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ABSTRACT 

 

Eutrema salsugineum is an extremophilic model plant for stress tolerance 

studies. This study aimed to characterize the photoacclimation mechanisms of the 

Shandong and Yukon ecotypes of Eutrema under two growth irradiance regimes low- 

(LL) and high-light (HL). The experimental tools and techniques included physical 

measurements, pigment extractions and CO2- and light-response curves to assess 

photoacclimation. The two ecotypes showed minor differences in the growth kinetics 

experiment across the light regimes utilized. Under LL the two ecotypes exhibited a 

similar performance in terms of growth with a slightly higher growth rate of the Yukon 

ecotype. When plants were grown under HL conditions growth was similar in both 

ecotypes for the first weeks, after that point the Shandong ecotype appears to grow at a 

faster rate compared to Yukon. The photosynthetic pigment analyses showed that the 

Shandong ecotype does not modify chlorophyll (Chl) a:b ratio as a photoacclimation 

mechanism in response to HL growth irradiance. This inability to modify pigment 

composition might make this ecotype prone to photoinhibition as observed in the results 

of this study. Conversely, the Yukon ecotype modifies its Chl a:b ratio in response to 

growth at a higher irradiance conferring this ecotype a higher tolerance to 

photoinhibition due to a photoacclimation of the light harvesting chlorophyll-proteins as 

a response to the increased growth irradiance. The gas exchange measurements 

showed a contrasting response of these two ecotypes. The Shandong ecotype exhibits 

higher rates of photosynthesis than Yukon when plants were grown under HL. It 

appears that Shandong is suppressing photorespiration as a photoacclimation 

mechanism to HL. The findings of this study confirm that these two ecotypes have 

different photoacclimation mechanisms to HL. 
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CHAPTER 1 

1.0 Introduction 

Eutrema salsugineum (Pall.) Al-Shehbaz and Warwick is a model plant for 

research on stress tolerance (Bressan et al. 2001; Inan et al. 2004; Wong et al. 2005; 

2006). This plant is closely related with the model plant Arabidopsis thaliana and both 

belong to the Brassicaceae family. As Arabidopsis and Eutrema are similar there is an 

advantage to use techniques developed for Arabidopsis  in Eutrema (Amtmann 2009). 

The Brassicaceae family has been subjected to taxonomic reclassification as new 

molecular and phylogenetic techniques appear. A lack of integration between disciplines 

lead to some erroneous names and re-grouping (Koch and German 2013). Amtmann 

(2009) pointed out some of the taxonomic erroneous classification as well. Thus, 

Eutrema salsugineum can be found in the literature as Thellungiella salsuginea and/or 

incorrectly as Thellungiella halophila. Some studies classified Eutrema as an 

extremophile plant owed to its capacity to grow and reproduce under extremely harsh 

conditions of cold (Griffith et al. 2007; Khanal et al. 2015), salinity (Bressan et al. 2001; 

Inan et al. 2004; Taji et al. 2004)  drought (Wong et al. 2005) and poor nutrient 

availability (Kant et al. 2008). Two main ecotypes have been used in abiotic stress 

studies. The Shandong ecotype from the Shandong province in North-Eastern China 

grows naturally in high-salinity coastal areas for that reason is considered a halophyte 

plant and with day lengths of 14 hours in the summer (Inan et al. 2004; Taji et al. 2004; 

Amtmann et al. 2005; Orsini et al. 2010; Yang et al. 2013). The Yukon ecotype from the 

Yukon Territory in Northwest Canada, grows in a semi-arid, subarctic region with low 

nitrogen content in the soil (Guevara et al. 2012) with day lengths as long as 21 hours in 

the summer (Griffith et al. 2007).This research aims to assess the photoacclimation 

mechanisms of two ecotypes of the extremophilic model plant Eutrema to different 

growth irradiance levels.  Plants were grown under controlled conditions with LL and 

HL, other parameters were based on the Yukon regime (Griffith et al. 2007).  

Plants can photoacclimate because photosynthesis itself is a dynamic process 

that can act as a sensor mechanism and maintain a photostasis under prevailing growth 

conditions. Photoacclimation prevents light-limitation under low and photoinhibition 

under high irradiance (Aro et al. 1993; Anderson et al. 1995; Huner et al. 1998).  To 
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assess the photoacclimation mechanisms of these two ecotypes at LL and HL growth 

irradiance, growth kinetics, gas exchange measurements, pigment determination and 

tolerance to photoinhibition of photosynthesis were studied.  

The majority of studies done on Eutrema have assessed salinity tolerance. 

However, there is a lack of research studying photosynthesis as a stress sensor and the 

responses to HL and the photoacclimation mechanisms of these plants to different 

growth irradiance (Wong et al. 2006; Stepien and Johnson 2009; Sui and Han 2014).  

A combination of multiple stress conditions can seriously affect plant growth and 

productivity and one of the most important environmental stresses can be exposure to 

high irradiance. The exposure to light levels in excess of the plants capacity to utilize 

this energy for metabolic processes results in a decrease in the rate of photosynthesis.  

Therefore, stress tolerant crops should be developed to maintain high crop yields, a 

further understanding of the mechanisms of photoacclimation of the extremophile plant 

Eutrema salsugineum can provide more information to develop stress tolerant crop 

plants. 

 

1.1 Hypothesis and Objectives 

1.1.1 Hypothesis 

The Shandong and Yukon ecotypes of Eutrema salsugineum exhibit different 

photoacclimation mechanisms to growth irradiance that reflects adaptation to 

contrasting environments. 

 

1.1.2 Overall Objective 

The general objective of this project was to elucidate and examine the 

photoacclimation mechanisms of the Shandong and Yukon ecotypes of Eutrema 

salsugineum to LL and HL growth regimes. 

 

1.1.3 Specific Objectives 

 To assess growth and development of the Shandong and Yukon ecotypes 

of Eutrema under LL and HL regimes. 
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 To determine changes in photosynthetic pigments of Eutrema in response 

to photoacclimation to LL and HL regimes. 

 To study photosynthetic and photoinhibitory responses of the Shandong and 

Yukon ecotypes in response to photoacclimation to LL and HL conditions. 

 

To achieve the above objectives, this study covers growth and development, 

pigment determination and photosynthesis of the Shandong and Yukon ecotypes of 

Eutrema under LL and HL regime with the same conditions of temperature, and 

photoperiod. Results are presented as described below. First a growth kinetics 

experiment compares different growth parameters of the two ecotypes across the 

different growth irradiance. The second main topic assesses photoacclimation of the 

two ecotypes in response to low and high-light determining the differential response in 

the photosynthetic pigments. And finally, a photosynthetic determination done to assess 

CO2 and light responses of the two ecotypes grown under LL and HL to study the 

photoacclimation mechanisms of these two ecotypes including photosynthesis, 

photorespiration and tolerance to photoinhibition.
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CHAPTER 2 

2.0 Literature Review 

2.1 Photosynthesis 

All life on earth depends directly or indirectly on the energy provided by the sun. 

Photosynthesis is a biochemical mechanism that allows the photosynthetic organisms to 

harvest this energy and transform it to usable forms. This process is similar in all 

photosynthetic organisms with subtle variations and involves a complex series of 

reactions and can be divided mainly in two phases: light reactions and carbon reactions 

(Malkin and Niyogi 2000; Lawlor 2001). The process is represented graphically in Fig. 

2.1.  The light reactions yield O2, ATP, and NADPH through photosynthetic electron 

transport and is regulated by proton gradient within the thylakoid (Hüner and Grodzinski 

2011). The carbon reactions or Calvin cycle, reduces CO2 to carbohydrate and uses the 

ATP and NADPH produced in the light reactions. The photosynthetic process takes 

place in the chloroplasts in the thylakoid membrane (Ensminger et al. 2006). 

 

2.1.1 Light Reactions 

The process starts when light is absorbed by pigments that are located in 

pigment-protein complexes within the thylakoid. These complexes form a photosystem 

(PS), each PS is constituted by about 250 Chl molecules. Most of these chlorophyll 

molecules form the antenna. LHCs are divided according to the photosystem that they 

are associated. LHCI is associated with PSI and LHCII with PSII. The reaction centres 

(RC) are inside the core complex. Only special forms of Chl a can form RC. The other 

type of pigments are accessory and form arranged groups of light-capturing units acting 

as antennas to capture photons (Lawlor 2001). The energy absorbed by the antennae is 

transferred to the reaction centers of PSI and PSII (Croce and van Amerongen 2013).   

The RC are part of the electron transfer chain that connects the two 

photosystems and also where the light energy is transformed into chemical energy. RC 

can be divided according to the chemical nature of the electron acceptors. PSII has a 

quinone type acceptor also known as Q-type and PSI has an iron-sulfur acceptor also 

known as Fe-S type acceptor (Caffarri et al. 2014).The PSII reaction centre is a 

multisubunit protein supercomplex that is integral in the thylakoid membrane. The PSII 
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Figure 2.1 General diagram of light and carbon reactions of photosynthesis (from Baker 

2008). Cyt bf, cytochrome b6f complex; Fd, ferredoxin; PC, plastocyanin; PQ 

plastoquinone; PQH2, plastoquinol; PSI, photosystem I; PSII, photosystem II; Rubisco, 

ribulose 1,5-biphosphate carboxylase/oxygenase; RuBP, ribulose 1,5-biphosphate. 
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The excitation energy provided by the sun causes a charge separation in the 

PSII RC, this energy is used to drive photochemistry and the linear electron transport 

begins at P680. The excited P680* donates and electron to pheophytin that forms a 

P680+ and pheophytin-, this charge separation is known as photo-oxidation when an 

electron is transferred from P680 to QA that is bound to the D1 reaction centre, P680+ is 

a strong oxidant and accepts an electron from water of the oxygen evolving complex 

(Minagawa and Takahashi 2004). QA is the first stable quinone acceptor to produce a 

plastosemiquinone QA
-. The electron then is transferred to the second quinone acceptor 

QB that is bound to the D2 reaction center polypeptide and generates the semiquinone 

QB
-. (Malkin and Niyogi 2000; Hüner and Grodzinski 2011). A second electron can be 

accepted by the quinones and a fully reduced QB
2- can be associated with two protons 

from the stromal side of the membrane and produce a plastoquinol QBH2, after reduction 

and protonation this molecule leaves the PSII reaction centre complex to the thylakoid 

membrane and functions as a mobile electron carrier. QBH2 associates with Cyt b6/f 

protein complex and transfers two electrons to the b6/f complex and releases two 

protons into the thylakoid membrane creating an electrochemical difference between 

the thylakoid membrane and stroma (ΔpH) (Fig. 2.1) (Baker et al. 2007; Bowsher et al. 

2008; Malkin and Niyogi 2000). The cytochrome b6/f complex works as a plastoquinol-

plastocyanin oxidoreductase and transfers electrons from plastoquinol to plastocyanin 

and connects the two photosystems. Simultaneously with the electron transfer there is a 

translocation of protons across the membrane that facilitates a formation of a proton 

gradient that drives ATP synthesis. The PSI reaction centre is similar to PSII but the 

special forms of Chl a are known as P700 and it is a heteromultimeric pigment-protein 

complex associated with a light-harvesting complex (LHCI) (Lawlor 2000). PSI complex 

functions as a light-dependent plastocyanin-ferredoxin oxidoreductase. The reduced 

plastocyanin binds the PSI and the absorbed excitation energy then transfers electrons 

from plastocyanin to ferredoxin. PSI reduces NADP+ to NADPH by the action of 

ferredoxin and flavoprotein ferredoxin-NADP reductase (Fig. 2.1). This flux of electrons 

called linear electron flux then is coupled to proton release at the oxygen evolving 

complex, transporting protons across the thylakoid membrane establishing a proton 

motive force that drives the synthesis of ATP through the chloroplast ATP synthase by 
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chemiosmotic coupling (Mitchell 1966; Malkin and Niyogi 2000; Lawlor 2001; Cruz et al. 

2005). NADPH and ATP are later on used in the carbon reactions of photosynthesis to 

fix CO2 (Wilson et al. 2006). 

The energy absorbed through the photosynthetic apparatus has different fates; 

drive the photochemistry transferring electrons from the RC P680 to QA, as an 

alternative fate energy can be re-emitted as fluorescence by Chl a. Under normal 

circumstances, up to 3% of the absorbed light by chlorophyll molecules is re-emitted as 

fluorescence, or dissipated as heat by non-photochemical quenching (NPQ) (Horton et 

al. 2005; Wilson et al. 2006), changes in fluorescence yield are inversely correlated with 

the rate of photosynthetic electron transfer because these processes are in direct 

competition for excitation energy (Baker 2008; Eberhard et al 2008). All photosynthetic 

organisms exhibit chlorophyll a fluorescence, due to the photochemical properties of the 

molecule, and its role in the structure and function of the photosynthetic apparatus.  

Chlorophyll fluorescence measurements provide a sensitive, rapid, non-invasive 

and non-destructive method to assess photosynthetic responses, particularly the light 

reactions. Generally a loss or decrease in the maximum quantum yield of PSII 

photochemistry (Fv/Fm) is a reliable indicator of abiotic stress, such as photoinhibition 

(Ögren 1991; Krause and Weis 1991). 

 

2.1.2 Carbon Reactions 

The ATP and NADPH produced in the light reactions of photosynthesis then are 

consumed in the carbon reactions to reduce CO2 and produce a three-carbon 

compound, 3-phosphoglycerate (3-PGA) that is the first stable product of a multistep 

conversion of CO2 into carbohydrate. This pathway is commonly known as the Calvin-

Benson cycle. However, there are other metabolic pathways associated with 

photosynthetic fixation of CO2 that are dependent or associated with the Calvin-Benson 

cycle as can be diagrammatically observed on Fig. 2.1 (Taiz and Zeiger 2006). 

The Calvin-Benson cycle proceeds in three different stages and through 13 

steps: carboxylation of RuBP that forms a transient unstable six-carbon intermediate 

that remains attached to the enzyme then is hydrolyzed and yields two molecules of 3-

PGA. This reaction is catalyzed by the enzyme ribulose-1,5-biphosphate 
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carboxylase/oxygenase (Rubisco).  Rubisco activity is apparently activated indirectly by 

light. Rubisco activase is a light-dependent enzyme that uses free energy from ATP 

hydrolysis ensuring that the active sites are available (Perchorowicz et al. 1981). The 

electron transport chain from the light reactions leads to a movement of protons that 

creates a gradient across the thylakoid membrane that increases pH of the stroma from 

around 5.0 in the dark up to 8.0 in the presence of light (Hopkins and Hüner 2004). Light 

also is responsible for an increase in the free Mg2+ that helps with the stabilization of the 

carbamate during the carbamylation process (Stec 2012). The former described steps 

are required in the presence of light for the activation of Rubisco. The reduction of 1,3-

biphosphoglycerate by NADPH to glyceraldehyde 3-phosphate is catalyzed by 

glyceraldehyde 3-phosphate dehydrogenase. NADPH is oxidized to NADP+. The 

following step is regeneration of RuBP that allows the Calvin cycle to continue. Triose 

phosphate isomerase converts all the glyeceraldehide 3-phosphate into 

dihydroxyacetone phosphate, this reaction is catalyzed by the enzyme aldolase. The 

following step in the regeneration is the hydrolysis of fructose 1,6-biphosphate. This 

reaction is catalyzed by the enzyme fructose 1,6-biphosphatase and yields fructose 6-

phoshate. Transketolase removes two carbons from fructose 6-phosphate and add 

them to glyceraldehyde 3-phosphate producing xylulose 5-phosphate and erythose 4-

phosphate. The enzyme aldolase forms sedoheptulose 1,7-biophosphate and 

transketolase removes two-carbons from sedoheptulose 7-phosphate and transfers 

them to glyceraldehyde 3-phosphate to produce 5-phosphate and xylulose 5-phosphate. 

Ribulose 5-phosphate is formed from xylulose 5-phosphate by ribulose 5-phosphate 

epimerase, and ribose 5-phosphate by ribose 5-phosphate isomerase. The last step 

phosphoribulokinase phosphorylates RuP into RuBP, this is an irreversible reaction and 

consumes one ATP (Bowsher et al. 2008). 

Rubisco is able to act as oxygenase using the same substrate RuBP binding 

oxygen instead of carbon dioxide inhibiting the carboxylase reaction and beginning the 

photorespiration pathway (Hagemann et al. 2013). The products of this reaction are one 

molecule of 3-phosphoglycerate and 2-phosphoglycolate (Timm et al. 2012). 3-PGA can 

be integrated later on to the Calvin-Benson cycle. 2-PG and its derivatives glycolate and 

glyoxylate eventually are recycled into 3-PGA leading to a loss of carbon and nitrogen 
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(Ros et al. 2013). The enzyme Rubisco has a lower affinity for oxygen than to carbon 

dioxide, thus photorespiration is favoured under conditions of low CO2 or high O2 (Timm 

and Bauwe 2013). 

 

2.2 Photorespiration 

The photorespiratory pathway takes place in three organelles with more than 15 

enzymes and translocators being involved (Lawlor 2001). This is shown 

diagrammatically in Fig. 2.2. Photorespiration starts in the chloroplast with the oxidation 

of RuBP that yields one 3-PGA and one 2-PG that is dephosphorylated to glycolate 

through 2-phosphoglycolate phosphatase (Maurino and Peterhansel 2011). Later on 

glycolate diffuses to the peroxisome. In the peroxisome the glycolate derived from 2-PG 

reacts with O2 this reaction is catalyzed by the enzyme glycolate oxidase and yields 

glyoxylate and H2O2.  Hydrogen peroxide produces H2O and O2 by catalase. The 

glyoxylate is converted into two molecules of glycine by an aminotransferase reaction. 

In the mitochondrion the two glycine molecules are metabolized through a series of 

complex reactions by the enzymes glycine decarboxylase complex and serine 

hydroxymethyl transferase.  These reactions produce carbon dioxide, ammonia, 

NADPH and lead to the formation of serine.  This compound moves to the peroxisome 

by an aminotransferase reaction and is converted to hydroxypyruvate, reduced to 

glycerate via an NADPH-dependent reductase. NADPH is transferred from the 

cytoplasm to the peroxisome by a malate-oxaloacetate shuttle, and subsequently 

returned to the chloroplast to be converted to 3-PGA and re-enter the Calvin cycle (Taiz 

and Zeiger 2006). Photorespiration has been considered as a wasteful process in 

plants, but recent studies (Maurino and Peterhansel 2010; Bauwe et al. 2012) have 

shown that the photorespiratory pathway is an integral element of primary carbon 

metabolism which interacts with other pathways.  Wingler et al. (2000) suggests that 

photorespiration is a beneficial process that supports growth under stress conditions. 

Huang et al. (2014) reported that tobacco leaves exposed to high irradiance have an 

improved photorespiratory pathway that enables to speed up the recycling of 2-PG to 3-

PGA as a result there is a regulation in the balance between RuBP oxygenation and 

regeneration that helps modulating the RuBP content in chloroplasts. As a final finding 
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Figure 2.2 Main reactions of the photorespiratory pathway. This process takes place in 

the chloroplast, peroxisome and mitochondrion (From Taiz and Zeiger 2006). ADP, 

adenosine diphosphate; ATP, adenosine triphosphate; NADH, nicotinamide adenine 

dinucleotide. 
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they suggest that the enhancement of the photorespiratory pathway is essential for HL 

plants to maintain high photosynthetic rates. Timm et al. (2012) demonstrated with 

mutant plants of Arabidopsis that the overexpression of glycine decarboxylase 

considerably can increase the net rate of photosynthesis and that a close interaction 

exists between the photorespiratory and the Calvin cycle. 

 

2.2 Photostasis 

Photosynthetic organisms have a predisposition to maintain a balance between energy 

captured by the photochemical reactions and the energy used through biochemical 

reactions, balancing energy sources and sinks (Wilson et al. 2006; Murchie et al. 2009).  

This energy balancing is called photostasis (Öquist and Hüner 2003; Ensminger et al. 

2006). Energy balance is represented by the equation ϬPSII × Ek = Ʈ−1 (Falkowski and 

Chen 2003), where ϬPSII is the effective cross-section absortion of PSII, Ek is the 

irradiance at which the photosynthetic electrons are consumed by terminal electron 

acceptors. ϬPSII is temperature insensitive within the biological significant range. 

Conversely, Ʈ−1 is highly sensitive to temperature (Wilson et al. 2006; Hüner et al. 2013). 

When a metabolic sink cannot work at the same speed as the utilization of the absorbed 

energy plants need to use balancing mechanisms to restablish photostasis (Ensminger 

et al. 2006). To restore photostasis the plant needs to readjust the flow of  energy by 

decreasing the rate of energy in the source adjusting the cross section of PSII, 

balancing the excess of photons via NPQ, modulating the light harvesting complex 

associated with PSII, decreasing the incident irradiance or increasing the sink 

processes that are determined primarily by carbon and nitrogen metabolism or 

combining various of these mechanisms to rebalance energy (Hüner et al. 1998, 2003; 

Ensminger et al. 2006; Biswal et al. 2011). This process can be diagrammatically 

observed on Fig. 2.3. Low temperature and high irradiance can cause an over- 

acidification of the lumen and over-reduction in the redox status of the photosynthetic 

electron carriers, these mechanisms act as physiological indicators of high excitation 

pressure of PSII that can lead to photoinhibition if the energy source exceeds the sinks 

capacity (Ensminger et al. 2006; Wilson et al. 2006; Derks et al. 2015). 
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Figure 2.3 Diagramatic representation of photostasis. Photosynthetic adjustment is 

made to achieve photostasis when an imbalance is sensed. To balance the energy 

again plants increase the sink processes, decrease the rate of incoming energy or both 

(From Ensminger et al. 2006). ϬPSII, effective cross-section absorption of PSII; Ʈ−1, rate 

of electron consumption; Ek, irradiance at which the photosynthetic electrons are 

consumed by terminal electron acceptors. 

 

 

 

 



 

13 
 

Photoinhibition can be defined as a temporary decrease of the photosynthetic 

rates during stressful environmental conditions the reaction centre of PSII is inactivated 

and sometimes damaged (Melis 1999). Low temperature does not affect the light 

absorption but it slows down the enzyme-catalyzed reactions causing an over-reduction 

of PQ by creating an imbalance between sources and sinks. Therefore, low temperature 

and high Irradiance generally trigger photoinhibition decreasing the photosynthetic rates 

and photosynthetic activity of PSII (Gray et al. 2003). Photoinhibition can be chronic as 

a result of an exposure to excess of light. Under these conditions quantum efficiency 

and maximum photosynthetic rates are decreased and can be associated with the 

damage of the D1 protein of the reaction centre of PSII (Taiz and Zeiger 2006). PSII can 

transfer excitation energy from chlorophyll to oxygen if there is a time lag in 

hotochemical energy transformation causing an accumulation of reactive singlet 

oxygen. In a similar way if NADP is unable to accept electrons from PSI from the 

electron transport chain it may reduce oxygen to the superoxide radical or transfer 

electrons to water to form the hydroxyl radical and hydrogen peroxide. These 

compounds are known as reactive oxygen species and play an important role in cellular 

signalling. However, ROS can potentially cause oxidative damage to nucleic acids, 

proteins and lipids (Demmig-Adams and Adams III 2000; Eberhard et al. 2008; Ruban 

2009; Vishwakarma et al. 2014). 

Plants have evolved different mechanisms of photoprotection and these 

mechanisms can be classified depending on the time scale in the change of the 

environmental conditions. To avoid irreversible photodamage plants have ROS 

scavenging mechanisms, carotenoids are able to scavenge the triplet excited state of 

chlorophyll and singlet oxygen when triplet chlorophyll increases because a lag in the 

photochemistry of the plant is present (Carbonera et al. 2005; Eberhard et al. 2008).  

The photoprotective mechanisms help the plant to achieve again a photostatic balance 

and can be classified as photochemical that are mainly electron sinks and non-

photochemical (Murchie et al. 2015). Non-photochemical quenching refers to the 

thermal dissipation of an excess of energy in PSII (Horton and Ruban 2005; Belgio et al. 

2014).  qE is one of the main forms of NPQ and is activated by the acidification of the 

thylakoid lumen and is induced after an exposure to high light (Avenson et al. 2004). 
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The thylakoid acidification induces a change in the protonation of the PSII proteins that 

contributes to dissipate the excess of energy (Ruban et al. 2012). Protonation activates 

the xanthophyll cycle and triggers a reaction that is catalized by the enzyme 

violoxanthin de-epoxidase the de-epoxidation of the xanthophyll violaxanthin via 

anteraxanthin to zeaxanthin (Arnoux et al. 2009). Other important component of NPQ is 

the PsbS protein and was discovered screening Arabidopsis mutants with altered 

chlorophyll fluorescence quenching, PsbS is involved in the formation of qE (Li et al. 

2000). Mutant plants of Arabidopsis defectives in PsbS encoding for qE were more 

susceptible to photoinhibition under high irradiance (Li et al. 2002; Niyogi et al. 2005).  

Plants can balance the distribution of excitation energy between the two 

photosystems through state transitions this mechanism helps to maximize the efficiency 

of the light harvesting under low irradiance (Allen and Forsberg 2001; Mullineaux and 

Emlyn-Jones 2005). However, Lunde et al. (2003) found that state transitions does not 

appear to play an important role in Arabidopsis optimizing photosynthesis under low 

light conditions or as a protective strategy under high irradiance.  

The Mehler-Asada cycle scavenges the superoxide radicals formed from the 

splitting of water molecules at the oxygen evolving complex of PSII are transferred to 

oxygen (Asada 1999, 2000). The plastid terminal oxidase (PTOX) builds-up a proton 

motive force across the thylakoid membrane releasing water on the stromal side of the 

membrane accepting electrons from plastoquinol and reducing O2, PTOX has been 

demonstrated as a safety valve but typically is more abundant and active in young 

leaves (Peltier and Cournac 2002; Shirao et al. 2013). However, Stepien and Johnson 

(2009) reported a high capacity of PTOX under salt stress in mature leaves of Eutrema 

(Thellungiella halophila). The malate valve works to avoid an over-reduction of the ETC 

and chloroplast stroma exporting to the cytosol and mitochondria the excess of 

equivalents produced in the chloroplast (Scheibe 2004). A controlled oxidative damage 

in the plant compartmentalized can protect the rest of the photosynthetic apparatus as 

the D1 protein that is considered a “suicide protein” (Aro et al. 1993). Turnover of the D1 

protein is highly regulated and allows the plant to continue photosynthesizing under 

stress conditions. D1 suffers photooxidative damage then a reversible phosphorylation 

of several PSII core units, followed by a dissociation of LHCII supercomplexes, PSII 
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complex dimmers are monomerized, the monomers move to the stromal thylakoids from 

the granal stacks, finally there is a partial disassembly of the PSII core monomer and 

the damaged D1 protein is ubiquinated (Aro et al. 2005; Mulo et al. 2008; Tikkanen et 

al. 2013). Photorelocation does not involve any change in the stoichiometry of the 

photosynthetic machinery, instead there is a chloroplast movement as part of a light 

avoidance response (Kasahara et al. 2002; Morita and Nakamura 2012). Modifying the 

leaf angle allows the plants to reduce the light absorption to decrease the source of 

energy and maintain photostasis (Murchie et al. 1999). 

 

 2.3 Photoacclimation 

As mentioned before, the natural environment where plants grow possess a high 

variability that represents a challenge for the plants because they have to compete with 

others plants for light, water and nutrients and at the same time cope with biotic and 

abiotic stress (Hirth et al. 2013; Walters 2005). Plants have developed different 

mechanisms to sense the environment. When an imbalance alters the physiological 

homeostasis there is a readjustment to achieve again the homeostatic conditions 

activating cellular, physiological, and developmental changes acclimating within hours 

or days to optimize growth and reproductive capacity. Depending on the time scale of 

the change in the environmental conditions plants can use acclimation or adaptation if 

any alteration in the genetic material is involved (Hüner 1993; Walters 2005). According 

to Wilson et al. (2006) photoacclimation can be defined as any process that affects 

cellular energy balance that induces changes in the structure and function of the 

photosynthetic apparatus in response to growth changes. 

If the plant is not able to cope with the environmental changes that causes the 

stress condition can lead to serious damage or be lethal (Gaspar et al. 2002; Jenks and 

Hasegawa 2005; Larkindale and Vierling 2008).  

When plants are shifted from one growth irradiance condition to another, their 

capacity to adjust to the new conditions is often leaf-age dependent, mature leaves 

exhibit a lower degree of adjustment mainly due to morphological constraints as there is 

no possibility to alter the stomatal and vein density. As a result no up-regulation of 
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photosynthetic capacity can occur because of these morphological limitations (Adams et 

al. 2007). 

Photoacclimation triggers a complex reorganization of the photosynthetic 

apparatus and consists of chloroplast level photoacclimation, leaf level photoacclimation 

and finally whole plant level photoacclimation (Murchie and Horton 1998; Bailey et al. 

2001; Walters et al. 2003). At a chloroplast level photoacclimation involves changes in 

pigments composition, composition of the light harvesting antennas of PSI and PSII, Chl 

a:b ratio, Calvin cycle enzymes levels (Anderson and Osmond 1987; Anderson et al. 

1995; Murchie and Horton 1998). When plants are grown under LL conditions the 

antenna sizes of PSI and PSII are larger, the opposite condition can be observed when 

plants are grown under HL conditions (Leong and Anderson 1984; Anderson and 

Osmond 1987). Changes in the stoichiometry of the two photosystems is typically 

observed as a result of the changes in the spectral quality of the light and no changes 

are observed for light growth intensities as Walters and Horton (1995) studied in 

Arabidopsis.  PSII levels of wild type (WT) Arabidopsis plants was increased by 50% 

when plants were grown under HL conditions (Walters et al. 1999; Bailey et al. 2001). 

Leong and Anderson (1984) demonstrated on pea plants that LHCII decreases relative 

to PSII during growth at HL, this same results were obtained by Walters and Horton 

(1994) in Arabidopsis. The decrease in PSII antenna size might confer higher tolerance 

to photoinhibition as demonstrated by Park et al. (1997) in pea plants. The modification 

of the antenna sizes are reflected in the Chl a:b ratios, typically plants grown under low 

light intensities have lower a:b ratio than plants grown under high light (Anderson and 

Osmond 1987). Chl a:b ratio response is very clear in Arabidopsis. Pea plants exhibit 

the same response as Arabidopsis with increased ratios when plants are grown under 

high irradiance (Leong and Anderson 1984; Walters and Horton 1994). However, not all 

species exhibit the same response to Chl a:b ratio. Chow et al. (1991) found that 

Tradescantia albiflora does not modify this ratio when is grown under high irradiance.  

An increase in the amount of Cyt b6f complex, increased electron capacity and 

Rubisco contents are also observed as an acclimation mechanism in Arabidopsis, 

spinach and peas. These changes allow the plants to support higher rates of 

photosynthesis under HL, also these characteristics can lead to higher light 
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compensation points and higher light saturation points (Leong and Anderson 1984; Stitt 

1986 Anderson and Osmond 1987; Bailey et al. 2001 Lake et al. 2002; Schlüter et al. 

2003). The higher rates of photosynthesis reflects the increased capacity of CO2 fixation 

via the carbon reactions of photosynthesis (Bailey et al. 2001). Anderson et al. (1999) 

found a 3-fold increase in maximal photosynthetic rates when wild type plants of 

Arabidopsis where grown under HL conditions. Leaf level photoacclimation shows that 

plants grown under low-light have thinner leaves, whereas plants grown under high-light 

have thicker leaves and more columnar mesophyll cells. For instance, Arabidopsis 

plants modify leaf morphology with thicker leaves, shorter petioles and a more defined 

rosette formation for plants grown under high irradiance (Anderson and Osmond 1987; 

Bailey et al. 2001; Oguchi et al. 2003; Yano and Terashima 2004).  

 

2.4 Eutrema salsugineum 

Eutrema salsugineum (Pall.) Al-Shehbaz and Warwick is closely related with the 

model plant Arabidopsis thaliana and both belong to the Brassicaceae family. There are 

numerous plants from this family with economic value (Frankze et al. 2009), also this 

family is a widely distributed group of plants and they can grow under different stressful 

conditions displaying environmental adaptation (Bressan et al. 2001). Plant productivity 

can be seriously affected due to abiotic stresses, and studying plants that naturally 

possess a degree of resistance to harsh environmental conditions can lead to an 

improvement in plant production (Griffith el al. 2007). Eutrema salsugineum can be 

found in the literature as Thellungiella salsuginea and/or Thellungiella halophila. 

Eutrema or salt cress is a model plant for research on stress tolerance (Bressan 

et al. 2001; Inan et al. 2004; Wong et al. 2005; 2006). Some studies classified Eutrema 

as an extremophilic plant (Wong et al. 2005; 2006; Amtmann, 2009) due to the capacity 

to grow and reproduce under extremely harsh conditions of cold, salinity drought and 

poor nutrient availability (Bressan et al 2001; Inan et al. 2004; Taji et al. 2004; Amtmann 

et al. 2005; Griffith et al. 2007; Kant et al. 2008; Amtmann et al. 2009; Guevara et al. 

2012; Khanal et al. 2015). 

Two ecotypes of Eutrema have been used in abiotic stress studies; the 

Shandong ecotype from the Shandong province in China (37°16’12”N 118°18’0” E) that 
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grows naturally in high-salinity coastal areas. This ecotype has proven to be very 

tolerant to high salt concentrations in the soil and for that reason is considered a 

halophyte (Inan et al. 2004; Taji et al. 2004; Amtmann et al. 2005; Orsini et al. 2010; 

Yang et al. 2013). The Yukon ecotype from the Yukon Territory in Northwest Canada 

(60°51’17”N 135°43’2”W), grows in a semi-arid, subarctic region (Guevara et al. 2012). 

The majority of studies done on Eutrema have assessed salinity tolerance and 

not much research has been done studying photosynthesis as a stress sensor and the 

responses to high-light and the photoacclimation mechanisms of these plants to 

different growth irradiances (Wong et al. 2006; Stepien and Johnson 2009; Sui and Han 

2014).
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CHAPTER 3 

3.0 Materials and Methods 

3.1 Plant Materials and Growth Conditions 

 The seeds of the Shandong and Yukon ecotypes (Shandong ecotype, stock no. 

CS22504 and Yukon ecotype, stock no. CS22664) obtained from Arabidopsis Biological 

Resource Centre (ABRC, The Ohio State University, Columbus, OH, USA) of Eutrema 

salsugineum (Pall.) Al-Shehbaz and Warwick were stored at 4°C, and germinated in 

small (63.5 mm) pots (Kord Products, Toronto, ON, Canada) containing Sungrow 

Sunshine LG3 soil medium (Sun Gro Horticulture Canada Limited, Seba Beach, AB, 

Canada). The medium was placed on a container and watered until it reached field 

capacity and pots were filled to the top. 3 to 4 seeds were planted per pot approximately 

1 mm below the soil surface using a damp plastic tag. Pots were placed in a plastic tray 

with a capacity of 32 pots and a plastic cover was used to preserve humidity. Seven 

days after seeding the plastic cover was removed. Ten days after seeding the seedlings 

were thinned to 1 seedling per pot. Plants were grown in controlled environment 

chambers (Conviron Model E8H, Controlled Environments Limited, Winnipeg, MB, 

Canada) in the University of Saskatchewan Phytotron. Growth conditions were 22/10°C 

(light/dark) temperature with a photoperiod of 21/3 hours (light/dark).  Fluorescent tubes 

(Sylvania, T5/HO/841) provided 2 different photosynthetic flux density (PPFD) described 

as LL (250 µmol photons m-2 s-1) and HL (750 µmol photons m-2 s-1). Irradiance was 

determined at leaf level using a light meter (LI-250; Li-Cor Biosciences, Lincoln, NE, 

USA). Plants were irrigated regularly with a mineral nutrient solution described by 

Somerville and Ogren (1982). The growth conditions used were established previously 

for Yukon ecotype in Griffith et al. (2007). 

 

 3.2 Growth Analyses 

3.2.1 Absolute Growth Parameters 

The aerial portions of plants were harvested on a single plant basis and the fresh 

weight (FW) and leaf area was determined and number of leaves was recorded.   

Samples were placed in aluminum foil that has been previously weighed (NewClassic 

MF, model MS204S; Mettler Toledo, Langacher, Greifensee, Switzerland) and dried in 
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a drying oven (Model 70; Labco, Lucknow, India) on a single plant basis for a minimum 

of 48 hours at 90°C or until constant weight was obtained for the determination of dry 

weight (DW), subtracting the weight of the aluminum foil. Leaf water content (%) was 

estimated as ((FW-DW)/FW) x 100. For leaf area (LA) measurements a picture of the 

samples with 3 biological replicates per each sampling point was taken with a reference 

scale and analyzed with ImageJ freeware (National Institutes of Health, USA). The 

sampling points were determined for each growing chambers as follows: LL conditions 

after day 15 of seeding a sample was taken every 4 days until day 31. For the HL 

growing chamber after 15 days of seeding samples were taken every 3 days up to day 

30. 

 

3.2.2 Relative Growth Parameters 

 Relative growth parameters were derived from the absolute growth parameters. 

Specific leaf area (SLA) was calculated as LA/DW, this measurement calculates leaf 

area per unit of dry mass (Beadle 1993). Relative growth rate (RGR) was estimated on 

a dry weight basis and is defined as an increase in dry weight over time and is 

calculated as RGR = (ln DW2 – ln DW1/(t2 – t1). RGR was calculated over the whole life 

cycle of the plants. All measurements were done at the days indicated for each growing 

chamber which ensured the plants were at a comparable physiological stage (Boyes et 

al. 2001). 

 

3.3 Photosynthetic Gas Exchange Measurements 

In situ CO2 exchange measurements were conducted using a Li-Cor portable 

photosynthesis system (LI -6400XT, Li-Cor). It is an open system; measurements of 

photosynthesis and transpiration are based in CO2 and H2O differences. The gas 

analyzer was calibrated daily and the start-up routine followed as described by the 

manufacturer.  The net rate of CO2 uptake (Amax) was determined using the whole plant 

chamber (WPA 6400-17, Li-Cor) which allows for whole plant gas exchange. The light 

source used for all the measurements was a LED RGB light source (LI-6400-18A; Li-

Cor). White light was used and is comprised of equal proportions of red, green and, 

blue. After turning on the equipment, a new CO2 cartridge (Crosman Corporation, USA) 
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was placed in the CO2 mixer/injector and then calibrated setting the maximum level and 

then 10 different set points. CO2 calibration allows that the infra-red gas analyzers 

(IRGA) warm up. Desiccant was replaced every day and soda lime (Alfa Aesar, Thermo 

Fisher Scientific, MA, USA) checked if it was able to absorb CO2 giving a value close to 

zero on the device. CO2 IRGA was checked for a proper zero adjusting the soda lime 

knob to full scrub and desiccant full bypass and flow set up to 500 µmol s-1. If the 

difference between reference and sample was higher than 5 µmol mol-1 the IRGAs 

required zeroing. IRGAs were zeroed when required only using new chemicals. H2O 

IRGA was checked for a proper zero turning the desiccant to fully scrub until reading of 

the reference and sample was stabilized. If the difference between reference and 

sample was higher than 5 µmol mol-1 the IRGAs required zeroing. For the IRGAs 

calibration the chamber must be empty and sealed. The chamber was sealed with an 

empty pot covered with plastic wrap (Glad ClingWrap; The Clorox Company of Canada, 

Brampton, ON) for a proper calibration. Leaf temperature thermocouple was calibrated 

disconnecting the thermocouple and matching block and leaf temperature on the screen 

with the adjusting screw located on the measuring head. Leaf fan functioning was also 

checked turning on and off the fan to listen for the sound change as the motor worked. 

After all the initial routine was done the CO2 and H2O IRGAs reference and sample 

sensors were matched to zero. Plants were irrigated with nutrient solution the day 

before measurements to avoid any potential water stress that leads to stomata closure 

thus, limiting gas exchange. All measurements were done with three technical 

replicates. 
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3.3.1 Light Responses  

Light-response curves were obtained using a range of 0 to 1500 µmol photons m-

2 s-1 PPFD using a LED RGB light source (LI-6400-18A; Li-Cor). Measurements were 

made from high to low light intensity in 9 steps (1500, 1000, 750, 500, 250, 150, 100, 50 

and 0 µmol photons m-2 s-1) every step was maintained until stability was reached and 

then automatically changed to the next one. Light response curves were done with three 

different ambient CO2 levels To accomplish this chamber reference CO2 concentration 

was set at 200, 400 or 800 µmol mol-1 (Ca) using a CO2 mixer/injector (LI-6400-01; Li-

Cor). Temperature was set at 22°C and fluctuated between 20.8 and 22.7°C and 

relative humidity fluctuated between 50 and 80% inside the measuring head. Gas 

exchange measurements were adjusted on leaf area basis, estimated through a scaled 

picture and calculated with ImageJ freeware (National Institutes of Health, USA). 

Controls were done without plants to account for soil respiration. Pots with soil 

were kept under the same growth chamber as the plants and measured exactly as the 

plants sampled. Controls with only roots of the two ecotypes were done for each growth 

condition. The plants were grown as described on section 3.1 and before the 

measurements the aerial portion of the plant was trimmed. Results from both controls 

ranged from 0 to 1 µmol CO2 m-2 s1 and were considered negligible. 

 

3.3.1.1 Intrinsic Water Use Efficiency 

Intrinsic water use efficiency (WUE) was calculated as A/E from each ecotype 

grown under two growth conditions. WUE was determined at an irradiance of 200 µmol 

and 800 photons m-2 s-1 for LL and HL conditions, respectively. All measurements were 

determined from the light response curves done at 400 Ca. 

 

3.3.2 CO2 Responses  

CO2-response curves were constructed at a saturating PPFD of 1500 µmol 

photons m-2 s-1 using 8 different CO2 chamber reference concentrations over the range 

of 0 to 1500 µmol mol-1 in 8 steps (0, 50, 150, 250, 500, 750 and, 1500 µmol mol-1) 

every step was maintained until stability was reached and then automatically changed 

to the next one. Temperature was set up at 22°C and fluctuated between 20.9 and 
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22.1°C and relative humidity fluctuated between 50 to 80% inside the measuring head. 

Controls were done as described on section 3.3.1. Results ranged from 0 to 0.5 µmol 

CO2 m-2 s1 and were considered negligible. 

 

3.3.3 Modelling  

 Light- and CO2-response curves were modelled and analyzed for several 

photosynthetic parameters. All the modelled data was calculated using net 

photosynthetic rates. Light response curves were modelled using Photosyn assistant 

software (Dundee scientific, University of Dundee, Dundee, UK) (Parsons et al. 1997). 

The software- does the modelling by a non-rectangular hyperbola in which the initial 

slope is the apparent quantum yield of CO2 uptake (Φapp CO2), the light compensation 

point and apparent respiration are estimated from axis intercepts and the light saturated 

maximum (Amax) is the upper asymptote. The software uses the equations of Prioul and 

Chartier (1977) to estimate the derived parameters. To calculate the modelled derived 

parameters from the CO2 response curves the software uses the equations of Olsson 

and Leveranz (1994). CO2 response curves are performed in a similar way as the light 

response curves except that the Ca is variable and irradiance remains constant at a 

saturated value. Carboxylation efficiency (CE) is defined as the slope of the initial curve 

and respiration is the Y-intercept of the line. CO2 compensation point (*) is calculated 

as the X-intercept of the modelled curve. 

 

3.4 Pigment Determination 

3.4.1 Chlorophyll and Carotenoids 

Chl a, b and total carotenoid content was determined spectrophotometrically from 

acetone extracts using a SmartSpec Plus spectrophotometer (Bio-Rad Laboratories, 

Hercules, CA, USA). Leaf material was weighed and ground in 1 mL of 80% (v/v) pre-

chilled acetone (HPLC Grade; EMD Millipore, Darmstadt, Germany) using a pre-chilled 

mortar and a pestle containing sand (Standard Ottawa; EM Science, Merck KGaA, 

Darmstadt, Germany). The ground samples were transferred to 2 mL centrifuge tubes 

(USA Scientific, FL, USA) followed  by centrifugation for 10 min at 13,200 rpm at 4ºC 

(Microcentrifuge 5415R, Eppendorf AG, Hamburg, Germany). Supernatant from the 
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tubes was transferred to 15 mL tubes (VWR International; Radnor, PA, USA) volume 

was adjusted to 10 mL with 80%(v/v) acetone. Quantification of chlorophyll a, b and 

total carotenoids were calculated using the following equations: Chl a = 12.21A663 – 

2.81A646/229; Chl b = 20.13A646 – 5.03A663/229; carotenoids = 1000A470 – 3.27Ca – 

104Cb/229 (Lichtenthaler and Wellburn 1983) and expressed on a fresh weight and 

area basis. The spectrophotometer was blanked with 80%(v/v) acetone using 0.7 mL 

quartz cuvettes and then absorbance was measured in 3 wavelengths 470, 646 and 

667 as described by Lichtenthaler and Wellburn (1983). Leaf area measurement was 

calculated with a scaled picture with ImageJ freeware (National Institutes of Health, 

USA). 

 

3.4.2 Anthocyanins 

 Anthocyanin contents were determined spectrophotometrically from methanolic 

extracts using a SmartSpec Plus spectrophotometer (Bio-Rad). Leaf samples were 

weighed and a scaled photograph was taken to calculate total area. Samples were 

placed in a 15 mL tube (VWR International) with 1 mL of 3 M HCl:H2O:MeOH (1:3:16 by 

volume) respectively during 24 hours at 4°C in the dark with gentle agitation. After 24 

hours all the content on the tubes was ground with a pre-chilled mortar and pestle with a 

small amount of sand (Standard Ottawa). Ground samples were transferred to 2 mL 

screw cap centrifuge tubes followed by centrifugation during 10 min at 13,200 rpm at 

4ºC (Microcentrifuge 5415R) supernatant was collected and volume adjusted. The 

spectrophotometer was blanked with acidified methanol. Using 1 mL plastic cuvettes 

absorbance was measured in two wavelengths 530 and 653. Anthocyanin levels were 

determined from the methanolic extract as A530 – (0.24*A653) (Gould et al. 2000) and 

expressed on a FW basis as ABS/FW and an area basis as ABS/area. 

  

3.5 Photoinhibition of Photosynthesis 

3.5.1 Photoinhibition 

Detached leaves of Shandong and Yukon ecotypes of Eutrema of each growing 

condition LL and HL were assessed for photoinhibition of photosynthesis. Eight 

detached leaves of each ecotype of each condition were placed adaxial side up on a 
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petri dish with deionized water. Photoinhibition of photosynthesis was quantified by 

monitoring changes in Fv/Fm as a function to the exposure time to an irradiance of 1750 

µmol photons m-2 s-1 (400W Bulb metal halide model E40 CLU1SL, Koninklijke Philips 

N.V., Amsterdam, Netherlands) during 2 hours in a cold room at 2°C under ambient air 

conditions. Irradiance was determined at the surface level of the samples using a light 

meter (LI-250; Li-Cor). 

 

3.5.2 Chlorophyll Fluorescence 

Chlorophyll a fluorescence was performed using a hand-held portable 

fluorometer (FP100, Photon System Instruments, Drasov, Czech Republic). Leaves 

were dark-adapted during 15 min at room temperature before the measurements. 

Maximum photochemical quantum efficiency of PSII was calculated as Fv/Fm = 

(Fm-Fo)/Fm, where Fo and Fm represent the minimal and maximal fluorescence yield 

respectively for the dark-adapted states. For the photoinhibition experiment Fv/Fm as 

calculated at the beginning of the experiment and at the end of the exposure as 

described in section 3.5.1. 

 

3.6 Statistics and Experimental Design 

 Descriptive statistics were used to describe data. The test samples were 

replicated at least 3 times for the different experiments. Average, standard deviation 

and standard error were calculated using Microsoft Excel (Microsoft Corporation. 

Redmond, WA, USA). Raw data was analyzed using either a one-way ANOVA or two-

way ANOVA in Sigmaplot 12 (Systat Software Inc. San Jose, CA, USA). Data was 

tested for equal variance and a normality test (Shapiro-Wilk) performed. With the two-

way ANOVA was possible to determine the difference among the ecotypes, difference 

among the growth irradiance levels and the interaction between ecotypes and growth 

irradiance. When a significant difference was observed a multiple comparison 

procedure was done using the Holm-Sidak method.
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CHAPTER 4 

4.0 Results 

4.1 Growth Analyses 

4.1.1 Absolute Growth Parameters 

 Phenological development of the Shandong and Yukon ecotypes of Eutrema 

under two different irradiance regimes is very similar and minimal differences in the 

measured parameters were found between the two ecotypes. 

Development appeared to be faster under LL conditions for the Yukon ecotype (Fig. 

4.1A). Results from FW and DW accumulation over time showed that by the end of the 

cycle there is a higher mass accumulation for plants grown under HL conditions (Fig. 

4.1C and D and 4.2C and D). 

 Phenological development of the Shandong and Yukon ecotypes of Eutrema 

under LL and HL irradiance regimes was assessed as a function of time and several 

growth parameters calculated.  There was a steady increase in FW for the entire time 

course irrespective of ecotype or growth irradiance (Fig. 4.1). Under LL conditions the 

Yukon ecotype demonstrated a greater FW accumulation in comparison to Shandong 

with the growth curves diverging after day 19 (Fig. 4.1A).  In contrast, under HL 

conditions no differences were observed in FW between ecotypes (Fig. 4.1B). When the 

Shandong ecotype was examined under LL and HL regimes, greater FW accumulation 

was observed at HL (Fig. 4.1C).  However, the Yukon ecotype demonstrated no 

differences between LL and HL conditions until day 27 where FW was greater for the 

HL grown plants (Fig. 4.1D). A similar trend for ecotypes and irradiance regimes was 

observed for DW accumulation (Fig. 4.2). 

 Upon examination of LA, the Yukon ecotype demonstrated much higher values  

under LL conditions in comparison to Shandong with the growth curves diverging after 

day 19 (Fig. 4.3A). A similar trend was observed between ecotypes under HL conditions 

although the differences were not as great (Fig. 4.3B).  The irradiance regime had no 

effect on LA in either the Shandong or Yukon ecotype (Fig. 4.3C and D).   
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Figure 4.1 Fresh weight (FW) accumulation for the Shandong and Yukon ecotypes of 

Eutrema developed at different growth irradiance. Plants of each ecotype were grown 

under either 250 (LL) or 750 µmol photons m-2 s-1 (HL) PPFD. FW was calculated as the 

total aerial portion of the plant. Shandong LL (); Yukon LL (); Shandong HL (); 

Yukon HL (). Ecotypic comparison under LL (A) and HL (B) conditions. Growth 

irradiance comparisons for the Shandong (C) and Yukon (D) ecotypes.  Values 

represent means ± SD (n = 3 to 5).  FW, fresh weight; HL, high-light; LL, low-light; 

PPFD, photosynthetic photon flux density; SD, standard deviation. 
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Figure 4.2 Dry weight (DW) accumulation for the Shandong and Yukon ecotypes of 

Eutrema developed at different growth irradiance.  Plants of each ecotype were grown 

under either 250 (LL) or 750 µmol photons m-2 s-1 (HL) PPFD. DW was calculated as 

the total aerial portion of the plant. Shandong LL (); Yukon LL (); Shandong HL (); 

Yukon HL (). Ecotypic comparison under LL (A) and HL (B) conditions. Growth 

irradiance comparisons for the Shandong (C) and Yukon (D) ecotypes. Values 

represent means ± SD (n = 3 to 5). DW, dry weight; HL, high-light; LL, low-light; PPFD, 

photosynthetic photon flux density; SD, standard deviation. 
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Figure 4.3 Total leaf area (LA) for the Shandong and Yukon ecotypes of Eutrema 

developed at different growth irradiance. Plants of each ecotype were grown under 

either 250 (LL) or 750 µmol photons m-2 s-1 (HL) PPFD. Shandong LL (); Yukon LL 

(); Shandong HL (); Yukon HL (). Ecotypic comparison under LL (A) and HL (B) 

conditions. Growth irradiance comparisons for the Shandong (C) and Yukon (D) 

ecotypes. Values represent means ± SD (n = 3 to 5).  HL, high-light; LA, leaf area; LL, 

low-light; PPFD, photosynthetic photon flux density; SD, standard deviation. 
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Under growth conditions of LL the Shandong and Yukon ecotypes presented 

similar leaf number in the initial developmental stages with Yukon producing more 

leaves than Shandong at the later stages (Fig. 4.4A). Growth under HL conditions 

resulted in similar leaf numbers for both ecotypes (Fig. 4.4B). The irradiance regime had 

no effect on leaf number in either the Shandong or Yukon ecotype (Fig. 4.4C and D).   

  

4.1.2 Relative Growth Parameters  

Leaf water content remained relatively constant for the duration of the time 

course with essentially no differences between ecotypes or growth irradiance (Fig. 4.5).  

The Shandong ecotype exhibited a lower water content than that of Yukon under HL 

conditions for the initial sampling point (Fig. 4.5B). The water contents for all plants 

under HL conditions were lower compared to LL plants for the first sampling point (Fig. 

4.5C and D). This might be due to the high irradiance and heat emitted from the light 

source that probably affected the water contents on the first stages of development 

when these plants were small. 

Fresh weight to dry weight ratio shows slightly lower values for the Shandong 

ecotype under LL conditions (Fig. 4.6A) Under HL conditions FW:DW ratio is very 

similar and minimal differences were found between the two ecotypes (Fig. 4.6C and 

D). Fresh to dry weight ratio under LL conditions for both ecotypes exhibit a different 

trend. Shandong has lower values over the examined time course. For day 19 there is a 

closer ratio and the last point does not show difference between the two ecotypes (Fig. 

4.6A).  Fresh to dry weight ratio under HL conditions is very similar between Shandong 

and Yukon ecotypes. For the first point Shandong has a lower starting point and after 

the second measuring point (Day 19) both ecotypes show very close FW:DW (Fig. 

4.6B). Fresh to dry weight ratio for the Shandong ecotype under LL and HL conditions 

exhibit a different behavior between the two growth irradiances. The plants grown under 

LL conditions have a relatively constant ratio while HL plants have a more variable 

pattern of FW:DW. HL plants start with a low ratio that increases until day 21 and then a 

small decrease to end up with a value close to the peak of day 21 (Fig. 4.6C).  Fresh to 

dry weight ratio on the Yukon ecotype grown under LL and HL conditions have a similar 

trend as the one observed for the Shandong ecotype when a comparison was made. LL 
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Figure 4.4 Number of accumulated leaves for the Shandong and Yukon ecotypes of 

Eutrema developed at different growth irradiance. Plants of each ecotype were grown 

under either 250 (LL) or 750 µmol photons m-2 s-1 (HL) PPFD. Shandong LL (); Yukon 

LL (); Shandong HL (); Yukon HL (). Ecotypic comparison under LL (A) and HL (B) 

conditions. Growth irradiance comparisons for the Shandong (C) and Yukon (D) 

ecotypes. Values represent means ± SD (n = 3 to 5). HL, high-light; LL, low-light; PPFD, 

photosynthetic photon flux density; SD, standard deviation. 
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Figure 4.5 Leaf water content for the Shandong and Yukon ecotypes of Eutrema 

developed at different growth irradiance. Plants of each ecotype were grown under 

either 250 (LL) or 750 µmol photons m-2 s-1 (HL) PPFD. Leaf relative water content was 

estimated as ((FW-DW)/FW) x 100. Shandong LL (); Yukon LL (); Shandong HL (); 

Yukon HL ().  Ecotypic comparison under LL (A) and HL (B) conditions. Growth 

irradiance comparisons for the Shandong (C) and Yukon (D) ecotypes. Values 

represent means ± SD (n = 3 to 5).  DW, dry weight; FW, fresh weight; HL, high-light; 

LL, low-light; PPFD, photosynthetic photon flux density. 
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Figure 4.6 Fresh weight to dry weight ratio (FW:DW) for the Shandong and Yukon 

ecotypes of Eutrema developed at different growth irradiance. Plants of each ecotype 

were grown under either 250 (LL) or 750 µmol photons m-2 s-1 (HL) PPFD. Shandong LL 

(); Yukon LL (); Shandong HL (); Yukon HL (). Ecotypic comparison under LL (A) 

and HL (B) conditions. Growth irradiance comparisons for the Shandong (C) and Yukon 

(D) ecotypes. Values represent means ± SD (n = 3 to 5).  DW, dry weight; FW, fresh 

weight; HL, high-light; LL, low-light; PPFD, photosynthetic photon flux density; SD, 

standard deviation. 



 

34 
 

plants have a higher FW to DW ratio and it remains relatively constant through all the 

measured points. Yukon plants grown under HL conditions had more variable FW to 

DW ratios with a low starting point and then an increase until day 21 and then a 

decrease and a final point slightly lower than the highest peak by day 21 (Fig. 4.6D). 

Fresh weight to dry weight ratios remain relatively constant for plants grown under LL 

conditions irrespective of the ecotype while plants that were grown under HL conditions 

exhibited a more variable pattern through the sampling points this might be due to the 

different photoacclimation mechanisms that the plants have to cope with the increased 

light levels and to the heat generated by the lights as well. 

SLA for the Shandong ecotype grown under LL and HL conditions shows a 

different trend. Under LL conditions there is a steady increase up to day 23 and then it 

decreases sharply. Under HL conditions initially SLA is higher than plants under LL 

conditions, then there is a decrease and an increase towards the last point (Fig. 4.7C).  

SLA for the Yukon ecotype grown under LL and HL conditions has a different trend. 

Under LL conditions SLA starts at a higher point than under HL conditions and it has a 

variable pattern, decreasing initially then a slight increase followed by a decrease until 

the last point For HL conditions the SLA has a steady increase until day 23 and then 

decreases constantly until the last point (Fig. 4.7D). Regardless of the growth irradiance 

were plants were grown Shandong always exhibits lower SLA values compared to 

Yukon based on these results Yukon appears to have thicker leaves than Shandong.  

Another observed characteristic is that an increase in the growth irradiance levels also 

leads to lower SLA levels. Under LL conditions for both ecotypes the starting point is the 

highest peak and there is a decrease towards the end with some variations between 

both ecotypes. For both ecotypes grown under HL conditions there is a similar trend 

with low values in both ends and a peak in the middle. Relative growth rates (RGR) 

were calculated on a DW basis over a 12 day growth interval for both ecotypes under 

LL and HL conditions and are presented in Table 4.1.  There is no significant difference 

between the Shandong and Yukon ecotypes. Under either LL (P = 0.901) or HL (P = 

0.247) conditions. The RGR for the Shandong ecotype was greater under HL condition 

(P = 0.030) in comparison to LL conditions while the Yukon ecotype showed no  
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Figure 4.7 Specific leaf area (SLA) for the Shandong and Yukon ecotypes of Eutrema 

developed at different growth irradiance. Plants of each ecotype were grown under 

either 250 (LL) or 750 µmol photons m-2 s-1 (HL) PPFD. Specific leaf area was 

calculated based on DW. Shandong LL (); Yukon LL (); Shandong HL (); Yukon 

HL (). Ecotypic comparison under LL (A) and HL (B) conditions. Growth irradiance 

comparisons for the Shandong (C) and Yukon (D) ecotypes. Values represent means ± 

SD (n = 3 to 5).  DW, dry weight; HL, high-light; LL, low-light; PPFD, photosynthetic 

photon flux density; SD, standard deviation; SLA, specific leaf area.  
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difference (P = 0.377) in response to growth irradiance. No statistically significant 

interaction was found between ecotype and growth irradiance (P = 0.340).    

Representative photographs of the Shandong and Yukon ecotypes of Eutrema under LL 

and HL conditions are shown in Fig. 4.8. Both ecotypes display typical rosettes and at 

the stages indicated are all relatively comparable based on growth kinetics analyses 

(Figs. 4.1 to 4.7).  One of the main characteristics to differentiate Shandong from Yukon 

is the serrated leaf margin (Fig. 4.8A and C). Under HL conditions the Shandong 

ecotype has petioles that are shorter than in the plants grown under LL (Figs. 4.8A and 

C). Upon visual observation leaves display a purple colour in the abaxial side. The 

Yukon ecotype under HL conditions looks very similar to the plants grown under LL 

conditions (Fig. 4.8B and D). However, the leaves are thicker and darker green than 

those grown under LL conditions according to visual observation of the plants. 
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Table 4.1 Relative growth rates (RGR) for the Shandong and Yukon ecotypes of 

Eutrema developed at different growth irradiance. Plants of each ecotype were grown 

under either 250 (LL) or 750 µmol photons m-2 s-1 (HL) PPFD. RGR was calculated on a 

DW basis over a growth interval from 15 to 27 days after sowing. The data was 

analyzed using a two-way ANOVA and a multiple comparison test was done using the 

Holm-Sidak method. Different letters indicate a significant difference at P = 0.05. Values 

represent means ± SD (n = 3 to 5). ANOVA, analysis of variance; DW, dry weight; HL, 

high-light; LL, low-light; PPFD, photosynthetic photon flux density; RGR, relative growth 

rate; SD, standard deviation. 

 

Ecotype RGR (g g-1 day-1) 

 LL HL 

Shandong 0.272 ± 0.0187 b 0.317 ± 0.0307 a 

Yukon 0.274 ± 0.0361 b 0.292 ± 0.00132 ab 
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Figure 4.8 Phenotypic comparisons for the Shandong (A, C) and Yukon (B, D) 

ecotypes of Eutrema developed at different growth irradiance. Plants of each ecotype 

were grown under either 250 (LL; A, B) or 750 µmol photons m-2 s-1 (HL; C, D) PPFD. 

Plants were photographed at 24 d for LL and 22 d for HL conditions for both ecotypes.  

Representative images are shown. HL, high-light; LL, low-light; PPFD, photosynthetic 

photon flux density. 
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4.2 Pigments  

4.2.1 Chlorophyll and Carotenoids 

Total chlorophyll estimated in a FW basis shows that there is no difference within 

plants grown under LL conditions (P = 0.737) same observation was found within plant 

grown under HL conditions (P = 0.124). When a comparison was made within ecotypes 

under LL and HL conditions a statistically significant difference was found for the two 

ecotypes (P ≤ 0.001). No significant interaction was found between ecotype and growth 

irradiance (P = 0.171).Total chlorophyll estimated on an area basis showed a 

statistically significant difference within plants grown under LL (P = 0.003) and HL 

conditions (P ≤ 0.001). The Shandong ecotype exhibits a difference when grown under 

different light regimes (P ≤ 0.001) showing an increase in total chlorophyll contents on 

an area basis. Conversely the Yukon ecotype does not shows a difference in total 

chlorophyll between the two regimes on an area basis (P = 0.226). No significant 

interaction was found between ecotype and growth irradiance (P = 0.122). (Table 4.2).  

Total carotenoids estimated on a FW basis shows no difference between 

ecotypes irrespective of the growth irradiance. No statistically significant interaction 

either was found between ecotype and growth irradiance (P = 0.557). Total carotenoids 

estimated on an area basis showed a significant difference between the two ecotypes 

under LL and HL conditions (P = 0.004 and P ≤ 0.001). A difference within the 

Shandong ecotype show that there is a change when this plants are grown under 

contrasting light conditions (P ≤ 0.001). Same results were obtained within the Yukon 

ecotype (P = 0.002). (Table 4.2). No statistically significant interaction was found 

between ecotype and growth irradiance (P = 0.087). 

Chl a:b ratio are similar for the two ecotypes under LL conditions and no 

difference was found (P = 0.649). Under HL conditions the Yukon ecotype increases the 

a:b ratio but the Shandong remains with very similar values as in LL conditions a 

statistically significant difference was found (P = 0.034) (Table 4.2). No statistically 

significant interaction between ecotype and growth irradiance was found (P = 0.060). 

Chl to Car ratio shows no difference between the Shandong and Yukon ecotype 

under LL conditions (P = 0.940) and under HL conditions (P = 0.170). However, when 

an ecotypic comparision was made the Shandong ecotype displayed significant 
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differences between the two growth conditions (P ≤ 0.001). Same results were observed 

for the Yukon ecotype and a difference was found between the two light conditions (P ≤ 

0.001). (Table 4.2). No statistically significant interaction was found between ecotype 

and growth irradiance (P = 0.283). 
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Table 4.2 Leaf chlorophyll and carotenoid contents for the Shandong and Yukon ecotypes of Eutrema developed at 

different growth irradiance. Plants of each ecotype were grown under either 250 (LL) or 750 µmol photons m-2 s-1 (HL) 

PPFD. The data were analyzed using a two-way ANOVA and a multiple comparison test was done using the Holm-Sidak 

method. Different letters indicate a significant difference at P = 0.05.  Values represent means ± SD (n = 7). ANOVA, 

analysis of variance; c, carotenes; Car, carotenoid; Chl, chlorophyll; FW, fresh weight; HL, high-light; LL, low-light; PPFD, 

photosynthetic photon flux density; SD, standard deviation; x, xanthophylls. 

 

Ecotype and growth 

irradiance 

Total Chl (a+b) Total Car (c+x) Total Chl (a+b) Total Car 

(c+x) 

Chl a:b Chl:Car 

 µg g FW-1 µg cm-2   

Shandong LL 1092.79 ± 178.79 a 195.22 ± 35.32 a 32.17 ± 6.86 b 5.72 ± 1.11 c 4.42 ± 0.26 b 5.62 ± 0.39 a 

Yukon LL 1110.14 ± 129.98 a 197.40 ± 18.17 a 24.45 ± 3.10 c 4.38 ± 0.74 d 4.30 ± 0.62 b 5.64 ± 0.58 a 

Shandong HL 911.59 ± 140.67 b 187.75 ± 28.56 a 41.48 ± 9.42 a 8.56 ± 1.95 a 4.77 ± 0.77 b 4.88 ± 0.58 b 

Yukon HL 822.09 ± 76.51 b 181.24 ± 16.70 a 27.93 ± 6.38 c 6.05 ± 0.72 b 5.40 ± 1.22 a 4.58 ± 0.68 b 
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4.2.2 Anthocyanin 

Total anthocyanin contents on a FW basis does not exhibits statistically 

significant differences for plants grown under LL conditions (P = 0.053).  However, the 

other comparisons made showed statistically significant differences. Plants of both 

ecotypes grown under HL conditions showed a significant difference (P = ˂0.001). 

Ecotypic comparisons showed differences within the Shandong ecotype (P = ˂0.001) 

this ecotype exhibited a decrease in anthocyanin levels on a FW basis. The Yukon 

ecotype under the two growth conditions showed a statistically significant difference (P 

= 0.036). However, a contrasting result was observed when compared to Shandong, 

Yukon increased the anthocyanin levels as a response to a higher growth irradiance. A 

statistically significant interaction was found between ecotype and growth irradiance (P  

˂0.001). Total anthocyanin contents on an area basis shows no difference between the 

Shandong and Yukon ecotypes under LL conditions (P = 0.168). Under HL conditions 

there is a statistically significant difference (P = 0.001). When a comparison was made 

within the Shandong ecotype under LL and HL conditions a statistically significant 

difference was observed (P = 0.005) and same results were observed for the Yukon 

ecotype showing a difference in anthocyanin levels between the two growth conditions 

(P = 0.044) (Table 4.3). A statistically significant interaction was found between ecotype 

and growth irradiance (P = 0.002). 

 

 

 

 

 

 

 

 

 

 

 

 



 

43 
 

Table 4.3 Leaf anthocyanin content for the Shandong and Yukon ecotypes of Eutrema 

developed at different growth irradiance. Plants of each ecotype were grown under 

either 250 (LL) or 750 µmol photons m-2 s-1 (HL) PPFD. The data was analyzed using a 

two-way ANOVA and a multiple comparison test was done using the Holm-Sidak 

method. Different letters within columns indicate a significant difference at P = 0.05. 

Values represent means ± SD (n = 3). ANOVA, analysis of variance; FW, fresh weight; 

HL, high-light; LL, low-light; PPFD, photosynthetic photon flux density; SD, standard 

deviation. 

 

Ecotype Growth 

Irradiance 

Total Anthocyanin Total Anthocyanin 

  A530 g FW-1 A530 cm-2 

Shandong  LL 12.35 ± 1.14 ab 

9.60 ± 0.58 b 

1.08 ± 0.27 c 

12.64 ± 2.67 a 

0.26 ± 0.08 b 

0.18 ± 0.02 b 

0.05 ± 0.01 c 

0.31 ± 0.11 a 

Yukon LL 

Shandong HL 

Yukon HL 
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4.3 Photosynthesis 

4.3.1 Light Responses 

 Photosynthetic light response curves were done for each growing condition (LL 

and HL) for both the Shandong and Yukon ecotypes of Eutrema. The measurements 

were done as described in section 3.3.1. 

 The light response curve for the Shandong and Yukon ecotypes grown under LL 

conditions done with at 200 Ca shows a similar trend. The Yukon ecotype exhibits a 

higher dark respiration rate than Shandong (Fig. 4.9A). Under similar conditions the light 

response curve of plants grown under HL conditions show that the Shandong ecotype 

has higher rates of dark respiration and higher photosynthetic rates when compared to 

the Yukon ecotype grown under similar conditions (Fig. 4.9B). 

A comparison of the Shandong ecotype grown under LL and HL conditions shows that 

the plants grown under LL regimes exhibit lower dark respiration rates and lower 

photosynthetic rates through the final steps of the light response curve when compared 

to the plants grown under HL conditions (Fig. 4.9C).  

The light response curve for the Yukon ecotype under LL and HL conditions 

showed a similar trend with minimal differences like a lower dark respiration rate for 

plants grown under LL conditions and a slight tendency to have higher photosynthetic 

rates as well (Fig. 4.9D).  

 For the light response curves done with an ambient level of 400 Ca the Shandong 

and Yukon ecotypes grown under LL conditions show the same trend and no 

differences between the responses are appreciated (Fig. 4.10A). Under the same 

ambient conditions the Shandong and Yukon ecotypes grown under HL conditions 

exhibit some differences in the responses. The Shandong ecotype has higher dark 

respiration rates and higher net photosynthetic rates than the Yukon ecotype (Fig. 

4.10B). The light response curve for the Yukon ecotype under LL and HL conditions 

show a similar trend with minimal differences like a lower dark respiration rate for plants 

grown under LL conditions and a slight tendency to have higher photosynthetic rates as 

well (Fig. 4.10D). 
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Figure 4.9 Light-response curves at 200 Ca  for the Shandong and Yukon ecotypes of 

Eutrema developed at different growth irradiance. Plants of each ecotype were grown 

under either 250 (LL) or 750 µmol photons m-2 s-1 (HL) PPFD. Light was set up in 9 

steps (1500, 1250, 1000, 800, 600, 400, 200, 100, 0 µmol photons m-2 s-1), leaf 

temperature was maintained at 22ºC and relative humidity 50-80%. Shandong LL (); 

Yukon LL (); Shandong HL (); Yukon HL (). Ecotypic comparison under LL (A) and 

HL (B) conditions. Growth irradiance comparisons for the Shandong (C) and Yukon (D) 

ecotypes. Values represent means ± SE (n = 6 to 9). HL, high-light; LL, low-light; PPFD, 

photosynthetic photon flux density; SE, Standard error. 
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Figure 4.10 Light-response curves at 400 Ca for the Shandong and Yukon ecotypes of 

Eutrema developed at different growth irradiance. Plants of each ecotype were grown 

under either 250 (LL) or 750 µmol photons m-2 s-1 (HL) PPFD. Light was set up in 9 

steps (1500, 1250, 1000, 800, 600, 400, 200, 100, 0 µmol photons m-2 s-1), leaf 

temperature was maintained at 22ºC and relative humidity 50-80%. Shandong LL (); 

Yukon LL (); Shandong HL (); Yukon HL (). Ecotypic comparison under LL (A) and 

HL (B) conditions. Growth irradiance comparisons for the Shandong (C) and Yukon (D) 

ecotypes.  Values represent means ± SE (n = 6 to 11). HL, high-light; LL, low-light; 

PPFD, photosynthetic photon flux density; SE, Standard error.  
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 The response of the Shandong ecotype under LL and HL conditions shows that 

plants grown under HL conditions have higher dark respiration rates and higher 

photosynthetic rates than the plants grown under LL conditions (Fig. 4.10C). When a 

comparison was done between the Yukon ecotype grown under LL and HL conditions 

the differences in the light response curve between the two growing conditions are 

negligible (Fig. 4.10D). 

 The light response curves done with an ambient concentration of 800 Ca exhibit 

minimal differences for the under LL conditions for the Shandong and Yukon ecotypes. 

(Fig. 4.11A). The same situation was observed for the Yukon ecotype grown under LL 

and HL conditions were minimal differences in net photosynthetic rates were observed. 

The most notable result for these light response curves was the Shandong ecotype 

under HL conditions. This ecotype had a higher response to saturated concentrations of 

CO2 exhibiting higher net photosynthetic rates when compared to the other plants 

particularly after the irradiance of the light curve exceeded 400 µmol photons m-2 s-1 

(Fig. 4.11B and C). 

 

4.3.1.1 Photosynthetic Derived Parameters at 200 Ca   

Calculated photosynthetic parameters from the modelled data showed that the 

Amax does not exhibit a difference for the two ecotypes when grown under LL conditions 

(P = 0.295). No difference was found either for the Yukon ecotype when the two growth 

regimes were compared (P = 0.064) indicating that there is no change for this ecotype 

when is grown under increased irradiance. In contrast the Shandong ecotype increases 

Amax when grown under to the HL regime, there is a difference respect Shandong plants 

grown under LL conditions (P = 0.006) and also when compared to the Yukon ecotype 

under HL conditions (P = ˂0.001) (Table 4.4). A statistically significant interaction was 

found between ecotype and growth irradiance (P = 0.002). 

The calculated Φapp CO2 shows no difference for the two ecotypes grown under 

LL conditions (P = 0.094). No difference was found for the Shandong ecotype between 

the two growth conditions (P = 0.843). Interestingly, the Yukon ecotype decreases the 

Φapp CO2 when grown under HL conditions and there is a difference when is grown  
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Figure 4.11. Light-response curves at 800 Ca for the Shandong and Yukon ecotypes of 

Eutrema developed at different growth irradiance. Plants of each ecotype were grown 

under either 250 (LL) or 750 µmol photons m-2 s-1 (HL) PPFD. Light was set up in 9 

steps (1500, 1250, 1000, 800, 600, 400, 200, 100, 0 µmol photons m-2 s-1), leaf 

temperature was maintained at 22ºC and relative humidity 50-80%. Shandong LL (); 

Yukon LL (); Shandong HL (); Yukon HL (). Ecotypic comparison under LL (A) and 

HL (B) conditions. Growth irradiance comparisons for the Shandong (C) and Yukon (D) 

ecotypes. Values represent means ± SE (n = 6 to 8). HL, high-light; LL, low-light; PPFD, 

photosynthetic photon flux density; SE, Standard error. 
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Table 4.4 Photosynthetic parameters derived from light-response curves of the Shandong and Yukon ecotypes of 

Eutrema growth under two different irradiance. Plants of each ecotype were grown under either 250 (LL) or 750 µmol 

photons m-2 s-1 (HL) PPFD. Light-response curves were constructed at 200 Ca and 9 light steps (0 - 1500 µmol photons m-

2 s-1).  Photosynthetic parameters were modelled using an analysis software. The data was analyzed using a two-way 

ANOVA and a multiple comparison test was done using the Holm-Sidak method Values represent means ± SE (n = 5 to 

8). Amax, maximal rate of CO2 uptake; ANOVA, analysis of variance; Ca, ambient CO2; HL, high-light; LL, low-light; PPFD, 

photosynthetic photon flux density; Rdark, rate of dark respiration; SE, standard error. 

 

Ecotype and 

Growth 

irradiance 

Amax (µmol CO2 

m-2 s-2) 

Φapp CO2 (µmol CO2 

photons m-2 s-1 

Light compensation point 

(µmol photons m-2 s-1) 

Rdark (µmol 

CO2 m-2 s-1) 

Light saturation estimate 

(µmol photons m-2 s-1) 

Shandong LL 9.11 ± 0.90 b 0.0393 ± 0.00696 a 77.34 ± 12.21 a -2.98 ± 0.62 b 336.57 ± 35.50 bc 

Yukon LL 10.40 ± 1.25 b 0.0572 ± 0.0129 a  95.88 ± 12.68 a -4.88 ± 0.76 a 302.17 ± 34.98 c 

Shandong HL 12.92 ± 0.76 a 0.0414 ± 0.0374 a 103.26 ± 8.47 a -4.22 ± 0.33 b 421.00 ± 30.31 ab 

Yukon HL 8.13 ± 0.42 b 0.0234 ± 0.00176 b 105.76 ± 10.41 a -2.48 ± 0.30 c 463.25 ± 25.00 a 
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under LL conditions (P = 0.003). A statistically significant interaction was found between 

ecotype and growth irradiance (P = 0.022). 

The light compensation point from the light response curves shows that plants 

grown under HL conditions have higher light compensation points but there is not a 

statistically significant interaction between ecotype and growth (P = 0.496) (Table 4.4). 

The rates of dark respiration showed that under LL and HL conditions there is a 

difference when an ecotypic comparison is made (P = 0.020 and P = 0.035). However, 

even though the Shandong ecotype shows an increase in the dark respiration rate no 

statistically significant difference was found (P = 0.133). Interestingly, the Yukon 

ecotype shows the opposite trend as the Shandong with lower dark respiration rates 

when grown under HL conditions and a statistically significant difference was found (P = 

0.004). (Table 4.4). No statistically significant interaction was found between ecotype 

and growth irradiance (P = 0.496). 

Light saturation estimate shows that there is no difference between the two 

ecotypes when grown under LL conditions (P = 0.451). Both ecotypes increase the light 

saturation estimate when grown under HL conditions and no difference was found either 

(P = 0.368). Under HL conditions there is an increase in the light saturation estimate for 

the two ecotypes. When the Yukon ecotype was compared for the two growth 

irradiances a significant difference was found (P = 0.001). Despite the fact that there is 

an increase in the light saturation estimate there are no differences for the Shandong 

ecotype grown under LL and HL conditions (P = 0.087) (Table 4.4). No statistically 

significant interaction was found between ecotype and growth irradiance (P =0.245). 

 

4.3.1.2 Photosynthetic Derived Parameters at 400 Ca  

Amax modelled values derived from the light response curves done with an 

ambient level of 400 Ca shows that the Shandong ecotype grown under HL conditions 

has the highest rate of Amax and a difference was found compared to the Shandong 

plants grown under LL conditions (P ≤ 0.001) and with the Yukon ecotype under HL 

conditions (P ≤ 0.001). The Yukon ecotype does not exhibit differences in the maximum 

photosynthetic rate irrespective of the growth irradiance that is grown (P = 0.945) (Table 
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4.5). A statistically significant interaction was found between ecotype and growth 

irradiance (P = 0.011). 

 The Φapp CO2 yield of shows that the only difference found was for the two 

ecotypes grown under HL conditions (P = 0.033). No difference was found under LL 

conditions when the two ecotypes were compared (P = 0.400). The Shandong ecotype 

increases the Φapp CO2 when is grown under HL but no difference was found between 

plants grown under the two regimes (P = 0.188). Conversely, the Yukon ecotype 

decreases the Φapp CO2 when grown under an increased irradiance. However, no 

difference were found (P = 0.071) (Table 4.5). A statistically significant interaction was 

found between ecotype and growth irradiance (P = 0.032).  

 The light compensation point shows that there is not a statistically significant 

interaction between ecotype and growth (P = 0.109) (Table 4.5). 

 The calculated dark respiration rates showed that the Shandong ecotype grown 

under HL conditions has the highest dark respiration rate and there is a difference when 

compared to the Yukon ecotype grown under the same conditions (P = 0.011) and the 

Shandong plants grown under LL conditions (P = 0.034). The Yukon exhibits the 

opposite trend as the Shandong ecotype and decreases the dark respiration rates when 

grown under HL conditions, but no difference was found between the two light regimes 

(P = 0.125). (Table 4.5). A statistically significant interaction was found between ecotype 

and growth irradiance (P = 0.011).  

The light saturation estimate shows an increase for the plants grown under HL 

conditions. The Yukon ecotype shows the biggest increase when a comparison was 

made within this ecotype and there is a significant difference between Yukon plant 

grown under LL and HL conditions (P = 0.014). However, no difference was found when 

the same comparison was made in the Shandong ecotype despite the increase (P = 

0.125). No differences were found for the two ecotypes grown under LL (P = 0.372) or 

HL conditions (P = 0.931) (Table 4.5). No statistically significant interaction was found 

between ecotype and growth irradiance (P = 0.600). 
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Table 4.5 Photosynthetic parameters derived from light-response curves of the Shandong and Yukon ecotypes of 

Eutrema growth under two different irradiance. Plants of each ecotype were grown under either 250 (LL) or 750 µmol 

photons m-2 s-1 (HL) PPFD. Light-response curves were constructed at 400 Ca and 9 light steps (0 - 1500 µmol photons m-

2 s-1). The data was analyzed using a two-way ANOVA and a multiple comparison test was done using the Holm-Sidak 

method. Different letters within columns indicate a significant difference at P = 0.05. Values represent means ± SE (n = 6 

to 10). Amax, maximal rate of CO2 uptake; ANOVA, analysis of variance; Ca, ambient CO2; HL, high-light; LL, low-light; 

PPFD, photosynthetic photon flux density; Rdark, rate of dark respiration; SE, standard error. 

 

Ecotype and 

Growth 

irradiance 

Amax (µmol CO2 

m-2 s-2) 

Φapp CO2 (µmol CO2 

photons m-2 s-1 

Light compensation 

point (µmol photons 

m-2 s-1) 

Rdark (µmol 

CO2 m-2 s-1) 

Light saturation 

estimate (µmol 

photons m-2 s-1) 

Shandong LL 17.34 ± 1.35 b 0.0384 ± 0.00426 a 69.72 ± 12.49 a -2.49 ± 0.35 b 519.67 ± 58.44 ab 

Yukon LL 16.66 ± 1.19 b 0.0452 ± 0.00522 ab  77.27 ± 9.11 a -3.52 ± 0.63 b 452.90 ± 59.00 b 

Shandong HL 25.35 ± 2.80 a 0.0507 ± 0.0118 a 92.35 ± 9.50 a -5.09 ± 1.80 a 652.83 ± 57.12 a 

Yukon HL 16.52 ± 0.89 b 0.0303 ± 0.00388 b 65.71 ± 8.21 a -1.92 ± 0.25 b 645.44 ± 39.66 a 
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4.3.1.3 Photosynthetic Derived Parameters at 800 Ca 

The results from the data modelling for Amax done with an ambient concentration 

of 800 Ca exhibit the same trend as the results done with an ambient level of 400 Ca. 

The Shandong ecotype grown under HL conditions has the highest Amax and a 

statistically significant difference was found when compared to the Yukon under the 

same conditions (P ≤ 0.001) and when compared to the Shandong plants grown under 

LL conditions (P ≤ 0.001). Interestingly, the Yukon ecotype does not increases the 

maximum photosynthetic rates as Shandong does, no difference was found for this 

ecotype grown under LL and HL conditions (P = 0.239). (Table 4.6). A statistically 

significant interaction was found between ecotype and growth irradiance (P = 0.010). 

Φapp CO2 yield exhibits very similar values between ecotypes irrespective of the 

growth irradiance. There is not a statistically significant interaction between ecotype and 

growth (P = 0.606) (Table 4.6).  

The light compensation point shows that the difference in the mean values 

among ecotypes and there is not a statistically significant interaction between ecotypes 

and growth irradiance (P = 0.103) (Table 4.6). 

Rates of dark have very similar rates for both ecotypes under the two growing 

conditions. There is not a statistically significant interaction between ecotypes and 

growth irradiance (P = 0.098). (Table 4.6). 

The calculated light saturation estimate shows an increase for the plants grown 

under HL conditions. Under LL conditions there is no statistically significant difference 

between the two ecotypes (P = 0.505). As mentioned before there is an increase when 

plants were grown under HL conditions with a higher increase in the LSE for the 

Shandong ecotype than the Yukon and a significant difference was found (P = 0.024). 

When a comparison was made within ecotypes a significant difference was found for 

the Shandong ecotype under the two light conditions (P ≤ 0.001). Same trend was 

found for the Yukon ecotype (P ≤ 0.001) (Table 4.6). No statistically significant 

interaction was found between ecotype and growth irradiance (P = 0.171).
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Table 4.6 Photosynthetic parameters derived from light-response curves of the Shandong and Yukon ecotypes of 

Eutrema growth under two different irradiance. Plants of each ecotype were grown under either 250 (LL) or 750 µmol 

photons m-2 s-1 (HL) PPFD. Light-response curves were constructed at 800 Ca and 9 light steps (0 - 1500 µmol photons m-

2 s-1).  The data was analyzed using a two-way ANOVA and a multiple comparison test was done using the Holm-Sidak 

method. Different letters within columns indicate a significant difference at P = 0.05. Values represent means ± SE (n = 4 

to 8). Amax, maximal rate of CO2 uptake; ANOVA, analysis of variance; HL, high-light; LL, low-light; PPFD, photosynthetic 

photon flux density; Ca, ambient CO2; Rdark, rate of dark respiration; SE, standard error. 

 

Ecotype and 

Growth 

irradiance 

Amax (µmol 

CO2 m-2 s-2) 

Φapp CO2 (µmol CO2 

photons m-2 s-1 

Light compensation 

point (µmol photons 

m-2 s-1) 

Rdark (µmol 

CO2 m-2 s-1) 

Light saturation 

estimate (µmol 

photons m-2 s-1) 

Shandong LL 28.13 ± 3.12 b 0.0536 ± 0.00698 a 40.16 ± 4.24 a -2.14 ± 0.38 a 582.50 ± 34.40 c 

Yukon LL 26.04 ± 3.02 b 0.0533 ± 0.00587 a  57.17 ± 14.18 a -2.98 ± 0.92 a 552.00 ± 33.04 c 

Shandong HL 54.78 ± 1.05 a 0.0489 ± 0.00566 a 72.10 ± 4.97 a -3.60 ± 0.65 a 933.00 ± 44.66 a 

Yukon HL 31.83 ± 4.28 b 0.0420 ± 0.0461 a 57.66 ± 6.67 a -2.32 ± 0.29 a 803.88 ± 26.10 b 
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4.3.1.4 Water use efficiency 

 Intrinsic WUE results showed no ecotypic difference when a comparison was 

made under LL and HL. A comparison between the two growth irradiance showed no 

difference in the Shandong ecotype under LL and HL conditions (P = 0.360). However, 

the Yukon ecotype showed an increase WUE when it was grown under HL conditions 

and a comparison made between LL and HL growth conditions showed a statistically 

significant difference (P = 0.012).  

 

4.3.2 CO2 Responses 

 Photosynthesis rates were determined through a CO2 response curve for each 

growing condition (LL and HL) for both the Shandong and Yukon ecotypes of Eutrema. 

The measurements were done as described in 3.3.2.  

 The CO2 response curve for the Shandong and Yukon ecotype grown under LL 

conditions exhibits a very similar trend with minimal differences (Fig. 4.12A). For plants 

grown under HL conditions the Shandong ecotype exhibits a higher response to 

increasing levels of CO2 compared to the Yukon ecotype showing higher rates of net 

photosynthesis even with low ambient concentrations of CO2 (Fig. 4.12B). 

 A comparison between the two growth irradiances (LL and HL) for the Shandong 

ecotype of the CO2 response curve shows that the plants grown under HL exhibit a 

higher net photosynthetic response to increased ambient CO2 levels when compared to 

plants grown under LL conditions (Fig. 4.12C).  The CO2 response for the Yukon 

ecotype grown under LL and HL conditions exhibits a similar trend and the differences 

are minimal between these two growing conditions (Fig. 4.12D). 

 Amax values modelled from the CO2 response curves shows that the Shandong 

ecotype grown under HL conditions has the higher maximum photosynthetic rates. 

There is trend towards an increase Amax for plants grown under HL conditions. There is 

no statistically significant difference between the two ecotypes grown under LL 

conditions (P = 0.582). As mentioned before plants grown under HL conditions display 

higher rates of photosynthesis particularly the Shandong ecotype and in a lesser extent 

the Yukon ecotype and no difference was found between them (P = 0.134). Despite the 

increase rates under HL conditions for the Yukon ecotype there is no statistically 
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Table 4.7 Intrinsic water use efficiency of the Shandong and Yukon ecotypes of 

Eutrema grown under either 250 (LL) or 750 µmol photons m-2 s-1 (HL) PPFD. WUE was 

determined at an irradiance of 200 and 800 µmol photons m-2 s-1 for LL and HL growth 

conditions, respectively.  All measurements were determined at 400 Ca. Values 

represent means ± SE (n = 5 to 10). Different letters indicate a significant difference at P 

= 0.05 based on a two-way ANOVA. ANOVA, analysis of variance; HL, high-light; LL, 

low-light; PPFD, photosynthetic photon flux density; SE, standard error; WUE, water 

use efficiency. 

 

Ecotype Growth irradiance WUE (µmol CO2 mmol H2O-1) 200 and 800 (µmol photons 

m-2 s-1) 

Shandong LL 0.79 ± 0.39 b 

Yukon LL 0.65 ± 0.12 b 

Shandong HL 1.35 ± 0.46 ab 

Yukon HL 1.93 ± 0.34 a 
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Figure 4.12 CO2-response curves for the Shandong and Yukon ecotypes of Eutrema 

developed at different growth irradiance (LL and HL). Plants of each ecotype were 

grown under either 250 (LL) or 750 µmol photons m-2 s-1 (HL) PPFD.  CO2-response 

curves were constructed at a saturating PPFD of 1500 µmol photons m-2 s-1. Ca was set 

up in 8 steps (0 – 1500 µmol CO2 mol-1). Shandong LL (); Yukon LL (); Shandong 

HL (); Yukon HL ().Ecotypic comparison under LL (A) and HL (B) conditions. Growth 

irradiance comparisons for the Shandong (C) and Yukon (D) ecotypes. Values 

represent means ± SE (n = 6 to 12). Ca, Ambient CO2 level; HL, high-light; LL, low-light; 

PPFD, photosynthetic photon flux density; SE, Standard error.  
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Table 4.8. Photosynthetic parameters derived from CO2-response curves of Shandong and Yukon ecotypes growth under 

two different irradiance. Plants of each ecotype were grown under either 250 (LL) or 750 µmol photons m-2 s-1 (HL) PPFD. 

CO2-response curves were constructed at a saturating PPFD of 1500 µmol photons m-2 s-1. Photosynthetic parameters 

were modelled using an analysis software. The data was analyzed using a two-way ANOVA and a multiple comparison 

test was done using the Holm-Sidak method. Different letters within columns indicate a significant difference at P = 0.05. 

Values represent means ± SE (n = 6 to 12). Amax, maximal rate of CO2 uptake; ANOVA, analysis of variance; Ca, ambient 

CO2 level; CE, carboxylation efficiency; *, CO2 compensation point; HL high-light; LL, low-light; PPFD, photosynthetic 

photon flux density; SE, standard error. 

 

Ecotype and growth 

irradiance 

Amax (µmol CO2 m-2 s-1) CE (µmol m-2 s-1) * (µmol mol-1) Respiration (µmol CO2 m-2 s-1) 

Shandong LL 29.80 ± 2.88 b 0.0382 ± 0.00624 b 93.40 ± 18.84 a -4.94 ± 1.22 a 

Yukon LL 33.26 ± 3.55 b 0.0268 ± 0.0540 b 37.27 ± 8.51 c -1.86 ± 0.22 a 

Shandong HL 51.79 ± 3.84 a 0.0639 ± 0.00906 a 48.30 ± 1.26 bc -4.68 ± 0.46 a 

Yukon HL 42.75 ± 5.81 ab 0.0510 ± 0.00776 a 86.94 ± 15.38 ab -5.92 ± 1.44 a 
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significant difference when plants of this ecotype are compared between the two light 

regimes (P = 0.158). The Shandong ecotypes shows a higher increase for plants grown 

under HL than the Yukon ecotype and there is a significant difference for Shandong 

plants grown under LL and HL (P ≤ 0.001) (Table 4.8). No statistically significant 

interaction was found between ecotype and growth irradiance (P = 0.154). 

 The calculated carboxylation efficiency shows a trend towards increased values 

for plants grown under HL than plants grown under LL conditions for the two ecotypes. 

However, no statistically significant difference was found for plants of the two ecotypes 

under LL and HL conditions (P = 0.319 and P = 0.230). The ecotypic comparison 

showed that the Shandong ecotype exhibit statistically significant difference when 

grown under LL and HL conditions (P = 0.014). The same trend was observed for the 

Yukon ecotype and a significant difference was found under the two light regimes (P = 

0.050) (Table 4.8). No statistically significant interaction was found between ecotype 

and growth irradiance (P = 0.918). 

 The CO2 compensation point show a different trend between the two ecotypes. 

Shandong has a decrease in the CO2 compensation point for plants grown under HL 

conditions respect the plants grown under LL. Conversely, Yukon has an increase when 

plants are grown under HL conditions. Therefore, a statistically significant difference 

was found in plants of both ecotypes grown under LL conditions (P = 0.019). Despite 

the different trend in between the two ecotypes no significant difference was found for 

plants grown under HL conditions (P = 0.081). The ecotypic comparison shows that 

there is a statistically significant difference for the Shandong ecotype under LL and HL 

conditions (P = 0.032). Also a significant difference was found for the Yukon ecotype 

under the two light regimes (P = 0.046) (Table 4.8). A statistically significant interaction 

was found between ecotype and growth irradiance (P = 0.005). 

 Rates of respiration in the light results showed that the effect of the ecotypes is 

not dependent on the level of growth irradiance and there is not a statistically significant 

interaction between ecotype and growth irradiance (P = 0.071) (Table 4.8). No 

statistically significant interaction was found between ecotype and growth irradiance (P 

= 0.071). 
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 These results suggest that the Yukon ecotype is less responsive to the different 

growth conditions than Shandong. 

 

4.4 Photoinhibition of Photosynthesis 

 The exposure of detached leaves of Eutrema from Shandong and Yukon 

ecotypes grown under LL (250 µmol photons m-2s-1) light conditions to a saturated 

irradiance of 1750 µmol photons m-2s-1 and under a low temperature (2°C) showed 

different levels of photoinhibition between the two ecotypes examined.  

 For the plants grown under LL conditions Shandong exhibits a higher 

susceptibility to photoinhibition with a reduction on Fv/Fm of 78%, while Yukon showed a 

reduction of 50% Fv/Fm as showed in Fig. 4.13. 

 Plants grown under HL conditions exhibit the same trend as LL plants. Shandong 

has a higher susceptibility than Yukon to photoinhibition. However, both ecotypes are 

less susceptible than plants grown under LL. The Fv/Fm in Shandong was 64% and 

Yukon had a reduction of 11% (Fig. 4.13). Regardless the growth conditions of Yukon 

this ecotype shows a higher tolerance to photoinhibition than Shandong.  Increased 

growth irradiance appears to play an important role increasing the tolerance of both 

ecotypes to photoinhibition, particularly in Yukon and in a lesser extent in Shandong.  

Pre-photoinhibition no significant difference was found between the two ecotypes under 

LL conditions (P = 0.278). However, under HL conditions there was a statistically 

significant difference between the two ecotypes (P ˂ 0.001). Also a significant difference 

was found pre-photoinhibition between the two growth conditions of Shandong (P ˂ 

0.001). Post-photoinihibition results showed a statistically significant difference between 

the two growth irradiance and ecotypes  (P ˂ 0.001). A statistically significant difference 

was found for each ecotype under both growth conditions between pre-photoinhibition 

and post-photoinhibition (P ˂ 0.001). 
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Figure 4.13 Photoinhibition of photosynthesis for the Shandong and Yukon ecotypes of 

Eutrema developed at different growth irradiance.  Plants of each ecotype were grown 

under either 250 (LL) or 750 µmol photons m-2 s-1 (HL) PPFD. Detached leaves were 

exposed to 1750 µmol photons m-2 s-1 for 2 hours at 2°C and responses determined by 

monitoring changes in the Fv/Fm ratio. Black bars represent pre-photoinhibition and are 

compared to post-photoinhibition for LL (grey bars) and HL (white bars) grown material 

of each ecotype. Actual Fv/Fm values (A) and normalized Fv/Fm (B) are presented. The 

data was analyzed using a one-way ANOVA and a multiple comparison test was done 

using the Holm-Sidak method. Different letters indicate a significant difference at P = 

0.05. Values represent means ± SD (n = 8). ANOVA, analysis of variance; Fm, maximal 

fluorescence in the dark-adapted state; Fv, variable fluorescence in the dark-adapted 

state; Fv/Fm, maximal quantum efficiency of PSII; HL, high-light; LL, low-light; PPFD, 

photosynthetic photon flux density; PSII, photosystem II; SD, standard deviation. 
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CHAPTER 5 

5.0 Discussion 

5.1 Responses to Growth Irradiance 

5.1.1 Shandong: A Tough Resilient Plant 

 Some results at a chloroplast level for the Shandong ecotype were not as 

expected when grown under HL conditions. Results from total chlorophyll on a FW 

shows a 16% decrease for plants grown under HL and when calculated on an area 

basis the trend is towards a 22% increase under the same conditions this response is 

the expected according to photoacclimation to growth irradiance previously observed 

(Anderson 1986; Anderson and Osmond 1987). Total carotenoid contents tend to 

increase when the plants are under HL, these findings have been observed previously 

as carotenoids play a role preventing photooxidation and are involved in the dissipation 

of excess of energy through NPQ (Demmig-Adams and Adams 1992). However, where 

this ecotype showed an interesting non-typical response was in anthocyanin contents. 

Anthocyanin accumulation on this ecotype is lower for plants grown under HL than for 

plants grown under LL conditions, and these results are opposed as the reported in the 

literature (Kimura et al. 2003). The most shocking result found at a chloroplast level for 

the Shandong ecotype was Chl a:b ratio. Chl a:b ratio is one reliable indicator of low-

high light photoacclimation, typically LL plants have lower values than HL plants 

(Anderson 1986; Anderson and Osmond 1987). Interestingly, the Shandong ecotype 

does not modify Chl a:b ratio in response to high irradiance. Chow et al. (1991) showed 

that Tradescantia albiflora (Kunth) does not modify Chl a:b ratio when is grown under 

HL conditions. 

 Leaf level changes were assessed through growth kinetics. Sampling points were 

determined by FW accumulation and those results are correlated with DW, total leaf 

area, and leaves number. Shandong plants are approximately at the same 

developmental stage when LL plants are 27 days and HL plants 24 days old. Initial 

development is very similar, and then HL plants grew at a faster rate than LL plants. 

RGR results are consistent with the absolute growth measurements, HL plants 

displayed 1.2-fold increase in the same interval compared to LL plants. Growth kinetics
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results can be correlated with typical low and high light leaf-level photoacclimation in 

many species (Boardman 1977; Givnish 1988). 

 Whole plant level photoacclimation was studied through gas exchange. Light-

response curves done with three different ambient CO2 levels were performed. Low 

ambient CO2 or photorespiratory conditions, reference ambient CO2 and high ambient 

CO2 levels which are proper conditions to suppress photorespiration. The light-response 

curve done with low CO2 (200 Ca) shows a typical low-high light plant response. Same 

results were obtained when the curves were done with a reference ambient CO2 level 

(400 Ca) and under non-photorespiratory conditions (800 Ca). A typical LL-HL response 

was observed with higher maximum photosynthetic rates, higher light compensation 

point, higher dark respiration rates and an increased light saturation estimate for plants 

grown under HL. These results are consistent with the reported low-high light 

photoacclimation responses in different species (Anderson and Osmond 1987). CO2- 

and light-response curves for the Shandong ecotype are the expected for HL plants 

reported previously by Anderson and Osmond (1987).  

 Photoacclimated Shandong plants exhibit high photosynthetic rates probably due 

to higher carboxylation rates, increased electron transport capacity and increased 

Rubisco contents as reported in Arabidopsis grown in high light by Bailey et al. (2004). 

Similar results were reported in pea plants by Evans (1987). Typically a strong 

correlation is suggested between maximum photosynthetic rates and Chl a:b as an 

indication of photoacclimation. This ecotype demonstrates that this mechanisms appear 

to act independently and confirms the hypothesis of Bailey et al. (2001) that these 

mechanisms act independently but are triggered by the same responses. Tolerance to 

photoinhibition showed that plants grown under LL conditions are more susceptible and 

Fv/Fm decreased 78% and 64% for plants grown under LL and HL respectively. Growth 

under high irradiance increases the tolerance to photoinhibition in this ecotype and 

these results have been reported previously in other species (Anderson and Osmond 

1987; Anderson et al. 1995). This ecotype appears to acclimate to HL conditions 

modulating the carbon metabolism, mainly by supressing photorespiration. I 

hypothesize that another protective mechanism that might be involved is the PTOX. 

Lennon et al. (2003) found that the abundance and activity of PTOX is very low in 
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mature leaves of C3 plants and as an exception to the rule Streb et al. (2005) 

demonstrated that the high mountain plant Ranunculus glacialis has high contents of 

PTOX in fully developed leaves that allow this plant to maintain high photosynthetic 

electron capacity under HL and low temperatures. Stepien and Johnson (2009) also 

found increased contents of PTOX in mature leaves of Shandong in response to salt 

stress. I hypothesize that Shandong might be using the PTOX as an alternative electron 

sink to acclimate to high irradiance. However, the function of this enzyme have been 

controversial. Rosso et al. (2006) found that PTOX does not act as a photoprotective 

mechanism when plants are exposed to high irradiance. 

 

5.1.2 Yukon: A High-Light Loving Plant 

 At a chloroplast level in this ecotype the main changes in pigment composition 

showed that total chlorophyll on a FW basis displayed a decrease of 37% for the plants 

grown under HL conditions, Chl a:b ratio had an increase of approximately 1.9-fold. 

These responses resemble previous results observed for growth irradiance 

photoacclimation (Anderson 1986; Schötler and Toth 2014).Total carotenoids on a FW 

basis does not show any difference. However, on an area basis there is an increase 

when plants were grown under high irradiance and as mentioned previously these 

pigments play an important role in energy dissipation through NPQ (Demmig-Adams 

and Adams 1992). Other key pigment that act as a protective mechanism is 

anthocyanin. Anthocyanin accumulation on a FW basis showed a 1.3-fold increase for 

plants grown under HL. Anthocyanin is reported to protect mesophyll cells against 

excess of irradiance through light attenuation also as an antioxidant (Krol et al. 1996; 

Chalker-Scott 1999; Neill and Gould 2003; Gould 2004).  

 The different growth irradiances used on this study resulted in different 

developmental rates of the plants. FW accumulation was used to determine the same 

developmental stage between LL and HL plants. Plants were harvested approximately 

22 and 23 days after seeding. FW and DW measurements displayed the same trend but 

towards the end of the examined cycle plants grown under HL accumulated a higher 

mass and these results are reported in the literature for low-high light responses 

(Givnish 1988). SLA values for plants grown under LL indicates that these plants have 
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thinner leaves than the plants under HL. Thicker leaves have an increased mesophyll 

volume that allows a better diffusion of CO2 that optimizes photosynthetic rates 

(Terashima et al. 2006). RGR confirms the other analyzed traits showing that the 

differences between growth irradiances are minimal. It appears that the Yukon ecotype 

does not respond as many species even with 1.5-fold higher PPFD probably indicating 

that the tolerance to light stress is higher than many species and requires high 

irradiance to display the typical LL and HL differences (Boardman 1977; Givnish 1988). 

 CO2- and light- response curves exhibit minimal differences when plants were 

grown under LL and HL conditions. Interestingly, this ecotype appears to modulate the 

photorespiratory processes as a photoacclimation mechanism to the increased growth 

irradiance. Previous research done in this laboratory demonstrated that Yukon is not 

able to grow and/or complete its life cycle under low light conditions (100 µmol photons 

m-2 s-1) and this might be owed to respiratory loses (Khanal 2011). This condition is 

probably associated to the stressful environmental conditions that these plants grow 

investing energy in respiration as a protective mechanism (Chapin III et al. 1993; Block 

et al. 2009). 

 Tolerance to photoinhibition showed that plants grown under LL conditions are 

more susceptible and Fv/Fm decreased 50% and 11% for plants grown under LL and HL 

respectively. Growth under high irradiance increases the tolerance to photoinhibition in 

this ecotype and these results have been reported previously in other species 

(Anderson and Osmond 1987; Anderson et al. 1995). As the results indicate Yukon 

seems to acclimate to high irradiance by modifying its pigment composition and using 

photorespiration as a protective mechanism. Huang et al. (2014) demonstrated in 

tobacco that photorespiration is necessary to maintain high photosynthetic rates under 

increased growth irradiance scavenging 2-PG combining two molecules to yield 3-PGA 

preventing the accumulation of 2-PG and other photorespiratory intermediates helping 

to maintain high rates of photosynthesis. Timm et al. (2012) found that the 

overexpression of the H-protein of glycine decarboxylase one of the main enzymes of 

photorespiration leads to increased photosynthetic rates in Arabidopsis. Another 

interesting conclusion from Kozaki and Takeba (1999) is that photorespiration acts as a 

protective mechanism against photoinhibition. It appears that the Yukon ecotype has 
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adapted to its natural environment mainly modulating its carbon metabolism and using 

photorespiration as a sink to avoid damages to the photosynthetic apparatus. Other 

proposed protective mechanism is ureide accumulation. Malik et al. (2015) reported 

ureide accumulation in leaf tissue of the Yukon ecotype of Eutrema grown under HL and 

this accumulation is directly related with an increase in the photoinhibition tolerance of 

this ecotype under HL conditions. 

 

5.2 Contrasting Results Between Ecotypes Acclimated to High-Light 

 At a chloroplast level the contrasting response of the two analysed ecotypes of 

Eutrema are Chl a:b ratio and anthocyanin contents. Anthocyanin contents for 

Shandong are lower than Yukon and probably that lower accumulation in Shandong can 

be correlated with a higher susceptibility to photoinhibition. Chl a:b ratios showed a 

typical low-high light photoacclimation response in Yukon. Conversely, Shandong 

shows a constant ratio. Chow et al. (1991) obtained similar results with Tradescantia 

albiflora a constant Chl a:b ratio when plants were grown under LL or HL, this 

inflexibility makes Tradescantia prone to photoinhibition. Results from the 

photoinhibition experiment demonstrated that Shandong experiences a decrease in 

Fv/Fm of 64% while Yukon had a reduction of 11%. I hypothesize that the contrasting 

results obtained at a chloroplast level are the probable reasons that Shandong is more 

susceptible to photoinhibition than Yukon.  

 At leaf level the contrasting differences are not as determinant as when a 

comparison was made on a chloroplast level. The first two weeks of development 

Yukon appears to grow at a slightly higher rate than Shandong. However, after that 

initial period Shandong grows at a faster rate than Yukon. Those results are 

represented in the growth kinetics experiment results. Light-response curves done with 

plants of the two ecotypes grown under HL conditions showed that the Shandong 

ecotype appears to have a superior photosynthetic performance than the Yukon 

ecotype. According to the gas exchange results at a whole plant level the response is a 

lack of photorespiration vs. photorespiration for Shandong and Yukon respectively. 

Tolerance to photoinhibition shows that Shandong is not as capable to withstand high-

irradiance and low temperatures as Yukon. 
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5.3 Conclusions and Future Work 

 The contrasting natural environment of the Shandong and the Yukon ecotypes of 

Eutrema influences the different response mechanisms of these ecotypes to the 

increased growth irradiance. Photosynthesis is a very effective environmental sensor 

mechanism and is highly sensitive to any imbalance. To photoacclimate plants have 

evolved a myriad of mechanisms. This study demonstrated that these ecotypes exhibit 

different photoacclimation mechanisms to growth irradiance.  

The Shandong ecotype shows an interesting trend at chloroplast level, no 

changes were observed in the Chl a:b when plants of this ecotype were grown under HL 

conditions. Anthocyanin contents for Shandong also showed a non-typical response 

with lower contents for plants grown under HL than plants under LL conditions.  At a 

whole plant level light-response curves showed a typical low- high-light response. 

Plants of this ecotype grown under HL had higher maximum photosynthetic rates, 

higher light compensation point and light saturation estimate than plants grown under 

LL conditions. Tolerance to photoinhibition is increased when plants of Shandong were 

grown under HL compared to plants grown under LL conditions. However, 

photoinhibition tolerance is lower in Shandong when compared to Yukon under both 

growing conditions. The results from this study showed that the Shandong ecotype of 

Eutrema appears to acclimate to high irradiance suppressing photorespiration and 

probably using PTOX as an alternative electron sink to dissipate the excess of energy. 

The Yukon ecotype appears to have the typical response of low- high-light plants 

at a chloroplast level with the total chlorophyll levels on a FW basis showing a decrease 

when growth irradiance was increased and Chl a:b ratio also showing an increase for 

plants grown under HL when compared to plants grown under LL conditions. At a leaf 

level Yukon plants showed minimal differences with plants of this same ecotype grown 

under LL and HL conditions. Gas exchange measurements showed that this ecotype 

appears maintain photosynthetic rates with minimal differences between plants grown 

under LL or HL conditions. Light response curves done with three different ambient CO2 

levels demonstrated that the Yukon ecotypes appears to acclimate to high irradiance 

using photorespiration as an energy sink and this hypothesis can explain why the plants 

of this ecotype grown under HL conditions does not exhibit the typical low- high- light 
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response when compared with plants grown under LL conditions. Tolerance to 

photoinhibition showed that the Yukon ecotype has a higher tolerance to photoinhibition 

than the Shandong ecotype under LL and HL conditions. 

 Future studies to unravel in detail the different photoacclimation mechanisms of 

these two ecotypes include assessing the contribution of PTOX in both ecotypes in 

response to HL growth irradiance and an analysis of key photorespiratory metabolites. 
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