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ABSTRACT 

 

Trellis-coded Modulation (TCM) is used in bandlimited communication 

systems. TCM efficiency improves coding gain by combining modulation and forward 

error correction coding in one process. In TCM, the bandwidth expansion is not 

required because it uses the same symbol rate and power spectrum; the differences are 

the introduction of a redundancy bit and the use of a constellation with double points.  

 

  In this thesis, a novel TCM encoder/decoder ASIC chip implementation is 

presented. This ASIC codec not only increases decoding speed but also reduces 

hardware complexity. The algorithm and technique are presented for a 16-state 

convolutional code which is used in standard 256-QAM wireless systems. In the 

decoder, a Hamming distance is used as a cost function to determine output in the 

maximum likelihood Viterbi decoder. Using the relationship between the delay states 

and the path state in the Trellis tree of the code, a pre-calculated Hamming distances are 

stored in a look-up table. In addition, an output look-up-table is generated to determine 

the decoder output. This table is established by the two relative delay states in the code. 

The thesis provides details of the algorithm and the structure of TCM codec chip. 

Besides using parallel processing, the ASIC implementation also uses pipelining to 

further increase decoding speed.  
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 The codec was implemented in ASIC using standard 0.18µm CMOS 

technology; the ASIC core occupied a silicon area of 1.1mm2. All register transfer level 

code of the codec was simulated and synthesized. The chip layout was generated and 

the final chip was fabricated by Taiwan Semiconductor Manufacturing Company 

through the Canadian Microelectronics Corporation. The functional testing of the 

fabricated codec was performed partially successful; the timing testing has not been 

fully accomplished because the chip was not always stable. 
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CHAPTER 1 

INTRODUCTION 

 

This chapter introduces the history of coding theory and why Trellis-Coded 

Modulation is chosen to be the research topic and implemented into an Application 

Specific Integrated Circuit (ASIC). This chapter also presents the main research 

methodology, research achievement and the thesis outline. 

 

1.1 Classic Coding 

In 1948, Claude E. Shannon established the mathematical foundation for 

information transmission. Shannon demonstrated that the effect of transmitted power, 

bandwidth, and additive noise can be associated with a channel and incorporated into 

the channel capacity. In the case of additive white Gaussian noise interference with 

power spectral density N0, an ideal band-limited channel of bandwidth W has a capacity 

C bits/s given by 

)1(log
0

2 WN
PWC +=                    (1.1) 

where P is the average transmitted power.  

The significant meaning of the channel capacity is that if the information rate R 

from the source is less than C, (R<C), then it is theoretically possible to achieve reliable 
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(i.e., error-free) transmission through the channel by appropriate coding. On the other 

hand, if R>C, reliable transmission is not possible regardless of the amount of signal 

processing performed at the transmitter and receiver. 

The information theory shows that for optimal communications, system design 

should have long sequences of signals, with maximum separation among them at the 

transmitter. At the receiver, the performing decision should be made over such long 

signal sequence rather than individual bit. If the process is performed properly then the 

message error probability, eP , will decrease exponentially with sequence length n. The 

condition is that the rate R is less than R0, which in turn is less than the channel capacity 

as stated in the information theory. The message error probability can be expressed as: 

 nRR
eP )( 02 −−<           (1.2) 

where R0 is a quantity that carries dimensions of bits per channel symbol [1]. In order to 

increase the sequence length n, error-correcting coding (ECC) is introduced. Error-

correcting coding method introduces redundant bits into each symbol, which directly 

increase the codeword length n and decrease error probability. 

In conventional ECC coding, the coding process is independent from the 

modulation process. Coding occurs at the digital symbol 0�s and 1�s before modulation 

and generally involves adding redundant bits into an input sequence. The resultant 

redundancy requires extra transmission bandwidth. At the receiver, the inversion 

process of coding is the decoding, which occurs after the signal demodulation. Since a 

digital bit (or symbol) stream that comes into the decoder is either in error or not, 

corresponding with detection method, decoding divides into hard decoding and soft 

decoding. The hard decoding operation is based on hard decisions of the digital signal, 
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which is 0 or 1. The soft decoding is based on soft decision of the analog received 

samples, which could be any quantized value between the lowest and the highest 

voltage instead of only 0 and 1. The theoretical loss due to hard versus soft decoding 

leads to a reduction of 2dB in performance. 

Trellis-coded modulation is different from conventional coding; it treats coding 

and modulation together. The coding process involves handling the mapping a 

codeword into a modulation scheme.  

 

1.2 Trellis-Coded Modulation 

In a power-limited environment, the desired system performance should be 

achieved with the smallest possible transmitted power. The use of error-correcting 

codes can increase power efficiency by adding extra bits to the transmitted symbol 

sequence. This procedure requires the modulator to operate at a higher data rate, which 

requires a wider bandwidth. In a bandwidth-limited environment, the use of higher-

order modulation schemes can increase efficiency in frequency utilization. In this case, 

a large signal power would be required to maintain the same system bit-error-rate 

(BER). In order to achieve improved reliability of a digital transmission system without 

increasing transmitted power or required bandwidth, both coding and modulation are 

considered in TCM technology; therefore, TCM is a scheme combining error-correcting 

coding with modulation.  

TCM is used for data communication with the purpose of gaining noise 

immunity over uncoded transmission without changing the data rate. The use of TCM 

also improves system reliability without increasing transmitting power and required 
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channel bandwidth. Quadrature Amplitude modulation (QAM) and Quaternary Phase 

Shift Keying (QPSK) are used in TCM to increase data transmission rate. Since channel 

bandwidth is a function of the signal-to-noise ratio (SNR), larger signal power would be 

necessary to maintain the same signal separation and the same error probability if more 

signals are required to be transmitted without enlarging channel bandwidth. It seems 

that the Trellis code statement violates the basic power, bandwidth and error probability 

trade-off principle. Actually this is not true; the reason for this will be explained below 

and as well as in the next chapter. 

Trellis coding introduces dependency between every successive transmitting 

data symbol. The optimum 2-dimensional modulation utilizes the dependency between 

in-phase and quadrature symbols and the 4-dimensional modulation employs the 

dependency between symbols of two successive time intervals. Trellis codes and multi-

dimensional modulation are designed to maximize the Euclidean distance between 

possible sequences of transmitted symbols. Euclidean distance is a straight-line distance 

between two points in signal constellation. In N dimensions, the Euclidean distance 

between two points p and q is: 

 ∑
=

−
N

i
ii qp

1

2)(         (1.3) 

where pi and qi are the coordinate of p and q in the dimension i. The minimum 

Euclidean distance (i.e., the distance between the closest possible sequences) of 

transmitted symbols in signal space determines the system performance as: 

  
22

min 2/~ σd
e eP −          (1.4) 

where eP  is message error probability, mind is the minimum Euclidean distance between 
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signal sequences and σ is the noise power. Equation (1.4) indicates that if mind  

increases, eP  will decrease. This is one of the reasons why TCM technique does not 

violate the basic trade-off principle between power, bandwidth, and error probability. 

Since Ungerboeck invented TCM in 1976 and had his papers published in the 

1980�s [2-4], numerous researches have been working on TCM applications in 

numerous areas: voice band modems, satellite communications, wireless 

communications trials, digital subscriber loop, HDTV (high definition 

television), broadcast channels, CATV (community antenna television) and DBS (direct 

broadcast satellite) in the 1980�s and 1990�s. Many innovations in TCM technology 

have been introduced, such as multidimensional TCM (1984-1985), rotationally 

invariant TCM with M-PSK (1988), TCM with built-in time diversity (1988-1990), 

TCM with Tomlinson Precoder (1990-1991), TCM with unequal error protection 

(1990), multilevel coding with TCM (1992-1993), and concatenated coding with TCM 

(1993-present).  

Even a number of researches focused on the Viterbi Algorithm to decode 

convolutional code ([5-10]) and on trellis coding with multi-dimensional modulation 

([11-15]), but only a few was developed in the implementation a TCM encoder/decoder 

on a single chip. This research focuses on the ASIC implementation of TCM 

encoder/decoder with 2-dimensional and 4-dimensional modulation mapping, and 

provides an intellectual property (IP) core to incorporate TCM in system-on-chip 

(SOC). The designed chip was fabricated by Taiwan Semiconductor Manufacturing 

Company (TSMC) through a grant from Canadian Microelectronics Corporation 

(CMC). In order to show the advantages of using CMOSP18 technology to implement 
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the ASIC TCM encoder/decoder chip, the ASIC hardware implementation results are 

compared with the Field Programmable Gate Array (FPGA) implementation from 

different aspects such as logic gates, chip area and speed. The followings introduce 

some background of the FPGA and ASIC. 

            

1.3 FPGA Design 

An FPGA is a programmable device. Programmable devices are a class of 

general purpose integrated circuits that can be configured in the field for a wide variety 

of applications. FPGAs were invented in the mid-1980s as devices that resemble ASICs 

but could be programmed after the chip was manufactured. A FPGA consists of a 

matrix of programmable logic cells with a grid of interconnecting lines and switches 

between them. I/O cells exist around the perimeter providing an interface between the 

interconnect lines and the chip external pins. Programming an FPGA consists of 

specifying the logic function of each cell and the switches in the interconnecting lines. 

FPGA devices allow rapid design prototyping. They provide some benefits of 

custom CMOS VLSI design, while avoiding the initial cost, fabrication time delay, and 

inherent risk of a conventional masked gate array. The devices are customized by 

loading configuration data into the internal logic gates and memory cells. The FPGA 

can either actively read its configuration data from external serial or byte-parallel 

PROM (i.e., master mode), or the configuration data can be written into the FPGA (i.e., 

slave and peripheral mode). They offer more dense logic and less tedious wiring work 

than discrete component designs and faster turnaround than sea-of-gates, standard cells, 

or full-custom design. 
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FPGA designs can be programmed using one of the various hardware 

description languages (HDL), such as Very high speed integrated circuit HDL (VHDL) 

and Verilog HDL, or directly programmed with logic circuit diagrams and graphical 

schematic component layout.  

 

1.4 ASIC Design 

ASIC design is a process of integrating a specific complicated application into a 

chip. A typical ASIC design process is generalized into three steps: HDL design 

capture, HDL design synthesis and design implementation. HDL design capture is 

completed with �pre-synthesis� simulations to verify that the register transfer level 

(RTL) abstraction fully provides the desired functionality. HDL design synthesis is 

completed with �post-synthesis� simulations to verify that the gate-level circuit 

provides the desired functionality and meets appropriate timing requirements. Design 

implementation is completed with the physical verification to implement the chip layout 

under the Design Rules Check (DRC) error free and ready for microelectronic circuit 

fabrication.  

ASIC generally runs faster than FPGA because of its specific place and route 

during the layout process. ASIC costs less than FPGA and DSP implementations under 

mass production; therefore it is widely used in industries. ASICs are not economical 

compared to FPGAs if they are used only for research purposes because ASIC 

implementations require extra time to develop and the chip can not be re-configured if 

the design requires further modifications; a new development process has to be started.  

An ASIC design can be implemented in different ways depending on the 
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hardware description languages (Verilog or VHDL), synthesis and/or layout tools to be 

used in the implementation process. Details on ASIC design implementation will be 

discussed in Chapter 4.  

 

1.5 Research Objectives, Contribution and Methodology 

The objective of this research is to design a high speed TCM encoder/decoder 

and to implement the codec into an ASIC. The results of ASIC implementation are then 

compared with FPGA implementation in terms of the operating frequency (i.e., system 

throughput or bit rate) and hardware requirement (i.e., chip cost).  

This thesis work focuses on the constructing of a 16-state TCM codec scheme 

based on DAVIC specification [16], and then implementing it on a single ASIC. The 

research is accomplished by creating a novel architecture of the TCM decoder and 

implementing a 16-state TCM codec chip into an ASIC including mapping the signal to 

both 2-dimensional and 4-dimensional constellations. In the TCM decoder part, the 

main difference from the traditional technique is the use of look-up tables (LUTs). 

These tables are used to simplify the cost function calculation in the Viterbi algorithm. 

The use of these LUTs not only reduces hardware complexity but also increases the 

decoding speed. Another difference from the traditional decoding technique is the 

efficient use of the shift registers to perform the tracing back process in the Viterbi 

algorithm. This technique avoids using a large amount of memory required to store 

error metrics for all of the paths. 

The ASIC consists of two parts: a TCM encoder and a TCM decoder. The TCM 

encoder starts from sampling digital source data, and ends at the mapping signal 
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generation. The TCM decoder begins with the sampling of the codeword, and finishes 

with the restoring of the original digital source data. The VLSI implementation of the 

TCM decoder includes three parts: the de-mapping process, the convolutional decoding 

and the differential decoding. The main and complicated part is the convolutional 

decoding process in which the Viterbi algorithm is used. High-speed operation and low 

complexity of the codec are achieved by creating of the two LUTs, simplifying the 

Viterbi algorithm for VLSI implementation, and adopting the parallel algorithm and the 

pipelining technology.  

RTL codes were written in VHDL. Simulation was run on the Cadence NC-Sim 

simulator to verify the functionality of the ASIC.  The RTL codes are then synthesized 

into a gate-level netlist using Synopsys synthesis tools.  The gate-level netlist was 

turned into layout for fabrication using various Cadence tools: Physical Design Planner 

(PDP or DP), Silicon Ensemble (SE), and Design Framework II (DFII). The final layout 

was streamed out to GDSII format file to be ready for fabrication. The ASIC was 

fabricated by TSMC and tested.  

 

1.6 Outline of the Thesis 

The rest of this thesis provides detail descriptions on the background, concept 

and implementation of the TCM codec. Chapter 2 introduces the background and key 

point of the TCM and illustrates the related algorithm and technology. Chapter 3 

provides details of the TCM codec structures, illustrates methodology and 

implementation process including the mapping for 2D and 4D constellations; creates the 

architecture for hardware implementation. Chapter 4 provides further description on the 
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hardware implementation, details of this ASIC design process and the structure of this 

TCM codec chip. Chapter 5 provides the results of the design TCM codec in three parts: 

(1) the MATLAB simulation on the TCM encoder/decoder algorithm, (2) the VHDL 

RTL codes compilation and simulation results on FPGA APEX® device, and (3) the 

ASIC implementation results including the chip layout. Chapter 6 provides conclusion 

and recommendation for future work.  
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CHAPTER 2 

TRELLIS-CODED MODULATION BACKGROUND 

 

This chapter introduces general error-correcting coding, fundamental and 

concepts of TCM, general encoder structure, mapping method, algorithm used in the 

TCM decoding, and the multi-dimensional TCM codec. 

   

2.1 Error-Correcting Coding 

Figure 2.1 shows a typical communication system incorporating with channel 

coding. In this system, digital data generated by a source encoder are coded through a 

channel encoder, and the coded information data is used to modulate a carrier for 

transmission over a communication channel. The channel always introduces 

attenuation, distortion, interference and noise, which affect the receiver�s ability to 

receive correct information. The demodulator recovers possible values of the 

transmitted symbols, and the channel decoder recovers the information data before 

sending to its destination.  
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Figure 2.1 Block diagram of a digital-coded system 

A widely used channel encoding method is error-correcting coding (ECC). In an 

ECC system, a digital information source sends a data sequence to an encoder; the 

encoder inserts redundant (or parity) bits, thereby outputting a longer sequence of the 

code bits. The sequence of the code bits is called a codeword. The codeword is then 

transmitted to a receiver, which has a suitable decoder to recover the original data 

sequence. 

Error-correcting coding is related to the method of delivering information from a 

source to a destination with minimum error. The research on ECC began in 1948 with 

the publication of a landmark paper by Claude E. Shannon [17]. Shannon�s work 

showed that any communication channel could be characterized by a capacity at which 

information could be reliably transmitted. At any rate of information transmission up to 

the channel capacity, it should be possible to transfer information at any desired level of 

error rates. Introducing redundancy into transmissions can provide error control. This 

means more symbols are included in the message than strictly needed just to convey the 

information, with the result that only certain patterns at the receiver correspond to valid 

transmissions. Once an adequate degree of error control has been introduced, the error 
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rates can be made as low as required by extending the length of the code, thus averaging 

the effects of noise over a longer period of time [18-19]. 

The research for error-correcting codes was primarily motivated by the problems 

arising in communications systems, in particular, systems having limitation in their 

transmitted powers. Error-correcting codes are an excellent means of reducing 

transmission power requirements because reliable communications can be achieved 

with the aid of codes even when the information is weakly received at its destination.  

There are two different types of codes used in error-correcting coding: the block 

codes and the convolutional codes. The primary point of both codes is to add redundant 

bits to achieve error correction objectives. These redundant bits are added into each 

symbol of information sequence formulating the codeword. They will be used in the 

decoder at the receiver to correctly restore the original information sequence under 

specific decoding algorithms. These redundant bits are also called parity-check bits; the 

bits provide the code with the capability of combating channel noise. 

The encoder for the block codes divides information sequences into information 

blocks of k-bit, represented by d = (d0, d1, …, dk-1) information sequence. The encoder 

transforms each k-bit information block d independently into a codeword, c = (c0, c1, … , 

cn-1). This transformation provides a coding rate R= k/n (R < 1). The code is called a (n, 

k) block code. Decoding algorithm of the block code is based on the method of 

constructing the codeword in the encoder.  

Figure 2.2 shows how a codeword is generated through a (6,3) block encoder. 

Each 6-bit output codeword is comprised of the original 3-bits message sequence and a 

3-bits parity sequence. 
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Figure 2.2 An illustration of a (6,3) block code  

The encoder for convolutional codes generates codeword for transmission 

utilizing a sequential finite-state machine driven by the information sequence, or an 

arbitrarily long sequence. The convolutional encoding process installs the properties of 

memory and redundancy into the codeword stream, as for block codes. Figure 2.3 

shows a generic description of a convolutional encoder. 
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x(1)
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Figure 2.3 An illustration of a convolutional code 

The k-bit information sequence as the input of the encoder is coded to the n-bit 

codeword through the m stage delay (represented by delay cell D). The coding rate is 

still R= k/n (R < 1). The code is called (n, k, m) convolutional code. Each of k parallel 

input lines can have different number of stage delay cells, which is smaller than or equal 

to m (m ≥ 0).  
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The most common method used in decoding the convolutional codes is the 

probabilistic method. The probabilistic decoding method includes sequential decoding 

(Fano algorithm or stack algorithm) and maximum-likelihood decoding (Viterbi 

algorithm). The sequential decoding uses a systematic procedure to search for a good 

estimation of the message sequence; however, such procedure requires a large memory 

and typically suffers from buffer overflow problems.  

Andrew Viterbi developed the Viterbi algorithm in 1967 [20]. Since then, it has 

become the standard algorithm to decode the convolutional codes. At each time interval, 

the Viterbi decoding algorithm compares the actual received codeword with the 

codeword that might have been generated for each possible memory-state transition. 

The algorithm chooses the most likely sequence within a specific time frame based on 

the metrics of similarity. The maximum-likelihood decoding requires less memory than 

the sequential decoding because unlikely sequences are dismissed early, leaving a 

relatively small number of candidate sequences that need to be stored. 

The addition of parity bits in the transmitted sequence eventually increases the 

transmission bandwidth requirement. In 1976, Ungerboeck invented Trellis-Coded 

Modulation technique to solve this problem.  

 

2.2 Trellis-Coded Modulation  

In communication systems, error-correcting coding (ECC) reduces power 

utilization (i.e., the ratio of the received energy per bit to the noise spectral density) by 

adding redundancy to the transmitted signal. The performance improvement of the ECC 

can be achieved by expanding the bandwidth of the transmitted signal to the code rate in 
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the power-limited region, which requires a high-order modulation scheme. For 

bandwidth-efficient multilevel amplitude and phase modulation such as PSK or QAM, 

without expanding the channel bandwidth required by ECC, increasing the number of 

signal phase or amplitude over the corresponding modulation constellation performs the 

same data throughput as uncoded modulation. However this increment requires an 

additional signal power to maintain the same level of system bit-error-rate [21-23]. In 

communications, Trellis-coded modulation is applied to solve the conflict of utility 

efficiency between transmission power and channel bandwidth.  

The TCM coding process utilizes signal mapping combining error-correcting 

coding with modulation. The mapping by the set partitioning technique provides a 

combination of digital signals used in the modulation. This technique increases the 

minimum Euclidean distance between the pairs of coded signals; hence the loss from 

the expansion of the signal set is easily overcome and a significant coding gain is 

achieved with ECC. This is the reason why TCM technique does not violate the basic 

trade-off principle between power, bandwidth, and error probability. Therefore, in a 

bandwidth-limited communication system, without bandwidth enlargement, the 

redundancy bits are introduced into the signal to achieve good performance of coding 

gain through the TCM codes. This gain can be as high as 5dB.  

The widely used ECC code in the TCM encoder is the convolutional code. As 

mentioned in Section 2.1, the Viterbi decoding algorithm is the standard method to 

decode convolutional codes, and commonly used in communication systems. In this 

TCM codec implementation, the TCM decoder design chooses the Viterbi algorithm as 

its decoding algorithm. 
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The following subsections describe details of the TCM, such as fundamentals 

and concepts, standard encoder structures, mapping by set partitioning method and the 

Viterbi algorithm. 

 

2.2.1 Fundamentals and Concept of TCM    

Assume there is a model for the transmission of data with discrete-time, 

continuous-amplitude over the additive white Gaussian noise (AWGN) channel [24]. In 

this communication model, messages to be delivered to the user are represented by 

points, or vectors, in an N-dimensional Euclidean space RN, called a signal space. When 

a vector ],...,,[ 21 ixxxx =  is transmitted, the received signal can be represented by the 

vector Z as: 

 vxZ +=           (2.1) 

where ν is a noise vector [ ivvv ,...,, 21 ] whose components ivvv ,...,, 21  are independent 

Gaussian random variables with zero mean and the same variance N0/2. N0 is noise 

power spectral density.  The vector x  is chosen from a set, the signal constellation Ω′, 

which consists the number of M′ signal vectors. The average square length is referred to 

as the average signal energy and represented by: 

         21 ∑
Ω′∈′

=′
x

x
M

E          (2.2) 

If a sequence {xi} of K signals, i = 0, 1, �, K-1 is transmitted, the receiver 

observes received sequence 0y , �, 1−ky  and then decides that 0X , �, 1−kX  was 

transmitted if the squared Euclidean distance 2d  is minimized for ii Xx =  (i = 0, 1, �, 

K-1).  
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=

−=
K
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ii xyd          (2.3) 

That means if the sequence 0X , 1X , �, 1−kX  is closer to the received sequence 

than to any other allowable signal vector sequence, then the resulting sequence error 

probability, as well as the symbol error probability, is upper bounded by 

 )
2

(
2

1)(
0

min

N
derfcMeP −′

≤                        (2.4) 

in which the complementary error function erfc(x) is defined as ∫
∞ −=
x

t dtexerfc
22)(

π
 . 

The information rate and the normalized squared minimum distance are useful 

in comparing different constellations. Let R represents the information rate, and 2δ  

represents normalized squared minimum distance, these two can be defined as: 

    
N

MR
′

= 2log          (2.5) 

and          M
E

d ′
′

= 2

2
min2 logδ          (2.6) 

R is the ratio between the number of information bits carried by a single signal in the 

constellation and the number of dimensions N, M′ is the number of signal vectors in 

constellation Ω′, and E′ is the average signal energy. 

If M′, N, and E′ are given, the problem of designing a good communication 

system is choosing a set of vector signals such that the minimum distance between any 

two signals is maximize. The information rate is also referred to as the bandwidth 

efficiency of that signal set, and the normalized squared minimum distance is its energy 

efficiency. Equation (2.4) can be rewritten in the form 
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 








−′
≤

022
1)(

N
EerfcMeP bδ          (2.7) 

where 
M

EEb ′
′

=
2log

 represents the average energy per bit.  

In TCM system, signals are dependent. To avoid a reduction of the transmission 

rate, the constellation should be expanded. The minimum free Euclidean distance dfree 

between two possible sequences in a large constellation is obtained to be greater than 

the minimum Euclidean distance dmin between two signals in the original constellation. 

This will be analyzed in Section 2.2.3. Hence using maximum-likelihood sequence 

detection will yield a distance gain 2
min

2 / dd free . On the other hand, expanding 

constellation induces an increase in the average energy expenditure from E′ to E (i.e., 

energy loss E/E′), where E′ and E are the average energy spent to transmit with uncoded 

and coded transmission, respectively. The asymptotic coding gain γ of a TCM scheme is 

 
Ed
Ed free

′
=

/
/

2
min

2

γ           (2.8) 

The following example shows the advantage of using TCM [24]. Assume the 

transmission of quaternary source symbols (i.e., 2 bits per symbol) with uncoded 

transmission a channel alphabet with M′=4 would be adequate, and PSK is used. Then 

                        2
2
min =
′E

d               

In here, M=2M′=8 are used; M is the number of signal vectors in the new TCM 

constellation. Figure 2.4 shows the TCM scheme based on two quaternary 

constellations, {0, 2, 4, 6} and {1, 3, 5, 7}. This figure also shows a two-state Trellis 

construction. 
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Figure 2.4 The constellation and two-state trellis used in the example TCM scheme 

From Figure 2.4, the coding gain of PSK-based TCM can be calculated as: 

           
)8/(sin4 2

2

π
dE
′

=′  

There are distances between signals associated with the parallel transitions, and 

the distances associated with a pair of paths in the trellis those originate from a common 

node (i.e., state, S1 or S2 in Figure 2.4) and merge into a single node at a later time. The 

free distance of this TCM scheme is calculated by choosing the smallest distances from 

them. Then,  

          586.2
8

sin42)]1,0()2,0([1 222
2

=+=+=
πdd

EE
d free  

in which d(i, j) denotes the Euclidean distance between signals i and j, where i, j∈(0, 

1� 7). The coding gain of this TCM scheme becomes: 

           dB
Ed
Ed free 12.1293.1

2
586.2

/
/

2
min

2

⇒==
′

=γ  

By increasing the number of states (i.e., memory bits) in TCM, the coding gain 

can be increased. For example, if the four-state or eight-state trellis coding is used in 

this TCM scheme instead of two-state, the coding gain will be 3.01dB and 3.6dB, 
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respectively [25]. Figure 2.5 shows the coding gain tendency with different numbers of 

the trellis states. At each point on the graph, the second number shows the coding gain 

can be achieved when the number of states (the first number) is used.  
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Figure 2.5 Result of coding gain versus the number of states 

Increasing the number of states in TCM is a simple way to improve its 

performance. However, once the number of states grows high enough, the coding gain 

increases at much slower rate as illustrated in Figure 2.5. In addition, the error 

coefficient (i.e., the multiplicity of minimum-Euclidean-distance error events) of the 

code starts to dominate the code performance [11]. In order to solve this conflict, a 

multi-dimensional constellations model is introduced to the TCM system, which will be 

described in Section 2.3. 

 

2.2.2 TCM Encoder 

Figure 2.6 shows a general 2-dimensional TCM encoder scheme on one time 

interval. The input symbol consists of n bits data. While two bits (I1 and I2) are coded 

through both differential and convolutional encoder, the other n-2 bits remain uncoded.  
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Figure 2.6 General scheme of a 2D TCM encoder 

The differential encoder provides protection against the 1800 phase ambiguity 

introduced by the communication channel. The convolutional encoder introduces 

forward error correction information for the transmitted data. This convolutional 

encoder is also called a Trellis encoder. This is a method of achieving coding gain by 

increasing the density of the constellation while keeping the minimum distance between 

each constellation points the same. It ensures that the transmitted sequence of points 

conforms to a valid trellis sequence, which is essential for proper decoding in the 

receiver. The signal mapping is used to convert the convolutional coded bits to an 

efficiency combination of Quadrature Amplitude Modulation (QAM) mode. QAM is a 

method to modulate the digital data in an analog signal in which each combination of 

phase and amplitude represents one of the 2n n-bit patterns. 

As shown in Figure 2.6, without any error correction information, each symbol 

has n bits, which requires a 2n-point constellation. After the 2/3 convolutional encoder, 

each symbol has n+1 bits, which requires a 2n+1-point constellation. In general, for the 

same average power, a modulation scheme using a 2n+1-point constellation has higher 

BER if compared with the 2n-point constellation scheme. The reason for this is that the 
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minimum Euclidean distance between any two points on a 2n+1-point constellation is 

smaller, which decreases the noise margin. However, convolutional encoding introduces 

constraints in transforming an n-bit input symbol to a (n+1)-bit output symbol. 

Specifically, it does not allow two consecutive output symbols to be in the eight 

neighborhood positions of each other. This results in an increment of the minimum 

Euclidean distance between two consecutive output symbols, which is achieved through 

mapping by the set partitioning method. This process provides an overall performance 

gain of 4dB. Set partitioning is an important process after convolutional encode, which 

will be illustrated in Section 2.2.3.  

As differential encoding is used in this TCM scheme; using this coding, errors 

caused by the phase reversal in the channel are not allowed to propagate. The receiver 

will reconstruct the information sequence properly except for the errors at the points 

where phase reversal occurs.  

 

2.2.3 Set Partitioning 

In TCM, the modulation is an integral part of the encoding process. It is 

designed in conjunction with the code to increase the minimum Euclidean distance 

between the pairs of the coded signals. The loss from the expansion of the signal set is 

easily overcome and a significant coding gain is achieved with relatively simple codes. 

The key to this integrated modulation and coding approach is to devise an effective 

method for mapping the coded bits into appropriate signal points so that the minimum 

Euclidean distance is maximized. In 1982, Ungerboeck developed such method, based 

on the principle of mapping by set partitioning [2-4].  
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Based on the set partitioning, the M-ary constellation is successively partitioned 

into 2, 4, 8, �, 1)(log22 −M  subsets, with size M/2, M/4, M/8, …, 2 with progressively 

larger minimum distances. The set partitioning method follows three Ungerboeck rules: 

• U1: To parallel transitions are assigned members of the same partition; 

• U2: To adjacent transitions are assigned members of the next larger partition; 

• U3: To make all the signals are used equally often. 

A set partitioning method is illustrated in the Figure 2.7. The figure shows a partitioning 

of the 16-points QAM constellation.  

In Figure 2.7, the dmin
2 between points in the subsets is increased by at least a 

factor of 2 with each partitioning. In the first partitioning, the 16-points constellation is 

subdivided into two 8-point subsets. The square of the minimum Euclidean distance 

dmin
2 increases to 2d2 from d2. In the second partitioning, each of the two 8-point subsets 

is subdivided into two subsets of 4-point, and the square of the minimum Euclidean 

distance dmin
2 is increased to 4d2. This process continues on the subsets until each subset 

has only two points, and the square of minimum Euclidean distance dmin
2 is now 

increased to 8d2.  

In QAM constellation, each level of partitioning increases the minimum 

Euclidean distance by 2 . The level to which the signal is partitioned depends on the 

characteristics of the code.  



 25

••
••

••
••

••
••

••
••

•
•
o

o

•
•
o

o

•
•
o

o

•
•
o

o

oo

o•
oo

o•

oo

o•
oo

o•

oo

o•
oo

oo

oo

o•
oo

oo

oo

o•
oo

oo

oo

oo

oo

o•
•o

oo

oo

oo

oo

oo

•o

oo

•o

oo

oo

oo

oo

oo

•o

oo

oo

o •

oo

oo

oo

oo

oo

o •
oo

o •

oo

oo

oo

oo

oo

o •

oo

o •
oo

o •
oo

o •
oo

o •

oo

oo

oo

oo

o

oo

•

o

oo

•

o

oo

•

o

oo

•oo

oo

oo

oo

o

oo

•

o

oo

•o

oo

•

o

oo

•

o

o

•
•

o

o

•
•

o

o

•
•
o

o

•
•

•o

oo

•o

oo

•o

oo

•o

oo

1 0

11

1

11

1 0

0000

0

First partitioning

Second partitioning

d2

d2

d22

d

Figure 2.7 Set partition of a 16-QAM constellation 

In general, the TCM encoding process is performed as illustrated in Figure 2.6. 

A block of the n information bits is separated into two groups, one will be coded and the 

other remains uncoded. The group of coded bits will be used to select one of the 

possible subsets in the partitioned signal set, while the uncoded bits are used to select 

the points in each subset. Section 2.2.4 will further explain the mapping based on the set 

partitioning method. Section 2.3.3 will illustrate the mapping for the multi-dimensional 

constellation set partitioning. 

 

2.2.4 Mapping and Trellis Diagram  

An 8-state, rate 2/3 convolutional encoder is used as an example to analyze the 

trellis diagram and mapping method. Figure 2.8 illustrates a convolutional encoder used 

in the V.32 modem on one time interval [26-27]. Input of this TCM encoder is a 4-bit 

symbol, and the output is a 5-bit symbol. The output includes a 3-bit codeword and a 2-
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bit uncoded word. This encoder works at the full baud rate. The baud rate is a measure 

of the speed of a serial communication using a modem or null-modem, roughly 

equivalents to bits per second. 
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Figure 2.8 Structure of the TCM encoder used in V.32 modem 

The encoder operates as follows, the redundant bit Y0 is functionally obtained 

from I′1, I′2 which are differential coded bits obtained from I1, I2, and three memory bits, 

S0, S1, S2 which interconnected by D-flip-flops (DFF), and a combination of AND and 

XOR logic gates. The logic functions are expressed by the following rational equations: 

D
DIIIIY

+
′+

=′=
1

112
22          (2.3) 

D
IIY
+

=′=
1

1
11          (2.4) 

00 SY =             (2.5) 

DSS 02 =           (2.6) 
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The symbol D represents a delay through a DFF which functions as a memory. 

There are three memory units S0, S1, S2 used in this convolutional encoder. The size of 

the encoder memory is referred to as a constrained length (k) of the code. The constraint 

length of the V.32 modem encoder shown in Figure 2.8 is 3. As shown in Figure 2.8, 

this convolutional encoder is eventually a finite-state machine. The number of states in 

the encoder is 2k for a given constraint length k. In this encoder, the number of states is 

23=8, and represented by the three bits S0, S1, and S2. The states S0, S1, S2 are also called 

delay states. The delay states at the last time interval and the output of the encoder at the 

current time interval Y0, Y1, Y2 control the conversion between each delay state. The 

output Y0Y1Y2 is also called the path state of the convolutional encoder. 

The constraint condition of the convolutional encoder is that given a particular 

set of delay states (S0, S1 and S2) in which not all path states (Y0, Y1, and Y2) are possible 

in that time interval. For example, based on the equations (2.5), (2.6), (2.7), (2.8), if 

S0nS1nS2n = 000, the states that can be reached (S0(n+1)S1(n+1)S2(n+1)) are 000, 010, 100 and 

110. �000� is for Y1Y2 = 00, since Y0 = S0n, hence Y0Y1Y2 = 000, so that the subset of 

signals denoted �a� in Figure 2.9 is associated. �010� is for Y1Y2 = 10, Y0Y1Y2 = 010, 

corresponding with the subset of signals denoted �c�. �100� is for Y1Y2 = 11, Y0Y1Y2 = 

011, corresponding with the subset of signals denoted �d�. �110� is for Y1Y2 = 01, 

Y0Y1Y2 = 001, corresponding with the subset of signals denoted �b. In this discussion, n 

and n+1 represent two continual time intervals. Figure 2.9 shows each subset formed by 
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signals labeled a, b,… h. 
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Figure 2.9 A 32-signal constellation for the V.32 Modem TCM scheme 

The uncoded bits Y3Y4 in Figure 2.8 decide every single point of each subset 

shown in Figure 2.9. Each set of four points is symmetrically arranged and equally 

spaced on the constellation as far apart as possible. Eight different S0nS1nS2n delay states 

corresponding with Y0Y1Y2 path states is summarized in the trellis diagram shown in 

Figure 2.10 

Each current delay state in Figure 2.10 has four possible new delay state 

destinations. In each new delay state, there are four possible inputs coming from the last 

delay states, which are controlled by the path states. Each path state is also a part of the 

output of the encoder. This path state corresponds to the delay states that traverse from 

the left to the right side of the trellis diagram. This trellis diagram clearly shows the 

input bits (Y1, Y2) and output bits (Y0, Y1, Y2) relationship of the system associated with 

memory bits (S0, S1, S2). The decoder algorithm is created based on the relationship 

shown in this trellis diagram. 
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Figure 2.10 Trellis diagram of the V.32 modem TCM encoder 

 

2.2.5 TCM Decoder 

The TCM encoder is illustrated using a trellis whose branches are associated 

with transitions between encoder states and codeword transmitted over the channel. The 

primary task of the TCM decoder is to estimate the path that the codeword sequence 

traverses through the trellis. In this manner, TCM decoder is a reverse process of TCM 

encoder. In addition to the convolutional decoding, the de-mapping algorithm is a 

reverse function of the mapping logic function and the differential decoder performs the 

reverse function of the differential encoder.  

Details of the TCM decoder will be described in Chapter 3. The kernel of the 

TCM decoder is the convolutional decoder, which completes the path estimation. The 

decoder algorithm used in this thesis is based on the Viterbi algorithm.   
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2.2.6 Viterbi Algorithm  

Andrew Viterbi proposed an algorithm in 1967 to decode convolutional code 

and this became the Viterbi Algorithm [20]. This algorithm is an application of dynamic 

programming that finds �shortest paths� (maximum likelihood sequences) widely used 

in solving minimization problems. A critical feature of this algorithm is the complexity 

of the decoding process grows linearly with the number of symbols being transmitted, 

rather than exponentially with the number of the transmitted symbols. The Viterbi 

algorithm finds the sequence at a minimum Hamming distance (or Euclidean distance) 

from the received signal with the minimized equivalent accumulated squared error.  

The Trellis diagram in Figure 2.10 shows a relationship between the delay states 

and the path states in each timing interval. The corresponding relations between delay 

states and path states construct the basic database used in the Viterbi algorithm cost 

function calculation. Normally, the calculation of cost functions uses two different types 

of distance: the Hamming distance and the Euclidean distance. In this thesis, the 

Hamming distance is chosen to be the cost function because the use of this distance is 

suitable in LUT method to simplify hardware implementation.  

The Viterbi algorithm finds the path with the minimum path metric cost by 

sequentially moving through the trellis for each time interval. In a time interval T, from 

kT to (k+1)T, the receiver observes the sample received in that interval and computes 

the metric associated with all the branches. This metric stores the cost value of all 

branches as shown in the trellis diagram Figure 2.10. For example, if the memory bits 

(m bits) is used in the convolutional encoder, the N = 2m is the number of the states in 
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the convolutional encoder. If each delay states have four branches associated with the 

new delay states, the total 4N branch costs will be calculated; but only N path metrics 

are retained (i.e., stored in memory). The cost of each branch is defined as the 

Hamming distance (or Euclidean distance) between the received symbol and the 

possible true symbol. The minimum branch cost will be the survivor branch for the 

destination states.  

The cost of the path is a sum of the survivor branch cost at the current time 

interval and the accumulating path cost of the last time interval. Only one path with 

minimum accumulate cost is kept as a tracing path. Since it is experimentally 

determined that the optimal length of a convolutional decoder is four or five times the 

constraint length of the convolutional encoder [26], after 4m or 5m time interval for (n, 

k, m) convolutional code, the path with minimum accumulate cost of the N paths will 

be the survivor path. Using the survivor path, the decoder will trace back to recreate the 

original signal data. 

Decoding begins with comparing received channel symbol pairs then building 

the accumulated error metric for each states branch and path. Based on these metrics, 

Viterbi decoder will recover the original symbol (i.e., the input of the convolutional 

encoder). The Viterbi decoding process is accomplished as follows:  

1. Selecting the Delay State having the smallest accumulated error metric and 

saving the number of that delay state.  

2. Iteratively performing the following trace back steps until the beginning of the 

trellis is reached:  

• Working backward through the state history table, for the selected state;  
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• Selecting a former state which is listed in the state history table as being the 

predecessor to that state;  

• Saving the state number of each selected state.  

3. Working forward through the list of selected states saved in the previous steps. 

Look up what input bits correspond to the transition from each predecessor state 

to its successor state. That is, those bits that must have been encoded by the 

convolutional encoder. 

Figure 2.11 shows a simple example illustrating the Viterbi algorithm. The 

branch metrics, the survivor paths at each node, and the partial path metric of each 

surviving path are illustrated in this figure. The two-state (S0, S1) trellis with the branch 

metrics of the transitions is marked and the Viterbi algorithm is illustrated. The Viterbi 

algorithm finds iteratively the path with the minimum path metric of 0.5. 

In Figure 2.11, pattern (1) shows the branch metric values from S0 to S1, or 

from S1 to S0 at every time interval k=0 to k=4. Pattern (2) assumes starting state is S0 

at time interval k=0, the forward states will be S0 and S1. The cost for S0-S0 branch is 

0.0, for S0-S1 is 0.8. Because 0.0<0.8, the survival branch is S0-S0, and the accumulate 

cost is 0.0 at k=1. Pattern (3) shows starting state is S0 at k=1 and the forward states 

will be S0 and S1. The cost for S0-S0 branch is 0.3, for S0-S1 is 0.0. At k=2, 

accumulate cost for S0 is 0.3 (i.e., 0.0 plus 0.3), for S1 is 0.0 (i.e., 0.0 plus 0.0). Because 

0.0<0.3, the survival branch is S0-S1. Same process works on patterns (4) and (5). 

Finally, at k=4, the minimum accumulate cost is 0.5 for branch S0-S0. After tracing 

back, the survival path is S0-S0-S1-S0-S0; this path is shown in the bold line in Figure 

2.11. 
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Figure 2.11 Viterbi algorithm illustration based on two-state trellis 

 

2.3 Multi-Dimensional Trellis-Coded Modulation 

The performance of TCM can be improved by increasing the number of shift 

register (i.e., memory bits) used in the convolutional code. This is equivalent to the 

increment of the number of states in the trellis coding. This has been described in 
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Section 2.2.1. As mentioned earlier, the coding gain saturates at the high number of 

states, the multi-dimensional TCM concept is introduced in 1980�s to overcome this 

deficiency [11-15]. 

 

2.3.1 Introduction to Multi-Dimensional TCM 

In a 2-Dimensional TCM encoder, if the performance of the trellis code needs to 

be increased, more states may be used. This implies that the number of convolutional 

coding memory bits (i.e., constrained length) also increases. However the returns of this 

manner diminishes as the coding gain increases at much slower rate as shown in Figure 

2.5.  

An inherent cost of the coded schemes is that the size of the 2D constellation is 

doubled over uncoded schemes. This is due to the fact that a redundant bit is added 

every signaling interval. Without the cost, the coding gain of those coded schemes 

would be 3 dB to 6dB through 4-states to 128-states. Using a multi-dimensional 

constellation with a trellis code of rate n/n+1 can reduce that cost because fewer 

redundant bits are added compared to the 2D constellation. In the 4D TCM encoder 

structure, the redundant bits generated through convolutional encoder are added 

alternatively in each signaling interval. Compared to 2D constellation, that cost is 

reduced to 1.5dB in the 4D constellation.  

In the following sections, the 4D constellation TCM encoder will be described 

and the difference between 2D and 4D constellations can be viewed. Because the 

differential encoder and convolutional encoder are still being used in the coding 
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process, the decoder algorithm is the same in both cases. The main differences between 

2D and 4D are the mapping method and the clock rate in the convolutional coding. 

 

2.3.2 Four-Dimensional TCM Encoder 

Figure 2.12 shows a general 4D TCM encoder scheme. The differential encoder 

provides protection against 1800 phase ambiguity in the channel as described earlier. 

The convolutional encoder provides Forward Error Correction information for the 

transmitted data.  
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Figure 2.12 General scheme of a 4D TCM encoder 

The 4D block encoder generates two pairs of selection bits, which are used to 

select the inner group or outer group of the two-selected 2D subset of the 4D 

constellation points. The bit converter generates another two pairs of the selection bits, 
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which is used to select pair subsets in the 4D constellation. Chapter 3 will provide detail 

of these selection pairs. 

As shown in the Figure 2.12, the trellis coding part has a same structure as in 

Figure 2.6. The difference is on the input signals sequence, which is continual input into 

differential encoder in Figure 2.6, but is alternatively input into differential encoder in 

Figure 2.12. The input signals are k-bit symbol sequence, and n and n+1 represent two 

continual time intervals. 

In this thesis, k is selected to be 7 based on the DAVIC specification of the 

TCM used in the MMDS system [16]. After TCM coding, the signal is mapped into a 

256-QAM constellation. How the 4D 256-QAM constellation mapping is performed is 

described in the next section.  

 

2.3.3 TCM 4D 256-QAM Constellation Mapping  

TCM schemes using 4D constellations have been reported in the literatures [11-

15].  The 4D constellation is partitioned into thirty-two 4D subsets with eight times 

larger than the intra-subset minimum squared Euclidean distance (MSED) shown in 

Figure 2.13. One partitioning method of the 4D constellation is based on the 

partitioning of each constituent 2D constellation into four 2D subsets; concatenating a 

pair of 2D subsets forms each 4D subset [12]. The other partitioning method 

accomplishes algebraically without referring to the partitioning of the constituent 2D 

constellations [15].  

Using the partition of 4D rectangular lattice as an example, Figure 2.13 

illustrates a geometrical approach to partitioning multi-dimensional lattices into 
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sublattices with enlarged intrasublattice MSED. The partitioning of lattice is based on 

the partitioning of its constituent 2D rectangular lattices. Furthermore, the partitioning 

of a multi-dimensional lattice is done in an iterative manner. That is, the partitioning of 

a 2N-dimensional lattice is based on the partitioning of the constituent N-dimensional 

lattices, which is in turn based on the partitioning of the constituent N/2-dimensional 

lattice [11]. As shown in Figure 2.13, each time the intrasublattice MSED is doubled; 

the number of 4D sublattices increases fourfold. 
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Figure 2.13 Partitioning of a 4D rectangular lattice 

To transmit k information bits per signaling interval using a rate of n/n+1 trellis 

code with a 4D rectangular constellation, the 4D constellation of 122 +k  points is 

constructed as follows. The first step is to obtain a constituent 4D rectangular 

constellation. The 2D constellation is divided into two groups, the inner group and the 

outer group [11]. The number of points in the inner group is k2 , the same as that in the 

corresponding uncoded scheme. The number of points in the outer group is 1/2 of that 

of the inner group. The inner and outer groups must satisfy the following two 

requirements: 

1) Each subset has the same number of points (inner and outer).  

2) Each group is invariant under 900, 1800, and 2700 rotations.  
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The first requirement is necessary to convert the 4D constellation mapping into a 

pair of 2D constellation mappings. The second requirement preserves the symmetries of 

the lattice in the constellation.  

As shown in Figure 2.12, on the 4D constellation mapping, a bit converter 

converts the four bits nnnn IIIY 3210 ,,, ′′  into two pairs of selection bits, 

111010 ,,, ++ nnnn ZZZZ , which are used to select the pair of 2D subsets corresponding to 

the 4D type. The 4D block encoder takes three of the remaining eleven uncoded 

information bits, I1n+1, I2n+1, and I3n+1, and generates two pairs of selection bits, 

131232 ,,, ++ nnnn ZZZZ , which are used to select the inner group or outer group of each 

selected 2D subset. The detail of this corresponding relationship will be illustrated in 

Chapter 3. 
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CHAPTER 3 

TCM CODEC IMPLEMENTATION ALGORITHM 

 

This chapter focuses on the implementation algorithm and architecture of the 

TCM encoder and decoder. Illustrations of the encoder and the decoder will separate 

into two parts based on the mapping process (i.e., mapping for 2-dimensional and 4-

dimensional). 

 

3.1 Encoder Implementation 

The algorithm and hardware implementations in this thesis focus on the 16-state 

codec recommended in DAVIC 1.2 specifications [16]. The coded bits are ready for the 

256-point constellation QAM modulation. There are two implementations on mapping: 

one is mapping for the 2-dimensional (2D) constellation, and the other is mapping for 

the 4-dimensional (4D) constellation. The following sections illustrate details of both 

processes. 

  

3.1.1 A 2-Dimensional Encoder Implementation 

A 16-state 2D TCM scheme is constructed with reference to both DAVIC [16] 

and V.32 TCM scheme [26]. The input signal symbol sequences are continually coming 

into the 2D TCM encoder at every time interval (i.e., 2D TCM encoder works at the full 
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baud rate). A combination of logic gates and D-Flip-Flops (DFF) as memory devices is 

used to implement the differential encoder and to generate the convolutional encoder 

states.  Figure 3.1 shows a schematic diagram of the 2D TCM encoder. 
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Figure 3.1 A 16-state 2-dimensional TCM encoder 

The differential encoder functions as the following Boolean expression: 

 )1()()( 111 −′⊕=′ nInInI         (3.1) 

 ][ )()1()1()()( 33113 nInInInInI ⊕−′⊕−′⊗=′      (3.2) 

where n and n-1 represent the two continual time interval.  

After differential encoding, a rate of 2/3 convolutional encoder generates an 

extra redundant parity bit 0Y  using two bits 1I ′  and 2I . The parity bit 0Y  carries only 

forward error-correction information. Figure 3.2 shows the relationship between 1I ′ , 2I  

and 0Y . Outputs of the memory elements S0, S1, S2 and S3 are called delay states and 

values of the 3 bits Y0, 1I ′  and I2 are called path states. 
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Figure 3.2 Convolutional coding in TCM encoder 

 The logic function of all symbol bits and memory bits for the TCM scheme 

shown in Figure 3.1 are obtained from the following equations: 

 ii IY = ,      }7,6,5,4,2{∈= mi                      (3.3) 

 33 IY ′=                   (3.4) 

 11 IY ′=            (3.5) 

 00 SY =           (3.6) 

 DSISS )( 0110 ⊕′⊕=          (3.7) 

 DISS )( 121 ′⊕=          (3.8) 

 DISS )( 232 ⊕=          (3.9) 

DSS 03 =                    (3.10) 

where D represents the time delay of memory element (i.e., a DFF). In Figure 3.1, four 

coded bits (Y0, Y1, Y2, Y3) combined with the other uncoded bits (Y4, Y5, Y6, and Y7) are 

mapped into a 256-point constellation. The inphase signal (I) and quadrature signal (Q) 

are modulated and transmitted over communication channels. The 256-point 

constellation has 16 subsets (i.e., 24 from 4 coded bits). Each subset uniquely identifies 

a set of 16 points (i.e., 24 from 4 uncoded bits) out of 256 constellation points. This 

TCM scheme signal space mapping is defined in such a way that each set of 16 points is 

symmetrically arranged and equally spaced on the constellation as shown in Figure 3.3. 

Furthermore, each set of 16 points is as far apart as possible. 
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 The figure illustrates sixteen subsets of a 256-point constellation formed by 

signals labeled a, b, c, d, e, f, g, h, i, j, k, l, m, n and o, p. The four coded bits (Y0, Y1, Y2 

and Y3) select specific subset out of subsets a, b, c, d, e, f, g, h, i, j, k, l, m, n and o, p. 

The uncoded bits (Y4, Y5, Y6, and Y7) select a particular signal out of the signals of each 

subset. Figure 3.3 is based on the mapping by set partitioning methods described in 

Chapter 2, Section 2.2.3. 
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Figure 3.3 A 256-signal constellation for the 2D 16-state TCM scheme 

 

3.1.2 A 4-Dimensional Encoder Implementation  

 Figure 3.4 depicts a schematic diagram of the 16-state TCM encoder with 

mapping for the 4D constellation. A combination of logic gates and DFFs as memory 
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devices are used to implement the differential coding and generate the convolutional 

coding states.  The two 2D symbols mnI  and )1( +nmI  (m = 0, 1� k) are simultaneously 

input into a 4D TCM encoder at every two successive time intervals n and n+1. This 

means that the signal is sampled at every two clock cycles, then a 2k-bit sampled 

symbol at the 2T clock cycle (i.e., half baud rate) is sent out.  
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Figure 3.4 A 16-state 4-dimensional TCM encoder 

 The differential encoder encodes two (I1n and I3n) out of three most-significant 

bits (I1n, I2n, and I3n) from time interval n symbol. The differential encoder uses the 

Boolean expressions: 

 )1()()( 111 −′′⊕′=′′ nInInI nnn                  (3.11) 

 )()1()]1()([)( 33113 nInInInInI nnnnn ′⊕−′′⊕−′′⊗′=′′              (3.12) 

where n′ and n′-1 are new continual time intervals (i.e., half baud rate). The two 
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differentially coded bits, I2n and I′1n, are convolutional encoded through a rate=2/3 

encoder. The convolutional encoder has a same architecture and logic function as 

described in Section 3.1.1 for the 2D TCM scheme. After convolutional encoding, the 

extra redundant parity bit (Y0n) is added, while other bits (I4n … Ikn, I1(n+1) … Ik(n+1)) in 

two 2D symbols remain unchanged. All the coded and uncoded bits are finally mapped 

into the two consecutive I-Q symbols by a mapping block.  

 The mapping consists of three sub-blocks 4D Block Encoder, Bit Converter and 

constellation subsets selection block. The bit converter is used to select a subset Di, 

respective Dj in the constellation that depends on ( nnnn IIIY 3210 ,,, ′′ ) as defined in Table 

3.1, and each signal in these subsets is given by the uncoded bits. 

Table 3.1 4D subsets allocation 

nnnn IIIY 3210 ,,, ′′  4D types (Di, Dj) )1(1)1(010 ,,, ++ nnnn ZZZZ  

   0    0    0    0 (D0, D0)   0      0       0        0 
   0    0    0    1 (D2, D2)   0      1       0        1 
   0    0    1    0 (D0, D2)   0      0       0        1 
   0    0    1    1 (D2, D0)   0      1       0        0 
   0    1    0    0 (D1, D1)   1      0       1        0 
   0    1    0    1 (D3, D3)   1      1       1        1 
   0    1    1    0 (D1, D3)   1      0       1        1 
   0    1    1    1 (D3, D1)   1      1       1        0 
   1    0    0    0 (D0, D1)   0      0       1        0 
   1    0    0    1 (D2, D3)   0      1       1        1 
   1    0    1    0 (D0, D3)   0      0       1        1 
   1    0    1    1 (D2, D1)   0      1       1        0 
   1    1    0    0 (D1, D2)   1      0       0        1 
   1    1    0    1 (D3, D0)   1      1       0        0 
   1    1    1    0 (D1, D0)   1      0       0        0 
   1    1    1    1 (D3, D2)   1      1       0        1 

 

The Di subsets, i = 0, 1, 2, 3, are given for each set of q uncoded bits shown (LSB to 
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MSB) in the QAM constellation. The combinations of nn ZZ 10  and )1(1)1(0 ++ nn ZZ  are used 

to select the pair of 2D subsets corresponding to the 4D type. Table 3.2 shows the 

correspondence between the bit pair kk ZZ 10 , k = n, n+1, and 2D subsets D0, D1, D2, D3. 

Table 3.2 Correspondence between kk ZZ 10  and four 2D subsets 

kk ZZ 10  2D Subset 

00 D0 
01 D1 
10 D2 
11 D3 

 

 The Bit Converter logic function can be analyzed based on Table 3.1 as: 

 nn IZ 10 ′=                    (3.13) 

 nn IZ 31 ′=                    (3.14) 

 nnn IYZ 10)1(0 ′⊕=+                   (3.15) 

 ][ nnnnn IIIYZ 2310)1(1 ⊕′⊕′⊗=+                 (3.16) 

 The 4D-block encoder takes three of the remaining uncoded information 

bits )1(1 +nI , )1(2 +nI  and )1(3 +nI  to generate two pairs of selection bits, nn ZZ 32  and 

)1(3)1(2 ++ nn ZZ  in accordance to Table 3.3 listed on next page.   

 The pair nn ZZ 32  will be used to select the inner group or the outer group of the 

selected 2D subset by nn ZZ 10 . The other pair )1(3)1(2 ++ nn ZZ  will be used to select the 

inner group or the outer group of the selected 2D subset by )1(1)1(0 ++ nn ZZ . The inner 

group is organized into two halves. If the bit pair kk ZZ 32  (k = n, n+1) is 00, one-half of 

the inner group is selected, and if the bit pair is 01, the other half of the inner group is 
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selected; otherwise the outer group is selected. The inner group and the outer group are 

the two groups in the 2D constellation, as explained in Chapter 2, Section 2.3.3.  

Table 3.3 4D block encoder 

)1(1 +nI  )1(2 +nI )1(3 +nI nZ 2 nZ3 )1(2 +nZ )1(3 +nZ  

0 0 0 0 0 0 0 
0 0 1 0 0 0 1 
0 1 0 0 0 1 0 
0 1 1 0 1 1 0 
1 0 0 1 0 0 0 
1 0 1 1 0 0 1 
1 1 0 0 1 0 0 
1 1 1 0 1 0 1 

 

 The 4D-block encoder logic function can be obtained based on Table 3.3 as: 

 )( )1(2)1(1)1(1)1(2)1(12 +++++ ⊕⊗=⊗= nnnnnn IIIIIZ               (3.17) 

 )( )1(3)1(1)1(23 +++ +⊗= nnnn IIIZ                            (3.18) 

 )( )1(2)1(1)1(2)1(2)1(1)1(2 ++++++ ⊕⊗=⊗= nnnnnn IIIIIZ               (3.19) 

 )( )1(2)1(1)1(3)1(3 ++++ +⊗= nnnn IIIZ                 (3.20) 

 The TCM encoder is easy to implement into hardware using the above 

information. The issue of TCM codec is how to implement the decoder in hardware to 

achieve high speed with a minimum silicon area. The next section explains in detail the 

TCM decoder implementation. 

  

3.2 Decoder Implementation 

In this thesis, the demodulation process is assumed to be separated from the 

decoder process and the detection process involves hard decisions. Each single point 
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from the constellation has been selected. The free Hamming distance of the 

convolutional code is used in Viterbi Algorithm to calculate the cost of each branch and 

path. The cost values are also called branch metric and path metric. 

The TCM technique recommends using soft decoding, which means the 

demodulation process is incorporated into the decoding process and the Euclidean 

distance is used as the cost function quantity in the Viterbi Algorithm. As mentioned in 

Chapter 1, the soft decoding obtains approximate 2dB performance over the hard 

decoding. Due to the effect on the decoding performance is not significant, using hard 

decoding has a tremendous benefit in hardware implementation. The reason for this 

benefit is when the Euclidean distance is increased by set partitioning mapping method; 

any noise perturbation is less likely to affect the estimation of the points to be detected 

using the hard decision detection. 

In order to increase the speed of the decoder, two pre-calculated look-up tables 

(LUTs) are used. One LUT is used to obtain the Hamming distance of each branch 

metric when the branch cost is required to be calculated. The other LUT is used to make 

decisions on the output of convolutional decoder when two continual time interval delay 

states are known. The rest of this chapter describes in detail of the constructing of the 

Hamming Distance Look-Up Table (HDLUT), the Output Look-Up Table (OLUT) and 

the decoder implementation architecture. 

 

3.2.1 Structure of the HDLUT and OLUT 

Based on the 16-state TCM encoder illustrated in Section 3.1, both 2D and 4D 

TCM schemes have the same convolutional encoder structure, except they work at the 
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different baud rates. According to equations (3.6) to (3.10), the 16-state Trellis diagram 

for both TCM schemes is constructed and shown in Figure 3.5. 

Current Delay State Next Delay State

0  0  0  0 0  0  0  0
0  0  0  1 0  0  0  1
0  0  1  0
0  0  1  1
0  1  0  0
0  1  0  1
0  1  1  0
0  1  1  1
1  0  0  0
1  0  0  1
1  0  1  0
1  0  1  1
1  1  0  0
1  1  0  1
1  1  1  0
1  1  1  1

0  0  1  0
0  0  1  1
0  1  0  0
0  1  0  1
0  1  1  0
0  1  1  1
1  0  0  0
1  0  0  1
1  0  1  0
1  0  1  1
1  1  0  0
1  1  0  1
1  1  1  0
1  1  1  1

Path State

0  1  2  3
1  0  3  2
0  1  2  3
1  0  3  2

3  2  1  0
2  3  0  1
3  2  1  0
6  7  4  5
7  6  5  4
6  7  4  5
7  6  5  4
4  5  6  7
5  4  7  6
4  5  6  7
5  4  7  6

3210 SSSS 3210 SSSSnnn IIY 210 ′

2  3  0  1

 

Figure 3.5 Trellis diagram of the 16-states TCM encoder 

In this 16-state Trellis diagram, given a particular set of delay states ( 3210 SSSS ), 

not all eight path states ( nn IIY 210 ′ ) are possible to be used in that time interval, and not 

all 16 delay states are possible to be reached in the next delay state. The particular path 

chosen at that time interval depends on the current path state of the encoder, which 

means the current path state controls which successor delay state to be reached from 

that particular current delay state. For instance, if the current delay state is "0000", the 

successor delay state ( 3210 SSSS ) will be "0000", "0010", "1100" and "1110" when 

corresponding to the path state ( nn IIY 210 ′ ) are "000", "001", "010" and "011". For one 
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specific current delay state, there are only four successor delay states being reached out 

of sixteen delay states, and each branch corresponds with one specific path state out of 

the eight possible path states. 

From the trellis encoder, the path state also represents the coded bits for the 

output of the convolutional encoder at the current time interval, so it reflects the true 

part bits out of a symbol for the decoder input symbols. Each path state is one 3-bit 

binary data of "000", "001",…… "111" for the 2/3 convolutional encoder. In the TCM 

convolutional decoder, the input symbol should be one of eight possible three coded bits 

from "000" to "111" combined with the other uncoded bits at each time interval. 

Comparing each possible symbol with the truth symbol, the Hamming distance is easy 

to be calculated. This distance is computed by simply counting how many bit 

differences between the received channel symbol pairs and the possible channel symbol 

pairs. Table 3.4 shows a pre-calculated HDLUT.  

Table 3.4 A Hamming Distance table 

The corresponding HD with the possible part bit out of received  
data sequence of the decoder 

Truth 
Path 
State 000 001 010 011 100 101 110 111 

000  (P0) 0 1 1 2 1 2 2 3 
001  (P1) 1 0 2 1 2 1 3 2 
010  (P2) 1 2 0 1 2 3 1 2 
011  (P3) 2 1 1 0 3 2 2 1 
100  (P4) 1 2 2 3 0 1 1 2 
101  (P5) 2 1 3 2 1 0 2 1 
110  (P6) 2 3 1 2 1 2 0 1 
111  (P7) 3 2 2 1 2 1 1 0 

 
In this table, P0 ~ P7 represent truth path state from �000� to �111�. If the 

current delay state ( 3210 SSSS ) is �0001�, the next delay state will be "0000", "0010", 
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"1100" and "1110" when corresponding to the path state ( nn IIY 210 ′ ) are P1, P0, P3 and 

P2 as shown in Table 3.5. At this situation, if the received symbol is �00110110�, the 

three LSB bits are �110�. It can be seen from Table 3.4 that the cost for each branch 

will be 3, 2, 2, and 1. Table 3.5 shows the relationship between the delay states and the 

path states.  

Table 3.5 HDLUT using in the TCM decoder 

Current 
Delay 
State 

Next 
Delay 
State 

The 
Path 
State 

Current 
Delay 
State 

Next 
Delay 
State 

The 
Path 
State 

Current 
Delay 
State 

Next 
Delay 
State 

The 
Path 
State 

Current 
Delay 
State 

Next 
Delay 
State 

The 
Path 
State 

0000 P0 1000 P0 1001 P4 0001 P4 
0010 P1 1010 P1 1011 P5 0011 P5 
1100 P2 0100 P2 0101 P6 1101 P6 

 
0000 

1110 P3 

 
0100 

0110 P3 

 
1000 

0111 P7 

 
1100 

1111 P7 
0000 P1 1000 P1 1001 P5 0001 P5 
0010 P0 1010 P0 1011 P4 0011 P4 
1100 P3 0100 P3 0101 P7 1101 P7 

 
0001 

1110 P2 

 
0101 

0110 P2 

 
1001 

0111 P6 

 
1101 

1111 P6 
1000 P2 0000 P2 0001 P6 1001 P6 
1010 P3 0010 P3 0011 P7 1011 P7 
0100 P0 1100 P0 1101 P4 0101 P4 

 
0010 

0110 P1 

 
0110 

1110 P1 

 
1010 

1111 P5 

 
1110 

0111 P5 
1000 P3 0000 P3 0001 P7 1001 P7 
1010 P2 0010 P2 0011 P6 1011 P6 
0100 P1 1100 P1 1101 P5 0101 P5 

 
0011 

0110 P0 

 
0111 

1110 P0 

 
1011 

1111 P4 

 
1111 

0111 P4 

 

In both Figure 3.1 and Figure 3.4, after convolutional encoder, only one 

redundant bit 0Y  is generated. This bit is controlled by the delay states 3210 SSSS  and by 

a pair bits nI1′  and nI 2 . The two bits nI1′  and nI 2  are the inputs of the convolutional 

encoder and they are the outputs of the convolutional decoder. nn IIY 210 ′  is the path state 

shown in Figure 3.5 the trellis diagram. Hence, if the current Delay State and the next 
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Delay State are determined, the particular path nn IIY 210 ′  will be determined, then nI1′  and 

nI 2  will be recovered.  For example, after tracing back, two delay states �0000� and 

�1100� are determined to be the continual two time interval delay states in survival 

path. Table 3.5 shows the path state is P2 (�010�) corresponding to this branch. As the 

result, a pair bit �10� will be the decoded nI1′  and nI 2  bits. Based on Table 3.5 and 

Figure 3.5, the OLUT is constructed and shown in Table 3.6.  

Table 3.6 An OLUT using in the TCM decoder 

The output (I′1nI2n) of convolutional decoder  
when Next Delay State (S0S1S2S3 in decimal) is given 

Current  
Delay State 
 (S0S1S2S3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000 (0) 00  01          10  11  
0001 (1) 01  00          11  10  
0010 (2)     00  01  10  11      
0011 (3)     01  00  11  10      
0100 (4)     10  11  00  01      
0101 (5)     11  10  01  00      
0110 (6) 10  11          00  01  
0111 (7) 11  10          01  00  
1000 (8)      10  11  00  01     
1001 (9)      11  10  01  00     

1010 (10)  10  11          00  01
1011 (11)  11  10          01  00
1100 (12)  00  01          10  11
1101 (13)  01  00          11  10
1110 (14)      00  01  10  11     
1111 (15)      01  00  11  10     

     *Note: Empty cells in the table represent no relationship between two delay states 

The table shows a regular pattern between output and delay states.  For example, 

if output is �00, 01, 10, 11�, the corresponding current delay states (S0S1S2S3) are 

�0000� and �0010�, or �1100� and �1110�. According to the complementary law 

� 1=+ xx �, states S0S1S2S3 (�0000� + �0010�) and (�1100� + �1110�) can be combined 

to (S0S1S3) �000� or �110�. If consider from next delay state, for output �00, 01, 10, 11�, 



 52

the corresponding next delay states (S0S1S2S3) are four respectively groups: (0000, 0100, 

0001, 0101), (0010, 0110, 0011, 0111), (1000, 1100, 1001, 1101) and (1010, 1110, 

1011, 1111). Using the same law, they can be combined to (S0S2) �00�, �01�, �10� and 

�11�. Followed this pattern, Table 3.6 is simplified to Table 3.7. This simplification 

saves memory space or storage cells required in the hardware implementation.  

Table 3.7 The simplified OLUT using in TCM decoder 

The output (I′1nI2n) of convolutional decoder  
when the two bits of Next Delay State (S0S2) is given

Three Bits of  
Current Delay State 

 (S0S1S3) 00 01 10 11 
000 00 01 10 11 
001 01 00 11 10 
010 10 11 00 01 
011 11 10 01 00 
100 10 11 00 01 
101 11 10 01 00 
110 00 01 10 11 
111 01 00 11 10 

  

From this result, a decoding look-up-table is created and used in conjunction with the 

Viterbi algorithm to decode the convolutional code. Next section will go into detail of 

the architecture in implementation of the 2-dimensional and 4-dimensional TCM 

decoders. 

 

3.2.2 A Novel TCM Decoder Architecture Implementation  

The TCM decoder includes three processes: de-mapping, convolutional 

decoding, and differential decoding. The implementation algorithm of this 

convolutional decoding is mainly based on the Viterbi algorithm given in Chapter 2. 

Parallel processing is used at each node (i.e., state) to trace the history delay states of 
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the sixteen paths and the Hamming Distance is used as the cost function. The distance 

calculation circuit is omitted because the cost of each branch is obtained from HDLUT. 

This technically reduces complexity of the decoder architecture. Utilizing the 

characteristics of shift registers, such as timing delay and memory, the real time tracing 

back process of the Viterbi algorithm is accomplished. In addition, in order to shorten 

the time of the critical path in the decoder, a pipelining technique is used; this technique 

increases the decoding speed.  

When the receiver receives the signal, after de-modulation, the sampled signal 

enters the de-mapping process. The difference between 2-dimensional and 4-

dimensional TCM scheme is in the processing of signal de-mapping. The convolutional 

decoding and the differential decoding processes have the same methodology and 

structure, except they work at the different baud rates. The next two subsections 

describe more details of the decoder for 2D and 4D TCM scheme respectively. 

 

3.2.2.1 A Decoder for 2-Dimensional TCM Scheme 

For 2D TCM scheme, the coded bits after convolutional encoder combined with 

the remaining uncoded bits directly mapped into the 256-point constellation as shown in 

Figure 3.3. The signal from the demodulation is sampled. The de-mapping is simply 

dividing the sampled signal into two parts: 3-bits go through the second step of TCM 

decoder for the convolutional decoding process, the remaining 5-bits is delayed using a 

group of shift registers. Figure 3.6 shows the structure of 2D 16-state TCM decoder.  
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Figure 3.6 A 2-dimensional 16-state TCM decoder 
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As shown in Figure 3.6, 3-bits out of four LSB bits go through convolutional 

decoding process directly; the remaining five bits enter into five groups shift register. 

The number of each group shift registers is determined by the latency of the 

convolutional decoder. After convolutional decoding process completes, 1-bit output 

from the convolutional decoder will combine with the 1-bit out of 5-bits from shifter 

register to execute the differential decoding process.  

After differential decoding, 1-bit from the output of the convolutional decoder, 

2-bits from the output of the differential decoder and 4-bits from the output of de-

mapping are combined to form a 7-bit output symbol of the TCM decoder.  

In the convolutional decoder, several steps are sequentially accomplished based 

on the Viterbi algorithm. They are represented by blocks such as State-Transition and 

Add Unit (STAU), Compare-Selection 4 Unit (CS4U), Compare-Selection 16 Unit 

(CS16U), 16-to-1 multiplexer (MUX16) and OLUT. Since this thesis focuses on 16-

state TCM codec, sixteen parallel paths are traced. The algorithm of both CS4U and 

CS16U relies heavily on the cost function. The minimum cost branch or path is 

selected. 

The State-Transition and Add Unit is based on the Trellis diagram shown in 

Figure 3.5. The current delay states split into four new delay states; each branch cost is 

obtained from the HDLUT. The current cost adds to the previous accumulative path 

cost. The accumulative cost combines with the current delay state to be the output of the 

STAU. Figure 3.7 shows the architecture of the STAU block. 
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Figure 3.7 Architecture of the STAU block 

The outputs from the STAU will input into the CS4U to select the survivor 

branch based on the Trellis diagram. The same successor (i.e., next delay state) 

branches are input into a same CS4U block. Sixteen CS4U blocks are in path order 

parallel arranged from �0000� to �1111�. Since each output of the STAU includes 

accumulative cost and current delay state, the CS4U selects the minimum accumulative 

cost branch as the new path accumulative cost. For this minimum accumulative cost, the 

corresponding current delay state is chosen to be the predecessor delay state.  The 

predecessor of the chosen survivor branch will be one output of the CS4U. The other 

output of the CS4U is the new path accumulative cost combined with the path label 

(i.e., sixteen paths �0000�, �0001� � �1111�).  

The predecessor output of the CS4U is put into a shift register. The groups of 

shift registers are used to store the history delay states of the 16 paths. A minimum 

number of 16 shift registers is used to store the past delay states. This numbers is 4 or 5 

times the code constraint length [26]; this length is the number of memory bits in the 
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convolutional encoder. A constraint length of 4 is used in this 16-state TCM scheme. 

The new path accumulative cost is taken from the other output of the CS4U and 

sent back to the STAU. This path cost will be used in the STAU block when the branch 

accumulative cost is calculated at the next time interval. Simultaneously, the 

accumulative path cost inputs to the CS16U to select the survivor path, which is the 

path with minimum accumulative cost.  

Once the survivor path is chosen, sixteen sequential MUX16 logics perform the 

delay states trace back. Once the foremost two delay states are produced, they will be 

sent to the OLUT. The OLUT is a pseudo-ROM and used to reconstruct the data nI1′  

and nI 2  which was sent to convolutional encoder. The address to this ROM is the 

combination of two consequence delay states as illustrated in Table 3.7 in Section 3.2.1. 

Finally, the LSB bit nI1′  of the convolutional decoder and the delayed bit nI 3′  out 

from the 4-LSB are differential decoded. The differential decoder performs the reverse 

function of the differential encoder in 16-states TCM encoder as follows: 

 )1()()( 111 −′′⊕′′=′ nInInI nnn                  (3.21) 

 )()1()]1()([)( 3113 nInInInInI nsnnnn ′⊕−′⊕−′′⊗′′=′              (3.22) 

where n′ and n′-1 are continual half baud rate time intervals. 

 

3.2.2.2 A Decoder for 4-Dimensional TCM Scheme 

For the 4D TCM encoder scheme, the coded bits after convolutional encoded are 

converted through a Bit Converter to generate selection pair bits for the 4-dimensional 

mapping as shown in Figure 3.4. Hence for 4D TCM decoder, the signal from the 

demodulation is sampled and the de-mapping process performs the reverse of the 
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encoder Bit Converter block and the reverse of the 4D-block encoder.  

The logic function of the Bit Converter and the 4D-block decoder in the 4D 

TCM decoder are the reverse functions of the 4D TCM encoder. The logic relationship 

of these two blocks was described in Section 3.1.2. 

 The Bit Converter logic function in decoder can be analyzed based on Table 3.1 

as following: 

 )1(000 +⊕= nnn ZZY                   (3.23) 

 nn ZI 01 =′                    (3.24) 

 )( )1(0001)1(12 ++ ⊗⊕⊕⊕= nnnnnn ZZZZZI                (3.25) 

 nn ZI 13 =′                    (3.26) 

 The 4D-block decoder logic function can be analyzed based on Table 3.3 as: 

)( 32)1(2)1(1 nnnn ZZZI ⊕⊗= ++                  (3.27) 

)1(23)1(2 ++ += nnn ZZI                   (3.28) 

)1(23)1(3)1(3 +++ ⊗+= nnnn ZZZI                  (3.29) 

 

Equations (3.23) ∼ (3.29) can be easily converted into a schematic diagram. 

Figure 3.8 shows a schematic diagram of the Bit Converter used in the 4D TCM 

decoder. Figure 3.9 shows the schematic diagram of the 4D-block decoder.  
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Figure 3.8 Schematic diagram of the bit converter 
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Figure 3.9 Schematic diagram of the 4D-block decoder 

Figure 3.10 shows the structure of a 16-state 4-dimensional TCM decoder. In 

this structure, after de-mapping, three LSB bits out of four bits from the Bit Converter 

are sent to the convolutional decoder. The other bit is send to the shift register and will 

be combined with the output bit from the convolutional decoder. These two bits are then 

sent to a differential decoder. The remaining eight uncoded bits and three bits from 4D-

block decoder are also sent to the shift registers. The number of shift registers is 

determined by the latency of the convolutional decoding process. This latency is the 

same as the 2D scheme, except the clock rate is different. If the clock of the 2D scheme 

is T, the clock of the 4D scheme is 2T. 
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Figure 3.10 A 16-state 4-dimensional TCM decoder 
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After the differential-decoding completes, the 14-bit symbol will be the output 

of the TCM 4D decoder. This symbol includes 1-bit from the output of the 

convolutional decoder, 2-bits from the output of the differential decoder and 11-bits 

from the output of the de-mapping. Details of the convolutional decoder and the 

differential decoder are the same as in the 2D TCM scheme, which are described in 

Section 3.2.2.1. 

For the 4D TCM scheme, two more blocks are required to accomplish the 

conversion between two symbols from two continual clock cycles of full baud rate to 

one symbol for half baud rate. Since two continual symbols are coded simultaneously 

for 4D TCM encoder as illustrated in Figure 3.4, the system input works at a full baud 

rate while the 4D TCM encoder and decoder work at a half baud rate. The block 

diagram explaining this idea is shown in Figure 3.11. The detailed architecture of the 

blocks will be discussed in the next chapter. 
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Figure 3.11 The 4-dimensional TCM coding system 
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CHAPTER 4 

TCM CODEC ASIC IMPLEMENTATION 

 

This chapter introduces the concept and design flow of the ASIC; centering on 

the TCM codec ASIC implementation, this chapter also illustrates the methodology 

used to increase the speed of the codec such as pipelining techniques, and other chip 

architectures such as the clock divider and the Built-In-Self-Test (BIST). 

 

4.1 ASIC Design Introduction 

Application Specific Integrated Circuit (ASIC) design is an efficient way to 

implement specific system functions into a single chip [28]. The technique is widely 

used in high-speed internet chip design and telecommunication applications. ASICs 

offer some advantages such as high speed, small area and low cost manufactory in high 

volumes for industry specific products. A typical ASIC design process includes three 

basic stages: HDL design capture, HDL design synthesis, and design implementation. 

Figure 4.1 shows a flow chart of an ASIC design process. 

 



 63

Design Specification

Behavioral Description

RTL Description

RTL
Functionality

Verified?

RTL to Logic

Logic Optimization

Logic to Technology

Timing/Area
Optimization

Scan Path Insertion &
Test Vector Generation

Netlist
Logic & Timing

Verified?

Floor Planning

Place & Route

Physical Layout

Layout
Function & Timing

Verified?

Chip Fabrication

Verification Vectors No

No

Constraints

Constraints

(1)
HDL Design Capture

(2)
HDL Design Synthesis

(3)
Design Implementation

Yes

No

Yes

Yes

 

Figure 4.1 A flow chart of the ASIC design process 
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(1) HDL design capture implements the �top-down� design methodology from 

abstract concept or algorithm down to hardware in manageable and verifiable steps. 

This involves developing a design specification that will be used to create a high level 

behavioral abstraction with high level programming languages such as C or C++. 

Additionally, the behavioral abstraction may also be created using hardware description 

languages (HDL) such as VHDL or Verilog. 

The behavioral abstraction should be simulated in order to verify that the desired 

functionality is captured completely and correctly. The behavioral abstraction is then 

used as a reference to create and refine a synthesizable register transfer level (RTL) 

abstraction. This RTL code captures desired functionality required by the design 

specification. The difference between a purely behavior abstraction model and a RTL 

abstraction model will be described later; both models are used in functionality 

verification, but slightly different in the hardware synthesis.  

Generally, the designs are represented in HDL at three levels of abstraction:  

• Behavioral level: a design is implemented in terms of the desired algorithm, 

much like software programming and without regard for actual hardware. For 

example, a Verilog HDL model written at the behavioral level is usually not 

synthesizable into hardware model by the synthesis tools.  

• Register transfer level: a design is implicitly modeled in terms of hardware 

registers and combinational logic that exists between them to provide the 

desired data processing. The key feature of this level is that an RTL description 

can be translated into hardware model by the synthesis tools.  

• Structural level: a design is realized through explicit instances of logic 
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primitives and interconnections between them. This level is also referred to as 

a �gate level� model. It is a hardware model and is used to create the floorplan 

of the circuit layout. Most synthesis tools can generate the gate-level model 

after synthesizing the RTL code.  

HDL Design Capture is completed with �pre-synthesis� simulations to verify 

that the RTL abstraction fully provides the desired function. The functional verification 

in the design process that occurs at this point must be as complete and thorough as 

possible. The test vectors used during simulation should provide the fault coverage 

necessary to ensure the design meet specifications.  

(2) HDL design synthesis involves steps using a synthesis tool to:  

• Translate the abstract RTL design description to register elements and 

combinational logic. 

• Optimize the combinational logic by minimizing and flattening the resultant 

Boolean equations. 

• Translate the optimized logic level description to a gate level description using 

logic cells from the specified technology library. 

• Optimize the gate level description using cell substitution to meet the specified 

area and timing constraints. 

• Produce a gate-level netlist of the optimized circuit with accurate cell timing 

information.  

HDL design synthesis finishes with �post-synthesis� simulations to verify that 

the gate level circuit fully provides the desired functionality and meets the appropriate 

timing requirements. 
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(3) Design implementation involves steps using layout tools [31] to: 

• Create a floorplan for the IC from the gate-level netlist for the design including 

a default group of cells, I/O ring connected, and defined placement sites for all 

the cells. 

• Place core cells by using forward-annotated timing constraints information 

from the synthesis step. 

• Add clock buffer cells and nets to create a balanced clock tree, which exceeds 

the parameters specified in synthesis. 

•  Generate a �golden� netlist of the design to be used for final verification. 

• Verify the functionality of the �golden� netlist. 

• Route the power, clock, and regular nets of the design. 

• Functionally verify the physical (placed and routed) layout of design that 

contains the same instances, nets, and connectivity as the verified �golden� 

netlist. Alternatively, do the layout-versus-schematic (LVS) verification. 

• Execute the design rules check (DRC) of the layout and fix DRC errors. In the 

VLSI design rules, circuit geometry is specified based on methodology. The 

unit of measurement can easily be scaled to different fabrication processes as 

semiconductor technology advances. Each design has a technology-code 

associated with the layout file. Each technology-code may have one or more 

associated options added for the purpose of specifying either (a) special 

features for the target process or (b) the presence of novel devices in the 

design. This ASIC implementation is based on the 0.18µm CMOS technology.  

• Identify nets with antenna rule check (ARC) and perform the advanced DRC 
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under manufactory requirements. Antenna rules deals with the processes which 

may cause gate oxide damage such as: (a) expose polysilicon and metal 

structures, (b) connect to a thin oxide transistor, (c) collect charge from the 

processing environment (e.g., reactive ion etch), and (d) develop potentials 

sufficiently large current to flow through the thin oxide. Failing to consider 

antenna rules in the design may lead to either reduce performance or induce 

damage in the transistors exposed process. The chip may be totally failure if 

the antenna rules are seriously violated. 

Design implementation is completed with the physical verification on the chip 

layout which should have DRC and ARC error free. The final chip can now be 

fabricated. This stage is the black box process in the digital flow for 0.18µm CMOS 

technology. 

The TCM codec chip implemented in this project follows the above ASIC 

design digital flow. Next section describes the overall architecture of this chip. 

 

4.2 Top Module Architecture of the TCM Codec ASIC Chip  

Figure 4.2 shows the overall architecture of the TCM encoder/decoder chip 

implemented in this project which includes 2D and 4D TCM schemes. In the encoder, 

the block labelled �tcmencoder2d� performs the 2D TCM encoder architecture 

described in Section 3.1.1. The block labelled �tcmencoder4d� performs the 4D TCM 

encoder architecture described in Section 3.1.2. 
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Figure 4.2 Overall ASIC chip architecture of the TCM codec 
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 In the decoder, both 2D and 4D share the same block labelled �decoder16�, 

which executes the convolutional decoding process described in Section 3.2.2. This 

block works at different timing cycle controlled by a �switch� signal. Meanings of all 

the I/O signals used in the codec will be described in Section 4.2.1. The block labelled 

�tcmdecoder2d� performs the de-mapping and the differential decoding processes for 

the 2D TCM decoder, while the block labelled �tcmdecoder4d� performs the de-

mapping and the differential decoding processes for the 4D TCM decoder. Details of 

these two blocks are described in Section 3.2.2. Section 4.2.2 will describe the 

remaining blocks in detail. 

 

4.2.1 I/O Signal Description 

Figure 4.3 shows the input and output signals for the TCM chip designed in this 

thesis. Some of the IO signals are not implemented in the finally chip due to the 

limitation in silicon area provided by CMC. 

TCM Codec

inde_ena
switch

bist_ena
input_data[15..0]

clk
rst

test_mode

out_enc[15..0]

out_dec[6..0]

test_out

 

Figure 4.3 I/O signals illustration of the TCM codec 

The �inde_ena� is a decoder enable signal which controls the input symbol for 

TCM decoder. When the control signal �inde_ena� is set to �1�, the TCM decoder will 

decode the symbol sequence coming from external input �input_data�, which is a 16-bit 
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data sequence for �tcmdecoder4d� and a low 8-bit data sequence for �tcmdecoder2d�. 

When �inde_ena� is set to �0�, the TCM decoder will decode the symbol sequence 

coming from the internal signal, which is the output of multiplexer 2 in Figure 4.2. 

The �switch� signal controls the function of the TCM codec chip. If the �switch� 

is �0�, the chip works in the 2D TCM scheme; if the �switch� is �1�, the chip works in 

the 4D TCM scheme. 

The �bist_ena� is a BIST enable signal which enables or disables the chip in 

BIST mode. If it is �0�, the output of multiplexer 1 (i.e. input of the encoder) takes 7 

LSBs out of the 16 bits �input_data�. If it is �1�, the output takes the pseudo input 

generated from the BIST block. 

The �input_data� is a 16-bit input signal of this chip. For general TCM 

encoder/decoder application, the external input symbol sequence for TCM encoder is 

the LSB 7-bits out of 16-bits �input_data� for both the 2D and 4D encoders. In the 

layout floorplan creating process, since the chip size is decided by PAD limited policy, 

which means optimizing based on the number of all I/O PAD and power PAD. In order 

to minimize the number of I/O PAD, the �input_data� signal used in the chip is 16 bits 

only when the 4D TCM decoder part requires to be tested. 

The �clk� is the global clock signal of this TCM codec chip. The �rst� is the 

reset signal of the chip; this is an active low signal, the system will reset if �rst� is �0�. 

The �test_mode� signal controls the chip transform its working status between 

normal codec function and scan test. When the chip is under scan test, all blocks related 

to the 4D TCM scheme will be forced to work at high frequency. That means if 

�test_mode� is �1�, the clock of all blocks related to the 4D TCM scheme will use an 
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external system clock; if �test_mode� is �0�, the clock of all these blocks will use the 

clock selected by the �switch� control signal. This signal is used to keep the scan test 

simple. Scan test is used to detect problems occurred at the time of fabricating and 

packaging.  

The �out_enc� is a 16-bit output signal of TCM encoder blocks. It is a mapping 

signal ready for 2D or 4D modulation. This �out_enc� signal is the output from 

multiplexer 2 in Figure 4.2 controlled by the �switch� signal. When �switch� is 0, only 

the 8-LSB out of �out_enc� is available for 2D modulation. 

The �out_dec� is a 7-bit output signal of the TCM decoder block. It is the 

recovered original input signal. This signal sequence should be same as the 7-LSB of 

�input_data� signal sequence if the chip functions properly. 

The �test_out� is an output signal indicating the result of BIST. If it is �1�, it 

shows the TCM codec functional self-test passed. If �test-out� is �0�, there are problems 

existing in the system, which could be design and/or fabrication faults. Section 4.2.2.3 

will describe in detail the BIST of this design. 

 

4.2.2 Individual Block Description 

For the 2D TCM scheme, the 7-bits input data is directly coded through 

�tcmencoder2d� block at full-baud rate. For the 4D TCM scheme, the input of encoder 

spans over two consecutive symbol periods. These two-symbol bits are converted into 

parallel m-tuples at half of the baud rate. As described in Chapter 3, Section 3.2.2.2, the 

4D TCM coding system requires more logic blocks compared to the 2D TCM system. 

The block �input4d� performs two 2D signals to one 4D signal conversion. The 



 72

�output4d� performs the reverse process. The �clk_div� implements the half-baud rate 

clock conversion. This clock is used for all the blocks within the 4D TCM scheme. The 

next subsections describe these blocks in detail. 

 

4.2.2.1 The Multiplexers 

There are seven 2-to-1 multiplexers (MUX) used in this chip top module: 

• MUX 1 selects input signal for TCM encoder. It is controlled by the signal 

�bist_ena�. 

• MUX 2 selects the output from TCM encoder blocks �tcmencoder2d� and 

�tcmencoder4d�. It is controlled by the signal �switch�.  

• MUX 3 selects the input signal for TCM decoder. It is controlled by the signal 

�inde_ena�.  

• MUX 4 selects de-mapping symbol bits from �tcmdecoder2d� and 

�tcmdecoder4d�, which will be used in the convolutional decoding process. It 

is controlled by the signal �switch�.  

• MUX 5 selects the different clock for each TCM scheme, the external input 

clock (i.e. full-baud rate) is for 2D TCM scheme, test mode and input/output of 

the 4D scheme; the internal divided clock (i.e. half-baud rate) is used in the 4D 

TCM scheme. It is also controlled by the signal �switch�.  

• MUX 6 selects the clock for block �decoder16�, �tcmencoder4D� and 

�tcmdecoder4D�. It is controlled by the signal �test_mode�. In the case when 

the system is under the scan test, all the blocks of the chip work at the same 

clock rate. 
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• MUX 7 selects the output of TCM decoder blocks �tcmdecoder2d� and 

�output4d�. It is controlled by the signal �switch�.  

 

4.2.2.2 The Clock Divider  

Clock divider is the �div_clk� block shown in Figure 4.2. For the 4D TCM 

scheme implementation, the encoder and decoder work at half-baud rate, which means 

the data transmission rate is only the half of the 2D TCM scheme codec. Since the 

trellis states and structure are same in both 2D and 4D TCM scheme, if the data 

transmission rates are the same in both TCM codec systems, the throughput of the 4D 

TCM scheme will be double of the one in the 2D TCM scheme.  

If the input clock period is T, in order to get the new clock period 2T to control 

the 4D TCM codec, a clock divider is required. Figure 4.4 illustrates the signals of clock 

divider. 

Clock
Divider

rst
clk

div_clk
phase  

Figure 4.4 Clock divider signals illustration 

There is a D-Flip-Flop used to generate �div_clk� and �phase� signals inside the 

�Clock Divider� block. When �rst� is �0�, the DFF is initialized. Else when �rst� is �1�, 

the DFF works at positive edge of clock �clk� to invert the input of DFF. The signal 

�phase� is used for correcting the half phase deviation occurring when the two 

consecutive symbols are converted to one symbol in the �input4d� block and one 

symbol is converted to two consecutive symbols in the �output4d� block. Figure 4.5 

shows the waveforms of the clock divider. 
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Figure 4.5 The waveform of clock divider 

The �div_clk� and �phase� signals are the same but they are used in different 

locations of the chip. The �div_clk� signal is required to be �clean� to generate the 

clock tree in the chip layout process.   

 

4.2.2.3 The Built-In Self Test 

The �BIST� block is used for functionality self-testing of the chip, including 

both 2D and 4D TCM schemes. BIST is defined as a design-for-test (DFT) technique in 

which testing (test generation and test application) is accomplished through the built-in 

hardware features [28-29]. 

The BIST technique offers a number of advantages in chip design: 

• Fast and efficient: same hardware is capable of testing chips, boards and 

systems. At the system level, BIST is a cheap testing solution. 

• Testing during operation and maintenance. 

• Uniform technique for production, system and maintenance tests. 

• Dynamic properties of the circuit can be tested at speed. 
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• Support concurrent testing. 

• Can be used for delay testing as it can be used in real time. 

However, BIST technique also exposes some disadvantages: 

• Silicon area overhead: additional silicon area of the chip must be reserved for 

BIST circuitry. This increases the cost of the IC. 

• Access time: by adding additional test circuitry, it is necessary to add at least 

one extra level of logic operation between inputs and design chip circuitry, as 

well as a level logic operation at the output of the chip.  

• Requires extra input/output connection: BIST circuitry may require I/O pins to 

communicate with the outside.  

• Correctness is not assured: it is difficult to test the chip hardware under all 

conditions. Verifying correct operation of such hardware is a difficult issue. 

A BIST test structure used in this chip is a Linear Feedback Shift Register 

(LFSR). The LFSR produces a pseudo random symbol sequence. Therefore it is also 

called a Pseudo Random Pattern Generator (PRPG). The polynomial used in this BIST 

is 1+x14+x15. Figure 4.6 shows a PRPG based on this polynomial.  

1 2 1514131211108 976543

+
0I 1I 2I 3I 4I 5I 6I

1 1110 0000000000
initialization status data

 

Figure 4.6 The structure of LFSR 
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The 7-bit LFSR scrambler can be used to create a pseudo random 7-bit signal 

sequence. In order to create a longer non-repeat random sequence, a 15-bit LFSR 

scrambler is used in this project. The length of this random pattern is 215. The 7 bits test 

vector, 6543210 IIIIIII  is randomly selected from the 15-bit LFSR and it is fixed on this 

selection. It will be used as the test input signal sequence of the TCM codec system. 

The output of the TCM codec will be fed back to the BIST to be compared with the 

pseudo random symbols created by another randomizer LFSR-2D or LFSR-4D 

dependent on the �switch� signal. Figure 4.7 shows the architecture of the BIST block.  
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Figure 4.7 The architecture of the BIST block on the TCM codec chip 

LFSR-2D and LFSR-4D have the same structure as LFSR. They are initialized 

at different clock cycle based on the result of the counter-2D and counter-4D, which are 

the latency of the TCM codec for the 2D TCM scheme and the 4D TCM scheme, 

respectively. If the output signal �test_result� is �1�, the TCM codec chip functions 

properly; otherwise, the chip fails on its functional self-test. 
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4.3 Register Transfer Level Code in VHDL 

In this research, all register transfer level codes are written in VHDL. VHDL 

stands for VHSIC (Very High-Speed Integrated Circuit) Hardware Description 

Language [30]. It can be used for behavioral modeling of designs or for logic synthesis 

using either behavioral or structural descriptions. Since writing structural circuit 

descriptions is like trying to describe a circuit using text instead of a schematic editor, 

the advantage of VHDL is in its behavioral synthesis potential. For complex circuit 

designs like this TCM codec, writing RTL code in description language is more simple 

and convenient than drawing schematic circuits. 

Based on the architecture shown in Figure 4.2 and the behavior described in 

Chapter 3 and Section 4.2.2, the RTL codes of the top module and each block of the 

chip were written in VHDL. All the RTL codes were compiled and simulated using 

Cadence NC-Sim. Functional simulation result of the design performed as expected and 

will be described in Chapter 5.  

Increasing the speed of the chip is equivalent to shorten the length of its critical 

signal path. This can be achieved by using a technique called pipelining.  

 

4.4 Pipelining  

Pipelining refers to the partitioning of a process into successive, synchronized 

stages such that multiple processes can be executed in parallel. Depending on the 

granularity of the process, three types of pipelining techniques can be identified [28]: 

• Instruction pipelining partitions processes into stages of instruction fetch-

decode, operand-fetch, and execution. 
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• Intra-functional unit pipelining divides the execution unit (usually a 

combinational circuit) into several segments of equal delay time. 

• Inter-functional unit pipelining involves predefining a sequence of frequently 

encountered primitive operations such as multiplier or accumulator structure. 

In this TCM codec system, the intra-functional pipelining method is used. Extra 

registers are inserted to divide the execution path into several short paths. Pipelining 

techniques aim at improving system throughput. It allows digital synchronous system to 

be clocked at a higher rate.  

In digital communication systems, the throughput of the chip is defined as the 

number of bits that can be transferred by the system per second. Normally, it is the 

number of bit in data symbols times the system frequency. For example, if 8-bit 

symbols are processed through a 100MHz communication system, then the throughput 

of the system is 800MHz (i.e., 800Mbits/second). Generally, system frequency is 

determined by the propagation delay of the longest path in the pipeline segments (i.e., 

the critical timing path in the chip). The path starts from one register and ended at the 

next register. By using pipelining technology, extra registers are inserted into the critical 

path. The insertion shortens the path and decreases timing of the critical path; this 

results in an improvement of the system frequency and throughput. 

One drawback of the pipelining technique is, while the path gets shorter, the 

system latency gets longer because extra delays are introduced due to the increase in the 

number of shift registers. Latency refers to the number of clock cycles that the system 

takes to respond to the input, which means the time taken when the first input symbol 

entering the decoder to be restored at the output. 
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4.5 System Synthesis 

The Synopsys design compiler is used to perform the synthesis of the system 

RTL code. Design compiler is the core of the Synopsys synthesis software products. It 

provides constraint-driven sequential optimization and supports a wide range of design 

styles. The design compiler synthesizes a HDL description into a technology-dependent, 

gate-level design. Using design compiler defines the environmental conditions, 

constraints, compile methodology, design rules, and target libraries to achieve design 

goals. The TSMC 0.18µm CMOS technology library is used in this research.  

The synthesis process follows these general steps: 

• Read in the design and its sub-designs.  

• Set design attributes on the top-level design.  

• Set realistic timing or area goals for the design. 

• Run check-design to verify the design. Identify and correct any errors.  

• Perform design compiler optimization. 

• Run area and constraint reports to determine whether design goals are met.  

• Insert scan circuitry. 

• Perform final check and generate gate-level Verilog netlist.  

During the synthesis process, the scan chain is added into the chip. Scan chains 

are routes included on a chip for testing purposes. The Synopsys test compiler 

substitutes all sequential devices (i.e. flip-flops) with scan equivalents, and then 

connects them together to form a scan chain. Each scan chain will be reordered during 

layout place and route process to minimize routing based on layout floorplan placement. 
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The test compiler will then be used to create a set of test vectors which can detect 

�Stuck-At-1� and �Stuck-At-0� faults in the chip.  

�Stuck-At-1� and �Stuck-At-0� are two models of stuck-at faults for each cell 

pin in ASIC cell pin test. The measure of test quality is often based on the percentage of 

ASIC cell pin stuck-at faults that are detected. Cell output faults are interpreted as the 

output is stuck-at either the logical one or the logical zero state independent of the input 

condition. 

Other features such as vector compaction and fault coverage estimation are also 

performed. If basic design methods are followed, the fault coverage should obtain above 

90%. In industry, the higher the fault coverage, the fewer defective chips will be 

packaged and placed in products. In this designed chip, the fault coverage achieved to 

96%. Reducing the number of defective chips used at the time of initial testing (with the 

scan-based test) reduces the time and money spent on defective devices. Purpose of 

scan-based test is to detect problems created at the time of fabricating and packaging; 

the scan test does not intend to find design faults. 

The synthesis process also generates timing constraints of the design and a gate-

level netlist; these constraints information are used in Cadence layout tools to produce a 

chip layout. All the results of simulation and chip layout will be provided in Chapter 5. 
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CHAPTER 5 

RESULTS 

 

This chapter provides the simulation and hardware implementation results of the 

TCM 2D and 4D codec system. The research was accomplished in four stages:  

1. Using MATLAB to simulate the Viterbi algorithm combining with the use of 

Hamming distance and output look-up table. 

2. Using an Altera FPGA device to implement and simulate the codec in both 

functionality and timing analysis. 

3. Using Cadence NC-Sim to simulate system functionality, using Synopsys to 

synthesize hardware language code, and using Cadence tools to finish chip 

layout. 

4. Using lab equipment to test the final ASIC upon receiving. In addition, hardware 

implementation results in FPGA and ASIC are also compared. 

 

5.1 MATLAB System Simulation Results 

MATLAB is a simulation tool. It stands for "matrix laboratory" because the 

program is based on matrices to perform all the calculations in the simulation process. 

MATLAB is an integrated technical computing environment that combines numeric 

computation, advanced graphics and visualization, and a high-level programming 
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language. It has widely application areas as technical computing, digital signal 

processing and communication design, control design, image processing, test and 

measurement, financial modeling and analysis.  

In this research, Hamming Distance and output look-up tables are introduced 

into the Viterbi algorithm to simplify calculation and complexity in the decoding 

process as shown in Section 2.2.6 and Section 3.2.1. In order to test the feasibility of the 

algorithms and techniques, MATLAB code was written for the convolutional codec 

using the methods described in previous chapters. In this code, the Hamming distance 

and the decoder output look-up tables were built into matrices. The input sequence 

initialized into two matrices represented the two-bit input of the convolutional encoder. 

The convolutional code rate was 2/3. Logic functions from the MATLAB library were 

used in the code.  

MATLAB simulation was run using the written code. Figure 5.1 shows the input 

sequence of the TCM encoder.  Figure 5.2 shows the codeword sequence at the output 

of the encoder. This codeword sequence was then entered to the decoder to decode the 

sequence and retrieve the original input. The output sequence from the TCM decoder is 

shown in Figure 5.3.  

The written MATLAB code was simulated to verify the use of look-up table in 

the Viterbi algorithm to decode the convolutional code in the TCM codec. The 

simulation stored data in one-dimensional matrix and did not consider any timing 

requirement therefore there were no delays shown in simulation result graphs. This 

MATLAB simulation is different from hardware description language simulation in 

which HDL simulation shows timing and latency of the system. MATLAB simulation 
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simply verifies the feasibility of the algorithm and functionality of the codec. 
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Figure 5.1 Input sequence of the convolutional encoder 
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Figure 5.2 Codeword sequence of the convolutional coding 
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Figure 5.3 Output sequence of the convolutional decoder 
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The input used two-bit symbol sequence. The output result in Figure 5.3 was the 

same as the input signal sequence in Figure 5.1. This indicated that the decoder 

successfully recovered the original signal sequence. It also demonstrated that the 

simplified algorithm is practical. This simulation confirmed the method and correctness 

of the look-up tables described in Chapter 3. 

Next section describes the implementation results in FPGA, which further 

confirms the feasibility of hardware implementation of the algorithm and the technique 

developed in this research.   

 

5.2 FPGA Prototype Implementation Results 

As the simplified algorithm was verified through MATLAB simulation, a 

synthesizable VHDL code was written in particular for the Altera FPGA device 

compiler. The hardware language code for the TCM encoder/decoder was based on the 

architecture described in Chapter 3 for 2-dimensional and 4-dimensional TCM codec. 

The VHDL code was imported into the Altera MAXPLUS II and compiled. 

After successfully compiled, a netlist was generated and the design was fit into an 

automatically chosen FPGA device. The compiler generated a report to indicate the 

amount of hardware required to implement the codec. Timing analysis was performed 

to determine the operation frequency (i.e., data rate) of the codec for that particular 

FPGA device. Finally, a simulation was run based on that device to perform 

functionality and timing analysis. MAXPLUS II provides a powerful simulation tool 

which allows the user generate input data and change value of the signal at any time 

interval of the simulated waveforms. Table 5.1 shows the overall results for 2D and 4D 
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TCM codec system on Altera FPGA device. The operation frequencies are based on the 

fastest simulation clock using MAXPLUS II.  

Table 5.1 FPGA implementation results 

2D TCM codec 4D TCM codec  
Encoder Decoder Encoder Decoder 

Altera FPGA device 
name 

EPF10K20
RC240-3 

EPF10K10L
C84-3 

EPF10K10L
C84-3 

EPF10K10L
C84-3 

Number of Logic Cells 21 162 38 432 
Amount of Memory 0 64 0 64 
Operation frequency 100MHz 20MHz 125MHz 33MHz 
Input pins 9 14 16 22 
Output pins 8 10 16 17 
Data bits 7 8 14 16 
Throughput (Bit rate) 700Mbps 160Mbps 1.75Gbps 528Mbps 

 

After confirming the feasibility of the algorithm and architecture from software 

simulation and FPGA implementation, the TCM codec was implemented into an ASIC 

using the ASIC design process described in Chapter 4. Next section shows the details of 

the implementation results. 

 

5.3 ASIC Implementation Results 

The TCM codec was implemented into an ASIC using TSMC 0.18µm CMOS 

technology. This TSMC technology is a single poly, six metal layers process. The 

technology not only achieves minimum drawn gate length of 0.18µm, but also layout 

and interconnects design rules that are appropriate to the new generation of chip design 

and fabrication. This technology has the tightest metal pitches with 0.46µm contacted 

metal layer 1, 0.56µm contacted metal layers 2 through 5, and 0.90µm on metal layer 6. 

These pitches provide a higher gate density and more die per wafer, which leads to a 
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lower cost per chip. The 0.18µm CMOS technology offers the optimal combination of 

density, speed and power to serve a broad range of computing, communications and 

consumer electronics applications. This technology is suitable for IC design in various 

microelectronics areas such as analog, low power, RF, and full custom digital circuits. 

The recommended nominal supply voltages for this technology are 1.8 and 3.3 volts.  

In the ASIC implementation, the time delay controls the overall operation 

frequency of the device. This delay is determined by the longest time of the critical path 

in the design. Pipelining is a technique to reduce delays of these critical paths. 

Pipelining was inserted in this design to improve decoding speed and data integrity.  

As shown in the ASIC design flow (Figure 4.1, Section 4.1), Cadence NC-Sim 

was used to complete the RTL code simulation in the first step. Next, Synopsys 

synthesis tool was used to synthesize the RTL code and generate a Verilog gate-level 

netlist. This netlist was then used in the layout creation. Cadence physical design 

planner (PDP or DP) was used to accomplish the floorplan initialization, I/O cells 

creation, group�s placement definition, power planning, and clock tree generation. After 

the clock tree was successfully generated, another Verilog netlist was generated and this 

netlist was used to simulate the functionality of the codec again. Both Verilog netlist 

simulations passed and verified that the design function properly.  

Cadence silicon ensemble (SE) interfaces was used as a tool to route power, 

clock, and regular nets of the design. After routing, SE exported the design to a design 

exchange format (DEF) file. This file was then imported into the Cadence design 

framework II (DFII) environment to perform layout-versus-schematic (LVS) and design 

rule check (DRC) verifications. The final step on the chip layout is metal slotting, logo 
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adding, and streaming out the design into a GDSII database for fabrication in 0.18µm 

CMOS. The GDSII stream format is the standard file format for transferring/archiving 

2D graphical design data. The file contains a hierarchy of the design structures; each 

structure contains layout elements such as boundary/polygon, path/plotline, textbox, 

structure references, and structure array references. These elements are situated on 

different layers. The stream is a binary format that is platform independent because it 

uses internally defined formats for its data types. The next sections provide results of 

each stage in the ASIC implementation flow. 

 

5.3.1 Register Transfer Level Code Simulation 

The RTL code for the TCM codec was written based on the architecture 

described in Section 4.2. The code was simulated using Cadence® NC-Sim. This 

simulator is an optimum verification solution for system-on-a-chip (SOC) design. It is a 

flexible and adaptable simulator because it provides the freedom to transparently mix 

Verilog® and VHDL, and other interface standards. A test bench provided the system 

clock and reset signals. Inside the test bench code, values of input signals shown in 

Figure 4.3 were changed each time before compiling the testbench, NC-Sim executed 

the testbench and provided the following simulation results: 

1. 2D BIST simulation (switch = �0�, bist_ena = �1�) 
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2. 4D BIST simulation (switch = �1� , bist_ena = �1�) 
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3. 2D real input simulation (switch = �0� , bist_ena = �0�) 
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4. 4D real input simulation (switch = �1� , bist_ena = �0�) 
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In the signal waveforms from the simulation results, the �enin� signal indicated 

the output of the MUX 1 in Figure 4.2 described in Chapter 4. The LSB 7-bits out of 

16-bit external input data were taken by �enin� when �bist_ena� was �0�. When 

�bist_ena� was �1�, �enin� took the random data generated from �BIST� block. All 

values shown for the �input�, �enin� and �output� were hex numbers.  

These simulation results verified the design functionality. The output data 

sequence (i.e., �output� signal) was the same as the input data sequence (i.e., the �enin� 

signal) after an encoding/decoding latency. The RTL functional simulation results are 

summarized in Table 5.2. When BIST is active and functions properly, the �test_out� 

should be always �1�. If �Stuck-At-1� error happened on this signal during fabrication, 

the scan test should detect the error. As shown in Figure 4.7, the BIST block generates a 

random symbol sequence therefore it has another extra clock cycle to input the 

sequence into the encoder. 

Table 5.2 RTL code simulation results 

Functional simulation Result Latency 

2D BIST simulation Pass, test_out = �1� 36 clock cycles  

4D BIST simulation Pass, test_out = �1� 76 clock cycles 

2D real input simulation Pass, signal recovered after latency 35 clock cycles 

4D real input simulation Pass, signal recovered after latency 75 clock cycles 
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5.3.2 Register Transfer Level Code Synthesis 

After RTL functionality verification, the HDL code for the system was 

synthesized using Synopsys. Synopsys synthesis tool includes features such as synthesis 

for virtually any clocking scheme, automatic constraint derivation, embedded point-to-

point timing analysis, and industry-supported links to layout. Section 4.5 introduced 

some information of the synthesis.  

As a core of Synopsys synthesis tool, design compiler optimizes logic designs 

for speed, area, and routability. In the TCM codec synthesis process, this optimization 

was performed for hierarchical combinational or sequential circuit design descriptions. 

The design compiler synthesized the circuit and put it in the TSMC 0.18µm CMOS 

technology.  Table 5.3 shows the physical results of the chip top module synthesis 

before scan insertion. 

Table 5.3 Synopsys synthesizes physical results of the chip  

Parameters Value Remark 
Number of ports 30 Not including power and scan pins 
Number of nets 1887 Wire 
Number of cells 1026 Total logic cell 
Number of references 38 Single logic cell 

Total cell area (µm2) 337,265.3125 Combinational and non-combinational 
area without optimization. 

 

The synthesis area shown in Table 5.3 is for the core area only (i.e., without 

considering area required for the I/O pads). This area is an estimation result without 

considering optimization of the cell placement and route. The finalized chip area will be 

report in next section after the chip layout is generated. 
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From the synthesis timing report, the critical path of this codec chip was found 

in the decoder block. A critical path is the longest path between two shift registers. 

Timing of the critical path decides operation frequency of the entire chip. A 6.9ns data 

arrival time was reported after synthesis. This time indicated that the highest frequency 

of 2D TCM codec is 144MHz and 289MHz of 4D TCM codec without any the I/O pad 

delay (i.e., I/O pad delay is extra). These operating frequencies result in a decoding 

throughput of 1.008Gbps for a 7-bit symbol sequence in the 2D codec and 2.023Gbps in 

the 4D codec. However, for the current 0.18µm CMOS technology, there is a delay on 

the I/O pad in the order of 10ns provided in the design library; therefore the optimal 

frequency of the chip will be in the range of 59MHz (2D) and 74MHz (4D). Delay of 

the I/O pads reduces the throughput of real chip to 472Mbps for the 2D codec and 

1.184Gbps for the 4D codec. This data rate is still faster than FPGA synthesis results for 

the decoder shown in Table 5.1. Table 5.4 provides the comparison of the synthesis 

results between the FPGA and ASIC TCM decoders. The ASIC achieves a two fold 

improvement in the decoding speed. All these results are simulation results. FPGA 

device used here is the Altera EPF10K10LC84-3. ASIC implementation is using 

0.18µm CMOS technology. The results provided here are FPGA and CMOS technology 

dependent.  

Table 5.4 The synthesis results of FPGA and ASIC TCM decoder 

ASIC FPGA TCM 
Decoder Without bonding pad With bonding pad EPF10K10LC84-3 

2D 144MHz 59MHz 20MHz Operation 
frequency 4D 289MHz 74MHz 33MHz 

2D 1.008Gbps 472Mbps 160Mbps Throughputs 
(Bit rate) 4D 2.023Gbps 1.184Gbps 528Mbps 
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5.3.3 Layout Generation  

After synthesis, the design is converted to a gate-level Verilog netlist from the 

RTL code. A Verilog test bench was written to generate data and timing in order to run 

the gate-level netlist simulation.  The netlist of this chip was tested with a Verilog test 

bench. Simulation results obtained were the same as the results in Section 5.3.1. This 

outcome verified functionality of the gate netlist. 

The successfully simulated gate-level Verilog netlist was imported into Cadence 

PDP for physical layout. The physical placement started with the creation of a design 

floorplan. Creating a proper I/O floorplan is one of the most critical stages in the digital 

design process. At the floorplan creation stage, power pads require to be added to the 

design. As shown in Figure 4.2, a total of 46 Input/Output pins are required, not 

including scan/BIST I/O pins. After scan insertion, there are three more I/O pins added 

for scan test which are the scan test input (test_si), the scan test enable (test_se) and the 

scan test output (test_so). Considering VDD and VSS pins necessary to power the chip, 

4 pairs of ring power pads and 4 pairs of core power pads were inserted. The number of 

ring power pads is determined by a rule of thumb of one pair of power ring for every 4-

6 output pins. In addition, using the rule of thumb of 1mA per micron of metal width 

and 40-micron wide power connections are used, four pairs of core power pads should 

allow for an average flow of 160mA of current to the core. This comes to the total of 65 

I/O pads required for the chip. Since the chip area was based on the pad-limited policy 

and the area granted by CMC was not sufficient for all these 65 pads, 16 output pins of 

the encoder were eliminated in the final chip lay out for fabrication. At the final stage, 

only 49 pins were put in the ASIC, including 30 I/O pins, 3 scan test pins and 16 power 
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pins. 

In the floorplanning, a default group of cells was created. An I/O ring is 

connected by abutment and the placement sites for all the cells are defined. After 

floorplanning, PDP uses forward-annotated timing information from Synopsys 

synthesis to place the core cells. This placement is optimized. Hence the core area of all 

the cells connection is smaller than the total cell area reported in Table 5.3. Once the 

cells were placed, a clock tree was created at this stage. Creating the clock tree is to add 

clock buffer cells and nets to create a balanced clock tree which meets timing 

parameters specified in the synthesis.  

At this point, the PDP generated a �golden netlist�. The netlist was then 

simulated again to ensure the clock tree generation did not alter the netlist. This �golden 

netlist� was used as a schematic when the final layout was verified with automatic 

layout-versus-schematic (LVS) at the end of the design cycle. Then the placed design 

was imported into the silicon ensemble environment to route the power, clock, and 

regular nets of the design. 

After placed and routed, the Cadence DFII tool was used to perform LVS and 

DRC check; both the LVS and DRC tests passed at this step. Then the GDSII format 

file was streamed out and sent to CMC to perform the ARC and DRC checks.  Finally, 

bonding pads were added to the layout. Figure 5.4 shows the chip layout before sending 

to TSMC for fabrication.  

The optimized IP core layout dimension is 971.423µm x 1138.56µm (an area of 

1.1mm2 shown in the centre of Figure 5.4). After adding bonding pads, the final chip 

layout has a dimension of 1591.6µm x 2091.6µm (or an area of 3.3mm2). The core area 
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is 33.22% of the final chip (i.e., a utilization of 33%). Most of the area in the layout is 

used for routing the 49 I/O and bonding pads. 

  

 

 

Figure 5.4 Final layout of the TCM codec ASIC 

 

 

 

Bonding 
pad 

I/O padLogo 
(metal 6) 

Routing 
wire 

Core  
Power 
Pad 

Ring 
Power 
Pad 

Core  
Area 



 98

5.4 The Fabricated TCM Codec 

Figure 5.5 is a micrograph of the fabricated ASIC received from CMC. This 

photograph was taken from a die. The picture shows the structure is similar to the final 

layout in Figure 5.4. 

 

 

Figure 5.5 Photograph of the TCM codec chip with bonding pads 
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The fabricated TCM codec ASIC was packaged using the standard 68CPGA 

package. The 68CPGA package has 68 pins with through hole pin type. The cavity size 

is 8.89mm x 8.89mm or 350mils x 350mils. Figure 5.6 shows the 68CPGA-bonding 

diagram and pin out diagram. The third empty circle in the bottom view left top corner 

indicates pin #1 location. 

52

68

60

34

18

26

1

DIE

17
354351

 

Bonding diagram                       

6 8

5 7

2 4

1 3

10 12

9 11

14 16

13 15

17

18 19

20 21

22 23

24 25

26 27

28 29

30 31

32 33

35 34

68

36

67 66

65 64

63 62

61 60

59 58

57 56

55 54

53 52 39 37

40 38

43 41

44 42

47 45

48 46

49

5051

BOTTOM
VIEW

 

Pin out diagram (bottom view) 

Figure 5.6 68CPGA pin bonding and pin out diagram 

 

5.5 Testing Results 

Functional testing aimed to determine the ASIC functionality which includes 

power-up self-test (i.e., to verify the chip is working using BIST), decoder function test 

and encoder/decoder function tests. These tests were performed in the lower clock rates 

(less than 10MHz). The tests were set up using an FPGA and various testing equipment. 

Figure 5.7 shows the test set-ups. The FPGA generated data and signals required to 

operate the ASIC. The adaptor was used to convert the TTL outputs from the FPGA 

(i.e., 5V) to the 3.3V inputs of the ASIC. A logic analyzer was used to capture the input 
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and output waveforms. Power consumption was measured to determine the ASIC power 

requirement. The average power consumption was 19.8µW when connected to a 3.3V 

power supply. However, this measurement does not indicate the actual power 

consumption because the faster the device run, the more power it draws.  

FPGA Adapter ASIC
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sys_clk

sys_rst

data
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Figure 5.7 Functional test set-ups 

The FPGA was used to generate the clock and reset signal for the ASIC. A 16-

bit counter implemented in the FPGA was used to generate the data sequence. The data 

sequence was recovered from the output of the ASIC. This indicated that the data 

sequence go through the encoder and the decoder; the data was encoded and then 

decoded correctly by the codec. Unfortunately, at higher frequency, the output of the 

codec was not stable. In addition, the BIST was not passed when the chip was powered 

up and the switches were set properly for the built-in self-test. Figure 5.8 and Figure 5.9 

show the signal waveforms captured by the logic analyzer. The waveforms show the 

results for both 2D and 4D functional testing when using the input data sequence 

generated by the FPGA.  
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Figure 5.8 Functional testing for 2D scheme 

  

 

Figure 5.9 Functional testing for 4D scheme 

The functional testing of the ASIC was performed at a 3.125MHz clock. 

Because of the stability problem of the testing results, the chip could not be tested fully 

to provide timing results. The high frequency testing was not performed successfully at 

this time. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORKS 

 

This chapter provides the research summary, concludes the thesis, and 

recommends future investigations for this project. 

 

6.1 Research Summary 

This research introduces concepts and applications of the trellis-coded 

modulation. The research focuses on algorithm simplification and hardware 

implementation of a high-speed TCM encoder/decoder; the device is an essential part to 

build a complete wireless communications system. The research is finalized with the 

accomplishment in the design of a TCM codec ASIC. The codec was fabricated using 

current available technology (the 0.18µm CMOS). This research studies methods that 

used in TCM codec system, introduces and develops the use of look-up tables in the 

Viterbi algorithm. The research also provides architecture of a high-speed TCM codec 

chip for both 2-dimensional and 4-dimensional mapping used in the 256QAM system. 

The architecture can be modified to extend to the other modulation techniques. 

The research started with the developing of the look-up table concept and 

introduced it into Viterbi algorithm to decode the convolutional codes. The modified 
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algorithm was then simulated in MATLAB to verify the algorithm feasibility. 

MATLAB simulation of the convolutional encoder/decoder successfully recovered 

input signals. Once the simulation results described in Chapter 5 confirmed the methods 

was feasible, hardware description language code was then written to describe the codec 

in order to implement the algorithm in hardware.  

VHDL register transfer level codes were used to implement a standard TCM 

encoder and the novel architecture of the TCM decoder into an FPGA prototype. First, 

the TCM codec was designed for 2-dimensional modulation including a 16-state, radix-

4, rate=2/3 convolutional codec and implemented using Altera FPGA developing tool, 

the MUXPLUS II. Using this FPGA developing tool, RTL code of the TCM codec was 

synthesized, compiled, fitted and simulated successfully into FPGA devices to verify 

the algorithm and show that the algorithm can be implemented successfully into 

hardware.  The compilation and simulation results in Altera MAXPLUS II further 

confirmed the advantage of using look-up tables to increase speed of the decoding 

process, to increase decoding throughput, to reduce hardware complexity, and again, to 

verify the feasibility of the novel architecture to decode convolutional codes in TCM.  

Finally, VHDL RTL code was optimized for ASIC implementation. At this time, 

a top level of the chip fulfilled the TCM codec including the 2-dimensional and 4-

dimensional parts was synthesized; a built-in self-test block was also included into the 

chip for power-up testing purpose. Chapter 4 describes in details the overall architecture 

of the implemented TCM codec chip into ASIC. The RTL code was then simulated and 

synthesized in ASIC developing tools, the Cadence and Synopsys. After successfully 

simulated the chip functions and timing, an IC layout was created using Cadence digital 
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layout tool for 0.18µm CMOS technology. All the necessary stages required in the 

design and verify layout were carefully considered to ensure a functional ASIC. The 

area of final chip layout is 3.33mm2 including 49 bonding pads. Thank to the support 

from CMC, the chip was successfully designed and fabricated through TSMC. The final 

device can be tested to verify its timing and functionality before inserting into a 

complete communications system.  

The functional testing of the fabricated chip was completed at a low data rate. 

The built-in self-test did not executed successfully. The input signal into the codec was 

recovered during the test; however the chip was not working stable at high frequencies. 

Due to the instability of the chip at high data rate, the timing testing has not been 

accomplished. 

 

6.2 Conclusions  

The TCM codec chip implemented in this research utilizes the advantages of 

simplification and speed enhancement through the use of look-up tables. In addition, 

parallel processing and pipelining are also used to further increase decoding 

throughputs. The final TCM codec includes a TCM encoder with mapping for 2-

dimensional and 4-dimensional modulations and a TCM decoder with a 16-state, radix-

4, rate=2/3 Viterbi decoder. The implementation in 0.18µm CMOS technology yields a 

simulation decoding iteration rate of 289MHz under mapping for 4-dimensional 

modulation condition. This operating frequency converts to a decoding data rate of over 

1Gbs. The real speed of the chip is less than 289MHz due to the long delay of the 

available bonding and I/O pads in the fabrication and packaging processes at TSMC.  
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The research verifies that the use of look-up table will eliminate the circuits 

which are used to calculate branch cost and path cost in the Viterbi decoder. Look-up 

tables not only simplify the circuit but also reduce the core area of the device. The 

designed decoder employs parallel structure in its architecture. This structure requires 

higher silicon area than serial structure; however it efficiently increases decoding speed. 

In addition, the rational use of shift registers in memorizing the delay state conjunction 

and the realization of pipelining achieve algorithm optimization and increase decoding 

iteration rate. 

As mentioned, one of the goals in the design of this codec is to integrate the 

codec into a single chip system (i.e., SOC). The core of the ASIC can be used as an IP 

core to incorporate into future development of any high-speed SOC applications using 

TCM.  

 

6.3 Future Work 

There is work to be considered in future research. The first thing is to further 

testing the timing of the fabricated ASIC. The timing testing is to determine the 

maximum optimum bit rate. More sophisticated equipments are required in this test; 

these testing equipment expect to operate at high speed which is in the range of 0.5Gbs 

to 1Gbs.  

Furthermore, in this thesis, the Viterbi algorithm uses the free Hamming 

distance to calculate the cost function instead of the free Euclidean distance. The reason 

to use Hamming distance is already explained in the thesis. If a look-up table based on 

Euclidean distance is used, the architecture of this chip requires to be redesigned. For 
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the use of Euclidean distance, received signal will be processed by the receiver which 

combines both demodulation and decoding in a single stage; the modulation 

architecture of TCM needs to be inserted into the codec. As the results, the choice of the 

code and the choice of the signal constellation must be considered together; the 

detection process will involve soft decisions rather than hard decisions. The use of 

Euclidean distance look-up table should yield a code performance of 2dB over the 

counterpart Hamming distance. 
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