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ABSTRACT

Worldwide, natural grasslands are threatened by the expansion of unwanted woody plant species.
Woody plant encroachment (WPE) has become the second most important process that leads to
grassland loss in the Great Plains Biome, affecting the food industry, the economy, and the
environment. For grassland management practices to be effective, actumatering of
grassland health is importarRemote sensingRS) can achieve thisby offering largescale
coverage, nearal time monitoring, cosfficiency, onsistency, aneénhancedvisualization.

From thdliterature, Ifound that there is no universal remotely sensed WPE monitoring framework
available. Therefore, the objectivesf this dissertation are o explore RS approaches for
appropriateassessment of shrub encroachment in grassl@ntisexamine the patterns and trends

of shrub encroachmerandiii) to investigate the integration of RS approaches into grassland
management for shrub encroachment control and grassland. I#attih areas include native

prairie regionsin the Moist Mixed andCypress Uplandjrassland ecoregions of Saskatchewan
(SK). Field data (vegetation cover, plant area index, soil moisture, vegetation reflectance, and
biomass)was usedo identify the optimal season éispectral regions to estimate shrub cover in
grasslands and spectrally discriminate common shrub species éfe8Kl imagerywas usedo

map regional shrub cover and generalized least square models (@&r&ysedo identify tope

edaphic and anthropogenic factors that relate to existing shrub Guretata showed that spring

was the best season to distinguish shrubs from grass while each season had a different spectral
region more correlated to shrub cover. Summer was the best season to speatraityndie

western snowberry from wolfwillowVith an objectbased approach to classify shrub cover from
aerial imageswe obtained an overall accuracy between 998%b6. Overall, we found that shrub

cover is spectrally not detectable when its cover is betweer2B8®©f an image pixeOur GLM

model results showed that road closeness, metligm grazing, and haying absene®re
significantly positively related wittshrub coverFurthermorejoam, flat, upland areas further

away from waterbodies and wetlarfdsor higher shrub coverhis research can be the stepping
stone for achieving lorterm resilience and sustainability of native grassland species and their
habitats by better understanding the interactidoal factors on WPE expansion

Keywords: woody plant encroachmenshruly grassland healthspectral separabilityobject
based classificatigmemote sensinglriving factors generalized least square madel
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Chapter 1 INTRODUCTION

1.1, Preface

This chapter introducethe research topiand its importance.t lalso presers various debates
around the definition of Woody Plant Encroachment (WRE(irther describethe researchap,
hypothesis and objectives of this dissertatimd provideghe dissertation structur8ectionl.3
waspublished as an opinion paper in:

Soubry, 1., & Guo, X. (2022). Invasive and Native Woody Plant Encroachment: Definitions and
Debates. Journal of Plant Science and Phytopathology, -8684
https://doi.org/10.29328/journal.jpsp.1001078

Date of publication: 28 July 2022
Publisher: HSPI Inc. The Open Access Publisher

This opinion paper was conceptualized and written by myself while my supervisor (Dr. Xulin Guo)
reviewed and edited the piece. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, loligioin, and reproduction in

any medium, provided the original work is properly cited.

Section 14 was publishedunder t h e Chdilemgesl iassagiated with quantifying
spati ot empor al as@anadfarbviel papeyinii n WPEDO

Soubry, ., & Guo, X. (2022). Quantifying Woody Plant Encroachment in Grasslands: A Review
on Remote Sensing Approaches. Canadian Journal of Remote Serdihg, 1
https://doi.org/10.1080/07038992.2022.2039060

Date of publication: 22 March 2022

Publisher: Taylor & Francis Ltdyttps://www.tandfonline.com

This research was conceptualized by my supervisor (Dr. Xulin Guo) and Mr. Merek Wigness while
| conceived and wrote the manuscript. As authors, we have permission from the publisher to reprint
this work in the current dissertation as long as it is notighdl commercially (se®ppendix F).

1.2. Importance of WPE in grasslands

Grasslands are disappearing rapidiyd they are degrading globalliBardgett et al., 2021)
Worldwide, natural grasslands are threatened by the expansion of unwanted herbaceous and woody
plant species. This also holds for Canael8 a s k at chewan rancher who wr
my grandfather came over 100 years ago, there was not a tree that could stop a plow. This piece
of I and today is 70 % Woaly panterstroachment (WEE kas lzecothe b u s t
the second most significant cause of grasslandridbe Great Plains Bionadter land conversion

to cropping(Working Lands for Wildlife, 2022)WPE affects the food industrytheeconomy, and
theenvironment [figure 21, Chapter 2)It is estimated that WPE areas support only about 25%

of cattle capacitycompared to that obpen grasslands, significantly reducing available forage
supply(Moss et al., 2008)The U.S. Great Plains ¥Yalost production value between US$45

billion over the past 30 years due to WRorford et al., 2022)Grassland conversion to crops is
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obvious, but WPE is quiet and can become difficult to reverse even with timely management
actions. Despite the risk that ranchdears f ace
understanding of how much grassland is affected by WiEte Canadian PrairieEhe advantages

of using remote sensimdptato achieve this goal are many: larggale coverage, neegal time

monitoring, cosefficiency, consistency, and visualization attributes.

1.3. Invasive and Native Woody Plant Encroachment: Definitions and Debates

The term Ainvasiveo, for plants, can have a d
conservationist point of view, plant invasion is strictly referred to as the expansion-onétnos
speciefMoutou & Pastoret, 2010) However, from a | andowner or
the term Ainvasiono is often used -fprederrediffdtre e x p e

the landowner and manager) pieces of land. A recent review that looked at the definition of
invasive species included both native and-native species in its final definitiofkKim et al.,
2016) As it seems, there is confusion in the use of this terminology.

The expansion of woody species is a worldwide issue, and can include both native-and non
native specieg¢Archer et al., 2017; Soubry & Guo, 20226Yhen referring to this phenomenon,
the term fiinvasiveo has been used incomsi sten
depending on the study. For exampl e, scienti s
examine the expansion of native woody spe(sd & Midgley, 2000; Mirik et al., 2013jand
ecologists tend to use the term fiwodAukenpl ant
2009)or both native and nenative specieS. R. Archer et al., 2017)

Il n our view, the term Ainvasiveo cannot be
they technically do not Ai nvadeo an ar ea, but
stands through various pathways. For such circumstances, we peetesetiof the general term
Aencroachment o. We further s u@popandiChandioaetali e ws
(2012) i n using the t enativefspecies tha haveean expansive/charaoter n o |
in the ecosystem of study, since not allmative species have encroaching capabilities, and some
might be invasive in one area, and not in anofk Forest Service, 2018For instance, the
genetic potential of a woody plamight havea higher chance to be reached under different, more
optimal environments (including climate, soil, and nutrients) thats home rangeleading to
more vigorous growth(S. R. Archer et al.,, 2017) Ther ef or e, we believe
encroachment o (WPE) should be used as a more
native and nomative species, as supported by Archer gRal17)

There exist various definitions of WPE in the literat(irable 1-11). Archer et al(2017)
and Heisler et ali2003) consider both native and namtive woody species in their definition,
whereas Van Auke(2000)considers only nativdBesides he t er m fiwoody pl ant

the terms Awoody plant invasiono, fAwoody thicl
woody weedo, dAxerificati ono, TableHl2)iAs manttosed on o f
before, the term Awoody plant encroachment o se

of woody plants, since it can include both native andmative woody species. On the other hand,

the term Awoody pl atermthathncbasdesofionvasyowndhes
since it is being used in the literature for both native andnadive species with an invasive
character, even though it is most appropriate to be used for the latter case. Examples in the
literature thatusetheter fwoody pl ant i nvasi o(Ansleyfetal,200% t i v e
Burkinshaw & Bork, 2009; Leis et al., 2017; Mirik & Ansley, 2012; L. Qiao et al., 204bile

those addressing narative species are mofPiao, 2017; GaviePizarro et al., 2012; Hantson et
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al., 2012; Kattenborn et al., 2019; Kurokawa et al., 2010; Mazia et al., 2019; Niphadkar et al.,
2017; Tiscornia et al., 2019; Westetal.,20Mp vi ng fur t her , Awoody t hi
that is related to the densification of shrubs and-dtature trees, which tend to fill the gaps

between them, in areas with rainfall higher than 400 theite et al., 2020)Although less

common, there are example studies that use this type of termir{@ogycher et al., 1995, 2001,

S. R. Archer et al., 2017; Eldridge et al., 2011; Xiong & Han, 2006fi Woody pl ant exp
a general term that is a good alternatteeu s e f or Awoody pl ant encrt
Axerificationd has been connected to the expa
desert shrublands). There, water and nutrients concentrate below the woody canopy, degrading the
spaces betweentheemdc ausi ng hi gher runoff and erosion;
of fefRavii t& oD6OdoEX amp!| € 0DPt8Ydi es t hat wuse the
of Archer et al.(2001) and SchreineMcGraw (2020) Apart from the aforementioned terms,
according to the review of Eldridge et gd011) other terms that are being used for WPE include
Awoody thickeningo, AregrTabetl-h2p, &awWdodpushi ehe
used interchangeably with d@Awoody thicketizat
rangeland managers, while Abush encroachment o
conducted in the African continent. All in alL,ste ems t hat Awoody plant e
overarching term, which can be separamnte into
precipitation gradient of a regidBchreinefMcGraw et al., 2020)

Table 1-1 Definitions used for woody plant encroachment

Term Definition Source
Woody plant iThe proliferation (Archeretal, 2017)
encroachment can be nomative species that were

introduced purposely or accidentally or
native species that have either increased i
abundance within their historic ranges or
expanded their geog
Woody encroachment " A process that i nc (Heisleretal., 2003)
species (increase in richness) and the
expansion of existi
Brush, shrub,orwoody i The i ncrease i n de (VanAuken, 2000)
plant encroachment of indigenous woody or shrubby plants in
various grasslandsbo

Table 1-2 Alternative terms usd for woody plant encroachment

Term Usual meaning Example studies
Woody plant invasion (Bond & Midgley, 2000;
Chaneton et al., 2012; Liao &
expansion of native and/or non  Boutton, 2008)
Invasion of shrubs native woody species with an (Knapp et al. 2008, Brown et a
invasive character 1999, Wang et al. 2019,
Andersen et al. 2019)
Invasion of woody weed (Ayers et al2001)
Woody thicketization (Archer et al., 2001; Eldridge €

al., 2011; Xiong & Han, 2006)




Term Usual meaning Example studies

Woody thickening infilling of shrubs and low stature (Bond & Midgley, 2012;
trees in areas with rainfall > 400 Eldridge et al., 2013; Manea &
mm Leishman, 2019)

Xerification expansion of woody plants in aric (Archer et al., 2001; Schreiner

environments where the grass is McGraw et al., 2020)
replaced by bare soil (< 400 mm
precipitation)

Woody plant expansion used instead of (Archeretal., 2001; Delgado,
encroachmento 2017)
Woody, bush, or shrub used by rangeland managers to (Ansley et al., 2019; Bond &
regrowth refer to the expansion of woody Midgley, 2000; Fitzgerald &
species Bailey, 1984; Watson et al.,
2019)
Bush encroachment used instead of (Gil-Romeraetal, 2011;
encroachment 0 i Moleeleetal., 2002; Oldeland
et al., 2010; Skowno et al.,
2017)

1.4. Research Gaps

Several challenges and gagsated tathe ecological andemote sensingspects of WPE remain
in the literature.

1.4.1. Ecological Challenges

Several ecological challenges related to monitoring WPE still exist. Firstilggecal studies that
involve WPE are mosthghortterm and areonducted irsmall areasThus, aregionallong-term
understandingf woody coveiis absentBecaus@VPE is a slowdecadal proceséilling this gap
in the literature is an ongoing challen@echeret al.2001)that can only be resolvatnlinearly
becausdifferences in soil and disturbance factors (eggazing, fire,and brush management)
generate different feedbaxlkacrossa region Therefore, onecannot simply mapWPE by
extrapolatingesultsfrom smaltextentstudies

Secondly, there is no clear consensus on the attributes of WPE .drderd, here isa
debateas towhetherWPE drivers should be measured kical or global scaled~or instance,
conversion to agriculture can bmall or largescale(Wilsey, 2018) Additionally, researchers are
unsurewhetherWPE driversare endogenous or exogengu® 6 Odor i co et etall . 200
2018) have one or multiple feedbatdkops( D6 Od or i ¢ o , o are dadct.or indi2ebt1 2 )
(Wilcox et al. 2018) Furthermore specific driver relationships remaumclear,such asthe
relationshipbetween WPE and Gnhcreass (Archer et al. 201,/ Manea and Leishman 201¢he
relationshipbetween WPE and grazirjiyla et al. 2019)andhow precipitation variability affects
WPE (Maphanga et al., 2022)

Lastly, asecologistswork to understanghortterm WPE mechanismsother gaps in the
literature related to longer temporal scales remais still uncleawhether a WPE area is a carbon
sink or sourceas it varies depending on locati&uil organic carbon responses\WPE areas
differ by the type and traits of the woody pldAbreu et al. 201;7Lyon 2011) It alsoremains
difficult to define the absolute carrying capacity of woody species in a region with vargang



annual precipitationand it is still unclear ispecific woody plant traitare connected to WPE
(Archer et al. 2017)

1.4.2. Remote Sensing Challenges

Using Remote SensindxS), there are severdifferent sensors and techniquesmonitor WPE
Each of these techniques have advantages and disadvartageslifficult to detect early
encroachment stagegith moderatespatial resolutiorhyperspectraland multispectrakatellite
data. Moreoverthe use ofmulti-source RS data fusion methofis WPE detection remains
limited. The main difficulties with RS data fusiorare the discrepancieamongsensors (i.e.
radiometric differenceandgeometric misalignmnt).In addition differences in orbital and sensor
characteristics, anith sunviewing geometry due to varying overpass times cannot be eliminated
(Kuenzer et al., 2015)Lastly, it is often challenging tdifferentiate woody vegetatiom
grasslandslue to rock, soil, litteror other herbaceous vegetat{daphanga et al., 2022)

Overall, there is no universa®S WPE monitoring frameworklue to the differences in
woody plant characteristicRS data availability across regions, and WPE cdénexddition, there
is a lack of consensus the RS community ohow to estimate grasslanmoductivity from a
rancher 0s p dheRSperspeciive, eegetatton indax values (&lBVI) in grasslands
are connected to productivifiBorowik et al., 2013; F. Zhao et al., 2014pwever, this is not the
At rueo p footheallicestaock industry because a percentage of this vadleges to
unpalatable shrufPickup, 1996)Lastly, although normparametric classifiers have been used in
recent WPE detection studies due to the many advantages they offer, comparaties ahthigse
type of classifiers for woody plant mappiace limited

1.5. Research Hypothesis and Objectives

Thefirst hypothesis of thidissertations thatshrub encroachment can be accurately detected using

a combination of spectral, structural, and textural featurbe second hypothesis is thhe
connedbn of shrub presencand absence local factorgsuch as topographandanthropogenic)

can inform grassland managemetnce, the overall purpose of this research is\tterstandhe
patternsof shrub encroachment in grasslands through mapping and modeling with RS techniques.
The objectives are:

1. toexplore RS approaches for appropriate assessment of shrub encroachment in grasslands
2. to examine thanthropogenic and topedaphic factorsf shrub encroachmerdnd

3. toinvestigate the integration of RS approaches into grassland management for shrub
encroachment control and grassland health

1.6. Dissertation Structure

Thisdissertations organizedn chapters that represent manusdptnat ands organized in eight
chapters (Figure-1). Chapter 1 introduces the basic concepts and rationale of this reaadrch
Chapter 2offers a comprehensive literature revie@bjective 1 is fulfilled inChapter 3which

explores appropriate spectral and seasonal approaches for shrub cover estmaiicimapter 4

which examines the seasonal spectral separation between two common shrub encroaching species
in SoutherrSaskatchewan, Canadzhaptes 5 and 6build uponObjective I anduse high-spatial
resolutionfall aerial imageryith red and green bandthat offer good shrub separatidar that
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season based @bjective 1) by addingtexturebased variables folfill Objective2 andexamine

i) the detection of shrub cover using an obje&sed approach, and ii) the connecodmapped
shrub cover with top@daphic and anthropogenic factoBhapter 7addresse®bjective 3 and
examinesthe concept ofthe integration of RS and GIS into grassland ecosystem health
assessmentsalong with shrub cover, which @ne indicator of grassland health. This is done
througha systematic literaturanalysis that examines global studies that have been conducted in
norttropical grassland biome€hapter 8 is the last section of the dissertation, and summarizes the
main conclusions of this research, discusses the contributions and limitatiomsaleesl future
research suggestions that can take the current reseasendor
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\_Approaches

p
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Figure 1-1 Flowchart of dissertation structure.

1.7. Addendum

The first paragraph of the opinion piece, published in Soubry &(@0@Pa) was deleted when it
was included in Section 1.3 of thilsssertation Section 14, which was published in Soubry &
Guo (2022b) wa s renamed from O0Chall engetempoees soci a

variability i n \WP BEd@asdipdatedtiRiechideanore tecer® iegrature on the
topic.



Chapter 2 LITERATURE REVIEW 1 QUANTIFYING WOODY PLANT
ENCROACHMENT IN GRASSLANDS WITH REMOTE SENSING
APPROACHES

2.1. Preface

This chapter discusses the drivers and impacts of woody plant encroachment (WPE) in grasslands
and reviews the theory, technologies\d methods, related to the quantification of WPE in
grasslands with remote sensi&gction2.2 to2.7 were published as a review paper

Soubry, I., & Guo, X(2022). Quantifying Woody Plant Encroachment in Grasslands: A Review
on Remote Sensing Approaches. Canadian Journal of Remote Serdihg, 1
https://doi.org/10.1080/07038992.2022.2039060

Date of publication: 22 March 2022

Publisher: Taylor & Francis Ltdyttps://www.tandfonline.com

This research was conceptualized by my supervisor (Dr. Xulin Guo) and Mr. Merek Wigness while
| conceived and wrote the manuscript. As authors, we have permission from the publisher to reprint
this work in the current dissertation as long as it is notighuddl commerciallyseeAppendix F).

2.2. Abstract

Grasslands are an important global ecosystem, providing essential ecological and economic
ecosystem services. Over the last couple decades, asllaafeslimate change and human
activities, nearly 50% of global grasslands have degradeddWplant encroachmefWPE), one

of the outcomes of climate change and hwredated activities, negativelg f f ect s gr as s |
ecology, as well as their ability to produa®d for livestock, habitats fagrasslandvildlife, and
economic returns for rangeland manageesnig-term monitoring of grasslargtatus can facilitate
grassland restoration. Additionally, teeudy of factors that influenagrassland dynamics (e.g.,
grazing, fire, land use, or climatean help in the restoration gfasslands. Remote sensing (RS)

has been used to map thgatiotemporal distribution MPE by using a wide variety of sensors

and methods, necessitagia review on the effectivenes6RS data for WPE monitoring. Based

on the imporance of RS data and the ratevliich grassland ecodgsns are changing, this paper
provides a lierature review on a theoretidadsis for quantifying WPE using RS and on existing
RSapproaches for WPE monitoring.

2.3. Introduction

Grassland®ffer abundantecosystem servicgSchellbergand Verbruggen 2014)such as food
securityprovision( O 0 Ma r g wateRflovifaZiljtation andregulation(Bengtsson et al., 201,9)
carbon sequestration and stordffe et al. 2013)erosion contro(Zhao et al., 2020)climate
mitigation (SchellbergandVerbruggen 2014)and habitat diversity provisidiGuo et al., 2004)
Grasslandgace multiple threats, including land use changes (mainly conversion to cropland),
species invasions, and biodiversity Iqstendrickson et al., 20195pecifically, the Northern
Mixed Grasslands cover approximately 270,000° kand are considered the most degraded
grassland ecoregion globalfghay et al., 2019)As large parts of the grassland ecosystem are
already lost,sustaiing grassland health is important for preserving the grassland ecosystem
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services(Bengtsson et al., 2019Dne factor that affects grasslandealth is woody plant
encroachment (WPE). WREfers tothe increase in density, cover, and biomassoofnative or

native trees and shrubs tleadpand beyontheir historicor geographic rang@rcher et al. 2017;

Van Auken 200Q)WPE in grasslands can lead to changes in biodiversity that can cause a decline
in grassland habitats for a variety of plant and animal spéPias et al., 2012)negatively
affectingthe food industry, the economy, and the environn(Eigiure 2-1). WPE also reduces

the rangeland area that is available for cattle grazing, resulting in difficulties in maintaining forage
guantity and quality for livestodi@drcher et al. 2017)This can leatb substantial globaconomic
lossesin fact, from 2001 to 2011, these lossesdramounted to US $6.8 billidkwon et al.,

2016)

Woody plant
—///_’——»

DEGRADATION of:

v

Habitat availability for Biodiversity

grassland animals and plants Grassland productivity

Nutrient cycling (carbon, nitrogen,
water) & energy flow

Forage supply: food security

SRR B Structure & function of grasslands

Carbon sequestration
and storage

Erosion control ENVIRONMENT

Rangeland management

®
@
®
®
o
o

GLOBAL ECOSYSTEM SERVICES

90-900-0-09

Tourism & recreation
FOOD INDUSTRY / ECONOMY

Figure 2-1 Important grassland ecosystem services and the degrading effects of WPE (woody plant
encroachment) on grassland functions (Section
environment, food industry, and economy.

It has been estimated that about 220 million ha of grassiarttie United States (65%6
have beermr arecurrently affected by WPBHoughton et al., 1999A recentglobal WPE cover
estimaeis that WPE exceeds 5 million square kilome{érsng et al., 2021WPE is an ongoing
concernjncreagng annually by0.1% to 2.3% in North Americ@Barger et al., 2011andby 0.3%
per year globallfDeng et al., 2021)Des pi t e WPEO&6s gl obal reach,

1 Calculated based on the total land cover of shrubland, grassland, and hay/pasture in the United States in 20BtLitSource:
Resolution Land Characteristics Consorti(2001)
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facilitate woody plant growth on grasslands and the effects of WPE on the grassland ecosystem
are not well understood. Globally, the use of remote sensing (RS) technologies can help
researchers to quantify the distribution of W{BEENg et al., 2021 and gain a better understanding

of the drivers that cause WPE.

RS has been used to monitor WPE in various regions of the world, such as South Africa
(Skowno et al., 2017pPenmarkMadsen et al., 2020New ZealandDash et al., 2019and Inner
Mongolia(Dong et al., 2019)ndeed, WPE has been monitored at different spatial scategr{g
from 0.1 m to 1 kijy and across a variety of timefran{@sowning et al. 2014; Wang et al. 2018)
with photogrammetri¢Sanjuan et al., 2018multispectral(Brandt et al., 2016)hyperspectral
(Meerdink, 2018) multi-angular(Selkowitz, 2010) RAdio Detection And Ranging (RADAR)
(Mitchard et al., 2011)and Light Detection And Ranging (LIDAR) sensd@kécGlinchy et al.,

2014) The accurate delineation of WPE boundaries, identification of WPE, and tracking of WPE
changes from RS imagery can facilitate eradication and control pragtaesada et al., 2007)

and increase awareness on the state of grassland ecosysternfAukzatth et al., 2016 However,

there are no standard techniques for monitoring WPE with RS, nor is there a consensus on the
most accurate methods.

To fill the aforementioned gaps in the literature, we provide a general review of the
literature on WPE drivers and their impacts on the grassland ecosystem, with a focus on North
America. We further conduct an-d@epth review of the RS methods used tongifya WPE.
Specifically, we provide the theoretical basis and examine the sensors, spectral indices, and
classification algorithms to determine the extent of WPE and its change over time. Lastly, we
review ecological and RS challenges in monitoring WPE& raake recommendations for future
directions.

2.4. Materials and Methods

We usedGoogle Scholato review the literature due its capacity forin-text searching and its
connection to the 485 databaséthe university librarynetwork(e.g, Web of Science, Academic
Search Complete, Scopws)dScienceDirect)Keywords were used thabmbined aspects &S
andWPEIn grasslandgéTable 1-1). These were grouped into the following themes: environmental
drivers influencing the growth and persistence of WPE, the effects of WPE on grasslands, and the
use of RS for quantifying the extent of WPE. Lastlyations ofthe identifiedreferencesvere
tracked.

Table 2-1 Search terms used in literature review on quantification of woody plant encroachment (WPE)
with remote sensing

Theme Search terms
remote sensing
_ imaging
remotesensing
map
monitor

woody (plant* OR species)

woody plants  shrub
bush
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Theme Search terms
brush
tree
encroach*
encroachment  prolifer*
expans*
process*
pattern*
trend*
mechanism*
caus*
drive*
grassland*
grassland rangeland*
prairie*

process

drivers

2.5. Drivers and Impacts of WPE

2.5.1. Environmental and Human Drivers of WPE in Grasslands

There has been much debate on WPE drivers across a variety of spatia(FSgaies 2-2),
resulting in a range of research activities that examine local to global influences on woody plant
growth (Wilsey, 2018) Climatic influences exist at the synoptic level and include increases in air
temperature and changes in rainfall intengitscher et al., 2017; Cook et al., 2015; Polley et al.,
2013) Human drivers, such as land abandonnf€airtzia et al., 2014)r fire regime changés
(Twidwell et al., 2013)can also have a global impact when they occur at large scales, while topo
edaphic conditions can influence the local variability of WPEacilio et al., 2006)_astly, woody

plant life history significantly impacts woody plant succesgibimg & Eldridge, 2023) For
instance closeness to existingoody plants affects future WPEartzia et al., 2014)Overall,
factors that drive woody vegetation dynamics may differ by landscape context and scale.
Therefore, spatial heterogeneity should be considered when interpreting WPE(devearsand
Rogers 2011)

2 Can also be a climatic factor when fire occurs naturally without human disturbance (e.g., without fire initiation or control)
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Potential drivers of WPE

Air temperature {+) enhance

. increases (+) () suppress
4 Climatic
/ Rainfall intensity
changes (+/-)
Environmental Hydrology
Topo-edaphic (+/-) Kb Soil
Topography

Land abandonment or

] protection (+) ‘
v
/ / Protection from grazing (+) |

/ Grazing regime - ——
Human r- changes (+/-) %| Light to Moderate grazing (-) |
\ * Qvergrazing (+) |

¥
\ Fire frequency and <: Fire suppression (+)
intensity changes (+/-)

Fire management (-)

Figure 2-2 Global and local WPE drivers.

As temperature riseand drouglg becomanorecommon(Cook et al. 2015Polley et al.
2013, the area ofgrassspeciescoverge tends talecline, providing woody species more
opportunitiesto expandafter rainfall (Archer et al. 2017)Overall, WPE responds to different
precipitation anomalies (i.e., drought and increasing mean annual precipitatfoal, vary
amongregiors and affect species differenf{@arciaet al. 2020 Sankaran et al. 20p5During
drought, woody plants can access water from deeper regions in the soil compared to grasses, giving
them an advantagércher et al., 2017)Also, acording to Sankaran et #2005) woody plant
establishment increases linearly up um@an annugdrecipitation reaches 650 mm for the African
savanna areasbove this threshold, disturbances such as fire and herbivory are necessary for
woody plants and grasses to coexideyer et al(2019)also found similar results

Land use and land covelnangessuch as agricultat abandonmeniGartzia et al., 2014)
human populatiogrowth(GavierPizarro et al., 2012¢hanges to grazing regim@ogunovic et
al . 2019; OSaguamena. 2018 Wdn@ et al. 2Q18)d alterations tfire practices
(Bailey et al. 2010Ro00s et al. 2018; Scholtz et al. 20T8vidwell et al. 2013)have contribute
to theexpansiorof woody plants on grasslandsgricultural abandonment and population growth
lead to urban developmeandcancontributeto WPEthrough an increase in propagule pressure
(Table 2-2) (Gartzia et al. 20L45avierPizarro et al. 2002 Studies in the southern United States
found that livestockgrazing is a primary WPE driver in grasslandaiken, 2009)because
livestock overgrazing removes most of the fine fuels for. fierther, grasslanftagmenation
(Wilsey, 2018)from humandevelopmenie.g. agriculture, resource extracti@and urban and
infrastructure developmenis another WPE driver. Both overgrazing and fragmentation inhibit
fires from spreading over large natural grassland gkaaen et al. 2016Twidwell et al. 2013)
These fires kill or reduce small young woody plants, preventing WRIEey, 2018)
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Table 2-2 Examples of Land Use/ Land Cover (LULC) factors that are important to WPE (Woody Plant

Encroachment)

LULC factor

Details

Woody plant species

Source

Distance to water

Vachelliaspp.,Prosopisspp.

Ng et al.(2017)

Ulmus Americand. ., JuniperuslL.,
Quercus muehlenbergii EngelrRhus
glabralL., Cornus drummondiC.A.
Mey., Aechmea fulgenBrongn.

Bragg and
Hulbert(1976)

Gleditsia triacanthog.., Morus alba, Ghersa et al.
Water Melia azedarach (2002)
Acacia dealbata, Cupressus Zalba and
sempervirens, E. camaldulensisc. Villamil (2002)
Distance to Vachelliaspp.,Prosopisspp. Ng et al.(2017)
irrigated
agriculture
B. sempervirens, E. horridum, J. Gartzia, Alados,
communis, R. ferrugineum and Pérez
Distance to woody . . Cabello(2014)
plants Ulmus Americand ., Ju_r_nperusl_., Bragg and
Plants Quercus muehlenbergii EngelrRhus Hulbert(1976)

glabralL., Cornus drummondiC.A.
Mey., Aechmea fulgenBrongn.

Forb presence

Gleditsia triacanthod..

Mazia, Chaneton

and Ghersa
(2019)
B. sempervirens, E. horridum, J. Gartzia, Alados,
communis, R. ferrugineum and Pérez

Cabello(2014)

Gleditsia triacanthog..,

Chaneton et al.

Anthropogenic D.epopulatlon/ S (2004)
Field abandonmen Gleditsia triacanthos.., Morus alba, Ghersa et al.
Melia azedarach (2002)
P. sylvestris, F. sylvatica, C. vulgaris, E Sanjuan et al.
cinerea, V. myrtillus, J. communis (2018)
Distance to Vachelliaspp.,Prosopisspp. Ng et al.(2017)
population centers Acaciadealbata, Cupressus Zalba and
sempervirens, E. camaldulensigc. Villamil (2002)
Infrastructure Gleditsia triacanthog.., Morus alba, Ghersa et al.
Dist ¢ q Melia azedarach (2002)
Istance to roads Acacia dealbata, Cupressus Zalba and
sempervirens, E. camaldulensigc. Villamil (2002)

Topographyhydrology, and soil propertiealsoinfluenceWPE (Table 2-3). Differences
in woody plantdistribution based on topography can be explained by vargtigolar radiation
and precipitationpoth of which are sensitive to slope and asfi¢etnedy, 1976)Woody plants
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arelesscommonon southfacing slopesvhen conditions arevarm and dry(Archer et al. 2017),
while cooler and moist conditions facilitate woody growth on ntating slopes. However, this
may not be the case in more northern grasslands, where conditions efacimigislopes are too
shaded for woody growtfThis is known as temperature limitation. Moreovenoff facilitates
woodygrowthin lowland grassland@rcher et al. 2017)Soil depth(Pracilio et al., 2006 texture
(Archer et al. 2017)and moisturéHarrington, 1991 pffect woody growth pattern8VPE tends
to grow more productivelgn coarsedeep clay loam soils comparedth fine, shallow clay sites.
However,woody growthcan beenhancedn fine soil lowlands thathave ruroff from uplands
(Hibbard et al., 2003)0il texture does not affect woody plant growthatbfwoody species. For
instance, the aboveground biomass of western snowimeting northern mixedrass prairiess
not influenced by soil textur@ai et al., 2009)Lastly, woody plant heighis related to soitlepth
and soilpH (Pracilio et al., 2006)Shorter trees are associated with shallower soil profiles and
often grow ormore neutral soils

Table 2-3 Examples of topo edaphic indicators connected to WPE (Woody Plant Encroachment)

Topo- Details Woody plant species Source
edaphic
factor
Olea europaed.. ssp.cuspidata(Wall. ex G.  Cuneo, Jacobson, and
Don) Ciferri Leishman(2009)
Steep slope p sylvestris, F. sylvatica, C. vulgaris, E. Sanjuan et a(2018)

cinerea, V. myrtillus, J. communis

B. sempervirens, E. horridum, J. communis, Gartzia, Alados, and

Slope ferrugineum PérezCabello(2014)
Midto low  ylmus Americana.., JuniperusL., Quercus  Bragg and Hulbert
slope muehlenbergii EngelmRhus glabra.., (1976)
Cornus drummondiC.A. Mey. Aechmea
fulgensBrongn.
South to Olea europaed.. ssp.cuspidata(Wall. ex G.  Cuneo, Jacobson, and
southwest Don) Ciferri Leishman(2009)
Aspect Northeast Acacia dealbata, Cupressus sempervirens, | Zalba and Villamil
and camaldulensisetc. (2002)
southwest
B. sempervirens, E. horridum, J. communis, Gartzia, Alados, and
ferrugineum PérezCabello(2014)
Vachellia spp., Prosopis spp. Ng et al.(2017)
Elevation Lower_ P. sylvestris, F. sylvatica, C. vulgaris, E. Sanjuan et al2018)
elevation cinerea, V. myrtillus, J. communis
Acacia dealbata, Cupressus sempervirens, | Zalba and Villamil
camaldulensisetc. (2002)
Silty clay Olea europaed.. ssp.cuspidata(Wall. ex G.  Cuneo, Jacobson, and
Don) Ciferri Leishman(2009)
Soi . Ulmus Americand ., JuniperusL., Quercus  Bragg and Hulbert
oil Silty clay -
loam, deep & muehlenbergii Eng_eImRhus glabrd.., (1976)
’ Cornus drummondiC.A. Mey., Aechmea
permeable

fulgensBrongn.
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One of themost dominantactorscontrolling the encroachmepatterns of woody species
is related tavoodyplant traits and dispersal patisy such as propagule pressure, genetic potential,
and the home range competitioneaichspeciegCatfordandJones 2019Woody plant seeds are
transported by wind, birds, water, ungulate®stock, and already established woody planas$
are nearbyCloseness to existingdPEhas a large effect on future aonigoingWPE patterns. For
instance, distance to woody plants explained 70% of WPE occurrence in mountainous grassland
areaqGartzia et al., 2014Jurthermorethe genetic potential of a woody planight be reached
more easilyin different environments (includgnclimate, soil, and nutrientshanin the home
range of the woody planigading to more vigorous grow{atford & Jones, 2019; Herron et al.,
2007) Also, woody species can have traits that allow them to compete with gidssgswoody
species have both shallow and deep roots, a characteristic that allows them to use shallow soil
nutrients when available, as well as those that are deeper and below the grass root syseem. This
the concept of a dimorphic root systgBrenchleyandJackson 1921)mportantly nouniversal
WPE attributes exist, as encroachimgody plants can be very different (i,eitrogen fixing,
deciduous, dispersed by livestock, dispersed by birdsyergreenjArcher et al., 2017)

2.5.2. Impacts of WPE on Grassland Function

The encroachment of woody plants into grassla
abiotic (e.qg., soil, climate, and water supply) and biotic (e.g., animals, plants, and bacteria) states.
WPE can botlmegativdy and positivéy affect thenative grasslandcosystem by altering grassland
biodiversity(Gray andBond 2013) productivity (Knapp et al., 2008 nutrient cycling(Abreu et

al. 2017; O Donnell and Caylor 2012; Zou et al. 20Xg;psystem structui@rcher et al. 2017)

andenergy flow(Odorico et al., 2013)

While WPE can result in the loss of many valued grassland ecosystem services, it does not
necessarily degrade ecosystem structure or fun¢itridge et al., 2011)Woody plants may
contribute to grassland biodiversity and richness as long as they do not reach the critical threshold
that shifts the ecosystem to a shrubland, with tall or closed canopy vegétatioer et al. 2017)
Moreover, in grasslands, woody plants increase Abtveyroundand belowgroundarbonand
nitrogen(Barget et al. 2011; Lett et al. 2Q04astly, Leaf Area Index (LAI) has been found to be
two to three times higher in WP&fected grasslands compared to open grasskmadset al.,

2004) Due to higher LAI, the woody plant leaves contribute more to precipitation interception,
energy conversion, and water balang&l.is the total onesided area of photosynthetic leaf surface
over unit of groundChen et al., 1991 while theplant area index includes nqmotosynthetic

parts of the canopy (i.e., stems and fruffdé¢umann et al., 1989High LAl is related to dense
canopiegNeumann et al., 1989%uch as those in tropical forests. Moderate LAI, on the other
hand, is found in agriculture and natural vegetation biomes. Low LAl is found in tundra and deserts
(Shen et al., 2014)

However, over time, WPE can lead to a decline in plant diversity by creating woody plant
monocultures that reduce the grotlager grassland floréGray & Bond 2013Knapp et al. 2008;
PriceandMorgan 2008; Twidwell et al. 201.3)\Iso, grasses with woody neighbourecomdess
productive(Aboveground Net Primary Productivity [ANPP] = 17.3 ¢f g%) than thosavithout
woody plants nearbgANPP = 37.7 g M y1) (Pierce et al., 2019WPE can influence grassland
ANPP, varying along a precipitation gradidiinapp et al., 2008)Low precipitationgradient
grasslands affected by WPE daavealower ANPP(75g m? less)than arid grasslandsluenneke
et al., 2002)while mesic tall grass regions affected by Wedahavea higherANPP (496+45¢
m) than those without WPEL67 +13 g nm?) due tothe higher aboveground biomass allocation
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by woody plants(Lett et al. 2004)However, the effects of higher ANPP dueWdPE are not
permanenénd in the longterm ANPP will declinein shrubcovered areadue tocanopy closure,
seltshading and resource limitatioArcher et al. 2017)In addition, increases ioarbon and
nitrogen storagelue to WPE tendo be temporarysincewoody plants are more sensitive to
disturbancethan grasseglLett et al., 2004) For example, frequent fires can rapidly oxidize
aboveground carbon to the atmosphesgile grasses store stable organic matter in the lsadgtly,
temperate woody plants senesce, potentially lowering net ecosystem productivity compared to
grasseqWu et al., 2013)which have larger belowground nutrient storage through their root
systemgJackson et al., 1996)

Woody plant propagation mlsoassociated with life history}/arious drivingfactors(see
Section2.5.1) can reduce the competition with grasses and facilitate the establishment of woody
specieqArcher et al. 2017)By adding a new vertical structure to grasslands, WPE changes the
microclimate and soil around woody plaf#scher et al. 2017; Odorico et al. 20138his allows
shrubs to survive iextremeenvironmental conditiond such as a droughtwherethey would
otherwise be unable to competéh grassegZinnert et al., 2013)In grasslands, an increase in
the amount and density of shrubs and trees tends to enhance the interception of precipitation by
foliage and increases evapotranspiration (ET), resulting in decreased infiltration to groundwater
(Li etal., 2013; Zou et al., 2016)

There is a conneicin between ETprecipitation and albed¢GeandZou 2013) In contrast
to grasses, wody plantsusewater fromgreater soil depthshave lower albedo, andcrease
atmospheriair turbulencen the canopy boundary lay@krcher et al., 2017)Thus woody plants
enhance stomatal conductance, potentia(&Ther et al. 2017)and atmospheric aridiffFu and
Feng 2014) For instancein a shrubencroached steppe ecosystem in Inner Mongolia, China
Wang et al(2018)found thatdifferences in ecohydrological connectiviiye., deeper roetvater
access from shrubs and differences in canopy height, and canopy resataihugease shrub
LAI causehigher transpiration partitioning of shrubs over gradsemg the dry seasofhis leads
to increased ecosystem water availability due to WPE. The authors conclude that WPE causes
changes in vegetation structure, and these changes can have an important efdect on
atmasphere interactions amtimate feedbacki grassland ecosystems.

These effects vary with site mean seasonal precipitaiwab traits (i.e.canopy and root
structure), and sodharacteristicéi.e., depth and texturdArcher, 2010)For example, during dry
seasons, shrubs access deeper soil water, thus contributing more to ecosystem transpiration than
grassegWang et al. 2018)During wet seasons, however, grasses contribute more to ecosystem
transpiration than shrubs because they quickly use recharged surface s¢iMaatpet al. 2018)

Also, when the vegetation cover due to WPE is denser, less solar radiation reaches the ground,
leading to a reduction in soil evaporati@reshears et al., 1998pn the other hand, increasing

shrub cover can also decrease the total ecosystem LAI due to a decrease in grass LAl and an
increase in bare soil. This phenomenon, for its part, increases the solar radiation that reaches the
ground, leading to an increaseevaporatior(Schlesinger et al. 1990; Wang et al. 2018)

A vegetation shift from grassland to shrubland affedkedoand surface temperature,
influencing humidity and latent and sensible heat exchange, which in turn affect precipitation
patterngArcher, 2010) Higher soil moisture in WPE grassland areas can increase ET and latent
heat flux, cooling down the soil (due to the loss of latent heat) and leading to greater precipitation
(Ge & Zou, 2013; Schlesinger et al., 1998eltranPrzekurat et al(2008) found that the
differences in energy exchange depend on the type of shrub encroadhonemétance, WPE of
mesquite cooled the neaurface atmosphere while creosotebush warmed it. When compared to
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grasses, mesquite has a higher albedo, which decreased the available energy. This energy, for its
part, di ssipated as | atent heat due to mesqui
decreased albedo and increased the roughness length aadeaiisgt height, contributing to an
increase in surface sensible heat and higher temperatures. Similarly, Vivon(2€24l.found

that the intreannual variability of energy partitioning in WPE areas largely depends on water
availability because in the summer months, the latent heat had exceeded the sensible heat exchange
in one of their study areas with higher surmitiiere mosture. However, this did not occur in their

other study area. Ge and Z{®013)noted that in semiarid regions, such as the southern Great
Plains, ET moisture is limited, and the additions of both bare soil and a decrease in albedo due to
WPE mostly increase the surface temperature. This occurs because of increases in both sensible
heat flux and surface roughneg3verall, increases in latent heat flux from high ET rates in
ecosystems with deciduous components can be significant. When compared to herbaceous plant
species, deciduous vegetation has higher water use and storage ¢@pestitipal et al., 2020)

2.6. Using Remotely Sensed Data for Monitoring and Managing WPE in Grasslands

2.6.1. Remote Sensing Technologies Used to Monitor WPE

Grasslands cover a | arge portion of the Earth
Numerous RS systems have been used to examine WPE in grasslands. They can be separated into
i) photogrammetric, iiymultispectral, iii) hyperspectral, iv) muéingular, v) RADAR, and vi)

LIDAR. Spectral characteristics of shrub and grass cover can be detected with multispectral
(Brandt et al., 2016; West et al., 201@)d hyperspectral systeni§leerdink, 2018) while

structural attributes are quantified with photogrammeanjuan et al., 2018multi-angular
(Selkowitz, 2010)RADAR (Mitchard et al., 2011)and LIDAR(McGlinchy et al., 20143ystems.

In the overview that follows, we start with passive RS systems, followed by active RS systems.
For each category, we move from those used earliest and from the simplest to the more complex
ones. To provide context on how different RS sensors and metholds aged for WPE mapping,

we include examples of common lestature encroaching shrub species of North America in
different season@igure 2-3).
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Early spring Summer Late summer

(b) (f) Early Fall

Figure 2-3 Examples of WPE in North America: (aestern snowberry (Symphoricarpos occidentalis) at
the Kernen Crop Research Station of Saskatoon, Canada (30 April 2021); (b) wolfwillow (Elaeagnus
commutata) at the Kernen Crop Research Station of Saskatoon, Canada (14 May 2021); (c) western
snowberry (Synphoricarpos occidentalis) at the Kernen Crop Research Station of Saskatoon, Canada (12
June 2021); (d) wolfwillow (Elaeagnus commutata) at the Kernen Crop Research Station of Saskatoon,
Canada (3 July 2020); (e) shrubby cinquefoil (Dasiphora fruticoshg &/est Block of Cypress Hills
Interprovincial Park, Canada (14 August 2020); (f) big sagebrush (Artemisia tridentate) at Grasslands
National Park, Canada (19 August 2020).

2.6.1.1. Aerial Photography

The most simple method to monitor WPEvish multitemporal photointerpretatidiMyers-Smith

et al., 2011) Historical aerial photographs offer the advantage of monitoring-termy WPE
changes prior to satellite image collectiofidudak and Wessman 1998)The high spatial
resolution (decimetres to metres) allows for the separation of woody canopies. Prior to the early
1990s, studies used manual photointerpretation techniques (e.g., acetate grid overlay) to estimate
woody cover(BraggandHulbert 1976) Manually counting canopies was tirnensuming, and

many photographs were needed to cover broad areas. This method became even more time
consuming when researchers also started to examine changes in WPE throygtudiakeand
Wessman 19985ince the early 199{Baltsavias 1998ColomerandColomina 1994; Gruber &

Leberl 2000)researchers have scanned and used aerial photographs to map changeprWWPE
Sahara et al., 2015; Gonzalenglich et al., 2015; Zalba & Villamil, 2002)erial photographs
between 1850 and 19%Center for Photogrammetric Training, 20@8¢ in greyscale. Since the

1950s, however, aerial photographs have been in colfrared or true coloufApril Sahara et al.

2015; Berg et al. 2016; Hudak and Wessman 1998; Sanjuan et al. 2Z6&&ddition of such
spectral information can be used for species classification. For example, PoznanoyR0&ul.

used 1 m coloumfrared aerial imagery to classify western junipkmiperus occidental)s This
classification resulted in an overall accuracy of 95.1% wtmnpared to visually interpreted
training samples of the image.
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However, for accurate quantitative measurements of woody expansion over time, multiple
aerial photographs must be orthorectified and georeferenced, requiring the collection of ground
control points. This process is timensuming because it requires thentification of many non
ambiguous landmarks (e.g., corners of roads), which can be difficult to find in naturally vegetated
areas(Sahara et al.,, 2015)n addition, the lack of radiometric similarity between aerial
photographs of different years due to variations in light, atmospheric conditions and photography
equipment and development makes it difficult to compare between multitemporal photographs. To
improve multitemporal analysis and better calibration between photographs, one could use a
control site with negligible vegetation changes across yeardak & Wessman, 2001)

2.6.1.2. Multispectral

Multispectral sensors measure the reflectance, absorption, and transmission of discrete,
discontinuous broad bands from the electromagnetic (EM) spectrum with interactions from land
surface features (typically between 3 to 15 bar@syeral multispectral sensors have been used
to monitor WPE Table 2-4). Brandt et al(2016)used the high temporal frequency of MODIS
and SPOT Vegetation to measure woody cover in the Sahelian drydadfie Landsat series of
satellites have been used over the years to detect various woody spaisie®4) because they
boast longterm availability of medium spatial resolution (30 m) and temporal resolution (16 days).
For instance, Filippelli et a{2020)used Landsat seasonal composites to estimate eastern red cedar
(Juniperus virginianalL.) encroachment between 1984 and 2018. The launch of Sehtinel
improved both spatial (220 m) and temporal resolution (5 days), allowing for WPE detection at
earlier growth stages and within smaller starfdattenborn et al. 2019; Ng et al. 2017)
Commercial multispectral sensors, such as Wuiklv, Pleiades, Quickbird, SPOT, and
IKONOS, provide even higher spatial resolution (between 0.3 and 20 m) andl$abeen used
in WPE monitoring Table 2-4). For instance, Tesfamichael et @018)recommenddtheuseof
SPOT 6 and 7 daiastead ofSentinel2 and Landsat 8dataor WPE mappi ng due t
more certain identification apectral ad structural attributes. This improved identification is also
associated with higher spatiotemporal resolution (1.5 and 6 m every 3 days or less).

For many yearsnultispectraimagery has enabled WPE monitoring because multispectral
i magery frequently covers the entire Earthos s
the images, and because multispectral images are easier to process compared to other types of
imagery, such as hyperspectral ima¢eazKagan et al., 201q)Table 2-4). In particular, the 50
year continuity of Landsat data (since 1972) has provided opportunities fotelongWPE
monitoring (Marston et al., 2017)However, nost multispectral satellite sensors have medium
spatial resolutiomnd are limitedo detedng only advancedncroachmennot early WPE stages.
Other tallenges related to multispectral sensors for WPE monitoringiaiew spectral
resolution, whichmay impedethe differentiation ofvoody and grass speci€Soubryand Guo
2021} ii) the dependence on clofiee images, especially wheramining phenological changes
(Kovalskyy and Roy 2015) and iii) the high cost ofhigh resolution imagery that would be
necessary for lonrterm studiegHe et al., 2011; Ng et al., 2017)
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Table 2-4 Spaceborne multispectral sensors, series, or programs used for the detection of WPE (Woody Plant Encroachment)

Sensor type  Sensor, Series Spatial Details Max. rate of Source
Program resolution* success
MODIS, SPOT Detecting woody vegetation (trees, shrubs r>=0.73 (MODIS), Brandt et al(2016)
VEGETATION  1km bushes) r’=0.70 (VGT)
(VGT)
DetectingOlea europaed.. -OA=85.1% Cuneo, Jacobson, and
spp.cuspidata(Wall. ex G. Don) Ciferri Leishman(2009)
DetectingLonicera maacki{Rupr.) Herder r>=0.75 Wilfong, Gorchov, and
Henry(2009)
DetectingJuniperus virginiand.. N/A Yue (2009)
DetectingAcaciaspp.,Albizia cf. petersiana OA=75.2% Marston et al(2017)
and larger trees
DetectingProsopis glandulosaorr. OA=87% Mirik and Ansley(2012)
Non- _ DetectingMimosa pigra N/A Delgado(2017)
Commercial S : : :
Landsat 30m DetectingLigustrum lucidum Kappa=0.88 GavierPizarro et al(2012)
Detecting WPE in mountain grasslands  Kappa=0.91 Gartzia, Alados, and Pérez
Cabello(2014)
DetectingFrangula alnusandRhamnus OA=88%, Becker, Zmijewski, and Crai
cathartica Kappa=0.73 (2013)
DetectingProsopis caldenia r’=0.87 GonzalezRoglich and
Swenson2015)
DetectingTamarixspp. OA=85% West et al(2016)
DetectingTamarixspp. OA=80% Carter et al(2009)
DetectingArtemesia afra, Asparagus OA=79% Tesfamichael et a(2018)

laricinus, Seriphium plumosum
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Sensortype  Sensor,

Series. Spatial

Details Max. rate of

Source

Program resolution* success
DetectingPinus radiata, Ulex europaeus, r>=0.91 Kattenborn et al2019)
Acacia dealbata
Sentinel2 10m DetectingProsopisandVachelliaspp. OA=96% Ng et al.(2017)
DetectingArtemesia afra, Asparagus OA=84% Tesfamichael et a(2018)
laricinus, Seriphium plumosum
DetectingAcaciaspp.,Albizia cf. petersiana OA=90.2% Marston et al(2017)
. and larger trees
WorldView 033.7m DetectingArtemesia afra, Asparagus OA=97% Tesfamichael et a(2018)
laricinus, Seriphium plumosum
DetectingProsopisandVachelliaspp. OA=95% Ng et al.(2017)
Pleiades 0.7-2.8 m DetectingArtemesia afra, Asparagus OA=69% Tesfamichael et a(2018)
laricinus, Seriphium plumosum
DetectingAcaciaspp.,Albizia cf. petersiana OA=91% Marston et al(2017)
Commercial  Quickbird 2.88 m and larger trees.
DetectingTamarixspp. OA=91% Carter et al(2009)
1510 m De_te_ctingArte_me_sia afra, Asparagus OA=68% Tesfamichael et a(2018)
' laricinus, Seriphium plumosum
SPOT DetectingGrewiaandAcaciaspp. OA=89%, Munyati et al.(2011)
1020 m Kappa=81.1
DetectingDichrostachys cinerea africana  r>=0.2 Hudak and Wessm42001)
IKONOS 1m DetectingAcaciaspp.,Albiziacf. petersiana OA=92.5% Marston et al(2017)

and larger trees

*Source: ESA: www.earth.esa.int, 202@QA=0verall Accurag



2.6.1.3. Hyperspectral

The use ohyperspectratlata is promising due to the large number of narrow contiguous bands
(2-10 nm, usually between 350 and 2500 nm) that can be used to estimate plant biochemical
characteristics (e.gGhlorophyll content, water content, and leaf chemis{Bnadley 2014;
Schellberg et al. 2008; Skowronek et al. 20INgtably, these bandsover the absorption or
reflectance window of a plant characteris@tant biochemical characteristics cannot be estimated
when the multispectral bands do not cover this window or méssbeeliablevhen usingoroader
bandwidth Certain shrub and grass properties (eglulose, lignin, mesophyll structur@ndleaf

water content) differdee Section 2.6.2), leadng to spectral responses that aliscernble in
narrow hyperspectral bandse to differences in absorption and reflectafiterefore, a rmber

of studies used hyperspectral data to detect WREI¢ 2-5). Examples include the detection of
chapparal shrubs with AVIRI@eerdink, 2018and the detection dfamarixspp. with Hyperion
(Carter et al., 2009AISA (Narumalani et al., 2009and HyperSpecTIRMiao et al., 2011)

Even if plants are morphologicallsimilar, they might still bedistinguishable by using
narrow hyperspectral bandSor instance, Tesfamichael et &018)investigated whether it is
possible to distinguish a narredeaved woody invasive shrub from a-ewisting native narrow
leavedshrub species.They used the original hyperspectral bands of a spectroradioareder
simulated bands of Landsat 8, Sentinel 2A, SPOT 6, Pleiades 1B, and WoH8Wéiv two
classifiers (i.e., boosted trees and support vector ma&\iv) and reached overall accuracies
between 8% and 97%.Based on the simulated dathg most important wavelengths for the
boosted trees classifitans fell in the NIR and SWIR regioon the other handhe contributions
of all wavelengths were comparable for M classifier.Seasonal hyperspectral data are also
used to improve woody species detecti@ideland et al. 2010; Someend Asner 2013)
Differences between woody species and grasses in the timing ofugpraanearly spring and
senescence during autumn lead to differences in reflectance and absorption characteristics, which
could facilitate their separation (s8ection2.6.3.1).

Hyperspectral data can also be used to estimate other grassland properties, such as
productivityand overall health. Aboveground biomass at the peak of the growing season has been
used as a proxy for ANPPHolechek et al., 2011)Sibanda et al(2016) used simulated
hyperspectral satellite data (HysplIRI) to estimate grassland biomass differences in burned, mowed,
and fertilized areas. The sparse partial least squares regression resultéwfro&9rand a Root
Mean Square Error (RMSE) of 6.65 ¢/mompared tdan situ biomass measurements across all
management practices. Bands across the NIR region of the EM spectrum had the highest predictive
accuracies. Rahman et €003)used airborne hyperspectral data to calculate indices related to
chaparral and grassland biomass, plant water conéeiot photosgthetic activity. Another
indicator related to grassland health and productivity is chlorophyll content, because it is an
indicator of NPRBlackburn, 2007and stress physiologiNetto et al., 2005)and it is indirectly
related to nutrient statudMoran et al., 2000)Chlorophyll content can be approximated with
narrowband hyperspectral indices that have one or more wavelengths in¢gesggion (~690
750 nm)(TongandHe 2017)seeSection2.6.3.7).
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Table 2-5 Examples of hyperspectral sensors, series, or programs used for the detection of WPE (Woody Plant Encroachment)

Sensor type Sensor, Series, # of Spectral  Spatial Swath Example application Max. rate of Example source
Program bands range resolution width success
(nm) (m) (km)
Monitoring encroaching Kappa= 0.80 Somers and Asnel
Spaceborne EO-1 Hyperion 220 4001 2500 30 7.7 tree species (2013)
MappingTamarixspp.  OA'= 88% Carter et al(2009)

18* 12* Detecting chapparal Kappa= 0.86 Meerdink(2018)
shrubs or conifers

AVIRIS 294 4001 2450 3 N/A D_et_ec_tingJuniperu_s OA=94% Wylie et al.(2000)
virginiana L. andPinus
ponderosaC. Lawson
3.3 N/A Map Prosopis r’=0.84 Martin and Asner
glandulosa (2005)
HyMap 126 450 2500 5* 2.5* MappingAcaciaspp. Pear s on ¢Oldeland et al.
(2010)
AISA 512 39011000 1.5% 1.6* DetectingTamarixspp., OA=74-83% Narumalani et al.
Elaeagnus (Tamar), (2006, 2009)
Airborne angustifolialL. OA>90%
(Elaeag. angust.
Simulated 146 423 2439 30 0.6 Shrub cover fraction r’=0.64 Schwieder et al.
EnMAP from estimation (2014)
AISA
Surface Optics 120 394/ 890 0.5 0.9 MappingTamarixspp. OA=95% Hamada et al.
Corporation (2007)
(SOC) 700
N/A 128 457.2 1.68 1 MappingJuniperus OA=97% Yang, Everitt, and
921.7 asheiJ. Buchholz Johnsor(2009)
N/A 102 457.5 1.56 1 MappingTamarixspp.  OA= 82% Yang, Everitt, and
921.7 Fletcher(2010)
HyperSpecTIR 227  45Q' 2450 1 0.6 MappingTamarixspp. OA=92% Miao et al.(2011)
RPAS OXI- 41 4001 900 0.1 N/A Mappinginvasive r>>0.80 Kattenborn et al.
woody species (2019)

*Spatial resolution and swath width depends on the flying height of each airborne ni9gis@verall Accuray



Moreover, hyperspectral data can be used to assess forage quality, which is defined through
the chemical composition (e.g., protein, lignin, ash, and moisture) and nutrient concentration (e.g.,
digestible energy and net energy for lactation) of gfikesssner, 1999)Guo et al(2010)used
hyperspectral canopy reflectance data from the field and the laboratory to predict forage quality
variable$. Results from a regression model predicted protein levels from field reflectance with a
correlation of #= 0.63, while the relationship with other forage quality variables was not strong.
This approach can be useful for livestock managers and for the estimation of rangeland conditions.
Lastly, snce there are differences between the spectral characteristics of grassland vegetation
componentslue to growth fornfe.g., grasses and shrubs), the grassland degradation status can be
defined usinghypespectral informationelated to the differences in chlorophyll, cellulose, and
water contenfLiu et al., 2015)

However, grassland degradation can take place without reduction in vegetation cover or
with an increase ilNDVI (e.g., due to WPE). Therefore, a single spectral feature is usually not
enough to capturgrassland healtiUse of hyperspectral data and prior knowledge related to the
study areacan mpr ove r esear chegrassand degrnadatiohy tetaah(20R0a)g o f
used Hyperion images to identify the composition of typical grassland vegetation species and
proposed a method to assess their degree of degradation at a regionsludimé endmember
spectral mixture analysis (MESMA) and fully constrained least squares pixel unmixing were used,
in combination with fieldobtained spectral curves of grassland vegetation species, under different
grazing gradients. Spectral characterstof typical grassland plants were compared between
grassland degradation gradientshich were established based on degradation monitoring
standards. The spatial resolution of hyperspectral data is another important consideration when
differentiating between WPE and grass. Spacebtomespatial resolutiomyperspectratiata can
be used to detebbmogeneous woodstands, Wile high spectral and spatialrborne data can be
used to detect heterogene@apeciesmixtures(He et al. 2011)Therefore, medium resolution
hyperspectral data (e.g., 30 m Hyperion dasdle 2-5) could detect homogeneous WPE covering
an image pixel but not early WREarter et al., 2009)

Despite the benefits, there are still several drawbacks in the use of hyperspectral data. First,
most current hyperspectral sensors have a narrow swath width, which does not allow for efficiency
in largescale observation&Zhang et al., 20195econd, since most current hyperspectral sensors
are airborne, their operational cost is hiBloyimani et al. 201%5chellberg et al. 2008;and their
global cover is limiteqHe et al. 2011)Third, the additional complexity of hyperspectral data calls
for specialized image processing outside basic RS expgtsemalani et al., 200@nd for more
time and data storadle et al. 2011)Fourth, the atmospheric correction of hyperspectral imagery
is difficult due to its high sensitivity to atmospheric constituents. For this purpose, empirical
corrections, radiative transfer modellifigatkovsky et al., 2018)and their combinations have
been usedGaoet al.,2009) With radiative transfer modelling, atmospheric quantities related to
the absorption and scattering of top of atmosphere radiance due to atmospheric gases and aerosols
are simulated, allowing for the retrieval of surface reflectéGe® et al., 2009)

To address the difficulties associated with existing hyperspectral sensors, several new
spaceborne hyperspectral sensors have been launched, and more missions are planned for the near
future. PRISMA was launcheth March 2019eoPortal Directory, 2019bYhis sensor measures
spectral reflectance and absorption characteristics at 30 m spatial resolution images over a 30 km

3 These includegrotein, lignin, ash, moisture at 135,%neutral detergent fiber, acid detergent fiber, total digestible, digestible
energy, net energy for lactation, net energy for maintenance, and net energy.for g
4 PRecursore IperSpettrale della Missione Applicativa
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swath width together with panchromatic images at 5 m spatial resolution, which can be used for
pan sharpeningleoPortal Directory, 2019b)Since 2016, five more Chinese spaceborne
hyperspectral sensors have been launched, providing numerous advantages, such as additional
continuous spectral bands from the visible to the thermal infrared;smid#é imaging systems,
and shorter revisit tim@ith the use of constellatiorfghong et al., 2021)

Hyperspectr al dat a av aiwlillanbreatan the/conoing gesars.t he E
This will provide new opportunities for better understanding and monitoring of thedeatge
biophysical and biochemical attributes of grasslands and other ecosystems. Future launches
include i)EnMAP®, with 30 m spatial resolution images of a 30 km swath every 4(daportal
Directory, 2019a) ii) SHALOM®, with 10 m spatial resolution hyperspectral images in
combination with panchromatic images at 2.5 m every 2 (Rgset al., 2014)iii) HyspIR[l’, at
60 m resolution with images every 19 d4yst Propulsion Laboratory, 201&ndiv) HypXIM?8,
with 8 m hyperspectral and 2 m panchromatic images arabg Bevisit timgMichel et al., 2011;
Rebeyrol et al., 2020T he potential advantages offered through EnMAP for WPE mapping have
already been estimated using simulated data in Schwiede(22®4) In their study, estimates of
fractional shrub cover were correlated with reference data from the manual interpretatien of air
and grounebased photographs @anr? = 0.64, nean RMSE = 0.1f%actional shrub cover).

2.6.1.4. Multi-Angular

Multi-angular remote sensors are msliiectral or hyperspectral sensors that take advantage of the
differences in reflected solar radiation from land cover types sensed over a range of view angles.
The view angles, for their part, are associated withhilé&ectional reflectance distribution
function (Selkowitz, 2010) Different viewing angles result in reflectance differences, caused by
vegetation type, canopy structure, fmotosynthetic material, background contributions, and/or
shadowing Gobronet al, 2002; Verrelset al, 2008) For instance, surface reflectance anisotropy
affects the red and NIR reflectance values, causing different directional responses depending on
the vegetation typ@.eblanc et al., 1997Multi-angular observations therefore provide unique
information for land cover detectid€hen, Huang, & Xu, 2017alor example, structural traits

(i.e., tree height, density, or crown diameter) can be monitored through theangutar capacity

of the Compact High Resolution Imaging Spectroradiometer (CHRIS). Compositional and
structural traits (i.e., leaf area @aropy openness), on the other hand, can be inferred from-the on
board spectrometer CHRI[Millan and SanchezAzofeifa 2018) Differences between grass and
shrub cover can be highlighted through their reflectance over multiple angles. Notably, the
presence of vertically elongated foliage clumps of medium to high density (e.g., tall and dense
shrubs) generate a bslhaped refletance pattern, whereas areas with compact vegetation
canopies (e.g., uniformly covered grassland) have a-bbaped reflectance pattgiwidlowski

et al., 2004)

Multi-directional RS has been used to detect woody vegetdtadnig 2-6) with ground
spectroradiometers at various viewing andlEesnklin et al, 1994; Naupari et al., 2013or
instance, Naupari et a2013) quantified the NDVI of four rangeland functional groups across
multiple view angles and found that shrubs had the highest anisotropy in all wavebands due to

5 Environmental Monitoringind Analysis Program.

6 Spaceborne Hyperspectral Applicative Land and Ocean Mission
" Hyperspectral Infrared Imager.

8 Hyperspectral X Imagery
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their complex structure and shadowing. Maltigular remote sensors, such as the POLDER
instrumen{Chen, Menges, & Leblanc, 200%)e MultiAngle Imaging Spectroradiometer (MISR)
(Chopping et al., 2008; Selkowitz, 201@HRIS (Chopping et al., 2006)and multtangular
MODIS (Chen, Huang, & Xu, 2017phave also been used to map woody plarable 2-6). In a
land cover classification study conducted by Chen €R@lL7b) the classification of shrubs with

only multispectral data resulted in misclassi!
= 57.27%). The addition of mueingular, temporal, and topographic features reduced these types
of misclassifications{ hr ub user 6s accuracy = 74.36%). I n a8

resulted in an?rof 0.53 between estimated fractional shrub cover and referenc(Settawitz,

2010) Low resolution multispectral data from MODIS included visible, NIR, and middle infrared
bands, while multangular data from MISR had a red band. Combined, these data improved
fractional shrub cover estimates even mote (.60). Also, both datasets have the same nominal
spatial resolution, cross the equator at nearly instantaneous and coincident timing (10:30 a.m.
UTC) (NASA, 202l1a) and the same data distribution centre provides both datasets as
complements, thus facilitating their combined use.

Geometric optical models, which model the RS observation as a linear combination of
sunlit and shaded components, are used for the above classifications of woody plant cover
(Chopping et al., 2008Y his is because the sunlit components are related to the upper canopy (i.e.,
shrubs) and include leaves, stalks, and branches. The shaded component includes the soil and
understory (i.e., litter, mixed grasses, and ann@lsppping et al., 2006 he separation of these
two components allows for an estimation of fractional shrub cover.

There are several limitations to the current maiftgular sensors that could impact their
use for WPE mapping. For instance, CHRIS cannot be used fordeatge and longerm
monitoring because of its experimental nat(iv#llan and SanchezAzofeifa 2018) Also, data
from the MISR sensor are more difficult to use for frequent global mapping purposes due to their
high resolution(Chen et al., 2005)MISR allows for a S9ay global coverage capability
(Widlowski et al., 2004) Further, limitations of mukangular data for shrub cover mapping in
regions with steep topography have not been exploreGgdtowitz, 2010) The use of airborne
multi-angular sensors could improve spatial resold@iand thus WPE detection. One example is
the AiIrMISR, which has a spatial resolution of 27.§Dmer et al., 1998)However, its use has
similar downsides as airborne RADAR and LIDAR, such as high cost. In addition, the promising
results of WPE detection with mulingular sensors could provide a pathway to mount such
sensors on Remotely Piloted Aircraft Systems (RRA®Bich would provide for more frequent,
high-resolution WPE mapping. Upcoming spaceborne missions, such as EnMAP (due to launch
in 2022), will add to the mukangular sensor database. EnMAP will have + 30° adrask
pointing capabilitiegDanner et al., 2017)
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Table 2-6 Multi-angular sensors used for WPE detection (B=Blue, G=Green, R=Red, NIR=Near infrared)

Sensor # Wavelength Spatial Example application Max. rate of Source
viewing configuration resolution success
angles

Ocean Optics 9 35011000 nm; 0.250.3m Delineating shruisteppe BRF between Naupari,

USB2000+ 30011050 nm vegetation perennial grasses Vierling,

spectroradiometer; and shrub differs  and Eitel

GER 1500 (2013)

spectroradiometer

MISR Level 1B2 +75° B, G, NIR (nadir); 275 m (nadir Fractional shrub canopy r?=0.53 Selkowitz

R (off-nadir) bands + R off mapping (2010)
nadir)

MISR +75° R 275 m (R nadir  Monitoring woody shrub r?=0.19 Chopping et
and offnadir cover in desert grasslanc al. (2008)
bands)

CHRIS/Proba 5 18 bands from 17m Monitoring woody shrub r?=0.25 Chopping et

44211019 nm cover in desert grasslanc al. (2006)
Exotechradiometer 10 R, NIR (SPOT 0.1315m Determination of / Franklin et
band pass) radiative transfer in shrul al.(1994)
savanna sites

POLDER-1 +43°, R, NIR 6x7 knt at nadir  Mapping of foliage / Chen et al.

+51°, clumping index (2005)
+57° (including shrubs)

Multi -angular Nadir, Visible, NIR, 500 m (enhanced Land cover classification 22.1% Chen et al.

MODIS surface +10°to SWIR to 30 m) (including shrub) improvement in (2017b)

reflectance +50° shrub

accuracy when
adding angular,
topographical and
temporal features




2.6.1.5. RADAR

RADAR RS systems are used for vegetation mapping due to the strong connection between
RADAR backscatter and the composition and geometry of veget@iManner et al., 2009)

RADAR is an active RS technology that relies on the emissivity in the emitted microwave part of
the EM spectrum, and both vegetation structure and moisture content alter its backscatter
(Lillesand et al., 2004)Vegetation structure affects surface roughness; higher surface roughness
due to dense vegetation cover leads to higher surface scattering, volume scattering from within the
vegetation layer, and surface and volume scattering from the ground. Smoatbssheae lower

surface roughness and less backscattered efidemndersorand Lewis 1998) How a RADAR

system perceives roughness depends on the wavelength and incidence angle. If height variations
are less than the RADAR wavelength, the surface appears smooth, whereas a surface is considered
rough when variations in height approximately edballength of the waveleng{fiensen, 2008)

Textural differences between land cover types (e.g., forests, pastures, and shrublands) are usually
apparentHerold et al., 2004)The thickness of the vegetation layer affects penetration depth and
signal backscatter. Penetration can occur at various depths below the canopy, facilitating the
identification ofplant structure, leaf orientation, cang@nd soil water content. Additionally,
penetration coul@venidentify differences in vegetation type and bioméisnes an&/aughan

2010) Longerwavelengths (14830 cm)can more efficientlyletect branches and trstemsJones

and Vaughan 2010)For example, Mitchard et af2011) used JERS and ALOS PALSAR

RADAR backscatter data over 10 years and developed strong linkages to aboveground biomass,
which, as a result of WPE establishment, increased along thedaxestna boundary.

RADAR hasmany benefit§or land cover classificatio@ensen, 2000).onger RADAR
wavelengths penetrate through clouds and are not impacted by weather, time of day, or geographic
location. Moreover, RADAR systems control their illumination angle, and shallow look angles
result in different perspectives from multispectrad ehyperspectral systems. These different
perspectives then provide additional structural information. Structural differences also become
apparent through object backscatter when applying various energy filter polarizations (i.e., HH,
HV, VV, and VH, whee H-horizontal and Wertical). RADAR systems can also operate over
multiple wavelengths, allowing for different penetration depths over the same area and
highlighting different land cover each time. An example of such a system was H@SIRAR
systemwhich gathered data along three wavelength bandsird, -band, and Xband(eoPortal
Directory, 2021) Lastly, overlapping images can be used for stereoscopic viewing, and
interferometry can be applied when using two RADAR antennas. Both of these methods provide
threedimensional information, which can facilitate land cover mapping.

Nevertheless, the current spaceborne RADAR sensors might not be suitable for WPE
mapping. For instance, recent studiéew that Sentinel datamay not give optimal results for
vegetation detection due to theshort wavelength. Importantly, short wavelengteannot
penetratelensevegetationthusresulting inlow estimates obiomasgRajah et al., 20195imilar
conclusions were drawn when using RADARSAdatato detect theearlyestablishment of WPE
(Ghulam et al., 2011PALSAR data, on the other hand, allow for more detailed mapping of woody
structures because of their longer wavelength (23.5 cm).

Future RADAR missions could partially overcome the abovementioned limitation. The
Copernicus ROSE mission will include Lband SAR, which has longer wavelengths (23.5
25cm) than Sentinel (5.6 cm) and will address important measurement gaps from sgdce th
could improve land cover and biomass estimatigavidson et al., 201950me of these gaps are
related to monitoring landslides, subsidence, earthquakes, and volcanic eruptions in vegetated
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areas; observing possible changes in global forest carbon stocks; and providing high resolution
soil moisture information. NASA plans to launch the NISAR mission in 2022, which will use both
L-band and $and wavelengths at a 3 to 10 m resolution and geomages of the same location
every 6 days. This mission will allow for numerous applications, including forest mapagA,
2021c) and could possibly include grassland monitorioastly, in 2023, the European Space
Agency (ESA) will launch the BIOMASS mission, including a spacebo+barfel full polarimetric
interferometric SAR, which is expected to improve height and biomass esti@Qatsgan et al.,
2019)

On its own RADAR technologyhasnot been widelyisedfor WPE detectioriMitchard et
al. 2009; 2011)instead RADAR technology has baesed in combinatin with multispectral data
(Skowno et al., 2017)seeSection 2.6.4.5. However, future missions could become useful for
WPE mapping due to their longer wavelengths and higher spatial resolutions.

2.6.1.6. LIDAR

LIDAR is an active sensor that emits laser pulses towards the ground and records the timing
associated with the reflected laser enddgnsen, 2000 he distance between the sensor and the
ground object is calculated based on that travel time, and with the use of the GPS and Inertial
Measurement Unit that is mounted on the LiD&&anning platform, the travel time is then
converted into geographic calinates of the objediian, Qu, & Qi, 2021)LiDAR returns are
discrete, waveform, or photarounting based on their horizontal and vertical sampling
frequencies(Tian et al. 2021 Wulder et al. 201R Discrete return LIDAR systems are most
frequently used in forest applications. Based on the land cover, each pulse can generate one or
multiple returns, which can be classified into single ground, single vegetation, first vegetation, or
last ground, aman others(Tian et al., 2021)LIiDAR systems can be spaceboifvéang et al.
2018) airborne(Hantson et al., 2012; Hellesen & Matikainen, 2013; McGlinchy et al., 2014)
terrestrial(Disney, 2019)mobile(Tao et al., 2015apr mounted on RPAGankey et al., 2018)
One spaceborne example is the Global Ecosystem Dynamics Investigation, which was deployed
in 2018 to facilitate forest biomass monitorifdASA, 2021b) Intensity is also a component of
the laser return signal and is related to the surface properties from which the laser pulse is reflected
(Schreier et al., 1985)ntensity is the strength of the backscattered laser echo for each measured
point at a given laser wavelendthitel et al. 2016Kashani et al. 2015)The intensity value can
be used to interpret vegetation featf@shreier et al., 19853uch as a branch or a group of leaves.
These are then used to separate between vegetation classes, such as spruce and pine species
(Donoghue et al., 2007)

It is possible to determine canopy height and structural vegetation characteristics by
examining multiple LIiDAR returns that are generated by branches and I€ales, 2021)
LiDAR data can be used to derive digital surface models, cdmigiit modelsand sukcanopy
topography modelélLim et al., 2003) This is done by filtering land cover points or waveform
peaks based on elevati@@henet al, 2006; Tao et al., 2015bBased on height and roughness,
LiDAR data may be able to distinguish between |lestature woody vegetation that encroaches
into grasslands from grasses and other herbaceous species. Watabdspecies are usually taller
than grasse¢Ku et al., 2012) The use of a LiDARbased approach for WPE monitoring is
especially useful when the spectral characteristics of woody vegetation are difficult to separate
from their background vegetation (e.g., grasses).

A number of studies havexploral LIDAR capabilities in WPE mappin{Table 2-7).
When shrubs are distinct and have dense morphology, airborne LIiDAR data can be used to map
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their presence with high accuracy. For instance, Rango €0) estimated mesquite shrub

cover from thresholding a DEM, which was derived from airborne LIiDAR data. Comparisons with
ground surveys and videos resulted in arbeétween 0.93 and 0.98. In another study, the
thresholding of surface roughness maps derived from vegetation Relgtéemined sagebrush
steppe presence. The validation of these findings with sagebrush presence and absence from field
obtained locations resulted in an overall accuracy rate of g&¥%utkerand Glenn 2006)
Furthermore, airborneiDAR was used to create a maximum vegetation height map that was
generated from heigliiitered vegetation returngSankey andGlenn 2011) Juniper cover
estimates derived from the vegetation height thresholding of that map were correlated to field
measured juniper cover& 0.74,p-value < 0.001).

Terrestrial laser scanning (TLS) can overcome some of the limitations of airborne LIiDAR
when shrubs have low crown density (i.e., open morphology) because TLS has very high point
density (over 500 points perdr(Vierling et al., 2013)For instance, TLS can determine canopy
height, and area of cacti, deciduous and evergreen shrubs with a strong relationship to field
measurements{between 0.8 and 0.99%ankey et al., 2015Als0, the use of a 0.25 m canopy
height model produced from TLS resulted in a higher shrub detection rate (77.8%) compared to
simulated airborne LiDAR (63.9%) with a point density of 16 points péMarling et al., 2013)
However, TLS cannot replace airborne LIiDAR to study-kEtature woody vegetation at landscape
or regional scales. Also, as TLS suffers from occlusion, only small areas with multiple scans can
be examined in flat areéBeland et al., 2019; Luck et al., 2020; Muumbe et al., 200} issue
is not much of a problem for sloped surfaces when using scan positions at higher(@isogd
et al., 2014)

Many studies have explored the estimation of woody biomass with LIDAR systems.
Airbornewaveform LIiDAR was used to separate woody and herbaceous vegetation in a savanna
ecosystem(McGlinchy et al., 2014) Compared to fiekbased biomass measurements, the
waveform features explained woody biom&@&86 of the time. Similarly, a terrestrial LIDAR
system was used to estimate woody plant biomass in rangelands of the southwestern United States
(Ku et al., 2012)The use of percentile height statistics explained 81% of the variance associated
with woody aboveground biomass. Lastly, an RPAS LIiDAR scanner was used to detect shrub
encroachment in semiatural grasslands with height thresholding, resulting in aratha&curacy
rate of 83.2% when comparing to fied@rived shrub cover. LiDARlerived volume metrics were
able to explain fieldneasured shrub biomass 77% of the t{Madsen et al., 2020)

The results of the abovementioned studies are encouraging; however, there remain
drawbacks associated with the use of LIDAR for shrub estimation. When shrub vegetation in
grasslands is sparse with irregular morphology, airborne LIDAR might have lowersstnce
detecting this vegetation when the survey is parameterized to larger point sample($fiading
et al. 2013bWaser et al. 2008)This is not typical, however, in such cases, shrub height, crown
area, and cover are either lower than field measurements or undé&atkelandGlenn 2006)

Also, LIDAR might miss canopy togSalas, 2021 )when the laser pulse penetrates into the sparse

9 Captured from first return airborne LiDAR pulse data.

29



0€

Table2-7Li DAR sensors used for WPE detection (PD=point density,
userbdbs accuracy, OA=overall accuracy)
Lidar Lidar Sensor Laser scanning Example application Estimation Source
type platform configuration accuracy
Discrete  Airborne PLI-MAP PD=0.18 pts/rh Mapping invasive woody species 1’=0.43 Hantson,
in coastal dunes Kooistra, and
Slim (2012)
Discrete  Airborne Optech PD=0.9 pts/mfy PR= Measurement of sagebrush stepy OA= 86% Streutker and
ALTM 2025 25 kHz heights Glenn(2006)
Discrete  Airborne Optech PD=0.24t0 1.35 Mapping shrubland OA= 0% Bork and Su
pts/n¥, PR=25 kHz, (2007)
SA= A +15°
Discrete  Airborne Leica ALS50 PD=5.6 pts/m Mapping juniper tree cover r’=0.74 Sankey and
Phase I Glenn(2011)
Discrete  Airborne Optech PR= 25 kHz Understanding spatiotemporal  / Levick and
ALTM 1225 dynamics of woody vegetation Rogerg2011)
Discrete  Airborne  TopEye S/IN PD= 13 pts/rh Mapping shrub and tree cover in OA= 93.7 % Hellesen and
700 grasslands Matikainen
(2013)
Waveform Airborne CAO-Alpha  PD=0.15 pts/rh Estimating woody and herbaceot r’=0.76 McGlinchy et
biomass al. (2014)
Discrete  Airborne Optech ALTM PD= 2 pts/M@PR= 300 Monitoring eastern redcedar / Filippeli et al.
kHz, SA= A + 45° encroachment (2020)
Discrete  Airborne Leica ALS50 PD=5.6 pts/y SA=  Estimation of juniper abovegroun r>=0.77/ (T. Sankey et
Phase Il A+ 15° biomass across different WPE r’=0.84/ al., 2013)
phases / juniper tree height/ junip r>=0.82/ F=0.79
cover/ juniper density
Discrete  Airborne Optech ALTM PD=7.7 to 11 pts/fy  Detection of small tree height Mean difference (Naesset, 2009)
3100 C PR=100 or 125 or 16€ (<1m) in the alpine tree line with field
kHz, SA= A + 14° or estimates=0.55
A+10° to -0.38,

PR=p
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Lidar Lidar Sensor Laser scanning Example application Estimation Source

type platform configuration accuracy
standard
deviation=0.16
to 0.24
Waveform Airborne Riegl LMS PD= 12.8 echos/fn Mapping shrubs in grasslands PA=83%, (Zlinszky et al.,
Q680 PR= 400 kHz UA=96.7 % 2014)
Waveform Terrestrial Riegl VZ-1000 / Estimating sagebrush biomass  r?=0.9 (total (Olsoy et al.,
biomass), 2014)
r’=0.86 (green
biomass)
Waveform Terrestrial OpTech ILRIS Spot spacing=15 mm, Monitoring cacti, deciduous and r?=0.8 (height), (Sankey et al.,
3D LiDAR range=100 m evergreen shrub height and area r’=0.99 (area) 2013)
Waveform RPAS Surveyor, PD= >1000 pts/i Monitoring shrub encroachmenti OA=83.2% (Madsen et al.,
YellowScan SA= A +55°, seminatural grasslands (cover) 2020)
range=100 m Rag?=0.77
(biomass)

upper canopy and is not returned from the top of the ca(@®lgnn et al. 2011; SankendBond 2011 Streutker andslenn 2006)

Thus, there might be a general underestimation of heights. However, differences between discrete return LIDAR canopg height a
actual canopy height can still be model{&thgnussen anBoudewyn 1998) Al s o, Li DARGs precision in
much higher, at the scale of centimeters to decimeters compared to moderate resolution optical imagery. Sometimes,rgitrnbs may
detected because of their low height.

Consequently, the digital terrain models that are derived from the LiDAR could include returns from the low shrubs, modelling
the ground surface higher than what it actualiBisrk & Su 2007 StreutkerandGlenn 2006;) Bork and Sy2007)reduced this error
by including information from vegetation indices that separate vegetation features from the ground leading to classituagion
improvements of 16 to 20%.

Compared to tree and forest structures, it might be more difficult to detect individual shrubs due to multiple stemslexid comp
branching structureu et al., 2012)The use of local maxima in a canopy height model with variable window sizes could potentially
overcome this issue. This method resulted in an absolute accuracy of 64.1% when isolating individual trees in a savanda woodl|
(Chen et al., 2006).astly, the higher cost in the use of airborne, terrestrial, and RPAS LIDAR systems is a potential limitation.



2.6.1.7. RPAS

Low altitude sensor data from RPAfve also been used to monitor WPE, and their use is
becomingncreasingly populaMultispectral(Al-Ali et al. 202Q Dash et al. 2019Visible (Dong

et al. 2019 Wang et al. 2015)hyperspectra(Kattenborn et al., 2019)iDAR (Madsen et al.,
2020) and even RADAR sensof@/eber et al., 202@an be mounted on such platforms for WPE
detection. The use of RPAS as a platform for data collection offers many advantages. First, RPAS
data typically havéigh spatial resolutiofe.g., 10 cn{Kattenborn et al., 2019)d which allows

for the earliendentification ofencroachmentDong et al., 2019)Second, RPAS data allow for
individual woodycanogy ddineation. Third, RPAS data facilitateultitemporal WPE monitoring,
and lastly, RPAS data can be used for spespesific detectionKattenborn et al., 2019)
Kattenborn et al2019)usedRPASimageryto reference WPE distributionodelsacquired from
Sentinell and 2 datal heyfound that theiseof RPASreferencemagerycan replace fieldurveys

of woody speciesvhenever thee specieare traceable fromnaRPAS Another advantage ihe
ability to fly beneathclouds (Al-Ali et al., 2020) Lastly, in recent yeayscloud computing has
reduced the time for processing and analyBiPASdata(Saura et al. 202%alhaoui et al. 2019)
leading to near redalme results and reduced hardware c{Staura et al., 2019)

Digital surface models and digital terrain models (DTMs) produced from structure from
motion (SfM) technology through RPAshowpromise for grassland shrub estimatigbong et
al., 2019) In this case, shrubs appear as higher features in the digital surface models and can be
automatically detected when accounting for topography characteristics from the DTM (e.g., slope).
Dong et al(2019)used a DTM produced froRPASimagery for shrub detection in steppe areas
taking advantage of the overlap between images SfM technology. This resulted in a 78.4%
overall accuracy rate of shrub cover compared to-fi@sked shrub measurements. Furthengi
phenology to detect WPE relatively simplewith an RPAS, as it only requiresonducing flights
with onrdemandimings (Mdillerova et al., 2016)

However RPASimages cover smaller areas and demand more fiightpared to airborne
systems and satellite imagegMullerova et al., 2016 \When passive sensors are used on RPAS,
they suffer from occlusion and shadowing, leading to information $eeSéction2.6.3.2. There
are also legal restrictions that apply when operatiRPAS which can increase a projécs
complexity (Millerova et al., 2016)These restrictions, for instance, limit where RPAS can
operate; notably, RPAS cannot fly near emergency operations, airports and heliports, inside
controlled airspace, and close to other airqfBfansport Canada, 2021)

2.6.2. Theoretical Basis for th&Jse of RRmoteSensingfor Quantifying WPE

To understand and quantify WPEG6s spatial and
large regions. RS techniques can be used to identify a range of characteristics that are unique to
woody plants expanding into grasslands. Woody plant biopdlyaitd biochemical attributes

differ from other grassland vegetation. These can be estimated from multisp&civakt al.,

2000; Lu, 2017and hyperspectral R@&sner et al. 201,55e et al. 2008)Structural attributes also

differ and can be defined from a combination of passive and active sensors (e.g., LIDAR and
RADAR) (Mitchell et al., 2015and from SfM technolog{Dash et al., 2019)

2.6.2.1. Biophysical and Biochemical Parameters

One method for detecting WPE in grasslands is based on biophysical differences between the
leaves of woody versus herbaceous vegetation (e.g., leaf internal structure, thickness, and surface).
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These can be evaluated based on the reflectance, transmission, and absorption characteristics of
EM radiation. Reflectance ithe NIR region of the EM spectrum is related to leaf strudiwee
mesophyll structure, leaf thickness, and leaf surface) and leaf water déttkatly et al., 2009)
Reflectance occurs at the cell walls and intercellular spaces of air and water in (&akeaf et

al., 2001) Mesophyll leaf cell structure causes leaf scattering within the visible and NIR
wavelengths. Reflectance declines in the visible region of the spectrum and increases in the NIR,
where absorption is minimgWarner et al., 2009)Reflectance differences associated with
biophysical characteristics can be observed with passive multispectral and hyperspectral sensors.

There isa difference between the leaf reflectance of woody species (i.e., dicotyledonous
leaves) and grass species (i.e., monocotyledonous leaves). In part, these differences are because of
their dissimilar mesophyll structures.ditotyledonous leaves, palisade cells in the mesophyll are
structured towards the upper surface; in monocotyledonous leaves, however, there is a weak
separation of mesophyll cells that fill the leaf interior with stomata on both(Sdéss et al. 1965;
UstinandJacquemoud 2020 ompared to monocotyledonous leaves, dicotyledonous leaves have
greater reflectance along the light spectrum which has been related to differences in internal leaf
structure(Sinclair et al., 1971)The spongy mesophyll structure of monocots enhances light
absorption relative to chlorophyll contefiterashimaand Saeki 1985) Because the upper and
lower leaf surfaces of woody species have different characteristics, they result in different
reflectance characteristi¢gstinandJacquemoud 2020)

For example, due to lower absorption, researchers observe higher reflectance for the
underside of plant leaves than the upper surface in visible wavele(i@giss et al.,, 1965;
Woolley, 1971) On the other hand, grass leaves have similar scattering on both sides of the leaf
(Warner et al., 2009} astly, many woody plants tend to have smooth, waxy leaves with shiny
surfaces to avoid absorbing too much photosynthetically active radiation. This enhances specular
scattering from the leavdt/stin and Jacquemoud 2020)n contrast, grasses and herbs tend to
havelowerleaf wax compositiofiLiu et al.2006; Liu and Yang 200&ang et al. 2011)owering
their overall reflectan@e especially in the NIR region of the EM spectr(idfuggins et al., 2018)
However, leaf wax composition also changes due to seasonal variation and leaf maturation
(Khambatta et al., 2028nd is therefore not a strong property to separate woody and herbaceous
plants.

Vegetation senescence causes changes in leaf structure. Leaf senescence initially creates
less intercellular space and reduces NIR reflectance. In its next stage, there is +hlbed air
intercellular leaf space, which leads to the collapse of the aitieraf structure anihcreasedNIR
reflectance(Gates et al., 1965; Sinclair et al., 1971; Warner et al., 2089autumn,grass
reflectance can increaaeross all wavelengths from the visible to the shortwafrared (350 nm
to 2350 nm); however, this phenomenon is not observed in woody plants that have not yet started
to senesc€Chapter 3(SoubryandGuo 2021).

Leaf thickness may also influence vegetation spectral characteristics. NIR absorption has
been found to be lower in thinner leaves, while in thick leaves, NIR absorption inqi®aseso,

2008) However, overall reflectance is not strongly related to leaf thickivésslley, 1971) and

there are contradictory reports of the association between NIR reflectance and leaf thickness.
Indeed, some studies show strong correlations between these two par@fretppsand Carter

1998; Ourcival et al. 1999nd others find weak correlatiofGausman et al., 1973; Slaton et al.,
2001) In addition, it has been found that leaf thickness doediffer significantlybetween woody

and herbaceous specigsu et al. 2019)
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With regards to biochemical vegetation attributes, the visible portion of the EM spectrum
is strongly related to leaf pigment concentration, such as chlorapagtlb (Fitter and Hay 2002)
Vegetation pigments reflect highly in the green range and absorb in the blue and red wavelengths
(Warner et al., 2009 he chlorophyll content of woody species is higher than that of gr@ddés
5.23eg cni? higher, Cht 7.78gg cm? higher)(Liu and Guan 2012; Tong and He 201&)so, the
carotenoid content of encroaching species can be higheyl.4to 4.4times higheythan that of
grasses and other n@mcroaching woody vegetatioallowing them to cope with oxidative stress
from drought, high irradiation, and hgaiu and Guan 2012)however, more studies that utilize
a large dataset of encroaching and-eanroaching woody species are needed to confirm these
findings). Hence, higher reflectance in the green (500 to 600 nm) and lower reflectance in the blue
(around 450 nm) and redréaund 670 nm) regions are expected when comparing woody vegetation
with grasse¢Chapter 3(SoubryandGuo 2021). Passive multispectral and hyperspectral sensors
can be used to detect the regions in the visible EM spectrum related to leaf pigtadiket al.,

2017) However, large amounts of litter and standing dead woody or herbaceous material within
grassland ecosystems reduce overall chlorophyll content, lowering the absorption in the blue and
red wavelength regionfli and Guo 2015) This could limit the separation of woody and
herbaceous vegetation based on vegetation pigments.

The reflectance and absorption characteristics of grasses and woody vegetation vary due
to several influencing factors.eRitive leaf water content was found to be higher in grass than in
shrub specielBy 8.52%(Liu and Guan 2012)The higher relative leaf water content can be related
to the differences in the thickness of dicoty
(Sinclair et al., 1971)Water is mainly absorbed along the Amérared spectrum (1300 to 2500
nm) (JonesandVaughan 2010)Stronger absorption in this region indicates higher water content
(Kokaly et al., 2009)Since canopy grassland reflectance is highly affected byhotosynthetic
vegetation(He et al. 2020; Xu et al. 2014)canopy reflectance for grasses in the-infdared
spectrum is higher during the growing season than it is for woody vegetation, which has longer
active growth and water absorption perig@hapter 3(SoubryandGuo 2021). Woody plants
tend tohave higher lignin contemihan grassesy about 11.4%Lourenco andPereira 2018Lupoi
andSmith 2012;) and thecellulose in grasses isuallymore highly concentratettian in woody
fibres (Azeez, 2018)Lignin and cellulose also absorb in the rmftared spectrum; however, in
healthy vegetation, they are usually masked by water abso(ptiamer et al., 2009 herefore,
the cellulose and lignin absorption regions (at 2100 and 2300 nm) are only visible in senescent
vegetationLi andGuo 2015)

During early spring, most grasses have not yet become green, therefore, the spectral
reflectance is highly related to ng@hotosynthetic vegetation (i.e., litter and standing dead
material) that is present from previous growing seasons. Similarly, dudbhgnga, the
photosynthetic vegetation from the active growing season starts to brown and dry up, which causes
an increase in nephotosynthetic vegetation. Hence, compared to summer, the cellulose and lignin
absorption regions are more apparent in the grasspy reflectance during spring and autumn
(Chapter 3(SoubryandGuo 2021). Both multispectral and hyperspectral passive sensors sense
in the midinfrared region and can investigate differences in canopy and leaf water content;
however, since the cellulose and lignin absorption regions are more spectrally narrow, they are
only detectable with hyperspectral sens{@sughtry et al. 201,Kokaly et al. 2009Serrano et
al. 2002)
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2.6.2.2. Structural Attributes

Different leafangledistributions can influence the spectral response of woody vegetation and
grassesChanges in leaf orientation can prompt changes in spectral reflectance, which can be
observed from passive sensors, while information about leaf angle distribution can be derived from
active sensors, such as terrestrial LiDARailey and Mahaffee 2017)or hemispherical
photography(Liu et al. 2019) Leaf orientation in broad leaf plants (e.g., forbs) tends to be more
horizontal/planophilic, whereas leaf orientation in grasses tends to be more vertical/erectophilic
(Ross, 1982)According toNorman et al(1985) plants that are more planophitend to reflect

more light upwardhan those that are more erectophilic. Myneni and Willigh894)found that

NIR reflectancavas higher in planophilic specidsie to multiple scattering. Overall, greater leaf
angles reduce the reflectance in the NIR reditenk et al., 2019)herefore, a small increase in
shrub and forb composition within a grassland (by2%@0) can significantly influence spectral
reflectance pattern(€hapter 3(SoubryandGuo 2021). Differences in LAl andeflectancemight

also occur between erectophyle and planophyle shasbslagler et al(2004) reported. They

found thata planophyle shrub ltha highNormalized Difference Vegetation IndeXDV1101%)

equal td0.69 and the erectophyshrub had a higbAl (3.69)butthe lowesNDVI (0.25)amongst

the other shrubs examinetleaf orientation can also affect chlorophyll content. The most
planophyle shrub in the study of Zinnert e{2013)had the highest chlorophyland carotenoids,

while the most erectophyle shrub had the lowest. In addition, this study found that chlobophyll
was significantly lower in the erectophyle shrub. Lastly, differences in plant density between
woody vegetation and grasses could affect their spectral reflectance because more light is absorbed
when leaves are stackdWoolley, 1971) leading to higher absorption in the blue and red
wavelengths ofhe EM spectrum.

Overall, LAI differences among canopies are explained by variations in leaf geometry,
arrangement, and thickne@stter andHay 2002) LAI can be estimated with passive RS from
empirical relationships with vegetation indi¢es andGuo 20102013)or from radiative transfer
modelling(GonzéalezSanpedro et al., 2008ecause changes in LAl affect reflectance in the red,
NIR, and SWIR region@/Narner et al., 2009Active RS, such as airborne waveform and terrestrial
LiDAR, can also be used to estimate L&BRNng et al., 2014)0n the other hand, there are limited
studies on the use of RADAR sensors for LAl estimati@uarden et al. 1993°révot et al. 1993)

Studies that have estimated LAI tended to figher valuegbetween 0 and 8pr shrub
dominatedareas than for other grassland types (between 0 afhBiu and Hanan 2018; Xu et
al. 2018,202Q) Complex shrub structure allows for greater variation in the architecture of
meristems and leaves, leading to higher [(Kiapp et al., 2008)n grasslands, the large amount
of nonphotosynthetic vegetation tends to reduce LAhisitumeasurements and to enhance plant
area index valuegXu et al., 2020)Overall, grassland reflectance is a mixture of sall, litter, and
grasses, which leads to an increase in the visible portion of the EM spectrum and a decrease in the
NIR portion(He et al., 2020; Xu et al., 2020)

1ONDVI takes values betweef and 1.
11 More information on vegetation indices can be found in Sedtié:3
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Shadows and occlusions affect the reflectance of woody vegetation and grasses. Shadows
can occur due to topography (e.g., mountain shadow), clouds, urban structures, tall vegetation, or
a mixture of thes@Mostafa 2017 Shahtahmassebi et al. 2018@)cclusions are areas that are not
visible on the RS image because they cannot be seen from the (&tso2000; Chandeand
Vatta 2015)due to overlapping foliage, steep topografButjahrandRaggam 2003; Hao et al.

2018) or due to the viewing geometry of the image sensor with regards to the surface features
(Brito, 2000) Occlusion is different for optical and active RS sensors. Tall structures, such as
buildings and trees, can cause occlusion for high resolution spaceborne, airborne and RPAS
imagery by preventing the sensor from seeing the areas behindGlgahrandRaggam 2003)

Active occlusion is significant for LIDAR systems, where objects (e.g., upper foliage) block the
continuation of the laser pulse and multiple retitredsky et al., 1999)especially for TLEDutta

et al., 2017)Also, the look angle of the RADAR sensor (e.g.;radtlir) may contribute to land
surface occlusionfGutjahrandRaggam 2003) wher e obj ects in the ser
those behind them. Shadows can lead to lower observed radianesandVaughan 2010and

the partial loss of radiometric informatiofMostafa, 2017)in passive multispectral and
hyperspectral RS. If shadow correction is not applied, this can lead to confusion and
misclassification of vegetated surface reflectance and erroneous results when applying seasonal
change detectiofEhahtahmassebi et al., 2013)

Shadows are mainly observed with more complex vegetation structures, such as shrubs,
which can be taller and have larger leaf areas than grasses. Absorption and scattering in the visible
and NIRregion largely occur in the photosynthesizing green leaves in shrubs and in senescing
leaves. However, some EM radiation is also absorbed frorpheotosynthetic branches, which
cast shadows, and some NIR radiation is scattered to the understory or @hanidin et al.,

1994) This can confuse the canopy reflectance signature between grasses and shrubs, leading to
higher values for grasses and lower values for sh(Gbsipter 3,(Soubry and Guo 2021)
However, if the shrub cover and density are low, shaded areas are small and contribute only a
small amount to surface reflectar(€anklin et al., 1994)Thus,these areas can be ignored.

2.6.3. Using Spectralindices to Identify WPE

Spectral vegetation indices are mathematical combinationsnglesspectral bands thare
sensitive to the presence and condition of vegetéttiliesand et al., 2004Even though specific
spectral bands can be used for WPE detection, vegetation indices have several adiassges
et al., 2005) Specifically, they lower thaoise influences of the sensor, atmosphere, plant
geometry, shadows, and soil backgro(iRdjah et al., 2019; Verrelst et al., 2019pectral indices
can be used to derive WPE compositigrdetectingpeciegNg et al. 20170Ideland et al. 2010)

or distinguishingnativeandnon-native specieéWilfong et al., 2009)

Woody plant featuresuch aslignin, nitrogen, chlorophyll, and water content can be
detected from their absorption features with hyperspectral indicse( 2-8). Hyperspectral
indices that relate to increasing dry matter (e.g., twigs, branches, and dry leaves), such'4s CARI
NDLI*3 and NDNF, perform more efficiently® during senescence. However, hyperspectral

12 Chlorophyll Absorption Index.

13 Normalized Difference Lignin Index.

14 Normalized Difference Nitrogen Index.

15The higher the negative regression coefficients, the more efficient the perforinasecen the study of Oldeland et al., 2010
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indices related to higher greenness, such as!®CAGVIY, and LWV perform more
efficiently'® during active woody plant grow{i®ldeland et al., 2010)

When multispectral dat@reavailable, changes in greenness and moisturantaim WPE
detectionlndices used for greenness take advantage of the absorption in the red band and the high
reflectance in the NIR regiomMoisture and waterelated indices use absorption in the SWIR
region that is related to vegetation water content and the NIR region as a reference of leaf dry
matter and structur€lRC European Commission, 2011; USGS, 202®ody plantsanhave
higher greenness than the surrounding gra&ssker et al. 2013,35avierPizarro et al. 20123nd
higher soil water conterikéchy and Wilson 2000) In studies that use more than one spectral
index(Becker et al. 2013; Delgado 2017; Ng et al. 20//ifong et al. 2009; Yue 2009NDVI,

TCap® greenness, GR WDVI??, and NIMI?® had higher importance rankings and higher
classification accuracies than the other vegetation indices that were ugéeHatetectiorfTable

2-8). However it should be noted thdahe spatial resolution of each sensor and the species of
interestalso influencehese results.

Identifying asuitablespectral index is difficult due to the many possible applications,
methodologies, and results in the literatidewever, it is possible to agnethods thaidentify
indicesmost related to WPH-or instance, Rajah et §2019)used Variable Importance in the
Projection to detect the ten b&sWWPE spectral indicesrom the 65 originally selectedusing
Sentinel2 summer surface reflectandéese mainly consist of simple ratios of the NIR, red, and
green bands. When comparing to field obtained land cover, the use of the ten vegetation indices
with an SVM classifier led to 82% overall accuracy rate for WPE mapping

2.6.4. Analytical Methods

There are several different methddsWPE detectionwith RS.Moving fromtheclassification of
whole ecosystems to ecosystem parts and sp&tieg, detection methodsn be separated into

i) parametric and neparametric classifiers, depending on the data distribution assumption that is
being madgii) objectbased classification; and iii) spectral mixture analysis. Attributes that are
frequently added to these classifications include surface texture and height. Lastlypassdn
methods that combineftérent sensing systems are often employed for WPE detection.

2.6.4.1. Parametric and No#Parametric Classification

Non-parametric classifierbave recentlygained much scholarly attentionThis is because the
requirement fora normal spectral distributioms frequently violatd when using parametric
classifiergLu andWeng 2007) Furthermore tiis difficult to combine spectral and ancillary data
with parametric classifiers. Some of the advantages thapa@metric classification algorithms
offer are their independence from statistics and their applicability in heterogeneout aeas

16 Cellulose Absorption Index.

17 Derivativebased Green Vegetation Index.

18| eaf Water Vegetation Index.

19The higher the positive regression coefficients, the more efficient the perfortrasexton the study of Oldeland et al., 2010
20 Tasseled Cap.

21 Greenness Ratio.

22\Weighted Difference Vegetation Index.

23 Normalized Difference Moisture Index.

24 The authors selected the ten best vegetation indices to enhance classification accuracies with parsimonious reptesentation; t
optimal result was achieved with rapid computatibamelin and Miller 2011)
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Weng 2007; Royimani et al. 2019This is important for WPE detectiobecause shrub
encroachment intgrasslandscan occur within variablgized patches that typically have a
heterogeneousixture of grasses and shrubs.
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Table 2-8 Spectral indices used in WPE studies (R=Red, G=Green, B=Blue, RE=Red Edge)

Sensor Type Vegetation index Equation Wavelength  Importance Used by
association ranking?!
Cellulose AbsorptionIndex p T m® ¢ T ET ¢ G ET Structure 5(+)
(CAI) CpHM
o] _ ,a') 6 ( )
Chlorophyll Absorption in _ .
Reflectance Index (CARI) U UeMd 20U Tw Chlorophyl
o . B § _ " @cdpdw_,i=band 4 (+)
Derivative Green Vegetatior = L= :
Index (1st order) (DGVI) numb’(’erE ~ center ngelength at the ith Chlorophyll Oldeland et
Hvperspectral band, first derivative reflectance al. (2010)
ypersp Leaf Water VegetationInde: pmme® p¢R@GIFp MmO W 1(+) '
L ater
(LWVI) PCHEW
i e P i P 3 ()
Normalized Difference I X & T I 5 © @™ Structure
Lignin Index(NDLI) - p T p
'T5xew ''fowm
~ . p ~ p 2
Normalized Difference Il E UV E T I © @ . )
Nitrogen Index (NDNI) v p p Protein
'T5vem ''Sowm
3 N/ A, 3 ( Beckeretal.
Enhanced/egetation Index - L OYYOO (2013)
(EVI) B35 "OYPIY 0O x® D 0 YO p Chiorophyll Wilfong et
al. (2009)
Green Normalized 0 0OYO Not important
Multispectral Difference Vegetation Index 5 “O'Y O Chlorophyll
Ng et al.
(GNDVI)
Y 1(4) (2017)
Green Ratio (GR) — Chlorophyll

0
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Sensor Type Vegetation index Equation Wavelength  Importance Used by
association ranking?!
Modified Soil Adjusted ch OY c) OY 0 OY'Y Not important
Vegetation Index (MSAVI) i C ° v Chiorophyll
1 (+); N/A; N/A; Wilfong et
1; N/A; N/A; 1 al. (2009)
Kattenborn et
al. (2019)
Gavier
Pizarro
Normalized Difference 0 OY'Y Chiorophvll (2012)
Vegetation Index (NDVI) 0 OY'Y phy Delgado
(2017)
Gartzia et al.
(2014)
Becker et al.
(2013) Yue
(2009)
Normalized Difference 0 OY Yo @Y Water 4 (+) Wilfong et
Moisture Index (NDMI) 0 OY'Y® @Y al. (2009)
‘0 00OY N/A; 11 (+) Kattenborn et
Normalized Difference ‘O 0 0Y Water al. (2019)
Water Index (NDWI) Ng et al.
(2017)
Normalized Difference Red U OY'YO Chiorophyvll ot important
Edge Index (NDREI) 5OYY O pny
Normalized Vegetation i Not important
index 2 (NDVI?) , where NIR2 from Sentinéd Chlorophyll Ng et al
Normalized Near Infrared 0 OY Chiorophvil Not important (2017)
(NNIR) 0 0Y'Y O Py
Plant Senescence Y o Chioroohvil Not important
Reflectance Index (PSRI) YO orophy




1%

Sensor Type Vegetation index Equation Wavelength  Importance Used by
association ranking?!
0 0OY N/A; Not Kattenborn et
Red Edge Vegetation Index y'O important al. (2019)
(REVI) Chiorophyll Ng et al.
(2017)
. 0 "OYO U OY Not important
Red Ratio (RR) 73\73% Chlorophyll Ng et al.
Sentinel Improved . where RE2 from Sentin@ Not important (2017)
Vegetation Index (SVI) Chlorophyl
0 0Y 2 ( ), N Wifonget
. . 2 important al. (2009)
Simple Ratio (SR) Chlorophyll Ng et al.
(2017)
Soil Adusted Vedetati p 0, where L=0.5 (between 7 (+); NIA V\I/”(fggggit
oil Adjusted Vegetation al.
Index (SAVI) 0.9 and 1.6) Chlorophyll Gartzia et al.
(2014)
4A#AD' M Y1 T T v 5 (+) (TCapW), Wilf ¢
T 0B T ¢ 120) 278 Y 1On 10 (+) (TCapG), al' (ggggi
Tasseled Cap (TCap) 37)2mp YTOB 7 ) AH AD7 12( ) (T Gavier
Greenness (G) ™ UL TOWw T wXo T ¢ X Chlorophyll ~ N/A; 1 (TCapG) Pizarro
Wetness (W) TTTP) 2TX PPRT7) 2p Water (2012)
Brightness (B) ™ L x087) AH AP 1 ady / Becker et al
T X Do ™M X1 T L Yv) 2 (2013) '
T YR 7 ) 2 o YgD3 7) 2 ¢
Visible Atmospherically oY Chlorophyll 14 () Wilfong et
Resistant Index (VARI) O Y 0§ al. (2009)
Weighted Difference O "OY OIY, whered) —— 3(+) Ng et al.
Vegetation Index (WDVI) Chlorophyl (2017)
WorldView Improved . where NIR2 from Sentinl Chlorobhvil Not important Ng et al.
Vegetative Index (WWVI) phy (2017)
Where f10 corresponds to the most i mportant index for each

study,
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Various parametric and neparametric classification techniques have been tsed
spectral, phenological, and objdised classifications of WRfEasslandsTables2-9 and 2-10).
Examples include the use of hyperspectral and multispectral imagery to map invasive shrubs with
the SVM classifier, which led to a Kappa coefficient accuracy of 0.89 when comparing to the
ground data of shrub presence and abséRaeKagan et al., 2019Moreover, Becker et al.
(2013)used Landsat TM and ETM+ data to map invasive shrubs with the parametric tasseled cap
greenness, yielding a classification accuracy rate of 88% compared tbdssd shrub coveln
this case, only large shrub stands (50 to 1@bameter) could be identified. Tables 9 and 10 show
that parametric classifiers result in lower overall classification accuracy thapanametric
classifiers. Comparative studies between parametric aneparametric classifiers for WPE
detection are linted. For example, in Zhou et 4R014) the norparametricclassifier (SVM)
resulted in a higher overall accuracy (81%) than that of the other two parametric classifiers (73%
for Maximum likelihood and 62% for Mahalanobis distance).

Table 2-9 Parametric classifiers used for WPE detection

Parametric classifiers Species classified Rate of Used by
success*

Olea europaed.. OAl=85%  Cuneo et al.

ssp.cuspidata(Wall. ex G. Don) (2009)

Ciferri

Mimosa pigra N/A Delgado(2017)

Pinus jeffreyBalf., Pseudotsuga N/A Sahara et al.
Maximum Likelihood  MenziesiiChamaecyparis (2015)
(MLH) lawsoniana/A. Murray) Parl,

Notholithocarpus densifloru

Frangula alnus, Rhamnus N/A Becker et al.

cathartica (2013)

N/A OA=73% Zhou et al.

(2014)

Acaciaspp.,Albizia cf. OA>75% Marston et al.
[terative Self- petersiana.and larger trees (2017)
Organizing Data Dichrostachys cinerea, Grewia OA>85%  Munyati et al.
Analysis Technique  yernicosa, Grewia monticola, (2011)
(ISODATA) Grewia flavenscens, Acacia karo

Acacia tortilis, Acacia mellifera
Linear Discriminant Predominantly chapparal shrubs OA>80% Meerdink(2018)
Analysis (LDA) conifers

Parallelepioed method Frangula alnus, Rhamnus OA=88.33% Becker et al.
PP cathartica (2013)
. N/A OA=62% Zhou et al.
Malahanobis distance (2014)

* The type of remote sensing data used plays a major role in the accuracy of the't@aatserall
accuracy
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Table 2-10 Non-parametric classifiers used for WPE detection

Non-parametric ~ Species classified Rate of Used by
classifiers success*
Artemisia afra Asparagus OA=84% Tesfamichael et al.
laricinus, Seriphium plumosum (2018)
Ligustrum lucidum OA=84% GavierPizarro et al.
(2012)
Support Vector Acacia salicinaAcacia saligna OA=89% (PZ%zll;z;gan et al.
Machine (SVM) S/ OA=81% Zhou et al(2014)
Rubus cuneifoliuPursh OA=77% Rajah et al(2018a,
2019)
Cistusshrubs r’=0.64 Schwieder et al.
(2014)
Pinus radiata, Acacia dealbatar?=0.79, £=0.90, Kattenborn et al.
Ulex europaeus r’=0.81 (2019)
Artemisia afra Asparagus poor results Tesfamichael et al.
laricinus, Seriphium plumosummentioned (2018)
Random Eorest Bux_us sempervirens, Kappa=0.91; Gartzia et al(2014)
(RF) Ech_mospartum homdum, OA>85%
Juniperus communis,
Rhododnedron ferrugineum
Prosopis& Vachelliaspp. OA>79% Ng et al.(2017)
Cistusshrubs r’=0.60 Schwieder et al.
(2014)
Gradient Boosted Artemisia afra Asparagus OA=77% Tesfamichael et al.
Modelling (GBM) laricinus, Seriphium plumosum (2018)
Partial Least Cistusshrubs r’=0.51 Schwieder et al.
Squares (2014)
Regression
(PLSR)

* The type of remote sensing data used plays a major role in the accuracy of the't@aalserall
accuracy

2.6.4.2. ObjectBased Analysis

When woody species have less distinct spectral charactetisicseparate them from grasses
objectbased classification methods can be u@ddllerova et al., 2016)Usually, very high
resolution datdhat capture the shrub stand dimensifres, decimetres to metreaje nededto
use this approactBhivakanthand Tanwar 2018) For instancewith 10 m resolution Sentin&
data, individual shrubs and trem®too small to be detecteuth single pixelssince the minimum
object sizeshould exceed one pixel. Moreoveegmentatiomequiresseveral pixelgo form an

A o b j (Hgcet ab, 2017)In very high resolutioimagegq(i.e., decimetres to a few metregjpody
vegetation usually saa circular or elliptical shapavhich can bedistinguishedrom herbaceous
plants and the saiCao et al., 20195everal studies hawsed objecbasedlassificatiorfor WPE
detection.Mirik and Ansley (2012) used an objedbased algorithm that combines variants of
artificial neural networks, decision trees, Bayesiamearest neighbour, and ensemble learning
to classify woody and herbaceous cover. When compared withidestdified land cover types,

43



this resulted in an overall accuracy rate of 87% and 97% for images of 30 m and 1 m spatial
resolution, respectivelyZhou et al.(2014) found higheroverall classification accuracy (i.e.,
89.24%) with an objedbased approach than with pixesed classification approaches (i.e.,
SVM-81.15%, Maximum Likelihoo/3.33%, and Maalanobis distanc&1.77%) when
comparing shrub distribution with ground survey data. Lablty et al.(2017)found an overall
accuracy rate of 83% when mapping WPE with Pleiades data (with a 2 m spatial resolution), which
was higher than the 79% overall accuracy rate when using Seatifsh (with a 10 m spatial
resolution) These accuracies were obtained by comparing-@ibtdined GPS points of woody
cover with the classified woody cover from Pleiades and Sefftimehgery.

2.6.4.3. Spectral Mixture Analysis (SMA)

WPE grasslands are heterogeneouscamtiain a mixture of land covers. When the woody cover

is smaller than the spatial resolutiontbé RSsensor a mixed pixalf woody plant, grass, bare
ground, or rock results SMA identifies within pixel speciedractions which each have a
characteristic reflectance and can be separated esdrgembespectra Shivakantrand Tanwar

2018) Endmembers are obtained from pure image pixels or from spectral signatures obtained in
the field(Lu andWeng 2007)Since SMA classifies at a sytdixel level, this classifiecould detect

early stages of WPE using moderate and coarse spatial resolutiqMd#dagera et al., 2017)

This is because woody plant cover does not necessarily have to cover a whole image pixel
(advanced WPE) for it to be detected. For instance, field measurements that used a
spectroradiometer found that woody cover between 10% and 25% wamimeim thresholdhat

could be detected in a grassland reg@napter 3(SoubryandGuo 2021). However, these results
should be confirmed with the use of satellite data.

Sankey and Glen(R011)compared three different SMAS to estimate juniper tree cover
using linear spectral unmixing (LSU), mixture tuned matched filtering, and constrained energy
minimization.Constrained energy minimizati@and LSUwere poorly correlated tieeld-obtained
tree cover = 0.003,p-value = 0.571 and®= 0.004,p-value = 0.550, respectively\vhereas
mixture tuned matched filteringgas significantly correlate@? = 0.09, p-value = 0.004) The
addition ofLiDAR data significantly improved ttseresults(r?>= 0.74 p-value < 0.001)The low
accuracy results from SMA were mainly related to the sparse distribution and low density of
juniper trees (7.3%) in the study area, in combination with the use of Landsat TM images. The
improvement in the results with LIDAR data was mainly relatedhe addition of structural
informationthat allowed for the separation of vegetation groups that were spectrally very similar.

One inherent difficulty with LSU is that it assumes that multiple scattering between
endmembers does not occur. Waf&915) showed that there is strong, nonlinear multiple
scattering from shrubs, especially in the NIR region of the EM spectrum. Importantly, this
scattering increases with their cover and height. Thus, there can be a difference between shrub
cover results from 8U and nonlinear spectral unmixing. Ma et(aD15)found that nonlinear
spectral unmixing can be used in areas that are dominated by tree and shrub species; hence, it is
suitable for application in areas with high WPE.

There are a few limitations to the use of SMA. For example, SMA has shortcarietgs
to the number of endmembers it can wgkich have to be less than or equal to the number of
bands in the imagéCleversand Zurita-Milla 2008). Only then is there a unique solution for the
fractions of each endmember with a meaningful error t&iA is also unableéo account for
small spectral differences of land coyBoberts et al., 1993)imiting its use in grassland WPE
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detection.lt is alsodifficult to find pure endmember pixels arid and semiarid grasslan@3ao
et al., 2019)

Multiple endmember spectral mixture analysis (MESMA) caercomesome of the above
limitations, making this techniquenore appropriate for WPE classificatiddomers and Asner
(2013)used MESMAwith hyperspectral imagery to detect invasive tree spediéen compared
with field-obtained tree species locations, MESMA resulted in a Kappa statistic between 0.51 and
0.69.When hey addedmulti-temporal MESMA tdurtherimprove the detection of invasive trees
the Kappacoefficient accuracyas between 0.6 and 0.MESMA wasalso usedo map honey
mesquite and redberry juniper with multispectral imag&yenemann, 2007)The difference
between multispectral image estimates and ground reference endmember abundances resulted in a
standard error between 0.063 and 0.235 endmember fractionsvel this studyunderestimat
areas witHow WPE vegetation cover duec¢onfusion withsoil or nonphotosynthetic vegetation.

2.6.4.4. Additional Classification Attributes (i.e., Texture and Height)

Other attributesof woody plants in grasslandsiich assurface texture or heighgeparate them
from the continuous, shorter, and smooth gra@satienborn et al., 2019Thesecan be included

in classification techniques to enhance accui@tyvakanthand Tanwar 2018) For instance,
Kattenborn et al(2019) usedGray Level Ceoccurrence Matrix metricdased orthe average
values of the red, green, and blue bangs derive texture informatiorior WPE species
classification Textureallowed them taccount for local differences in the cangsucture and

their classification accuracy improveg 5% to 10% compared to the use of a single method (e.g.,
hyperspectral data).

Hudak and Wessmai998)useda textural index tadentify differencesin woody plant
density. Woody stem coumbrrelated bestvith the textural imageHowever its significance
reduced as the image pixel sinereased (e.g.? = 0.25 and 0.70 for a pixel size of 20 m and 2 m,
respectively) They cacluded thatat 10 m resolutiontexturecouldindicatewoody plant density
(r?= 0.48).Moreover, Ng et al(2017)usedwavelet transformatioto derive textural features of
shrubs Other techniques related to textlrased classification can be found in Lu and Weng
(2007) As mentioned earlier (segections2.6.1.6 and2.6.1.7), the detailed, thredimensional
structure of woody vegetation can be estimated from SfM with the use of EPRFewolf et
al., 2017) while LIDAR can be used to accurately determine elevation (i.e., woody height
characteristicsjTompalski et al., 2021)

2.6.45. FusionBased Methods

RS data fusion includes the combination of different datasets, resulting in more information than
would be available through a single data soy#eang, 201Q) Multi-source RS data fusion
methods for WPE detection have improved mapping results in many vegetation studies. This is
because the combination of active RS, such as SAR and LIDAR, provides structural information
(e.g., woody plant height), while the orporation of passive spectral data (e.g., from Landsat or
Sentinel2) adds spectral information associated with the distribution of woody material. When
these are combined, the additional information from two or more data sources enhances the
classificaton accuracy and reduces confusion.

Kattenborn et ai2019)combined Sentinel and 2 data to predict woody cover, resulting
in a good correlation {> 0.79) between the RPASased reference data and the Sentiasked
predictions (RMSE < 12% woody cover fractiomhpe fusion of Sentinel data with Sentine?
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improved the estimation of woody cover fractions between 8.3% and 18ig8hell et al.(2015)

fused airborne hyperspectral and LIDAR data, and the shrub cover estimatiensteferenced

to field-measured shrub covemproved with the combination of the two (with a=r0.58).

Il ndeed, on its own, LiDAROS s h2=049)lawsatbande st i m;
LiDAR data werdusedfor juniper tree mappingSankeyandGlenn 2011)Only LiDAR-derived

juniper cover estimates were correlated to fimleasured cover {r 0.74, p-value < 0.001);
however, the fusion of Landsat 5 and LiDAR juniper cover estimates led to a superior correlation
with field data (f= 0.80,p-value < 0.001). IiBork and Sy2007) LiDAR data could map aspen
forests and grasslands but not shrublamtie combination of LIDAR and multispectral data led

to a 16% to 32% greater overall accuracy rate in the classification of these three land covers than
either of the two datasets alone.

LIDAR has also beensea with aerial imagery to map the spatiotemporal dynamics of
woody plantgHantson et al. 2012; Hellesen & Matikainen 2016vick & Rogers 2011)n these
studies, it wasoundthat the combined use of LIDAR with optical data re=sililh greatelaccuray.

For instance, when compared to fieldrived woody species occurrence, the combined use of
vegetation heights derived from LIDAR data and a maximum likelihood classification of aerial
photographs increased the overall classification accuracy of woodgspletection from 39% to

50% (Hantson et al., 2012Also, when combining LIDAR and coloumfrared orthoimages for

WPE mapping with an objettased approach, the shrub produc
81.2% to 93. 7%, and the shrub use(Hdlesenand cur ac )
Matikainen 2013)

Other fusion methods not yet used for WPE mapping should also be meniitreed.
Harmonized Landsat and Sentipebduct, or the virtual constellation of surface reflectance from
Landsat 8 and Sentinr@l (Skakun et al., 2018)could lead to more accurate WPE tiseries
mapping due to its higher temporal availabilihan each of the satellites on their owrhe
Harmonized Landsat and Sentinel product could facilitate the monitoring of ws#hson
grassland dynamics, which would allow for WPE detection based on phenology. Examtipées
use of this produdhclude estimating annual vegetation phenologyrasslads(Zhou et al. 2019)
and detecting early growth stages in corn and soyl&atset al., 2020Moreover, the fusion of
radar data (e.gRADARSAT-2 and PALSAR)with multispectraldata is encouraged for WPE
mapping, as it facilitates the recovery of data in clptmhe areafattenborn et al., 2019; Lindsay
et al., 2019)This type of fusion has been usedmprove invasive species mappif@ghulam et
al. 2011;Lindsay et al. 2019; Rajah et al. 20182019) and should be investigated for WPE
detection.

Multi-sensor data fusion techniques also have limitations. When compared to field
reference data, some studies skegreasegredictionaccuracyafter combining different sensors
(e.g., an overall accuracy rate of 55% versus an overall accuracy rate of 84%) for invasive species
mapping (Rajah et al., 2019)Other studies saw no major prediction improvement in WPE
mapping (Kattenborn et al., 2019)Moreover, gen if the temporal resolution of the dasa
improvedwith data fusionit maynot have sufficienfrequerty to track withinseason vegetation
dynamic$® particularly during the early growing seaso@Zhou et al. 2019)Lastly, increased
processing and storage demal@syimani et al., 2019and discrepancies between the sensors
did, until recently,limit the longterm utility of multi-sensor data fusiofor WPE mapping.
However cloudbased processingatformssuch assoogle Earth Enginer theDIAS initiative
(European Commision, 2018; Google, 2Q2Barmonized datasets such as the Harmonized
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Landsat Sentinel produ¢®kakun et al., 2018and multisource data processing algorithms such
as FORCHFrantz, 2019¢ould potentially overcome thebmitations.

2.6.5. Detecting Environmental Drivers and Grassland Sensitivity to WPE

2.6.5.1. Using Remotely Sensed WPE Cover to Detect WPE Drivers

Several of the drivers mentionedSection2.5.1 (e.g., soil type, topography, and fire occurrence)

can be detected when connected tedeBved woody cover, which covers larger regions than
localized fieldderived woody cover. Decadal RS datasets over national or continental scales have
been used to &htify some of the major environmental WPE drivers, since these datasets can
identify expansion, growth, and woody plant mortality-y2@&r Landsat data of alpine grasslands

in the Central Pyrenedsave beerused to estimate WPE drivefGartzia et al., 2014)These
included biophysical factors separated into topographic, abiotic, biotic, and climatic categories.
They also included anthropogenic factors, such as distances to roads and towns, depopulation, and
land ownership. Drivers differed by grassland dgmsind distance to the nearest woody plant
habitat was the major WPE driver. In another study, edaphic drivers related to the expansion of
eastern red cedar and Ashe juniper into the Great Plains of the United States were examined with
the combination ofandsat data and-hand RADAR backscatter between 1984 and Z0¢ang

et al. 2018) Soil texture and depth were related to the expansion of these two species, and WPE
was higher in areas with lower available water storage in the topsoil.

Venter et al(2018)used 30 m Landsat data to examine WPE in the African continent over
a 30year time span (1988016) and determined that the main drivers of WPE expansion varied
across spatial and temporal scales. Major drivers included a warming and wetting climallg (broa
associated with climate change), changes in fire regime, herbivory, and human disturbance.
Edaphic variables and protected area status were also included but were less important on the
continental scale. Moreover, Skowno et @017) found that protected areas in South Africa
experienced woody cover loss, while commercial and traditional rangelands saw increases in
woody cover. They used Landsat data arstabhd RADAR backscatter to estimate the extent of
woodlands and grasslands betwd 990 and 2013. A wetting climate was also found to contribute
to countrywide WPE increasedlarston et al(2017)monitored WPE in Kruger National Park,

South Africa with Landsat images from 2001 to 2014 and suggested two main drivers of WPE:
herbivory and atmospheric GOGncreases.They found no obvious trend in air temperature,
precipitation, or fire regime. However, they did not directly associate these potential drivers with
WPE cover; they instead examined the trend of each variable separately.

Overall, data that cover a longer time period (i.e., at least 30 years) may be used to identify
specific driver mechanisms. Historical aerial photography and airborne LIDAR data were used
over the same study area to examine WPE drivers between 1942Cdnd @dck and Rogers
2011) Factors related to substrate, hydrology, topography, position, and management were
examined. Of these, changes in fire regime and climate had a stronger connection to WPE. Lastly,
Buitenwerf et al(2012)took advantage of lonterm field datasets and aerial photographs between
1973 and 2007. The authors examined the relationship between increased atmosphanid CO
WPE in areas with constant fire and herbivory management. They found thah@@/PE were
related because the study sites underwent a substantial increase in woody plant density, with the
density either doubling or tripling.

2.6.5.2. Monitoring Grassland Sensitivity to WPE with Remote Sensing
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WPE has a number of implications on grassland ecosystem functiolséstien 2.5.2), which

can be detected using RS data. The surface albedo of woody plants can be detected from typically
darker hues in satellite RSian et al., 2020)The launch of the Deep Space Climate Observatory
satellite with the Earth Polychromatic Imaging Camera has opened the way for global surface
albedo estimations with high temporal resolution200verpasses/day). Tian et@020)found
consistency between estimated albedo from this sensor and gvased observations (max=r

0.67 for grasslands). Although progress has been made in albedo estimations from Landsat,
Sentinel2, and RPAS, the sensors that currently offer albedo estimations are coarse-(lay., 16

500 m MODIS composite or iday 5.5 km MERIS compositéfranch et al., 2019; Roujean et

al., 2019) An early study of Robinove et g11981) investigated the use of a Landsat albedo
product in an arid region and connected increases and decreases in albedo with land cover changes
(i.e., flash floods, soil moisture changes, and changes in vegetation). Specifically, increases in
perennial shruband annual plants were connected to decreases in alb#fiwences in LAI

between open and WPE grasslands can be calculajg@digting LAl from models that connect
vegetation indices with fieldbtained LAI datgdLi andGuo 2010; Qiao et al. 2019)he increase

in LAl due to woody structure leads to changes in all§€s@andZou 2013) which are connected

to energyexchange, temperature, and ET (Seetion2.5.2).

The changes generated by WPE in grasslands also lead to changes in terrestrial habitat
types. Terrestrial habitat types are defined by plant species and their associated microclimate
(Wilson, 2020) WPE reduces grassland cover and has been connected to a decline in grassland
biodiversity (see Section 3.2). RS has been used to monitor habitat extent and cOvagerdra
et al., 2013; Neumann, 202@ince RS data can delineate WPE cover and WPE change over time,
it could also delineate areas of habitat availability for grassland or shrubland species and even
make recommendations related to habitat quality depending on, for example, the level of WPE
(RequenaMullor et al., 2017)For instance, Waser et €2008)detected shrub encroachment with
aerial and LIDAR data based on height changes. To sustain the habitat of the study area, the authors
suggested selective logging. Furthermore, Pringle gt2@09) linked multidecadal (65/ear)
vegetation <changes related to WPE to change:
endangered snake. They used aerial photographs between 1941 and 2006 and applied-both pixel
based and objedtased approaches.

One of the more important implications of WPE in grasslands is the reduction in grazing
habitats for livestock(Archer et al. 2017 Bowes 1998) Seasonal and loAgrm forage
productivity can be estimated from RS data with vegetation indices, such as the Enhanced
Vegetation Index and NDVI, which are correlated with peak bior{tdsang et al., 2019Peak
biomass, for its part, is a proxy of ANPRoumiguié et al2017)used MODIS data and developed
a forage production index, and Liu et@019)estimated forage production combining RPAS and
PlanetScope NDVI data®® 0.8 and RMSE = 542 kg/ha compared to field measured biomass).
However, to define forage productivity in WPE grasslands, woody plant cover should be masked
from grass cover, and ANPP has to be calculated using estimated grass cover alone. This is
important because vegetation indices could give false estimates afsedneroductivity for areas
that have woody cover that is unpalatable to livestock. Until recently, forage proguctodels
did not account for withipixel heterogeneity of grassland plant functional types (i.e., grasses,
forbs, shrubs, or trees) or their variation in phenol@&@ypwning et al., 2019).SU of image pixels
from the Landsat archive from 1986 to 2019 generatediay/g-angeland production estimates of
annual and perennial grasses and forbs, disregarding shrul§zmwes et al., 2021) his provided
a rangeland resource that is temporally and spatially relevant to management
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2.7. Summary

When woody plantshave a distincspectral signature from the surrounding land cover types
optical RS can detect thearticularphenological, biochemical, and structural properiethe
encroaching woody plantmfluence this signatur¢Skowronek et al., 2017)When spectral
differences are subtleetween woody plants and other land cover tyfiesemay notbe enough
spectral variance, leading to a mixture of differemter typesn each classification categoand
inaccurate resuli®oyimani et al., 2019)rhismay also occur when usicgarse spatial resolution
imagery Neverthelessf they have distincmorphologesand struaires,WPE species might be
detectableisingan objectbased approadiMillerova et al., 2016)n addition, height information
obtained from digital elevation models or LIDAR datasets can enhance WPE detection, as can the
use of multiangular RS datalhe combined use of spectral, textural, and structural properties
enhances WPE detectidKattenborn et al., 2019)fo achieve thisthe spectral, spatial, and
temporal resolution of RS data shoutthtchthe target plant propertigs K o p e | et. al .,
Finally, although bhallenges inunderstanding thecology and RS aspects ofWPE remain
integrating thesewo fields within modelling approachesuldhelpfill thesegapsin the literature

2.8. Addendum

Section2.3 was updated to include more recent literature on the tdpéction2.7, which was
published in Soubry & Gu@2022b) was renamed from o6Cdwocl usi o
sections that belonged to this publication were moved to sedtidrisand 1.4.2 of Chaptér
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Chapter 3 IDENTIFICATION OF THE OPTIMAL SEASON AND
SPECTRAL REGIONS FOR SHRUB COVER ESTIMATION IN
GRASSLANDS

3.1. Preface

This chapter is part of Objective i1 To explore remote sensing approaches for appropriate
assessment of shrub encroachment in grasslands. In this chapter, the optimal season, percentage of
shrub cover in a pixel, and spectral regions related to the fidehtin of shrub cover in the
grassland ecosystem were explored. This work was published in the jofuBsgisors

Soubry, I., & Guo, X. (2021). Identification of the Optimal Season and Spectral Regions for Shrub
Cover Estimation in Grasslands. Sensors, 21(3098%6.1 https://doi.org/hgis://doi.org/
10.3390/521093098

Date of publication: 29 Apri2021
Publisher: MDPI

This research was conceptualized through discussion between Dr. Xulin Guo and myself. We
collected the dataogether withYunpei Lu, Michael Lu, and Matthew LU developed the
methodology and wrote the original draft. Dr. Xulin Guo helped with revisions, editing and project
administration.The supplementary materials tfis research have been addedAppendix A.
Sensorss an open access journal, therefore, the authors retain the copyright.

3.2. Abstract

Woody plant encroachment (WPE), the expansion of native andatore trees and shrubs into
grasslands, is a less studied factor that leads to declines in grassland ecosystem health. With the
increasing application of remote sensing in grassland morgtarid measuring, it is still difficult

to detect WPE at its early stages witespectral signals are not strong enough. Even at late stages,
encroachingvoody species have strong vegetation characteristics that are commonly categorized
as healthy ecosysims. We focus on how shrub encroachment can be detected through remote
sensing by looking at the biophysical and spectral properties of the WPE grassland ecosystem,
investigating the appropriate season and wavelengths that identify shrub cover, tespegtiiaé
separability of different shrub cover groups and by revealing the lowest shrub cover that can be
detected by remote sensing. Biophysical results indicate spring as the best season to distinguish
shrubs in our study area. The earliest shrub enbroant can be identified most likely only when

the cover reaches betweernd@nd25%. A correlation between wavelength spectra and shrub
cover indicated four regions that are statistically significant, which differ by season. Furthermore,
spectral separability of shrubs increases with their cover; however, good separation is only possible
for pure shrub pixels. From the five separability metrics used, Transformed divergence and
JeffriesMatusita distance have betteterpretations. The spectral regions pare shrub pixel
separation are slightly different from those derived by correlation and can be explained by the
influences from land cover mixtures along our study transect.
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3.3. Introduction

Grasslands occur all over the world, extending from the Asian steppe, the Australian grasslands
and the European grasslands, to the African savannas, the North American Great Plains and the
South American Pampas. They affa multitude of ecosystem sees, such as forage for
livestock, energy (e.g., biofuels, wind), carbon sequestration, water supply, recreational space,
biodiversity preservation, food (e.g., beef), tourism, and genetic libraries (i.e., germplasms for
future crops, ornamental plan{®engtsson et al., 201%ence they have high economic value
(e.g., $1204 million/year to $2056 million/year for temperate grassl@fushreshtha et al.,
2015). However, nearly half (49.25%) of the global glasds are degradd@&ang et al., 2014)
predomnantly due to overgrazing, intensive agricultural practices and climate change. One of the
consequences leading to a global decline in grassland ecosystem health is woody plant
encroachment (WPE), the expansion of native andnadive trees and shrubs angrasslands
(Archer et al., 2017; Heisler, Briggs, & Knapp, 200B)is related to alterations in grassland
primary productivity, nutrient cyclinfl-ett et al., 2004)biodiversity(Abreu et al., 2017)structure

and function(Zinnert et al., 2013)energy flow(SchreinefMcGraw et al., 2020Q)and rangeland
managementKwon et al., 2016)Therefore, it is critical to detect WPE as early as possible to
facilitate grassland management.

Woody plant encroachment is less studied with remote sensing methods because of several
challenges. First, grasslands might appear in various WPE stages (i.e., early, moderate, or
advanced), resulting in different woody cover within an image [gi@eklee et al., 2003)The
spectral signatures of woody plants may not be detectable at an early encroachment stage.
Grasslands with WPE are highly heterogeneous and include land cover types that are, in many
cases, smaller than the spatial resolution of medsulution remte sensors (IA00 m),
especially during early encroachment. When the pixel size at which one studies WPE is coarser
than the woody plant stand, a mixed pixel that includes various types of cover (e.g., woody plant,
grass, bare ground, rock) occurs. Evieaugh this has been recognized as a challenge, to our
knowledge, no minimum WPE detection threshold has been established for grassland areas.

Second, a woody plant has typically healthy vegetation spectral features that are hard to
separate from healthy productive grass species. Nevertheless, these two lifeforms differ in their
biochemical and biophysical aspects, such as pigment concentvedi@n,content, leaf surface,
leaf internal structure, leaf thickness; which define their optical properties. Spectral absorption or
reflection regions that are relatedtebiochemical characteristicd woody plantssuch as lignin,
nitrogen, chlorophl, and water content could be useful towards their detection. For instance, it
has been shown that chlorophyll and carotenoid content of woody species is higher than for grasses
(Liu & Guan, 2012; Tong & He, 2017pince the visible portion of the electromagnetic spectrum
is highly related to leaf pigment concentration, the reflectance in the green and absorption in the
blue and red wavelengths might prove important when separating woody vegetation and grasses.
Multispectral indices related to greenness and moisture are also important for WPE detection, as
both of these could be higher for woody plai@ecker et al., 2013; Kéchy & Wilson, 200#s
for leaf structure (i.e., mesophyll structure, leaf thickness, leaf surface), there might be a difference
in the reflectance of thdeaves of woody speciesdi¢otyledonous leaves) and grasses
(monocotyledonous leaves) due to their different mesophyll strucates et al., 1965; Ustin &
Jacquemoud, 20203uch as higher reflectance for the dicotyledonous l€&weslair et al., 1971)

The reflectance in the near infrared (NIR) region is mostly related to leaf structure. However, since
remote sensors usually acquire data at the canopyaaddcape scale, there is a difference in
spectral response compared to the leaf scale. Factors that affect reflectance at that scale are related
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to canopy architecture, such as leaf angle distribution, density, biomass, and leaf area index (LAI).
Leaf orientation in broad leaf plants (e.g., shrubs) is more horizontal/planophilic, whereas grasses
have more vertical orientation (erectophiliRoss, 1982)Plants that are more planophilic tend to
reflect more light upward than those that are more erectogNidioman et al., 1985)and this is

more evident in the NIR regiofMyneni & Williams, 1994) These leaf geometries can also be
related to differences in LA(Fitter & Hay, 2002) Therefore, we would like to see if these
differences are evident in the biophysical and spectral properties of a WPE grassland.

Third, depending on the season of the study application, different indices and spectral
regions seem to be important for shrub detection. For instance, hyperspectral indices related to
greenness (e.g., Derivative Green Vegetation ladesVI) have better esults during active
woody plant growth, whereas those related to-plootosynthetic vegetation (e.g., Chlorophyll
Absorption in Reflectance Ind8xCARI) perform better during senescen@deland et al.,

2010) Woody plants and grasses might have a different phenology pattern, resulting in different
spectral responses. Therefore, it is necessary to define the optimal woody plant detection
timeframe within the growing season. This might not be important wheg hsjhresolution

spatial sensors, for which structural characteristics are used in combination withbalsgdt
methods(Ng et al., 2017)However, for mediuatesolution sensors, spectral differences due to
phenology or land cover must be used. One example is the use of spectral separability and seasonal
data in a composite image for woody plant mapping by Somers and @18) The results of

this study showed that the use of mtdtmporal image composites enhanced the detection of
woody species due to their phenology. Hence, one must take into account the season in which
shrub cover is most apparent and in which its speesabnse is separable from the surroundings.

Last, when thinking about spectral separability, hyperspectral sensors (bottbspaee
and airborne) have been widely used to detect WPE because of the advantages that their wide band
range offers( Ko p e | et al ., 2019, Speeiticallg, rwith tiée usksoh e r ,
hyperspectral data it is easier to find appropriate wavelengths to distinguish chemical and physical
plant properties. Therefore, hyperspectral sensors are preferred when monitoring physiological
plant traits(Niphadkar & Nagendra, 201@)yperspectral benefits enhance even more when using
time series, giving the opportunity to explore phenological differences between grassy and
encroaching vegetatiofsomers & Asner, 2013Field-based hyperspectral measurements offer
the opportunity to findune spaceborne and airborne sensors for lagge shrub mapping. This
involves the selection of appropriate spectral bands and regions for shrub detection with spectral
separabilitymetrics and statisticsSomers & Asner, 2013k.g., InStability Index, Transformed
Divergence, etc.). Afterwards, one can define remote sensing indices that use these bands and
apply a broader land cover classification procedure.

Based on the above, the overall goal of this study is to derive the season and sensitive
spectral regions for shrub detection in grasslands. Our main objectives are (1) to understand the
biophysical and spectral properties of the grassland ecosystenuntietgoes WPE, (2) to
investigate the appropriate seasons and wavelengths to identify shrub cover, (3) to test the spectral
separability according to shrub covpercentageand (4) to reveal the lowest shrub cover
percentagéhat can be detected by remeensing.

3.4. Study Area

The study area is the University of Saskatche:
an issue in its prairie stand. This area has a native remnant fescue prairie with common mixed
prairie species which spansover 1.3lat  about 8 km NE of Saskatoon
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N, 106A33n W, 5 1(Archiboldetah, 199& Mai\2@0gFigore3r1). This site

is in a transitional zone between the moist mixed grassland ecoregion (to the south) and aspen
parkland (to the north). Mixed prairie graminoids are more common on drier sites, whereas fescue
prairie graminoids are more apparent on mesic ography sitegBaines, 1973; Mori, 2009)

This site was chosen as representative of a grassland ecosystbecaunse itould be easily
accessed during the pandemic restriction.

Common grasses in the area are plains rough fescue (Festuca altaica subsp. hallii)
(dominant grass), which grows together with slender wheatgrass (Elymus trachycaulus spp.
Trachycaulus (Link.) Gould ex Shinners) and short bristle needle and thread gsgsr(idtipa
curtiseta (Hitchc.) Barkworth) (sutiominants). Frequent forbs are northern bedstraw (Galium
boreale) and pasture sage (Artemisia frigida). Further, scattered patches of shrubs of various
densities in the lower dry and saline parts of this sitmsist of western snowberry
(Symphoricarpos occidentalis Hook.), wolfwillow (Elaeagnus commutata Bernh. ex Rydb.), and
wild prairie rose (Rosa arkansariBpines, 1973; Slopek & Lamb, 201 At the lower moist land
of Kernen Prairie, aspen stands can be foihdypec, 1986) This site also has two invasive
grasses, namely smooth brome (Bromus inermis) around the edges of the site which spreads
towards the center, and Kentucky bluegrass (Poa prat@dkipek & Lamb, 2017)Variables that
contribute to the plant community structure are related to landscape structure, such as slope, soll
moisture, soil water availability, light availabilitfBaines, 1973)as well as fire and grazing
regimes. In this study, we focus on two shrub species, western snowberry and wolfwillow that are
encroaching species in the area.

The area has small slope variations without large soil temperature diffe(@zpss,

1973) It has orthic dark brown chernozems soils of the Bradwell association which are loamy to

fine sandy loam textured; it also has soils of the Sutherland association, which have a clay to clay
loamy texturgActon & Ellis, 1978) These seem to have developed on thetBrured lacustrine

deposits of the former glacial Lake Saskat@@aines, 1973)The regional climate of this area is
categorized as serarid to dry subhumid according to the Thornthwaite classific§8anderson,

1948) Kernen prairie has a mean annual temperature of 3.3 °C, with a mean annual minimum
temperature of 118.9 AC in January, and a mea
annual precipitation is 340.4 m{@overnment of Canada, 2020)

The land cover types surrounding Kernen Prairie are cultivated lands andMads
2009) This area has been grazed or hayed sporadically until(P§8/pec, 1986and has never
been ploughed or grazed heaviprchibold et al., 1996)From 1986 and onward, a number of
prescribed burns have been completed (to control the invasion of smooth brome, and shrub
encroachmentArchibold et al., 1996) and other areas have been protected from fire for more
than at least 105 yeafislori, 2009) Further, there is a well in the southwest corner of the prairie
that waters livestockMori, 2009) Current management strategies involve light grazing by cattle
from May to September (since 2006 until presé8tppek & Lamb, 2017and infrequent spring
and fall patch burningVori, 2009)
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Figure 3-1 Location of Kernen Prairie within the provincial boundaries of Saskatchewan (SK), Canada
(upper figure), on a Sentinlimage of 11 July 2020 (lower left figure), together with a detailed map of
Kernen Prairie and the field transect location (lower riighure). Source of Canadian Provincial
Boundaries: Statistics Canada (Ofeovernment Licensi Canada)Statistics Canada, 202&ource of
Sentinel2 i mage: ESA (6Copernicus Service informatior
(ESA, 2021a)source of digital elevation model: Shuttle Radar Topography Mission 1 Arc Second Global
(National Aeronautics and Space Administration (NASA) and National Geoslratiligence Agency
(NGA) (USGS, 2021)source of Kernen Prairie land cover layers: Department of Plant Science,
University of Saskatchewan.
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3.5. Methods

The conceptual model of the methods that we followed in this study can be fdtigdna 3-2.

Field data:
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3.5.1. Field Design andData Collection

3.5.1.1. Field Design

A 381 m long transect was established in the study site along which 128 quadrats were placed at
3 m intervals Figure 3-3). This transect was located along the main elevation variation gradient

of Kernen Prairie (i.efrom 507 to 512 m, and then to 509 m)), which corresponds to the East
West directionftigure 3-1). About 40% of the transect (western side) lies on shallow clayey orthic
dark brown Sutherland soil, and about 60% (eastern side) on discontinuous silty orthic dark brown
Elstow soil(Souster, 1979)The quadrats were 1 x 1 m and were placed tangent to the southern
side of the transect line. This avoided trampling and facilitated reflectance measurements based on
illumination conditions. Transect design has been used in a multitude of woody enanaichm
studies for field measuremeiftdeisler et al., 2003; Meyer et al., 2019; Wilfong et al., 2009; Yusuf

et al., 2015). It makes sampling efforts faster and easier to establish, and it simultaneously
captures the smatficale heterogeneity of the area. The dominant spatial scale in grasslands is
between 0.2 and 1.5%1which is consistent with the biotic mechanisms of its spébeslickle

et al., 2018) Therefore, cover estimates were recorded in 1 x 1 m quadrats to be representative of
the scale of thelant community structure.

B
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=+ Soil Moisture position —> Transect walking direction
-+ Reflectance position -
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—— 381 m transect K# transect naming convention

Figure 3-3 Field transect design and plot quadrat measurement$ (Plaht Area Index, GRS Global
Positioning System)
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3.5.1.2. Data Collection

We collected field data three timestime growing season (spring, summer, and fall). The data
collected in 1 x 1 m quadrats along the transect included functional vegetation cover, ground
hyperspectral data, plant area index (PAI), biomass, soil moisture, and landscape skigcige (

3-3). In addition, we collected shrub cover and density with the line intercept transect (LIT) method
in spring. Digital images were collected at nadir view above the center of each quadrat and 3D
coordinates of each were obtained in UTM13N with the useliffarential Global Positioning
System with positional accuracy of less than 1 m.

Two different methods were used to determine shrub cover and density. The LIT method
(Meyer et al., 2019; Wilfong et al., 2009; Yusuf et al., 20458J visual estimation within the
transect quadrats. The LIT method is argued to be more efficient, since it covers a larger part of
the study area and is fast. Shrubs for which their canopy falls on the transect line are recorded with
their exact positiofistart and end along the transect); the sum of these lengths provide an estimate
of the si t@i@érsausehat., 2099 bus,sleub cover from the LIT method is related
to the total length of shrub cover along the transect, while it corresponds to the visual estimation
of shrub cover within the quadrats. Shrub density was defined as the number of shrubs that fall
along tle transect for LITandasthe total number of shrubs per quadaatthe visual estimatian

Within each quadrat, we measured percentage ground cover for both the top layer (i.e.,
green grass, forb, shrub, standing dead vegetation)hanbwer layer (i.e., mosschen, bare
ground, litter, rock) through visual estimation based on the methodology proposed in Michalsky
and Ellis (1994) This means that ground cover is approximated to the nearest 5% for cover
between 10%00%, and to the nearest 1% for cover less than 5% and over 90%. The acquisition
of % ground cover in each transect quadrat and season was conducted by the samesolzserver
to reduce potential observer bias.

We collected ground hyperspectral data from a spectroradiometer (ASEpdiesble
FieldSpec Pro, Malvern Panalytical Inc., Boulder, CO, USA) between 10:00 and 14:00 to maintain
a stable ratio between diffuse and incomingasahdiation. The spectroradieter collects
between 350 and 2500 nm with a 1 nm band range. Reference measurements with a Spectralon
panel were taken at least every 15 min. Two different measurements took place during the
collection of such data. The first one included the colleatiosurface reflectance in five 0.5 m
circular diameter areas in each 1 x 1 m plot, which were then averaged to the 1 x 1 Riggaale (

3-3). In this case, the spectroradiometer was located at 1 m above ground, in nadir position, with

a 25° field of view. The spectra collected with this method contain mixtures of all land cover types
within each quadrat. The second type of measurements @utltite collection of shrub
endmembes (i.e., wolfwillow and snowerry) that are encroaching in the study areahidase,

the spectroradiometer was placed closer to the shrubs and at least 10 samples for each shrub species
were made to ensure the plantds spectral vari e
us to have a spectral signature for ~100ftils cover of the existing species in the study area.

Furthermore, weneasured thBAl with the LAI 2000 plant camuy analyzer (LICOR Inc.,

Lincoln, Nebraska, USA) in every quadrat. We use the term PAI since we are measuring both
green and nogreen vegetation and both understory and overstory elerfi@atsacho, 2015)

The smallest view cap (45°) was used to reduce errors of viewing both sparse and dense foliage,
and to allow for correct below canopy reading averadimgCOR, 1992) As for the appropriate
number of below canopy readings, for grasslands, six below canopy readings have béen used

& Guo, 2013) However, as shrubncroached grasslands likely have higher heterogeneity, it was
decided to use nine beleganopy readings to improve the spatial average. For each quadrat, PAI
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below-canopy readings took place at evenly spaced points (30 cm from the cEigarg 3-3).
Borderswere avoided to eliminate adgncy effects. In addition, biomass was collected in a 0.5 x

0.2 m quadrat within each 1 x 1 m quadrat during the summer season. All existing vegetation was
clipped, sorted into the functional vegetation cover classes (green grass, forb, shrub, dead, moss)
dried at approximately 50 °C for a minimum of three days, and wezighith a scale of 0.1 g
precsion before and afterging. These samples were collected before the grazing season, and
thus serve as a proxy of the annual net primary productivity of the site. For the subsequent fall
measurements, the quadrat was moved south by 20 cm so that it did not include the- biomass
clipped portion of ground. Lastly, we measured soil moisture with a Procheck pcl1804 Soil
Moisture (ICT International, Armidale, Australia) device in each quadrat at the same locations of
the hyperspectral measuremergscept for the centr@-igure 3-3), ard we collected hoziontal

and vertical landscape structure (i.e., convex, concave, or linear) for each quadrat along the
transect.

3.5.2. Data Processing

Averaging and noise removal: We averaged the hyperspectral, soil moisture, and PAI data to
represent the 1 x 1 m quadrat and scaled the dry biomass up’tdMenalso removed outliers
that fell outside of three standard dénias from the mean for the seanal land cover estimations
and PAI to eliminate noise from potential seasonal quadrat shifting. For all collected spectral data,
we removed the water absorption regions betweeni 13E0 nm, 17501980 nm, and 233@500
nm to reduce the noise.

Calculation of shrub cover groups: Dividing the quadrats into 5% shrub cover classes (e.g.,
0.1% 5%, 5.1% 10%, 10.1%15%, etc.) gives us between 14 and 16 classes for all seasons. Since
the spectral differences between those classes might not be sign#icdbecause there is a small
number of quadrats in each class, we decided to separate our data into meaningful clusters of shrub
cover based on their spectral similarities. We only found western snowberry and prairie rose in the
128 transect quadrafrairie rose appeared in very low percentages (4.8% per quadrat on average
for all seasons). Therefore, our first cluster includes the quadrats with 0% shrub and our last cluster
includes the quadrats that correspond to the western snowberry endmen@¥s ¢hiub cover).
To determine the major spectral shrub clusters for intermediate shrub cover (i.e., between 1% and
99%), we used cluster analysis. Cluster analysis divides the data into groups (clusters) that are
more spectrally similar to each other tliha data in otherlustergJain & Dubes, 1988)n detalil,
we examined one centroidlased clustering method {ideans) and one hierarchical clustering
met hod (Muaaghd& legendre, 2014; Wu, 201K-means forms clusters around the
centroidgWu, 2012) whi |l e Wardds <clustering ge-custerat es
dispersion at each binary split of the produced dendro@vaurtagh & Legendre, 2014)

As input data for cluster analysis, we used the 128 noise removed averaged hyperspectral

measurements for each quadrat. There are a number of methods and statistics to determine the

C

opti mal number of <clusters basedégedtorcalculdtee23 dat a.

separate indices that generate the optimal numbesafdr clugering method and growing season
(Charrad et al., 2014We used 2 and 15 clusters as minimum and maximum number of clusters
and Euclidean distance for the calculation of the distance matrix each time. Finally, we selected
the optimal number for each season and clustering method based on the majorityhade2s t
indices. The alstering results gave us antial idea about the data groupings from which we
defined breakpoints that resulted in two alternative clustering schemes, one for each clustering
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method. Weselected the final clisring based on the most balanced number of quadrat
measurements for each shrub cover cluster.

3.5.3. Seasonal Variation of Biophysical Measurements

We hypothesize the season in which shrub cover is most apparent is the season in which its
biophysical variablefiave higher valuesTo reach this conclusion, we examined the seasonal
trends of each variable. We subtracted each biophysical measurement (i.e., percentage cover, PAI,
and soil moisture) for each land cover class between seasons (i.e., Suspmieg and fab

summer). When the result of the subtraction is zero, it means that the biophysical variable for that
guadrat remained stable. If the resslpositive, we have an increase, and if negative, we have a
decrease. We also looked at their seasonal averages by calculating the average biophysical
measurements of each land cover class per season.

3.5.4. Correlation Analysis between Wavelengths and Shrub Cover

We examined which wavelengths have higher correlation with the visually estimated shrub cover
measurements along the transect. To do this, we calculated the correlation between each
wavelength and visually estimated shrub cover along the total transeqtldssize = 128) per

season. To determine which elation method to use, we exered the assumptions of normality

in the data for the shbucover estimation. Visually atyzing the density plot and the normal
guantilequantile plot indicated dathad anon-normal distribution. We further generated the
scatterplots between each wavelength and shrub cover estimate for all 128 quadrats, which
confirmed that there is no strong | inear rel a
rank correlation, whit is a norparametric method that measures the strengtlliaaction of any

monotonic (istead of linear) relationship between the ranked sslagtivelength and visually

estimated shrub covéBpearman, 1987) We f urt her i dentified the ci
rank correlation coefficient, r, for a twailed probability of a = 0.05 based on Z8972) To have

a better overview of which wavelength regions have a statistically significant correlation with

shrub cover along the transect, we plotted all correlation coefficients #hengvavéength

spectrum for each season.

3.5.5. Shrub Cover Spectral Separability Analysis

3.5.5.1. Calculation of Separability Metrics

For this step we grouped our hyperspectral data for each season based on the cluster analysis and
calculated the spectral separability between 0% shrub cover and each of the remaining clusters for
every existing wavelength. We did this to #ethe spectral separability changegh increasing

shrub cover. Several separability metrics calculate how separable two clusters are. We used five
different univariate statistd met hods t hat are provided in the
Aspati al EoR(@&vapsa2020)ahgse iclude the MStatistic (M)(Kaufman & Remer,

1994) Bhattacharyya distance (BBhattacharyya, 1946)JeffriesMatusita (JM) disance
(Bruzzone et al., 1995Divergence(Jeffreys, 1946, 1948and Transformed Divergence (TD)

(Davis et al., 1978)They can provide the discrimination ability of each individual wavelength
without taking into considetian their potential correlatio(Gunal & Edizkan, 2008)This is
important, since there might be autocorrelation along the transect.
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The Mstatistic is calculated byaking the difference of the means of the two clusters we
are comparing normalized by the sum of their standard deviations. There is separation for M > 1,
and poor separation for M <(Kaufman & Remer, 1994)The D statistic defines the difference
between two distributions by looking at the difference in mean values of thi&dbgood ratio
(Kailath, 1967) The limitation of this statistic is its difficulty in interpretation as there is no upper
limit, and its value continues to increase as two distributions sef8iatel et al., 2012)To
overcome this issue, the T{Davis et al., 19783%cales the divergence statistic between 0 and 2,
with 2 offering maximum separability. The B distance measures the divergence between two
clusters by calculating the cosine of the angle between(fBeattacharyya, 1946Kailath(1967)
found that the B distance is easier to interpret than the D statistic, and that this metric performs
equally or better than D. However, it has no upper limit (similar to D). Therefore, the JM distance
was created to transform the B distance to a range between 0 and 2, with 2 suggesting maximum
separabilityDavis et al., 1978; Matusita, 196®&)is said that the JM distance can reduce the high
separability features while enhancing the lower separaf@ityal & Edizkan, 2008)

A normality check was performed to the wavelengths of each clbgteunning the
statistical ShapireWi | ket {Shapiro & Wilk(1965) before the separability analysis. The
ShapireWi | ks test is considered a more power ful
(Mohd Razali & Bee Wah, 2018nd has been used in similar spectral separability st(idigsg
et al., 2016)However, since its power might be lower with a small sample size (e.g., below 30),
we decided to use additional visual methods (i.e., queamtidmtile plot, density plot). For all
seasons, some clusters were normal along the whole wavelength specttimeas were normal
for 84% 99.9% of the wavelengths. Even though some shrub clusters are partially not normal, we
do not consider this to be an issue for the current spectral separability analysis, as these individual
wavelengths will be aggregated irtdaanalysis and some might not be considered to contribute
to the spectral separability. Furthermore, following a-parametric approach for a small number
of samples in each cluster could result in larger biases than the slight deviation from néomality
at most 15% of the dataset.

3.5.5.2. Thresholding and Selection of Important Wavelength Regions

To separa between shrub cover and background cover, it is necessary to identdjf cut
thresholds for each of the separability metrics that were calculated. Overall, it is considered that
TD provides good separability when it has values abové&Cha8pbell et al., 2013)r 1.9(Bindel

et al., 2012)with 2 providing the optimal separation between clusters. Similarly, features with TD
values between 1.5 and 1.8 or 1.9 give moderate separation, whereas those with values below 1.5
give poor separatiofBindel et al., 2012; Campbell et al., 2018Ye therefore consider this
classificationschemafor our ownresults Table 3-1). Given the fact that JM follows the same

scale (between 0 and 2), we use the same threshold rules for this statistic. When M is >1 we
consider that there is good separafigaufman & Remer, 1994 Although for this statistic it is

hard to define an intermediate separation level, since there is no upper limit. Similarly, it is hard
to define thresholds for the B and D statistics, due to the fact that they continue to increase without
upper bound. fierefore, these statistics can only give a general idea of the important contributing
wavelength regions towards the separability of the two clusters under examination each time. The
final wavelength regions for which both the TD and JM have values abbeaual to 1.8 were
considered for having good separation (ensemble approach). A similar ensemble approach was
used for the moderate separability regions.
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Table 3-1 Separability threshold values (based on Kaufman and Ra®@4) Campbel(2013) and
Bindel et al.(2012).

Separability Statistic Threshold Value  Separability Class
- >1 Good
M-Statistic o1 Poor
01. 8 Good

Transformed Divergence and Jeffr

Matusita Distance 1.5111.79 Moderate

01. 5 Poor

3.5.5.3. Broadband Simulation and Shrub Cover Spectral Difference

Broadband SimulatiorlVe resampled the seasonal quadrat spectra into the broadband Landsat 8,
Sentinei2A, and SentineRB bands with the use of their spectral response functions, which were
retrieved from(NASA, 2021d)and(ESA, 2021b)We performed the broadband simulation within

the Aihsdaro package in R with t(leleresag, 2019) t he |

Broadband Spectral Difference between Shrub Cover Grdigpdetermine if there is a significant
difference between shrub cover groups in each season per simulated broadband, we performed
multiple oneway ANOVAs. The results were significant for all seasons and broad bands.
Therefore, we performed a Tukey Hongsignificant Difference (HSD) pogtoc test to
determine which shrub cover groups were significantly different from each other depending on the
season and band. Since we have six shrub cover dgiaupg spring and summer season and five

for the fall season, we have fifteen adjugpechlues from the Tukey HSD pelkoc test per band

for spring and summer and ten for the fall season. We report those results in a table with two levels
of adjustedp-value significance; below 0.1, and below 0.05.

3.6. Results

3.6.1. Seasonal Variation of Biophysical and Spectral Measurements

Land cover From the average land cover for each season, shrub cover shows higher visibility in
spring comparing with other land cover components. This indicatesghag is the preferable

period for shrub monitoringT@ble 3-2). Moreover, during the transition to summer, green grass
increases by about 9% for 63% of the transect quadrats, covering up parts of lower cover, such as
litter, bare ground and rocR&ble A-1, Appendix A). In the transition from summer to fall, as

the vegetation reaches senescence, we see a decline of about 7% and 1% in green grass and forbs
respectively Table 3-2). On the other hand, the standing dead cover increases by about 13% for
86% d the quadrats, covering up more parts of the lower layers of litter, and bare gfainhel (

A-1, Appendix A). On average, the dominant grass along all quadrats was rough fescue,
representing 86% of the total grass cover, whereas the remaining parts primarily included
wheatgrass species. Some quadrats also included smooth brome and Kentucky bluegrass invasives.
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Table 3-2 Average seasonal variation of biophysical measurements per transect quadrad (M &l
value, SI® Standard Deviation, Mi® Minimum value, Ma¥ Maximum value).

Spring Summer Fall

M SD MiniMax M SD MiniMax M SD  Mini Max

Greengras 25,5 8.6 5165 30.2 7.7 51 55 235 6.3 10 40
Shrub  20.0 19.3 0i 75 18.0 17.2 01 80 174 16.5 0i 75
Forb 144 11.0 0i 50 15.0 9.9 0140 13.8 8.3 0140
Stggg('jng 305 11.3 060 304 9.0 050 419 128 0i80
Litter 8.2 7.2 0i 40 59 49 01 25 2.9 5.1 0i 25
Bare grounc 0.7 3.1 0i 25 0.3 22 01 20 0.1 1.3 0i 15
Rock 05 26 0i 20 02 1.3 0i 10 0.3 1.9 0i 20
Other 0.1 1.32 0i 15 0.1 0.9 0i 10 01 06 0i 5

Cover
(%)

PAI 1.69 0.50 0.293.15 2.37 0.70 0.374.26 1.96 057 0.973.41
Soil moisture 0.068 - 0.076 0.144
(M?/m3) 0.14€¢ 0.035 0.912 0.182 0.026 0.925 0.189 0.019 0.248
Green gras 123.€ 53.9 111314
Forb 21.1 24.0 11126
Shrub 97.5 139.0 11888
Biomasz hoi\cl)?sn-nthe
(g/m?) P ticy 422.€ 194.1 841931
vegetation
Moss 3.8 7.3 1i 40
Total 669.C

Seasonal PAIThere is a 0.81 increase between spring and summer for about 87%rahteet

guadrats, and a subsequent 0.69 decrease between summer and fall for around 74% of the transect
guadrats Table A-2, Appendix A). This fluctuation seems to correspond with the increase in
green grasses during the summer and their subsequent senescence in the fall.

Seasonal soil moisturdhe average seasonal soil moisture along the transect goes in line with the
expected precipitation patterns of the regibiolechek et al., 2011with an increase during the
summer (around 4% for 88% of the transect) and early fall (around 3% for 54% of the transect)
(Table A-3, Appendix A). The soil moisture levels are between 15% and IR#&l6l€ 3-2), which

are towards the lower limit for silty and silty clay s¢Ratliff et al., 1983)upon which the transect

is locatedSouster, 1979)

Biomass Nonphotosynthetic vegetation takes up most (63.1%) o&tleeage summer biomass,
after which green grasses (18.5%) and shrubs (14.6%) contribute towards most of the remaining
biomass. Forbs (3.2%) and mosses (0.6%) contribute the least.

Spectral When looking at the average spectral signature for all quadrats along the tifaigseet (

3-4q, 4h, 4), we can see an increase in chlorophyll absorption from the spring to the summer
season for the red region of the spectrum (around 650 nm). On the other hand, the NIR remains
fairly similar between those two seasons. In the fall season, we see a smooth increase in the visible
portion due to the high amount of nphotosynthetic vegetah, and a lower reflectance along

the NIR portion. The highheamount of vegetation moisture is responsible for larger absorption in
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the shortwave infrared (SWIR) region during summer, whereas the spring and fall seasons have a
similar higher reflectance response in that region due to lower moisture.

Spring Summer Fall
04 04 ; 04
—(a) —(d) —(g) —(b) —(e) —(h) —(c)—(f) —(i)
03 03 03
>
>
202 02 02 }
z
£ 01 01 % o1 | 7/\
0 - 0 0 -
TEERERRREERER T EREREEREER EEEREEREEER
oo~ ,(\0«;—:;\" Mxr.h?:gﬁﬁz::’ r“,xr,r\m:zﬁ,{:_zm

<« 9

(® (k) @

Figure3-4 Spectral signatures that correspond to image®((i) which are representative per season.
Quadrat K36 with 259%#45% shrub cover ifa) spring (9 June 2020fb) summer (3 July 2020), arfd)
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fall (3 September 2020). Quadrat K96 with 8@8% shrub cover ifd) spring (11 June 2020()
summer (6 July 2020), arf) fall (4 September 2020). Landscape pictures along the total study transect
(128 quadrats) ifg) spring (27 May 2020Xh) summer (6 July 2020), arfd fall (4 September 2020).

Moreover, the LIT method reported 28.1% shrub cover along the transect for the spring
season. Since the LIT method is purely quantitative, we consideait@re prase estimate for
shrub cover than the visual estimation inside the quadrats. The LIT method confirms the results
from the visual shrub quadrat estimations with regards to shrub species contribution. Over the total
transect area, we can find 1.1 westerovdperry shrub, and 0.2 prairie rose per 1 m of transect
during spring season, indicagithe prevéence of western snowberry along the transect. A similar
conclusion can be made when looking at the respective percentage cover for the shrub species
along the transectTéble 3-3). Overall, the visual estimation of cover in the quadrats is
underestimating prairie rose presence by 1.3% and western snowberry cover by 6.6%. Again, we
trust the LIT values more, since the sample size covers the total transect; with 497 measurements
(almost double) over 128 for each species in all quadrats.

Table3-3 Average cover for shrubs and ssiecies with the line intercept transect (LIT) method and the
visual quadrat estimation for the spring seasongéwbd Western snowberry, Prairie & Prairie
rose, MMean, SI® Standard deviation).

Average Shrub Cover (%) Shrub Density Per 1 m
Total Shrub W. Snowb. Prairie R. Total Shrub W. Snowb. Prairie R.
Estimation metho M SD M SO M SD M M M
LIT 28.1 - 254 - 2.7 - 1.3 1.09 0.23

Quadrat 20.2 19.2 188 19.1 14 2.2 - - -

Lastly, when looking at the increases and decreases in land Gade A-1, Appendix
A), the categories of f@Abare groundo, quddratsc k 0,
across seasons. This indicates that the visual land cover estimation method is consistent and
reliable across seasons and quadrats.

3.6.2. Relationships between Wavelengths and Shrub Cover

There is clear variation in the strength of tékationship between shrub cover and spectral signals
over seasons and wavelendtiglure 3-5). Specifically, the direction of the relationship differs in

four regions of the spectrum between 350 nm and 2350 nm (thoge walhes <0.05). A negative
relationship was found in the visible portion (between 350 nm and 700 nm), with more significant
wavelengths around 420 nm (blue) for spring and summer, and around 495 ngré¢eluedge)

and 680 nm (red) for fall. A positive relationghias found in the NIRortion (between 730 and

1120 nm), with more significant wavelengths around 760 nm for all seasons, which is stronger for
the summer. Further, a negative relationship was found for all wavelengths above 1430 nm (SWIR
region), with more significant wavelgths around 1430 nm for summer and more so for fall; and
around 2000 nm for fall.

64



0.4

statistically significantp-values <0.05
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Figure3-5Spear manés rank correlation coefficients for
shrub cover measured during the 2020 growing seasons with corresponding Landsat 8 aneé2Sentinel
bandwidths (source: ESA6 Coper ni cus Service information 20216
[75], USGS(National Aeronautics and Space Administration (NA$2G). The kcritical value for a twe
tail test with a pvalue of 0.05 was 0.17 and the spectral bandwidth is.1 nm

Within the visible region, the negative ¢
seasons in the blue region (around 420 nm) is more significant during spring and fall than for
summer. This could be related to the stronger chlorophyll absorption dymimg. Similar
patterns are observed for the blyreen (495 nm) and red (680 nm) regions, where the start of
shrub senescence and decrease in chlorophyll absofgtithre grasseleads to stronger negative
correlations dur i msgectively)l The gfeendoeak (arounch580 nm)is cleadly r e
less significant for all seasons and more so in the fall due to the lower chlorophyll content. The
positive correlation in the NIR region (around 760 nm) is higher in the summer (around 0.39) and
can ke related to the higher reflectancebwith shrubsand grassedue to the scattering of their
internal leaf structure in thakason. For th&WIR region, we see strong negative correlations
(70.49 and 10.56) around o0 ns€l43Dhm)dunirggsumanerandwat er
fall respectively, and | ess stronger ones dur.i
in water holding capacity for shrubs during fall, when their transpiration is lower than summer and
spring(Lafleur, Hember, Admiral, & Roulet, 2005; Wang et al., 20t8mpared to grass species.

This can also be explained by the average increase in soil moisture from spring to fall along the
quadrat (seé&ection3.6.1). Lastly, in the far SWIR, we see the strongest negative correlation
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(170.57) around 2000 nm for the fall season, Ww
holding capacity of shrubs during fall.

3.6.3. Shrub Cover Spectral Separation Groups

We used the4means and Wardodés <clustering to group
percentage categories/groups for the spring and summer season, wherea®therks and War d
clustering generated the same result for the fall sedsdng3-4).

Table 3-4 Final shrub percentage categories/groups for each season based on cluster analysis.

Season Shrub Cover Groups (%) Number of Quadrats per Group

Spring 0, <10, <35, <50, <75, <100 18, 35, 53, 12, 10, 32

Summer 0, <10, <25, <40, <80, <100 19, 35,41, 22,11, 11
Fall 0, <20, <40, <75, <100 19, 61, 38, 10, 20

The groups generated for each season are slightéretiff and are based on simiii@s in
reflectance within each group. One can see the average spectral reflectance for all groups (except
the ~100% shrub cover) iRigure 3-6a, b, and ¢ There is a lower number of shrub cover
percentage groups for the fall season, indicating that the groups are being separated into broader
classes than for the spring and summer season. This means that these categories become more
similar to each other drare harder to differentiate. This is reasonable, because all vegetation cover
classes tend to havieet same spectral response at the end of the growing season due to browning
and senescence.

In spring Eigure 3-6a), the reflectance lowers in the visible spectrum (3B0 nm) as we
move from 0% to 75% shrub covewjth only the ®.1% 75% shrub cover group show a
distinct chlorophyll absorption in the red region (around 680 nm). In the NIR 1360 nm) the
highest shrub cover group (50.1%%%) shows the highest reflectance. The shrub cover groups
between 0% and 35% show similar reflectance, which is higherthe 35.1960% shrub cover
group. This perhaps is explained by the fact that¥%i€36% shrub cover groups have, on average,
higher forb and green grass cover (5.8% and 8% higher respectively). This could lead to higher
reflectance than the 35.1%0% shrub cover groups, which are also affected by- non
photosynthetic parts, such as bragsland shadows. The two other parts within the SWIR region
(13501750 nm and 195@350 nm) show a clear separation between all shrub cover groups; with
a decline in reflectance as we move from 0% to 75% shrub cover.

In the summerRigure 3-6b) there is a similar behavior as in the spring season for the
visible spectrum. In the NIR we see a decline in reflectance as wefreav80% to 25% shrub
cover, as expected. However, 0% shrub cover has a higher reflectance than tH&®% K¥rub
cover. When we examined the land cover estimations for each group, we saw that tH€®®1%
shrub cover quadrats have less green grass (&% dad slightly more standing dead vegetation
(0.3% more) and litter (0.3% mex. These three land cover das could be responsible for
lowering the average reflectance of this shrub cover category. It becomes clear that the mixed pixel
effect can hava mapr impact on shrub cover estitian. Along the two other parts of the SWIR
region, we see a separation between shrub cover groups, which decline in reflectance when moving
from 0% to 80% shrub cover. However, this separation is less clear than in the spring season for
the intermediate groups (i.e., from 0.1% to 40% shrub cover).
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Figure 3-6 Average spectral response for shrub cover grouf® spring,(b) summer(c) fall, and(d) 100% shrub cover over the three seasons
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During fall (Figure 3-6¢), there is an increase for the lower shrub cover groups (i.e., 0% to
20% shrub cover) in the visible spectrum due to senescing grass (lower chlorophyll absorption).
We also see an intermediate stage for the Z040% shrub cover group, and a slight chjgrgl
absorption still taking place around the red region (680 nm) for shrub cover between 40.1% and
75%. We see a collapse in spectral signatures in the NIR spectrum, at the end of whith (1150
1350 nm) we see an inversion, withiaarease in reflectance from 0% to 75% shrub cover. Since
the 11501350 nm spectral range is used for estimation of vegetation water c@Dtsming et
al., 2013) the reflectance for the higher shrub cover groups is lower along this part of the spectrum
in comparison to the lower shrub cover groups. This is because the vegetation water content is
much lower for the lower shrub cover groups (which contain mainjysdnescent grass). The
differences in soil water content also play a major role here. For the SWIR region, there is also a
decline in reflectance as shrub cover increases, with 0% and 0.1% to 20% shrub cover having
almost similar reflectance.

When looking at the seasonal spectral response for the ~100% shrub coveFgyorg (
3-6d), we see a fairly similar response in the visible spectrum between spring and summer.
Summer has slightly higher reflectance. However, there is a clearly higher reflectance during fall.
The increase in the visible spectrum during fall is due to a decreaderiopttyll concentration.
Along the NIR region, the reflectance is higher in summer than in spring and has similar absorption
regions. Whereas, in the fall, reflectance increases between 700 and 950 nm, after which it has a
similar reflectance as in summ@etween 950 and 1150 nm), and the highest reflectance for the
rest of the NIR spectrum. The higher fall reflectance between 1150 and 1350 nm is due to the
lower vegetation water content compared to summer and spring. For the SWIR regions, fall has
the hidhest reflectance due to the lowest amount of moisture absorption. Summer has the lowest
reflectance, since it has the highest amount of moisture compared to the other two seasons.

3.6.4. Performance of Separability Metrics

In this section, we examine the shrub % cover group after which spectral separability between
shrubs and the remaining land cover becomes possible for each season. After that, we make a
comparison between the proposed Weangth regions from each seplitiy metric threshold
for the chosen shrub groups. Based on the ensemble results, we present the wavelengths regions
that provide thenost sensitiity to shrub cover for each season.

Seasonal separability between shrub % groMgken looking at the separability metrics
for each of the groups along the seaséiguie 3-7, Figure A-1, Appendix A), we can see that
separability increases as the % of shrub cover in the grotgases. We also see that sepiity
is generally lower in the fall. TD and JM have fairly similar results, with JM having lower values
for some wavelength regions in spring and summer, and for almost all higher shrub cover groups
in fall. Moreover, the Mstatisticalso shows similar responses to the previous two, however on a
different scale, where the higher values keep increasing, making the interpretation harder. The
same holds for B and OFigure A-1, Appendix A). Based on the set thresholds for TD and JM
(Table 3-1), none of the shrub groups between 0.1% and 80% cover for all seasons offer moderate
or good separability, that is, above IFig(re 3-7). The only shrub group from which it is possible
to differentiate from 0% shrub cover is the one that includessndmember quadrats of ~100%
shrub cover (pink line)in addition, the shrub group that belongs to a cover between 40.1% and
80% has a good separability for some wavelength regions according testiagidtlc.Fortunately,
even with mixed pixelghere exist a number of spectral unmixing techniques that could enhance
WPE mapping with coarser resolution pixgso et al., 2019)Vith spectral unmixing,ach pixel
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gets assigned to fraons of its inclueéd classes, which are defined by endmembers
(Shivakanth & Tanwar, 2018)

As a next step, we classified the TD, JM, and M metrics for all seasons and groups
based on the set thresholds. We selected those shrub groups that provide moderate or good
separability and calculated the percentage of wavelength bands that contribiehto e
separability classTable A-4, Appendix A). The TD metric suggests higher number of
wavebands that are important for separating shrub cover compared to the JM metric (24.1%
more). Whereas, for the M metric, it is not possible to differentiate bettwedarate or good
separation. It is clear that the spring season offers a higher number of bands with moderate and
good separability across all three metrics (64.3% on average) compared to the summer and fall
season (44.8% and 27.6% respectively). Thisgmraan indication towards the preferable
selection of the spring season for shrub monitoring.

Wavelength regions sensitive to shrub cover identify the wavelength regions that
are sensitive to shrub cover for each season, we apply the ensemble method, where we select
the TD and JM wavelengths that are classified as good or moderate under both Tadihecs (

3-5, Figure 3-7). This separation holds only for differentiation between 0% and 100% shrub
cover groups. The selected wavelength bands belong to certain spectral regions. Those that
were below 10 nm wide were removed. The ensemble methad moube applied for the fall
season, as the JM metric didt include any wavelengths in the moderate or good category.
Therefore, wenly report the TD results for that season.

Table 3-5 Shrub sensitive seasonal wavelength bands and spectral regions thabdieate and
good separatiohetween 0% and 100% shrub co{@r= Blue, G = Green, R = Red, NIR = Near
infrared, SWIR = Shortwave infrared).

Shrub Sensitive Wavelength Regions

Season Moderate Good
Spectral Bands (nm  Spectral Region Spectral Bands(nm)  Spectral Region
3801466 B 467 509 B
6041617 R 618 694 R
Spring 723883 NIR
14851518 SWIR-1 143111484 SWIR-1
2105 2329 SWIR-2 19812104 SWIR-2
Summe 1981." 2061 SWIR-2 718979 NIR
98011122 NIR
Fall 580: 597 G 525_|' 579 G
11831314 NIR 70411182 NIR

From the five spectral separability metrics, JM and TD allow for better interpretation
and separation based on threshold establishment due to their upper limit (i.e., 2). In detail, the
spring spectral regions in the blue (8863 nm) and blugreen edge467 509 nm) offer
moderate and good separatioh shrubs. This region is influenced by strong chlorophyll
absorption(Hennessy et al., 2020The same holds for the red reflectance (604 nn®
Moderate, 618694 nn® Good), for which the red reflectance minimum (6600 nm) offers
the highest separation with values of TD and JM close to 2. Shrub species absorb more
chlorophyll during springtimeTherefore, both blue and red allow for shrub differentiation
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from other background elements. On the other hand, the green peak (around 550 nm) is similar
for both shrubs and background elemeatsd therefore not useftdr shrub clasification in

spring. The NIR region seems to offer good separation according to the TD metric but only for
a small moderate portiofy50-850 nm)of the JM metric. However, the spectral signatures
indicate a clear separation in that region, sugggshiat the JM could be undetiesating the
separation potential in this case. Thus, JMIgeto underestimate higher separability regions

in some cases, confirming the findings of Gunal and Edi¢Zk@88) For the summer season,
where the NIR values are about 0.05sihigher, JM is able to ideftithis region as important

for good shrub separationofFthe SWIR region we have sepgton in the neaBWIR (1431

1478 nnd® Good)in the spring This region corresponds to the main taabsorption region
(between 13501450 nm), and to a region with rapid rise in spectra (18858 nnd
Moderate) that is sensitive to plant moist(Feenkabalil et al., 2014t is clear that the shrub

cover holds more moisture than the surrounding land cover, absorbing more in these spectral
regions during spring. Furthermore, in the 8WIR region, shrubs separate in a region related

to water absorption (around 2050 nmylaellulose absorption (around 2080 nm) (1981B4

nmd Good)(Hank et al., 2019)The shrub spectra have much lower reflacein this region

due to their moisture content; whereas the rest of the land cover has higipotasynthetic
content, thus higher reflectance, with an apparent absorption feature around 2080 nm. For the
rest of the falSWIR reggion (210%2329 nm), shrub sepion is moderate, with similarly

lower reflectance due to the differences in moisture content anphaiasynthetic vegetation.

There is a peak around 2250 nm for bottegaies, which is associated tvidifferences in
biomasqThenkabail et al., 2014)

In the summer season, other vegetation classes (grass, forbs) have also reached their
peak in growth, thus separation in the visible bands of blue, green, and red is lower. However,
the NIR region between 71879 nm offers good separation. This is mainhg do the higher
scattering of photons within the leaf structure of shrubs that lead to a higher reflectance in the
NIR (Hennessy et al., 2020)he neaiSWIR region is no longer offering good separation, due
to the overlap of the shrub spectral signature with other classes. HoweverSk¢lRaregion
between 19812061 nm offers moderaseparation, which is mainly related to the differences
in moisture absorption between shrub cover and the remaining land cover categories.

During fall, since the background vegetation is in senescence, the green peak within
525579 nm stands out for the shrub cover that is still photosynthetically active (strong
correlation with chlorophyll contenfHennessy et al., 202@nd offers good separation. The
declining slope that follows (58697 nm) also offers moderate shrub separation. Since shrubs
have not senesced yet during early fall, the NIR{Z2@81 nm) and faNIR (1183 1314 nm)
regions remain important for good andderate shrub separation due to higher biomass, PAI
and plant density.

These results go in line with the indications from the M, B and D metrics. These show
better separation between 0% and 100% shrub cover in the blue and red spectral regions for
spring, the NIR for summer, and the green and NIR for the Faju(e 3-6, Figure A-1,
Appendix A).
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3.6.5. Broadband Simulation and Shrub Cover Spectral Difference

Broadband simulationThe mean values for each Landsat 8 and Seftilzddand per shrub
cover group and season are present&dbie A-5, Appendix A. The results for Sentin@B
are very similar and are availableTiable A-6, Appendix A.

Broadband spectral difference between shrub cover grdupsTukey HSD posgtoc adjusted
p-values for each Landsat 8 and Senti2®&l band per shrub cover group asdason are
presented inmable A-7, Appendix A and those of Seimiel-2B are available imable A-8,
Appendix A. Several conclusions can be drawn from these results. First, we can see that it is
not possible to detect any difference between groups 1 and 2 in any season. This means that it
is impossible to detesthrub cover lower than 10% for the spring and summer, and lower than
20% for the fall season. Second, we see that the lowest possible shrub cover that is statistically
different from other groups is between 10.1% and 25%, and that is during the summer seas
(Shub group pair 43). Specifically, for the 90% confidence level (Cl) of that pair, the SWIR
2 band of Landsat 8 and Senti2eis significant. Similarly, the SWIR 2 band of Senti2ab
significant at the 90% CI for shrub cover between 10.1% and 35% dspnnggy. Another
observation that can be made, is that shrub cover groups that fall next to each other are for most
seasons not separable when they have low shrub cover (e.g., shrub groug2paigs 24).
On the other hand, they are more separablenvthey have higher shrub cover (e.g., shrub
group pairs 4, 56). Lastly, when looking at differences between the extreme shrub cover
groups of 0% and 100% (shrub group paé fbr spring and summer aneblfor fall), we see
that almost all bands showgsificant differences. However, the green and first red edge
Sentinel2 bands are not important during spring, amitherare the blue bands for both
sensors during summer and fall, indicating that these bands are not suitable for this case.
When looking at bands that are overall important for separating between shrub groups,
we see that both the red and blue bands are the most important for separating between shrub
cover groups during spring for both sensors. Further, the NIR band behavigsf@oboth
sensors, and so do the red edge and water vapor bands of S&niihelonly case in which
they are important, is for differences where the extreme shrub cover group is included (i.e.,
shrub cover group 6). Also, the SWIR 1 band has simmigmortance for the different shrub
cover groups for both sensors. However, we see a difference in the behavior of the other bands
between the two sensors for the spring season. Specifically, the SWIR 2 band of Qardtimel
separate a much larger numbesbfub groups than the SWIR 2 band of Landsat 8 (11 vs. 5).
In addition, the green band of Landsat 8 is able to separate between more shrub cover groups
than the equivalent Sentir2lband (9 vs. 6). These are related to the different spectral response
functions of the equivalent band in each sensor. The SetigWIR-2 band is slightly
narrower than the respective Landsat 8 band (180 nm vs. 186 &NASBA, 2021d) and the
green Landsat 8 band is much wider than the Sefitelnd (57.33 nm vs. 35 nr(ESA,
2021b)
For the summer season, the S\WARand for both sensors is the most important one at
separating between shrub cover groups, followed by the green band. Qkieraitible bands
(blue, green, red) are better at separating between lower levels of shrub cover groups (e.g., 1
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4), whereas, the NIR bands are better at separating higher shrub cover groups5(é&@),4

and their behavior is similar for both sensors. Further, all red edge bands of S&hamelthe

same behavior as the NIR bands for both sensors and are onlgtgeparating extreme shrub
cover groups (e.g.,-3, 1-6). The only exception is the red edge 1 band, which allows for
separation between neighboring shrub cover groups (€5)., e water vapor band is only
capable of separating between groups tloatain the highest shrub cover (i.e., group 6), and
the SWIR1 band behaves similarly poor for both sensors. It only separates between 4 shrub
group pairs that have larger differences in cover (e-§,,116).

In the fall seasanve see that the SWIR and red bands are most important for both
sensors at separating lower shrub cover grdupsever, the red band of Sentirieis slightly
stronger. It is the only band that can differentiagédween the neighboring shrub covers of
groups 3 and 4. The next most important band is the SWWich is similar for both sensors
and offers differentiation between almost the same groups as the S@dRJ. The blue band
is on a weaker side; howevdris still able to sparate lower shrub cover classes, in which the
Landsat sensor has a better performance than the corresponding Sehéindl Lastly, both
green and NIR bands for all sensors and all red edge bands together with the water vapor band
have a similar poorgrformance and are only able to separate pairs that include 100% shrub
cover (i.e., group 5).

3.7. Discussion

Our results show that shrub cover is highest during the spring season. Hom@0dt3hlso
foundslightly higher shrub cover in the spring season. Several studies take advantage of shrub
phenology for their identification through remote sengiRgjah et al., 2018a; Somers &
Asner, 2013) The spring season is in many cases chosen due to its match with the peak in
growth for shrubs, when grasses have not reached their peg¥gyet al., 2017; Oldeland et

al., 2010) Our results go in line with this assumption, given the fact that the dominant shrub
along our transect is Western snowberry, wihiableaveshatare fully expanded after mid to

late May(Manske, 2006)On the other hand, rough fescue esehsomrasses reach their peak

of growth during late spring (late Jur{@imenstein, 200Q)hence, their cover is higher in the
summer season (Juhjurthermore, the seanal fluctuations of other ephemeral cover (green
grass, forbs, standing dead) follow known grassland patterns. Overall, it is known that the
component of dead material and litter is high even during the growing qéssenal., 2020)
Specifically, a deep layer of litter and dead vegetation at the soil surface occurs due to the
resistance of plains rough fescue to decompogibonmaar, 1975)During fall, grasses, forbs,

and shrubs start senescence, which explains the rise in standing dead cover. As new growth
and dead material accumulates from spring to fall, the lower litter layers from the previous
years become covered up; the same hadbdre ground and rock.

In this manuscript, we examined the relationship of various shrub cover percentages
with spectral reflectance in three distinct ways. The correlations between transect shrub cover
and the respective reflectance for the total wavelength spectrum gaveralh sese of the
significant wavelength areas for each season. For the spectral separability, the only wavelength
regions that were identified as good, are those that correspond to the separation of extreme
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groups (i.e., group 1 and 6, and 1 and 5). Therefore, these results can be compared with the
respective broadband results for the paifsid spring summer, and3.in fall.

The correlation figureRigure 3-5) showed higher correlation for the blue, NIR, and
SWIR region in the spring, which matches the results of the good spectral separability and the
broadband simulated significant differences between groups 1 and 6. However, the two latter
also show that theed band is important. This can be explained, since for the extreme shrub
cover group (group 6), the chlorophyll absorption in the red band is much stronger (and
therefore more important), than it is for the lower shrabker quadrats that are mixed with
dead material, which are included in the correlation figure. Hence, this effect is not strong
enough to appear iRigure 3-5. Overall, the blue and red regions are important for shrubs in
this season due to strong chlorophyll absorpf{tfé@nnessy et al., 2020J he position othe
equivalent blue and red Landsat 8 and Senfineands are able to capture this significant
correlation with shrub cover.

In the correlation figure for the summevre see a weaker significance for the visible
portion, the highest correlation for the NIR and an equally important correlation for the SWIR
1 and SWIR 2 regions. Similarly, the visible wavelengths have lower separability between
group 1 and 6 during summenowever the broadband simulation does include the red and
green band. Nevertheless, their difference is not as good as the NIR region is for the separability
and broadband simulation. Furthermore, there is aggaeon the importance of SWIR 2 for
separating between groups 1 and 6. This finding goes in line with another study, where the
summer broadband €A 4 Normalized Difference Mdigre Index (NDMI), which uses a
combination of red and SWIR bands, had significant correlation (p < 0.01) with shrub biomass
(Zzhang & Guo, 2008)

For the fall season, the correlation figure indicates important regions in the visible blue
and red bands, a significant, but weaker than summer correlation for the NIR, and highest
importance for both SWIR 1 and SWIR 2. However, when focusing on theetlifies between
group 1 and 5 using spectral separability metrics and the broadband simulation, we see an
almost opposite result, with green being the most significant region, followed by NIR, and a
less important contribution from the SWIR region. In ttase, the correlations Figure 3-4
were not able to reflect the shrub cover dynamics but are rather related to the significant
increases in the blue, red, and SWIR bands during the senescence of forbs and grasses in fall.

Overall,usingthe correlation figur@neis able to detect the most dominant patterns
during spring and summer hilie correlation doasotindicatemore subtle differences that are
revealed by the other two methods. These are the importance of the red band during spring and
the shrub contributing wavelengths during fall.

When looking at the broadbasuulation results, it is possible to determine the overall
i mportance of the sensords bands for separat
from only the extreme ones that the separability method looks at. The bands that appear most
frequently are the ones most sensitive to shrub cover changes. The visible bands are important
at detecting differences between lower shrub cover groups. The NIR importance is higher
during the summer season, but mostly for sepayahe highest shrub cover group (100%).

This is because the NIR regiongsll very similar for intermdiate shrub cover categories.
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Rather the shomvave infrared region, and in particular the far shortwave infrared region
(SWIR-2) is good for lower shrub cover detection during summer and fall. These results show
that the spectral absption regions related to chitgphyll and water content are most usdédul

shrub cover detection. This explains the successful use of spectral indices related to these two
propertiesin other shrub detéion studies (e.g., NDVI (Normalized Difference Vegeiati

Index), LWVI (Leaf Water Vegtation Indek GR (Green Ratio), NDMI(Ng et al., 2017,
Oldeland et al., 2010; Zhang & Guo, 2008y erall, we can see that depending on the season,

a different set of bands is more significant at separating shrub cover.

Even though the broadband simulation of fibltbed spectra shows potential for WPE
detection in grasslands with certain band and season combinations, it is important to consider
that these simulations do not represent segetlata conditions in their @rety. More
specifically, satellite data are strongiffected by the atmosphere, and capture the land surface
at a broader scale, in which topography can play an important role. Shadows and occlusions
that are formed due to landscapkefdead to differences in vegation reflectance and need to
be accounted for. The diresplar beam and the diffuse $igyt illumination both affect that
reflectancgProy et al., 1989)Each slope and aspect of a terrain has an impact on reflectance
and should be corrected with a model that can account for those factors over a composite
sloping terrain(Hao et al., 2018)For, these reasons, the current results should be- cross
validated with satellitdbased remote sensing data, such as Landsat 8 and S2nivielplan
to implement this with future research that will establish specific nabavd hyperspectral
indices ad broadband multispectral indices optimally correlated with shrub cover along the
study transect. To accomplish this, it is important to remove the potential spatial autocorrelation
that exists between neighboring quadrats. This can be addressed byirtgtiié major scales
of spatial variation in shrub cover with the use of wavelet anggsit al., 2003)It will then
be possible to select a satellite product with the optimal spatial and spectral scale for the
detection of shrub cover in grasslands. Tests with satetidgery within the same and other
study areas that cover different ecoregions andgigpdic conditions will be conducted and
validated with fieldderived woody cover.

3.8. Conclusions

This research was an investigation for shrub detection with a remote sensing approach and
sheds more light on the seasonal variations in shrub cover and their respective sensitive spectral
regions for shrub detection. We establish this with the use dffased methods. Shrub cover
appears highest during spring, and LIT proves to be superior for shrubestiveation.The
correlation between wavelength spectra and shrub cover ssfawv regions that are
statistically significant, which differ by season. The separation of shrub cover measurements
into groups based on spectral similarity showed that the spectral response of these groups
becomes more similar during fall. Spectral sapaity of shrubs increases with cover;
however, good separation is only possible for pure shrub pixels (~100%). There might be
confusion between the spectral response of shrub cover and higher forb cover in the NIR region,
whereas the SWIR region is ndtexted by such issues. From the five separability metrics
used, TD and JM distance have better interpretation due to their upper limit. However, JM
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tends to underestimate the separability potential of some wavelengths during spring and
summer. Overall, the spring season offered a higher number of bands that allow for moderate
and good separatiarsing both TD and JM compared to the other two seasons. Furthermore,
based on the broadband simulated spectral differences, the earliest shrub cover can be separated
when its cover reaches between 10.1% and 25% during summer and between 10.1% and 35%
during spring. This is possible with the use of the SVZIBand of Landsat 8 and Sentir2|

In addition, the shrub cover groups that fall next to each other are for most seasons not separable
when they have lower shrub cover, whereas they become more separable for higher shrub
cover. Common results from the threbrudb detection techniques revealed significant
relationships between shrub cover and the blue (spring), red (spring), NIR (stronger in
summer), and far SWIR (summer and fall) spectral regions. These are spectral regions related
to the differences in chlophyll and water content between shrubs and their background land
cover elements in grasslands. CroaBdation with satellite imagery is necesséyconfirm

the current results. To conclude, all seasons offer spectral regions that allow for good separation
between shrub cover and background land cover. However, these regions are different in each
season.

76



Chapter 4 SEASONAL SPECTRAL SEPARATION OF WESTERN
SNOWBERRY AND WOLFWILLOW IN GRASSLANDS WITH
FIELD SPECTRORADIOMETER AND SIMULATED
MULTISPECTRAL BANDS

4.1. Preface

This chapter is part of ObjectiveilTo explore remote sensing approaches for appropriate
assessment of shrub encroachment in grasslanus chapter looks at theeasonal spectral
separation of two encroaching shegecieghat are common in the Canadian prainvesstern
snowberry $ymphoricarpos occidentalisand wolfwillow (Elaeagnus commutata This
research was published in the jouroBEnvironmentss a technical note

Soubry, I, & Guo, X. (2021). Seasonal Spectral Separation of Western Snowberry and
Wolfwillow in Grasslands with Field Spectroradiometer and Simulated Multispectral Bands.
Environments8(7), 60. https://doi.org/10.3390/environments8070060

Date of publication22 June 2021
Publisher: MDPI

This study was conceptualized through discussion between Dr. Xulin Guo and enydtig

data were collected yr. Xulin Guo, Mr. Yunpei Lu and myselfdeveloped the methodology
and wrote the original manuscript draft while Dr. Xulin Gaomducted supervision, reviewing
and editing. The supplementary materials of this paper have been adsgoketalix B and

the collected field spectral data are openly available on FigShare at
https://doi.org/10.6084/m9.figshare.14541597 Vhe Environmentgournal is open access,
andas such, the authors retain copyright.

4.2. Abstract

Woody plant encroachment (WPE), the expansion of native andatore trees and shrubs

into grasslands, has led to degradation worldwide. In the Canadian prairies, western snowberry
and wolfwillow shrubs are common encroachers, whose cover is currektipwn. As the

use of remote sensing in grassland monitoring increases, opportunities to detect and map these
woody species are enhanced. Therefore, the purpose of this study is to identify the optimal
season for detection of the two shrubs, to determimaéhnsitive wavelengths and bands that
allow for their separation, and to investigate differences in separability potential between a
hyperspectral and broadband multispectral approach. We do this by using spring, summer, and
fall field-based spectra of Hoshrubs for the calculation of spectral separability metrics and

for the simulation of broadband spectra. Our results show that the summer offers higher
discrimination between the two species, especially when using the red and blue spectral regions
and b a lesser extent the green region. The fall season fails to provide significant spectral
separation along the wavelength spectrum. Moreover, there is no significant difference in the
results from the hyperspectral or broadband approach. Neverthelessyatidetion with

satellite imagery is needed to confirm the current results.
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4.3. Introduction

Grasslands are among the largest ecosystems in the world, providing important ecologic and
economic serviceBengtsson et al., 201;Nowever, they face multiple threats from climate

change and human activity (e.g., conversion to cropland, biodiversity loss, expansion of
invasive species), which can lead to their degradati®eng et al., 2014)Woody plant
encroachment (WPE) has become an important issue for grasslands in recent years. It is related
to the expansion of native and Roative trees and shrubs into grasslgidsher et al., 2017)

and has been connected to changes in primary productivity, nutrient cycling, energntiow,

the structure and function of the ecosyst@cher et al., 2017)these all lead to issues in
rangeland management and livestock production. There exist various definitions of woody

pl ant encroachment in the I|literature,; excep
terms fAwoody (Bohda&rMidglay,r2®08)s ifiomooo dy t KlLeite &talt i z at i
2020) fiwoody pl (Band & Midglpya2012)i ofmionv asi on (Rite&woody
Morgan, 2008) i x e r i(Archecet dl.j2000)0 and Ai nv a(lsiaoetal.,2006) s hr ub
are also used. This is because WPE is a global phenomenon, and definitions depend on the
precipitation gradient of the region. In particular, WPE occurs in the grasslands of the south
central and southwestern United States (mesquite and creosote (Maishhuken, 200Q)

North America (juniper)Leis et al., 2017)South America (honey locudiChaneton et al.,

2012) Southern AfricaAcaciaandGrewiaspp.)(Sankaran et al., 200%ustralia(Eldridge

et al., 2013) Mongolia (Zhou et al., 2014)Europe(Sanjuan et al., 2018and the Arctic

(willow and Alnusspp.)(Myers-Smith et al., 2011)

WPE also takes place in the Canadian prairies, where tree encroachment (e.g., aspen,
willow) has received more attention in the literat@Bailey, Irving & Fitzgerald 1990;
Campbellet al, 1994, Fitzgerald & Bailey, 1984; Guedo & Lamb, 2013; Hilton & Bailey,

1972; Peltzer & Wilson, 2006¥or instance, trembling aspeRopulus tremuloidgsis the
dominant tree species encroaching on grasslands and pastures within the aspen parkland
ecoregion in western Cana@doss et al., 2008)Other species, such as willo®8a]ix spp.)

and Balsam poplgiPopulus balsamiferagre also encroachers, but to a lesser extent. Thorny
buffaloberry is an encroaching species in Albdiahl, 2014) The most commoishrub
encroachers that occur throughout several Canadian prairie ecoregions (i.e., aspen parkland,
moist mixed grassland, mixed grassland) are western snowb&yynphoricarpos
occidentali3 (Bai et al., 2009and wolfwillow (Elaeagnus commutateTherefore, these two

shrub species will be the main focus of this research, since they have been less studied.
Moreover, the province of Saskatchewan will be our study area, since it includes the three
previously mentioned ecoregions. An example of acr@aching shrub species in the
rangelands of southern Saskatchewan is western snowberry, found in the commercial
rangelands and provincial pastures of the Grand Coteau region and Weyburn. One can also find
western snowdrry and wolf willow in Burstall rangelands, the Northeast Swale of Saskatoon,
Meewasin Valley, Kernen Prairie, and most of
comm. Mr. Merek Wigness, Dr. Eric Lamb, Dr. Thuan Chu, and pers. observ.). |eistout!

that shrub encroachment is either already an issue or might become an issue in most of southern
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Saskatchewands rangel ands. Neverthel ess, t hi
currently unknown.

It is clear that maintaining grassland health is crucial, especially when food scarcity is
estimated to rise, and sustainable management solutions are (audtberg & Verbruggen,

2014) This fits within the United Nations Su
degradation neutralityodo. Remote sensing can
the spatiotemporal distribution of various encroaching species with thediffer@nt methods

and dataset@Becker et al., 2013; Somers & Asner, 2018y instance, to detect twhcacia

species from hyperspectral imagery with the use of differences in their phenology in Namibia
(Oldeland et al., 2010jo classifyProsopisandVachelliaspp. with an objeebased approach

in Kenya(Ng et al., 2017)to detect redberry juniper and honey mesquite in north central Texas
with spectral contrast of a thrand aerial imag@Mirik et al., 2013) to classify three woody
invasive species with spectral, textural, and structural features in @aiteenborn et al.,

2019) and to detect six types of woody species with multispectral aerial imagery and LiDAR
derived heights in the Netherlangslantson et al., 2012)Overall, for speciespecific
detection, high spatial resolution is necessary. However, the use of high spectral and temporal
resolution could compensate for the lack of spatial resolution, and is more preferable for
regional and landscape scale mappiRgrthermore, when thinking about the phenological
behavior of each woody species of interest, it might be necessary to define the optimal detection
timeframe within the growing season for each one. We therefore focus our study on a seasonal
spectral apprach. Hyperspectral data have been used to detect WPE species due to their wide
band range, which allow for the detection of finer spectral differences. In additiorhdistd
hyperspectral measurements offer the opportunity tetfine spaceborne andlarne sensors

for largerscale shrub species mapping by selecting appropriate spectral bands and regions with
spectral separability metrics and statistics (e.g., InStability Index, Transformed Divergence,
etc.). Afterwards, one can define remote sensiitlices that use these bands and apply a
broader land cover classification.

To our knowledge, no study has looked at seasonal hyperspectral and multispectral
differences between western snowberry avalfwillow for their potential detection with
remotely sensed data, which can facilitate WPE management in the Canadian prairies.
Therefore, the main purpose of this study is to derive the seasonal sensitive spectral regions for
separation between westesmowberry and wolfwillow shrubs in grasslands. Our main
objectives are (1) to identify the optimal season for detection of the two shrub cover types, (2)
to determine the sensitive wavelengths and bands that allow for their separation, and (3) to
investigde differences in separability potential between a hyperspectral and broadband
multispectral approach.

4.4, Materials and Methods

4.4.1. Study Area and Case Study Species

The study area is the University of Saskatct
Canada) in which WPE is an issue in its prairie stand. This area has a native remnant fescue
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prairie with common mixed prairie species which spans over 123akmbout 8 km NE of
Saskatoon in Saskatchewan (52A1(Bropibdidetal,06 A3 3r
1996; Mori, 2009]Figure 4-1). More information about the study area can be fouhapter

3 (Soubry & Guo, 2021a)rhis site was chosen as representative of a grassland ecosystem and
could be easily accessed during the pandemic restriction. The shrubs that are present consist of
western snowberrySymphoricarpos occidentalidook.) (Romo et al., 1993)wolf-willow

(Elaeagnus commutatBernh. Ex Rydb.), and wild prairie rosBRdsa arkansana(Baines,

1973; Slopek & Lamb, 2017)n this study, we focus on western snowberry and-walbw,

which are encroaching species in the dtigire 4-2).

Provincial Boundaries of Canada

4 Km

106°33'0"W 106°320"W 106°310°"W 106°300"W

Figure 4-1 Location of Kernen Prairie within the provincial boundaries of Saskatchewan (SK),
Canada (upper figure), and on a Sentthehage of 11 July 2020 (lower figure). Source of Canadian
Provincial Boundaries: Statistics Canada (Of@avernment Licenge Canada)Statistics Canada,
2020) source of Sentingd i ma g e : ESA (6Copernicus Service 1in
Service InformationfESA, 2021a)source of Kernen Prairie boundary layer: Department of Plant
Science, University of Saskatchewan (Dr. Eric Lamb).

Western snowberrySymphoricarpos occidenta)ior otherwise western wolfberry,
wolfberry, or buckbrush, occurs throughout most of the southwestern Canadian provinces and

80



northern United States Great Pla{$ott, 2007) It is a deciduous rhizomatous short shrub
(0.371.5 m) that forms dense colonidsat stretchbetween 1 and 200 mn the landscape
(Manske, 2006)It is dominant in Saskatchewan along temporarily flooded shrublands of the
northern Great PlainS&chneider et al., 199 Mext to water streams, at the base of steep slopes
with runoff, and on north or east facing slogeawrence & Romo, 1994)This shrub is
common in the mixegrass prairies. Specifically in Saskatchewan, it was found that western
snowberry had lower density in areas with less water availability in comparison to sites with
higher water availabilityKochy & Wilson, 2004) This species grows in continental climates
with extreme temperatures and light to moderate raif@édirke et al., 1947and it can survive
moderate droughiHardy BBT Limited, 1989)Western snowberry grows on most soil types
(e.g., silt, clay, fine sand, rocky substrates, and rich loams) apart from loosgl3alhds
Hansen, 1997)Further, it is common on mild alkaline to slightly acidic s@isnsen et al.,
2011) Western snowberry does well after disturbance, such afRiomo et al., 1993)and
grazing(Hall & Hansen, 1997)When it encroaches into grasslands, it leads to a decline in
forage (Bowes & Spurr, 1995)as it shades out grass@aines, 1973)and facilitates the
establishment of trees, such as trembling agpelton, 1953)For the Northern Great Plains,
fire cessation has led to the encroachment of western snowberry into thegragedrairie
(Pelton, 1953)Generally, western snowberig/increasing in covan many productive range
sites, otis decreasingn other ecositegGovernment of Saskatchewan, 2008)

Figure 4-2 Shrub species present in study arepwestern snowberry (source: personal collection,
Kernen Prairie, Saskatoon, Saskatchewan, CA, 11 June 20R@pltwillow (source: personal
collection, Cypress Hills Interprovincial Park, Saskatchewan, CA, 18 August 2020).

Wolfwillow (Elaeagnus commutatar silverberry belongs to the Elaeagnaceae family
and, native to south Canada, it is a deciduous rhizomatous perennial shduin (tall)
(Lackschewitz, 1991)it forms thickets or loose colonies, and one of the ecosystems in which
it occurs is the plains grasslan@sser, 1994)This species can be found along streams, and
near springs, while it can grow on different slopes, elevations, aspects, and soil conditions
(Hardy BBT Limited, 1989)It thrives in loamy soils, but is also found in dry, sandy, and gravel
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soils (Nesom, 1998)Specifically, in the mixedrass prairie, it is frequently found together

with western wheatgrass, needlegrass, and rough fggoueld & Higgins, 1986) In
Saskatchewan, it is common on native fescue grass(®ytigpec, 1991) Wolfwillow had

minor cover in the 1950syheareas it wawidely distribuedb y t h e (Bdil&y,7107®)s
Wolfwillow adapts well to areas that are disturbed. This is why it is increasing on rangelands
that are overgrazed by cat{lernold & Higgins, 1986) Wolfwillow has the ability to spread

fast through rhizomegA. W. Bailey, 1970) but it seems to not recover fast after burning
(Pylypec, 1991)lt is shade intolerar{Rowe, 1956)justifying its common presence in open
vegetation. This species is also resistant to drought, wind, and extreme cold temperatures up to
T 4 0 (Nagom, 1998)Wolfwillow might also increase the available forage for cattle by fixing
nitrogen, making it available to other surrounding species and {ldatdy BBT Limited,

1989) Hence, the complete eradication of wolfwillow should be avo{@mins & Schraa,

1965) Nevertheless, it seems that areas with wolfwillow are grazed less than half as much as
neighboring grass areas that do not have this sp@ieas & Schraa, 1965)

4.4.2. Data Collection

We collected field hyperspectral data three times in the 2020 growing season (spring,
summer, and fall). This was done with the use of a spectroradiometer (ASipditddble
FieldSpec Pravialvern Panalytical Inc., Boulder, CO, USA) between 10:00 and 14:00 during
clear sky sunny weather conditions to maintain a stable ratio between diffuse and incoming
solar radiation. The spectroradiometer collects between 350 and 2500 nm with a 1 nm band
range. Reference measurements with a Spectralon panel were tdkast &very 15 min.
Measurements included the collection of shrub endmembers (i.e., wolfwillow and snowberry)
that are encroaching in the study area. The spectroradiometer was placed close to the shrubs
and at least 10 samples for each shrub speciesmwera sur ed to ensure the
variation was captured (i.e., leaves, branches). This allows us to have a spectral signature for
~100% shrub cover of the existing species in the study area.

4.4.3. Data Processing

4.4.3.1. Calculation of Separability Metrics

For all collected spectral data, we removed the water absorption regions betwee 3850

nm, 17501980 nm, and 233@500 nm, which caused noise in the data. Next, we calculated
the spectral separability between wolfwillow and western snowberry for eadors and
wavelength. Various separability metrics calculate how separable two groups are. We used five
univariate statist@l met hod s t hat ar e provided i n t he
Aspati al Ec o o(Evang dMkirphg,e& Ranm 20R1nhamely, the MStatistic (M)
(Kaufman & Remer, 1994)Bhattacharyya distance (BBhattacharyya, 1946)Jeffries
Matusita (JM) distancgBruzzone et al., 1995)Divergence (D)(Jeffreys, 1948) and
Transformed Divergence (TO{Pavis et al., 1978)These provide discrimination ability of

each wavelength without taking into consideration their potential correl§@omal &
Edizkan, 2008)
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Before the calculation of these separability metrics, a normality check to the
wavelengths of each shrub per season was performed. For that purpose, we used the statistical
Shapird Wilk test (Shapiro & Wilk, 1965) which is considered more powerful than other
statistical tests of normalitfMohd Razali & Bee Wah, 2011and has been used in similar
studiegHuang et al., 2016 Nevertheless, we also used visual methods (i.e., quantdetile
plot, density plot), since the testds power
30). For all seasons, western snowberry was normal fid®38% of the whole wavelength
spet¢rum (nonrnormality along the reédge region and feBWIR (Shortwave Infrared) in all
seasons, and blue region during fall), and for wolfwillow, betweéd®16 (nornormality
for blue region in spring, and F&WIR in fall). Even though some wavelengitsre partially
not normal, we did not consider this as an issue for the current spectral separability analysis,
since these wavelengths will be aggregated during broadband simulation and some might not
contribute to the spectral separability of the twoubbkr Furthermore, following a nen
parametric separability approach for this small number of samples could result in larger biases
than the slight deviation from normality for at most 13% of the current dataset.

4.4.3.2. Thresholding and Selection of Important Wavelength Regions

To select the final wavelength regions capable of separating western snowberry and
wolfwillow, we had to identify cubff thresholds for each of the separability metrics calculated.

TD can have values between 0 and 2, with 2 providing maximum sepanatiétytial between
groups. TD scales the divergence statistic, which looks at the difference between two
distributions from their mean values of the ddglihood ratio (Kailath, 1967) Previous
research shows that TD provides good separability when it has values ab@angbell et

al., 2013)or 1.9(Bindel et al., 2012)Similarly, when TD has values between 1.5 and 1.8 or
1.9, two groups have moderate separation, whereas those with values below 1.5 have poor
separatiorfBindel et al., 2012Campbell et al., 2013We therefore consider this classification

from the literature for our own studydble 4-1). JM is the scaled version of the B distance,
which measures the divergence between two groups through the calculation of their cosine
angle (Bhattacharyya, 19465ince JM also follows a scale from O to 2, we used the same
threshold rules for this metric. Furthermore, when thstMistic is >1, it is considered that
there is good separatiggaufman & Remer, 199450 we used this approach, although for

this statistic it is hard to define an intermediate separation level, because there is no upper limit.
Similarly, one cannot define thresholds for the B and D statistics, since they continue to
increase without anpper bound. Therefore, these statistics (B, D) only give a general idea of
the important contributing wavelength regions towards the separability of the two shrubs. The
final wavelength regions for which both the TD and JM have values above or equalrd..8
considered as having good separation. A similar ensemble approach was used for the moderate
separability regions.
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Table 4-1 Separability threshold values (based on Kaufman and Rd®9@4) Campbel(2013) and
Bindel et al.(2012).

Separability Statistic Threshold Value Separability Class
. >1 Good
M-Statistic 'Oi Poor
Transformed Divergence & Jeffries O..l . 8 Good
. ? 1.5111.79 Moderate
Matusita Distance <
aL.5 Poor

4.4.3.3. Broadband SpectrdDifference between Shrub Species

We resampled the seasonal shrub spectra into the broadband Landsat 8,-Z&ntanel
Sentinei2B bands with the use of their spectral response functions. In particular, we performed

t he broadband simul ati on wi t hin t hahe Afhsda
Aspectr al Re s a(hrdert et gl.0201f9)iordetermiree if there was a significant
difference between the two shrub groups in each season per simulated broadband, we
performed multiple twesampled-tests assuming unequal variance per band. We used this test
since the variances were unequal for some bands (based on results frogidetietest) and

due to the unequal sample size between the two shrub groups. We report the resutts of the
tests in a table with two levels of adjustedlalue significance: below 0.05, and below 0.01.

We further grformed the same analysis asSictions4.4.3.1and4.4.3.2with the broadband
spectra. Before running these processes, we performed the Skéinest(Shapiro & Wilk,

1965)to check if the assumptions of normality held. The results of the test showed that all
simulated broadband for both shrubs had a normal distribution.

4.5. Results

4.5.1. Seasonal Spectra of Shrub Species

One can see the average seasonal spectral reflectance for each shrub dfigcies4rBai c.

The spectral signatures for both species are openly available through Figshare
(https://doi.org/10.6084/m9.figshare.1454159Y.vThe reflectance of wolfwillow in the
visible region (350700 nm) is higher than that of western snowberry for all seasons, and so is
the reflectance in the shortwave infrared (SWIR) region (12580 nm). Rather noticeable is

the lack of absorption fowolfwillow in the blue region (350600 nm), which could be
explained by the greplue appearance of its leav&sgure 4-1). Further, the SWIR reflectance

for western snowberrglecreases slightly from spring to summer, and increases again during
fall, whereas it increases throughout the seasons for wolfwillow. These patterns could be
related to the seasonal leaf water content of each shrub. For the near infrared (NIR) region,
wedern snowberry has higher reflectance than wolfwillow during spring, after which
wolfwillow takes over for the summer and fall. Based on their different spectral signatures, it
should be possible to detect each shrub. The separability metrics can indicatell each of

the wavelengths contribute to this separation.
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4.5.2. Hyperspectral Separability of Shrub Species

Seasonal separability between western snowberry and wolfwilMghen looking at the
separability metrics for the two shrub speciEgyre 4-4), we can see that separability is
higher for the visible wavelengths during spring and summer, while it is higher for the far
SWIR region during fall. When looking at the whole wavelength spectrum, we see that the
highest separability values correspondthe summer season, while the lowest to the fall
season. In addition, TD and JM have similar results, with JM having lower values for most
wavelength regions during spring and fall. Moreover, the M and B metrics show similar
responses to the previous twagwever, on a different scale, while the D metrics show some
dissimilarity in the visible wavelength responses for spring and summer. The pattern similarity
between all metrics provides additional reassurance towards trusting the thresholded results of
theTD, JM, and M metrics.

Based on the set thresholdable 4-1), the highest number of wavelengths that offer
good separation are found in the summer (i.e., 17.57% for TD, 14.45% for JM), whereas only
0.12% of wavelengths offer moderate separatwith the TD metric during fall{able B-1,
Appendix B). This is an initial indication towards the preferable selection of the summer
season for the detection of both shrubs. Overall, the TD metric suggests a higher number of
wavelengths that offer good separability for the two shrubgpaned to the JIM metric (13.25%
vs. 0.00% in the spring, and 17.57% vs. 14.45% in the summer), whereas the M metric cannot
distinguish moderate or good separation.

Wavelength regions sensitive to shrub species separdtwidentify the wavelength regions
that are important for the detection of each shrub species, we applied an ensemble method, in
which the TD and JMdefined wavelengths that are classified as moderate or good under both
metrics are selectedléble 4-2). The reason for this is that both metrics allow for better
interpretation and separation based on threshold establishment due to their upper limit (i.e., 2).
The selectedvavelength bands belong tort@n spectral regions, and those that were below
10 nm wide were removed (e.g., some regions in the SWIR in the summer). The ensemble
method could not be applied for the fall season, as none of the metrics included any
wavelengths in the moderate or gazzdegory.

In detail, the spring spectral regions in the blue (2% nm) and reded edge (590
693 nm) offer good separation between the two species. For the summer season, the blue and
redred edge regions continue to offer good separation. In addition, thergggem (532577)
is able to moderately separate the two species, since the reflectance of wolfwillow around the
green peak is about 0.05 units higher than it was in spring. Furthermore, a narrow wavelength
region in the fasSWIR (19811991 nm) offers modate separation. During fall, both species
are at the start of senescence, and although we do see some differences in their spectral
signature and a few peaks in the separability methese values are not high enough to allow
for moderate or good separation.
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Figure 4-4 Seasonal spectral separability metric results between western snowberry and wolfwillow
across all hyperspectral wavelengths (Transformed Divergence (TD), J&ffaiessita (JM) distance,
M-Statistic (M), Bhattacharyya distance (B), Divergence (D); wdisomption regions between
13501430 nm, 17501980 nm, and 233@500 nm have been removed).

Table 4-2 Seasonal wavelength bands and spectral regions that offer moderate and good
separation between western snowberry and wolfwillow based on thresholds established3rlT&ble
= Blue, R = Red, RE = Reddge, SWIR = Shortwave infrared).

Separability between Western Snowberry and Wolfwillow
Wavelength Areas

Season Moderate Good
(nm) Category (nm) Category
Spring / / 409|: 525 B
/ / 5901 693 R/RE
Summer 532577 G 406 531 B
198111991 SWIR 578 692 R/RE
Fall / / / /
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4.5.3. Broadband Simulation and Shrulspecies Spectral Band Difference

Broadband simulationThe mean values for each Landsat 8 and Seftilzddand per shrub
species and season are presentéhlie B-2, Appendix B. The results for Sentin@B are
very similar and are available frable B-3, Appendix B.

Shrub species spectral differences @samnple itests) The twesampledt-test p-values for

each Landsat 8 and Sentw## band per shrub species and season are preseiitail@y-3.

Since the SentinédB reflectance values are almost the same as those of S&#ingk did

not performi-tests on these. Several conclusions can be drawn from these results. First, we can
see that the SWIR 1 region is not significantly different between the two species during spring.
The same holds for the red edge (RE) 3 and RE 4 band of S&aimkiringspring, and the

RE 1 band during fall. Season wise, we can see that all bands are significantly different during
the summer season, whereas the blue, red and SWIR 1 bands are important for both sensors
during all three seasons. Although the diffeqgvalues give an indication of the strength of
these differences, the separability metrics offer higher precision towards the level of separation
that each band can offer.

Shrub species broadband spectral separabilitye spectral separability metrics calculated for

the Landsat 8 broadband simulation are depictédguare 4-5 for each band and season, and

in Figure 4-6 for Sentinel2A. It is clear that the bands in the visible spectrum are more
important during spring and summer, whereas the S¥HBand seems to have the highest
separability during fall. However, these values are much lower during fall compared to the
other two seasons, for which summer shows the highésés/éor most metrics and bands.
These results go in line with the outconwd#sSection 4.5.2 and Figure 4-4. Based on the
thresholds fromTable 4-1 and the ensemble approach, we can see that Landsat 8 offers
moderate separability between the two shrubs with the blue and red band. However, for
Sentinei2, only TD shows good separability for those two bands, and noTdMg 4-4). In

the summer, the blue and red bands of both sensors offer good separation, and the green band
moderate, whereas none of the d&offer any level of separation in the fall. These findings
agree with the previous ones fr@ection4.5.2 regarding the selection of the summer season
for the detection of wolfwillow and western snowberry, and the fact that the TD metric suggests
higher separability than JM during spring.
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Table 4-3 Two-sampledtest pvalues per Landsat 8 and SentiAél band for each shrub species and seasaéBl(B, GGreen, RRed, RERed Edge, W.
Vap-Water Vapour, SWIR = Shortwave infrared). Red colored values are signifivahigs within the 99% confidencatérval (Cl) (pvalue < 0.01) and
yellow values are those that are significant within the 95% CI, but not in the 99%v@lu@between 0.01 and 0.05).

Two-Samplet-Test P-values Yel. <0.05 Red <0.01

Season Landsat-8 Sentinel2A
B G R NIR SWIR1 SWIR 2 B G R RE1 RE2 RE3 NIR RE4 W.Vap. SWIR1 SWIR 2

Spring 0.000 0.000 0.000 0.049 0.748 0.001 0.000 0.000 0.000 0.006 0.046 0.051 0.049 0.052 0.027 0.702  0.001
Summer 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000
Fall 0.000 0.035 0.000 0.000 0.001 0.000 0.000 0.047 0.000 0.077 0.001 0.000 0.000 0.000 0.000 0.001 0.000

Table 4-4 Seasonal wavelength bands that offer moderate and good separation between western snowberry and wolfwillow with LaBdstih82Ad
simulated data (B = Blue, R = Red, G = Green).

Separability between western snowberry and wolfwillow
Wavelength bands

Season Moderate Good
Landsat 8 Sentinel2A Landsat 8 Sentinel2A
. B
Spring R / / /
B B
Summer G G R R
Fall / / / /
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4.6. Discussion and Conclusions

Our results from the hyperspectral metrics, broadband metrics arshmgledt-tests show

that the summer season is the optimal one for the spectral separation of western snowberry and
wolfwillow, as it has the highest number of significantly different spectral regions and bands.
This is reasonable, since the summer is the peak of the groeasprs with the highest
photosynthetic activity, during which differences between shrub species could become more
obvious. For this reason, the summer season hadieegmently selected for data acquisition
when separating shrub spec{eantson et al., 2012; Kattenborn et al., 2019; Ng et al., 2017;
Tesfamichael et al., 201L8pummer months have also shown better discrimination abilities
compared to other montfiseven for separating an evergreen and a deciduous sffeciesrs

& Asner, 2013) As for the optimal wavelength regions and bands, both blue and red are
important, and more so in the summer. These two regions are influenced by stronger
chlorophyll absorption for western snowberry compared to wolfwillow, based on their spectral
signatwe. On the other hand, the green peak (around 550 nm) is similar for both shrubs, and is
therefore not useful for classification in the spring. Nevertheless, this spectral region is
moderately important during summer, where the reflectance of wolfwillosigisficantly

higher than that of western snowberry. Lastly, in theSMfIR, there is moderate separation

for a narrow hyperspectral region in spring, which is not represented in the broadband
simulations. Although thispectralregionis significantly different in all seasons based on the
two-sampled-test, it is not strong enough to reflect its difference in the separability metrics.
This region is most possibly related to the differences in water and moisture absorption between
the two species.

Overall, when looking athe differences between the hyperspectral and broadband
results for the separation of the two shrubs, we notice that the results are almost the same,
except for a narrow region in the f8WIR, which is not included in the broadband results.
This leads usto the conclusion that hyperspectral data would not really improve the
classification results for our specific study purposes, and that use of Landsat 8 or entinel
data would suffice. In addition, the increased number of spectral bands that S&ntinel
data provide do not offer enhanced detection capabilities, since the NIR region that includes
the rededge bands is not one of the sensitive regions for western snowberry and wolfwillow
classification throughout the seasons.

However, we must point out that our current simulated broadband results represent the
leaf/branch scale and not the canopy scale. The reflectance properties of the two shrubs could
be different at that scale due to canopy architecture, such as leaf estigheittbn, density,
biomass, and leaf area index, in which shadows and occlusions also play a role. In addition,
these simulations do not represent satellite data conditions, which are strongly affected by the
atmosphere, and which capture the landa@fat a broader scale, in which topography also
has a significant role. Furthermore, since Landsat and SeBtuotegla capture the surface at a
broader scale (IB0 m), each image pixel is usually a mixture of different land cover types
(e.g., woody plarst, grass, bare ground, rock). This is especially the case when WPE is at an
early stage. Overall, grasslands can undergo different WPE stages (i.e., early, moderate, or
advanced), resulting in different woody cover within an image [@eklee et al., 2003A
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field-based study showed that the earliest WPE that could be identified was when it reached
between 10 and 25% of an image pi@&bubry & Guo, 2021aHowever, more research with
remotely sensed imagery is needed to verify this result. Nevertheless, even with mixed pixels,
there exists a number of spectral unmixing techniques that could enhance WPE species specific
mapping with coarse resolution pixéSao et al., 2019)With this technique, each pixel gets
assigned to a fraction of its land covers, which are defined by endmembers. Two endmember
classes that could be used for that purpose are the spectral signatures of western snowberry and
wolfwillow that were used inhis study. For the above reasons, the optimal season and bands
detected in the current study for separation between the two woody shrubs might not coincide
with their actual detection on the landscape. Therefore, the current results should be cross
validaied with satellitebased remote sensing data, such as Landsat 8 and S2niivielplan

to implement this in future research that will establish specific broadband multispectral indices
optimally correlated with the two shrub species of this study, and restbarch that will
investigate potential improvements in their detection with spectral unmixing techniques.
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Chapter 5 MAPPING SHRUB COVER IN GRASSLANDS WITH AN
OBJECT-BASED APPROACH AND INVESTIGATING THE
CONNECTION TO TOPO -EDAPHIC FACTORS

5.1. Preface

This chapter fulfills research towards the completion of Objectivd @ examine the patterns

and trends of shruencroachment. It includes the use of an oHpasted approach to map shrub

cover and connects shrub distribution with local tepaphic factorsThis is part of research

that was conductedinder project numbetPU-OO3RE2 021 2 2 (6Moni toring
component to support for ecosystem management in Saskatchewan Cypress Hills

| nt er pr ovi nc iSaskatcReavankVinjstry bfoParks,t Quleure and Splbrivas

supervised by Dr. Thuan Chu, with principal investigator Dr. Xulin Guo, angrincipal

investigator myself. This studwas published ithe journalGeocarto International

Soubry, 1., Robinov, L., Chu, T., Guo, X. (2022) Mapping shrub cover in grasslands with an
objectbased approach and investigating the connection to-ddaphic factorsGeocarto
International 27(37), 125, https://doi.org/10.1080/10106049.2022.2120549

Date of publication: 12 September 2022
Publisher: Taylor and Francis
Supplementary material to this paper is includedppendix C.

The conceptualization of this research came from Dr. Thuan Chu and was further developed
after discussion between Dr. Guo and my<elt data and aerial imagewere provided by

the Saskatchewan Ministry of Parks, Culture and Spaord field data were collected by Mr.
Lampros Nikolaos MargsDr. Xulin Guo, Mr. Yunpei Luand myself. | developed the
methodology, processed the data, and drafted the initial manuscript. Ms. Larissa Robinov
helped with editing, structuring, and reviewing of the manuscripiX@im Guo and Dr. Thuan

Chu supervised the research and facilitated final editingGHuoearto Internationgjlournal is

open access, asich;the authors retain copyright tfis publication

5.2. Abstract

Shrubs are important for grasslands; however, shrub encroachment has threatened the integrity
of grasslands worldwide. Understanding shrub extent and local effects on encroachment can
prioritize management. Studies that map low stature shrubs using ahl@sged approach in

large areas of northern grasslands are limited. This study i) locates shrubs with abasgedct
approach using 30 cm colorfrared aerial imagery and Support Vector Machine classification;

and ii) investigates shrub distribution typo-edaphic factors in the native fescue grasslands

of the West Block in Cypress Hills Interprovincial Park, Saskatchewan, Canada. The overall
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accuracy of detected shrubs was above 92%. Loam flat regions;farth slopes, and areas

with 0% to 25% slope rise are connected to high shrub cover and relate to soil moisture. Shrub
presence is high closer to watercourse lines and waterbodiesyaald$er to wetlands his
research can apply to other shrub encroached areas to facilitate shrub management worldwide

5.3. Introduction

Shrubs are woody plants, less than 4 m high, with several stems growing from the ground
(Myers, 2019; Swanson, 1994%hrubs are an inherent part of the grassland ecosystem,
contributing to grassland biodiversity and richn¢ascher et al., 2017)However, local
humanenvironment interactions and larggrale factors, such as climate change, could shift

the grassland ecosystem to a shrublgkrdher, 2010) A quantitative determination of when

this shift occurs remains difficulf O6 Co n n o.rThis tarifiod rom grassland to
shrubland happens through a process called shrub encroachment, which is the increase in
density, cover, and biomass of Roative or native shrubs that expand beyond their historic or
geographic rang@Archer et al., 2017; Soubry & Guo, 2022b; Van Auken, 2080yubs are
expanding into grasslands globally, including grasslands in the Senttal and South
western U Caracciolo et al., 2016; Mirik & Ansley, 2012he Great PlaingScholtz et al.,

2018) the South American Pamp@aonzalezRoglich et al., 2015)Southern AfricgMarston

et al., 2017)Australia(Eldridge et al., 2013Yhe Mongolian steppg®ong et al., 2019)and
European mountainous grasslar@anjuan et al., 2018)n our study area, we observe
encroachment of native shrubs into the fescue grasslands of Cypress Hills in the Northern Great
Plains region of Canada

When the grassland ecosystem shifts to an alternate shrubland state, there are several
negative impacts that affect the functions of native grassland ecosySentsy & Guo,
2022b) Examples of negative impacts include a decline in grassland biodivEesdy &

Bond, 2013; Knapp et al., 2008ncreased wildfire risk due to the introduction of highly
flammable shrubgHoff et al., 2018) and reduced grazing capacity from the loss of forage
guantity and qualityArcher et al., 2017)Therefore, prevention and control of shrub expansion

is an important goal in grassland management. Knowing the effect of potential fixed landscape
factors that influence shrub occurrence in grasslands, such as those related to topography
(Gartzia et al., 2014 pre important in reaching this goal since these effects could inform where
higher shrub cover is expected, and which areas should be of higher concern for shrub
encroachmen(iCuneo et al., 2009)

Topography, hydrology, and soil types are local factors that affect shrub encroachment.
Specifically, landscapes of different slope and aspect receive varying solar radiation and
precipitation (Kennedy 1976), generating conditions that are more, oesgtdble for shrub
growth. For example, areas of runoff could drive shrub growth in lowland grasslands (Archer
et al. 2017), and soil depth (Pracilio et al. 2006), texture (Archer et al. 2017), and moisture
(Harrington 1991) also affect shrub growth. féfere, topography, hydrology, and soil type
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should be considered in each study area, as shrub growth conditions vary according to
landscape context and scalth@pter 2Soubry & Guo 2028).

Moreover, to effectively manage shrub encroachment, one first needs to know the
extent of shrub cover; which can be achieved through shrub mapping. Remote sensing is a great
tool for mapping shrub encroachmé8bubry & Guo, 2022b}and it has been used worldwide
in multiple contexts(Naito & Cairns, 2011)A recent review shows that shrub detection
approaches include the use of different sensors (i.e., hyperspectral, multispectral, LIDAR, and
radar) and systems (i.e., spaceborne and airborne) in combination with parametrie or non
parametric classifiers, dnobjectbased or pixebased classification approach&hapter 2,
Soubry & Guo 2028). Each of these shrub detection approaches have benefits and drawbacks;
however, some methods in particular are especially useful for mapping shrubs.

For instance, aerial images have high spatial resolution, which facilitates the
identification of shrub structures on the landscape. In the case where aerial images have
additional spectral information (e.g., true color or cétdrared bands), shrub idgfication
can improve even more. For instance, Poznanovic €@l4)used 1 m colemfrared aerial
imagery to map Juniperus occidentalis through image segmentation with an overall accuracy
of 92.2% for areas with shrub cover between 0 and 20%. Addity, nonparametric
classifiers provide the benefit of being able to combine spectral data with ancillary data, such
as structural attributdtu & Weng, 2007) This benefit is especially useful for shrub mapping
in grasslands, which have heterogeneous shrub patch sizes.

Objectbased classification can incorporate fpamametric classifiers and utilize the
distinct circular shape of shrubs to separate them from surrounding grasses @wabseilal.,

2019) The result of this type of classification is especially successful when using high
resolution imagery where individual shrubs are visible over more than ong$inedkanth

& Tanwar, 2018) even if the shrubs are spectrally very similar to surrounding grasses
(Mullerova et al., 2016)Nevertheless, some type of spectral, radiometric, or textural contrast
is needed to exploit the shape properties of shrubs for their detection with-lzdgedt
classification. The addition of spatial texture, shape, and size characteristics in abhadgect
approach can lead to higher overall shrub classification accuracy compared tclzaped|
classification. For example, Zhou et g2014)used high resolution imagery (i.e., less than 6
m) to map shrubs with an objdesased approach and achieved an overall accuracy of 89.24%
compared to 81.15%, 73.33%, and 61.77% for the {Waskd approaches of Support Vector
Machine (SVM), Maximum likehood, and Malahanobis distance, respectively.

The use of textural features in objbetsed classifications can improve shrub detection
by keying into the textural differences between shrubs and grassland. For instance, Gray Level
Co-occurrence Matrix metrics (based on average values of the red, gmdésiue bands) were
used by Kattenborn et §2019)to derive texture information for shrub species classification.
Texture allowed them to account for local differences in the canopy structure, and their
classification accuracy improved byl1®% compared to the use of a single method (e.g.,
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hyperspectral data). Hudak and Wessr{i##98)used a textural index to identify differences
in woody plant density. Woody stem count correlated best with their textural image (r=0.84 for
mean canopy texture fromr grain images). Ng et gR017)used wavelet transformation to
derive textural features of shrubs for shrub detection. For the Pléiades dataset that they used,
the 8¢ percentile of the Level 1 wavelets of the blue band was the most influential feature for
shrub detection, and the overall accuracy of their map was 91%

Although several studies have used an oHpased approach to classify shrub cover,
only a few were in northern grassland ecosystems. One example is the study of Hellesen and
Matikainen(2013) who used colemfrared aerial imagery with 50 cm spatial resolution to
map shrubs and trees in abandoned grasslands in Denmark with 81.2% overall accuracy.
However, they did not look at shrubs separately from trees, but rather combined them into one
class. Objecbased studies that detected shrubs irmanthern grassland ecosystems include
those of Niphadakar et §2017) who mapped understory shrubs in a tropical forest with 2 m
resolution Geeeye and Worldview data (overall accuracy between 60 and 63.5%), and the one
of Hamada et al2007) who mapped high stature shrub species along a MediterrtypEan
riparian habitat (highest overall accuracy of 95%). Moreover, Hantson (20&R) detected
shrubs with 25 cm aerial imagery along coastal dunes in the Netherlands. In coastal dunes,
shrubs are very distinct from their surroundings and easy to sefideateson et al., 2012)
Similarly, when detecting shrub encroachment in savanna ecosystems, shrubs and low stature
trees are more distinct than they would be in northern grassland ecosystems, where the dense
grass cover is spectrally similar to shrubs. For example, in theaaddsemiarid savanna
ecosystem, Levick and Rogd)11)mapped shrub cover with 30 cm aerial imagery at 94%
overall accuracy, and Ng et #017)detected a high stature shrub species (Prosopis) with 2
m resolution Pleiades data with 83% overall accuracy, respectively. The same high stature
shrub species were detected in the southern Great Plains with 94% overall accuracy when
mapped with 1 m spati resolution aerial imageiMirik & Ansley, 2012) The above studies
did not map low stature shrubs (less than 4 m)

Overall, there are few studies that look at the detection of low stature shrubs (less than
4 m) in the northern grassland ecosystem using an digseid approach. Dong et @019)
developed an automated shrub identification algorithm that used orthoimages at 2 cm spatial
resolution obtained from an unmanned aerial vehicle (UAV). Their approach mapped shrubs
in the Mongolian grasslands with 84.52% overall accuracy. However, tloé U8/ imagery
covers small areas, requires multiple flights, could lead to higher processing demands, and the
very high spatial resolution could cause issues with GPS positioning from ground truth data
collection(Mdullerova et al., 2016)Therefore, our objectives are to: i) quantify and map the
distribution of shrub cover with an objdaased approach to test the feasibility of low stature
shrub mapping at a slightly coarser scale of 30 cm aerial imagery that covers a larger area in
the northern grassland ecosystem; and ii) to investigate the relationship between shrub cover
and topeedaphic categories (i.e., stratification of shrub cover by different categories, which

97



include topography, aspect, slope, elevation, soil moisture, distance from watercourse lines,
wetlands, and waterbodies).

5.4. Materials and Methods

5.4.1. Study Area

The fescue grasslands of Cypress Hills Intel
110A 156 W) are a mosaic of topographically
the surrounding agriculture and rangelandSagkatchewan and Alberta, Canadm\re 5-
lapp . CHI PPOs grasslands are recognized for t
are undergoing shrub encroachment by native spg@Gesernment of Alberta, 2011;
Government of Saskatchewan, 2021; Robinov et al., 2021; Widenmaier & L Strong, 2010)
Therefore, we chose the Saskatchewan West Block portion of the park (138)18skour
case study to conduct this research. The main grassland types in the study area are (1) rough
fescue (Festuca campestiikg)minated grasslands present on the black and dark gray soils of
the upper slopes and plateaus, covering approximately 4@b& glark, and (2) mixedrass
prairie (i.e., Hesperostipa spp., Bouteloua gracillis, Koeleria macrantha, Elymus lanceolatus)
established on the dark brown soils of the dslepes and lower elevatiog&overnment of
Alberta, 2011; Padbury & Acton, 1999; Sauchyn, 1980y the West Block, almost all sites
are on loamy black soil, whereas 25% of the area in the northeast are classified as dark brown
soils(Godwin & Thorpe, 1994)Two large streams found in the West Block are Battle Creek,
which dissects the park and receives input from Reesor Lake, and NineCkdibk
(Government of Alberta, 2011Yhe main shrub species of concern are shrubby cinquefoil
(Potentilla fruticosa)Kigure 5-1¢), western snowberry (Symphoricarpos occidentdfigjure
5-1d) and wolf willow, also known as silverberry (Elaeagnus commutgtgle 5-1¢€) (field
observation). All three shrubs are considered native and unpalatable to lidétssket al.,
2008)

The annual mean temperature in Cypress Hills is 3.3°C with a maximum of 23.2°C in
July, and a minimum ofl5°C in JanuaryEnvironment and Climate Change Canada, 2021)
Annual mean precipitation is approximately 600 nfEmvironment and Climate Change
Canada, 2021and 42% of all precipitation comes from snowfall
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Figure 5-1 a) Cypress Hills Interprovincial Park (CHIPP) boundary of the West Block within the
provincial boundaries of Saskatchewan (SK), Canada, b) Cypress Hills Interprovincial Park (CHIPP)

boundary of the West Block overlaid on th&i8mosaicked aerial image &¥ October 2018, c)

shrubby cinquefoil (Potentilla fruticosa), d) western snowberry (Symphoricarpos occidentalis) and e)
wolf willow, also known as silverberry (Elaeagnus commutata) in the West Block of Cypress Hills
Interprovincial Park (August 2020, penal collection). Source of Canadian Provincial Boundaries:

Statistics Canada (Op&bovernment Licenge Canada)Statistics Canada, 202@purce of aerial
image and CHIPP boundary layer: Ministry of Parks, Culture, and Sports, Government of
Saskatchewan
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5.4.2. Data Acquisition

We obtained six orthorectified aerial images of the study area at 30 cm spatial resolution from
the Ministry of Parks, Culture and Sports (Government of Saskatchewan, Canada). The images
were acquired on 17 October 2018 between 15:30 and 18:40 with al\(#e€amXp
camera that has four channels (Red, Green, Blue, and Near Infrared). All GIS layers related to
topo-edaphic variables were provided by the Ministry of Parks, Culture and Sports,
Saskatchewan, Canada, and the Digital Elevation Model (DEM) Wwtsned from the
Saskatchewan Geospatial Imagery Collaborative (SGia)lé 5-1).

Table5-1 Topoedaphicv ar i abl es examined in relation to
Variable Details Data type Source
Landscape Combination of Rangeland Ecosite Categorical
Unit & Topography class 2018 CHIPP
Rangeland Defined fromtopography, soil Categorical Forest Inventory
Ecosite texture, moisture regime, salinity
Elevation Upland & Lowland (above and Categorical Saskatchewan
below average elevation) Geospatial

Full range (15 m spatial resolution) Continuous Imagery
Collaborative

(SGIC)
Aspect 4 compass directions Categorical Derived from
Slope Classes of 10% slope rise Categorical SGIC Digital
Full range (15 m spatial resolution) Continuous Elevation Model
(DEM)
Topography Depressional, Flat, Gully, Hilly, Categorical 2018 CHIPP
Steep, andUndulating Forest Inventory
Soil Moisture  Based on moisture availability for Categorical 2018 CHIPP
Regime (SMR) vegetation growth (based on SK Forest Inventory

Forest Vegetation Inventory)
Distance from Euclidean distance, 15 m spatial  Continuous Government of
watercourse resolution (Part Canada
lines and Glaciers in CanadaanVec
SeriesHy dr ogr aphi c
Distance from Euclidean distance, 15 m spatial Continuous National

wetlands resolution (Digitized by Geomatics Topographic Data
Canada) Base
Distance from Euclidean distance (15 m spatial  Continuous Ministry of Parks,
waterbodies resolution) Culture and Sport
(Saskatchewan,
Canada)

5.4.3. Methodology

Figure 5-2 demonstrates the procedures we followed in this study. We first mosaicked all the
imagestogetherand then clipped the image to the grassland polygons based on the Forest
Inventory database (2018) provided by the park. To reduce the processing time, the image was
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divided into four tiles following natural boundaries. All processing was conducted in PCI
Geomatics Banff (2018). The objdeased shrub classification mapping process included
segmentation, attribute calculation, collection of training and validation, datage
classification, accuracy assessment, and-@assification editing. Eacls detailed below.

Object-Based Classification

Attribute
calculation

Image pre-
processing

30cm
orthoimages

»> Segmentation

Image Training and
classification validation
Stratification by P
topa-edaphic Shrub cover Accuracy . | POSt_CIZ.Sf,Iﬁcatmn
factors map assessmen editing

|

Figure5-2F| owchart of methods used to map shrub cov

(CHIPP) and stratify this cover by toalaphic factors.

SegmentatioriWe defined the parameters of scale, shape and compactne@iifinstdkar et

al. 2017).The scale parameter takes values between 0 and 100. Large scale parameters permit
a high level of heterogeneifArasumani et al., 2021)hus, for a given scale parameter, a
heterogeneous image will yield smaller objects than a homogeneous (Niphgadkar et al.
2017).The shape parameter ranges from 0 to 0.9. Lower shape values assign more weight to
spectral values and higher values indicate more importance of shape over spectral values
(Arasumani et al., 2021 ompactness (ranging from 0 to 1) identifies the compressed nature
of the objects, based on weak spectral contrasts, and is used to optimize objects for their
compact shap@Niphadkar et al., 2017Yo determine the segmentation parameters, we started
with the default ones, as determined in the Object Analyst workflow of PCI Geomatics, which
were Scale = 25, Shape= 0.5, and Compactness=0.5. After a few repetitions of trial and error,
and by visuallylooking at the resulting segmented objects, the parameters that defined the
small shrubs as single objects in our study area were Scale=5, Shape=0.5, and
Compactness=0.%igure 5-3a shows a close up of the segmentation result in the southeast
part of our study area with the derived object segmentd;ignde 5-3b shows the respective

aerial image of that location.
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O No shrub
O Shrub

Figure 5-3 a) Detail of segmentation result in the southeast part of our study area with the derived
object segments for the Ashrubod and fino shrubod
location.

Attribute calculation.We calculated several attributes for each segmented object and image
channel that facilitated the subsequent shrub classificatabid 5-2). We first calculated pure
statistics for the Digital Number (DN) range of each channel. Then, we calculated the
geometrical attributes of circularity, solidity and compactness, which could be higher for shrub
segments compared to grass segments. Althdbghaerial imagery is not calibrated to
reflectance (DN), we used vegetation indices (VIs) (e.g., Normalized Difference Vegetation
IndexNDVI, Soil Adjusted Vegetation Inde8AVI, and Transformed Vegetation Ind&¥)

to differentiate between shrubs aratkground cover (grass, bare soil, etc.) basdaMratios
(Hantson et al., 2012; Hellesen & Matikainen, 2013; Ng et al., 2017; Niphadkar et al., 2017)
Lastly, we calculated textural features in a 5x5 pixel window size.

Table 5-2 Attributes calculated for each image object (GRVI= G+Bed Vegetation Index, Gl=
Greenness Index, VDI= Vegetation Dryness Index, RVI= Ratio Vegetation Index, NDVI=
Normalized Difference Vegetation Index, TDVI= Transformed Difference Vegetation Ind&4=SA
Soil Adjusted Vegetation Index, MSAVI2= Modified Soil Adjusted Vegetation Index, GEMI= Global
Environmental Monitoring Index, LAl= Leaf Area Index).

Attribute Category Attributes Channels Used
Statistical Min; Max; Mean;Standard Deviation R, G, B, NIR
Geometrical Circularity; Compactness; Solidity /

Spectral GRVI; GI; VDI, RVI; NDVI; TDVI; SAVI; R, G, NIR

MSAVI2; GEMI; LAl

Textural Mean; Standard deviation; Entropy; Angul R, G, B, NIR
second moment

*(5x5 window size)
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Training and validationWe collectedtraining and validation samples through visual image
interpretation of the aerial image. Each sample corresponds to a segmented object, which was
collected throughheirs el ecti on i n Object Anal yst. We ge
ANo Shrubo to coll ect presence and absence
validation objects for each class were collected, resulting in a total of 2000 objects for each
class. Hence, 60% was training data and 40% wadati@n data. Thisatio was selectetb

ensure enough data variance is captured in
Shrubo classes are heterogeneous in the gras
percentage of training data to avoid overfitting the model thatsedd wuring image
classification. The objects were randomly collected with good distribution, ensuring enough
heterogeneity per class, so that they are representative

Image classification and paostassification editing.We used the nceparametric SVM
classification algorithm to train the model. This algorithm was implemented in PClI Geomatics
Banff through the Object Analyst workflow, which is based on the -gpeince code LIBSVM
(developed and described in Hsu et(2016). The SVM algorithm tries to find the optimal
hyperplane that separates two classes by maximizing their margin; this is realized by analysing
the training samples at the edge of each class, otherwise referred to as support vectors. It applies
a mathematial kernel function to map the support vectors from the training data into a-higher
dimensional space (hyperplane) to separate the two cig&Sesseomatics, 2020There are

several kernels that can be used, as described in Hsi(2&18) The authors recommend the

use of the radiabasis function (RBF) since it can include Horear relationships between the
classes and attributes used, it has less numerical difficulty compared to polynomial kernels,
and can behave similar to a lineass@moid kernel for certaiparameters. Therefore, we used

the RBF kernel. There are two parameters that need to be selected to run the SVM algorithm
with the RBF kernel, C anal(seeHsu et al(2016)for more information). We selected these
parameters using a grgkarch with crossgalidation (i.e. different pairs of values for C amd

were used in model runs, and the one with the best-gedisation accuracy for the training
samples was selected). Once we found the best parameters, we trained the model with the
training set to generate the final classifigfter the final classifier was applied to the whole
image, we applied posiassification editing, which dissolved neighboring image segments of
the same class into one shape, through which individual shrubs remained a single object and
shrub patches became one main object.

Finally, we used an accuracy assessment to get an overview of the classification model
performance. The accuracy assessment was performed at object level, during which each of the
object classes in the validation dataset are compared to the equivalentaotdgs in the
classified image. If the classes are equal (or unequal) to each other, the object is considered
correctly (or incorrectly) classified. The measures of assessment that we calculated include the

overall accuracy, t wrayforeachclasséi.e.ssrubanddo shrgbg r 6 s
and the overall kappa statistic. Overall accuracy is the number of total correctly classified
samples divided by the total number of sampl
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class, and looks at the number of correctly classified samples divided by the total number of
validation samples in that class; the misclassified number of samples are considered omission
errors (the number of known samples that were not included inltreatxs ) . The wuser 0:¢
is also estimated for each class, and is equal to the total number of correctly classified samples

of a class divided by the actual number of samples included in that class; the misclassified
number of samples are considered cassion errors (samples that were not included in the

correct class in the classified image). Lastly, the overall kappa statistic is used to determine if

the classification is significantly better than chance (it is expressed on a scale of 0 to 1).

Stratification by topeedaphic factorsWe examined the shrub cover distribution over the
available topeedaphic variables of the study ar@aljle 5-1), which included landscape units,
rangeland eosites, topography, elevation, aspect, slope, soil moisture regime, watercourse,

waterbodi es, and wetl ands. CHI Figute<-l)laeemd s c a p ¢
combination of four rangeland ecosites (Gravelly, Loam, Overflow, and Thig)yre C-2),
as defined i n @Ecor e gatchewan PrainedConServation ActiersPtan o f  t

(Thorpe, 2014) and six topography classes (Depressional, Flat, Gully, Hilly, Steep, an
Undulating) present in the 2018 Forest Inventory Map of the pagkie C-3). The rangeland
ecosites are classified based on differences in topography, soil texture, moisture regime, and
salinity (Thorpe, 2014)For the categorical variables, we calculated the % shrub cover in each
class of a variable by dividing the total shrub area in each class by the total area of that class.
For the continuous variables, we calculated the % shrub cover in each 15 x ¥ am@ithen

plotted multiplesimple linearegression models against the continuous value of each 15 x 15

m pixel.

Moreover, we examined categorical and continuous variables for elevation. First, we
separated the grassland region into fAUpl and:«
(Figure C-4). Both classes cover about the same area of grasslands in the park
(Uplands=51.2%, Lowlands=48.8%). Second, we used the continuous elevation range from the
SGIC Digital Elevation Model (DEM) at 15 m spatial resolution. We calculated shrub cover in
each 1%15 m pixel of the DEM and juxtaposed this cover with every uniquatdevvalue.

The aspect values were derived from the DEM and reclassified into four compass directions:
Flat -1 and-17 0), North (O- 67.5 and 292.5 360), East (67.5112.5), South (112.5247.5),

and West (247.5292.5). Lastly, slope values, ergsed in % rise, were also derived from the
DEM. We examined categorical and continuous variables for slope. We separated % slope rise
in the grassland regions in classes of 10%, ranging from 0 to 290%, resulting in a total of 29
classes, and we also ugbe continuous values of slope % rise (juxtaposed to each 15x15 m
shrub cover pixel).

Lastly, we included four layers related to water and moisture. The first one is the Soill
Moisture Regime (SMR), which represents the availability of moisture for vegetation growth
(Saskatchewan EnvironmeRbrest Service 2004 even ¢l asses ranging f
Moi st o ar e avai |l Bidude €5)iThe othdr threeslayersiaye redatec ta the
hydrographic features of the park, which include the watercourse lines, waterbodies, and
wetl and | ocations, which are provided in th
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CanadaGovernment of Canada, 201%/e examined the variation of shrub cover based on
their Euclidean distance from eachtloésehydrographic features in a 15 m resolution raster

5.5. Results

5.5.1. Shrub Cover

The overall accuracy of the SVM classification for all four image tdeged between 92%

and 95% with a lower 95% confidence interval (Cl) between 89.2% and 92.7% and an upper
95% CI between 94.8% and 97.3%hile the overall Kappa statistic rangbdtween 0.84 and
09(Table53).The producerodés and wuserds accuracy f
90.5% and 95%, and between 93.3% and 95%, respectihvatye(5-3) . The producer
user6s accuracy for the fAno ghandbetveen 908% s r an
and 95%, respectivelyTéble5-3) . The t ot al shrub cover in th
Block in Saskatchewan is 17.02 knwhich represents 27.3% of the total grassland area in the
park. The shrub cover map oFigu@ b4 Pheidoshwdde st Bl
area has the highest shrub cover (approx. 34%).
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Table5-33Ranges of producerds and userds accuracy (PA, UA r e sdKeppa statistcl y) wi
for each class (shrub, no shrub).

Class PA (%) PA 95% CI-L (%) PA 95% CI-U (%) UA (%) UA 95% CI-L (%) UA 95% CI-U (%) Kappa

Shrub 90.595 86.291.7 94.898.3 93.395 89.591.7 97.1-98.3 0.87
0.90

No Shrub 93.595 89.891.7 97.298.3 90.895 86.691.7 95-98.3 0.82
0.90

Overall OA (%) 95% CI-L (%) 95% CI-U (%) Overall

Classification Kappa

92.095.0 89.292.7 94.897.3 0.840.90
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Figure5-4a)Shrub cover in Cypress Hills Interprovincia
mosaicked it aerial image, b) Closer look of heavy shrub cover on northwest plateau, c) Closer look of
low shrub cover in hayed area (green boundary) in the east, d) Closer look of moderate to low shrub cover
in the Battle Creek area (southwest), and e) Closer lontoderate shrub cover near waterbody in the
northeast of the park.
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5.5.2. Shrub Cover by Top@daphic Factors

There are certain fixed topedaphic factors that contribute to high shrub cover in the paglre

5-5). Loam flat landscapes, flat and depressional topography, upland regionsfadorthslopes,

areas with 0% to 25% slope rise, and (very) fresh and moderately moist soil moisture regimes were
all connected to higher shrub cover in the park. Moreovaupginesence was higher when closer

to watercourse lines and waterbodies but lower when closer to wetlands.

Lower shrub cover Higher shrub cover

* Gravelly gully landscapes ¢ Loam flat landscapes

* Overflow rangeland ecosites * Loam rangeland ecosites

* Gully and hilly topography * Flat & depressional topography

* Lowland regions * Upland regions

* East- & South-facing slopes * North- & West-facing slopes

* 60-220 % slope rise * 0-25%sloperise

* Very moist & dry soils * (Very) fresh & moderately moist soils

* Away from watercourse lines & waterbodies + Close to watercourse lines & waterbodies
* Close to wetlands * Away from wetlands

Figure 5-5 Graphic summary of relationship between shrub cover andedaphic factors in the
grassland regions of the West Block in Cypress Hills Interprovincial Park (CHIPP).

Landscape Unit

The highest shrub cover (8%6)%° is found infiThin-Depressional areas, followed byiThin-

Steep, iLoam-Flato, Airhin-Undulating, andfiOvefflow-F 1 at 0 ar e a% shfuladover) abov e
(Table5-4). Neverthelesa | | f i ve c | as sklsar¢epiesentanlp smalffraationi L o a m
(less than 5%) of the total grassland cover in CHIPP West Bldke 5-4). ThefiLoam-Flatd

areas have the highest represeatain the park (29.1%) anldave high shrub cover (34.8%).
Moreover, 37.7%0f t he total shrub cover -Flatar&sil PPo6s W

Table 5-4 Percent Landscape Unit over total grassland area, percent shrub cover by Landscape Unit, and
percent shrub cover area over the total shrub cover in CHIPP West Block grasslands by Landscape Unit.

Landscape Unit % over total % Shrub cover % Shrub cover area
grassland area over total shrub cover
Thin-Depressional 0.04 39.01 0.05

25This is a measure of the density of shrubs per variable category.
26 This measures shrub cover presgpeevariable category over the total shrub cover in the grasslands of ®¥dBFBlock.
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Landscape Unit % over total % Shrub cover % Shrub cover area

grassland area over total shrub cover
Thin-Steep 5.17 35.07 6.75
LoamFlat 29.12 34.78 37.70
Thin-Undulating 1.31 33.46 1.64
Overflow-Flat 0.95 33.36 1.17
Loam-Depressional 0.05 29.73 0.05
Gravelly-Flat 4.96 26.93 4.97
Thin-Flat 0.20 26.85 0.20
Gravelly-Hilly 2.69 26.55 2.66
Overflow-Depressional  0.01 26.13 0.01
LoamSteep 4.32 25.44 4.10
Overflow-Steep 0.33 25.43 0.31
Thin-Gully 0.03 23.74 0.02
Overflow-Hilly 1.15 23.64 1.01
Gravelly-Steep 3.24 22.63 2.73
LoamUndulating 5.23 21.91 4.27
LoamHilly 24.82 21.90 20.23
Loam-Gully 0.09 21.55 0.07
GravelyUndulating 1.61 21.21 1.27
Thin-Hilly 12.75 19.82 9.41
Overflow-Undulating 1.87 19.63 1.36
Gravelly-Gully 0.08 5.17 0.01

Rangeland Ecosite

ThehRLoamd ecosites have the highest shrub cover
for all other ecosites (Thin: 24.8%, Gravelly: 24.7%, Overflow: 24.1P&ple55) . The MALoam
ecosite covers 63.6% of the grasslands in the park while each of the other ecosites cover less than
20% of the grassland$#ble 5-5).

Table 5-5 Percent of each Rangeland Ecosite and Topography class over the total grassland area and
percent shrub cover per Rangeland Ecosite and Topographyndasgyrasslands of the West Block of

CHIPP.
Rangeland Ecosite % Over total grassland area % Shrub cover
Loam 63.60 27.99
Thin 19.49 24.82
Gravelly 12.61 24.74
Overflow 4.30 24.10
Topography
Hilly/Rolling 41.4 21.7
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Rangeland Ecosite % Over total grassland area % Shrub cover

Flat 35.2 33.6

Steep 13.1 28.6

Undulating 10.0 22.9

Gully 0.2 15.1

Depressional 0.1 33.1
Topography
The AHIi Il ly/ Rollingd (41.4%) and AFl ato (35. 2%
park and the shrub cover is highest in the i
(Table 5-5).
Elevation

Uplands have about 5% higher shrub cover (29.3%) than lowlands (24.2%). Moreover, there is no
strong linear relationship between shrub cover and elevatitr0.Q03) Figure C-6a).
Nevertheless, this relationship is significant at a @@#tfidence interval, with a-palue of 0.06.

The elevation values follow a normal distribution, with most values in the grassland areas of the
park centred around 1200 faigure C-6b).

Aspect

Most of the aspects in CHIPP West Block are South facl8g%o), followed by North facing
slopes (34.2%)The highest shrub coveB4.6%) is found on Weslboking slopes, followed by
Flat (33.8%) andNorth (31.7%) facing slopeg§Table 5-6). Nevertheless, 40.2% of the total shrub
cover falls on Nortlacing slopes in CHIPP West Block, and 37.2% on Stadimg slopes

Table 5-6 Percent of each aspect class and top 5 slope classes over the total grassland area, percent shrub
cover in each class, and percent shrub cakea over total shrub cover in the West Block in CHIPP.

Aspect % Over total % Shrub cover % Shrub cover area

grassland area over total shrub cover
South 43.86 22.88 37.20
North 34.18 31.70 40.17
West 10.85 34.64 13.93
East 10.81 20.78 8.32
Flat 0.31 33.49 0.38

% Shrub cover Top 5

Top 5 Slope % Over total area over total Slope (% % Shrub
(% rise) grassland area shrub cover rise) cover
0-10 71.54 71.88 250260 15.61
10-20 20.36 20.09 270280 14.76
20-30 5.92 6.08 0-10 14.68
30-40 1.71 1.64 40-50 9.09
40-50 0.33 0.24 30-40 8.70
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Slope

Slopes between 0 and 10% rise are the most common in the grassland regions of the park,
representing about 71.5%4dble 5-6). Shrub cover is highest on steep slopes of 28D % rise
(15.6%), followed by270-280 % rise (14.8%), and-10 % rise (14.7%)Table 5-6). However,
250-260% rise and 27@80% rise represent a very small portion in the grassland regions of the
park (less than 0.0004%). When looking at the continuous values of slope % rise versus shrub
cover, we found that shrub cover has a polynomial oelakiip (§' order) with slope % rise
(Figure C-7). Shrub cover is around 15% at 0% slope rise, increasing up until about 25% slope
(with 25% shrub cover). After that, shrub cover decreases as%lof increases, with a few
outliers. Overall, shrub cover is highest between 5 and 45 % slope rise. Its linear regression also
has a significanp-value at the 99% confidence leveH®.33,p-value <0.001).

Soil Moisture Regime

AModer ately Fresho
making up 70.7% of the study aréeable 5-7), with 24.6% shrub cover. Shrub cover is highest
(39. 6%),

on AiVvery Fresho
on AVery Moi st o
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Table 5-7 Percentage of soil moisture regime (SMR) classes over the total grassland area of CHIPP West
Block, and shrub cover percent per SMR class in the grasslands of CHIPP West Block.

SMR % Over total % Shrub cover
grassland area
Moderately Fresh  70.71 24.61
Fresh 22.83 32.13
Very Fresh 3.47 39.59
Dry 1.59 14.35
Moderately Moist  0.71 38.23
Moist 0.62 29.80
Very Moist 0.06 12.51

Distance from Watercourse Lines

The linear regression between shrub cover and distancewaiarcourse lines in the park is
significant at the 99% confidence levgl-{alue < 0.001). However, the correlation is low
(r’=0.15). Shrub cover remains between 24% and 30% as the distance from the watercourse
increases, with a slight jump atound 200 mKigure C-8a); however, the number of the shrub
cover samples drastically declines within the first 500 m from the watercourseHigas(C-

8h).
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Distance from wetlands

There are six wetland bodies found in the northeast boundaries of the park. The linear regression
between shrub cover and their distance from wetlands in the park is significant at the 99%
confidence level with a moderately positive correlatiéaqr37,p-value < 0.001)Rigure C-9a).

Shrub cover increases as ttistance from the wetland locations increases, with a bigger jump at
around 2 km. In addition, most shrub cover samples can be found up to 2.5 km from the wetlands
(Figure C-9b).

Distance from waterbodies

The linear regression between shrub cover and distance from waterbodies in the park is significant
at the 99% confidence level with a very weak correlatiér0(01,p-value < 0.001). Shrub cover

is between 20% and 30% as the distance from the waterbodies increases, with higher shrub cover
ranges (above 40%) between 2 km to 2.5 Kigyre C-10a); however, the number of shrub cover
samples declines as we move away from the waterbdeigpsré C-10b).

5.6. Discussion

We successfully mapped shrub cover in the park using an digsetl approach with an overall
accuracy above 92%. This result is promising, especially given the limited number of studies that
have detected low stature shrubs with this approach in Nogh&seland ecosystems. Dong et al.
(2019)mapped low stature shrub cover in the Mongolian grasslands using higher spatial resolution
imagery (2 cm) but achieved a lower overall classification accuracy (84.52 % compared te ground
derived GPS points). While they also used an oljased approachhey only applied one
spectral attribute feature in the classification to extract the shrub objects (i.e., the Excess Green
Vegetation Index minus the Excess Red Vegetation Index). The higher accuracy in our study could
be attributed to the fact that weedsa total of 37 features (including statistical, spectral,
geometrical, and textural attributes for each image channel). A second reason for lower accuracy
in the study of Dong et a{2019)could be related to their use of an automated shrub detection
approach (unsupervised method) compared to our supervised SVM classification. Thirdly, another
potenti al cause for | ower overal/l classificat
high spatial resolution imagery that causes issues with comparisons of GPS positioning of ground
truth data(Mullerova et al., 2016)We used 30 cm resolution imagery for our objesed shrub
classification and used visually estimated validation data. Our overall classification accuracy is
similar to the one obtained by Levick and Rod@fxl1)(i.e., 94 % compared to visual estimates),

who used aerial imagery of the same spatial resolution as ours and the same validation method to
map shrub cover in the arid savanna ecosystem.

Nevertheless, it is important to note that we did not address the potential spatial correlation
between the training and validation data, which can lead to an optimistic bias in the accuracy
assessment results of our classifica(idarasiak et al., 2021Even though the objetiased data
splitting approach that we used might have removed the spatial dependence between training and
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validation objectgKarasiak et al., 2021 future studies should consider implementing a spatial
data splitting approach to more confidently ensure that this has occurred.

As mentioned in the Introduction, Zhou et @014)found that using an objeblased
methodology to detect shrubs was more successful thanaigetl approachdswas argued that
one reason for greater classification success is due to the fact that shrub size, shape and texture can
be used during objettased classification in addition to the spectral features of shrubs. Indeed, the
use of all four elements plagn important role in distinguishing shrubs with an objEged
classification method. Depending on the study area, shrubs can have a carestedsize, a
characteristic circular or elliptical shape (either individually or in patches), display higher
roughness (texture) compared to smooth grass surface, and have spectral differences with the
surrounding grasses (depending on their phenologfiage)Chapter2-3, Soubry & Guo, 2022b)

Current shrub cover in the park (approx. 27 %), based on the 2018 aerial imagery, is above
the healthy grassland standards of the region, where woody cover is naturally present at a lower
abundance (<15%)Government of Saskatchewan, 2Q08jnce the current shrub cover in our
study area is about twice as abundant as what would be expected for healthy Fescue Prairie
grasslands, we conjecture that shrubs have be
West Block over time. Howeveconfirmation of previous shrub cover extent from historical
images of the region (30 to 40 years ago) would be necessary to validate this assumption. It is
worth noting that the aerial images used in this study contained shadows, since they were obtained
in the late afternoon. For this reason, we might have slightly underestimated shrub cover (areas
that were missed due to shadows); however, this slight underestimation is counterbalanced with
areas of slight overestimation due to possible mixture with ¢pavend patches and senesced
grasses.

The higher shrub cover in depressional, undulating, and overflow landscape units could be
related to the higher presence of moisture in the soil associated with these topographical categories
(Harrington, 1991Wu & Archer, 2005)thus, facilitating shrub growtfiHarrington, 1991)When
looking at the soil moisture regimes (SMR) that had the highest shrub cover in the park, we found
that the AVery Fresho SMR occurred on a variet
category was predominantly found on undulatingtoppdray . The #ADryo and AVer
had the lowest shrub cover, which can be justified by the fact that, on one hand, woody plants are
less common in dry conditiorfdrcher et al., 2017)out, on the other hand, shrubs grow poorly in
extremely wet sites due to lack of oxyd@tuss et al., 2007 his last fact might also explain why
shrub cover is lower closer to the wetland regions of the park. Moreover, although the distance
from watercourse lines and waterbodies in the park did not have a strong relationship with % shrub
cover, shrub cover psence was higher when closer to these two hydrological features; leading us
to believe that higher plant moisture availability around water sources has some relationship with
the higher presence of shrubs in the park.

In addition, moisture availability may also be favoring specific shrub species over others
that do not require the same amount of moisture to reproduce. For instance, western snowberry in
Saskatchewan has been found to have lower density in areas wgitlvdésr availability in
comparison to sites with higher water availabi(#ochy & Wilson, 2004) Our fieldwork in the
park from the summer of 2020 showed that western snowberry was more dominant on flat and
undulating topography, shrubby cinquefoil was equally dominant in various topographies, whereas
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wolfwillow had a higher dominance on hilly sites. Moreover, we saw a distinct spike in shrub
cover at around 200 m distance from watercourse lines. RE€0A6) found that shrubby
cinquefoil did not appear within a 100 m radius from water in their study area. Shrubby cinquefoil
made up the majority of the shrub cover in our fietdained samples of 2020 in the West Block
of CHIPP (around 71%). Therefore, thiskepat 200 m could be due to an increase of shrubby
cinquefoil presence further away from the watercourse lines. A larger sample size for each shrub
Sspecies I s necessary to draw specific conclus
previousresults correspond to a total sample of 42 distributed sites.
We also saw a difference in species distribution along the elevation gradient. For example,
64% and 75% of the field sites that were dominated by western snowberry and wolfwillow,
respectively, occurred in the paiteswheseshrabbyl and s
cinquefoil was dominant occurred on upland regions in the park. The higher shrub cover observed
on the wupland regions of the park, | argely de
that there is a greater amount ofgypéation of about 100 mm on the plateau in comparison to the
base regions of the pa(€HIPP, 2020) However, these higher elevation sites might drain water
faster than lower elevation sites and receive more wind, making them more sensitive to water
availability. Both local topographic and hydrological features can influence water availability for
woodyplant growth(Lopez et al., 2019)Additionally, in Cypress Hills, for every 100 m increase
in elevation, the temperature decreases about(CHIPP, 20200 The wupl and AFI at
which are approximately 200 m higher than the surrounding plains, create a colder and moister
climate(Hegel etal.,2009) Even though ADepressional 06 and Al
shrub cover presence (33.1% and 33. 6 %, respec
only cover about 0.1% of the total grasesl|l and :
AFl at regionso on the plateau are a higher <co
It was found that most of the shrub cover in the park is located on-féeitty slopes, and
shrub cover was high on both steep (250 280% rise) and mido-low (0% - 45% rise) slopes.
Some studies have connected woody plant encroachment to steep(€lopes et al., 2009;
Sanjuan et al., 2018)vhile others have found this phenomenon more prominent ottoatagy
slopes (Bragg & Hulbert, 1976; Gartzia et al., 2014hdeed, differences in woody plant
distribution can be sensitive to both aspect and s{penedy, 1976) The cooler and moist
conditions on NortHacing slopes favor woody growth. However, when conditions are too shaded,
North-facing slopes can limit woody growth due to temperature limitg@apter 2(Soubry &
Guo, 2022h)) These results seem to differ by woody plant species. The high shrub cover on steep
slopes might also be connected to the fact that cattle cannot graze on thogMassast al.,
2008) Future research could investigate spesfecific shrub cover in the park and their relation
to slope % rise.
The methodology from this research can be applied to other areas that undergo shrub
encroachment. Moreover, the current results related to theettaquhic factors of shrub expansion
in the park can be used to facilitate shrub management decisions. Hoilvere are other factors
that can be related to shrub encroachment, such as climatic and anthropogeni¢Aedterset
al., 2017) To connect shrub encroachment with climatic factors, long term data are needed (at
least 30 years). This is where the use of historical aerial images can be useful. In this research,
shrub cover was mapped for 2018. Therefore, results from the analysispond to that one point
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in time. Future research will include historical aerial imagery, to provide insight into where shrub
expansion occurred. However, we acknowledge that it can be difficult to generate consistent shrub
cover maps using historical imagery with an objeatedapproach since there are a number of
parameters that can vary in image acquisition, such as seasonality, time of day, sensor type, and
calibration(Warkentin et al., 2020)Lastly, it is important to see if anthropogenic actions in the
park are more significant drivers of shrub encroachment than fixeeettgghic factors, or if it is

a combination of bothThis will also be included in our future investigation. The main
anthropogenic features that are found in the park include seasonal domestic grazing, road networks
and hiking trails, campgrounds, and haying pract{Geernment of Alberta, 2011)

5.7. Conclusions

We successfully mapped shrub cover in the park using efgesetd classification (overall
accuracy > 92%). Our results indicate that shrub cover is above the healthy gratesidadds

within the park. We further identified togelaphic variables that are connected to high shrub cover

in the park. Our results suggested that shrub cover was at least partially explained by moisture
availability. Landscape units with topographeesl soil types related to higher moisture had higher
shrub cover; and, shrub presence was higher close to watercourse lines and waterbodies. Moreover,
uplands and Wesand Northfacing slopes, which are considered to have more moisture, also had
higher shub cover. These findings are in line with the habitat preferences of the particular shrub
species in the park and with results from the literature. We believe these methods can be used to
successfully map shrub cover and investigate its connection teettgphic factors in other
northern grassland regions. Future studies should also incorporate historical shrub mapping in
combination with climatic and anthropogenic factors to get a holistic understanding of the drivers
of shrub encroachment in each region
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Chapter 6 IDENTIFYING ANTHROPOGENIC AND FIXED DRIVERS
OF SHRUB ENCROACHMENT: A CASE STUDY IN CYPRESS HILLS,
CANADA

6.1. Preface

This chapter presents the work that was done towards fulfilling Objeztivéo examine the

patterns and trendsf shrub encroachmenlt includesmodelling of anthropogenic and fixed
factorsrelated to shruboverchangeThis is part of researdhattook placeunder project number
LPU-OOBRE2 02122 (6Monitoring of shrub component t
Saskatchewan Cypress Hi |l | SaskatchewanrMnrstoyvof Parks, a | P
Culture and Sporit was supervised by Dr. Thuan Chu, with principal investigator Dr. Xulin Guo,

and ceprincipal investigator myself. This researcthés ber submitted for publication as:

Soubry, I., Robinov, L., Chu, T., Guo, X. (2022) Identifying anthropogenic and fixed drivers of
shrub encroachment: A case study in Cypress Hills, Catd8aience& Remote Sensing

Date of publicationsubmitted forevisionsinceNovember of 2023
Publisher: Elsevier

The conceptualization of this research came from Dr. Thuan Chu and was further developed after
discussion between Dr. Guo and mys8lfS dataaerial imageryand historical park information

were provided by th&askatchewan Ministry of Parks, Culture and Spamt field data were
collected by Mr. Lampros Nikolaos Maros, Dr. Xulin Guo, Mr. Yunpei Lu, and myself. |
developed the methodology, processed the data, and drafted the initial manuscript. Ms. Larissa
Robinov helped with editing, structuring, andissving of the manuscripts. Dr. Xulin Guo and

Dr. Thuan Chu supervised the research and facilitated final editmg research was funded by

the Ministry of Parks, Culture and Sports, and the Government of Saskatchidwan. Chu,

Senior Landscape Ecologist at the Ministry of Parks, Culture and Sports, Saskatchewan is one of
the authors and funders of this study.

Supplementary material to this paper is includefippendix D.

6.2. Abstract

Shrubs are naturally present in grasslands providing important ecosystem services, such as
contributing to grassland biodiversity and richness, and carbon sequestration. However, when their
cover surpasses a critical threshold, shrubs can alter the oarmfitihe physical and biophysical
environment of grasslands (e.g., biodiversity, productivity, structure and function, nutrient cycling,
energy flow, and management). These changes have a number of negative implications, such as
loss of grassland speciaad habitat, risk of high intensity fires, and loss of available forage for
grazing. Shrub expansion into grasslands is a global issue and there is no solid conclusion for what
is driving this phenomenon. This study aims to i) investigate anthropogemrsfdabat are
connected to high shrub cover; and ii) apply a model that usestigphic and anthropogenic
factors to define current drivers of shreiicroachmentlt has been observed that shrub cover in
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the West Block of the Saskatchewan Cypress Hills Interprovincial Park has significantly extended
into the native fescue grassland. Within the park, anthropogenic factors, such as closeness to roads,
mediumhigh grazing intensity, and absence of haying leeen connected to higher shrub cover.
When using topeéedaphic and anthropogenic variables in variations of generalized least squares
models, it was found that closeness to waterbodies and roads, followed by distance from wetlands
and watercourses, elevati, hayed areas, and specific soil moisture regimes have a significant
relationship with shrub cover. Moreover, loam flat grasslands contribute to significantly higher
shrub cover compared to areas of gravelly flat grassland. On the other hand, soatt agpezts

have significantly lower shrub cover. The tepdaphic drivers were consistent with the literature

and relate to the preferences of shrub presence and moisture, which is generated in the micro
climate from soil type, topography, elevation, amspect. These are usually stable factors.
Contrarily, anthropogenic factors vary over time and have a significant influence on shrub cover
in the park. This research can be the steppingstone for achievindelomgesilience and
sustainability of nativergssland species and their habitats by better understanding the interaction
of local driving factors on shrub expansion

6.3. Introduction

The Northern Mixed Grasslands ecoregion covers approximately 270,800rKortunately more

than 75% of it has been alteré8hay et al., 2019).and conversion to agricultuie the main
reason for this alteratiofHoekstra et al., 2005Wwhile woody plant encroachment (WPEas
becomehe second most important procdbstleads tograsslandoss in the Great Plains Biome
(Working Lands for Wildlife, 2022)WPE is the increase in density, cover, and biomass of non
native or native trees and shrubs into vegetation types where they were not previously found
(Archer et al., 2017; Stevens et al., 2017; Van Auken, 200@E changes biodiversity, leading

to a decline in grassland habitat for plant and animal spéPias et al., 2012)and has
consequences fdahe food industry, the economy, and the environni€hiapter 2,(Soubry &

Guo, 2022h) It is estimated that WPE areas can only support a carrying capacity of about 25%
of open grasslandéMoss et al., 2008)significantly reducing the available forage supply.
Preserving existing grassland ecosystems is important for sustaining grasslan{Beajtason

et al., 2019; Veldman et al., 2015)

Many of the drivers that facilitate woody plant growth in grasslands are not well
understood. A variety of global and local environmental and anthropogenic drivers have been
connected to WPE in grasslar{@hapter 2(Soubry & Guo, 2022h)) However, there is no global
consensus on predominant drivers since the leading factors of WPE change according to the
landscape context and scé&hapter 2(Soubry & Guo, 2022h) Therefore, it is important to
consider the combined influence of local factors when interpreting WPE for a given region
(Stevens et al., 20L7EEnvironmental drivers can be broken down into climatic and-éalaphic
categories. Climatic drivers include increases in air temperature, changes in rainfall intensity
(Cook et al., 2015)and changes to atmospheric concentrations of carbon di¢Rmied &
Midgley, 2012) Topcedaphic factors relate to hydrology, soil, and topogrgirgher et al.,

2017; Pracilio et al., 2006)Topcedaphic factors mediate biochemical responses and nutrient
availability, and they are therefore not necessarily direct drivers. It is common for woody plants to
have patterned vegetation distributions. Typical examples of patterned vegetatiomded ba
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(Aregul arly spaced densely vegetated bands
a r e(deanMarc et al., 200))or discrete (organized spatial configurations of vegetative spots
and bare soil gagBorgogno et al., 2009yvoody patches. Patterned vegetation has been attributed

to the microclimatic effects that result from teedaphic variatiorf{fTongway et al., 2001)For
example, in swales and shallow slopes, runoff is more easily captured, and moisture is more
available. North facing slopes (in the northern hemisphere) receive less sunlight and cooler
temperatures than sodftficing slopes and retain more moisture eddo decreased
evapotranspiration. Therefore, research has found varying woody plant cover across the landscape
(Coop & Givnish, 2007; Kadmon & Harakiremer, 1992kince water and temperature are-nhon
uniformly distributed. Hence, topedaphic factors are important to consider when addressing
WPE (Wu & Archer, 2005)

Anthropogenic driveref WPEusually refer to functional indicators connected to land use
and vegetation management history. Land use examples include land abanqGarteist et al.,
2014)or protection, while vegetation management examples incodeges in grazing regimes
( O6 Co n n oandchaggeéslimthe frequency and intensity of fire occurrébawley et al.,

2016; Roos et al., 2018)and abandonment camcrease woody plant propagule pressure in an
area(Gartzia et al., 2014hile livestock overgrazingan remove the fine fire fuels. This means
that the historical fire patterns that kept grasslands from transitioning to woodlands anptieder
increasing woody plant presence on the lands@afisey, 2018)

Modelling can be used to combine, and assess, multiple driving factors to better understand
which of those factors contribute more significantly to, in our case, woody plant presence on the
landscape. Depending on the study area and scale examinedntififeters prevail as being more
important to WPE dynamic€orrelative models offer a usétendly approach and are adapted to
the study region and field datihey can include variables related to tagmaphic and human
influences. Correlative WPE motlay uses a variety of predictor variables to look at shrub
presence in relation to, and between, each dri¥ieiou et al.(2013)used climate, topography,
land cover, and human influences as predictor variables to model the distribution of woody plants.
Remm & Remn(2016; 2017used land cover, soil type, elevation, human influences, and woody
species presence to model the distribution of native shrubs.

Nevertheless, data access, instead of biological importance, often leads to the selection of
predictor variablegSofaer et al., 2019What each of these variables measure is also not always
useful for the application under studity many studies, fieldwork only offers a snapshot of existing
vegetation cover or is, in some cases, not an option due to resource limiEt®ense of remote
sensing information in vegetation models helps overcome these barriers. This can add immense
value in WPE research since it is necessary to aawsccurate representation of existing woody
cover in order to understand what drives its presence indooéxts. To accurately map WPE, a
large set of woody presence and absence data that (ideally) spans over multiple years is needed
(Bradley & Mustard, 2006)

Recent research in the West Block of Cypress Hills Interprovincial Park (CHIPP) in
Saskatchewan, Canada has predicted a slow increase in tree cover over the last 40 years in the park
(~0.12% per year, or ~26 ha per yg&dpbinov et al., 2021)0n the other hand, a highly accurate
map of shrub cover in the park was produced recently from aerial imagery and indicated that the
average shrub cover is about 27% (1700 ha) in the grassland(@reater 5,(Soubry et al.,
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2022). This is above the healthy grassland standards (i.e., < 15%), and shows that shrub
encroachment is an issue in the p@@lovernment of Saskatchewan, 200B)e same study also

made a connection between shrub cover andéolaphic factors in the park, such as topography,
elevation, aspect, slope, soil texture, soil moisture, and waterbodies. There is a need to account for
the complex relationship betweennmancaused disturbances and tegaaphic factors when
examining WPE(Gxasheka et al., 2023)Therefore, this study aims to i) investigate the
anthropogenic factors that are connected to high shrub icotrexpark and ii) apply a model that
integrates remote sensing data to define the current dominant anthropogenic asdiafgipo

shrub encroachment garsin the park

6.4. Study Area and Data

6.4.1. Study Area

Cypress Hills Interprovincial Park (49A 4006
forestgrassland mosaic ecosystem that is located higher than the surrounding rangelands and
agricultural lands of Saskatchewan and Alberta in Canbidgure 6-1). Our study area is the
Saskatchewan West Block portion of the park, covering 138.%9Tkme annual mean temperature

in Cypress Hills is 3.3°C with maximum temperatures in July (23.2°C), and minimum
temperatures in Januard§°C) (Environment and Climate Change Canada, 202dhual mean
precipitation is approximately 600 mmand 42% of all precipitation comes from snowfaline

and July are the months with the greatest rainfall (103 mm and 60 mm, respectivetkie and
growing season starts in late April with average daily temperatures between 12 and 13°C
(Coupland, 1961)

This Cypress Upland ecoregi¢gRadbury & Acton, 1999¢ontains a mix of boreal and
montane forest as well as prairie grassland eleni8atschyn, 1990)Grassland types includ#)
rough fescueKestuca campestriRydb.ydominated grasslands on Black Chernozemic and Dark
Gray Luvisolic solls, typically found on the upper slopes and plateaus, making up approximately
40% of the park, and (2) mixegtass prairidi.e., Hesperostipaspp, Bouteloua gracilligWwilld.
ex Kunth) Lag. ex GriffithsKoeleria macranth@Ledeb.) Schulf andElymus lanceolatu&Scribn.

& J.G. Sm.) Gouli most common on the drier slopes and lower elevations videeBrown
Chernozenic soils occufGovernment of Alberta, 2011; Padbury & Acton, 1999; Sauchyn, 1990)
Other dominant species are oatgrd3anthoniaspp.), and sedge€érexspp.).The main shrub
species in the park are shrubby cinquefihgiphora fruticosa(L.) Rydb), western snowberry
(Symphoricarpos occidentalidook) and wolf willow, also known as silverberrflaeagnus
commutataBernh. ex Rydl).(based on fieldwork in 20204l three shrub speciesre native to

the park and unpalatable to livestock. For the West Block, almost all sites are classified as Loamy
Black Chernozemic soil with about 25% of the northeast section being a Dark Brown Chernozemic
soil zone(Godwin & Thorpe, 1994)

Cypress Hills was inhabited by the Native Plains people about 8500 years ago up until
approximately 1880&aschuk, 2013)During winter, bison and elk retreated to the forests of the
Cypress Hills and native people followed them as these provided food and materials to survive
(Alberta Parks, 2017Before 1900, domestic cattle and horses grazedrgead on the plateau.
Structured domestic grazing practices were established in TB&0Cypress Hills Stockmen
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Association was established in the West Block ardbhatitime and continues to receive grazing
permits, currently utilizing the park from May ®40 September 15(personal communication

with Mrs. Melody NageHisey - Park Manager)Bison were extirpated from the region by the
1880s butin 1938 elk were réntroduced, and in 1956 moose were introdu@edIPP, 2020)

Fire suppression efforts have limited fire on the landscape with the last major fires in the study
area occurring in 1885 and 18@%9berta Parks, 2017)

N

West Block A
Cypress Hills Interprovincial Park
Saskatchewan

% Study Area S

b)
49°40'30"N

49°39'0"N—
49°37'30"N-
49°36'0"N~|

49°34'30"N—

49°330°N

[ ] cHIPP west Black Boundary e P

] 1 1 1 T 1 | T ] Ll |
110°1'30"W 109°58'30"W  109°55'30"W  109°52'30"W  109°49'30"W  109°46'30"W

Soil Types I Dark brown chernozemic

- Runway soils - Luvisolic, brunisolic

- Black chernozemic {_ Luvisclic, brunisolic, black chernozemic

- Black chernozemic, luvisolic, brunisolic [ Regosolic, solonetzic, gleysolic and chernozemic

Figure 6-1 a) West Block of Cypress Hills Interprovincial Park (CHIPP) within the provincial boundaries
of Saskatchewan (SK), Canada, b) West Block of CHIPP in SK overlaid orbihen8saicked aerial
image of 17 October 2018, c) Soil types in the West Block of €HiFSK. Source of Canadian
Provincial Boundaries: Statistics Canada (O@&avernment Licenge Canada)Statistics Canada,
2020) source of aerial image, CHIPP boundary layer and soil types: Ministry of Parks, Culture, and
Sports, Government of Saskatchewan.

6.4.2. Data

Data related to shrub presence, andz8 (Geographic Information Systems) layers related to
topo-edaphicand anthropogenic variables, were provided by the Ministry of Parks, Culture and
Sports, Saskatchewan, Canadale 6-1). Data related to grazing were obtained through
fieldwork at the West Block of CHIPP during the summer of 2020. The shrub cover layer was
provided at 30 cm spatial resolution and was created from an-blajgetl classification of aerial
images obtained 8018 (overall accuracy beégn 92% and 95% compared to visual estimations
of shrub presence). A detailed description of these methods can be found in SoulB0&eal.
(Chapterb).
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Table 6-1 Data used (more details related to the tegaphic variables are included in Soubry et al.

(2022)
Category Variable Details Data type Source
Landscape  Combination of Rangeland  Categorical
Unit Ecosite & Topography class 2018 CHIPP
Rangeland  Defined from topography, soil Categorical Forest
Ecosite texture, moisture regime, Inventory
salinity
Elevation Upland & Lowland (above ant Categorical SK Geospatial
below average elevation) Imagery
Full range (15 mmesolution) Continuous Collaborative
(SGIC)
Aspect 4 compass directions Categorical Derived from
Slope Classes of 10% slope rise Categorical SGIC Digital
Full range Continuous Elevation
Model (DEM)
Topo-edaphic Topography D_epressional, Flat, Gully, Categorical 2018 CHIPP
Hilly, Steep, andJndulating Forest
Soil Moisture Based on moisture availability Categorical Inventory
Regime for vegetation growth (based
(SMR) on SK Forest Vegetation
Inventory)
Distance Euclidean distance, 15 m Continuous Government
from spatial resolution (Part of the of Canada
watercourse fiLakes, River
lines CanadaCanVec Series
Hydrographic
Distance Euclidean distance, 15 m Continuous National
from spatial resolution (Digitized by Topographic
wetlands Geomatics Canada) Data Base
Distance Euclidean distance (15 m Continuous Ministry of
from spatial resolution) Parks, Culture
waterbodies and Sport
(Saskatchewa
n, Canada)
Total number of grazer and  Continuous 2020
browser scat pdield transect Fieldwork
Number of grazing/browsing Continuous conducted by
scat by species (cattle, deer, Ms. Larissa
elk) Robinov in
Anth . Grazi CHIPP
hthropogenic fazing Total number of cattle scat pe Continuous 2020
field plot Fieldwork
conducted by
Mrs. Irini
Soubry in
CHIPP
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Category Variable Details Data type Source
Par k Manager s Categorical Spatial layer
grazing intensity (Low, Low defined by
Medium, Medium, Medium Ms. Larissa
High, High) Robinov from
interview with
Mrs. Melody
NagelHisey
and Mr. Kevin
Redden (Park
Managers)
Distance Total road network Continuous Provided by
from roads Ministry of
Haying Haying frequency Categorical Parks, Culture
impact Years since last hay Continuous & Sportsi
Hayed vs. Norhayed areas  Categorical reviewed by
Mrs. Melody
NagelHisey
Shrub cover Shrub presence of study area Continuous Soubry et al.
in 2018 at 30 cm spatial (Soubry et al.,
resolution 2022)and
Ministry of
Parks, Culture
& Sports
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6.5. Methods

Figure6-2 gives an overview of the methods used to accomplish each study objective.

Shrub
cover map

Objective (i)

[
-Landscapeunit  -SMR
-Rangeland ecosite -Dist. from
-Elevation watercourse/
-Aspect wetlands/water-
-Slope bodies

-Topography
h 4
Categorization
by topo-edaphic
/ factors

——»  GLS Models

-Grazing
-Distance from roads
-Haying

Resampling

I

Categorization by
anthropogenic
factors

Objective (ii)

Correction of

residual spatial
autocorrelation

Current shrub
encroachment
drivers

Figure 6-2 Methods flowchart (SMR: Soil Moisture Regime, Dist.: Distance, GLS: Generalized Least
Squares).

6.5.1. Examining Relationships between Shrub Cover and Anthropogenic Variables

Anthropogenic variables included distance from the roads, grazing, and hbglg §-1). For

each of these variables' classes, we calculated the shrub cover in the park. Since the shrub cover
|l ayer only represents grassland areas in the
and the rest of the land cover types (e.qg., forest, wetlands) were masked out.

6.5.2. Anthropogenic Variables

Distance from roadsShrub cover in relation to their distance from the road network in the park
was examined as a proxy of hur@hated impact on shrub encroachment. The road network is a
combination of the existing linear disturbances in the park, including highways, grasis] and

hiking trails. We calculated the Euclidean distance from the road network and produced a 15 m
raster that included the distance value from the road in each lpigalé¢ D-1).

Grazing.Several variables were used to assess the impact of grazing on shrub cover in the park's
grassland areas. These included i) scat observed as proxies for grazing/browsing intensity in 1x50
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m band transects from fieldwork in 20@Robinov et al., 2021)i) scat as a proxy for cattle grazing
in 30x30 m transects from fieldwork in 2020, and iii) grazing intenaiyperceived by the Park
Managers.

i) Detailed information on the grazer/browser scat field data collection can be fo(Rabimov
et al., 2021)The number of scat/5Gwere transformed to hectare

i) Cattle scat numbers were counted during the summer of 2020 across 41 field plots of 30 x 30
m (separated by Landscape Unit). Each plot had five quadrats of 1xigjune(D-2).

iii) Historical grazing data can supplement and verify what was observed in the results from above
sections i) and ii) which regct more current (last3 years) catd presencelhree distinct levels

of grazing intensity (Low, Medium, and High) were defingdlfle 6-2) (Guo & Soubry, 2022;
Robinov & Gross, 2022)and then further separated into five levels (i.e., Low, Medium,

Medium, MediumHigh, High).Levels were further broken dovimto five levels due to the nature

of the available datalo capture historical levels of grazing in the park, local experts who were
well versed with the history of the parkods ra
to map common grazing areas and iderttiy associated grazing intensity. Grassland zones with
estimated grazing intensity were theranually digitized(Figure D-3). Qualitative data can be

less accurate than quantitative measurements and should be interpreted with caution. However, it
is still worth including qualitative grazing data, given its relevancy to WPE.

Table 6-2 Definitions of grazing intensity classes in CHIRRuo & Soubry, 2022; Robinov & Gross,

2022)

Grazing Definition

Intensity

Low Areas of littleto-no grazing pressure where cows are rarely, if ever, found
be grazing

Medium Areas where&ows can be found during the grazing season (<50% of the ti
but where overgrazing and erosion are not considered a severe problem
those sites

High Areas with overgrazing traits, such as bare and exposed soil, degraded
grassland communities, and areas

grazing season.

Haying. Haying permit areas were digitized based on a map provided by the park manager
Additional datarelated to the haying year and haying permit holders for different areas within the
parkwere also provided. Based on this information we were able to extract i) haying fréquency
and ii) years since last haying practice for each area. We could then look at their relationship with
shrub coverLastly, we examined the overall differences in shrub cbegween the hayed and
nonthayed areas of the parkigure D-4).

2T How many times an area was hayed in total. For example, when hayed only in 2002 (frequency=1), or if hayed in 2002, 2009,
and 2015 (frequency=3).
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6.5.3. Application of GLS Models to Understand Current Dominant Shrub
Encroachment Drivers

6.5.3.1. Data preprocessing

We preprocessed 21 potential shrub encroachment driver variabéekable for the park with

GIS software (ArcMap 10.6.1)able 5-3) so that the values of each variable corresponded to
shrub cover in a 15 x15 m grid cell. These dimensions were defined due to the spatial resolution
of the DEM obtained from SGIC. When a subcategory of the categorical data fell between grid
cells, we use the value that corresponded to the majority area. We matched the 30 x 30 m grazing
scat field data with the shrub cover of the grid cell that corresponded to the central coordinate of
the30 x 30 m plot. Many variables do not cover the entire park and therefore have missing values.

Table 6-3 Variables used to model theelationship t@2018shrub covein the park

#  Category Variable Name Type Scale Need pre  Missing
processing values
1 Landscape Unit Categorical N/A Yes No
2 Rangeland Ecosite  Categorical N/A Yes No
3 Elevation Categorical N/A Yes No
4 _ Elevation Continuous 15x15m No No
5 Fixed Aspect Categorical N/A Yes No
6 Slope Categorical N/A Yes No
7 Slope Continuous 15x15m No No
8 Topography Categorical N/A Yes No
9 Soil Moisture Categorical N/A Yes No
Regime
10 Distance to wetlands Continuous 15x15m No Yes
11 Distance to Continuous 15x15m No Yes
waterbodies
12 Distance to Continuous 15x15m No No
watercourse lines
13 Total grazing scat  Continuous 1x50m  Yes Yes
14 Cattle grazing scat Continuous 1x50m  Yes Yes
15 Deer grazing scat  Continuous 1x50m  Yes Yes
16 Cattle grazing scat Continuous 30x30m  Yes Yes
17 Grazing intensity ~ Categorical N/A Yes No
Anthropogenic perceived by park
- managers
18 Distance to roads Continuous 15x15m No Yes
19 Haying frequency  Categorical N/A Yes Yes
20 Years since last hay Continuous N/A Yes Yes
21 Hayed and non Categorical N/A Yes No

hayed areas
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6.5.3.2. Model Development

To examine the combined relationship between the variablEaldé 6-3 and shrub cover in the

park, we developed multiple modelgaple 6-4). Because available data did not always cover the
same areas and many variables had missing values, for each of thaeds, the independent
variables were selected based on spati@amurrence. Therefore, sample size varies from model

to model. Initially wetried to use a MARS (Multivariate Adaptive Regression Splines) model for
our purpose due to the many benefits it offers (i.e:lm@ar, allows for combination of continuous

and a@tegorical data, can look at interaction effects between factors, does not require
standardization of features, et¢Briedman, 1991)However, we encountered issues with the
stability of the model when using different splits of training and testing data even when reducing
the complexity of the model. Moreover, model validation was computationally too hard. We
therefore decided to use a simple linear model that is easy to run and inférprgeneralized

least squares (GLS) regression is a suitable candidate as it is suitable to use when you have a
continuous response variable (% shrub cover), and both continuous and categoricairpréidic

is also more flexible than the ordinary least squares (OLS) regression since it allows for
heteroscedasticity and autocorrelation in the error structure. Before running the GLS models, we
explored the correlations between the continuous variaiolesliminate the possibility of
multicollinearity. No significant correlations between variables were found. We also standardized
our variables before running the models so that we could rank the model coefficients by
importance. Rstudi(RStudio Team, 202 yas used to develop the scri
package with the gls() functigifinheiro et al., 2013p run the models. Once the models were
raun, weaccounted for spatial autocorrelation in the model residualSeE®n6.5.3.3.

Table 6-4 Models used to examine the combined relationship between independeeté&goc and
anthropogenic variables and shrub cover in the park {R&gidual Spatial Autocorrelation, see Section

6.5.3.3.

Model  Type Independent variables used Selected Sample
spatial size
structure
accounting for
RSA

la Elevation, Slope Rise, Topography, Rational 10,000

Range Ecosite, Aspect, Landscape Ui Quadratic
Soil Moisture Regime, Distance from
watercourse lines, Distance from
waterbodies
1b Elevation Categorical, Slope Rise Rational 10,000
Categorical, Topography, Range Quadratic
Ecosite, Aspect, Landscape Unit, Soil
Moisture Regime, Distance from
watercourse lines, Distance from
waterbodies
1c Elevation, Slope Rise, Topography, Rational 9,016
Range Ecosite, Aspect, Landscape Ul Quadratic
Soil Moisture Regime, Distance from

Topa-edaphic
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Model

Type

Independent variables used Selected
spatial
structure
accounting for
RSA

Sample
size

watercourse lines, Distance from
waterbodies, Distance from wetlands

1d

Elevation Categorical, Topography, Rational
RangeEcosite, Aspect, Landscape Un Quadratic
Soil Moisture Regime, Distance from
watercourse lines, Distance from

waterbodies, Distance from wetlands

9,016

2a

2b

2C

2d

Anthropogenic

Road Distance, Grazing Intensity, Exponential
Haying Frequency, Years Since Last
Hay

845

Road Distance, Grazing Intensity, Linear
Hayed

1,000

Road distance, Total Grazing Scat Gaussian
(1x50 m), Cattle Grazing Scat (1x50 n

44

Road Distance, Number of Cattle Sca Gaussian
(30x30 m)

44

3al

3a2

3b1

3b2

3c

Mixed

Elevation, Slope Rise, Road Distance Exponential
Topography, Range Ecosite, Aspect,

Grazing Intensity, Landscape Unit,

Haying Frequency, Years Since Last

Hay, Distance from watercourse lines

Distance from waterbodies

412

Elevation, Slope Ris&oad Distance, Gaussian
Range Ecosite, Aspect, Landscape Ui

Haying Frequency, Years Since Last

Hay, Distance from watercourse lines

Distance from waterbodies, Distance

from wetlands

170

Elevation, Slope Rise, Road Distance Rational
Topography, RangEcosite, Aspect,  Quadratic
Grazing Intensity, Landscape Unit,

Hayed, Soil Moisture Regime, Distanc

from watercourse lines, Distance from
waterbodies

2,684

Elevation, Slope Rise, Road Distance Rational
Topography, Range Ecosite, Aspect, Quadratic
Landscape Unit, Hayed, Soil Moisture

Regime, Distance from watercourse

lines, Distance from waterbodies,

Distance from wetlands

9,016

Elevation, Slope Rise, Road Distance Exponential
Topography, Range Ecosite, Aspect,
Total Grazing Scat (1x50 m), Cattle

32
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Model  Type Independent variables used Selected Sample
spatial size
structure
accounting for
RSA

Grazing Scat (1x50 m), Soil Moisture
Regime, Distance from watercourse
lines, Distance from waterbodies

3d Elevation, SlopdRise, Road Distance, Gaussian 39
Topography, Range Ecosite, Aspect,
Number of Cattle scat (30x30 m), Soll
Moisture Regime, Distance from
watercourse lines

6.5.3.3. Accounting for Spatial Autocorrelation in Model Residuals

Spatial autocorrelation is a natural phenomenon in ecological variables that cover large spatial
scales, which makes data points that are close to each other more similar than those farther away.
This type of autocorrelation is not an issue. The resica&tlad autocorrelation (RSA), which is

the autocorrelation of the residuals between model predictions and the data, is the problem that
needs to be corrected. RSA violates the independence assumption of digadtatzlel and can

lead to incorrect coeffient estimategKiuhn & Dormann, 2012)We first checked for RSA by
calculating the Gl obal M dNoeamn, &950) Its valuardnges fraine v e | o
-1 to 1. Values significantly belowi/(N-1) indicate negative spatial autocorrelation and values
significantly above 1/(N-1) indicate positive spatial autocorrelation (where N equals the sample
size). We cal culladexeod theGésiduala of eabhanodeiwithrsArcMap, using
the ASpatial Autocorrelation Tool 0so,wehddedmo d e |
spatial terms to the models in the form of a spatial correlatioatste of the X and Y coordinates

of each 15x15 m grid cell using the approach followed by Shaikh €G#1)with the gls()

function in R. We applied five different spatial autocorrelation structures (exponential, Gaussian,
spherical, linear, and rational quadratidje selected the best spatial autocorrelation structure
based on the lowest Akaike Information Criterion (AIC) &ach model. AIC, developed by

Akaike (1973) provides a means of model selection, as it is an estimator of the prediction error.
Lastly, we checked the variograms of the residuals before and after accounting for RSA, as well
as the variogram of the normalized residuals to make sure that therepatia pattern present
(e.g.,Figure D-5 for Model 3d).

6.6. Results

6.6.1. Shrub Cover by Anthropogenic Variables

Distance from roadd/Ve found that shrub cover is higher (around 30 %) closer to roads, and shrub
cover declines as we move away from the roads (10% shrub cover at 4 km away from roads)
(Graph D-1). Some outliers are present, suggesting thmeng beother factors that influence shrub
cover. However, this relationship is strong, with @afr0.42 and a significantpalueat the 99%

128



confidence level. In additiormore than half of the total shrub cover observations (52.7%) are
found within 500 m of roads, beyond which shrub cover decli@esph D-2, Figure D-1).

Grazing. i) total grazing scat (1 x 50 n@attle represented most scat counts (67%), followed by
deer (30%) and elk (3%). A very weak nsignificant linear relationship can be found, where
shrub cover increases as the number of total scat per ha inceesgls D-3). When separating

the total number of scat by species, only cattle presence relates to increasing shruBrapher (
D-4a), whereas both deer and elk presence do not seem to have a relationship with shrub cover
(Graphs D-4b, 9. However, theelationship inGraph D-4ais not significantii) cattle grazing

scat (30 x 30 m)No clear relationship between shrub cover and number of cattle scat was found
(Graph D-5a, b). iii) grazing intensity perceived by the Park Managevist grassland areas in

the park have medium (47.2%) and high (35.7%) grazing interGiigph D-6b). The highest
shrub cover was found in areas of medibigh grazing intensity (45.5%), followed by high
grazing intensity (37.8%)Qraph D-6d). Only grazing intensity as perceivddy the Park
Managers showed a potential relationship between grazing intensity and shrub cover.

Haying Some areas that were hayed only once had higher shrub cover (above 30%) compared to
the areas that were hayed two or three til@sh D-74d). Thetotal shrub cover in the hayed

areas was almost half (14.8%) the shrub cover ofhayed areas (27.7%). Furthermore, we see a
slight increase in shrub cover as more years go by since the last hayingGregtit D-7b).
However, this relationship is statistically nrsignificant.

6.6.2. Current Dominant Shrub Encroachment Drivers in CHIPP as ldentified by
GLS Models

The statisticallysignificant results of each GLS model run are detailed below and presented in
Table 6-5.

Topoedaphic Models (Model 1a, b, ¢, dhe distance from hydrological features significatftly
affects shrub cover. Shrub cover is higtieser to waterbodies and lower when closer to wetlands
and watercourse lines. Moreover, Fresh, Moderately Moist and Very Fresh soil moisture regimes
result in significantly® higher shrub cover compared to a Dry soil moisture regime. In addition,
Loam Flat landscapes are significafitigjmore susceptible to shrub cover than Gravelly Flat ones,

as are areas of higher elevation. Less signiffabtit also important to mention, is the fact that
east and soutfacing slopes have less shrub cover compared to flat ones.

Anthropogenic Models (Model 2a, b,and d): Some Haying and Grazing intensity categories
have a significant relationship with shrub coMesw-Medium grazing intensity contributes to
significantly lower shrub cover than High grazing intensity sites. In addition, hayed areas showed
much lower shrub cover than nbayed areas.

Mixed Models (Model 3al, a2, b1, b2, c and Er these models, similarly, we see that shrub
cover is significantl§? higher closer to waterbodies, and lower closer to wetlands and

28 gt the 99% confidence level
29 gt the 95% confidence level
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watercourses; also, higher elevation regions have higher shrub cover than lower ones. In addition,
Moist, Fresh, Moderately Moist and Very Fresh soil moisture regimes result in signifféantly
higher shrub cover compared to a Dry soil moisture regime. Moreover, we see that shrub cover is
higher as slope rises, and we see significg&htligher shrub cover in Loam Flat landscape units
compared to Gravelly Flat ones. As for the anthropogenic factors, again, hayed areas have
significantly’® lower shrub coverhan areas that are not hayed; while shrub cover is also
significantly?® higher closer to roads. At the less significant confidence inférva see that east,

south and wedfiacing slopes have less shrub cover compared to flat ones, and that Loam, Gravelly,
Thin, and Overflow Steep landscape units are significintipre susceptible to shrub cover than
Gravelly Flat ones, while Gravelly Gully ones are significafilgss susceptible.

Overall, Model 3b2, which combines topdaphic and anthropogenic variables, produced the best
model fit°, followed by model 1dwhich uses top@daphic variablegTable 6-5). Therefore, we
present the coefficients apelalues for all statistically significant variables of Model 3bZatle

6-5, and for all other models ihablesD1 to D10.

2 gt the 99% confidence level
2 at the 95% confidence level
30 pased on the values of the residual standard errors, AIC, Bayesian Information Criterion (BIC), and prediction error rate
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Table 6-5 GLS Model results (RSE=Residual Standard Error, AIC=Akaike Information Criterion, BIC=Bayesian Information Criterion, (+)
=statistically significant positive relationship with shrub coverz=étatistically significant negative relationship with shruberdv

Type Model Statistically important variables RSE AIC BIC Coefficient
of variation
la Elevation (+), Steep topography (+) compared to 0.21 -353.76 -143.84 0.83
Depressional, Gravelly Steef) [andscape unit
compared to Gravelly Flat, Loam Steepléndscape
unit compared to Gravelly Flat, Overflow Steep (
landscape unit compared to Gravelly Flat, Fresh (+)
moisture regime compared to Dry, Very Fresh (+) soi
moisture regime compared By
1b Upland elevation (+) compared to Lowland, Fresh (+ 0.22 36.39 191.36 0.90
soil moisture regime compared to Dry
1c 1)! Waterbody distance) 2) Wetland distance (+), 3) 0.17 -7537.54 -7217.94 0.55

Topo-edaphic

Watercourse distance (+), 4) Elevation (+), Loam (+)
rangeland ecosite compared to Gravelly, Edsiqpect
compared to Flat, South) @spect compared to Flat,
Gravelly Gully €) landscape unit compateéo Gravelly
Flat, Loam Flat (+) landscape unit compared to Grav
Flat, Loam Steep (+) compared to Gravelly Flat, Fres
(+) soil moisture regime compared to Dry, Moist (+) <
moisture regime compared to Dry, Moderately Fresh
soil moisture regimeompared to Dry, Moderately
Moist (+) soil moisture regime compared to Dry, Very
Fresh (+) soil moisture regime compared to Dry

1d

1) Wetland distance (+), 2) Waterbody distange3)
Watercourse distance (+), Loam (+) rangeland ecosif
compared to Gravelly, Eas) @spect compared to Flat
South §) aspect compared to Flat, Gravelly Guly (
landscape unit compared to Gravellgt-Loam Flat (+)
landscape unit compared to Gravelly Flat, Loam Ste
(+) compared to Gravelly Flat, Fresh (+) soil moisture
regime compared to Dry, Moist (+) soil moisture regit
compared to Dry, Moderately Fresh (+) soil moisture
regime compared to Drivloderately Moist (+) soil

0.17

-7546.74 -7234.24 0.55
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Type

Model

Statistically important variables

RSE AIC

BIC

Coefficient
of variation

moisture regime compared to Dry, Very Fresh (+) soi
moisture regime compared to Dry

Anthropogenic

2a

None

0.15

-1537.71

-1495.12

1.15

2b

Low-Medium grazing4) compared to High grazing
intensity, Hayed-§ compared to nechayed

0.22

-388.57

-344.45

0.91

2C

None

0.20

10.96

22.79

0.81

2d

None

0.20

3.13

13.41

0.79

Mixed

3al

1) Slope rise (+), 2) Distance from waterbodi@s3)
Years since last hay)( Loam Flat {) landscape unit
compared to Gravelly Flat, Hayed 3 timesdqompared
to0

0.14

-509.62

-426.12

1.08

3a2

1) Elevation (+), 2) Years since last hay (+)P#3tance
from wetlands+), 4) Distance from roads)( West €)
aspect compared to Flat

0.09

-392.02

-340.18

0.76

3b1

1) Elevation (+), 2) Distance from roads (+), 3) Slope
rise (+), 4) Distance from watercourses Steep {)
topography compared felat, Thin €) rangeland ecosite
compared to Gravelly, West (+) aspect compared to
Flat, Low Medium {) grazing intensity compared to
High, Gravelly Steep (+) landscape unit compared to
Gravelly Flat, Thin Steep (+) landscape unit compare
to Gravelly Flat Hayed {) compared to nchayed,
Fresh (+) soil moisture regime compared to Dry

0.18

-1616.56

-1381.31

0.78

3b2

1) Distance from waterbodieg,(2) Distance from
wetlands (+), 3) Distance from road} @) Elevation
(+), 5) Distance from watercourses (+), Loam (+)
rangeland ecosite compared to Gravelly, Edsiqpect
compared to Flat, South) @spect compared Flat,
Gravelly Gully €) landscape unit compared to Gravell
Flat, Loam Flat (+) landscape unit compared to Grav
Flat, Loam Steep (+) landscape unit compared to
Gravelly Flat, Overflow Flat (+) landscape unit
compared to Gravelly Flat, Overflow Ste@p

0.17

-7573.67

-7239.88

0.55
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Type Model Statistically important variables RSE AIC BIC Coefficient
of variation

landscape unit compared to Gravelly Flat, Thin Steej
(+) landscape unit compared to Gravelly Flat, Haygd
compared to nohayed Fresh (+) soil moisture regime
compared to Dry, Moist (+) soil moisture regime
compared to Dry, Moderately Fresh (+) soil moisture
regime compared to Dry, Moderately Moist (+) soll
moisture regime compared to Dry, Very Fresh (+) soi
moisture regime compad to Dry

3c Slope rise (+) 0.18 53.79 68.47 0.77

3d Loam (+) rangeland ecositempared to Gravelly 0.25 71.67 93.58 0.86

order of relative importance for continuous variable
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Table 6-6 Statistically significant top@daphic and anthropogenic variables ingepforming model
(3b2) connected to the drivers of shrub encroachment.

Variable Significanceé  Type Coefficient  Std. p-value
value Error

Hayed (compared to ndmayed) *kk Categorical -0.116 0.019 <0.01

Distance from waterbodies Frx Continuous -0.085 0.007 <0.01

Distance from roads *hk Continuous -0.040 0.010 <0.01

Distance from wetlands ok Continuous 0.069 0.006 <0.01

Elevation *hx Continuous 0.036 0.012 <0.01

Distance from watercourses Frx Continuous 0.030 0.006 <0.01

Moist soilmoisture regime *kk Categorical 0.228 0.049 <0.01

(compared to Dry)

Fresh soil moisture regime Frx Categorical 0.179 0.033 <0.01

(compared to Dry)

Very Fresh soil moisture regime ~ *** Categorical 0.169 0.034 <0.01

(compared to Dry)

Moderately Moistsoil moisture Frx Categorical 0.131 0.041 <0.01

regime (compared to Dry)

Loam Flat landscape unit *kk Categorical 0.084 0.016 <0.01

(compared to Gravelly Flat)

Moderately Fresh soil moisture *x Categorical 0.075 0.033 0.023

regime (compared to Dry)

Loam Steep landscape unit *x Categorical 0.606 0.289 0.036

(compared to Gravelly Flat)

South aspect (compared to Flat) ** Categorical -0.071 0.033 0.028

East aspect (compared to Flat) *x Categorical -0.067 0.033 0.043

Gravelly Gully landscape unit *x Categorical -0.377 0.187 0.043

(compared to Gravelly Flat)

Overflow Steep landscape unit * Categorical 0.438 0.246 0.075

(compared to Gravelly Flat)

Thin Steep landscape unit * Categorical 0.426 0.245 0.082

(compared to Gravelly Flat)

Overflow Flat landscape unit * Categorical 0.102 0.060 0.086

(compared to Gravelly Flat)

Loam rangeland ecosite (compare * Categorical 0.028 0.015 0.060

to Gravelly)

1* for p-value between 0.08.1, ** for p-value between 0.0Q.05, *** for p-value <0.01
6.7. Discussion

6.7.1. Shrub Cover by Anthropogenic Variables

Shrub cover was higher close to roads, similar to the results of other WPE §Rltkesa et

al., 2002; Zalba & Villamil, 2002)This indicates that control of shrub cover close to roads
(e.g., 500 m up to 1 km away) is important. Shrubby cinquefoil seeds are primarily dispersed
by wind, however in inundated sites, shrubby cinquefoil can effectively reproduce vegetatively
as well (Elkington & Woodell, 1963) Wolf willow usually spreads rapidly through
underground rhizome&hai et al., 2013)and the same holds for western snowbéagott,
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2007) Therefore dispersal of these three species is not limited to seeds. However, propagules
trapped in vehicle tires are another known method for unintended vegetation distribution and
may therefore be contributing to the spread of shrubs throughout théReavket al., 2018)

The seeds of wolf willow and snowberry are relatively large; nevertheless, seed size does not
seem to be an eliminating factor for seed dispersal by veliRésg et al., 2018)

Shrub cover was lower in sites that experienced high intensity grazing by cattle
compared taites that experienced meditimgh intensity grazing. Cattle can facilitagbrub
expansionvhen they preferentially graze on grasses and disperse shrub seeds, and they can
also hinder it through tramplin@gRobinov, 2021) The compacted soil and potential trampling
effects in overgrazed areas might be one explanation for the lower shrub cover in the high
intensity grazed sites. Howeyedhere remains controversy around this topic, with studies
suggesting that grazing hindgBogunovic et al., 2019; Komac et al., 2013; Sanjuan et al.,
2018)or facilitates shrub encroachmditomac et al., 2013; Wang et al., 2018hd others
stating a neutral relationsh{a et al., 2019)We should state th#tte data related to grazing
management practices used in this study are qualitative (i.e., based on interviews from people
with local experience). A larger sample size of quantitative measurements that provide a direct
connection to grazing presence would be more appropriate. Also, worth mentioning is the fact
t hat areas identified as f Hccgshtogateaand springsi nt e n
and therefore grow grasses that are preferred by cattle. One example is thevhiwrele
grassland area close to Adams Lake, which is heavily grazed (personal communication with
Mrs. Melody NageHisey1 Park Manager). The presence of water might also contribute to
higher shrub presence due to higher soil moidtideerington, 1991)That is something that
we see in park areas close to waterbodgewell as for areas of Moist and Fresh soil moisture
regimes (see topedaphic and mixed model results, Secto® 2. Future research couice
such data and exclude locations close to water to derive solid conclusions related to the effects
of grazing on shrub cover. Nevertheless, grazing on its owatithe sole human driver that
explains WPE patterns, it is rathec@mbination of land usé&omac et al., 2013)

Lastly, it was found that hayedemas had almost half the amount of shrub cover
compared to nohayed areas. Thereforeaying, and repetitive hayingeem to effectively
control shrub cover. It has been found that shrubs that are frequently damaged by haying will
expand more slowlgMoss et al., 2008 Howeverone of theiisksof haying is that equipment
may cut too close to the ground, exposing bare ground and facilitating the expansion of
surrounding invasive species. Moreover, after the mechanical removal of shrubs in an area, it
is expected that livestock utilization incses in those areg@isloss et al., 2008 Nevertheless,
for this park specifically, the grasses that will grow on hayed areas miglueskdss palatable
to cattle than those that are close to water sources, making it harder to attract cattle to hayed
areas (personal communication with Mrs. Melody Nadjskyi ParkManager and Mr. Dale
Grossi Park Grassland Ecologist). In addition, areas of high shrub cover are not preferential
for haying due to their density. In those cases, one would need to mulch, mow, cut down or use
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prescribed fire. Therefore, other methods of mechanical shrub control, like those mentioned in
Moss et al(2008)might be more preferable in terms of maintaining grassland health

6.7.2. Current Dominant Shrub Encroachment Drivers in CHIPP as ldentified by
GLS Models

The combination of topedaphic and anthropogenic variables had the best model fit (Model
3b2), which is reasonable, since many studies pointed out that both types of variables should
be considered when analyzing shrub encroachment d(@arszia et al., 2014; Gxasheka et

al., 2023; Soubry & Guo, 2022bJhe anthropogenic factors that were statistically significant

to shrub cover in Model 3b2 were distance to roads and hayed areas. However, Model 3b2 did
not include any variable related to grazing, which was statistically significant in the model that
combined only anthropogenic variables (Model 2b). Since the implications of the
anthropogenic variables on shrub cover were discusseégdhon 5.1, we focus on the
relationship between shrub cover and the statistically significantedaphic variables of

Model 3b2 in this section.

Upslope regions of the park have higher shrub cover. This agrees with the findings of
areview paper that looked at the effects of topography and soil on WPE in mountainous regions
(Gxasheka et al., 2023n 42% of their selected papers, WPE was higher in upslope regions.
This is the highest percentage compared to the other categories of midslope, downslope, and
no change. Colder temperatures and higher amounts of precipitation in the high elevation
regions of the park most probably contribute to increased shrub ¢Swvebry et al., 2022)
Overall, the encroachment of woody plants in upslope regions is affected by temperature,
precipitation, and soil properti¢&xasheka et al., 2023 our study, east and south aspects
contribute to significantly less shrub cover compared to flat sites. Indeed, cool, and moist
aspects favor woody growth better tivearm and sunny onéKennedy, 1976; Soubry & Guo,
2022b) 67% of the studies examined in Gxasheka e@2@l23)saw higher WPE on cooler
slopes ofmountain rangelands. In addition, soil texture influences the distribution of WPE,
since it is related to differences in infiltration rates, nutrient availability, and moisture
(Browning et al., 2008)It was found that a number of studies associated coarse textured soill
with WPE, since woody plants can access soil moisture at deeper levels compared to grasses
in those soil{Gxasheka et al., 2023%o0il texture on upslope soils is coarse (more sand and
low clay content). Our findings agree with the fact that shrub cover can grow more productively
on the upslope deep loam soils compared to the gravelly soils that kisvesarface layer
(Hibbard et al., 2003; Thorpe, 2014)

Shrub presence was found to bigher closer to waterbodiegnd lower close to
watercourse linesand wetlands. This is likely related to the moisture gradient that stretches
from very hydric conditions in wetland centers out to the more mesic buffers surrounding
wetland edges. The moisture gradient then extends to the drier, better drainediggdsof
meadows, pastures, and forests. We found higher shrub cover in moderate soil moisture
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regimes compared to dry ones, arety Moist il moisture did not have a relationship with

shrub cover. Thiss reasonable sinogoody plants are less common in very dry conditions
(Archer et al., 2017and none of the three shrub species are listed wetland ptanasling to

the USDA (United States Department of Agricul
(USDA, 2023) Woody pecies can better compete with grasses in upland prairies where
sufficient moisture is presefrcher et al., 2017)however, not all shrubs compete well in

very wet soils due to variable levels of oxygen availability throughout thebgsmuse of
inundation(Kochy & Wilson, 2004) Shrubby cinquefoil is more frequently found in moist,

mesic microclimates but can also be found in upland condi{iBesnm, 2016) Western

snowberry and wolf willow are more typically found in drier, upland site conditions.

If higher shrub cover is found further away from watercourses, wetlands, and
undulating topography where more moisture has the potential to be trapped, it could be possible
that the two upland species, wolf willow and western snowberry, are contributredo\&PE
in the park. However, with 71% of the study area being classified as having a soil moisture
regi me (SMR) of (Soubxy etel, a02Frost of the @ask Inas conditions
suitable for shrubby cinquefoiSoubry et al.(2022)f ound t hat areas wittht
6Moderately Moistdé and O6Freshdé6 SMR had the h
respectively. Therefore, those results indicate that shrubby cinquefoil may be the more
concerning shrub encroaching throughoetplark. Our fielebased data that were collected in
2020 confirm this fact. For field quadrats that had shrub cover, shrubby cinquefoil had the
highest average shrub cover (23.3%), followed by that of western snowberry and wolf willow
(19.9% and 11.3% rpsctively). On the other hand, western snowberry did occur more
frequently in the field quadrats (29.3% of total quadrats), compared to shrubby cinquefoil
(25.3% of total quadrats), whereas wolf willow was less frequent (12.6% of total quadrats).
Further esearch would need to be conducted to determine if a particular shrub species has
greater encroachment potential over others and if that would change the management approach.
Overall, boking at the covariance of driving factors that influence shrub presemabsence
can be beneficial to get better insight.

6.7.3. Management Applications

Results from this study have been used to identify grassland management priority areas for
shrub encroachment. This was done by locating the areas in the park with dominant topo
edaphic and anthropogenic factors that drive shrub cover and then delinglatirigy
management areas based on priority. We chose priority areas in different ecosites to encompass
how management actions may vary across site conditions (e.g., soil types and moisture
availability). The ©parkos g o alng the historwal r e d u c
disturbance regime of the region and to apply the concept of a shifting mosaic landscape
(Fuhlendorf et al., 2009; Government of Saskatchewan, 2021; Watcalx, 2018)A shifting

mosaic landscape includes patches of vegetation in different recovery stages from grazing or
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burning(Archer et al., 2012)Applying this concept can restore the inherent heterogeneity of
grasslandgFuhlendorf & Engle, 2001)allowing for greater diversity in native species and
habitats, and longerm resilience and sustainability of a regideadley et al., 2014)The

shrub management actions we proposed to achieve this had to be in lintnewitatural
disturbances of the park and included different repeat treatment scenarios of pyric herbivory,
mechanical treatments and selective herbicide application applied in management zones with
rotation (Moss et al., 2008; Robinov & Gross, 202Repeated burning and browsicgn
reduce shrub cover and dengityD6 Co n n o r . Withouaburningmeckagical)removal
methods, such as haying, mowing or mulchwrege recommendédd reduce shrub density and
attract cattle grazingMoss et al., 2008)Specific site characteristics canticate if mowing,
haying, mulching, or thinning is preferred. In high density shrub sites, mowing is more
appropriate than haying, since therdeiss commercial/nutritional value in animal feed (i.e.,
bales) that is mostly woody steifi&obinov & Gross, 2022As the dominant shrubs at CHIPP
resprout and tend to increase in density following a single disturbagceecommended
repeated treatmenis all management casdkleisler et al., 2003)Repeated mechanical
removal in combination with other methofls., fire, grazing, browsing, and/or selective
herbicide applicationyhowsbetter results than any single treatment appr¢&choltz et al.,

2018)

Based on the ResistcceptDirect framework for natural resource managers that was
introduced by Schuurman et 2020) areas that were very heavily encroached by shrubs were
not selected as management priority areas since the time and effort needed to convert those
backwas too large. In this casehange (WPE) is acceptelie to insufficient resources or
inability to change the conditions to historical/acceptable conditions. Here, the resource
manager has better chances of trying to preserve the intact grasslands instead of wasting
resources on managing heavily encroacatmeeks.

After a shrub management plan is in place, monitoring and evaluation of the results
should be established. Monitoring is important for the assessment of any management practice,
allowing for informed decision making and improvement over {iR@binov & Gross, 2022)

The detailed shrub cover map for CHIPP allows for comparative monitafinghrub
managemenbver time, especially when combined with aerial or drone imagery at later time
intervals (e.g., 5 years, 10 years, etc.). The shrub cover map acts as a baseline on which future
management success can be objectively measured, even if inaction is the neabhdgerision.

Our monitoring and evaluation plan includes metrics to be measured (e.g., % shrub cover, %
forage, etc.), together with their location, time (befor after treatment) and management
target. The same woody plant management concept can be easily applied to other areas.

6.8. Conclusions

We identified anthropogenic variables connected to high shrub cover in the park. Shrub cover
is higher closer to the roads, while areas of meehigh to high grazing intensity also have
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the highest shrub cover. Hayed areas had about half the shrub cover compared to those that
were not hayed, and repetitive haying reduced shrub cover even more. GLS modelling allowed
us to assess the combined influence of fegaphic and anthropogenic faxg on shrub cover

and revealed the current dominant shrub encroachment drivers in the park. These drivers are a
combination of distance to hydrological features, road distance, elevation, haying, certain soil
moisture regimes (i.e., moist, fresh), langscanits (i.e., loam flat, loam steep), and aspects
(i.e., flat). The above results have been used for the development of a shrub management plan
that aims to restore ecological heterogeneity in grasslands, allowing fetelongesilience

and sustainabtly of native species and their habitats

6.9. Addendum

The section named OFuture Research6, which h
to the equivalent section of this dissertati§ection 85) and appropriately merged
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Chapter 7 TOWARDS INTEGRATING REMOTE SENSING, GIS,
AND SHRUB COVER INTO GRASSLAND ECOSYSTEM HEALTH

7.1. Preface

This chapter fulfills Objectiv@ - To investigate the integration of remote sensing approaches

into grassland management for shrub encroachment control and grassland health. It includes a
systematic review on fieldased and remotfeased measures of grassland ecosyhbteatth;it

identifies the most importamnes angrovides an overview of the remote sensing and GIS

based measures. This study includes part of the work that was conducted under project number
RFP# 2020LPLPED( 6 Dev el op me nt PRarks EBoaystémaHealth Blanitonng

Index [Year 1T Li t erat ure Revi ew an)dfor Ge Saskatghewara | Fr.
Ministry of Parks, Culture and Spoiit was supervised by Dr. Thuan Chu, with principal
investigator Dr. Xulin Guo, c@rincipal investigator myself, and research assistant Ms. Thuy
Doan.This work was published in the jourrRémote Sensing

Soubry, I., Doan, T., Chu, T., & Guo, X. (2021). A Systematic Review on the Integration of
Remote Sensing and GIS to Forest and GaadsEcosystem Health Attributdadicators,
and Measures. Remote Sensing, 13(3262301

Date of publication: 18 August 2021
Publisher: MDPI

Dr. Thuan Chu conceptualized this reseaké$, Thuy Doan and | developed the methodology,
and conducted the formal analysis and investigatipnepared and wrote the original draft,
Ms. Thuy Doan, Dr. Thuan Chu, and Dr. Xulin Guo reviewed and edited the work.
Furthermore, Ms. Thuy Doan and myself worked on the visualizations, Dr. Thuan Chu, Dr.
Xulin Guo, and myself supervised the work, and &swresponsible for the projéxt
administration.Remote Sensings an open access journal; therefore, the asthetain
copyright. The supplementary data of this wakeincluded inAppendix E and he dataset
which was analyzed and generated during this stuslyopenly availableon FigShare
(https://doi.org/10.6084/m9.figshare.14850p25

7.2. Addendum

The published manuscript includes research for both the forest and grassland ecosystem. In this
chapter, we made adjustments and left out the forest ecosystemm possiblesince our focus

is on grassland#lowever, some processing was initially done for both ecosystems, therefore,
some figures from the original manuscript correspond to both. In such instances, a note was
added to indicate thid.astly, thet i t | e of the manuscriopt was ¢
review on the integration of remote sensamgl GIS tdorest andyrassland ecosystem health
attributes, i ndi cTawaays itegratiagerdote menging, (GiSeamtirubt o
cover into grassland ecosystem healtho
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7.3. Abstract

It is important to protect grassland ecosystems because they are ecologically rich and provide
numerous ecosystem services. Upscaling monitoring from local to global scale is imperative in
reaching this goal. The SDG Agenda does not include indicatorsditetly quantify

ecosystem health. Remote sensing and Geographic Information Systems (GIS) can bridge the
gap for largescale ecosystem health assessment. We systematically reviewdshéeltiand
remotebased measures of ecosystem health for grassldeasified the most important ones

and provided an overview on remote sensing andl@kgd measures. We includeed?

English language studies within terrestrial +impical biomes and used a gfefined
classification system to extract ecological stressors and attribathsyllected corresponding
indicators, measures, and proxy values. We fdhatlalmost haff of the examined studies

used remote sensing to estimate indicators. The major stresgpadstandsvas figr azi ng
foll owed by fwhlefbmat ecchangeacti ons, composi:t
most important ecological attribufellowed by s o i | chemi stlkegsthamad st r t
fifth 3! of studies used vegetation indices; NDVI was the most common. There are monitoring
inconsistencies frorthe broad range of indicators and measures. Therefore, we recommend a
standardized field, GIS, and remote sendiaged approach to monitor ecosystem health and
integrity and facilitate land managers and pclegkers.

7.4. Introduction

Grasslands arene of themajor global ecosystems, accaungtfor 40.7%o0 f the world
terrestrial surfacéUN FAO, 2021)and provide a multitude of ecosystem services, such as
erosion control, climate regulationytrient cycling(Ninan & Inoue, 2013)forage provision,
habitat, and recreatiqhamarque et al., 2011lowever,49.25% of the global grasslands are
degradedGang et al., 2014)Ecosystem health assessments (EHA) facilitate monitoring and
protection of the ecologicabnditions ofecosystems. One of the ecosystem health definitions
is Athe degree to which the integrity of the
s u st a(Natiomal Research Council U.S., 199¥%parious entities have proposed and used
attributes and indicators to conduct EHBale & Beyeler, 2001; Fabdrangendoen et al.,
2006; Fancy et al., 2009; Wurtzebach & Schultz, 20P6)guidance document for the
conservation of biological and ecological resources, written by Unnaschi{(22@8)is a tool
for the U.S. National Parks. Hansen and Phil{@318)developed a Wildland Health Index
for the Greater Yellowstone Ecosystem, designed to communicate ecological integrity
measures to decisiamakers. Other examples include field guides for rangeland health
assessment by partnershigSaskatchewan PCAP Greencover Committee, 2008)
governmental entitieddams et al., 2016)

To accurately assess ecosystem health, certain attributes and indicators need to be
moni tored. Key wecologi cal attributes are de
persistence and are easihyegrated into a conceptual or quantitative mdtklnasch et al.,

3% Includes both forest and grassland ecosystem studies
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2008) The identification of key ecological attributes relies on their connection to existing
management challenges (i.e., extreme climatic events, disease outbreaks, and others), which
may have natural and anthropogenic consequences. These are definedgisaéstiessors

or ecosystem threats. Indicators are measurable, and assess the actual status of the key
ecological attribute and provide signals of environmental prob{@ake & Beyeler, 2001;

Unnasch et al., 2008)0verall, there is a complex set of biotic and abiotic attributes for
evaluating the resilience of a terrestrial ecosys{@tillis et al., 2018) Concisely, each

indicator corresponds to an ecological attribute and is quantified by direct measures or proxies.
For exampl e, ASoi l pHO and Aconductivityo ir
structureo attri but @asenfetat,B041)gr assl and ecosys

Remote sensing and Geographic Information System (GIS) applications in ecosystem
health monitoring are becoming more universal, overshadowing the limitations of traditional
methods(Ding et al., 2008; Xiao & Ouyang, 2002; Zlinszky et al., 2045) being able to
monitor different spatidemporal scales in a repetitive and objective mafingusch et al.,

2016) Hunt et al.(2003)emphasized the possibility of filling the information gaps between
range managers and remote sensing experts since remote sensing has the ability to detect
noxious rangeland plant species, and to estimate rangeland productivity and other rangeland
propertes (e.g., topography, surface roughness, landscape and vegetation patterns, bare soill
coverage). Ding et a{2008)established a conceptual framework for regional EHA based on
the use of remote sensing and GIS (MODIS, land cover, elevation, roads, etc.,) and computed
a weighted ecosystem health index. Zlinszky g28115)introduced the use of remote sensing

and GIS for habitat quality monitoring, while Li et §014)reviewed the application of
remote sensing in ecosystem health. Nevertheless, only ecological indicators related to biotic
interactions, composition, and structure were under consideration while hydrology,
disturbance, soil chemistry and structure, aadrrentation also need to be assessed to have a
dimensional ecosystem health assessment. Lausch @0a6, 2017, 2018j)leveloped an
informative review about remote sensiderived characteristics of forest health. A systematic
review that summarizes the ecological attributes, indicators, and measures that have been used
for EHA in thegrasslanacasystemas well asa connection to remote sensing and GIS has not
been conducted to our knowledge. A recent systematic review on ecosystem health examined
30-year trends of related publications, summarized popular subjects, journals, authors, and
studies(Yang et al.,, 2019)However, it did not include an -geepth analysis on specific
ecosystem attributes and indicat@msdit did not focuson remote sensing and GIS tadlsis

review aims (1) to identify the prevalent ecological attributes, indicators, and measures for
grassland ecosystem health assessment, (2) to analyzeithstressors and threats of this
ecosystemand (3) to analyze ecological attributes and indicators derived from remote sensing
and GIS data for EHA.

It is evident that the numerous approaches for EHA lead to difficulties in kextggnt
assessments on the condition of ecosystems. There is lack of consistent monitoring and
continuous assessment of management actions through standardized ecosystem attributes and
indicators. Although the current sustainable development goal (SDG) indicatorigor
sustainability in a consistent way around the world, there is a gap on indicators related to
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ecosystem healtliDickens et al., 2020)There are some indicators related to the forest
ecosystem (e.g., indicators 15.1.1 and 15.2.1), which do not directly look at its condition; and
other major ecosystems, such as grasslands, shrublands, and wetlands are missing. Having a
common framework dr ecological integrity measurements and EHA could benefit
environmental management boards, and become a shareable communication tool among
related stakeholders.

7.5. Materials and Methods

We reviewed literature from the database of USEalcltUni ver si ty of Saskat
database) and its linkages to Google Scholar, due to-iextrsearching abilities. We only

looked at English studies without year or publication type restrictions. The USearch database

is connected to around 48%et databases (e.g., Web of Science, Academic Search Complete,
Scopus, ScienceDirect). We used keywords related tgrémsland ecosysteraxpressions

that refer to ecosystem health, variations of words related to indices, terms that are connected

to the assessment of ecosystem health, and words related to remote sensing and GIS. The
keyword combinations that OReMe cORod gorRcIsl dad
OR Arangel ando OR Arangeo) AND (Aheal t ho
AsustayoabiAND/ OR (Aindicator*0o OR Aindexo O
Aframewor ko OR Amonitoringod) AND/OR (Aremot «
separate searches that combined Aremote sens
or threats( e . g . , Agrassl and vedgatratli odii veeomp o syidd ) 0
further examined reference lists from study reports that were used in this systematic review

and added literature to our list of potential studies. During study seleceagmducted initial

in-text screening and retained those that fell within one of the terrestridtomeoal biomes,

as defined by Olson et §2001) These include thel)l Temperate Grasslands, Savannas, and
Shrublands,2) Montane Grasslands and Shrublands, 8phdndra. Studies that were eligible

for data extraction had to include one or a combination of the following; ecological attributes,
indicators, measures, and stressors or threats.

7.5.1. Metadata Extraction

For each extractable study, a metadata record including information related to the variables
defined inTable 7-1 was kept. The publication type consisted of seven categories: (1) review,
(2) theoretical article, (3) indicator description, (4) fieldbook/guide, (5) explicit methods, (6)
direct application (case study), and (7) report. The terrestrial biomes weratsdpato

Ol s o(B0®FH categorization, and excluded the tropical and subtropical biomes, the
Mediterranean biome, dert biomemangrovesand forestelated biomesThe scale of each

study belonged to: (1) local (city or municipality), (2) regional (more than one municipality
and up to several States), (3) transnational (more than one country and less than a continent),
(4) continental/global. The extent of the stuiatea was defined in square kilometers, and the

2This is the University of Saskatchewands branding of a sy:
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resolution of spatial data in meters. The latitude and longitude were collected from the study
in decimal degrees or from the centroid of the study location. If any of the metadata attributes
were missing, they beddlhme. inot applicabl e/ av

Table 7-1 Metadata attributes collected for each study of this systematic review.

Metadata Attributes
Publication year
Journal Journal name
Publication type
Terrestrial Biome
Ecoregion
Broader geography Continent
Country
Region
Study area name
Scale
Study area Extent of study area
Resolution
Latitude
Longitude

7.5.2. Data Extraction

We extracted data related to a number of varialfliggi{e 7-1, Table %#2). For every study if

it had information on ecosystem stressors, attributes, and indicators, these were noted down.
Each indicator can be quantitative or qualitative, and-fagsled or remotbased. Qualitative
indicators do not involve detailed quantitative measuremenisaee usually determined by
looking at a site (visual assessment). It is suggested that only experts in the field should use
this techniquégPyke et al., 2002)Quantitative indicators involve specific measurements (e.g.,
counts, percentages, etc.,), and are therefore considered to be mord pydsiszhuis, 1949)
Combinations of both methods are also u&fttley et al., 2011)

We further extractednformation on the measurement frequency of the ecological
indicators the data source used, and on how different ecosystem health thresholds were
defined.After the indicators are measured and assessed, they need to be compared to a specific
threshold, which will define the ecosystem health condition of the indi¢@svks Canada,

2007) Thethreshold of ecosystem healths def i ned as fa boundary b
of an ecosystem that, once crossed, is not easily reversible and results in the loss of capacity to
produce commodi t i e(®aticmal Researaht GosntilyU.Sy a994hes s 0
threshold can be defined in different ways; using the historic range of variation in the specific
ecosystem as a referen(@nvironment and Climate Change Canada, 2019; Wurtzebach &
Schultz, 2016)using a reference plant community which corresponds to how the ecosystem
would look like in pristine conditiongPyke et al., 2002; U.S. Department of the
Interior National Science and Technology Center, 20@®5)using the opinion of experts
(Allison et al., 2002; Ismail, 2008T here are some limitations to using historical variation and
reference plant communities in a changing climate, since the species that are found within each
might change, however they might still provide essential ecosystem services that preserve its
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health (Wurtzebach & Schultz, 2016) astly, we collected information on the type of the
remote sensing (RS) sensor, theg&form or sensoname, vegetation indices (VIs) used in
related studies, the GIS data, and any other type of additional data that weilé spseafic
measures or proxy values for an indicator were mentioned, these were also extracted.

Ecosystem
Ecological Ecosystem
attribute stressor or threat
[
Ecological | | -Threshold determination
indicator -Frequency
|
[ ]
Quantitative Qualitative
[
[ | 1
Field-based Remote based Field-based

L Data source L Data source

Remote sensing

Satellite sensor —H !
index

GIS layer — Data source

Figure 7-1 Hierarchical structure of variables examined in this systematic review Getraphic
Information System).

Table 7-2 Extracted data variables collected for each study of this systematic reviéveiitise
sensing, Vilvegetation index, GliS5eographic Information System).

Extracted Data Attributes Details
Level 1
Ecological/Management stresso Level 2
Level 3
Level 1
Ecological attribute Level 2
Level 3
Ecosystem health indicator Quantification of ecological attribute
Indicator Extraction Method Qualitative or Quantitative
Historic range of variation
Threshold determination Reference plant community
Expert opinion
Measurement frequency Time measure
Level 1
Field measurement/Proxy value Level 2
Level 3
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Extracted Data Attributes Details
RS type
RS sensor
RS VI
GIS data
Other data

To keep consistency in the data collection of ecological attributes and indicators, we
chose an existing classification systdomnasch et al., 2008)eveloped for the U.S. National
Parks due to the detailed | evel i n ecol ogi ca
with this system. There are five Levkhttributes, under which there are between two and nine

Level2 attribute classesTéble 7-3). A Level3 was added when more information was
provided.

Table 7-3 Terrestrial ecosystem ecological attributes used for data extraction in this review (modified
from Unnasch et a(2008).

Level 1 Level 2

Keystone species and/or functional groups
Vegetation stratification and structure within patche
Biotic Interactions, Rare/sensitive species or species groups
Composition, Structure Infestation and mass grazihg
Componentommunities and seral stages
Spatial arrangement of key species and communiti
Channel morphology and sediments
Plant litter and mineral inputs
Hydrology Precipitation (rain, snow, fog)
Surface wategroundwater exchange
Watertemperature and pH
Soil erosion and deposition
Soil structure and drainage
Soil chemistry
Soil moisture
Soil temperature and pH
Fire area/intensity regime
Precipitation and flooding extremes
Air temperature extremes and drought

Human disturbancé
Economy /

Social response /
Connectivity with adjacent systems (terrestrial, aqua
Connectivity among similar and different patch type
within target system

Lineardevelopment density
lIncludes insect infestation and browsing activitycludes domestic grazing.

Soils Chemistry and
Structure

Disturbance

Fragmentation

Al t hough Unnascho6és study did not include
that ecological indicators should hav@ble E-1, Appendix E). Based on these, we collected
measurable indicators from the literature examined. The specific measurements for each of the
indicators are the field measurements or proxy values, which might also have a Level 2 and 3,
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depending on the amount of detail provided. Moving further, we identifie@¢bkgical
stressors and management concémms every study. Unnasch et §2008)identify direct
ecosystem threats based on the International Union for Conservation of Nature (IUCN) and the
Conservation Measures Partnership (CMP), and separate them into 11 general categories. After
consultation with the Ministry of Parks, Culture a8forts (Saskatchewan, Canada), these
were merged into broader ond®ble 7-4). The ecological stressors had three levels; Level 1
was more general, and Level 2 and 3 included severaitsessors.

Table 7-4 Ecosystem stressor classification system in this review (modified from Unnasch et al.
(2008).

Level 1 Stressor Level 2 Stressor
Residential and Commercial Development
Energy Production and Mining
Developments Biological Resource Use
Human Intrusions and Disturbance
Transportation and Service Corridors
Overgrazing

Disturbance NaturalSystem Modificatioh
Climate Change and Severe Weather
Invasive and Other Problematic /

Species and Genes
YIncludes insect infestation, disease, and natural wildfires.

The summary measures used for the collected metadata and data attnaungs
included counts and percentages. We also used a world map for the spatial distribution of the
studies that were reviewed and used collapsible tree diagrams to show the variety in ecological
attributes, indicators, measures, and stressors for easlystem and for both. Duplicate
entries were removed every time before the calculation of counts or percentages for every
met adata and data attribute. For AGI S dat ad
common broader themes, and we describe tleeeghr mai n A Ot her dataodo cat
for summary measumnalysisandthea n a |l y s i sGISdeal twaisoeoddudted manually.

Lastly, to assess the feasibility of integrating RS data in EHA for future regional and
local studies, we developed tables to match each most important ecological indicator of each
ecological attribute with a RS or GIS measure. We selected recent restedieb (pasti5lo
yearsg from our established literature list. We matched the indicators with the most prominent
stressors, which were selected based on theldam ranking of repeated occurrences. These
were refined after consulting with the Saskatcie(CanadaMinistry of Parks, Culture and
Sports. During the indicator selection process, a sensitivity assessment must be completed
(Dobbie & Dail, 2013; Soyza et al., 1990nce we identified the list of ecological indicators,
we summarized how RS techniques can estimate these for the grassland ecosystem (not all
indicators can be estimated from RS).
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7.5.3. Methodological Approach

The flow diagram of the final study selection is depictedrigure 7-223. We found 176
potentially suitable studie$Ve reached 192 potential studiegether with study reference
searches e e APotential _Studies. csvo openly
https://doi.org/10.6084/m9.figshare.14850586cessed on 14 August 202After accessing

the full text of each study, we assessed them toward eligibility and excluded 29 studies that did
either not contain the attributes of interest, fell outside of the predefined terrestrial biomes, or
where not retrievable. Overall, 148udies had extractable data (ecological attributes,
indicators, measures, stressors), whereas 15 remaining studies included valuable theoretical
information on the topic. The full list of studies together with the metadata and extracted data
variables are openly available on Fighdn&ps://doi.org/10.6084/m9.figshare.14850525
(accessed on 14 August 2021)

PRISMA 2020 flow diagram for new systematic reviews which included searchesof databases, registers and othersources

Identification of studies viadatabases and registers Identification of studies viaother methods
—
Records removed before
c screening: —
E Records identified from Duplicate records removed RBCOI:GS identified from
8 = . Websites {n = 2)
38 USearch (n=18) n=0) Organisations (n=8)
= Google Scholar (n=158) Records marked as inelgible Crtgtlon searchin _{n ~6)
: Registers (n=0) by automation fools (n=0) g in=
2 Records removed forother
reasons (n=0)
— l
Records screened »| Records excluded
(n=176) (n=0)
- ?:Eﬁ;;ssjﬁouﬁmfor retrieval HEEurts not retrieved RE.'EOFTS sought for retrieval Reports not retrieved
@ = ’ n=1) (n=16) (n=1)
®
: ] |
@
Reports assessed for eligibility Reports excluded: . Reports assessed for eligibility Reports excluded:
(n=175) ’ Did not include atfributes of (n=15) Did not include atiributes of
interest (n = 8) interest (n = 2)
Quiside of defined terrestrial
biomes (n =17)
—
A
—
o Studies included in review
3 (n=163)
3 Reports of included studies
£ (n=148)
—

Figure 7-2 Study selection flow diagram @ese from Page et gRr021)with CC BY 4.0, found at
http://prismastatement.org/PRISMAStatement/FlowDiagraccessed on 15 June 2021

7.6. Results and Discussion

7.6.1. Metadata Result¢

33 The data in this figure and paragraph correspond to studies for both the forest and grassland ecosystem.

34 The results in this section correspond to both forest and grassland .studies
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Our studies span from 1949 to 20Figure 7-3a), and have an increasing trend, with most
belonging to 2018 (12 studies) and 2016 (11 studies). Most (71 studies) refgedb
applications of EHA, followed by theoretical articles (33 studies) and reviews (31 studies) that
outline the specific methodology for completion of sueilgre 7-3b). There is an increase in

studies from the year 2000 and after, with the addition of field book guides and indicator
description studies and reports from 2002 and dfigute E-1). The large number of studies
published in 2002 are potentially related to a conference from the Western Forestry
Contractorsodo Associanhidho(@&WBECAheahah Boduthbhd
in January 2003, British Columbia, Canada. Most studies form which we extracted data in 2002
were related to the forest ecosystem in Northern US and Canada. Seventeen studies come from
books, governmentabr provincial reports, and field books and field guides related to
ecosystem health assessment. All others are journal papers published in 75 different journals.
The top three most f ReegeaSensihgof Eovironmiant (sl 4i npcal puedr es
(i RemotéSensing ( 1 0 p ap €EarestEcology and Managemeéntiy 6 paper s) .
studies represent the highest proportion (46.3%, withincrease after 200&jgure E-2),

followed by regional studies (26.5%), while transnational studies are rare (3-#fe( 7-

30).
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Figure 7-3 Number of extracted publications bg) (year, b) type, and ) study scale.

The world map shows the location of each stuegure 7-4). Although we made an
effort to have broad spatial coverage, most studies fall in the North American Continent
(50.3%), followed by Asia (19.0%), while only 11.6% of studies were located in Europe. There
is an increase in studies from 2002 and after in North America, wheigga$/snore studies
appear in Asia after 2008, &m Europe after 201 F{gure E-3). Most of the terrestrial biomes
studied are ATemperate grass/| akiglre /-5,swdhv annas
growing number of studs from 1995 and afteFigure E-4). The lowest number of studies
were in the fAMontane Grasslands & Shrubl ands
define their biome (22.2%). There was one study that worked with multiple biomes.
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Figure 7-4 Geographical distribution of case study locations by continent.

. Temperate Grasslands, Savannas, Shrublands

Temperate Grasslands, Savannas, Shrublands;
Montane Grasslands & Shrublands

Boreal Forest/Taiga

. Temperate Coniferous Forests

. Temperate Broadleaf & Mixed Forests
. Montane Grasslands & Shrublands

. Mot defined

Figure 7-5 Percentage of case studies by biome.

7.6.2. Extracted Data Resuls

The studies represented the forest gragsland ecosystem almost equally (36.3% and 37.7%
respectively (Figure 7-6b). Grassland studies show an increasing trend through siaing

from 2004 andafter Figure E-5). Some studies did not separate between ecosystems and
included various combinations of the above, including shrubland (e.g., grassland and
shrubland). Most indicators were quantitative (86.7%) with an increasing trend throughout the
years, whereas feaw (4%) were qualitative (sporadic representatibroughout the years)

35The results in the paragraph below include forest and grassland studies.
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(Figure E-6). The nature for 9.3% of indicators was not defined. The threshold determination
method for the indicators used in each study is not clearly defined in most cases (89.7%). For

the studies that report this information, historic rangeamiation prevails (4.1%)Rigure 7-

6C). This method is used from 2005 and onward, while the reference plant community is used

in both older (e.g., 1949) and newer studies (e.g., 2016). The use of expert opinion is more
recent (starting from 2014). Furthermore, it is not always clear how tferproposed

indicators have to be measured for an ecosystem health assessment. Some studies define a
ti mespan, while others are vague and use dnf|
this information is notlefined Figure 7-6a). When defined, a-§ear repeatycle is the most

common approach (3.9% from 1997 to present).
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Figure 7-6 Number of studies byaf measurement frequency)(ecosystem, ana) thresholding
method.

7.6.2.1. EcologicalManagement/Stressor

We counted the Level 1 ecological stressors #hastedin all studies (including both

ecosystem types). The main stressors are rel
by fADevelopmentso (10. 7 %), whi | eFigmme d®a). st udi
ADIi sturbance regi mesao appear t o be a stre:
ADevel opmentso and APollutiond occur from 1¢

Problematic Species &enes o (from 2004) and AAgricul tur
(Figure E-7). For the grassland studies, these two main stressors remain the same, with
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Di sturbance regimeso taking up and 19. 2%,
l nvasive & Ot her Pr odcdrsmonathaitwo tingep roceifregegently Ge n e
than the other two remaining stressors for the grassland ecosysgemre (E-8b). The main

Level 2 stressorfor both ecosystemse | at ed t o fADi sturbanceo ar e
foll owed by AGrazingo ( 1(Bgure %jb). amd wigiiere mM&di
changeo and AFire regi meo onlwhearpepaesarii Grna zsitn
considered a stressor in earlier studies (i.e., 1949, 188y)ré E-9) . Furthermore,
infestationo and Alnvasive species and noxi
however the last category only appears in studies after Zo@%r¢ 7-7b, Figure E-9). For

the grassland ecosystem, AGrazingo is the d
change 0 FigueE-1006) (

) B 14

(a) Level 1 Ecological stressors
Agriculture & Aquaculture A
Pollution -

Invasive & Other Problematic Species & Genes A

]

B

L]
Developments I:l

|

Disturbance regimes -

(b) Level 2 Ecological stressors

Wind erosion -
Vegetation manipulation A
Species extinction
Soil erosion -
Shrub encroachment
Recreation -
Mining -
Land-use change
Habitat loss A
Forest loss 4
Critical habitat-
Bailing for hay 4
~Species loss
Population expansion -
Herbicides/Pesticides -
Fertilizer -
Cultivation -
Biotic agents -
Oil and gas production -
Logging
Landscape changes -
Land use & development -
Construction 4
Soil pollution 4
Human disturbance
Air pollution 4 |
Disease outbreak - |
Fragmentation 4 |
Invasive species and noxious weeds 4 |
Insect infestation - |
Fire regime |
Grazing - |
Climate change - _ i i i i i i i _]
0 2 4 6 8 10 12 14 16 18
Count

Figure 7-7 Counts of §) Level 1 ecological stressors for all examined studies, @nidefel
2 ecological stressors for all studies where Lewtdssors are defined in grassland and
forest ecosystem.
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We foundthat for grasslands fiDevel opment so is the Level
had the greatest number of Level 2 stressors, wihi st ur bance regi meso
(Figure 7-8).
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Figure 7-8 Tree diagram of Level 1, 2, and 3 ecological stressothégrassland ecosystem.



In the regional context of North America, human development, including urban
expansion, infrastructure, and lange change, results in habitat fragmentation and losses of
grassland ecosystems. According to the World Bank stat{$tiesWorld Bank, 2021the total
population in North America has continuously increased over the past 70 years. Meanwhile,
the Gross Domestic Product, Gross National Income, and Life Expectance at Birth have also
increased. Beside the human factor, climate change has beearaeowmdggical stressor. For
example, this is a key factor that intensifies the consequences of wildfires. In the western
United States, the number of large fires increased by nearly seven per year or yearly 355 km
burned area increment during 192811 (Dennison et al., 2014)n Canada, annual burned
area significantly increased. However, fire characteristics (e.g., length of fire season, Forest
Fire Weather Index) varied spatially because of the combined change in temperature and
precipitation (Environment and Climate Change Canada, 202®pother climatechange
derived problem is severely and frequently prolonged drought. Ecological studies were
conducted locally in the U.S. grasslarie®over et al., 2014p monitor numerous ecological
indicators and examine the negative impacts of drought to ecosystem health.

Sadly, climate change is a global concern that does not only occur in North America.
In Asia, a desertification index was one of the two nature pressures which were inputs to the
PressuresStateResponse model that assessed ecosystem health in an Innedikgrassland
in China(Xiao & Ouyang, 2002)Meanwhile, grassland resilience is negatively influenced
from climate change, especially forage production. Noteworthy is the future prediction of
changing laneuse and climate on ecosystem services of mountain grasslands in Austria
(Schirpke et al., 2017)n addition to the stressors from human development, human activities
also facilitated plant invasion through international trade and tfeestt al., 2011)Moreover,
ecological degradation (e.g., soil erosion and soil carbon sink alteration) is a consequence of
unsuitable grazing systems in the long term. This problem is also challenging in Asian
grassland$Qin et al., 2004)

Sharing agreements together with annual discussion among related stakeholders (i.e.,
governments, local authorities, researchers, and ranchers) could guide toward better grazing
strategies that not only maximize grazing outputs but also maintain headtbsiagds. A
Grassland Management Plan was developed for Saskatchewan Landing Provincial Park for
2020 2030 by the Saskatchewan Ministry of Parks, Culture and 8pod et al., 2020)This
is an example in which impacts of current grazing practices were analyzed before
recommendations on grazing management strategy and optimum cattle carrying capacity were
made.

7.6.2.2. Ecological Attributes and Ecological Indicators

To get a better overview of the ecological attributes and ecological indicators, we developed a
tree diagram for grasslasdDue to the numerous ecological indicators, we only analyze
ecological attributes here. The tree diagrams give an overview of the breath of attributes and
indicators. However, they are difficult to read due to the large amount of information and do
not stow the actual percentage that each attribute has over the examined studies. This is shown

inFigure7:9. fABiotic Intenaant,i dGnsgucCampods has the
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2 attributes and contributes the most in the grassland studies (33d¢@¥e 7-9). This Level
1 ecological attribute is used in transnational stu@liesisch et al., 2016, 2018)egional
studies(Foody & Dash, 2007; He et al., 2011; Mene$esar, 2011) and local studie€Guo
et al., 2005; Lyu et al., 2020; Wu et al.,, 2019) iVeget ati on stratificat

patcheso has the | argest group of ecol ogi cal
functional groupso. The second most common L
ASoi | C h e ntit sut(ROeydo,Fgur&SA9). Qverall, he number of indicators for each
attribute is low, which shows higher consistenoytheir useamong studies. The use of
indicators related to the ABiotic Interactio

2001 and onward, even though it wesed in the oldest study (in 194%)jidure E-118). The
following four ecological attributes only start being used more frequently after Fijd €
E-11bi €)%,

(b) Contribution of grassland ecological attributes
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Figure 7-9 Percentages of Level 1 ecological attributes for all examined grassland studies.

The three prevalent ecological attributes for both forest and grassland ecosystems are:
iBi oti c Il nteractions, Composition, Structur
ADiI st urFigmerv®e.0 Hor the grassland ecosymesem, .
secondThis agrees with current knowledgénce soil stability is an important attribute of the
grassland ecosystem that prevents soil exposure and efgsi@dGuo, 2015) maintains the
potential productivity of rangelands, protects the soil, and supports stableetanpiomass
production(Saskatchewan PCAP Greencover Committee, 2@8) degradation also affects

36 FigureE-11 corresponds to both forest and grassland studies.
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nutrient cycling, seed germinations, seedling development, and many other ecological
processes that are crucial parts of a grasgldational Research Council U.S., 1994)

The contribution of each ecological attribute in the literature differs by ecosystem,
which suggests that different weights should be applied to each ecosystem when developing an
overall health scor.ogan et al., 2020; Zhang et al., 2020his approach is more difficult to
take when it comes to ecosystem health indicators and measures. We extracted 856 different
Level 1 indicators, for which only HAabovegr
ri chnesso wer e us e,doO, and A0 times mespectively). Thecefore, thé 1 7
indicatorselection should be based on specific critefiab(e E-1). Similarly, we extracted
493 different Level 1 indicator measures, fr
c ov eMebRrimaily Prducti vityo, and fAsoil moi stureo w
times, and the rest 9 respectivély)

We found alignment between the first five most contributing stressors and the main five
ecological attributes detected from the literatufdae order ofthis alignment is also
noteworthy. The fAFr ag meplateatgureo7m) whietthte relatbdut e h e
ADevel opment 6 and AAgricul tural o LULrRgurel- 1 st
7a). This is in line with the notion that ecosystem stressors and ecological attributes are
connectedLausch et al., 2018; Lemons, 2018; Trumbore et al., 2018 development of a
standardized system that connects stressors for each ecosystem with specific indicators and
measures would overcome the large inconsistencies that are currently observed for these
variables. Adoption of such approaches by global mani initiatives, such as through the
SDGs would be beneficial. Ecosystem managers would then be able to follow a straightforward
approach after identifyinghe major stressors for their management area, and their
documentation would aid in tracking ghalprogress. Priority should be given to indicators that
are used by other regional or national monitoring programs so that it is possible to combine
data over multiple programs. The current review has tried to amalgamate such studies, which
are represent@e of the Canadian ecosystems, and provides the first step toward
regional/national EHA standardization. After selecting ecological indicators for each
ecological attribute, one could develop a composite ecosystem health index to assess overall
status ad trends and engage with poliayakers and the publi@®arks Canada, 20Q7or
larger scale studies that cover a whole province or nation, an integrated index is in many cases
the only solution to make the large amount of data more digestible and interpretable by
stakeholders.

7.6.2.3. Remote Sensing (RS) and GIS attribtites

More than half of our selected studies use RS to assess ecosystem health (53.1%). Almost half
of these use lonterm multispectral data (48.8%), such as Landsat (18.1%) and MODIS
(12.6%) derived imaged-igure 7-10a,b); hyperspectral sensors are also common (16.5%),
followed by UAV andaerial imagery (13.4%), whereas LIDAR (11.0%) akDRRR (10.2%)

data are less commonly usdgéigure 7-108). In the 1990s only UAV and aerial imagery

37 Results presented are for both forest and grassland studies.
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together with RDAR sensors were used for EHA studiesSigure E-12d,9, while
multispectral, hyperspectral, and LIDAR data started being used from the years 2000, 2005
and 2009 respectivelyF{gure E-12a c). Some studies did not explicitly define the exact
hyperspectral or aerial sensor they used. In regional studies, multispectral data are widely used,
meanwhile hyperspectral data, aerial photos, and LIDAR are more frequently used in local
studiesHyperspectral data for grasslansishe second most fragntly used RS typ@2.2%)

after multispectral data (52.8%)4dble E-2). This is also reflected in the top ten RS sensors
used, with Landsat and MODIS being the most frequently used. However, these only appear
from 2001 and aftefRigure E-13a,b).

Most studies (22 studies)) used a 30 m spatial resolution, which is connected to the
long-term availability of the Landsat senséiiqure 7-10¢). The second and third most used
spatial resolutions are 250 m (9 studies) and 1 km (7 studies), which are connected to the
MODIS sensor. Lastly, the 10 m resolution, connected to Sei&jiels equal representation
as the 1 km category (7 studies). Tisidikely to increase in the following years, since the
Sentinel2 sensor provides one of the highest spagablution products that are freely
available for use from 2015 and onwards (which coincides with the Sentinel studies that span
from 2016 and afteffrigure E-13¢). The second most important resolution for grasslands is
250 m (12%) Table E-2), while 10 m resolution is the third most frequent

Vegetationindices (VIs), known as the second indicators of EMA & Guo, 2015)
can be promising indices that apply the advancement oftting and consistent data series
for EHA. From the studies examined, onB.3%6 of ecosystem health indicators were assessed
with a VI. In these studies, there are 70 different remote sensing indices used. This shows a
wide variety of indices, some of which might be more specific to certain indicators (e.g., burned
area related BR\BR). However, most indices are used only once. We therefore grouped the
modified and original versions of VIs togethe.g., GNDVI and NDVI, GSAVI and SAVI)
and present the ten most frequently used. The most common RS index is NDVI (Normalized
Difference Vegetation Index) (31.0%), which outnumbers by far other RS indices, such as
Tasseled Cap, NBR, and SAVI (each 6.9a6)] the Enhanced Vegetation Index (EVI) (5.2%)
(Figure 7-10d). These five indices are used from the year 2000 and after, with NDVI showing
an increasing trend, while the other four indices are used sporadically throughout the years
(Figure E-14). The SAVI and EVI indices are more common for the grassland ecosystem
(6.9% and 4%respectively (Table E-2). We found a significant number of newly developed
indices, either as modified versions of traditional VIs or recently invented ones to méasure
specific ecological indicators. However, application of locally specified Vis to other areas is
not practiced.

Around half of the studies used some form of RS or GIS data for specific ecosystem
health indicators. The largest part of these studies useedamgmultispectral data at 30 m
resolution.Less than a fiftlof the extracted indicators were assessed with VIs, the majority of
which was the NDVI indexThe larger representation of the SAVI index in grassland studies
could be attributed to its suitability to low density vegetation with soil expdbluete, 1988)

This lower vegetation density could be caused by either arid cl{Rateet al., 2018)r higher
disturbance. Overall prevalence of the NDVI index is expected, since it is commonly used in a
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variety of study scales (i.e., transnational, regional, local) to represent green vegetation amount,
andnet primary productivity in grasslan@Shen, Chen, & Xu, 2011; Guo et al., 200Based

on a combination of MODIS NDVI time series and agricultural statistics, a M®B$&d
mowing frequency index was introduced to examthe spatial patterns of grassland
management intensity across 27 European counfistel et al., 2018)Moreover, other
researchers chose the same remote sensing tadasaluaé grassland ecosystem health in
China(Qin et al., 2004pr to measue gross primary productivity, an ecological indicator of
the Southern Alberta prairi€Wang et al., 2020)Since the coarse spatial resolution of the
MODIS sensor is not prefedin local studies, aerial photo/UAV NDVI can be ugBash et

al., 2017) NDVI remains promising for future research as lower levels of this index could
indicate unhealthy vegetation, lower biomass, or increases in bare ground.
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(a) RS sensor types used (b) Top 10 RS sensors used
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Figure 7-10 Examined studies bya) remote sensor (R$ype, p) top ten RS sensorg) (spatial
resolution, andd) top 10 vegetation indices (VIs) used to assess indicators of ecosystem health
(studies that did not use RS sensors are excluded here).

Apart from using remote sensors and indices, several types of GIS data are also used.
Most of these can be derived from RS, however, since these are used directly without the use
of RS, we classified them in a separate categbaple 7-5). GIS data related to roads and
fences have been used t o @&einensesal, 2002 Paftison a g me r
et al., 2016)Other GIS layers, such as those related to grazing units or GPS collars have been
used for Al nf est a(@oaon, 201%R Rrankemiad, 201 Whila Incatiorgy 0
occurrences of species and |l and use can be u
t y p €Lauver et al.,, 2002)Land cover and land use layers have been used under the
ADIi sturbanceo attribute, fa@indetd.,2008)ng, f or i
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Table 7-5 Common GIS datasets used in ecosystem health studies.

GIS Datasets Example Studies
Topographic information in local/national/glob: Hammi et al(2010) Ding et al.(2008)

;ga|:3jr'ﬁ‘zéeD£giag¥sggr‘];\j./'OQ\i’dC&mOU][r?r Anderson and Crof2009) Lyu et al.(2020)
pe. eg -9 MO basolli et al(2015) Huang et al(2010) Doan

RADAR (Radio Detection And Ranging) or (2019) Powers et a(2013)

multispectral sensors)
Ding et al.(2008) Wei and Wang2014)
Anderson and Crof2009)

Land usd_and cover (LULC) layers

National Forest/Wetland Inventories Powers et al2013)
Landscape features (e.g., rivers, roads, barricRoch and Jaegép014) Doan(2019) Heilman
fences, boundaries, pipelines, ecoregions) et al.(2002)

There are three AOther datao groups that
The most common group is meteorological data with regional or local temperature,
precipitation, humidity, and radiation on different time bases (e.g., monthly, dailymher
of socioeconomic indicators are used to assess their effects on ecosystem health. Examples
includegrossdomesticproduct (GDP), population, level of urbanization, and food production.
When agriculture and aquaculture is ondéhafstressors to ecosiem health, researchers are
concerned about the increase of agricultural and aquacultural activities and gather statistics
from local administrations in this field (e.g., agricultural yield, irrigation areas, fertilizer
amount).

7.6.3. Additional Analysis Results

Tables 76, E-3, E-4, and E5 summarize how specific satellite sensors and their variables can

be used to monitor ecol ogi cal indicators un
Structureo, fASoil Chemistry andastdridydreloog
attributes. RS makes it possible to estimate biophysical variables as well as energy fluxes and
nutrient cycling(Zhang et al., 2018)n transnational and regional scales, the medium spatial
resolution and long time series of Landsat imagery are beneficial for ecosystem health studies

in grassland Finer spatial resolution satellite sensors (e.g., Sernate more frequently

used if there is no need for time series data. Costly satellite sensors are recommended for
regional and local studies. The RS approach lessens the burden of fieldvankglalsome is

needed for training and validation. Consequently, the use of RS becom&®raahd cost

effective alternative, its methods are strictly quantitative and prevent potential biases from
gualitative assessments and its overall approach is less destructive to the ecfsysgem

Guo, 2015)
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Table7-6Satellite sensors and derived indices

Il nteractions, Composition, and Structurebo
Derived
Satellite  Independent Ecosystem _. Modeling Example
Sensors Variable Health Field Measurements Method Studies
Indicator
Correlation
analysis

Average canopy

Unma_nned EGI, Canopy Abovegrounc height, dried tween CanolCZhang et al
Aerial ) ) : height model
. height metricc  biomass aboveground : (2018)
Vehicle . and field
biomass
aboveground
biomass

Spectral curves of

Hyperion Vegetation species, height, crov  Multiple
yp NDVI, RVI, composition; >PE¢!€s: Nelght, P
width, endmember Lyu et al.

Landsat 8 ;
oLl DVI, MSAVI, SPecies, density, coverage, a spectral mixturc  (2020b)
Radar v functional dried aboveground  analysis
components bi
iomass
Ground percentage
Landsat NDVI, NBR, cover of componen
Hvperspectr: DFlI, groups, dried above Linear spectra Xu et al.
yp date:l ¢ NDSVI, ground mixture analysi (2014)
NDWI, PVl  Vegetation  biomass, spectral
cover reflectance
Landsat NDVI, NDWI ratio, vegetation 1y ’
decision tree  (2013)
coverage
method
Unmanned 00y _ Averagecanopy  o.,.h heighizhang et al
Aerial . .2 Canopy heigr height, dried
. heightmetrics . model (2018)
Vehicle aboveground bioma
Abundance of
Landsat NDVI, NMDI _ invasive plan_t specie Random fores Das et al.
MODIS Invasive top soil algorithm (2019)
species cove samples
Hyperspectre He et al.
data (2011)
Multiple linear
Sent!nell NDVI, EVI, Leaf Area Leaf area index, regression, Wang et al
Sentinel2 . support vector
LSWI Index aboveground bioma . (2019)
Landsat machine,

random forest

EGI: ExcessGreen Index, NBR: Normalized Burn Ratio, NDVI: Normalized Difference
Vegetation Index, RVI: Ratio Vegetation Index, DVI: Difference Vegetation Index, MSAVI:
Modified Soiladjusted Vegetation Index, TVI: Transformed Vegetation Index, DFI: Dead Fuel
Index, NDSVI: Normalized Difference Senescent Vegetation Index, NDWI: Normalized
Difference Water Index, PVI: Perpendicular Vegetation Index, TCB: Tasseled Cap brightness,

t

TCG: Tasseled Cap greenness, TCW: Tasseled Cap wetness, TCA: Tasseled Cap angle, TCD:

Tassebd Cap distance, NMDI: Normalized Muliand Drought Index, LSWI: Land Surface
Water Index, EVI: Enhanced Vegetation Index, EVI2: Enhanced Vegetation Index 2.
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The benefits of RS make its use for EHA an attractive method for key stakeholders,
such as land managers and policymakers. With this review, we demonstrated the use of RS in
EHA with the hope to inspire and encourage further research into this direatimti&l
limitations are the spatial mismatch that can exist between thebfsleld plot data and the
scale of the image pixéKu & Guo, 2015) Not all indicators can be measured with RS (even
less with freely available data), since they are limited by their resolution (spatial, spectral,
temporal). This is especially true for fiseale assessments (e.g., spespific cover, soll
chemistry, tickness of litter layer). These could be assessed from organizedifiggdor
crowdsourcing tools. Unfortunately, there is no detailed field book or guide that discusses
which RS approaches should be used for which ecosystem indicators. This nmeakes th
implementation and consistency in the use of RS tools among regions a more complicated task.
An initial attempt was made in this section. Future research through partnerships should be
conducted towar d t hese goal s a ddtowad the&k e ho |l d
determination of appropriate ecosystem health indicators and measures. This would ensure
their successful monitoring, and would spur ongoing management adjustments. The role of
stakeholders is key toward determining the ecosystem stressedsumm which each EHA
is built.

7.6.4. Limitations

Although our systematic review was conducted with a broad variety ofrelpted
keywords in an extensive database, some relevant literature might not have been acquired. For
instance, studies a@pedfic grassland types for ecosystem health assessment without the term
i g r a s solld vk deen missellloreover a longer timespan for searches (>4 months)
might have resulted in more studies. N@tive English publications were not used, potentially
leading to uncertainty in the representativeness ofioal literature library, and to a bias in
geographic location of studies (e.g., fewer studies in northern and southeasE#ysied (-

4). Future studies could include more detailed keyword searches and studies in other languages.
By implementing a common classification system for the ecological attribitabse(7-3) and
stressorsTable 7-4), there could be uncertainty in the classification. There might be variables
from studies that do not entirely correspond to one of the established classesreviesr
mightinterpret and classify a variable differently, potentially creating confusion. Future studies
should try to quantify such uncertainties and biases to get a more reliable result on the
contributions of the variables extracted in this review.

7.7. Conclusions

This systematic review shows tltlhé grasslandcosystem is characterized by different
ecological attributes and a broad variety of indicators and measures, exposing inconsistencies
in current EHA approaches. Nevertheless, egabkslandtressor is well aligned with its main

ecological attributes. The major stressor for grasslands figr azi ng o, foll ow
changeo. ABi otic interactions, composition,
attributefollowed byiSo i | chemi st ry an ohoretharalf oftheexanined Mo r e ¢

studies used RS or GIS data for the estimation of indicators, a fact that encourages their future
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use in a more systematic way. Less than a fifth of studies used vegetation indices, from which
NDVI was the most common. The development of a standardized EHA system and protocols
for use ofEarth observation and GIS data in EHA are major future suggestions. Nevertheless,
not all indicators can be accurately estimated from RS and GIS data due to resolution
constraints, and fieldwork remains important for validation purposes
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Chapter 8 DISCUSSION AND CONCLUSIONS

8.1. Preface

This chapter summarizes the main findings from this dissertation, the scientific and societal
contributions, major limitations, and future research suggestgattion 8, wasrenamed from
O0Recommendations for fut uaelwaspublstedinonsd to O6F

Soubry, I., & Guo, X. (2022). Quantifying Woody Plant Encroachment in Grasslands: A Review
on Remote Sensing Approaches. Canadian Journal of Remote Serdihg, 1
https://doi.org/10.1080/07038992.2022.2039060

Date of publication: 22 March 2022

Publisher: Taylor & Francis Ltdyttps://www.tandfonline.com

This research was conceptualized by my supervisor (Dr. Xulin Guo) and Mr. Merek Wigness while
| conceived and wrote the manuscript. As authors, we have permission from the publisher to reprint
this work in the current dissertation as long as it is notighuddl commercially (se®ppendix F).

In section &, modifications were made to include future research suggestions that resulted from
the completion of the dissertation objectives and from ongoing and scheduled future research
work.

8.2. Main findings

The hypotheses that i) shrub encroachment can be accurately detected using a combination of
spectral, structural, and textural features and that ii) the connection of shrub presence and absence
to local and global factors can inform grassland managemericaepted based on the results of

this dissertation. The major findings of Chapters 3, 4, 5, 6, and 7 are detailed below:

1 From Chapter 3, | found thalhe spectral absorption regions related to chlorophyll and
water content are most useful towards shrub cover detegtimy fieldbased data.
Depending on the season, a different sepefctral wavelength regiorsmore significant
at separating shrub covegignificant relationships between shrub cover and the blue
(spring), red (spring), NIR (stronger in summer), and far SWIR (summer and fall) spectral
regionswere foundOverall,the spring season offered a higher number of bands that allow
for moderate and goahrub coveseparationMoreover, | found thatpectral separability
of shrubs increases witthrub coverwherethe earliest shrub cover can be separatad
grasseswvhen its cover reaches between 10.1% and 25% during summer and between
10.1% and 35% during spring.

1 From Chapter 4, | found thtite summer season is optimal for spebtrséparatigwestern
snowberryfrom wolfwillow, using the blue and red regions of the spectiTinese two
regions are influenced by stronger chlorophyll absorption for western snowberry compared
to wolfwillow. However, tlese results are related to the leaf/branch scale, and not the
canopy scale, for which the reflectance properties could be different.
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In Chapter 5, an objettased machine learning classification algorithm that used spectral,
structural, and textural features was used to map shrub cover in CHIPP with an overall
accuracy that was higher than 92%. This showcases that the addsimmulofsize, shape

and texturento the classification algorithm plays an important role in accurately detecting
shrubs. Moreover, we found significant connections between variables that are directly or
indirectly related to soil moisture availability and higelrub presence on the landscape.
Both local topographic and hydrological features can influence water availability for
woody plant growtl{Lopez et al., 2019)

Chapter 6 was built on the results of Chapter 5 and showed that botedapleic and
anthropogenic variables are significantly related to shrub cover in the park. Shrub cover
was higher closer to roads, in medHnangh intensity grazing sites, ndrayed agas,
upslope flat deep loamy soil regions, and moderate soil moisture regesests from this
chapter have been used to identify grassland management priority areas for shrub
encroachmenin the park. These areas were then usedherdevelopment of woody

plant management plan that aims to restore ecological heterogeneity in grasslands,
allowing for longterm resilience and sustainability of native species and their habitats
(Government of Saskatchewan, 2022)

Chapter 7analyzedthe use of remote sensing and GIS for estimation of grassland
ecosystem health over a-y2artimespan and looked at the use of shrub cover as a
grassland health measuBased on the literaturefdund that the major ecological stressor

for grasslands i s #@gr azjwhionlyorfestldinentioeed by i
Ashr ub e n clalsodourdthafinitoot.i ¢ i nteracti ons, cCompoc
is the most i mportant e sib ¢hengsirycaads t att ¢ +r U b e o .

Aroundhalf of the examined studies used RS or GIS data for the estimation of ecosystem
health indicators, a fact that encourages their future use in a more systematic way.
However, the large number of ecosystem health indicators and measures that are currently
used generate inconsistencies in ecosystem health asses3renessults of this study

were used for the development opark ecosystem health index for the Saskatchewan
Parks this indexhas incorporatedhrub cover as an ecosystem health meggensonal
communication with Dr. Thuan Chu)

8.3. Contribution

This dissertation adds to existing scholarly knowleolge

T

T

Identifying appropriatepractices to detesthrub coveusingremote sensing/hich can be
applied toother areas with the same encraaglwoody speciesor species with similar
characteristics
o Depending on the season and woody plant species, different spectral, structural, and
textural attributes can be usked their detection.
Allowing for more accurate estimation of true grassland productivity for grazers through
shrub detection
o From the RS perspective, vegetation index values (e.g., NDVI) in grasslands are
connected to productivity. However, NDV
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livestock industry because it includes unpalatable woody plEmitsgap idridged
by developing a method to reliably detect woody cover in grasslamdsthen
subtracting thatoverfrom the productivity estimate.
1 Creating a better understanding on the faateleted tovoody plantoverand their ranked
importance in th€ypress Upland ecoregiaf the Great Plains in Canada
o Thiscanshedmorelight on habitat preferences and growing conditions of
encroaching woody specidacilitating their management.

Furthermore, this dsosdyesrelatadta: onds contributi on
1 Shortterm impacts:

o Creating awareness about current and potential future shrub spreading in SK
rangelands through distribution maps that can be used in shrub adaptive
management strategies

o Informing rangeland managers on how different land managepnactices (e.g.
grazing treatmenishaying affect (i.e. facilitate or eradicate) woody plant
development in grasslands

0 Supporting the conservation and restoration of the SK rangelands through the
previous two pointdy suggesting the integration of shrub cover into grassland
ecosystem health assessments

1 Longterm impacts:

o This dissertation can be the stepping stone towanidsetding a shrub encroachment
risk distribution model to rangeland managers which will allow them to take
specific early control actions that could limit the spread of woody species through
practical conservation/management solutions

o Providing food security and preventing economic losses through forage availability
that will support the meat and milk industiiManaging against invasive species
and woody plant encroachment (WPE) on native grasslands is very important for
i ndi vi du a(CR$Br2020)sicce thesedcan impact the economic viability
of the sector.

o Reinforcing the conservation and restoration of the mixed grass prairies which will
lead to

A stable and increasing quantity and quality of the grasslands animal and plant
habitat

A increases and maintenance of animal and plant diversity

A preservation of grassland ecosystem services

8.4. Limitations

There area few major limitations pertaining to this dissertation. First, all methods wesed
using field data and/apticalaerial imagery. | did not test the scalability of my results to satellite
data(optical and/or radar)This means thathese studies were conducted at several small pilot
areas and primarily at the field level. Crasdidation with satellite imagery across ecoregions will
be necessary to confirmy results When looking at factors contributing to shrub covanséd
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the WestBlock of Cypress Hills Interprovincial Paik Saskatchewaas a study area. This area
belongs to the Cypress Upland ecoregion and is uniseading my research to other ecoregions
acros the prairie provinces would allow for a more holistic view ofghenomena contributing
to shrub coveimn grasslandsMoreover, there is no loagerm fire history for the park as fire is
suppressed from a management perspective. Therefore, it is not possible to understand the effects
that fire (either wildfire oprescribed fire practicebpson shrub cover. Fieldwork was conducted
in commercial rangelands close to Burstall, Saskatchewan during the summer of-2021LIJ
to look at this effect in more detail, where 24 sites were set up with paired burned and unburned
plots. These data avmder analysis.

The potential drivers of shrub encroachment have been separated into climatic, topo
edaphic, and anthropogerfiChapter 2(Soubry & Guo, 2022)) Synoptic climatic influences on
WPE, such as changes in precipitation and temperature, were not examined in this dissertation.
Instead, we focused on the microenvironment generated byettahic featured.astly, based
on the methods that | used, | found that the threshold for shrub cover detection was a22®und
shrub cover, which is too higbr the enduserin terms of early detection and management.

8.5. Future Research

Challengesrelated to studying, mapping, and modellM{PE by combining ecology andS
remain. Howeveregxistingor future developmentsouldovercomethese An integratedapproach
that includes emogy, RS, and subsequent modellisgneeded to fully understanPE and
implementeffectivemanagement strategies.

| hypothesize that a synergistic, mkdénsor approach incorporatirgpectral, structural,
and textural features can provide a solution for estimating WPE in grasslangsoved WPE
mapping has been reported using rs#tnsor approaches. Structural and textural characteristics
from Sentinell and 2 data were combined and were highly correlated®(79) with UAV-based
reference data of woody covg¢attenborn et al., 2019Fusion of Landsat 5 and LiDAR juniper
cover estimates led faghercorrelation with field data than the use of LIDAR dafa@c80 vs.
r?=0.74,p<0.001)(Sankey & Glenn, 2011)n my future research | am planning to combine several
optical and RADAR satellite data sources to imprae®dy plant detection in grasslandsctive
RADAR data provide structural information (height, roughness, moisture), while passive optical
data offer spectral details. Combining thige enhances accuracy and reduces erfidrs. fusion
approach is recommended for WPE mapping, especially in-goarte areagKattenborn et al.,
2019; Lindsay et al., 2019and has been effective for invasive species mag@hglam et al.,
2011; Rajah et al., 2018, 2019)

Detecting WPE at its early stages is critical for effective management. During the seedling
and early establishment phase of woody plant growth, vulnerability is highest, while surviving to
maturity greatly limits management optiof/rcher et al., 2017)To prevent WPE, eargtage
control is essentialdentifying early warning signals in the spatial transition of ecosystems to
alternative stable states is vital for effective ecosystem management and pres@féditienal .,

2014) However,detecting earlystage WPE using moderatesolution remote sensing images
remains a challerg(Wang et al., 2021)n our fieldbased observations, we were able to detect
woody plants when they covered 10 to 25% of an inpage. | suggest enhancing this capability
by developing an eargletection model for WPE. This mods&iouldincorporate additional field
data andhouldbe tested at various spatial resolutions, including-héglelution aerial and drone
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imagery, as well as moderatesolution satellite imagery, to identify the earliest possible detection
stage for WPE across different datasets andadpasolutions.

A more thorough understanding of the factors driving WPE is a key starting place to
achieve a global model of WREgrasslandsAn RS modelling approach could fill the gap in the
literature and help researchexshieve both a regional and leteym understanding of WPHO
best understand how WPE will impact grasslands in the future, RS data can be integrated within
productivity models. These can then be used to predict WPE and areasetivalnerabldo
increasing encroachmeiht.this dissertation, bloked at the connection between 2018 shrub cover
and a number of topedaphicand anthropogenic variablesoWever, shrub cover is not static and
progressesvertime. Since shrub cover was mapped for one time period (2018), any results from
the analysis correspond to that point in time. Inclusion of historical aerial imagery could provide
insight into where shrub expansion occurred. Areas of high shrub cover migle asthigh a
priority for shrub management if they have historically had higher shrglempre, rather than if
shrub expansion accelerated quickly over the last few decades. Therefore, future research could
add more historical aerial imagery to map shrub cover and their diivens.current research,
usea 7-year interval to analyze the changes of shrub cover in the park through aerial imagery and
connectthat to local and climatic drivers (work in progresthe analysis of climate data in
combination with historical shrub cover could provide insight on the impact of climatic drivers on
shrub encroachmenfTime series that map WPE with satellite imagery can reveal-temgy
patterns and trends that facilitate the quantification of WPE ré@svierPizarro et al., 2012;
Munyati et al., 2011) The connection of these trends to driving factors could enhance our
knowledge and should be further investigated

Overall a universaWPE model isdifficult to achieve because WPE drivers differ among
bioclimatic zoneqWilcox et al., 2018)Further integratingocial sciences coulgrovide even
greater benefits, dgaimans have a large influence on WitecesseéThomas & Twyman, 2004)

For instance, the hesitancy of a landowner to use fire management due to the risk towards his
property, the opinions of neighbors on such pr
skills could influence WPE presen@#/ilcox et al., 2018)Overall, studies that try to understand

how these social effects influence Wate not as prevaleasthose that reta to ecology and RS.

A literature review on WPIh 2007found that only 1.2%fostudies include@ socialdimension
(Buenemann, 2007)

With established methods to monitor WPE with RS and knowledge on WPE drivers,
predictive WPE distribution modglcould be established to facilitate current and future WPE
management. These models should&ased on differennhtensities of WPE drivers (e.glimate
and land management scenayioSlimate scenarios include temperature, precipitation, and
greenhouse gas extrem({&PC, 2000)Land management scenarios should include the etiécts
burning grazing, or mechacally removing woody plants on grassland ecosystem function
(Komac et al., 2013Relevant modellingime horizonsshould includeshortterm (£3 months),
mid-term (approx. 1 year), and lotgrm (1525 yearspredictions Similarmodelling approaches
have beerapplied to nomative species invasiorfglissel et al., 2012; Mainali et al., 20Hs)d
should be extended to WPE.

Lastly, it is recommended that future research on the relationship between moisture
availability on the landscape and shrub encroachment take a closer look at the species level
distribution patterns. Examining the presence of all shrubs, both upland and wetland gpecies
relation to waterelated features on the landscapay yield unclear results. Categorizing shrub
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cover presence by species might give a baistification for the locations in which they choose
to establish.

8.6. Conclusions

In our systemati@nalysisof RS and GIS integration in grassland ecosystem health research
(Chapter 7(Soubry et al., 202}))we found thaaroundhalf of the studies we reviewed used RS
and GISto estimate ecosystem healind only one study considered shrub encroachment as a
threat to the grassland ecosystdrnis reinforced to us the importance of mapping WPE using RS
methods to enhance grassland management. To further our understanding, we conducted a
comprehensive literature review on the use of RS for WPE detéCli@mpter 2(Soubry & Guo,
2022b) and prepared an opinion piece emphasizing the use of precise WPE def(@tapser
1, (Soubry & Guo, 20223) These two chaptessstablished the theoretical basis for using RS to
guantify WPE, the statef-the-art in RS technologiesnd analytical methods used to monitor
WPE. These chapteralso identified current challenges and made recommendations for practical
solutions. We followed up on the recommendatjorisating innovation to 1) quantify WPE using
field-based and aerial data, andgajninsights on the local drivers of WPE.

From the fieldbased data, we found that: 1) the earliest WPE can be identified when its
summercover reaches between 10% and 25% of an image pixiletd are more spectral bands
to identify woody coverin the spring, and 3) the correlation between the light spectra and shrub
cover indicated four wavelength regions that are statistically significant, which differ by season
(Chapter 3(Soubry & Guo, 20213) We were also able to isolate the best season to spectrally
discriminate between two common woody encroachers by generating simulated optical broadband
data(Chapter 4(Soubry & Guo, 2021h) During our reviewin Chapter 2we found that there is
debate about WPE drivers, from which the importance of a multitude of local and global drivers
has emerged (climate change, fire regime changes, soil and topography differences, etc.). Using a
combination of optical aerial image($0cm spatial resolution), topedaphic and anthropogenic
variables, we identified accurate shrub cover in a SK provincial park using an-lodgect
approach (overall accuracy >92%) and connected it to local d(f@beper 5 & 6 (Soubry et al.,
2022 Soubry et al. 2028nder review). These results were embedded in a WPE management
plan for the parkwhich was developed by Dr. Dale Gross and Ms. Larissa Rof@mxernment
of Saskatchewan, 2022)
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APPENDIX A
OF THE OPTIMAL SEASON AND SPECTRAL REGIONS FOR SHRUB
COVER ESTI MATI ON I N GRASSLANDS®OG
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Figure A-1 Seasonal separability metrics results of Divergence (D) and Bhattacldsiarzce (B),
across all wavelengths for each defined shrub cover group

Table A-1 Average seasonal land cover % change of transect quadrats.

Spring to summer average chang  Summer to fall average change

Stable Increase Decrease Stable Increase Decrease
Grass cover (%) 0 9 17 0 7 110
# quadrats 33 80 15 22 14 90
% quadrats 26 63 12 17 12 71
Shrub cover (%) 0 6 17 0 6 T 6
# quadrats 43 33 46 48 34 43
% quadrats 35 27 38 38 27 34
Forb cover (%) 0 7 18 0 7 T8
# quadrats 51 46 29 40 36 51
% quadrats 40 37 23 31 28 40
Standing dead cover (% O 8 19 0 13 15
# quadrats 30 48 47 11 107 7
% quadrats 24 38 38 9 86 6
Litter cover (%) 0 5 16 0 4 i 6
# quadrats 27 24 64 45 17 64
% quadrats 23 21 56 36 13 51
Bare ground cover (%) 0 N/A iP5 0 N/A T8
# quadrats 107 0 8 125 0 3
% quadrats 93 0 7 98 0 2
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Spring to summer average chang  Summer to fall average change
Stable Increase Decrease Stable Increase Decrease

Rock cover (%) 0 N/A 8 0 7.5 15
# quadrats 123 0 5 125 2 1
% quadrats 96 0 4 98 2 1

Other cover (%) 0 N/A 15 0 5 T 5
# quadrats 127 0 1 126 1 1
% quadrats 99 0 1 98 1 1

Table A-2 Average seasonal Plant Area Index (PAI) change of quadrat cover.

Spring to summer Summer to fall
Stable  Increase Decrease  Stable Increase Decrease
PAIl average chang 0 0.81 1T0. 2¢ 0 0.43 1T0.69
# quadrats 0 108 16 1 32 94
% quadrats 0 87.10 12.90 0.78 25.20 74.02

Table A-3 Average seasonal soil moisture change within transect quadrats.

Soil moisture Spring to summer Summer to fall
(m3/m3) Stable  Increase Decrease Stable Increase Decrease
Average change 0 0.041 1T0.01 0 0.029 1T0. 02
# quadrats 0 113 15 2 69 57
% quadrats 0 88.28 11.72 1.56 53.91 44.53

Table A-4 Wavelength classification according to separability thresholds for the seasonal Transformed
Divergence (TD), JeffrieMatusita (JM) and M5tatistic (M) metrics.

Separability class along the wavelength spectrur

Separability Separation betweer
Season : (%)

metric shrub groups Poor Moderate Good

TD 0% and ~100 % 32.2 22.9 44.8

Spring JM 0% and ~100 % 50.4 33.3 16.3
M 0% and ~100 % 24.4 75.6
0% and 50.175% 50.6 49.4

TD 0% and ~100 % 59.0 13.6 27.4

Summer JM 0% and ~100 % 70.6 13.7 15.7
M 0% and ~100 % 36.1 63.9
0% and 40.180% 53.3 46.7

TD 0% and ~100 % 58.3 9.6 32.0

Fall JM 0% and ~100 % 100 0.0 0.0

M 0% and ~100 % 58.9 41.1
0% and 40.175% 64.9 35.1
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Table A-5 Mean simulated reflectance value (%) per Landsat 8 and SeR#irtend for each shrub cover group and seaseBlyB, GGreen,
R-Red, RERed Edge, W. VapWNater Vapour).

Mean simulated reflectance value (%)

Shrub Shrub Landsat-8 Sentinel2A

gfo"fg cover% B G R NIR SWIRISWIR2 B G R REL RE2 RE3 NIR RE4 W.Vap.SWIR1 SWIR 2

1 0 G5€ 83 88 237 253 159 59 84 88 124 196 21.6 229 237 251 255 16.0

2 0110 54 81 84 238 244 150 57 82 84 120 197 21.8 230 239 251 246 152

Spring 3 1013552 81 84 241 240 146 56 82 84 121 201 222 234 242 256 242 147
4 3515047 75 7.4 233 231 138 50 7.6 7.4 11.3 195 21.4 226 233 249 233 140

5 5017534 6.4 52 260 209 113 3.7 6.6 51 103 21.9 242 253 261 272 211 115

6 100 3.C 75 3.6 388 196 98 3.3 7.9 32 12.3 345 37.8 383 388 383 199 85

1 0 3€67 61 237 216 123 42 69 6.0 102 194 21.7 229 237 251 219 12.4

2 0110 3€ 63 55 240 206 113 3.8 65 54 98 195 21.9 232 240 252 208 115
summer 3 10.112537 6.4 56 251 206 111 39 66 55 99 205 231 243 252 259 208 112
4 2514034 6.1 51 256 20.1 106 3.7 6.3 50 95 20.8 235 248 256 265 204 10.7

5 40.1i8027 54 37 267 181 89 29 56 35 85 21.8 247 259 26.7 27.3 183 9.0

6 100 3.6 7.7 45 420 192 7.2 41 80 42 123 353 398 411 420 421 195 73

1 0 4¢ 75 92 214 257 154 52 75 94 124 164 183 202 214 242 259 156

2 01i20 4€ 73 9.0 216 255 151 50 7.3 9.2 12.3 165 184 20.4 216 245 258 153

Fal 3 2014042 69 7.8 21.8 228 132 45 69 7.8 116 169 188 20.7 21.8 244 230 134
4 40.5753E 65 6.2 218 211 116 3.8 6.7 6.1 11.0 17.2 190 207 218 242 213 118

5 100 5.C11.4 7.4 384 226 97 56 11.86.7 180 31.8 349 37.0 384 406 229 98
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TableA-6 Mean simulated reflectance value per Sent#teband for each shrub cover group and seasaBifB, GGreen, RRed, RERed
Edge, W. VapWater Vapour).

Shrub cover Sentinel2B mean simulated reflectance value (%)
Shrub cover %

group B G R RE1 RE2 RE3 NIR RE4 W.Vap.SWIR1SWIR?2

1 0 59 84 88 123 194 216 229 237 251 25.3 16.0

2 0.1/ 10 57 82 84 120 196 21.7 231 238 251 24.4 151

Spring 3 10.]:1:35 56 82 84 120 199 221 234 241 256 24.1 147
4 35.1' 50 50 76 74 11.3 193 213 226 233 249 23.1 14.0

5 50.1' 75 3.7 66 5.0 102 216 241 253 26.0 27.2 209 114

6 100 33 7932 121 340 377 383 388 384 19.7 8.4

1 0 42 6.9 6.0 10.2 19.2 216 229 237 25.1 21.7 124

2 0.1 10 38 6,554 97 193 218 232 239 252 206 114

Summer 3 10.]:1:25 39 66 55 98 202 23.0 243 251 259 20.7 111
4 25.11 40 37 6350 94 205 235 248 256 265 20.2 10.7

5 40.11 80 29 56 35 84 215 246 259 26.7 27.3 18.1 8.9

6 100 41 8.1 42 121 348 39.7 41.1 420 422 19.3 7.2

1 0 52 74 94 124 16.3 182 202 214 24.1 25.8 15.6

2 0.1 20 50 73 9.2 123 164 183 204 216 244 25.6 15.3

Fall 3 20.1i 40 45 69 7.8 11.6 16.8 18.7 20.7 21.8 243 22.8 133
4 40.11 75 38 6.7 6.1 109 17.0 189 20.7 21.8 24.2 21.1 117

5 100 56 11.£66.7 178 31.6 347 370 384 40.6 22.7 9.7
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Table A-7 Tukey Honestly Significant Difference (HSD) pdgic adjusteg-valuesper Landsat 8 and Sentir@h band for each shrub cover
group pair and season-flue, GGreen, RRed, RERed Edge, W. VapWater Vapour). Red colored values are signifigamalues within the
95% confidence interval (adj-value<0.05) and yellow values are those that are significant within the 90% confidence interval, but not in the 95%
confidence interval (adp-value between 0.05 and 0.1).

Tukey HSD posthoc adjustedp-values Yell. <0.1 Red <0.05
Shrub Landsat-8 Sentinel2A
Seasongroup 5 o g nR SWIRSWIR 5 ¢ R RE1 RE2 RE3 NIR RE 4W. vap, SWIR SWIR
pairs 1 2 1 2
1-2
1-3 0.054
1-4 0.0010.05C 0.001 0.096 0.001 0.087 0.001 0.097 0.020
1-5 0.0000.00C 0.000 0.000 0.052 0.000 0.000 0.000 0.000 0.000 0.000
1-6 0.0000.004 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.00C 0.0000.00C 0.000 0.000 0.000
2-3
2-4 0.010 0.032 0.011 0.035
Spring 2-5 0.0000.00C 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
2-6 0.0000.027 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.00C 0.0000.00C 0.000 0.000 0.000
3-4 0.014 0.019 0.015 0.019
3-5 0.0000.00C 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000
3-6 0.0000.01z 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.00C 0.0000.00C 0.000 0.000 0.000
4-5 0.0000.02t 0.000 0.000 0.057 0.000 0.009
4-6 0.000 0.000 0.000 0.000 0.043 0.000 0.000 0.0000.00C 0.0000.00C 0.000 0.000 0.000
5-6 0.004 0.000 0.000 0.000 0.000 0.000 0.0000.00C 0.0000.00C 0.000 0.000
1-2
1-3 0.069 0.070
1-4 0.0110.02% 0.004 0.012 0.010 0.039 0.005 0.012
1-5 0.0000.00C 0.000 0.042 0.001 0.000 0.000 0.000 0.000 0.000 0.0410.0220.0360.041 0.001 0.000
1-6 0.004 0.000 0.000 0.053 0.000 0.000 0.000 0.000 0.0000.00C 0.0000.00C 0.000 0.059 0.000
Summer gi
2-5 0.0000.00z 0.000 0.038 0.020 0.000 0.000 0.005 0.000 0.006 0.0300.0190.0320.03¢ 0.020 0.000
2-6 0.00C 0.012 0.000 0.000 0.000 0.001 0.000 0.0000.00C 0.0000.00C 0.000 0.000
34
3-5 0.0000.00C 0.000 0.014 0.001 0.000 0.001 0.000 0.001 0.014 0.001

3-6 0.00C 0.002 0.000 0.000 0.000 0.000 0.000 0.0000.00C 0.0000.00C 0.000 0.000
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4-5 0.0020.05€ 0.000 0.042 0.002 0.000 0.094 0.043
4-6 0.00C 0.000 0.000 0.000 0.000 0.0000.00C 0.0000.00C 0.000 0.000
5-6 0.0000.00C 0.000 0.000 0.000 0.000 0.0000.00C 0.0000.00C 0.000

1-2

1-3 0.093 0.017 0.022 0.002 0.006 0.023 0.002
1-4 0.007 0.000 0.006 0.000 0.015 0.000 0.006 0.000
1-5 0.00C 0.008 0.000 0.042 0.000 0.000 0.000 0.000 0.0000.00C 0.0000.00C 0.000 0.049 0.000
2-3 0.049 0.003 0.001 0.000 0.078 0.001 0.002 0.000
2-4 0.005 0.000 0.002 0.000 0.012 0.000 0.002 0.000
2-5 0.00C 0.002 0.000 0.011 0.000 0.000 0.000 0.000 0.0000.00C 0.0000.00C 0.000 0.013 0.000
3-4 0.090

3-5 0.0430.00C 0.000 0.000 0.003 0.000 0.000 0.0000.00C 0.0000.00C 0.000 0.000
4-5 0.0030.00C 0.000 0.001 0.000 0.000 0.0000.00C 0.0000.00C 0.000

Fall

Table A-8 Tukey Honestly Significant Difference (HSD) pdsic adjusteg-valuesper SentineRB band for each shrub cover group pair and
season (BBlue, GGreen, RRed, RERed Edge, W. VapVater Vapour). Red colored values are signifiganalues within the 95% confidence
interval (Cl) (adjp-value<0.05) and yellow values are those that are significant within the 90% CI, but not in the 95%pSiglagj.netween

0.05and 0.12).
Tukey HSD posthoc adjusted pvalues Yell <0.1 Red <0.05
Season Shrub group pairs Sentinet28
B G R RE1 RE2 RE3 NIR RE4 W.Vap. SWIR1 SWIR 2
1-2
1-3 0.051
1-4 0.001 0.090 0.001 0.096 0.019
1-5 0.000 0.000 0.000 0.000 0.000 0.000
1-6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2-3
Spring 2-4 0.011 0.036
2-5 0.000 0.000 0.000 0.000 0.000 0.000
2-6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
34 0.015 0.019
35 0.000 0.000 0.000 0.000 0.001  0.000
3-6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4-5 0.000 0.061 0.000 0.008
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4-6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5-6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1-2
1-3 0.068
1-4 0.010 0.041 0.005 0.012
1-5 0.000 0.000 0.000 0.000 0.048 0.022 0.036 0.041 0.001 0.000
1-6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.053 0.000
2-3
2-4

Summer 2-5 0.000 0.006 0.000 0.005 0.035 0.019 0.032 0.037 0.019 0.000
2-6 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
34
35 0.000 0.001 0.000 0.001 0.014 0.001
3-6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4-5 0.002 0.000 0.082 0.043
4-6 0.000 0.099 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5-6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1-2
1-3 0.006 0.022 0.002
1-4 0.015 0.000 0.006 0.000
1-5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.043 o0.000

Eall 2-3 0.078 0.001 0.001 0.000

2-4 0.012 0.000 0.002 0.000
2-5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012 o0.000
34 0.037
35 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4-5 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.099




APPENDI X B: SUPPLEMENTARYSEASANAERI| AL FO
SPECTRAL SEPARATION OF WESTERN SNOWBERRY AND
WOLFWILLOW IN GRASSLANDS WITH FIELD
SPECTRORADIOMETER AND SIMULATED MULTISPECTRAL BANDS

Table B-1 Wavelength classification according to separability thresholds for the seasonal Transformed
Divergence (TD), JeffrigdMatusita (JM), and Mtatistic (M) metrics

Season Separability Separability class(%)
metric
Poor Moderate Good
Spring TD 84.83 1.92 13.25
JM 93.71 6.29 0.00
M 83.15 16.85
Summer TD 80.40 2.04 17.57
JM 80.76 4.80 14.45
M 39.57 60.43
Fall TD 99.90 0.12 0.00
JM 100 0.00 0.00
M 91.97 8.03
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Table B-2 Mean simulated reflectance value (%) per Landsat 8 and Sefinend for each shrub species and seaseBi{B, GGreen, RRed,
RE-Red Edge, W. VapWater Vapour, SWIR=Shortwave infrared).

Mean simulated reflectance value (%)

Landsat 8 Sentinel2A
Season oMW “BTTGT R NIR SWIR SWIR B G R RE RE RE NR RE W. SWIR SWIR
Species 1 2 1 2 3 4 Vap. 1 2
Spring W. 30 75 36 388 196 84 33 79 32 123 345 37.8 383 388 383 199 85

Snow.
Wolfw. 8.3 11.8 9.7 349 19.3 10.8 8.7 121 9.4 148 30.8 339 344 349 340 195 10.9

Summer  W. 38 7.7 45 420 192 72 41 80 42 123 353 39.8 411 420 421 195 7.3

Snow.

Wolfw. 9.3 135 11.0 554 23.8 12.3 9.7 13.8 10.7 17.5 459 53.3 545 554 541 24.0 12.4
Fall W. 50 114 7.4 38.4 226 9.7 56 11.8 6.7 18.0 31.8 34.9 37.0 384 40.6 229 9.8

Snow.

Wolfw. 9.8 149 14.2 53.2 327 184 103 152 14.0 22.1 43.4 493 51.7 532 541 330 185

Table B-3 Mean simulated reflectance value per Senti2band for each shrub species and seas@Bi{B, GGreen, RRed, RERed Edge, W.
Vap-Water Vapour, SWIR=Shortwave infrared).

Mean simulated reflectance value (%)
Season Shrub Sentinet2B
Species B G R RE1 RE2 RE3 NIR RE4 W.Vap. SWIR1 SWIR2

Spring W.Snow. 33 79 32 121 340 37.7 383 388 38.4 19.7 8.4
Wolfw. 8.7 121 94 147 304 338 344 349 34.1 19.3 10.8

Summer  W.Snow. 41 81 42 121 348 39.7 411 420 42.2 19.3 7.2
Wolfw. 9.7 139 10.7 173 451 532 545 554 54.2 23.8 12.3

Fall W.Snow. 56 11.8 6.7 178 316 347 370 384 40.6 22.7 9.7

Wolfw. 10.3 152 140 219 429 491 51.7 53.2 54.2 32.8 18.5




APPENDIXC: SUPPLEMENTARY MATERI AL FOR O6MAPPI
COVER IN GRASSLANDS WITH AN OBJECT -BASED APPROACH AND
| NVESTI GATI NG THE CONNECTI ON TO TOPOGR.

Figure C-1 Landscape units of CHIPP West Block.

Figure C:2CHI PP West Bl ockés grasslands by Range
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