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ABSTRACT

Blackleg disease, caused by the fungaptosphaeria maculafBhoma lingamis one

of the most economically important diseases of canola and rapeseed. Detoxification of
canola chemical defenses (phytoalexansl others) is an important mechanism used by

the blackleg fungus to overcome the plant
microbial defense metabolites producgel novoby plants in response to pathogen

attack and other forms of streds. maculansis successful in detoxifying sexal

cruciferous phytoalexinsto different products. For example, brassinin, a key
phytoalexin fom crucifers, is transformetb indole3-carboxaldehyde. This thesis
includesinvestigation ofphytoalexin metabolism bly. maculansand related work: (i)
transformationpathways of cruciferous phytoalexins aadalogs (i) design and

synthesis of potential inhibitors bfassimn detoxification.

In continuation of previous workhomologues,analogsand structural relativesf
brassinin wereanalysedfor metabolism byL. maculans Products of metabolism of
these compounds wergentified and theverall metabolic pathways were established.

It was concluded that structural relatives of brassinin metabolized differieatty
bras@in. Antifungal bioassays of the products suggested that all these transformations
were detoxification reactions. Among the phytoalexinsapakxin A was not
metabolizedvhereaseriwcalexin was metabolize®esults of these metabolism studies
usingL. maalansalong with the syntheses and antifungal activitiethefmetabolites

will be presented.

In the second part ahis thesis,inhibition of the detoxification of brassinin Hy.
maculansusing quinolines and isoquinolinewas investigated These compends
resulted from replacement of indolyl containing structures with quinoline and

isoquinoline moieties, and various substitutions such as phenyl, thiazolyl, bromo,

chloro, hydroxy and methoxy groupgll these compounds were tested for their effect



on krassinin detoxification and antifungal activi@verall, asignificant effecton the

rate of brassinin detoxification in cultureslofmaculansvas detected in the presence

of compounds @&romao-2-phenylquinoling 2-phenylquinoline, 3phenylquinoline and
1-thiazolylisoquinoline 6-Bromo-2-phenylquinoline was the most effective compound

in slowing down the metabolism of brassinin and also was a weak inhibitor of the
growth ofL. maculangvirulent on canola). Results of the syntheses and evaluation of

the @mpounds are discussed
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Chapter 1: Introduction

1.1 General objectives

Phytoalexins are secondary metabolites synthesized de novo by plants in response to
external stress such as pathogen invasion. So far, about 44 cruciisdaalexins

have been isolated from Brassicaceae. Pedras ansor&ers investigated the
detoxification of several cruciferous phytoalexins by their pathogens and determined
the pathways of phytoalexin metabolism (Pedras, Yaya et al., 20d{cjesearch

work explores the detoxification of cruciferous phytoalexiby the phytopathogenic
fungus of canola_eptosphaeria maculanDesm.) Ces. et de Not., asexual stage
Phoma lingam(Tode ex Fr) Desmand the effects of quinoline and isoquinoline

derivatives orthebrassinindetoxification. The specific objectives are to:

1 Determine the products of transformation of the cruciferous phytoalexins
rapalexin A R2), erucalexin 29) and brussalexin3¢) by Leptosphaeria
maculangisolates virulent on canola);

1 Determire the products of transformation of synthetic compounds related to
brassinin 96, 111, 153 320, 325, 327, 331 and 333 by L. maculangisolates
virulent on canola);

1 Determine antifungal activity of the phytoalexibg 22, 29, 36 and compounds
96, 111, 153 320, 325, 327, 331 and333 againstL. maculangisolates virulent
on canola);

1 Design, synthesize and determine the antifungal activity of potential inhibitors
(350-366) of brassinin detoxification based on quinoline and isoquinoline
moieties;

1 Determne the effect of compound850-366 on the rate of brassinin

detoxification byL.. maculangisolates virulent on canola).



1.2 Cruciferous plants and fungal pathogens

Blackleg of crucifeous oilseeds and vegetablesaa economically important disease

and is aserious concern in view of the yield losses that are associated with the disease
(Gugel and Petrie, 1992Blackleg disease is caused lhymaculansandL. biglobosa

L. biglobosais lessvirulent on canolahanL. maculansbutcould be more damaging

to Brassicajuncea(Rimmer,Shattuck et al., 2007).

Canola is defined bthe Canola Council of Canadat{p://www.canolacouncil.org as

seed of Brassicagenus B. napus B. rapaor B. juncea) whose oils contain < 2%

erucic acid and seed meaintains< 30 umolof aliphatic glucosinolateéany one or

any mixture of 3utenyl glucosinolate,-pentenyl glucosinolate -Rydroxy-3-butenyl
glucosinolae and 2hydroxy-4-pentenyl glucosinolatg)er gramof the airdry, oil-free

solid (http://www.canolacouncil.org/ind_definition.aspx Canola is the second largest
grown crop in Saskatchewaln 2007, four million tonnes of canola was produced in
Saskatchewan, whi ch amounted to 45% of
http://www.agriculture.gov.sk.ca/Saskatchewan_PigtuBéackleg disease is a major
concern in canola growing areas all over the world. However, disease management
practices such as the use of disease resistant cultivars, crop rotation, management of
infested stubble, use of disedsee seeds has provedhe effective (Gugel and Petrie,

1992; RimmeyShattuck et al., 2007).

Seeds are the major source of spread of blackleg asmculanscan survive in seeds

for long time. Hence, disea$ee seeds obtained by fungicidal treatmeetedound
effective for ontrolling blackleg diseas€Gugel and Petrie, 1992 In Canada,
carbathin, thiram and iprodione are registered fungicides used in seed treatments (West
Kharbanda et al., 2001). Besideszoxystrobin, fludloxanil, metalaxyl and other
fungicidal mixtures are recommended for the purpose (Sowvesv.ag.ndsu.edu

Despite the measures taken, statistics from the Canadian plant disease survey of 2010
showed that blackleg infections were found in 55% of the tested canola fields and that

the mean incidence of the disease has not decreased in Saskatchewan over last 10 years


http://www.canola-council.org/
http://www.canola-council.org/ind_definition.aspx
http://www.agriculture.gov.sk.ca/Saskatchewan_Picture
http://www.ag.ndsu.edu/

(DokkenBouchard, Anderson ai.,2011). These statistics suggest that better pesctic

are required for the control of blackleg disease.

1.3 Secondary metabolites of cruciferous plants and blackleg
fungi in attack and defense

Interactions among plants and pathogens are complex iraralve attack and
counterattack mechanisnidahlbrack, Bednarek et al., 2011pecondary metabolites

of fungi and plants play a majoole inthese interactionéBerger Sinha et al., 2007)

In general, fungal invasion of the plamtvolves production of toxins and other
metabolitesby the pathogenwhich damages the plant cells irreversiblyDuring the
infection process, some of the plant receptor sites can recognize fungal metabolites
(elicitors) thatinduce defense respons&sch asproduction of antifungal compounds
(Pedras, 2011; BergeBinha et al.2007).Besides, both plants and pathogenxiuce
enzymes to detoxify the toxic chemicals produced by the opponent. Thus, there exists a
continuous arms race between plants and fungal pathdgedras, 2011)lt is
important to understand the chemistryddriochemistry involved inheseinteractions

to find better ways to protect plants

1.3.1 Fungal metabolites

Crucifer pathogens produce structurally diverse metabolites. Some of them are known
to be hostselective phytotoxins, which cause disease symptanysam the plants that

host the fungal specig®edras and/u, 2009. The actual role of these phytotoxins/
metabolites in fungal defense is neell understood. However, some of the metabolites
are characteristic of a particular fungal speciPedfas,Chumala et al., 2007a).
Metabolites producebly various fungal pathogens of crucifer crops were reported for
Alternaria brassicicola(PedrasChumala et al., 2009ahizoctiniasolani(Pedrasyu

et al., 2005a) an&lerotinia sclerotiorum(Pedras and Ahiahonu, 200Metabolite
production byL. maculansvas extensively studied and has been reviefRedras and

Yu, 2009 Pedras, 2001 The blackleg disease is caused by two spdciesaculans
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andL. biglobosa L. maculandhas several sub groups known to produce quite different
metabolites. Isolates df. maculas virulent on canola (Pedras and Yu, 2009) and
mustard (PedrasChumala et al., 2004b; Pedras and Yu, 2009) produce several
metabolites and phytotoxins.

O OR
OH , OOH Q
\\\" ) N‘ w P

= = HO N 7
1 n=2, R=Ac HO 6 H :
2 n=2, R=H 7
3 n=1, R=Ac
4 n=3, R=Ac N CN N CN
5 n=4, R=Ac

Figure 1.1 Seleced structures of lp/totoxins sirodesminsl-5, phomalirazine ),
phomalide 7), maculansin88a and8b produced byleptosphaeriamaculans(virulent
on canolaPalras and Yu, 2009; Pedr&humala et al., 2007a).

Sirodesmin PL 1) and deacetgirodesminPL (2) were the first phytotoxins isolated
from L. maculangvirulent on canolajFerezouRiche et al., 1977)Since then, other
phytotoxins such asirodesmin H §), sirodesmins J4) andK (5) belonging to this
family have been isolated from cultureslofmaculangvirulent on canola) grown in
minimal medium(MM) (Pedras,Seguinswartz et al., 1990l these sirodesmins,
which are polythiodioxopiperazines cause yellow necrotic lesions on leavek
different plants, including crucifei®edrasChumalaet al., 2007a)Phomalirazine &)
was also produced by isolateslofmaculansvirulent on canola. Compourglcaused
nectrotic lesions oboth susceptible and resistant plafledrasAbrams et al.1989).
Phomalirazine®) was a proposed intermediatetie biosynthesis of sirodesmin P1) (
(Pedras,Abrams et al.,1989). Phomalide 7) is the first hosselective phytotoxin

isolated from cultures of. maculans(virulent on canola) grown itMM (Pedras,
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Taylor et al., 1993)Compound7 caused necrotic lesis on canola leaves but not on
those of brown mustar@Pedras and Yu, 200%edras and Biesenthal, 1998 he
biosynthesis of phomalide7 was inhibited in the presence of sirodesmin B} (
(Pedras and Biesenthal, 199B)acularsin A (8a) was identified as major metabolite
from cultures ofL. maculans(isolates virulent on canola) grown in PDB medium
(Pedras antfu, 20B). Compounda caused lesions on both susceptible and resistant
plants (Pedras and Yu, 20(Pedras, 2011 he phytotoxinsproducedoy L. maculans
(isolates virulent on canolaye shown irfigure 1.1.

Depsilardin 9) is a hostselective toxin produced by isolateslofmaculangvirulent

on mustard) Compound9 caused nectrotic lesions when sprayed on leaves of brown
mustard but not canoléPedras,Chumala et al., 2004b)The btal synthesis of
compound9 was recentlyaccomplishedWard and Pardeshi, 20L0Polanrazing B

(20) and C (1) were identified as phytotoxic among the group of structurally similar
compounds producebly Polish type isolates of. maculans (Pedras and Biesenthal,
2001). PhomalairdenoA (12) and phomalairdenones (13) and D (L4) were also

isolated from isolates df. maculangvirulent onmustard (Figurel.2) (PedrasErosa

Lopez et &, 1999a).
H™,
4ee
oo Y S
N~
%”1 L

@dr Q&r W g

H oH 14

Figure 1.2 Selected structures of phytotoxirs14 produced bylLeptosphaeria
maculangvirulent on mustardjPedras and Yu, 2009

There is amother group of fungal metabolites known as elicitdEBcitors bind to
receptor sites in planissuesand induce production of phytoalexifdahn, 199%.
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Phytoalexins arentimicrobialplant metabolites produced d®vo upon exposure to
biotic and abiotic stress€Bailey and Mansfield1982. A mixture of cerebrosides C
(15 and D (6) are the only known specific elicitonsolated from L. maculans
(virulent on canolajFigurel.3). In addition sirodesmin PLX) and deacetgirodesmin
PL (2) were identified as neapecific elicitoryPedras and Yu’ZOOS).

O

Figure 1.3 Elicitors 15and16 produced by.eptosphaeria macular(sirulent on
canolg (Pedras and Yu, 2099

1.3.2 Cruciferous plant metabolites

Phytoalexins (inducible) (Bailey and Mansfield, 1992 and phytoanticipins
(constitutive) (Vanetten,Mansfield et al., 1994play importantecological roles in
defenseagainst pathogendHammondKosack and Jones, 199@hytoanticipins are
constitutive plant defenses, whose concentrations increase under catnessons
(Vanetten, Mansfield et al., 1994)The developments ircruciferous phytoalexin
researchhave been reviewedecently(Pedras,Yaya et al., 2011c; Pedras and Yaya,
2010; Pedras, 2008edrasZheng et al., 2007&2?edras and Ahiahonu, 2005; Pedras
Jha et al., 2003b; Pedr&3kanga et al., 2000).

Phytoalexins

Recently, Pedras et al., published a comprehensive red@ahng with cruciferous
phytoalexins(Pedras,Yaya et al., 2011c)For this reason, only work of immediate
interest to this theswwill be reviewed herePhytoalexins are generally found at the site
of infection at inhibitory concentrations. Localization studies carried out on several
species infected with the pathogens illustratest phytoalexins have specifioles in
defensgHammerschmidt, 1999
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Figure 1.4 Structures of selected cruciferous phytoalexitsassinin {7), 1-
methoxybrassinin 18), cyclobrassinin 19), 1-methoxycyclobrassinin2Q), rutalexin
(22), rapalexin A 22), rapalexin B 23), caulilexin B @4), wasalexins A 25) and B
(26), spirobrassinin 47), 1-methoxyspirobrassinin2@), erucalexin 29), brassilexin
(30), sinalexin 81), camalexin 82), 6-methoxycamalexin33), brassicanal A 34),
brassicanate A36) and brussalexin3g) (Pedrasyaya et al., 2011c)

The phytoalexins brassininly) and Xmethoxybrassinin 18) were isolated from
Chinese cabbage by Takasugi and cowarkerl986 and these compounaere the
first phytoalexinsreportedfrom Brassicacea€Takasugi,Katsui et al., 1986).Since
then 44 cruciferous phytoalexins have been isolated and their structures have been
elucidated(Pedras,Yaya et al., 2011c)Crucifers belong tothe only plant family
known to date to produceulfur-containing phytoalexins. Phytoalexins such as
brassininsl7 and 18 containa dithiocarbamate grouplhe dthiocarbamateroupwas
presentin several fungicides used in2@entury(Atkinson, 1970) Wasalexin®5, 26
and camalexins32 and 33 were isolated from wild cruciferéPedras,Yaya et al.,
2011c).Selectedstructures of cruciferous phytoalexih$-36 are shown irfigure 1.4.
Crucifeous phytoalexins are also known to exhibit broad spectrum of antifungal
activities against several pathogefi®dras,Yaya et al., 2011c)The phytoalexin
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brassinin {7) is a strong inhibitor of the growth af maculansS. sclerotiorumandB.
cinerea. Brassininsl7 and18 are considered crucial metabolites among the cruciferous
phytoalexing because they are precursors of several other phytoal&chemel.l
summarizes the biosynthetic relationships among thieus cruciferous phytoalexins
(Pedrasyaya et al., 2011c).

o) Me
CHO o sve N N
R=H =
N—sMe - Wg R=OMe (T Me s5R=H L F°
N AN e S — N S
341 N’ 17 R=H N H
18 R=OMe 19 R=H 21

Scheme 1.1 Biosyntheic relationship among brassinins 17 and 18, and other
phytoalexins cyclobrassinin 19), 1-methoxycyclobrassinin 20), rutalexin 1),
spirobrassininZ7), erucalexin 29), brassilexin 30), brassicaniaA (34), brassicanate A
(35) (Pedrasyaya et al., 2011c).

Phytoanticipins

Phytoanticipins are constitutiy@lant metabolites whose concentmts increasatfter

the stress conditions are appli@danetten,Mansfield et al., 1994)The distinction
between phytoalexins and phytoanticipins is sometimes ambiguou)easame
compound can ba phytoanticipin in one species and be inducible (phyio@)ein

others.For examplearvelexin(39) was isolated fronthewild crucifer Thlapsi arvense
as a phytoalexifPedrasChumala et al., 2003ayhile compound39 was isolated as
phytoanticipin from canola treated witlasmodiophorabrassicae(PedrasZheng et

al., 200®). Methyl 1-methoxyindole3-carboxylate 41) was first isolated as a

8



phytoalexin from wasal{Pedras,Sorensen et al., 1999hyhereas the same compound
was isolated as a phytoanticipin Arabidopsis thaliana (Pedras and Adio, 2008
Compounds38-40 and42 arephytoanticipins detected . thaliana(Pedras and Adio,
2008. Phytoanticipins43 and 44 were isolated from oilseed canola infected with
brassicag(PedrasZheng et al., 200§. Besides, ascorbigedX), neoascorbigem6),
dihydroascorbigesn 47, 48 and indole glucosinolatesA49-51 were the other
phytoanticipins isolated~gure1.5) (Pedas and Adio, 2008

R CN
! O\ _oMe ©OMe _COOMe
A\
<i> \ C@g
R N H

37 R=H; R,=H R a2
38 R=OMe; R,=H 40 R=H
39 R=H;R;=OMe 41R=OMe OH
X Ho, H o _o R, S--p-D-glc
OH
@E\; w )
N N
43R HF§( SO,M N R
44 R=OMe; X=OMe N 49 R=R,=H
R 50 R=OMe; Ry=H
45 R=H 48 R=OMe 51 R=H; R;=OMe
46 R=OMe

Figure 1.5 Structures of pytoanticipins indole-3-acetonitriles37-39, compound0-
44, ascorbigens45-48 and glucobrassicingd9-51, producedby cultivated crucifers
(Pedraszheng et al., 2008kand wild crucifer{Pedras and Adio, 2008

Several pytoanticipins of Brassicaceae aradole glucosinolates49-51 and their
degradationproducts 37-39. Glucosinolates are derived from aminoacids and are
produced by several plant familigSrouping of 12Ccruciferousglucosinolates intd.0
(A-J) groupsby Faheyand coeworkers (FaheyZalcman et al., 2002was recently
revised by ClarkeClarke compileda list of 200 glucosinolates intd3 (A-M) groups
(Clarke, 2010



1.4 Biotransformation of cruciferous phytoalexins and related

structures by phytopathogenic fungi

Fungal patbgens produce detoxifying enzymeswhich metabolizeplant defense
compoundssuch asphytoalexins to less toxic producfBedras,Yaya et al., 2011c;
Pedras and Yaya, 2010; Pedras, 2008; Pedras and Ahiahonu, 289&)etabolism of
crucifer phytoalexins byseveral pathogens such ks maculans L. biglobosa A.

brassicicola S. sclerotiorunandR. solaniwere reviewedPedras)Yaya et al., 2011c;
Pedras, 2008; Feas and Ahiahonu, 2005; Pedr@kanga et al., 2000However, the
metabolism ofthe compoundsrelated to phytoalexineasnot beencoveredin these
reviews Thus,the synthesis anthetabolism ofcompounds related torasnin (17),

brassilexin 80) and camalexin(32) by pathogens such ds maculans(virulent on
canolg, L. biglobosaA. brassicicta, S. sclerotiorunandR. solaniwill be reviewel in

this section

1.4.1 Syntheses of phytoalexin-related structures

In this section, general routes used in the synthesaasalbgsand related structures of
brassinin 17), brassilexin 80) and camalexin 82) will be discussedCompounds
related to brassininl{) with changes irthe aryl moiety and functional group were
preparedo test as inhibitors of brassinin detoxificatigtedras and Jha 200&imilar

to brassinin, their y;ithegs were initiated with oxmation of aldehyde®f general
structure52 in presence of NpOH.HCI to yield oximesof general structur3, which
were reduced tthe corresponding aminesf general structur&4. Treatment of these
amines 54 with different reagerst (iii-vi) as shown inschemel.2 afforded the
compounds of general structusg, which includel dithiocarbamates, ureas, thioureas
and carbamatg®edras and Jha, 2006)
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Dithiocarbamates X=Y=S; R=alkyl
Ureas X=0; Y=N; R=alkyl
Thioureas X=S; Y=N; R=alkyl
Carbamates X=Y=0; R=alkyl

(iii) CS,/ RI;
(iv) RNCO;
(v) RNCS;
(vi) ROCOCI;

Scheme 1.2 Synthesis of brassn analogsof general structuré5. Reagents and
conditions: (i) NHOH.HCI, N&COs;, EtOH,; (ii) NiCl,.6H,O, NaBH,, MeOH,; (iii) CS,
Pyr, EtN, akyliodide; (iv) EtN, alkyl/aryl isocyanate; (V)EGN, alkyl/aryl
isothiocyanate; (viEtsN, alkylchloroformatgPedras and Jha, 2006).

A general procedure by Ayer and-swmrkers (Ayer, Craw et al., 1992) was used to
synthesize substituted camalexins of general struéfurgolutions of Zoromothiazole

in benzene were added to indoles of general strubtueexd MeMgl, and refluxed to
afford camalexing7 (Pedras and Ahiahonu, 2Q0Redras and Liu, 2004Similarly,
Fischer indole synthesis was used to synthesize the substitytkdnglindoles of
general structurél (Schemel.3) (Robinson, 1968 Substituted phenyl hydrazines of
general strucire 58 and phenyl acetaldehydes of general struchi®®&ere heated to
give the hydrazine intermediates of general strudd@revhich were heated in EtOH
in presence of ZnGlto afford the substituted-@Bhenylindoles1 (Pedras and Hossain,
2007).

S

N

\_S
N i i N
R A\ > . A\
Z N R@r?

H
57

e . cHo i R+\ | iv R SN
o > ~-N =
NHNH, N
58 59 60

2Tz o

Schemel.3 Synthesis of camalexianalogsof general structur&7 and61. Reagents
and conditions: (i) MeMgl, EO; (ii) 2-bromothiazole, benzer@yer and Craw et al.,
1992; Pedras and Ahiahonu, 20@&dras and Liu, 2004{iji) heat; (iv) ZnC}, EtOH,
heat(Pedras and Hossain, 2007
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Some of theanalogsof brassilexin 80) reported in the literature have various
substituents on the indole ring. Synthesis of brassilexins of general str@dturas
carried out using an optized proceduréPedras and Jha, 2003ndoline2-thiones of
general structures3 obtained from thionation of various substituted oxindoles of
gereral structure62 were subjected to Vilsmeier formylation followed by aqueous
ammonia workup to afford the substituted brassilex® Other brassilexin related
compounds of general structud& with isothiazolyl moieties in their structure were
syntheszed according to the general procediifedas and Suchy, 2006Schemel.4).

Aryl acetic acids of general structur@5 were convertedto substituted aryl
acrylaldehydes of general struct@® which in presence of NiSCN were cyclizedo

isothiazole$7.

62 63 64
iv; v; Vi /ECl vii N
A" COOH —— =\ AN > /E/\S
65 66 Ar 67

Schemel.4 Synthesis of brassilexianalogsof general structuré4 and67. Reagents
and conditions:(i) P4Sio, NaHCQ, THF; (ii) POCk, DMF, NH,OH; (iii) 15, Pyr,
(Pedras and Jha, 200%iv) POCE, DMF; (v) NaOH, EtOH/HO; (vi) SOC}, DCM,;
(vii) NH4SCN, DMF,(Pedras and Suchy, 2006

1.4.2 Biotransformations in fungal cultures

Detoxification is a generalrattegy used by organisms to convert toxic compounds to
less toxic products.Detoxification processesnvolve chemical modificatiors or
degradationof the compound In general,the first step in the metabolism ithe
detoxification processThe range of ransformations of phytoalexins by crucifer
pathogens is very broad ahownin several reviewgPedras,Yaya et al., 2011c;
Pedras, 2008; leas and Ahiahonu, 2005; Pedr&kanga et al., 2000)Besides
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phytoalexins, severaklated compoundsave been piwed for metabolism by crucifer
pathogens. In this sectiofirst the transformatiosmiof compounds closely related to
brassinin {7) are reviewed. Then, exampleighlighting themetabolic transformations
carried out by fungal pathogens of crucifers iltestratedusinganalogsof brassilexin
(30) andcamalexin 82).

Brassinin {7) is antifungal againgt. maculansB. cineea and S. sclerotiorumand
more importantly,compound17 is a biosynthetic precursor obther phytoalexins
(Schemel.l) (Pedras,Yaya et al., 2011c)Thus, brassinin1(7) is considered as an
important compound among crucifer defenddstabolism of brassininly) has been
extensively studied in crucifer pathogens and these studies led to titersalf four
brassinin detoxifying enzymes B@ (PedrasMinic et al., 2008), BHLmL2 (Pedras
Minic et al., 2009), BHADb (PedrasMinic et al., 2009c)and SBGT1 (recombinant)
(Sexton,Minic et al., 2009) In fact, the metabolism of compound? to indole-3-
carboxaldehyde 74) by L. maculanswas the first detoxification of phytoalexis
identified in crucifeious pathogenic fung(Pedras and Taylor, 1991l ater, ®veral
analogsof compoundl? have been probed for the metabolismLbynaculans These
compounds werdesigned bynodifying the structure of brassiniiY): i) replacement
of theindolyl ring in structurel 7 with other aromatic moietie§) isosteric replacement
of the hetero atoms idithiocarbamateide chain-N-C(S)}SMe)in thestructure17 to
incorporate thiourea, carbamate, carbonate, ester and thiocarbemabigs(Pedras
and Jha, 2006Based on these results, structural features required for metalwdlism
brassiniarelated compoundsy L. maculanswere highlighted(Pedras,Jha et al.,
2007c) For brassinifike structures to be metabolizéiorough oxidative degradation
by L. maculansthe compoundsvere required to have &ast a methylene bridge
separating the aromatic moiety and the dithiocarbamate side Caampounds68-73
were metabolized in a similar manngr compound17 (Schemel.5). However,
brassinin {7) was metabolized differentlyby L. maculans(virulent on mustard)
(Pedras, Gadagi et al., 2007b).

13
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Scheme 1.5 Biotransformation of brassinin1f{) and analogs 68-73 by (i)
Leptosphaeria maculangirulent on canolajPedras and Jha, 200BedrasJha et al.,
2007c); (ii) Leptosphaeria maculanévirulent on mustard)Pedras, Gadagi et al.,
2007b; Pedrasviinic et al., 2009).

Isolates ofl. biglobosaand L. maculangvirulent on mustardmetabolizel brassinin
(17) to 3-indolylmethanaming76) followed by Ny-acetyt3-indolylmethanamine7(7)

(Pedsms, Gadagi et al., 2007b)Similar to brassinin(17), compounds68-73 were
metabolizedgiving the respectiveacetylatedamines77 or 78 (Schemel.5) (Pedras,
Gadagi et al., 2007b; Pedraéinic et al., 2009c)

Compounds79-84 were metabolizetb the corresponding acid®5-89 in cultures ofL.
maculans (Scheme1.6) (Pedras and Jha, 2006; Pedr&fian et al., 1997)The
correspondingaldehyds were not detected in fungal autes unlike with the
metabolism of compountl7 (Pedras and Jha, 2006; Pedkdsan et al., 1997).

However, transformatianof the norindolyl dithiocarbamates such as compouiiéls
81 and compound.7 were found to be similan L. maculans(virulent on mustard.
Compounds79 and 81 were metabolizedo respective productsf dithiocarbamate
hydrolysis followed by acetylatioto yield the final product90 and91 (Schemel.6)
(PedrasKhan et al., 1997)
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Schemel.6 Biotransformation of dithiocarbamagamalogs79-84 by (i) Leptosphaeria
maculans(virulent on canolaPedras and Jha, 200BedrasKhan et al., 1997)(ii)
Leptosphaen biglobosa(PedrasKhan et al., 1997)

Both virulent and avirulent isolates &f maculansmetabolized compoun®2 in
identical mannerCompounds93 and 94 were also hydrolyzed to indohg-propanoic

acid(95) in cultures ofL. maculangvirulenton camla) (Schemel.7).

Y (0}

_CH

7 CHj3 OH
Q i i S
N

92 Y=Z=0 95

93 Y=0; Z=NH

94 Y=0; Z=NH

Scheme 1.7 Biotransformation of brassiniranalogs 92-94 by (i) Leptosphaeria
maculans(virulent on canolaPedas and Jha, 2006; Pedrdba et al., 2007¢ii)
Leptosphaeria macular(girulent on mustardjPedrasGadagi et al., 20@3).

Metabolic detoxification of brassiniriq) in S. sclerotiorunwas first reported in 2004
(PedrasAhiahonu et al., 2004aBrassinin L7) and its analo®6 were metabolized
similarly to product97 and98, addirg glycosylmoietyat N-1 in both the compounds
(Scheme 1.8) (Pedras,Ahiahonu et al.,, 2004a)S. sclerotiorumcarried out the
glycosylationof Smethyl Tmethyltryptamine dithiocarbamat@9) at C-7 of indole,
sinceposition G1 of indole wagrotected with & CHz group.CompoundlOlwas the
final product ofthe transformation d®9 by S. sclerotiorun{Ahiahony Ph. D. Thesis,
2004). Similar transformation otompound100 to compoundl02 was observed in
cultures ofS. sclerotiorumncubated withl00, which has théN atom replaced b$ at

position1 of indole(Pedras and Hossain, 2Q00WhenS in compoundl00 at position
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1 was replaced by, the resultant coppund 103 was resistant to degradation By

sclerotiorum(Schemel.9) (Pedras and Hossain, 2007

Metabolism of compoun&4 in S. sclerotiorunyielded compound04 as a result of
glycosylation at position 5 ahe naphthyl ring chemel.10) (PedrasAhiahonu et al.,
2004a) Examples inschemes 19 through 1.11 suggest thatglycosylation of
phytoalexins oranalogsis the main transformation carried out By sclerotiorunfor

detoxification
(CH)NH
CH,)—NH SCH
T Cry ¢
—_—

6 N H y

17 n=1 HH 97 n=1

96 n=2 08 n=2

Schemel.8 Metabolism of brassininl{y) andanalog96 by Sclerotiniasclerotiorum
(PedrasAhiahonu et al., 2004a)

(CHZ)nINH

CH,),~NH SCH
5 ( 2)n b—SCH::, N Sk_ 3
\y s X
X 3
1
99 X=NMe; R{=H; n=2 101 X=NMe; n=2 0,
B =M = =S n= HO
100 X=S; Ry=H; n=1 102 X=8; n=1 O~ ~on
HO
CH,).—NH
5 ( 2& )—SCH,
6 @ s %H No metabolism
R,

103 X=0; R4=H; n=1

Schemel.9 Metabolism ofcompound®9 and100by Sclerotinia sclerotioruniPedras
and Hossain, 2007

]
e o
S#~SCH; Ho&\\v s7SCH,
HO (e}
84 HO O 104

HO

Scheme 1.10 Detoxification of methyl zZnaphthylmethyl dithiocarbamate34) by
Sclerotinia sclerotiorunfPedrasAhiahonu et al., 2004a)
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Schemel.11 Metabolism of spirobrassirsi27, 28 and105by Sclerotinia sclerotiorum
(Pedras and Hossain, 2006

No glycosylation was observed in detoxifications of spirobrassiipandanalogsl-
methoxyspirobrassinin2@) and Xmethylspirolbassinin {05, compounds with lower
inhibition effect againsS. sclerotiorum(Schemel.11) (Pedras and Hossain, 2006).
Spirobrassinin7 and 28 were metabolized to corresponding spirothiazolidindr@&
and 107 by S. sclerotiorum Besides, a minor metabolitt08 was detected from
metabolism of compound8 by S. sclerotiorum(Pedras and Hossain, Z&)0On the
other hand, compound05 was first metabolizedo its demethylated produ@7
through the intermediated9, which underwent loss of the hydroxymethyl group &t N
to give compoun@7. In addition metabolitd10was also detected from metaboli®f
compoundl05by S. sclerotiorun{Pedras and Hossain, 20065. sclerotioruncarried
out both glycosylation and neglycosylation mdes of transformation in the case of a
compoundl11, wherein the compound was hydroxylated &8 @nd glycosylated at-N
1 to yield compound 12 (Schemel.12) (Pedras and Hossain, 2007).
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Schemel.12 Metabolism of isobrassinirl{1) by Sclerotinia sclerotiorunfPedras and
Hossain, 200y

The metabolism of amalexin (32) by several cruciferus fungi was investigated
Compound32 was found to be metabolized By solani(Pedras and Khan, 19907%.
sclerotiorum (Pedras and Ahiahonu, 2002nd B. cinera (Pedras,Hossain et al.,
2011a). In addition analogs of camalexin wee screeed for metabolismby S.
sclerotiorum(Pedras and Ahiahonu, 200@ndR. solani(Pedras and Liu, 2004These
compounds wereerivatives of camalexi32) in which theindolyl hydrogenswere
replacedwith atoms such as F, Me, OMe etc.,thethiazolyl ringwas replacedavith a
phenyl ring(Pedras and Ahiahonu, 2002; Pedras and Liu, 2004; Pedras and Hossain,
2007). Camalexin 82 was metabolized byS sclerotiorum to 6-oxy-(O-b-
glucopyranosyl)camalexirl{6) via 6-hydroxycamalexin {15 (Pedras and Ahiahonu,
2002. If C-6 of camalexinwas blockedwith OMe group as in compound3, S.
sclerotiorummetabolized compound@3 in the same manner to compouBd via an
oxidative demethylated intermediaténgdroxycamalexin15). In addition, compound
33 was transformed to a minor metaboliledd7 (Pedras and Ahiahonu, 2002).
However, if G6 of camalexin was blocked with F, tbempoundl13was metabolized
to N-glucosylatedoroduct118 by S. sclerotiorun{Pedras and Ahiahonu, 2002)n the
otherhand if C-6 andN-1 of camalexinanalogswere blocked,as incompoundl14,
the fungus glycosytadthe compound.14 at C-7 (Schemel.13). Compoundl1l4 was
transformed to mabolite119 by S. lerotiorum In addition, compound14 was also
converted to compound20 by S. sclerotiorum(Pedras and Ahiahonu, 2002n
general,O-glycosidation and\-glycosidation, but not lycosidation was observed
among the detakication reactiors by S. sclerotiorumIn compounds where there are
no NH/OH functionalities available forglycosylation oxidation preceded the

glycosylation
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Schemel.13 Pathwaysf metabolism of camalexi(82) andanalogs33, 113and114
by Sclerotinia sclerotiorunfPedras and Ahiahonu, 2002)

3-Phenylindole(121) was metabolized tthe N-glycosylated compouni25 whereas,
theanalogsl22 and123 were not metabolizeldy S. sclerotiorun{Pedras ad Hossain,
2007. In addition 3-phenylbenzofurani@4) in contrast to henylindole {21) was
not metabolized b$. sclerotiorun{Schemel.14) (Pedras and Hossain, 2007

. - O
Ry
O ) L
Ry Ry OX

121 X=N; ke H; R1 =H; Ry=H ':'_% fo
HO
125 R=H; Ry=H; Ry=H
. O
R4 5 4
O N %é» No metabolism
R 6 X

122 X=N; R=H; R4=H; Ry=H; R3=F
123 X=N; R=H; R4=H; R,=F; R3=H
124 XR=0; R1=R,=R3=H

Schemel.14 Transformation of3-phenylindole(121) and other compoundE22-124
by Slerotinia sclerotiorum(Pedras and Hossain, 2007
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Camalexinanalogswere metabolized bR. solanithroughvarious pathways(Pedras
and Khan, 19972000 Pedras and Liu, 2004 Oxidation ofthe indole ringis the
predominant step in megbolism of compounds2 and 126. Camalexin 82) was
metabolized to compounitP9 through hydroxylation o€-5 (Pedras and Khan, 2000)
whereas,compound126, with a Me group at positiorC-5 was metabolizedo the
hydroxymethyl compound32. Compoundl29 wasfurther metabolized to compounds
130and 131 (Pedras and Liu, 2004Compoundl26 was metabolized bfR. solanito
the productsl33and 134 (Pedras and Liu, 2004Compoundl27 was metabolizedo
products135-137 (Pedras and Liu, 2004vhereas, compouni8 was metabolized to
products138140 (Pedras and Liu, 2004Nitriles 135 and 138 were found to be the
major metabolite in thesetransformatios of compoung 127 and 128 by R. solani
(Schemel.15). These examples demonstdhtthat C-5 of the indole ring is the
preferredsite of transformatiomy R. solani However,the site of transformatiowas
switched tahethiazole ring ifC-5 was blocked by HPedras iad Liu, 2004)
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. y - Ny — 130

H R=H; R;=Me a R=R;=H H +

CN
33 129
1 32 R=R=H HO
126 R=H; R;=Me N
127 R=Me; R{=H N

128 R=H; R,=F

R=Me; Ry=H
R=H; Ry=F
o

N\ﬁo NH,
CN R
Ry R ! N\
Ny 4 A\
N
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R R R

135 R=Me; Ry=H 136 R=Me; Ry=H 137 R=Me; Ry=H
138 R=H; R,=F 139 R=H; Ry=F 140 R=H; R4=F

w IZ
IS %
-

Schemel.15 Metabolism of camalexin3@) andanalogsl26-128 by Rhizoctiniasolani
(Pedras and Khan, 200Pedras and Liu, 2004
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Brassilexin 80) wastransformedy isolates ofL. maculansvirulent on canolgdPedras
and Suchy, 2005and mustardPedras and Snitynsky, 201@ndby S. sclerotiorum
(Pedras and Hossain, 2Q00%6he sothiazolyl ringwas found to béhe preferredsite for
transformationof brassilexinand its analogsby L. maculans(virulent on canta).
Compound30 was metabolizedo 3-aminomethylenéndoline-2-thione (43) byL.
maculans (virulent on canola)(Pedras and Suchy, 2005Similarly, brassilexin
derivatives 141 and 142 were metabolizedo productsl144 and 145 respectively.
However, analodl46 and othersl47-149, in which the isothiazole ring systerwas
fused with quinoline, phenydr benzothiophene moietiasere not metabolized bly.

maculangvirulent on canola)§chemel.16) (Pedras and Suchy, 2006

Schemel.16 Metébolism of brassilexin(30) and other compounds4l, 142 and 146
149by Leptosphaeria macular(girulent on canolajPedras and Suchy, 2006

Brassilexin 80) was metabolizedo compound150 by S. sclerotiorumthrough
glycosylation alN-1, whereagompoundl141 wasfirst oxidized at theN-Me groupand
then glycosylaed to product151 (Schemel.17) (Pedras and Hossain, 2008/any
phytoalexin analogs and related compounds were resistant to metabolism by

cruciferous fungiAppendix.
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