively closed. 

Proof. Suppose A~ n U is additively closed and u E U. Clearly, 1 + u E U if u E mv. 

If 1/u E mv then 1 + u = u(1 + ~) E U(1 + mv) ~ U. Otherwise, u E A~ so 

1 + u E A~ n U ~ U. Thus 1 + U ~ U which, of course, implies U is additively 

closed. Conversely, suppose U + U ~ U and u E A~ n U. If 1 + u tt A~ then 
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1 + u E mv so -u E 1 + mv ~ U and therefore, 0 = u + ( -u) E U, a contradiction. 

Thus, 1 + u E A~ n U. D 

1.3.3 Corollary. Suppose Q 2 Tv is a proper preorder in kv. Then the wedge 

product ofT and Q is defined to be 

T 1\ Q := T · {a E A: I a E Q } . 

It is a proper preorder in ]{ fully compatible with v which pushes down to Q. 

Proof. Clearly (T 1\ Q)* is a subgroup of K* containing 1 + mv and (T 1\ Q) n A~ = 
{a E A~ I a E Q} is additively closed so, by (1.3.2), T 1\ Q is additively closed and 

hence, a proper preorder fully compatible with v which pushes down to Q. D 

1.3.4 Remark. Suppose v is a valuation of K such that -1 ft Ek~. For any 

x E (EKn) n A~, write x = x~ + · · · + xk where Xt, ... , Xk E K* and v(x1) :=; v(xi) 

for all i. If X1 ft Av then x1n E mv so 0 = 1 + ~ + ... fik for some a2, ... , ak E Av, 

a contradiction. Thus, Xi E Av for all i and x = ~ + ... X'k E Ek~. It follows that 

-1 ft EJ{n and the push-down of EI<n is Ek~. If Q ~ kv is any proper preorder of 

exponent n then 

is a proper preorder in K which is fully compatible with v and Tv = Q. 

1.3.5 Corollary. If T rv Av then Tv= T · (1 + mv) = T 1\ Tv is a proper preorder 

and we have the exact sequence 

k~ i ]{* v v(K*) 
0 1~-~-~ ~ 

T: Tv* v(T*) ' 

where i(aT;) = aTv* and v(xTv*) = v(x) + v(T*). 

Proof. {a E A~ I a E Tv}= (Tn A~)· (1 +mv) soT 1\ Tv= T · (1 +mv) ~Tv. Since 

T 1\ Tv is a proper preorder fully compatible with Av, Tv = T 1\ Tv. It is now easily 

seen that the given sequence is exact. D 
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For a proper T-module M, set 

A(M) := { x E K I r ± x EM for some r E Q+}, 

l(M) := { x E K I r ± x EM for all r E Q+}, 

where Q+ denotes the positive rationals. 

1.3.6 Theorem {[5, Theorem 3.7(i),(ii)]). For any proper preorder T ~ K, 

( i) A( T) is a Priifer domain with quotient field /{, 

(ii) J(T) is a proper ideal of A(T), 

(iii) A(T) is generated as a ring by the elements l~t , t E T. 

Proof. Since 

(1.3.7) r s ± xy = ! [ ( r + x) ( s ± y) + ( r - x) ( s =F y)] , 

it is clear A(T) is a subring of/{ and I(T) is a proper ideal. 1ft E T, 1± l~t' 1± 1~t E 

T so l~t' l~t E A(T). Now let a E A(T). There exists k, m E N such that 

k +a E T* n A(T) and m- (k +a) E T. Then k~a = 1 + t for some t E T so 

a = l~t - k. This proves (iii). To prove (ii), we must show the localization A(T)p 

of A(T) at any prime ideal p is a valuation ring. 

Suppose p ~ A(T) is prime. Let t E T*. If l~t ft p then 1 + t E A(T)p and 

hence, t E A(T)p· Otherwise l~t ft p so t = l~t • lf E pA(T)p· In particular, for 

all x E K*, 

Let B be the integral closure of A(T)p in/{. It follows from ( *) that B is a valuation 

ring. Let m be the unique maximal ideal of B. Then m n A(T)p = pA(T)p so for 

any x E B, 1/xn ft pA(T)p and therefore, xn E A(T)p. Thus, EBn ~ A(T)p· Since 

Q ~ B, B ~ A(T)p by (1.1.2) and hence, B = A(T)p. 0 

1.3.8 Proposition. For any valuation v of K, the following are equivalent: 
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(ii) Tv is a proper preorder. 

(iii) A(T) ~ Av· 

Proof. (i) => (ii) by (1.3.5). 

(ii) => (iii) For any x E mv, r ± x = r(1 ± r-1 x) E T*(1 + mv) =Tv* for all r E Q+. 

Thus, mv ~ !(Tv). Suppose a E A(T). Pick m E N such that m - an E T*. Then 

! - a~ fi_ Tv so a~ tt !(Tv) and therefore, ! tt mv. 

(iii) => (i) Let t E T n Av. Then 1 - 1~t = 1 ~t E T so 1 ~t E A(T) ~ Av and 

therefore, 1 + t E A~. This shows -1 tt Tv. D 

If S ~ K is a T -semi order and v is a valuation of K then the push-down Sv is 

clearly a Tv-module satisfying kv = Sv U -Sv. Following [27] (rather than [7]), we 

say Sis compatible with Av and write S r-..~ Av if -1 fi_ Sv. Since T ~ S, this implies 

-1 fi_ Tv so S r-..~ Av iff T r-..~ Av and Sv is a Tv-semiorder. 

In [45], Prestel shows that for any ~K2-semiorder S, the set A(S) is a valuation 

ring compatible with S and, moreover, that the push-down of S to the residue field 

is an order of level 1. In [7], Becker shows this is also the case for any higher level 

semiorder. His proof is given below. One should note, however, that the level1 case 

has a much easier proof. See, for example, [27, Theorems 15.5 and 15.6]. 

1.3.9 Theorem ([7, Theorem 1.2]). If S ~ ]{ is aT -semiorder then 

(i) A(S) is a valuation ring with maximal ideal I(S)J 

(ii) (1 + I(S))(A(S)* n S) ~ SJ 

(iii) The push-down S of S to the residue field k of A( S) is a level 1 order in k. 

Proof. By (1.3.7), it is clear that A(S) and J(S) are both A(T)-modules. Then 

p := A(T) n I(S) is a proper ideal in A(T). We show p is prime, A(S) = A(T)p 

and I(S) = pA(T)p. Then, by (1.3.6), A(S) is a valuation ring with maximal ideal 

I(S). 

Let P := (A(T) n T) + p. Suppose -1 E P, say -1 = t + x, where t E A(T) n T 

and x E p ~ I(S). Since -1 rf. I(S), t =f 0. Then -1 = t-1 (1 + x) E TS ~ S, 
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a contradiction. Therefore, P is a proper archimedean preorder in A( T) so we can 

apply the Kadison-Dubois Representation Theorem (1.2.5) toP. 

Suppose a E Arch(P)n- Arch(P) ~ A(T) and k is a positive integer. 2\ +a E P 

so there exists t E A( T) n T, x E p ~ I ( S) such that t + a = t + 21k + x E T + S ~ S. 

Similarily, t -a E S so a E A(T) n I(S) = p. Since p ~ P ~ Arch(P), we have 

p = Arch(P) n- Arch(P). Suppose a, bE A(T) "p. By (1.2.5(iii)), an, bn f/:. p = 
A(T) n I(S) so there exists k E N such that t -an f/:. S and t - bn f/:. S. Then 

an-t, bn- t E Sand an+ t, bn + t E T so by (1.3.7), anbn- k\ E Sand therefore, 

anbn f/:. I(S). It follows that ab f/:. p. Thus, p is a prime ideal in A(T). 

Let x E A(T)p· Then there exists a E A(T), s E A(T) "- p such that x = s~. 

Since sn f/:. I(S), there exists k E N such that t - sn f/:. S and therefore, k- s~ = 
s~(sn- t) E S. Let bE I(S). Since I(S) is an A(T)-module, abE I(S) so for any 

m > 0, k!n ±abE Sand therefore, ! ± xb = k!n(k- 8~) + s~(k!n ± ab) E S so 

xb E I(S). This shows I(S) is an A(T)p-module. Similarily, one shows A(S) is an 

A(T)p-module. 

For any a E K, a-1a = 1 f/:. I(S) so, a E I(S) => a-1 f/:. A(T)p· Since A(T)p 

is a valuation ring, this shows I(S) ~ pA(T)p· Since p ~ I(S) and I(S) is a 

A(T)p-module, pA(T)p = I(S). 

Suppose there exists a E A(S) with a f/:. A(T)p· Replacing a by -a if necessary, 

we may assume a E S. Consider the T-semiorder S' := S~. We can apply the above 

arguments to S' to get the prime ideal p' := A(T) n I(S') and the valuation ring 

A(T)p' with maximal ideal I(S') = p' A(T)p'· 

Suppose x E I(S'). For any k > 0, ka E A(S) so there exists m E N such that 

m ± ka E Sand therefore, t ±ax= k!n (m- ka) +a(!± x) E S +aS'~ S. This 

shows a I ( S') ~ I ( S). Similarily, one shows a A( S') ~ A( S). 

Since a f/:. A(T)p, ~ E pA(T)p = I(S). Thus, I(S') ~ ~I(S) ~ I(S) sop' ~ p. 

A(S') is a A(T)p'-module so we have 

A(T)p ~ A(T)p' ~ A(S') ~ ~A(S) ~ A(S). 

Since a
1
n E I(S), 1- a~ E S for any 1 E Q+ so an f/:. A(S). However, a E A(S) 
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so there exists m > 0 such that m - a E S and therefore, l - ..L E S l = S'. Then 
a m a 

~ ~ I(S') = p'A(T)p' so a E A(T)p'· But then an E A(T)p' ~ A(S), a contradiction. 

Thus, A(S) ~ A(T)p. Since A(S) is a A(T)p-module, the reverse inclusion holds. 

Therefore, A(S) = A(T)p which proves (i). 

Suppose x E J(S), a E A(S)* n S. Then r - a ft S for some r E Q+ and 

axE J(S) so (1 + x)a =a+ ax= (a- r) + (r +ax) E S + S ~ S. This proves (ii). 

Suppose a, b E A(S)* n S. Then a, b ~ I(S) so there exists r E Q+ such that 

~-a,~- b ~ S. Then (a+ b)- r =(a-~)+ (b- ~) E S + S ~ S so a+ b tf_ I(S). 

This shows A( S)* n S is additively closed and therefore, -1 tf. S. 

Suppose a E A(T) "- p. By (1.2.5(ii)), a2 ~ Arch(P) so for any k > 0, there 

exists t E A(T) nT, x E p ~ I(S) such that 2\ +a2 = t+x so t+a2 = 2\ +t+x = 
t + ( 2~ + y) E T + S ~ S. If a2 E -S then t- a2 E S for all k > 0 and hence, 

a2 E A(T) n J(S) = p, a contradiction. Thus, a2 E A(S)* n S. Since A(S)* n S is 

additively closed, l + a2 E A( S)* n S. Therefore, 

for any k > 0. 

Suppose x E A(S)*, s, t E A(S)* n S such that x 2s = -t. Since A(S) = A(T)p, 

there exists a,b E A(T) "- p such that x = b~. Then a2s = -b2nt and b2nt tf. I(S). 

Pick k, mEN such that k ±s E Sand ! - b2nt ~ S. Then b2nt- k:n = (b2nt- !) + 
k!n ( k - s) E S and k:n - b2nt = k:n + a2 s = ( k!n + a2 )s ~ A( S)* n S, a contradiction. 

Therefore, 

A(S)*2(A(S)* n S) ~ A(S)* n S. 

This shows S is an archimedean ~ k2 -semi order. It remains only to prove the 

following result due to Prestel [46, Theorem 1.20]. 

Claim. Any archimedean ~k2 -semiorder is a level 1 order. 

We need only show S is closed under multiplication. Let s, t E s*. Then 

st = i[(t + s) 2
- (t- s)2

] so it suffices to show for any a, bE k, 

a, b - a E S => b2 
- a2 E S. 
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If a = 0 or a = b the result is trivial so assume a, b - a E S*. Then 

b 
ab(b- a)= a2(b- a?--­

a(b- a) 

= a2(b- a)2 [~ + _1_] 
a b- a 

2 ( ) 2 [a b- a ] 
=a b- a a2 + (b- a)2 

which is clearly in S. Suppose a E Ek2 • Then, multiplying ( *) by ~' we have 

b(b-a) E Sand therefore, b2 -a2 = b2 -ab+ab-a2 = b(b-a) +a(b-a) E 

S + (Ek2)S ~ S. Similarily, if bE Ek2 , we get b2
- a2 E S. Thus, it suffices to show 

there exists r E Q+ with b- r, r-aE S. 

Since S is archimedean we can pick k > 0 such that k - b~a E S*. Since 

b~a = (:~:)2 E S*, it follows from ( *) that b~a ( k- b~a) E S. Multiplying by (b-ka)
2

, 

we have k( b- a) - 1 E S. Pick m E Z minimal with respect to m - ka E S*. Then 

kb- m = (k(b- a)- 1) + (ka- (m- 1)) E S sob- r;:, 7: -a E S. This completes 

the proof. D 

1.3.10 Proposition. For a valuation v of K and a T-semiorder S ~ f{, the fol­

lowing are equivalent: 

(i) A(S) ~ Av. 

( ii) S "' Av . 

(iii) (1 + mv)(A~ n S) ~ S. 

(iv) 1 + mv ~ S. 

Proof. (i) :::} (ii) If -1 E Sv then there exists s E A~ n S, x E mv such that 

-1 = s + x = (1 + s-1 x)s. Since mv ~ I(S), 1 + s-1 x E 1 + I(S) ~ A(S)*. 

Since -1 E A(S)*, we must haves E A(S)*. But then -1 E S by (1.3.9(ii)), a 

contradiction. 

(ii) :::} (iii) Suppose there exists s E A~ n S, x E mv such that (1 + x )s E -S. 

Then s E Sv n -Sv and s =/= 0 so hy (1.1.1), Sv n -Sv = kv and hence, -1 E Sv, a 

contradiction. 
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(iii) => (iv) is clear. 

(iv) => (i) For any x E mv, ! ± x = ! (1 ± mx) E T(1 + mv) ~ S for all integers 

m > 0. Thus, mv ~ I(S) so A(S) ~ Av. D 

1.3.11 Theorem {[12, Theorem 3.1]). Suppose S ~ K is a T -semiorder. If 

a1, ... , ar E S* such that ai ¢:. A( S)*T* for at least one i then there exists a valuation 

ring A compatible with S such that 

(i) (1 + m)ai ~ S for all i, where m is the maximal ideal of A, 

(ii) ai ¢:. A *T* for some i. 

Proof. Consider the family { Aa} of all valuation rings of K containing A( S) with 

ai ¢:. A~T* for some i. Since A(S) is a valuation ring, this family is linearly ordered 

by inclusion so that A:= UAa is again a valuation ring of K containing A(S) with 

ai ¢:. A*T* for at least one i. Let m denote the maximal ideal of A. We show 

(1 + m)ai E S for all i. 

Suppose B is a valuation ring properly containing A. Then A( S) ~ A ~ B and 

ai E B*T* n S = (B* n S)T* for each i so, by (1.3.10), (1 + mB)ai ~ (1 + mB)(B* n 

S)T* ~ S, where mB is the maximal ideal of B. 

Consider now the family { B 13 } of valuation rings of J{ which properly contain A 

and let B = nB13. If A·= B we are done since then m is the union of the maximal 

ideals m13 ~ B13 . So assume A~ B. Then B = B13 for some j3 so ai E (B* n S)T* 

for all i. Let 1r denote the natural homomorphism of B onto its residue field k and 

let S := 1r(B n S). If (1 + 1r(m))S ~ S then (1 + m)(B* n S) ~ S so (1 + m)ai E S 

for each i. Therefore, it remains only to show ( 1 + 1r ( m)) S ~ S. 

1r(A) is a valuation ring of k of (Krull) dimension 1 and 1r(m) is its maximal 

ideal. Since 1 + m ~ A* n S ~ B* n S, 1 + 1r(m) ~ S. Let k denote the completion 

of k with respect to 1r(A) and S denote the closure of S in k. Clearly, S is a "Ekn­

module. Suppose -1 E s. Then there exists s E s* such that I - 1 - sl < 1 so 

-1- s E 1r(m) and therefore, -s E 1 + 1r(m) ~ S, a contradiction. Thus, Sis a 

proper "Ekn-module ink (in fact, Sis a semiorder.) By (1.1.1), S n -S = {0} so 
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A. - 1 A A A ,.. A 

Snk = S. For any x E 1r(m), lxl < 1 so (1+x)n- E k. Then (1+7r(m))S ~ knS ~ S 

and therefore, (1 + 1r(m))S ~ S n k = S. 0 

1.4 Complete preorders 

If G =f=. 0 is an abelian group of finite exponent, the 2-primary part of G is defined 

to be the subgroup H2 consisting of all elements whose order is a power of 2. 

A proper preorder P in a field K is called complete if the 2-primary part of 

K* I P* is cyclic. For example, every order of level 1 is complete. 

1.4.1 Proposition. A proper preorder P ~ K is complete iff for all x E K, 

x 2 E P => x E PU-P. 

Proof. If the 2-primary part of K* I P* is cyclic then K* I P* has a unique element 

of order 2 and hence, ( *) holds. Conversely, suppose ( *) holds. Pick x E /{* such 

that xP* generates the 2-primary part of/{* I P*. If y E /{* has order 2s+l modulo 

P*, s ~ 0, then y2s P* has order 2 so by ( *), y2s P* = - P* = x 2
r P*, where 2r+l is 

the order of xP*, and hence, ( x 2r-s y) 
2

s E P*. By induction on s, x 2
r-s y P* = xk P* 

and hence, y = xk-2r-s P*. 0 

1.4.2 Proposition. Any maximal proper preorder is complete. Conversely, if P is 

a 2-primary complete preorder then P is maximal. 

Proof. Suppose there exists x E K such that x2 E T and x ¢:. T U - T. Then 

-1 ¢:. T + xT since otherwise, -1 = s + xt, where s, t E T , t =f=. 0, and hence, 

-x = t(1 + s) E T. Therefore, T + xT is a proper preorder properly containing T 

so Tis not maximal. Conversely, suppose T ~ T' are proper 2-primary preorders 

and x E T' " T. Replacing x with a suitable power we can assume x2 E T, x rt T. 

Since T' n -T' = {0}, -x ¢:. T and hence, Tis not complete. 0 

1.4.3 Lemma. If T ~ K is a proper preorder which is not complete then 

T=n{T+aTI a2 ET,art.Tu-T}. 
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Proof. Since T is not complete there exists a E K with a2 E T, a 1:. T U - T. 

Suppose x E T + aT for all a2 E T, a 1:. T U - T. For any such a, there exists 

St, s2, t1, t2 E T such that x = s1 + as2 and x = t1 - at2. Then (s1s2 + t1t2)x2 = 
s1s2(ti -2at1t2+a2tD+itt2(si+2as1s2+a2 s~) = s1s2ti+ttt2si+a2( s1s2t~+ttt2s~) E 

T. Suppose x 1:. T. Then none of the Si, ti are 0 so s1 s2 + t 1 t 2 =/:- 0 and therefore, 

x 2 E T. Since a= t,t:x 1:. T, x 1:. -T. But then x E T-xT sox= s- xt for some 

s, t E T and therefore, x = t~t E T, a contradiction. 0 

1.4.4 Theorem. Every proper preorder in K is the intersection of the complete 

preorders lying over it. 

Proof. Suppose T is a proper preorder in K and x 1:. T. Let P 2 T be a proper 

preorder maximal with respect to x ¢:, P. Then x E P + aP for all a E J{ such that 

a 2 E P, a 1:. PU-P. By (1.4.3), P is complete since otherwise, x E n{P + aP I 

a2 E P, a 1:. PU-P} = P. 0 

1.4.5 Theorem ([5, Theorem 3.4]). If P ~ K is a complete preorder then A(P) 

is a valuation ring, I(P) is the unique maximal ideal and the push-down of P to the 

residue field of A( P) is an archimedean level 1 order. 

Proof. Since P n A(P) is an archimedean preorder in A(P), we can apply the 

Kadison-Dubois Representation Theorem (1.2.5). Set 

X:= X(P n A(P)) = {cp E Hom(A(P),IR) I cp(P n A(P)) 2:: 0}. 

For a E A(P), a denotes the evaluation map X --+ IR given by cp ~----+ cp(a). Then 

a E I(P) iff a= 0 on X and a 2:: 0 on X iff for all k E N, 1 + ka E P. 

Suppose a E A(P), a 1:. I(P). Then cp(a2) > 0 for some cp EX, say cp(a2) > t, 
k E N. Set b = a2 - t E A(P). So cp(b) > 0. Suppose s = 2rm, m odd, is the 

order of b in J{* / P*. If r 2:: 1 then b2r-lm E - P so cp( b2r-tm) :::; 0, a contradiction. 

Thus bm E P so 'bm 2:: 0 on X. Since m is odd, b 2:: 0 on X. Thus, a2 = t +bE P 

and a2 -
2
1k = 

2
1
k + b E P so 2k ± a-2 E P and hence, a-2 E A(P). It follows 
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that a-1 E A(P) so a E A(P)*. Therefore, I(P) is the unique maximal ideal of the 

Priifer ring A(P) so A(P) = A(P)r(P) is a valuation ring. We have already seen 

a E A(P) "I(P) implies a2 E P so A(P)* ~PU-P and hence, the push-down P 

of P is an archimedean level 1 order. D 

In section 1.1, we used a result in (22] to show -1 tl. ~Kn iff K is formally real. 

We are now in a position to prove this directly. 

1.4.6 Corollary. -1 tt ~K2 iff -1 t1. ~Kn. 

Proof. If -1 tt ~Kn then K has a complete preorder P of exponent n by (1.4.2). 

Let v be the valuation associated with A(P). Since Pv is a level 1 order in kv, 

-1 tl. ~k~. By (1.3.4), -1 tl. ~K2 • The converse is clear. D 

1.4.7 Corollary. Let P ~ K be a complete preorder. For any valuation v of/{) 

P t'V Av iff P is fully compatible with Av. If P t'V Av then the push-down Pv is 

complete. 

Proof. By (1.3.8), if P t'V Av then A(P) ~ Av so 1 + mv ~ 1 + I(P) ~ P and 

hence, P = pv. By (1.3.5), k~/ P: is embedded in[{*/ P* so k~/ P: necessarily has 

a unique element of order 2 and hence, is complete. D 

1.4.8 Corollary. For any proper preorder T ~ /{) 

A(T) = n {A(P) I p 2 T is a maximal proper preorder}. 

Proof. Let m be a maximal ideal of A(T). Since A(T) is a Priifer domain, A(T)m 

is a valuation ring. Let v denote the associated valuation. It follows from (1.3.8) 

that Tv is a proper preorder. Let P be a maximal proper preorder lying over Tv. 

Since 1 + mA(T)m ~ Tv ~ P, P t'V A(T)m and therefore, A(P) ~ A(T)m· P 

is complete so A(P) is a valuation ring and therefore, m ~ mA(T)m ~ I(P) so 

m = I(P) n A(T) and hence, A(P) = A(T)m- Since A(T) = nA(T)m where m runs 

through all maximal ideals of A(T), this completes the proof. D 
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Let P ~ K be a complete preorder of level s(P) =28 m, s 2:: 0, m 2:: 1 odd, and 

let v be a valuation of K such that Pv is a Ievell order in kv. (For example, take 

v to be the valuation associated with A(P).) Let G := v(K*), Go := v(P*). 

1.4.9 Lemma. There exists a homomorphism f.l : GlnG --+ K* I J{*n such that 

v o f.l = id, where v denotes the homomorphism K* I K*n --+ G I nG induced by v. 

Proof. Write n = p~1 
• • • p~k where p1, ... , Pk are distinct primes and r i > 0 for all i. 

For any abelian group G, GlnG ~ Glp~1 G x · · · x Glp~kG so it suffices to consider 

the case k = 1, that is, where n = pr for some prime p and r > 0. 

Let {gi + pG} be a ZlpZ-basis for GlpG. We show that GlprG i.s the direct 

sum of the cyclic subgroups generated by the 9i + prG. For then we can define f.l 

by 9i + prG ~--+ XiK*Pr where the Xi E K* are chosen so that v(xi) = 9i for each i. 

Clearly the 9i + pr G generate G I pr G. Let ei E Z, h E G such that ~ ei9i = pr h 

and suppose for some 0 ~ s < r, p8 jei for all i. Then p8 (pr-s h- ~~9i) = 0. Since 

G is the value group of the valuation v, 0 is the only element of finite order in G. 

Thus, ~~9i = pr-s h E pG. Since the 9i are ZlpZ-independent, PI~ so p8+1lei for p p 

all i. By induction, pr lei for all i and hence, ei9i = 0 mod prG for all i. D 

Choose a set of representatives 2l ~ K* for p,(GinG), taking 1 E 2l. Note that 

for a E 2l, x E K*, p,( v( x) + nG) = af{*n iff x = a£yn for some £ E A~, y E /{*. For 

any x E P*, define 

Xp :Go--+ {±1} 

by xp ( v( X)) = eP:' where £ E A~ such that X = a£yn for some a E 2l, y E /{*. 

Suppose Xi = ai£iYi E P*, where ai E 2l, £i E A~, Yi E /{*, i = 1, 2. If v( xt) = v( x2) 

then a1l{*n = p,(v(xt) + nG) = p,(v(x2) + nG) = a2l{*n so a1 = a2 and Etl£2 = 
XtY~Ix2yf E P* so xp(v(xt)) = ltP~ = l2P~ = xp(v(x2)). There exists bE 2l such 

that a1a2l{*n = p,(v(x1x2) + nG) = bl{*n. Then X1X2 = b£1£2Zn for some z E /{* 

and hence, xP(v(xt) + v(x2)) = £1£2 P~ = xP(v(xt))xP(v(x2)). For any y E /{*, 

xp(v(yn)) = 1 since 1 E 2l. Therefore, xp is a character with xp(nG) = 1. 

27 



P is completely determined by the group G0 and the character xP since 

where Ma := {c: E A~ I ac: E P} = {c E A~ I xP(v(a)) = £P~}. 

By (1.3.5), the sequence 

K* G 
1--+ {±1}--+---+---+ 0 

P* Go 

is exact. Since the 2-primary part of K* I P* is cyclic of order 2s+l, the 2-primary 

part of G I Go is cyclic of order 28
• Suppose s ~ 1. Let x E K* such that x has order 

2s+l modulo P*. P is complete so -x2s E P*. Write x2
s-l = ac:yn where a E 21., 

c E A~, y E K*. Then -x2
s = -a2c:2 y2n = -bc:2 y2nzn for some b E 21., z E f{* so 

XP(2 8 v(x)) = XP(v( -x2s)) = -€2P~ = -1 and therefore, XP(Go n 28 G) =/= 1. 

We have proved one half of the following. 

1.4.10 Theorem ([6, Satz 2.4]). Let v be a valuation of K, G := v(I<*), v : 

K* I K*n --+ G I nG the induced homomorphism. Let J-l : G I nG --+ f{* I K*n be a 

homomorphism such that v o J-l = id and fix a set of representatives 2l ~ f{* for 

J-t( GIn G) with 1 E 21.. 

Suppose Go is a subgroup of G containing nG such that the 2-primary part of 

G I Go is cyclic of order 28
, s ~ 0, and x : Go --+ { ±1} is a character such that 

x(nG) = 1 and x(Go n 28 G) =/= 1 if s ~ 1. 

Let P be a level 1 order in kv and set Ma := {c: E A~ I x(v(a)) = iP*} for each 

a E 2l n v-1 (G0 ). Then 

is a complete preorder with Pv = P and G0 = v(P*) and every complete preorder 

in f{ pushing down to P is obtained in this way. 

Proof. It is easy to see that P · P ~ P and P n -P = {0}. Since 1 E 21., J{n ~ P 

and M1 = { c E A~ I £ E P*} ~ P. Then A~ n P = M 1 = P* and 1 + mv ~ P. 

Suppose X E P*. If X E mv then 1 + X E 1 + mv ~ p. If X ~ Av then 1 + X = 
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x(1 + x-1
) E P*(1 + mv) ~ P*. If x E A~ then x E p* so 1 + x E P* and therefore, 

1 + x E M1 ~ P. Thus, 1 + P ~ P and hence, P + P ~ P. So P is a proper 

preorder with Pv = P. 

Let v(x) E G0 • Write x = a£yn, where a E 21, £ E A~ and y E J{*. Then 

v(a) E Go so for any 7J E Ma ~ A~, a7Jyn E P* and v(x) = v(a7Jyn). Thus, 

Go ~ v(P*). Clearly v(P*) ~ G0 so v(P*) = G0 • Note that since Pv = P has level 

1, A~~ P* U-P* and therefore, v(x) EGo iff x E P* U-P*. 

Suppose there exists x E /{* such that x 2 E P* and x fl. P* U - P*. Then v( x) + 
Go has order 2 so the 2-primary part of GJG0 is non-trivial. Let u E K* such that 

28 v( u) E Go and x(28 v( u)) = -1. Write u2
s-l = a£yn where a E 21, £ E A~, y E /{*. 

Let bE 21, z E K* such that a2 = bzn. Then u 2
s = a2£2 y2n = b£2 y2nzn, v(b) EGo 

and x(v(b)) = x(2sv(u)) = -1 = -l2F so -£2 E Mb and -u2
s = -b£2 y2nzn E P*. 

Thus, u2
s-l fl. P* U - P* so 2s-1v( u) ~ Go and therefore, v( u) + Go generates the 

2-primary part of GJG0 • Since v(x) + G0 has order 2, v(x) + G0 = 2s-1v(u) +Go 

and hence, v(xu2
s-

1
) = v(x) +2s-1v(u) = 0 mod G0 • Therefore, xu2

s-l E P* U-P* 

so x 2u2
s E P*. But x 2 E P* so u2

$ E P*, a contradiction. Therefore, P is complete. 

Since we have already seen that every complete preorder can be obtained in this 

way, this completes the proof. 0 

1.5 Orders of higher level in fields 

An order in a field K is a proper preorder P ~ f{ such that f{* / P* is cyclic. 

Clearly, orders are complete and any 2-primary complete preorder is an order. 

The set of all orders of exponent n in K is called the (higher level) real spectrum 

of K and is denoted Sper K. If T is a preorder in /{, Sper r f{ denotes the set of all 

orders in Sper K containing T. 

1.5.1 Example. In IR(X), the only complete preorders are orders and IR(X) has 

precisely the following orders: 

(i) For each even integer s '2:: 2, IR(X) has a unzque order P00-,s of level s 

compatible with the valuation ring IR[l1ct) and for each a E IR, a unique 
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order Pa- ,s of levels compatible with the valuation ring IR[X](x -a)· 

(ii) For each odd integer m ~ 1, there exists exactly two orders P 00 - ,m and P 00+ ,m 

of level m in IR(X) compatible with the valuation ring IR[lJ<t) and for each 

a E IR, exactly two orders Pa-,m and Pa+,m of level m compatible with the 

valuation ring R[X](x -a)· 

Proof. Since lR[X](X-a), a E lR, and IR[lJ(t) are the only valuation rings of 1R(X) 

with a formally real residue field, every order in lR(X) must be compatible with one 

of these valuation rings and must push down to the order P := Ilt2 on the residue 

field. Let s = 2rm, where r ~ 0 and m ~ 1 is odd, and set n = 2s. We use (1.4.10) 

to determine all the orders in IR(X) of levels. 

Let a E IR, Av := lR[X](x -a)· Av is the valuation ring of the valuation v 

lR(X)*-+ Z defined by v(f/g) = k iff 1 =(X- a)kt; for some f',g' E lR[X] with g g 

f'(a)g'(a) # 0. Set 

T. := { f f,g E IR(X] and f(a)g(a) > 0} 

so Ta = {c E A~ leE F} and A~= TaU -Ta· Define p: Z/nZ-+ IR(X)*/R(X)*n 

by p(k + nZ) =(X- a)k + IR(X)*n and take 2l := {1, X- a, ... , (X- a)n-l }. 

To obtain a complete preorder of levels, the only possible choice for the subgroup 

G0 is sG. Then 2l n v-1 (G0 ) = {1, (X - a) 8
}, G/Go is cyclic of order s and 

G0 /nG rv Z/2Z. Let x: Go-+ {±1} be the character for which x(v((X- a)s) = 

x(2rv((X- a)m)) = -1. Then M1 = Ta and M(x-a)s = -Ta so 

is a complete preorder in IR(X) of levels compatible with IR[X](x -a)· Since Go = 
v(P;-,s) and G/Go is cyclic, Pa-,s is an order in IR(X). 

The only other character is the character x' which is identically 1 on Go. If s 

is even, that is, r > 0, we cannot use x' to define an order in IR(X). However, if 

r = 0, the 2-primary part of G /Go is trivial so we can use x'. In this case, s = m 

is odd and M1 = M(x -a)m = Ta so 
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is a complete preorder in IR(X) of level m compatible with IR[X](x -a)· 

Now let Av := IR[l ](:i-)· Av is valuation ring of the valuation v : JR.( X)* ~ Z 

defined by v(f /g)= deg(g)- deg(J) for any non-zero J,g E IR[X]. Define 

so Too= {e E A~ I£ E P*} and A~= T00 U-T00 • Define Jl: Z/nZ ~ IR(X)*/IR(X)*n 

by JL(k + nZ) = lk + IR.(X)*n and take Q1 := {1, l, ... , in-1}. 

We again have G = Z and Go = sG so Q1 n v-1(G0 ) = {1, is}, G/Go is cyclic 

of order s and G0 /nG rv Z/2Z. For the character x : Go ~ {±1} defined by 

x(v(is)) = x(2rv(im)) = -1, Mt =Too and Mts =-Too so 

is an order in IR(X) of levels compatible with IR(ll(t)· 

If r = 0, the character which is identically 1 on G0 also defines an order. In this 

case, M1 = M..1..m =Too so 
X 

is an order in IR(X) of level m compatible with IR[ll(t)· D 

For a preorder T ~ J{ and an integer m 2:: 1, we define 

T(m) = {X E J{ I Xm E T} · 

Clearly for 2-primary preorders, T(m) = T for all odd integers m. 

1.5.2 Theorem. Suppose T ~ ]{ is a proper preorder and m 2:: 1 is an odd integer. 

Then 

(i) T(m) is a proper preorder, 

(ii) A(T) = A(T(m)), 

(iii) T(m) is complete iff T is complete, 

(iv) if n = 2 8 v where v is odd then T(v) is 2-primary. 
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Proof. (i) Clearly, T ~ T(m), T(m) · T(m) ~ T(m) and since m is odd, -1 rt T(m). We 

must show T(m)* is additively closed. By (1.4.4), we may assume Tis complete. 

Let U = T(m)* and consider the valuation ring A(T). We have 1+/(T) ~ T* ~ U 

so (1.3.2) applies. Since A(T)* n T pushes down to a level 1 order on the residue 

field, (A(T)* n T) U -(A(T)* n T) = A(T)*. It follows that A(T)* n U = A(T)* n T 

(since -1 ft U and T* ~ U.) Clearly A(T)*nT is additively closed soU is additively 

closed. 

(ii) Clearly, A(T) ~ A(T(m)) since T ~ T(m). If P is a maximal proper preorder 

containing T then P = p(m) 2 T(m) so A(P) 2 A(T(m)) and therefore, by (1.4.8), 

A(T) 2 A(T(m)). 

(iii) Every x E T(m)* has odd order modulo T* so the 2-primary parts of K* jT(m)* 

and K* /T* are isomorphic. 

1.5.3 Corollary. For orders P, Q in/{, P ~ Q iff Q = p(m) for some odd m 2: 1. 

1.5.4 Corollary. For any proper preorder T ~ f{, SperTJ{ =/= 0. In particular, T 

is contained in a 2-primary order. 

Proof. By Zorn's lemma, Tis contained in a maximal proper preorder P. By (1.4.2) 

and (1.5.2), P is complete and 2-primary and hence, an order. 0 

1.5.5 Theorem ([6, Satz 2.17]). Every proper preorder in f{ is the intersection 

of the orders lying over it. 

Proof. By (1.4.4), we need only consider complete preorders. 

Let P be a complete preorder and let v be the valuation associated with A(P). 

Set G := v(I<*), G0 := v(P*). Suppose s(P) = 2rm, where r 2: 0, m odd. Then 

the 2-primary part of f{* I P* is cyclic of order 2r+l and G I Go decomposes as the 

direct sum 
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where H2r is cyclic of order 2r and Hm is the subgroup consisting of all elements of 

odd order. 

Let U be a subgroup of Hm such that Hm/U is cyclic and let G~ 2 Go be a 

subgroup of G such that G~/G0 = U. Then G/G~ = H2r EB Hm/U is cyclic. Define 

X : G~ -t k*/P: by x(v(x)) = xp(v(xm)). Since Pv has level1 and m is odd, 

x(v(x)) = xp(v(x))m = xp(v(x)) for all X E P*. Therefore, x(nG) = xp(nG) = 1 

and x(G~ n 2rG) 2 xp(Go n 2rG). By (1.4.10), there exists a complete preorder Q 

in /{ with Qv = Pv and v( Q*) = G~. Suppose x = a£yn E P*, where a E 2l., £ E A~, 

y E K*. Then v(a) E G~, x(v(a)) = x(v(x)) = xp(v(x)) = eP: so£ E Ma and 

therefore, x E Q*. Thus, P ~ Q. Since the sequence 

K* G 
1 -t {±1} -t - -t - -t 0 

Q* G~ 

is exact and Q is complete, the 2-primary part of K* /Q* is cyclic of order 2r+l and 

its subgroup of elements of odd order is isomorphic to Hm/U which is also cyclic. 

Then K* /Q* is cyclic so Q is an order containing P such that v(Q*)/v(P*) = U. 

Suppose the theorem is false. Then there exists x E /{* such that x E Q* for all 

orders Q 2 P and x f. P. If v(x) E v(P*) then x E P* A~~ P* U-P* so x2 E P. 

But then -x E P* ~ Q* for any order Q 2 P, a contradiction. Thus, v(x) f. v(P*). 

Therefore, 

n {U I u is a subgroup of Hm with Hm/U cyclic} =f. 0. 

Suppose Hm = EB Ci, where each Ci is a cyclic subgroup of Hm. If Ui := EB Ci then 
iEI j::pi 

Hm/Ui rv Ci, for each i and therefore, _n Ui = 0, a contradiction. Since mHm = 0, 
tEl 

it suffices to prove the following. 

Claim. Every abelian group of finite exponent is a direct sum of cyclic subgroups. 

Suppose H is an abelian group and mH = 0. Write m = p~1 
••• p~k, where 

Pb ... , Pk are distinct primes, ri > 0. Then H is the direct sum of the subgroups 

HPi := {x E H I p?x = 0} so we may as well assume m = pr+I, for some prime 

p, r ~ 0. Let p := {x E H I px = 0}. For each i = 0, ... 'r, p n piH/ p n pi+l H 

is a 'll/p'll-vector space so we can find Xi,j E H such that {pixi,j} is a Z/p'll-basis 
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of P n pi H modulo P n pi+1 H. Then H is the direct sum of the cyclic subgroups 

generated by the Xi,j. D 

1.6 Orders of higher level in commutative rings 

As in [38], we define an order in a commutative ring A to be a proper preorder 

P ~ A (of exponent n) such that there exists a prime p ~ A and an order P ~ F ( P) 

with P = a;1(P). We have p := P n -P, called the support of P and denoted by 

supp P, P := P(p) and s(P) = s(P(p)) = ~[F(p)*: P(p)*]. 

The set of all orders of exponent n in A is called the (higher level) real spectrum 

of A and is denoted Sper A. If T is a preorder in A, Sper T A denotes the set of all 

orders in Sper A containing T. 

1.6.1 Theorem. SperrA # 0 for any proper preorder T ~ A. In particular, any 

maximal proper preorder is a 2-primary order. 

Proof. LetT be a maximal proper preorder. By (1.1.7), there exists a prime p ~ A 

such that T(p) is proper. By (1.5.4), there exists a 2-primary order P ~ F(p) 

containing T(p). Since Tis maximal, T = a;1 (P). 0 

1.6.2 Remarks. Let r..p : A -+ B be a ring homomorphism, T ~ B a preorder. 

Then r..p- 1 (T) is a preorder in A and P ~---+ r..p- 1(P) defines a map r..p* : SperrB -+ 

Sper 4'-l(T)A. For any preorder T ~A, SperEBn<p(T)B = r..p*-1(SperrA). 

If B = s-1 A is a localization of A at some multiplicative set S then r..p* 

Sper s-nrS-1 A -+ SperrA is 1-1 with image { P E SperrA I S n supp P = 0}. If 

B =A/a where a~ A is an ideal, r..p* identifies SperyA/a with {P E SperrA I a~ 

supp P}. 

For any prime ideal p ~ A, we identify Sperr(p)F(p) with the set { P E SperrA I 

p = supp P}. Then 

SperrA = U Sperr(p)F(p) 
p 

where p runs through all primes of A. 
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For any preorder T and for any odd integer m ~ 1, define 

T(m) : = {X E A I Xm E T} . 

1.6.3 Proposition. Let P be an order in A and m?::: 1 is an odd integer. 

(i) p(m) is an order in A with supp p(m) = supp P and s(P(m)) = (r:,~~))' where 

(a, b) denotes the greatest common divisor of a, b. 

(ii) If Q 2 P is an order in A with supp Q = supp P then Q = p(m), where 

s(P) 
m = s(Q). 

(iii) Ifn = 28 v, v odd, then p(v) is a 2-primary order containing p(m) for all odd 

m ?::: 1. If Q 2 P is any 2-primary order then Q 2 p(v) . We call p(v) the 

2-primary part of P and denote it by P(2). 

Proof. Let p = supp P. 

(i) By (1.5.2), P(p)(m) is an order in F(p) so p(m) = a;1(P(p)(m)) is an order in 

A with support p. Clearly, 2s(P(m)) I (~~lCJn and [P(p)(m)* : P(p)*] I (m, s(P)) so 

s(P) = s(P(m) )(m, s(P)). 

(ii) Since [Q(p)* : P(p)*] = m, Q(p) ~ P(p)(m) and from (i), we have s(Q(p)) = 
s(P(p )(m) ). Thus, Q(p) = P(p )(m) and therefore, Q = p(m). 

(iii) Write s(P) = 2ru where r < s and u I v. Then p(v) has level (v~~f))) = s(:) = 
2r. If Q 2 Pis 2-primary then (v, s(Q)) = 1 so Q = Q(v) 2 p(v). D 

Let P, Q be orders in A. We say Q specializes P and write P -< Q if Q = 
P U suppQ. 

1.6.4 Theorem. If P ~ Q are 2-primary orders in A then P -< Q. 

Proof. Suppose a E Q " P. Replacing a by a suitable power of a we may assume 

a2 E P. Let p = supp P. Then a2 E P(p), a ~ P(p). Since P(p) is complete, 

-a E P(p) so -a E P ~ Q and hence, a E supp Q. D 
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1.6.5 Theorem. Let P be an order in A, p = supp P, q a P-compatible prime. 

Then there exists a place 1r : F(p) -t k U { oo} extending the natural map Ajp -t 

F( q). The valuation ring 1r-1(k) is compatible with P(p) and if P(p )v denotes the 

push-down of P(p) to k then 

is an order in A with support q which specializes P. 

To prove (1.6.5), we require the following proposition. 

1.6.6 Proposition. Suppose K is a field, P ~ K is an order and B is a subring 

of K. Define 

Then 

A(B, P) := {x E K I b ± x E P for some bE B n P}, 

I(B, P) := {X E K II~b ±X E p for all bE B n p}. 

(i) A(B, P) = B · A(P), 

(ii) A(B, P) is a valuation ring compatible with P with I(B, P) its maximal ideal, 

(iii) if B is a local ring whose maximal ideal m is P-convex (that is, s, t E B n P 

and s + t Em=> s, t Em) then B n I(B, P) = m. 

Proof. For convenience, set B = A(B, P), m = I(B, P). Using (1.3.7), it is easy 

to see that B is a ring and since A(P) = A(Z, P) ~ B, iJ is a valuation ring of/{ 

which is compatible with P by (1.3.8). If bE B then clearly bn E B and therefore, 

bE B. Thus, B · A(P) ~B. Conversely, if x E iJ then there exists bE B n P* such 

that b ± x E P and therefore, xjb E A(P) sox E B · A(P). This proves (i). 

Suppose X E m and y E B. Let c E B n p such that (1 +c)± y E P. For 

any bE B n P, b' := (1 + c)(1 +b)- 1 E B n P so I~b ± xy = {t~, ± xy E P by 

(1.3.7) and therefore, xy Em. Since -1 f/:. P, 1 f/:. m. Since m is clearly closed under 

addition, m is a proper ideal of iJ. If X E /{* and 1 I X f/:. iJ then, for any b E B n p' 
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(l:b)x tf. A(P) so 1 ± (1 + b)x E P. Since 1 + b E P*, l~b ± x E P and therefore, 

X Em. Thus, m is the maximal ideal of B, which proves (ii). 

Now suppose B is a local ring whose maximal ideal m is P-convex. Suppose 

x E m, x =/= 0. Then, for any b E B n P, (bxn- 1) + 1 = bxn E m and 1 tf. m so 

bxn- 1 tl. P. Thus, b- X~ tl. p for all bE B n p so x
1
n tl. B. Therefore, m ~ m n B. 

Since m is maximal, this proves (iii). 0 

Proof of (1.6.5). Let B be the localization of Ajp at the prime qjp and let m be 

its maximal ideal. We show m is P(p )-convex. Since q is P-compatible, there exists 

an order Q 2 P such that q = suppQ. Suppose x,y E B n P(p), x + y Em. Then 

there exists s, s', t E P, s E q, t tf. q such that x = s' ft and x + y = s ft. Since 

y E P(p), s- s' E P ~ Q. Since s E q = supp Q, ±s' E Q so s' E q. Therefore, 

x Em. 

The existence of the place 1r follows now from (1.6.6). Define Q as in ( * ). Clearly 

Q is an order in A with support q. Since Q = (7roap)-1 (P(P)v), it is also clear that 

P ~ Q. Suppose a E Q" supp Q. Then 1r o ap(a) E P(p)~ so ap(a) E P(p) and 

therefore, a E P. 0 

1.6. 7 Corollary. If P ~ Q are orders in A then there exists an odd m ~ 1 such 

that p(m) -< Q. 

Proof. Since q = supp Q is P-compatible, P U q is an order in A. By (1.6.3(ii) ), 

Q = (P U q)(m) = p(m) U q, where m = 8~~~)) = :~~{:H· 0 

1.6.8 Theorem. The orders specializing a given order form a chain. 

Proof. Let Q, Q' be orders in A specializing P. Then P(2) ~ Q(2), P(2) ~ Q' (2). 

Suppose there exists x E Q(2) " Q'(2), y E Q'(2) " Q(2). Replacing x and y by 

suitable powers, we may assume -x E Q'(2) and -y E Q(2). Then y- x E Q'(2). If 

y - x E P(2) then y = y- x + x E Q(2), a contradiction. By (1.6.4), P(2) -< Q'(2) 

so y - x E supp Q'(2) and therefore, x = y- (y- x) E Q'(2), another contradiction. 

Thus, we may assume Q(2) ~ Q' (2). Then supp Q ~ supp Q' so Q ~ Q'. D 
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We say an order P in A is maximal if P -< Q implies P = Q. Of course, 

2-primary orders are maximal iff they are maximal with respect to inclusion. 

1.6.9 Theorem. Suppose P is an order in A, p = supp P. Then the following are 

equivalent: 

(i) P(2) is maximal. 

(ii) P is maximal. 

(iii) p is the only P-compatible prime. 

(iv) F(p) = Ajp · A(P(p)). 

Proof. (i) => (ii) Suppose P -< Q. Then P(2) ~ Q(2). Since P(2) is maximal, 

P(2) = Q(2) and therefore, supp P = supp Q so P = Q. 

(ii) => (i) Suppose P(2) -< Q. Then supp Q is P-compatible. By (1.6.5), P U supp Q 

is an order so, by the maximality of P, supp Q ~ P ~ P(2) and therefore, P(2) = Q. 

(ii) {:} (iii) follows from (1.6.5). 

(iii)=> (iv) Let 1r: F(p) ~ kU {oo} be the place associated with the valuation ring 

Ajp · A(P(p)). By (1.3.8), 1r is compatible with P(p) so the kernel of 1r o ap is a 

P-compatible prime. Since p is the only P-compatible prime, 1r is trivial. 

(iv) => (iii) Suppose q is a P-compatible prime. By (1.6.5), there exists a place 

1r : F(p) ~ k U { oo} compatible with P(p) which extends Ajp ~ F( q). Then both 

Ajp and A(P(p)) are contained in the valuation ring of 1r so 1r is trivial. It follows 

that q = p. 0 

1.6.10 Theorem. For each order P ~ A, there exists a unique maximal order 

specializing P. 

Proof. Let Q' be a maximal proper preorder containing P(2). By (1.6.1), Q' is a 

2-primary order. Let Q = PUsupp Q'. Then Q(2) = P(2)Usupp Q' = Q'. By (1.6.9), 

Q is maximal. The uniqueness follows from (1.6.8). 0 
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Denote the set of all maximal orders in A by Spermax A and set Sperm ax TA = 
SperTA n Spermax A for any preorder T ~ A. By (1.6.10), we have a canonical 

specialization map J-l : Sper A ~ Spermax A. Note that for a field K, Sper K = 

SpermaxK. 

1.6.11 Example. JR[X] has precisely the following orders of higher level: 

(i) The maximal orders 

Pa := {f E JR[X] l f(a) ~ 0} 

of level 1 with support (X - a) for each a E JR, the maximal orders 

P oo- ,s n JR[X] 

of level s with support 0 for each integer s ~ 1 and the maximal orders 

P oo+ ,m n JR[X] 

of odd level m with support 0 for each odd integer m ~ 1. 

(ii) For each a E JR, the following orders having support 0 and Pa as their 

unique maximal specialization. For each integer s ~ 1, the orders 

Pa-,s n JR[X] 

of level s and for each odd integer m ~ 1, the orders 

Pa+,m n JR[X] 

of odd level m. 

Proof. All the orders on JR(X) intersect down to support 0 orders on JR[X]. The 

only other primes of JR[X] compatible with ~JR[X]n are the maximal ideals (X- a) 

for each a E JR. The residue field of JR[X] at (X- a) is JR which has only the level1 

order JR 2 and a;1 (JR 2) = Pa. These orders are clearly maximal since their supports 

are maximal ideals. Let a E JR. For any f E JR[X], f tt Pa iff f(a) < 0 iff -f ETa 

and f E Pa "- supp Pa iff f( a) > 0 iff f E Ta· Therefore, Pa specializes the orders 

Pa±,s· If b >an then f(X) = xn- b tt Pa. Since xn- b = Xn(1- in) E Poo±,s, 

the orders P oo±,s n JR[X] are maximal. 0 
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1. 7 Null~ and Positivstellensatz 

1. 7.1 Theorem (Nullstellensatz). LetT ~ A be a preorder, a E A. Then a E 

supp P for all P E Sper rA iff -ank E T for some integer k 2:: 0. 

Proof. Consider the localization A[l/a] and the preorder T[1/an] ~ A[1/a] extend­

ing T. If a E supp P for all P E SperrA then SperT[l/a"]A[1/a] = 0. By (1.6.1), 

T [ 1/ an] is not proper so there exists t E T, k 2:: 0 such that -a nk = t. The con verse 

is clear. 0 

In (14], Berr generalized the Positivstellensatz of Stengle to preorders of higher 

level. The following version is slightly stronger than the one appearing in [14]. 

1. 7.2 Theorem (Positivstellensatz). Suppose T ~A is a preorder, a EA. 

(i) a E P '- supp P for all P E SperrA iff a(1 + s) = 1 + t for somes, t E T. 

(ii) a E P for all P E SperTA iff(ank + s)a = ank + t for some s,t E T, k 2::0. 

Proof. (i) Suppose a E P '- supp P for all P E SperTA. Consider the EAn-module 

M := T- aEAn. Suppose -1 rf. M. By (1.1.7), there exists an M-compatible 

prime p ~ A. Since T ~ M, p is also T-compatible so Sperr(p)F-(p) =/= 0. Then 

a E Q for all Q E SperT(p)F(p) so, by (1.5.5), a E T(p) ~ M(p ). But -a E M so 

a E M(p) n -M(p) and hence, a E p, a contradiction. Therefore, -1 EM so there 

exists s' E EA n such that as' E 1 + T. Clearly s' fl. supp P for all P E Sper T A so 

the preorder T - s'T must contain -1. Then - ( 1 - s') E T - s'T so there exists 

s, t E T such that -(1 - s') = s- s't and therefore, a(1 + s) = as'(1 + t) E 1 + T. 

(ii) If a E P for all P E SperrA then a E Q '- supp Q for all Q E SperT[lfan]A[1/ a]. 

By (i), there exists s', t' E T[1/an] such that a(1+s') = 1+t'. Clearing denominators, 

we gets, t E T, k 2:: 0, such that a(ank + s) = ank + t. 0 
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Chapter 2 

Signatures of Higher Level 

Given an order P of level 1 in a field K, one defines a character sgnp : K* -+ { ±1} 

by sgnp( x) = 1 iff x E P*. sgnp is called a signature of K. Generalizing this to 

higher level, a signature was defined in [10] to be a character(]': K* -+ n such that 

kerO' U {0} is an order of exponent n, where n denotes the group of n-th roots of 

unity. If P is any order of exponent n in K then K* / P* is cyclic of order dividing 

n so there exists signatures of K with kernel P*. 

In [38], signatures were defined for a certain class of commutative rings called 

rings with many units. A polynomial f E A[XI, ... , Xr] is said to have unit values 

if there exists xi, ... ,xr E A such that f(xb ... ,xr) E A*. f is said to have local 

unit values if for every maximal ideal m ~ A, there exists XI, ••• , Xr E A such that 

/(XI, ... , Xr) i. m. The ring A is called a ring with many units if every polynomial 

with local unit values also has unit values. Examples include semi-local rings and 

von Neumann regular rings, see [40], [48]. If A is a ring with many units, a signature 

of A is a character (]' : A* -+ n such that ker (]' = P* for some order P E Sper A. 

The problem with this definition for arbitrary commutative rings is that the unit 

group may be much too small. Consider, for example, the ring JR.[X]. The unit 

group of JR.[X] is JR.* and 1R. has exactly one order P := 1R.2 so Q* = P* for every 

order Q E Sper JR.[X). We need a signature to be defined on the whole ring, not 

just for units. 

Returning to our ring with many units, let 0' be a signature of A. Pick P E 
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SperA such that kera = P* and let p := supp P. Then the signature a lifts to a 

character a : F(p )* ---+- n with kera = P(p )* so the signatures of A are precisely 

those characters a : A* ---+- n for which there exists a prime p ~ A and a signature 

a of the residue field F(p) such that a is the composite map a o ap :A* ---+- n. We 

extend this definition to an arbitrary commutative ring ( cf. the higher level orders 

defined in [3].) 

2.1 Higher level signatures of a commutative ring 

Let A be a commutative ring and T ~ A a proper preorder. Denote by n the 

group of n-th roots of unity in C and set no := n U {0}. A T -signature of A is 

a map a: A---+- no such that a(T) = {0,1}, p := a-1(0) is a T-compatibleprime 

ideal and there exists a character a : F(p )* ---+- n with kera additively closed and 

a = a o ap on A " p. Note that if we extend (j to F(p) by a(O) = 0 then a is a 

T(p)-signature on F(p). We denote by SigTA the set of all T-signatures of A. 

For any T-compatible prime p, we have the injection a; : SigT(p)F(p)---+- SigTA 

given by (j ~---+a o ap and 

(2.1.1) SigTA = U a;(SigT(p)F(p)) 
p 

where p runs through all T-compatible primes. 

2.1.2 Theorem. For every a E SigTA, there exists a unique order~ E SperTA 

with 

~ = a-1 ({0, 1}). 

The map SigTA---+- SperTA defined by a 1--+ ~ is surjective. In particular, SigTA # 
0 for any proper preorder T. 

Proof. Let a E SigrA, say a = a o ap where p is a T-compatible prime and (J E 

SigT(p)F(p ). Since the kernel of the character (j is additively closed, P7i := a-1 (1) U 

{0} is an order in F(p) with T(p) ~ P7i. Then ~ := a-1
( {0, 1}) = a;1 (P7i) and 

hence, is an order in A containing T. 
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Conversely, for any order P in A with support p, F(p )* / P(p )* is cyclic so there 

exists a character on F(p )* with kernel P(p )* and therefore, a signature a E SigTA 

with~= P. 0 

2.1.3 Theorem. Suppose a E SigTA and m 2:: 1 is an odd integer. Then am E 

SigTA and ~m = P)m) . 

Proof. Suppose a E SigT(p)F(p) such that a= aoo:p. Clearly, P)m)* = keram so am 

is a T(p)-signature and therefore, am= (Jffloap is aT-signature with ~m = P)m). 0 

We define the level s( a) of a signature a to be the level of the order ~. 

2.1.4 Proposition. For a, T E SigTA, the following are equivalent: 

(i) ~ = Pn 

(ii) T = am for some odd integer m relatively prime to s( a). 

Proof. Suppose (f E SigT(p)F(p), r E SigT(q)F(q) such that a= (f o o:p, T = r o o:q. 

(i) => (ii) We have p = q and Pa = Rr, so kera = kerr. Therefore, there exists 

an odd integer m relatively prime to s(a) = s( a) such that r = am and therefore, 

(ii) => (i) Pr = ~m = P}m) = ~ since m is relatively prime to s(a) = s(~). 0 

Let 0', T E SigTA. We say T specializes a and write a -< T if for all a E A, 

r( a) # 0 => r( a) = a( a). If a -< T then clearly ~ -< Pr· 

2.1.5 Proposition. Suppose a E SigTA and q is a Per-compatible prime. Define 

T: A~ no by r(a) = a(a) if a E A" q, r(a) = 0 otherwise. Then T E SigTA and 

Proof. Set Q = ~ U q. Suppose a, a' E A " q and a - a' E q. Then a'an-1 = an E 

Q(q) so a'an-t E Q "q ~ ~ and therefore, a( a)= a( a'). Definer: F(q)* ~ !1 by 

r(~) = :~~J. Clearly, r E Hom(F( q)*, 0) and kerr= Q( q)* so r is aT( q)-signature 

and T = 7 o o:q E Sig T A. 0 
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2.1.6 Theorem. The signatures specializing a given signature form a chain. 

Proof. Suppose a -< r1 and a -< r 2 • Then ~ -< ~1 and ~ -< ~2 • By (1.6.8), 

we may asume ~1 -< ~2 so r1-
1 (0) ~ r21(0). If r2(a) # 0 then r1 (a) # 0 and 

r2(a) = a(a) = r1(a). D 

A signature a E Sig T A is said to be maximal if a -< T :::} a - T, for all 

T E SigTA. Define 

SigmaxTA := {a E SigTA I a is maximal}. 

2o1. 7 Theoreme a E SigmaxTA iff~ is maximal. If a is maximal then so is am 

for any odd integer m > 0. 

Proof. Let a E SigmaxTA and suppose ~ -< Q. Define T as in (2.1.5), where 

q = supp Q. Then a -< T so a = T and therefore, supp ~ = supp Q so ~ = Q. 

Conversely, suppose ~ is maximal and a -< T. We have PO' -< ~ so ~ = ~ 
and therefore, a-1 (0) = r-1 (0). Since a -< r, for all a E A such that r(a) # 0, 

r(a) =a( a) and thus, a= T. 

By (1.6.9), ~ is maximal iff ~(2) is maximal and ~(2) = P)m) (2) = ~m(2) for 

any odd integer m > 0. 0 

2.1.8 Theorem. For all a E SigTA, there exists a unique maximal signature T 

such that a -< T. Hence, we have a well-defined specialization map p, : SigTA ---* 

SigmaxTA. 

Proof. Let Q be the unique maximal order specializing PO' and let q = supp Q. 

Define T as in (2.1.5). Then a-< r and Pr = ~ U q = Q. By (2.1.7), T is maximal. 

The uniqueness follows from (2.1.6). 0 

2.2 Topologies on SigTA 

Give n1 the product topology (where no has the discrete topology.) The sets 

U( a1, ... , ar; ao) := {a E SigTA I a( ai) = ao( ai) for i = 1, ... , r} , 
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where at, ... , arE A, ao E n1, form a basis for the subspace topology on SigTA. 

2.2.1 Theorem. SigTA is closed in n1. 

Proof. Suppose T E n1 is in the closure of SigTA. For any a, b E A, t E T, there 

exists a E U(a,b,ab,a + b,t,-1;r) n SigTA. Clearly, r(ab) = a(ab) = a(a)a(b) = 
r(a)r(b) and if r(b) = 0 then a(b) = 0 and-r(a +b)= a(a +b)= a(a) = r(a). 

It follows that p := r-1 (0) is a prime ideal, T ~ r-1 ( {0, 1}) and T: F(p)* ---4 n 
defined by r(t) = :~~J is a well-defined character with 7( -1) = -1 and r = ro ap. 

Since T(p)* ~ r--1 (1), -1 ~ T(p)* so pis T-compatible. It remains only to show 

that ker 7 is addi tively closed. 

Let a, b, x, y E A" p such that r(t) = 7(~) = 1. Then r(a) = r(b) # 0 and 

r(x) = r(y) # 0. Pick a = (j o aq E U(a, b, x, y, ay + bx, by; r) n SigTA. Clearly, 

(J(t) = 1, (J(~) = 1 so (J(! + ~) = 1. Then r( ay + bx) =a( ay + bx) = a(by) = r(by) 

and therefore, 7( ~ + ~) = 1. D 

We define the Harrison topology on SigTA by taking as a sub-base the sets 

U (a; 0'), where a E A and a E Sig T A such that a( a) # 0. This is coarser than 

the product topology on SigTA so SigTA is compact in the Harrison topology. 

(Of course, if K is a field then the Harrison topology coincides with the product 

topology.) Unless otherwise stated, the topology on Sig T A will be assumed to be 

the Harrison topology. For a subset U ~ Sig TA, we denote the closure of U (in the 

Harrison topology) by U. 

2.2.2 Theorem. 

(i) For a, r E SigTA, r E {a} iff 0' -< r. 

(ii) The maximal signatures are precisely the closed points of SigTA. 

Proof. (i) r E {a} iff a E U(a;r) for all a E A such that r(a) # 0 iff for all a E A, 

r(a) # 0 implies a( a)= r(a). (ii) follows from (i). D 

2.2.3 Proposition. For 0', r E SigTA, the following are equivalent: 
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(i) 0' -/< T and T -/< 0'. 

(ii) There exists disjoint open sets U, V in SigrA such that 0' E U, T E V. 

Proof. (i)::::} (ii) Since 0' -/< T, there exists a E A such that T( a) -:/:- 0 and T( a) -:/:- 0'( a). 

If O'(a)-:/:- 0 then take U = U(a; 0') and V = U(a; T). So assume O'(b) = 0 whenever 

T(b) -:j:. 0 and T(b) -:j:. O'(b). Since T f< 0', there exists b E A such that O'(b) -:/:- 0 

and O'(b) -:/:- T(b) and hence, T(b) = 0. Then O'(an- bn) = 0'(-bn) = -1 and 

T(an- bn) = T(an) = 1 so take U = U(an- bn; 0') and V = U(an- bn; T). (ii) ::::} (i) 

follows from (2.2.2). D 

2.2.4 Corollary. lfC, Dare disjoint closed sets in SigrA then there exists disjoint 

opens sets U, V in SigrA such that C ~ U and D ~ V. 

2.2.5 Theorem. SigmaxrA is compact and Hausdorff. The specialization map 11 

is a closed mapping. 

Proof. Suppose O'o E SigrA, To = 11( 0'0 ). Let U0 be an open neighborhood of To and 

set C = SigrA ""- U0 • Since To is maximal, {To} is closed so by (2.2.4) we can find 

disjoint open sets U, V in SigrA such that To E U and C ~ V. By (2.2.2), O'o E U 

and 11(U) ~ U0 • Therefore, 11 is continuous. SigmaxTA is Hausdorff by (2.2.3). It 

follows that SigmaxrA is compact and 11 is a closed mapping. D 

2.3 The group GT 

Let T be a proper preorder in A and consider the restriction map from Sig T A 

to Hom( A*' n). If 0', T E SigTA and (J' -< T then (J' and T agree on A*. Thus, 

the restriction map factors through SigmaxTA. If A is a ring with many units (in 

particular, if A is a field), the image of this map is the set of signatures defined 

in [10], [12] and (38]. We show for rings with many units, this restriction map 

is also 1-1 on SigmaxTA and hence, the signatures defined in [38] are precisely 

the maximal signatures defined here. More generally, we show for a certain class 

of preorders (including the preorders in rings with many units) SigmaxrA can be 
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embedded into a character group Hom( GT, n), where GT is an abelian group of 

exponent n depending on A and T. Inspired by [36], we define GT as follows. 

Let A be a commutative ring and T a proper preorder of A. Set 

AT:= {a E A I o-(a) =f. 0 for all o- E SigTA} 

and 

T :={a E A I a E ~for all o- E SigTA} . . 

T is a proper preorder in A containing T. (Note that since Te ~ T, T- T = A 

by (1.1.3).) AT is a multiplicative semigroup and 1 + T ~ T n AT ~ T n AT are 

subsemigroups of AT. Suppose a E TnAT. Then a E P"-.supp P for all P E SperTA 

so, by the Positivstellensatz, there exists s, t E T such that a(1 + s) = 1 + t. It 

follows that 

GT:=~= AT - AT 
1 + T T n AT f' n AT 

Since an E T n AT for all a E AT, GT is a group of exponent n. If a E AT, we let 

[a] denote the class of a in GT. 

For any o- E SigTA, o-(T nAT) = 1 so we get a natural map 

SigTA-+ Hom(GT, n) 

which factors through SigmaxTA. 

2.3.1 Remarks. 

(i) We can always replace A by its localization at the multiplicative set 1 + T. 

This leaves SigTA unchanged but AT gets identified with A*. If 1 + T ~A* 

then T* = T* by the Positivstellensatz so GT = A* /T* and A = T* - T*. 

(ii) For a level1 preorder T, SpermaxTA is identified with SigmaxTA via P ~---+ 

sgnp. In [36], it is shown the restriction map SigmaxTA-+ Hom(GT, {±1}) 

is an embedding if the natural maps GT -+ GT' are surjective for every proper 

preorder T' 2 T. 
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2.3.2 Proposition. If A is a ring with many units then for any a E A, there exists 

bE A* such that for all 0' E SigTA, 

Proof. Let a E .A and consider the polynomial 

For any maximal ideal m ~A, there exists x, yEA such that f(x, y) ¢:. m. (In fact, 

we can always take x, y E { 0, 1}.) Since A has many units, there exists x, y E A 

such that b := f(x, y) E A*. 

Let 0' E SigTA and suppose an - 1 E ~- If a E ~ then factoring an - 1, 

we see a - 1 E ~ and therefore, a, b E ~* so O'(a) = 1 = O'(b). If -a E ~ 

then -b = -a(xn + y11) + xn E ~* so O'(a) = -1 = O'(b). Assume a2 
¢:_ ~- Let 

p = supp P. The pushdown of ~(p) is a level 1 order so a ¢:. A(~(p))*. Since 

an± 1 E ~' 1 ± Jn E ~(p) and therefore, ~ E I(~(p)). Then 1- ~ E ~(p) so 

¥ = yn + xn(1- ~) E ~(p) and hence, O'(a) = O'(b) in this case as well. D 

2.3.3 Corollary. If A is a ring with many units then GT ~ A* /T*. If T - T = A 

then T* = T* so GT ~ A*/T*. 

Proof. Leta EAT. BythePositivstellensatz,thereexists8 E Tsuchthatan(1+8) E 

1 +T. Replacing a with a(1 +8) we may assume an E 1 +T. By (2.3.2), there exists 

a unit b such that O'(a) = O'(b) for all 0' E SigTA and therefore, ab-1 E T nAT· 

Thus, the natural injection A* /T* <---+ GT is surjective. 

Suppose T- T =A and a E T*. Let t1, t2 E T such that -a= t1- t2. By the 

Positivstellensatz, there exists 81 E 1 + T, 82 E T such that a81 = 1 + 82 • Consider 

the polynomial 

Let m ~ A be a maximal ideal. If 81t1 + 1 ¢:. m then f(O) ¢:. m; otherwise, 81 ¢:. m so 

f(1) ¢:. m. Since A has many units, there exists x E A such that u := 81xn+81t1+1 E 

T*. Since au= t2 + xn + 82(h + xn) E T*, a E T*. D 
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Proposition 2.3.2 suggests the following generalization of [36, Theorem 2.1]. 

2.3.4 Theorem. For any proper preorder T ~ A, the following are equivalent: 

(i) The natural map GT -+ GT' is surjective for each proper preorder T' ~ A 

containing T. 

(ii) For all a E A, there exists b E AT such that for each (maximal) signature 

O" E SigTA, an -1 E f:,. => rf(a) = O"(b). 

Proof. (i) => (ii) Let T' be the smallest preorder of A containing T and an- 1. (ii) 

is vacuous if T' is not proper so assume T' is a proper preorder. By ( i), there exists 

b E AT such that [a] = [b] in GT'· If an - 1 E I:,. then O" E SigT'A and therefore, 

rf(a) = O"(b). 

(ii) => (i) Let a E AT'· By the Positivstellensatz, there exists s, t E T' such that 

an(1 +s) = 1 +t. Replacing a by a(1 +s) we may assume an -1 E T'. By (ii), there 

exists bE AT such that for all O" E SigT'A, O"(a) = O"(b). Then abn-l E T' nAT' so 

[a] = [b] in GT'· D 

2.3.5 Examples. 

(1) By (2.3.2), any proper preorder in a ring with many units satisfies (2.3.4(ii) ). 

Of course, if A = K is a field then for any proper preorder T, /{ T = /{* and 

GT = K* /T* so (2.3.4(i)) is obvious. 

(2) If Tis a proper preorder such that only finitely many primes occur as the sup­

port of a maximal order then T satisfies the equivalent conditions of (2.3.4). 

This follows from (1) by semi-localizing A at this finite set of supports. 

(3) If we replace the hypothesis that A has many units in Proposition 2.3.2 with 

Brocker's U1 axiom of [17], 

(a,b)=A => (aT+bT)nA*#0 

then the same proof shows GT ~ A* /T* and T satisfies (2.3.4(ii)). Note, 

however, that we really only require the polynomial f in ( *) to have values 
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in Ar so the full-strength of Brocker's U1 is not needed. Any preorder T in 

a commutative ring satisfying 

(aT+ (a- 1)T) n Ar # 0 

for every a E A also satisfies (2.3.4(ii) ). It is not clear under what conditions 

the converse is true. 

2.3.6 Proposition. Ifp is the only T -compatible prime occurring as the support of 

a maximal order containing T then the natural map Gr ---+ F(p )* /T(p )* is an iso­

morphism, SigmaxrA = a;(SigT(p)F(p)) and T satisfies the equivalent conditions 

of Theorem 2.3.4. 

Proof. Ar = A '- p so the natural map GT ---+ F(p )* /T(p )* is surjective. Suppose 

a E Ar and a E T(p )*. Let Q E SperTA and let P be the unique maximal order 

specializing Q. Then a E T(p)* ~ P(p)* so a E P 'p ~ Q. Thus, a E T n Ar and 

therefore, Gr rv F(p )* /T(p )*. 

T satisfies (2.3.4(ii)) by (2.3.5(2)) but it is obvious in this case: if a E A and 

an-1 E ~for some 0' E SigTA then necessarily a E A '-P =AT. a;(SigT(p)F(p)) = 
SigmaxTA follows from (2.1.1). D 

2.3. 7 Theorem. Let T ~ A be a proper preorder satisfying the equivalent condi­

tions of Theorem 2.3.4. 

(i) For any preorder T' 2 T and any P E SpermaxrA, 

(ii) The natural map SigmaxTA---+ Hom( Gr, f!) is an embedding. 

Proof. (i) Suppose a E T' '- P(2). Replacing a by a suitable power we may assume 

-a E P(2). By (1.6.4) and (1.6.9), P(2) is maximal with respect to inclusion so, by 

the Positivstellensatz, there exists s E P(2) such that -a(1 + s )n E 1 + P(2). Set 

u := 2a(1 + s )n + 1. Then u E 1 + T', -u E 1 + P(2), un- 1 E T' n P(2). By (2.3.4), 
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there exists bE AT such that -bE P(2) and a(b) = a(u) = 1 for all a E SigT'A so 

b E T' n AT ~ p ~ P(2), a contradiction. Therefore, T' ~ P(2). 

Suppose a E T' "- P. Let p := supp P. By (1.6.9), there exists b E A"- p, x E 

A( P(p)) such that 1 fa = xb. Since T' ~ P(2), -a ¢:. P so a2 ¢:. P(p) and therefore, 

a¢:. A(P(p))*. If a E J(P(p)) then b ¢:. A(P(p)) so axb = b-1 
¢:. A(P(p)) and 

hence, ab ¢:. A(P(p)). Replacing a by abn if necessary, we may assume a¢:. A(P(p)). 

Then 1 ± 1!a' 1 ± {l)a)n E P(p) so 1 +a f/:. P and (1 + a)n- 1 E P. Since T' also 

contains (1 + a)n- 1, there exists bE AT such that b ¢:. P and a(b) = a(l +a)= 1 

for all 0' E Sig T' A, that is, b E T' n AT ~ p' a contradiction. 

(ii) Let a, r E SigmaxTA such that O'IAT = 'TIAT· Then ~nAT = Pr nAT so 

P := ~ = Pr by (i). Let p := supp P. By (2.3.6), Gp "' F(p)* / P(p)* so by 

(2.3.4), we can pick a E AT such that aP(p )*generates F(p )* / P(p )*. Since a E AT, 

a( a)= r(a) and hence, a= r. D 

Just as for fields, we call T complete if the 2-primary part of GT is cyclic. 

2.3.8 Corollary. Suppose T is a complete preorder satisfying the equivalent condi­

tions of Theorem 2.3.4. Then T is contained in a unique maximal 2-primary order 

P, GT "'F(p)*/T(p)* where p = suppP, SigmaxTA = a;(SigT(p)F(p)) and T(p) 

is a complete preorder in F(p). 

Proof. Assume the 2-primary part of GT is cyclic. Let P be a maximal2-primary 

order containing T. If a EAT such that [a] has order 2r in GT then [a]2
r-l = [-1] 

in GT so -a2
r-I E T ~ P and therefore, [a] has order 2r in Gp as well. Since Gp 

is cyclic of 2-power order, the kernel AT n P of the natural map GT --+ Gp is the 

subgroup H of all elements of GT of odd order. If P' is another maximal2-primary 

order containing T then AT n p = H =AT n P' so, by (2.3.7(i)), p = P'. Thus, p 

is the only maximal 2-primary order containing T. For any maximal order Q 2 T, 

we have Q(2) = P so supp Q = supp Q(2) = supp P. The result now follows from 

(2.3.6). D 

51 



Chapter 3 

A Reduced Theory of Higher Level Forms 

There is a natural map of the Witt ring W(K) of a field K to the ring C(X, C) of 

all locally constant functions f : X --+ C where X = Sper EK2 K (the set of all level 

1 orders in K.) If a E K*, the !-dimensional form determined by a is mapped to the 

function a :X--+ {:±1} defined by a(P) = sgnp(a). Pfister's famous Local-global 

Principle states that the kernel of this map is the torsion ideal of W(I<) so the 

reduced Witt ring can be identified with the subring of C(X, C) generated by the 

a,aEK*. 

In (12], Becker and Rosenberg used the higher level signatures of [10] to develop 

an analogous theory of higher level reduced forms on a field. For each a E K*, 

we have the map a : Sig I< --+ C given by 0' 1--7 0'( a) and the reduced Witt ring of 

higher level is defined to be the subring of C(Sig I<, C) generated by the a, a E K*. 

Replacing Sig K with Sigri<, one defines the reduced Witt ring Wr(K) for an 

arbitrary preorder T ~ K. 

Reduced Witt rings for levell preorders in a semi-local ring or a ring with many 

units were defined in [17], [25], [48] and for higher level preorders in a ring with 

many units in [38]. 

Marshall's theory of spaces of orderings provides an axiomatic approach to the 

(level 1) reduced theory of quadratic forms. In [37] and [41], spaces of orderings 

are generalized to the higher level spaces of signatures with higher level preorders 

in fields and rings with many units providing examples. Recently Marshall has 
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~hown (SpermaxTA, GT) is a space of orderings whenever T is a level 1 preorder 

in a commutative ring A satisfying condition (i) of Theorem 2.3.4. In this chapter, 

we show this is also the case for higher level preorders. Specifically, if T ~ A is a 

preorder of higher level satisfying the equivalent conditions of Theorem 2.3.4 then 

(SigmaxTA, GT) is a space of signatures in the sense of [37]. Since preorders in a 

ring with many units always satisfy these conditions, the results of [38] are obtained 

as a special case. 

The results of the first section of this chapter hold for any preorder in a commuta­

tive ring. The proofs are modeled on those given in [12] and [38]. The field-theoretic 

results of section 3.2 have been drawn from [10] and [12] and are included in order 

to make this thesis self-contained. 

3.1 Reduced forms and reduced Witt rings of higher level 

Let A be a commutative ring and T a proper preorder of A. A T -form of 

dimension r over A is an r-tuple <.p = (at, ... , ar), where a1, ... , ar E AT. The sum 

and product of the T-forms <.p = (at, ... , ar) and 'ljJ = (bt, ... , bs) are given by 

and 

The T-form <.p EB · · · EB <.p ( k times) is denoted k x <.p and for c E Ar, the T-form 

(c) 0 <.p is denoted c <.p. 

Set XT = SigmaxTA. Let C(Xr, C) denote the ring of locally constant functions 

f : Xr --+ C (that is, the ring of continuous functions where C is given the discrete 

topology.) For a E Ar, define a : Xr --+ C by a(o-) = o-(a). For each o- E Xr, 

a-1(a(o-)) = U(a; o-) n SigmaxrA is a basic open set in Xr so a E C(Xr, C). For a 

T-form <.p = (a1 , •.• , ar), define cp := ~ai. (If <.pis the empty form () then cp := 0.) 

For any T -forms <.p, 'ljJ, 
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so the set 

Wr(A) := { r.p I 'P is aT-form} 

is a subring of C(Xr, <C) which we call the reduced Witt ring of higher level forT. 

3.1.1 Remark. Let p ~A beaT-compatible prime. For aT-form 'P = (at, ... , ar), 

we define ap('P) to be the T(p)-form (ap(ai), ... , ap(ar)). Clearly, for any T-forms 

A --- ---cp, 'lj;, r.p = 'lj; in Wr(A) iff ap('P) = ap('l/;) in Wr(p)(F(p)) for every T-compatible 

prime p in A. Thus, we have a natural injective ring homomorphism 

Wr(A) '-+ I!Wr(p)(F(p)) 
p 

where p runs through all T-compatible primes. 

If cp,'lj; are T-forms with r.p =~and dimcp =dim¢, we say 'P and 'lj; are T­

isometric and write 'P "-~ T 'lj;. 

3.1.2 Proposition. If cp, p are T -forms with r.p = p and dim 'P > dim p then 

dimcp = dimp mod 2 and r.p ~T p EB m x (1, -1), for some m ~ 0. 

Proof. Pick rr E Xr. There exists an odd integer v > 0 such that ~(2) = Pjv) = ~v 

so rrv E Xr has 2-primary level, say s( rrv) = 2t. Let w be a primitive 2t+1-th root 

of unity. Then there exists mk E Z, mk ~ 0 such that 
2t+1-l 2t+l_l 

( r.p- p)( rrv) = L: mk wk and dim(cp- p) · L: mk. 

k=O k=O 

2t-1 2t-l 

( r.f> - p)( av) = L mk wk + L m2t+k w
2
t+k. 

k=O k=O 

2t-l 

= l:(mk-m2t+k)wk. 

k=O 

The minimal polynomial of w over Q is X 2t + 1 so 1, w, .•. , w
2

t -I are independent 

over Q. Therefore, if r.p = p, we must have mk = m 2t+k for all k = 0, ... , 2t - 1 and 

hence, 
2t-l 

dim( 'P - p) = L 2mk = 0 mod 2 . 
k=O 

D 
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3.1.3 Lemma. Let K be a field. 

(i) For any x E K*, x # -1, and for any l,m EN, 

x2m + 1 21-1 + 1 
X E "£Kn. 

x21 + 1 x2m-1 + 1 

(ii) For any a, bE K*, a+ b # 0, and for any l, m E N, 

(J'· (a21b + ab2l) = (J' (a2mb + ab2m) . 
a21 + b2l a2m + b2m 

Proof. (ii) follows from (i) using x = a-1b. To prove (i), let 

x2m + 1 x2l-1 + 1 
u·= ·-------. x21 + 1 x2m-1 + 1 · 

By (1.5.5), it suffices to show that u E P for all P E Sper K. If x E I(P) then 

1 +xi E 1 + I(P) ~ P* for all i > 0 sou E P*. Since 

x2m + 1 x21-1 + 1 (x-1 )2m+ 1 (x-1 )21-1 + 1 

x21 + 1 x2m-1 + 1 - (x-1 )21 + 1 (x-1 )2m-1 + 1 ' 

x-1 E I(P) also implies u E P*. Assume x E A(P)*. Clearly u E P* if x E P* so 

assume x ¢:. P. Then x E - P* and 

X 2m + 1 (_X )21-1 _ 1 
u= · E P. x21 + 1 ( -x)2m-1 _ 1 

D 

3.1.4 Proposition. 

(i) (a) I'VT (ta) for all a E AT, t E T nAT. 

(ii) (a, b) '::::.y (a+ b, anb + abn) for all a, bE AT with a+ bE AT. 

Proof. (i) is clear. To prove (ii), we may assume A= J{ is a field by (3.1.1). Scaling 

by a-I, we may assume a= 1 and b # -1. Let (J' E Xr. It suffices to show 

1 + (J'(b) = (J'(1 +b)+ (J'(b)(J'(1 + bn-1
). 

If b E I(~) then (J'(l +b) = (J'(1 + bn-l) = 1 so(*) is clear. If b-1 E I(~) 

then (J'(1 +b) = (J'(b) and (J'(1 + bn-l) = (J'(bn- 1 ) so again(*) is clear. Finally, 

suppose bE A(~)*. Then b2 E ~ so (J'(b) = ±1 and (J'(1 + b2) = 1. By (3.1.3), 

(J'( b + b2 ) = (J'( b + bn) so (J'( 1 + b) = (J'( 1 + bn-l) and therefore, ( *) holds in this case 

as well. D 
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For <p = (at, ... , ar), the set of elements of A represented by <p is DT(r..p) .­

a1T +···+arT. 

3.1.5 Theorem. Let bE AT. The following are equivalent: 

(i) There exists t E T such that b(l + t) E DT(at, ... , ar)· 

(ii) o:p(b) E DT(p)(o:p(at), ... , o:p(ar)) for all T-compatible primes p ~A. 

Proof. Suppose (ii) holds. Then, for every T-compatible prime p, 

so, by (1.1.7), -1 E T + (-a1bn-1)T + · · · + (-arbn-l)T and therefore, bE -bT + 
a1T +···+arT. (i) :::::> (ii) is clear. 0 

A T-form <p = ( a1, ... , ar) is said to be T -isotropic if there exists t1, ... , tr E T 

such that a 1lt + · · · + artr = 0 and at least one ti is in AT. <pis called T -anisotropic 

if it is not T -isotropic . 

. 3.1.6 Theorem. For aT -form r..p, the following are equivalent: 

( i) r..p is T -isotropic. 

(ii) o:p( <p) is T(p )-isotropic for all T -compatible primes p ~ A. 

(iii) For all a EAT, there exists t E T such that a(l + t) E DT(r..p). 

(iv) There exists a E AT such that a, -a E DT( r..p). 

Proof. Let r..p = (at, ... , ar) where at, ... , ar E AT. (i) :::::> (ii) is clear. 

(ii) :::::> (iii) Let a E AT, p ~ A a T-compatible prime. By (3.1.5), it suffices 

to show that o:p(a) E DT(p)(o:p(r..p)). Since o:p(r..p) is T(p)-isotropic, there exists 

it, ... , tr E T such that o:p( a1 t 1 ) + · · · + o:p( artr) = 0 and ti t/:. P for some i. It 

follows that -o:p(ai) E DT(p)(o:p(r..p)). By (1.1.3), o:p(ai)-1o:p(a) E T(p)- T(p) so 

o:p(a) E o:p(ai)T(p)- o:p(ai)T(p) ~ DT(p)(o:p(r..p)). 

(iii) :::::> (iv) _is clear. 
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(iv) =} (i) Let a E AT such that a, -a E DT('P)· Since T- T = A, there exists 

s, t E 1 + T such that an-1a1 = s - t. By the Positivstellensatz, we can assume 

s, t E 1 + T by scaling a by an element of 1 + T if necessary. Then a(1 + s) = 

alan+ a(1 + t). Let St, ... , Sr E T such that a = EaiSi· Then a(1 + s) = a1( an+ 

s1(1 + t)) + a2s2 (1 + t) + · · · + arsr(1 + t) and an+ s1(1 + t) EAT so we may assume 

St E AT. Let t1, ... , tr E T such that -a = Eaiti. Then 0 = Eai ( Si + ti) and clearly, 

St + tl EAT. 0 

3.2 T-forms and compatible valuations 

Let K be a field, T ~ K a proper preorder. Denote by VT the set of all valuations 

of K compatible with T. 

For an abelian group G of exponent n, X( G) denotes the dual group Hom(G, n). 

If His a subgroup of G, we identify X(G/H) with the subgroup of X(G) consisting 

of all characters x with x(H) = 1. 

Since the group of all complex roots of unity is divisible, the functor G ~---+ X( G) 

is exact in the category of abelian groups of exponent n. Therefore, for any v E VT, 

(1.3.5) induces the exact sequence 

(3.2.1) 1 -t X (v(K*)) ~X ( K*) ~X ( k~) -t 1 
v(T*) Tv* T~ 

where v*(!) := 1 o v and i*(x)(a) := x(a) for a E A~. 

We say a character x E X(K* /T*) is compatible with a valuation v, written 

X r-..~ Av, if 1 + mv ~ ker x, that is, if X is in the subgroup X(J{* /Tv*) of X(J{* /T*). 

The character i*(x), where x E X(J{* /Tv*), is called the push down of X (along 

v). Conversely, suppose x E X(K* /T*) and e E X(k~/T:) with x(a) = e(a), for all 

a E A*. Then 1 + mv ~ ker x sox is compatible with v and i*(x) = f In this case, 

we call X a pull-back of e (along v). 

3.2.2 Theorem. For all e E X(k~/T:), 

( i) e has a pull-back along v' 
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(ii) if X is a fixed pull-back of ~J all other pull-backs are given by x · ( 1 o v) with 

1 running through X(v(K*)Jv(T*)). 

Proof. This follows from the exactness of (3.2.1). 0 

3.2.3 Theorem. A character x E X(K* /Tv*) induces a T -signature on K iff its 

push-down induces a Tv-signature on k. 

Proof. Let X = i*(x). X induces a Tv-signature iff ker x is additively closed iff 

A* n kerx ={a E A* I x(a) = x(a) = 1} is additively closed. By (1.3.2), this is the 

case iff ker X is additively closed. 0 

3.2.4 Corollary. There is a {non-canonical) bijection 

S . R,.. s· k X (v(K*)) 
Igrv ---t · 1gTv X v(T*) . 

Let r..p beaT-form, v E Vr. For any a E K*, we define the a-th residue class Tv­

form 'Pa as follows. Let a1, ... , ak be the entries in r..p with v( ai) = v( a) mod v(T*) 

and set 

( 
-1 -1 ) 'Pa = a a1, ... , a ak . 

If no such entries exist then 'Pa is the empty form ( ). Fori = 1, ... , k, pick Ui E A~ 

such that a - 1 ai = Ui mod T* and set 

Note that the Tv-isometry ·class of 'Pa does not depend on the choice of Ui. 

3.2.5 Theorem. Let v E Vr. If r..p, p are T -forms with cp = p on Xrv then <P a = Pa 

on X Tv for all a E K*. 

Proof. Since ( -r..p EB p )a = -r..pa EB fia, it suffices to show that cp = 0 implies <Pa = 0 

for all a E f{*. Let c1 , ..• , Cs E f{* such that r..p CI, .•• , r..p cs are the distinct non-empty 

residue class Tv-forms of r..p. Then c.p = l:ci cpci. Let (f E Xrv and let a E Xrv be 
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a pull-back of a. For any 1 E X(v(K*)/v(T*)), u ·(I o v) is a Tv-signature with 

push-down (f and 

0 = rp( u · ( 1 o v)) 

= (2: Ci rpCi) ( (J' • (I 0 v)) 

= L u( ci)l(9i)cPc/a) 

= (2: u( ci)cP Ci (a)gi) (I) 

where 9i := v( ci) + v(T*) and Yi denotes the image of 9i 1n the double dual 

X(X( ~~~:]) ). Since distinct characters are linearly independent over C, cPci ( u) = 0 

for all i. 0 

3.2.6 Theorem ([12, Theorem 2.11]). Let v E VT. AT-form <.p is Tv-isotropic 

iff at least one residue class form I.Pa is Tv-isotropic. 

Proof. Suppose r.p = ( a 1 , ••. , ar) and there exists t1 , •.• , tr E Tv, not all zero, such 

that ~tiai = 0. Assume ti1 =f:. 0 and v(ti1 aiJ = min{v(tjaj)}. We show I.Pai
1 

is 

Tv-isotropic. I.Pai
1 

= (1, a~1 ai2 , ••• , a~1 aip), where ai2 , ... , aip are the entries of r.p 

so 
~ tikaik 
L...J--Emv. 
k=l til ail 

Let u1 , ... , up E A~ such that a~1 aik = Uk mod T*. Then there exists s1, ... , Sp E 

Av n Tv such that s 1 E A~ and 

Since I.Pai
1 

= (u~, ... , up), this shows I.Pai
1 

is Tv-isotropic. 

Conversely, assume I.Pa is Tv-isotropic. I.{) a = (a-1ai11 ••• , a-1aip), where v( aik) = 
v( a) mod v(T*). Let Uk E A~, tk E T* such that a-1aik = t;;1uk and I.Pa = 

(u~, ... 'up)· Picks~, ... ' Sp E Av n T, not all in mv, such that 
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If Sj E A~ then 

0 = sitiaij - ax+ .L: sktkaik . 
k:f=j 

Sjtjaij- ax= Sjtj(1- sj1uj1x)aij E T*(1 +mv)aij = Tv*aij so (aiu···,aip), and 

hence, cp, is Tv-isotropic. D 

AT-form cp = (at, ... ,ar) is said to be O"-definite forO" E Xr if O"(ai) = O"(ai) 

for all 1 :::; i :::; j :::; r. 

3.2.7 Lemma. AT-form cp is O"-definite iff <P(O") = dimcp. 

Proof. Suppose 'P = (at, ... ,ar)· Set Wi = O"(ai) En fori= 1, ... ,r and assume 

I'Ewil = r. If r = 2 then (w1 +w2)(w1 +w2) = 4 so 2 = w1w2 +w1w2 = 2 Re(w1w2) = 

2 Re(w1w21) and therefore, w1w21 = 1. For r > 2, we have for any i =f:. j 

r = I.L:wil:::; lwi + wil +I .L: wkl:::; lwi + wil + r- 2. 
~ k:f=i,j 

Thus, 2 :::; lwi + Wj I :::; 2 so Wi = Wj by the case r = 2. The converse is clear. D 

For a1, ... , ar E /{*, define 

Xr(at, ... , ar) := {O" E Xr I ai = ai mod A(~)*T* for all i,j}, 

Vr( at, ... , ar) := { v E Vr I v( ai) :j v( ai) mod v(T*) for some i =f:. j}. 

3.2.8 Theorem ([12, Theorem 3.3]). A T -form cp = (a1, ... , ar) is T -isotropic 

iff 

(i) cp is O"-indefinite for all O" E Xr( a11 ••• , ar) and 

(ii) cp is Tv -isotropic for all v E Vr( a11 ••• , ar ). 

Proof. Suppose 0 = a1t1 + · · · + artr, where t11 ••• , tr E T and t1 =f:. 0. Clearly 'P is 

Tv-isotropic for all v E Vr. If cp is O"-definite for some O" E Xr then O"(a11i11aiti) E 

{0, 1} for each i so 0 = 'Ea11t11aiti E 1 + ~ ~ ~*, a contradiction. 

Conversely, suppose cp is T -anisotropic. Scaling by a11 we may assume a1 = 1. 

By ( 1.1.4), there exists a T -semi order with a1, . .. , ar E S. Let v be the valuation 
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associated with the valuation ring A(S). Clearly v E VT. Since Sv is a level1 order 

on the residue field kv of A(S), there is a unique signature (f on kv with P71 = Sv. 

Pull it back along v to get aT-signature 0' E SigTvK. Since 0' is compatible with 

A(S), A(~) ~ A(S) and A(P71 ) = A(~)/ I(S). But P7i = Sv is archimedean so 

kv = A( P71) and therefore, A(~) = A( S). 

Suppose 0' E XT(1, a2 , ••• , ar)· Then, for all i = 1, ... , r, ai = uiti for some 

ti E T*, Ui E A(S)* n s and therefore, O'(ai) = O'(ui) = a(ui) = 1. Thus, t.p is 

0'-definite. 

Assume now that 0' fl. XT(1, a2 , ••• , ar ). Then there exists i =J j such that 

v( ai) "¥ v( ai) mod v(T*) so v E VT(1, a2 , ••• , ar ). In particular, v( ai) fl. v(T*) for 

some i. By (1.3.11), there exists a valuation v' E VT(1, a 2 , ••• , ar) with (1+m')ai ~ S 

for all i, where m' is the maximal ideal of the valuation ring associated with v'. Then 

aiTv' ~ S for all i so DTv' ( t.p) ~ S and therefore, -1 ¢:. DTv' ( t.p ). It follows from 

(3.1.6) that t.p is Tv' -anisotropic. 0 

A preorder T' ~ K is said to be of finite index if [I<* : T*] < oo. If T' is of finite 

index and v E VT' then the exact sequence (1.3.5) shows the push-down T~ is also 

of finite index and [v(K*) : v(T*)] < oo. 

3.2.9 Proposition. Let v E VT and a1, ... , as E /{* such that v( ai) ¢ v( ai) mod 

v(T*) for all i =J j. Then there exists a preorder T' 2 Tv of finite index with 

v( ai) "¥ v( ai) mod v(T'*) for all i =J j. 

Proof. For each i =J j, there exists characters /i,j E X(v(K*)fv(T*)) such that 

{i,j(v(ai)) =J {i,j(v(aj)). Fix 0' E SigTvl{ and set O'i,j = 0' · (/i,j o v) E SigTv!{ 

by (3.2.2) and (3.2.3). Let T' = n{~. . I i < j} n ~- Clearly, Tv ~ T' 
l,J 

and since K* /T'* embeds in rri<j !{*I ~:.j X K* I~* which is finite, T' is of fi­

nite index. Suppose v(ai) = v(ai) mod v(T'*) for some i =J j. Let t E T', 

u E A~ such that ai = aitu. Then O'(ai)li,j(v(ai)) = O'i,j(ai) = O'i,j(aitu) = 
O'i,j( ai )O'i,j{ u) = 0'( ai )li,j ( v( ai) )0'( u) = 0'( ai){i,j( v( ai)) so {i,j ( v( ai)) = {i,j ( v( aj) ), 

a contradiction. 0 
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3.2.10 Theorem ([12,.Theorem 3.6]). AT-formr.p = (at, ... ,ar) isT-isotropic 

iff r.p is T'-isotropic for all preorders T' 2 T of finite index. 

Proof. Clearly if r.p is T-isotropic then r.p is T'-isotropic for every preorder T' 2 T. 

Suppose r.p is T -anisotropic. If r.p is a-definite for some a E XT( at, ... , ar) then, for 

all tt, ... , tr E T with t1 -:/= 0, Ea!1t!1aiti E 1 + ~ ~ ~* so r.p is ~-anisotropic and 

we are done. So assume r.p is a-indefinite for all a E XT( at, ... , ar ). By (3.2.8), r.p 

is Tv-anisotropic for some v E VT( at, ... , ar ). Let r.p1 , ... , 'Ps be the distinct non­

trivial residue class Tv-forms of r.p. We have s 2:: 2 so dim 'Pi < r for each i. By 

(3.2.6), each 'Pi is Tv-anisotropic. By induction on the dimension of r.p, there exists 

preorders Ti 2 Tv of finite index in the residue field k of v with 'Pi Ti-anisotropic. 

Set T = nTi. Then T is a preorder of finite index in k containing Tv and each 'Pi 

is T-anisotropic. For each aj E Sigy;k ~ SigTvk, choose a pull-back aj E SigTvK 

and set T" = n~.. Then T" is a preorder of finite index in K containing Tv and 
J 

T:; = T. Let it, ... , is E {1, ... , r} be such that v(aiJ + v(T*), ... , v(aiJ + v(T*) 

are all distinct. By (3.2.9), there exists a preorder T"' 2 Tv of finite index with 

v( ai1 ) + v(T"'*), ... , v( aiJ + v(T"'*) still all distinct. Let T' = T" n T"' which is 

clearly a preorder of finite index containing T. The residue class forms of the T'­

form r.p are still r.p1 , ••• ,r.p
8 

which are T~-anisotropic since T~ ~ T. By (3.2.6), r.p is 

T'-anisotropic. This completes the proof. D 

3.2.11 Theorem. Let r.p,p beT-forms. lfcp = p and dimr.p > dimp then r.p zs 

T -isotropic. 

Proof. We proceed by induction on dimr.p. By (3.1.2), the first case is where p = () 

and dimr.p = 2, say r.p = (a, b). Then cp = 0 so a( -a-1b) = 1 for all a E XT and 

therefore, -a-1b E T. This shows r.p is T-isotropic. Suppose the result holds for 

T-forms of dimension less than rand r.p = (a1 , •.. , ar)· We use (3.2.8) to show r.p is 

T -isotropic. 

For any a E XT( a1 , ... , ar), jcp( a) I = lfJ( a) I ~ dim p < dim r.p and therefore, r.p is 

a-indefinite. Suppose v E VT( at, ... , ar ). Let Ct, ... , Cs E f{* such that 'Pct, ···,'Pes 
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are the distinct non-empty residue class Tv-forms of 'P· We haves ~ 2 so dim~.pci < 

dim~.p for all i. By (3.2.5), cPci = Pci for all i. Since 

2: dim~.pci = dim~.p > dimp ~ 2: dimpci' 
i i 

dim~.pci > dimpci for some i. By induction, 'Pci is Tv-isotropic and therefore, by 

(3.2.6), 1.p is Tv-isotropic. Thus, 1.p satisfies both (i) and (ii) of (3.2.8) so 1.p is T­

isotropic. 0 

3.2.12 Corollary. If 1.p and pare T-isometric forms then DT('P) = DT(p). 

Proof. Let 'P = (a11 .•• , ar), p = (b1 , ..• , br)· Then 

--- ---p ffi ( -ar) = (a1, ... , ar-1) 

so by (3.2.11), p EB (-ar) is T-isotropic and therefore, there exists s1 , •.• , sn t E T,. 

not all zero, such that tar = ~sibi E DT(p). If t = 0 then p is T-isotropic so 

DT(P) = K by (3.1.6). In any case, arE DT(p). Similarily, ai E DT(P) for all i so 

DT('P) ~ DT(P) and reversing the roles of 1.p and p, we get DT(P) ~ DT(~.p). 0 

3.3 The space of signatures of certain preorders 

Throughout this section, we assume that T satisfies the equivalent conditions of 

Theorem 2.3.4. 

3.3.1 Lemma. Suppose K is a field, x E K. For any order P E Sper J{, either 

x E -P or 

for any integer m > 0. 

Proof. Let P E Sper K and consider the valuation ring A(P). If x E I(P) then for 

any integer k > 0, 1+x = (1- t)+t (1 + kx) E (1- t)+P so (1+x)n E (1-t)n+ 

P. Given m > 0, choose k such that 1-(1- t)n < ! . If x tt A(P) then 1 +x tt A(P) 

so (l:x)n E /(P) and therefore, (1 +x)n -1 = (1 +x)n (1- (l+~)n) E P. Finally, if 

x E A(P)* and x rl. -P then x E P and therefore, (1 + x )n E (1 + P)n ~ 1 + P. 0 
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3.3.2 Theorem. If at, ... ' ar EAT, r 2:: 2, and bE DT(at, ... 'ar) nAT then there 

exists t E T, s E T nAT and X E DT(a2, ... 'ar) nAT such that b(1 + t) =sal+ x. 

Proof. By (2.3.1(i) ), we can pass to the localization (1 + T)-1 A and therefore, 

assume AT = A* and A = T* - T*. Scaling by b-1
, we may assume b = 1. Scaling 

each ai by 1 + C:)n, we may assume ai E 2n + T for all i. 

Write 1 = s'a1 + y, where s' E T and y E DT(a2, ... , ar)· By (2.3.1(i)), there 

exists s, t E T* such that a1 +a2 =s-t. Then s = a1 +t+a2 = a1 +t(s'a1 +y)+a2 = 
(1 + ts')a1 + a2 + ty. Replacing a1 by (1 + ts')a1 andy by ty, we may assume 

for somes E T*, y E DT(a2, ... , ar)· (Note we still have a~ E 2n+T.) Let z := a2+Y· 

Using (2.3.4(ii)), pick a E A* such that for any P E SperTA, zn- 1 E P implies 

z/a E P. 

Claim. For each T -compatible prime p ~ A, 

If z E p then both forms are T(p )-isotropic so ( *) follows from (3.1.6). If y E P 

then, for all orders P E SperTA with p = supp P, zn E a~+ p ~ 2n + T + p ~ 1 + P 

so z /a E P and therefore, z fa E T ( p). Thus ( *) holds in this case as well. 

Assume z-:/= 0 andy-:/= 0. By (3.1.4(ii)), 

(a2, y) ~T(p) (z, az) and (1, -al) ~T(p) (s, -al) f"./T(p) (z, f3z) 

for some a, f3 E F(p)*. Let a E Xr(p) and suppose a(a2 ) + a(y) -:/= 0. By (3.3.1), 

(1+#; )n E 2~ +~. Then zn = £i2(1+#; )n E 1+~ so zja E ~and therefore, a(z) = 
a(a). If a(a2 ) + a(y) = 0 then a( a) = -1 so o-(z) + a(a)o-(z) = o-(a) + o-(a)o-(a). 

Thus, 

(a2, y) ~T(p) (z, az) f'./T(p) (a, aa). 

Similarily one shows 

(1, -a1) ~T(p) (z, f3z) ~T(p) (a, f3a) 
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which proves the claim. 

Since 1 + T ~ A*' it follows from (3.1.5) that a E DT(1, -al) n DT(a2, ... 'ar)· 

Let s', t' E T such that a = s' - t' a1. Write l-a, = u - v where u, v E T*. Then 
a 

ua = 1 - a1 + va = 1 - a1 + v ( s' - t' al) = ( 1 + v s') - ( 1 + vt') a1 so 1 = sa1 + x 

where s = it~!: E T* and X= l+:s,a E DT(a2, ... 'ar) n A*. 0 

3.3.3 Theorem. For any b E DT( <p EB 1/J) nAT' there exists t E T' X E DT( <p) nAT 

andy E DT(1/J) nAT such that b(1 + t) = x + y. 

Proof. Let <p =(at, ... , ar)· By (3.3.2), we can write b(1+t') = s'a1 +c where t' E T, 

s' E TnAT and c EDT( (a2, ••• , ar) EB1/J)nAT· If r = 1 we are done so assume r ~ 2. 

By induction, there exists t" E T, u E DT(a2 ••• ,ar), y' E DT(1fJ) nAT such that 

c(1 + t") = u + y'. Then b(1 + t')(1 + t") = s'(1 + t")al + u + y' E DT( <p EB (y')) nAT. 

Applying (3.3.2) again, we get t E T, s E T n AT and x E DT( <p) n AT such that 

b(1 + t) =X+ sy' so take y = ty' E DT(1fJ) nAT. D 

3.3.4 Theorem. Let a1, ... , ar, b1 E AT. The following are equivalent: 

(i) b1(1 + t) E DT(at, ... ,ar) for some t E T. 

(ii) There exists b2, ... , br EAT such that (at, ... , ar) ~T (b1, ... , br). 

Proof. Suppose (i) holds. If r = 1 this is clear so assume r ~ 2. By (3.3.2), there 

exists s E T nAT, t' E T, X E DT(a2, ... 'ar) nAT such that bl(1 + t') = sal+ X. 

By induction, there exists b3, ... , br E AT such that (a2, ... , ar) ~T (x, b3, ... , br)· 

By (3.1.4), (a1, x) ~T (bt, b2 ) where b2 := (sat)nx + (sa1 )xn and therefore, 

The converse follows from (3.2.12) and (3.1.5). D 

3.3.5 Corollary. A T -form <p 

T -form p with dim p < dim <p. 

( a1, ... , ar) is T -isotropic iff rj; p for some 
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Proof. Suppose c.p is T-isotropic. By (3.1.6), -a1(1 +t') E DT(c.p) for some t' E T. 

Let Si E T be such that -a1(1 + t') = :Esiai so -a1(1 + t) E DT(a2, ... , ar) for 

some t E T. By (3.3.4), there exists a form p of dimension r - 2 such that c.p rvT 

(at, -at) EB p rvT (1, -1) EB p and hence, cp = p. 

Conversely, if cp = p and dimp < dimc.p then, by (3.1.2), c.p :::.T p EB m x (1, -1) 

for some integer m > 0. Then, by (3.2.12), ±1 E DT(p)(ap(c.p)) for all T-compatible 

primes p ~ A and therefore, c.p is T-isotropic by (3.1.6). 0 

Putting it all together, we have proved the following generalization of [36, Corol­

lary 2.3] (terminology as in [37].) 

3.3.6 Theorem. For every preorder T ~ A satisfying the equivalent conditions of 

Theorem 2.3.4, the pair (XT, GT) is a space of signatures. 

Proof. We need only check S0-S4 as given in [37]. S0 : If o- E XT then o-m E XT 

for all odd integers m. This is (2.1.7). S1 : XT is closed in Hom(GT, f!). This is 

(2.3.7(ii)) together with (2.2.5). S2 : o-(-1) = -1 for all o- EXT. S3: If o-(a) = 1 

for all o- E XT then [a] = 1 in GT. These are clear. S4: If a E DT( c.p EB 'l/J) nAT 

then there exists bE DT( c.p) nAT, c E DT( 'ljJ) nAT such that a E DT( b, c). This is 

(3.3.3) together with (3.3.4). 0 

As a consequence of (3.3.3), we have the following description of the image of 

XT in the character group Hom(GT, n). 

3.3. 7 Theorem. For o- E Hom( GT' n)' the following are equivalent: 

(i) o- E XT. 

(ii) o-([-1]) = -1 and for every a, b, c E AT with a = b + c, o-([b]) = 1 = o-([c]) 

implies o-([a]) = 1. 

Proof. Suppose o- E Hom( GT, n) satisfies (ii). Let TO" be the smallest preorder in 

A containing T and the set {a E AT I o-([a]) = 1}. Suppose a E Tun AT. We 

show o-([a]) = 1. Write a = t 1a1 + · · · + trar where r 2: 1, ti E T and ai E AT 
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such that a-([ai]) = 1. Then a E Dr(a1 , ••. , ar) n Ar. If r = 1 then t1 E T n Ar 

so a-([a]) = a-([a1]) = 1. Suppose r > 1. By (3.3.3) and induction on r, a = b + c 

where b, c E Ar and a-([b]) = a-((c]) = 1 and hence, a-([a]) = 1. Thus, Tq n Ar = 
{a E Ar I a-([a]) = 1} so Gru "' Gr / ker a- which is cyclic. (Note Tq is proper since 

a-( -1) = -1.) By (2.3.8), there exists aT-compatible prime p such that Aru =A '-P 

and Gru "'F(p)* /Tu(P)*. Since Gruis cyclic, Tu(P) is an order in F(p). Thus, the 

character 7Y on F(p)* induced by a- is a T(p)-signature and a-= uoap in Hom(Gr, n). 

The converse is clear. D 

We also get the usual inductive description of isometry and therefore, the usual 

description of the Witt ring Wr(A) as a quotient of the integral group ring Z[Gr]. 

3.3.8 Proposition. 

(i) (a) ~T (b) iff [a]= [b] in GT. 

(ii) (a, b) "'r (c, d) iff there exists s, t E T n Ar such that [c] = [sa+ tb] and 

[d] = [sa(tb)n + (sa)ntb] in Gr. 

(iii) (at, ... , ar) "'r (bt, ... , br) where r ~ 3 iff there exists a, b, c3, ... , Cr E Ar 

such that (a1,a) ~T (bt,b), (a2, ... ,ar) ~T (a,c3, ... ,cr) and (b2, ... ,br) "'r 

( b, c3, ... , Cr). 

3.3.9 Corollary. The kernel of the natural ring epimorphism Z[Gr] --""* Wr(A) is 

additively generated by [1] + [ -1] and all the elements of the form 

[a]+ [b]- [a+ b] - [abn + anb] 

where a, b,a +bEAr. 

Let Y be a non-empty subset of Xr. Set 

~:={[a] E Gr I a-(a) = 1 for all a- E Y} 

and 

~.L := {x E Hom(Gr,n) I x(~) = 1}. 
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Clearly, y ~ XT n ~.L. If y = XT n ~.L, we say y is a subspace of XT. We show 

the subspaces of XT are precisely the subsets XT' where T' is a proper preorder 

containing T. Note this implicitly requires the natural homomorphism GT ---+ GT' 

to be surjective so our hypothesis that T satisfies (2.3.4(i)) is not particularily 

restrictive. 

3.3.10 Proposition. Every subspace Y ~ XT is of the form XT' for some proper 

preorder T' 2 T. Conversely, for any proper preorder T' 2 T, XT' is a subspace of 

XT. 

Proof. Suppose T' is a proper preorder containing T. By (2.3.7(i)), a(T'nAT) = 1 

iff T' ~~for any a EXT. Thus, 

~ = T'n AT 
TnAT 

for y = XT' and therefore, XT n ~.L ={a EXT IT'~~}= XT'· 

Conversely, for a subspace y ~ XT, define T' := n{~ I a E Y}. Then ~ = 

T'nAT/Tn AT soY= XT n~.L ={a EXT IT'~~}= XT'· o 

We say a locally constant function f : XT ---+ C is represented by a form overT if 

there exists aT-form 'P such that f = r.p on XT. The following theorem characterizes 

WT(A) as a subring of C(XT, C). It is a straightforward generalization of [38, 

Theorem 4.4]. 

3.3.11 Theorem. Suppose f : XT ---+ C is locally constant. Then f is represented 

by a form over T iff 

( *) for each T -compatible prime p ~ A, f o a; : XT(P) ---+ C is represented by a 

form !.pp over T(p) and dim 'PP = dim~.pq mod 2 for all T -compatible primes p, q in 

A. 

Proof. Suppose f : XT ---+ C is a locally constant function satisfying ( *) and f is not 

represented by a form overT. Consider the family of subspaces Y ~ XT such that 
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f is not represented by a form on Y. Let {Yi} be a family of such subspaces linearly 

ordered by inclusion. Then Y = ()}i is a subspace of XT. Suppose f = cp on Y for 
l 

some T-form cp. By the continuity off- cp, there exists an open set U 2 Y such 

that f- <P = 0 on U. Since the Yi are closed in XT and XT is compact, U 2 }j for 

some j. But this means f = cp on }j, a contradiction. Thus, f is not represented 

by a form on Y either. By Zorn's Lemma, there exists some subspace Y ~ XT 

minimal with respect to the property that f is not represented on Y. By (3.3.10), 

Y = X T' for some proper preorder T' 2 T. Replacing T by T', we may assume f 
is not represented by a form over T but f is represented by a form on every proper 

subspace of XT. (Since XT = X:r, we may assume T = T.) 

It follows from (2.3.8) that T is not complete, that is, the 2-primary part of 

GT is not cyclic. Therefore, GT has at least two elements of order 2 (see the claim 

in the proof of (1.5.5).) Let a E AT such that [a] 2 = [1] but [a] =f [±1]. Then 

a2 E T but as tf. T U -T for all s E T nAT. It follows that T +aT, T-aT are 

both proper preorders properly containing T so f is represented by a form 'l/J1 on 

XT+aT ={a EXT I a(a) = 1} and byaform'lj;2onXT-aT ={a EXT I a(a) = -1}. 

On XT, we have f. (1 +a) = ~1 • (1 +a) and f. (1 -a) = ~2. (1 -a) so 2f is 

represented by the form p := 'lj;1 0 (1, a) EB 'lj;2 0 (1, -a) overT. --- ---Let p ~A beaT-compatible prime. Since f o a; = cpp on XT(p), ap(p) = 2 x 'Pp 

on XT(p)· By (3.3.5), we may assume <pp is T(p)-anisotropic by replacing it, if 

necessary, by a lower dimensional form. Thus, there exists an integer mp ~ 0 such 

that 

ap(p) ~T(p) 2 x <pp EB mp x (1, -1). 

By ( *), mp = mq mod 2 for all T -compatible primes p, q. If mp is odd then ap ( p) 

is T(p)-isotropic for all T-compatible primes p so by (3.1.6), pis T-isotropic. By 

(3.3.5), we may replace p by a lower dimensional T-anisotropic form and hence, 

assume mp is even for all T-compatible primes p. Therefore, there exists sp ~ 0 

such that 

ap(p) ~T(p) 2 x (cpp EB sp x (1, -1)) . 
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Suppose b1 E Dr(P) n Ar. By (3.3.4), 

for some T-form p'. Let p beaT-compatible prime. Then 

ap(p) f'.JT(p) 2 X (<ppEfJSp X (1,-1)) f'.JT(p) (ap(bt), ... ) EB (ap(bt), ... ). 

Therefore, ap(b1) E DT(p)(ap(p')) for every T-compatible prime p. By (3.1.5), b1(1 + 
t) E DT(p') for some t E T and hence, 

for some T-form p". Thus, 2(f- b1 ) is represented by p" on XT. Repeating this 

argument, we eventually obtain b1, ... , br EAT such that 2(f- (b1 + · · · + br)) = 0 

on XT and therefore, f is represented by the form (b~, ... , br) overT, a contradic­

tion. D 

3.3.12 Remark. To determine whether the function f o a; : XT(p) -+ C is repre­

sented over T(p), one can use the valuation-theoretic criteria in [11] or [12]. 
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Chapter 4 

The Higher Level Real Spectrum 

As already seen in chapter 1, the theory of higher level orders on a commutative 

ring A is remarkably similar to Coste and Roy's theory of the real spectrum in 

[20]. In this chapter, we continue the process of generalizing this theory to higher 

level by appropriately defining the Tychonoff, Harrison and Zariski topologies for 

SperrA. We then consider the constructible (Tychonoff clopen) sets in SperrA. 

Justifying the term "constructible", we show that there is indeed a sub-base for the 

Harrison topology for which the constructible sets are precisely the sets obtained 

from this sub-base using a finite number of Boolean operations. In the last section, 

we generalize the characterizations of basic sets given in [16] and (35] for level1 to 

arbitrary 2-primary level. 

The question of whether Brocker's theory of the complexity of constructible 

sets in the level 1 real spectrum can be successfully generalized to higher level 

remains open. Some preliminary results have been obtained jointly with Marshall 

that suggest this may be possible. Whether this will have any application to real 

algebraic geometry remains to be seen. 

4.1 Topologies on SperTA 

Let A be a commutative ring, T ~ A a proper preorder. SperrA is naturally 

identified with a subset of the product space { 0, 1 }A by the map that sends an 

order P to its characteristic function. The induced subspace topology is called the 
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Tychonoff topology on SperrA. The sets of the form 

Wr(a) := {P E SperrA I a E P} , a E A 

together with their complements Wr(a) form a sub-base for this topology. 

4.1.1 Theorem. The map SigrA--"'* SperrA given by o- ~---+- P,_, is closed. SperrA 

with the Tychonoff topology is compact, Hausdorff and totally disconnected. 

Proof. Immediate from (2.2.1 ). 0 

We consider a second topology on SperrA: the Harrison topology. It is defined 

by taking as a sub-base the sets Wr( a) together with the sets 

'Ur(a) := {P E SperrA I a E P 'suppP}, a EA. 

Since Ur( a) = Wr( a) nwr( -a), the Harrison topology is coarser than the Tychonoff 

topology so SperrA is also compact in the Harrison topology. Of course, if A is 

a field then the Harrison and the Tychonoff topologies coincide. Unless otherwise 

stated, the topology on Sper rA will be assumed to be the Harrison topology. 

For any subsetS~ SperrA, S denotes the closure of Sin the Harrison topology. 

4.1.2 Theorem. Let P, Q E SperrA. Then Q E {P} iff P -< Q. The closed 

points in SperrA are precisely the maximal orders. 

Proof. Suppose Q E {P}. If a E P then P rt 1Vr(a) so Q rt 1Vr(a). Thus, P ~ Q. 

If a E Q " supp Q then Q E 'Ur( a) so P E 'Ur( a) and hence, a E P. Therefore, 

P -< Q. The converse is clear. D 

4.1.3 Theorem. If S ~ SperrA is Tychonoff closed then 

S = {Q E SperrA I P-< Q for some PES}. 

Proof. Suppose Q E S. Since Sis compact, 

n Ur(a) n n 1VJ.(b) n S # 0. 
aEQ,suppQ bft.Q 
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Thus, there exists P E S such that P ~ Q and Q " supp Q ~ P, that is, P -< Q. 

The reverse inclusion is clear. D 

4.1.4 Proposition. For P, Q E SperTA, the following are equivalent: 

(i) P -1< Q and Q -1< P. 

(ii) There exists disjoint (sub-basic) open sets U, V in SperTA such that P E U 

and Q E V. 

Proof. (i) => (ii) Without loss of generality, assume P %. Q. Fix a E P " Q. If 

a tt supp P then P E 'UT( a) and Q E Wr( a) so assume P " Q ~ supp P. Since 

Q -/< P, Q %_ P. Pick b E Q '- P. If b tt supp Q then Q E 'UT(b) and P E Wr(b). 

Otherwise, Q E 'UT(an- bn) and P E Wr(an- bn). 

(ii) => (i) follows from ( 4.1.2). D 

4.1.5 Corollary. If C, D ~ SperTA are disjoint closed sets then there exists dis­

joint open sets U, V in Sper T A such that C ~ U and D ~ V. 

4.1.6 Theorem. SpermaxTA is compact and Hausdorff. The specialization map 

J-t: SperTA ~ SpermaxTA is a closed mapping. 

Proof. Suppose Po E SperTA, Q0 = J-t(P0 ). Let U0 be an open neighborhood of 

Q0 and set C = SperTA" U0 . Since Q0 is maximal, { Q0 } is closed. Therefore, 

by ( 4.1.5), there exists disjoint open sets U, V such that Qo E U and C ~ V. By 

( 4.1.2), we must have P0 E U and J-t(U) ~ U0 so J-t is continuous. SpermaxTA 

is Hausdorff by (4.1.4). It follows that SpermaxTA is compact and J-t is a closed 

mapping. D 

We also have the Zariski topology on Sper TA. For a E A, define 

ZT(a) := {P E SperTA I a E supp P}. 

The sets SperTA '- ZT(a) = 'UT(an), a E A, form a basis for this topology and closed 

sets have the form ZT(a) := {P E SperTA I a~ supp P}, where a is an ideal of A. 

73 



For S ~ Sper T A, the Zariski-closure of S is denoted by z-cl( S). Clearly, 

z-cl( S) = ZT ( n supp P) . 
PES 

4.1. 7 Theorem. If S ~ SperTA is Tychonoff closed then any minimal prime p 

lying over the ideal n{ supp P I P E S} is of the form p = supp P for some P E S. 

Thus, 

z-cl(S) = { Q E SperTA I supp Q 2 supp P for some PES}. 

Proof. Let p be a minimal prime lying over a := n supp P. If a E A" p then 
PES 

a 1:. a so s n 11T( an) f:. 0. By compactness, 

Any P in this intersection satisfies a ~ supp P ~ p so p = supp P by the minimality 

of p. D 

4.2 Constructible sets 

Let A be a commutative ring, T ~A a proper preorder. A subset S ~ SperTA 

is called constructible if it is clop en (closed and open) in the Tychonoff topology. 

For all a, a11 ... , ar E A and all positive integers m, m1 , ..• , mn define 

and 

11T( a; m) := 11T( am) n n 1Vr( ad) 
dim 

d=f.m 

These sets form a basis for the Harrison topology on Sper T A and are called basic 

open sets. Similarily, we define 

and 

1VT( a; m) := 1VT( am) n n SperTA" 11T( ad) = 11T( a; m) u ZT( a) 
dim 

d=f.m 
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for a, at, ... , ar E A, m, m1, ... , mr positive integers. These sets are called basic 

closed sets. A set S ~ Sper TA is said to be basic if 

where at, ... , ar, bb ... , bs E A and m1 , ... , mr, n11 •.• , n8 are positive integers. The 

basic sets form a basis for the Tychonoff topology on Sper TA. 

4.2.1 Remarks. 

(i) Note that for any a E A, m > 0, 11T(a; m) is the set of orders P E SperTA 

such that a rf. p and aP(p)* has order min F(p)* / P(p)* where p = supp P. 

For even m 

11T(a; m) = 11T( -aT; 1) 

so we may always assume m is an odd integer. 

(ii) If T is a 2-primary preorder then llT( a; m) = 0 for all odd m > 1. Thus, in 

the 2-primary case we may always take m = 1. 

4.2.2 Theorem. 

(i) Any open constructible set is a finite union of basic open sets. 

(ii) Any closed constructible set is a finite union of basic closed sets. 

(iii) Any constructible set is a finite union of sets of the form 

where a~, ... , ar, b E A and m~, ... , mr are positive integers. 

Proof. (i) follows from the compactness of constructible sets. For (ii), note that 

SperTA" 11T(a; m) = U WT(a; d) 
din 

d-:f:m 

for any a E A and integer m > 0. Since 

(iii) is clear from the compactness of constructible sets. D 
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4.3 Hormander-Lojasiewicz Inequality and characterizing 

basic sets 

Let A be a commutative ring, T ~A a proper 2-primary preorder. By (4.2.l(ii)), 

the sets of the form 

are the basic open sets in Sper T A and the sets of the form 

are the basic closed sets in SperTA. Note that any basic set llT(ai, ... , ar) n 
WT(bb ... , bs) can be expressed as 

If a1, ... , ar E A denote by T[a1, ... , ar] the smallest preorder in A containing 

T and a1, ... , ar. Then WT( a1, ... , ar) = SpeTT[a1 , ••• ,ar]A so any closed constructible 

set in SperTA is a finite union of sets of the form SperT'A where T' is a preorder 

lying over T. 

We extend the characterizations of basic sets given in [16] and [35] to 2-primary 

preorders. Just as for level 1, we use an abstract version of the Hormander­

Lojasiewicz Inequality for semi-algebraic functions [15, Corollaire 2.6. 7]. (See also 

[1], [16], [35].) 

4.3.1 Theorem. SupposeS~ SperTA is a closed constructible set, J,g E A such 

that S n ZT(g) ~ ZT(f). Then there exists a E T, m 2: 0 such that for all P E S, 

Proof. Write S = Sper T1 AU· · · U Sper Tr A where T1 , •.. , Tr are preorders lying over 

T. Applying the Nullstellensatz to the preorder Ti ~ Af(gn) induced by Ti, we 

have - jmi E Ti for some mi 2: 0. Multiplying by suitable powers of J, we may 

assume m := m 1 = · · · = mr. Then for each i, there exists Si E Ti, ai E A such that 

f nm n - = Si- aig . 
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By (1.1.3), there exists s, t, Pi, qi E Te such that f = s- t and ai =Pi- qi for each 

i. Let a'= t'Epi E Te. Then 

a'gn + fnm+1 = t (LPi9n- fnm) + fnm(t +f) 

= t [(LPi - ai)9n + aign- fnm] + sfnm 

= t [ (f1.Pi + q}n + s;] + srm 

which is an element ofT{ for each i. Let c > 0 be an integer such that a := ca' E T. 

Then agn + fnm+ 1 = (c- l)a'gn + a'gn + fnm+1 E T{ for each i. For any P E S, 

T{ ~ pe = P for some i and therefore, agn + fnm+ 1 E P. D 

4.3.2 Proposition. Suppose S ~ SperrA is a closed constructible set) f, g E A 

such that S n Zr(g) ~ Wr(f). Then there exists f 1 E A such that S ~ Wr(f1) and 

Wr(f) n Zr(g) = Wr(f1) n Zr(g). 

Proof. Let S' = S " 1lr(f). Then S' is a closed constructible set such that S' n 

ZT(g) ~ ZT(f). By (4.3.1), there exists a E T, m 2::0 such that f1 := agn+ fnm+l E 

P for all P E S'. Clearly if P E 11T(f) then f 1 E P so S ~ "vVT(fi). The remaining 

statement is clear. D 

If p is a prime ideal of A we identify Sperr(p)F(p) with the set of orders in 

SperrA with support p. For any set S ~ SperrA we define 

S(p) := s n Sper T(p)F(p). 

4.3.3 Proposition. Suppose S ~ Sper rA is a closed constructible set) p ~ A is a 

prime ideal and f E A such that S(p) ~ "vVT(f). Then there exists f1 E A such that 

s ~ Wr(fl) and WT(f) n SperT(p)F(p) = WT(fl) n SperT(p)F(p). 

Proof. Note that 

S(p) = S n SperT(p)F(p) = S n n Zr(g) n n 11T(hn). 
gEp hft_p 
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Since S(p) ~ "vVT(f), by compactness, there exists g E p, h tt p such that S n 

ZT(g) n 11T(hn) ~ WT(f). Replacing f by fhn we may assume h = 1. Now apply 

(4.3.2). D 

4.3.4 Theorem. For any constructible set S ~ SperTA, the following are equiva­

lent: 

(i) S is basic closed in SperTA. 

(ii) S is basic and closed in SperTA. 

(iii) S is closed in SperTA and S(p) is basic in SperT(p)F(p) for each prime 

p ~A. 

Proof. (i) :::} (ii) :::} (iii) is trivial. 

(iii) :::} (i) Suppose P E SperTA, P tt S. Let p = supp P. By (iii), there exists 

f E A such that S(p) ~ "vVT(f) and f tt P. By (4.3.3), there exists / 1 E A with 

S ~ WT(f1) and / 1 tf. P. Thus S = n"vVT(f) where f runs through all elements 

f E A such that S ~ "vVT(f). By compactness, there exists / 1 , ••• , fr E A such that 

S=WT(fb ... ,fr)· D 

4.3.5 Theorem. For any constructible set S ~ SperTA, the following are equiva­

lent: 

(i) S is basic in SperTA. 

(ii) S n z-cl(S" S) = 0 and S(p) is basic in SperT(p)F(p) for each prime p ~A. 

Proof. (i):::} (ii) WriteS= 11T(an)nwT(cb ... , ck)· If PES" S then P tf. 11T(an). 

Thus, s,s ~ ZT(a) so Snz-cl(S,s) ~ snz.T(a) and snz.T(a) = 0. The remaining 

assertion is clear. 

(ii) :::} (i) Set a = 0 suppP. Then z-cl(S" S) = Z.T(a) = n Z.T(a). By 
Pes,s aEa 

compactness, there exists a1, ... , an E a such that 0Z.T( ai) n S = Snz-cl(S "- S) = 0. 
t 

Set a= ~ai. Then Z.T(a) n S = 0. 

Consider the preorder T[l/an] ~ A[l/a] induced by T. We have S ~ llT(an) 

so we can identify S with a closed set in SperT[1;anJA(l/a]. By (4.3.4), there exists 
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c~, ... , c~ E A(lla] such that Sis identified with WT[l/an](c~, ... , c~). After clearing 

denominators, we gets= llT(an) n WT(cb ... 'Ck) for some Cl, ... 'Ck EA. 0 

4.3.6 Theorem. For any constructible set S ~ SperTA, the following are equiva­

lent: 

(i) S is basic open in SperTA. 

(ii) S is basic and open in SperTA. 

(iii) S is open in SperTA, S n z-cl(S" S) = 0 and S(p) is basic in SperT(p)F(p) 

for each prime p ~ A. 

Proof. (i) => (ii) is clear and (ii) {::} (iii) follows from ( 4.3.5). 

(ii) => (i) By compactness, it suffices to show for each P E SperTA " S, there 

exists a E A such that S ~ llT( a) and P ft llT( a). Since S is basic, we can write 

s = llT(bn) n '\VT(cb ... 'ck) for some b, Cl, .• 0 'Ck E A. If p tt llT(bn), take a= bn 

so assume P E llT( bn). 

Consider the localization A[1lb] and the preorder T[1lbn] ~ A[1lb]. S = 

WT[l/bn] ( c1, ... , Ck) is a clopen set in Sper T[l/bn] A[1 I b] and P E Sper T[l/bn] A[1 I b] ""- S 

since SperT[l/bn]A[1Ib] = llT(bn). Let Q E SperT[l/bn]A[1Ib] be the unique maximal 

order specializing P. Since SperT[l/bnJA[1Ib] " S is closed, Q ft S. Then Ci ft Q 

for some i. Since Q is 2-primary, -ci E Q "supp Q for some m ~ 1. By the 

Positivstellensatz, there exists s, t E Q such that 

-cr ( 1 + s) = 1 + t . 

Let a':= 1 + 2c£(1 + s)n =- [2(1 + s)n-1(1 + t)- 1]. Clearly S ~ llT[l/bnJ(a') and 

Q E llT[l/bn]( -a'). Since P -( Q, P E llT[l/bnJ( -a'). Let a E A, k ~ 0 such that 

a'= albnk. Then S ~ llT(a) and P E llT( -a). 0 
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