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ABSTRACT 

Cognitive impairment (CI) is a leading cause of disability in patients with Multiple 

Sclerosis (MS). Although CI has catastrophic effects on patients’ quality of life, there is no 

approved treatment for it. Low Field Magnetic Stimulation (LFMS) is a novel non-invasive brain 

stimulation technique that has promising benefits in improving mood and cognitive function in       

animal studies of traumatic brain injury, major depressive disorder and Alzheimer’s disease, 

suggesting a transdiagnosic cognitive benefit among different neuropsychiatric disorders. In this 

study, we hypothesized that LFMS can alleviate demyelination-related cognitive deficits in a 

cuprizone (CPZ) mouse model of MS. CPZ is a copper chelator widely used to generate brain 

demyelination. Feeding CPZ to young adult mice for six weeks generates diffuse demyelinating 

lesions in both gray matter and white matter areas, predominantly in the prefrontal cortex, 

hippocampus and corpus callosum.  

One-hundred and twenty mice were divided into four groups (30 mice/group) and 

received CPZ (no, yes) and LFMS (no, yes) for up to 6 weeks, respectively. Behavioral tests 

including open-field test (OFT), Y-maze test and forced swim test (FST) were done after 3 and 6 

weeks of treatment. Half of the mice from each group were euthanized at each time point, 

followed by brain immunobiology and Western blots.  
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The study showed that CPZ treatment caused significant working memory, short term 

memory and learning deficits, which were prevented with LFMS co-administration. The OFT 

and Y-maze test did not reveal motor function impairment in demyelinated mice. LFMS 

treatment also decreased the severity of demyelination in both frontal cortex and hippocampus. 

LFMS may exert its protective effects through modulating the expression of Transforming 

Growth Factor Beta-1 (TGF-β1), a target for an investigational intervention under clinical trials 

for MS. TGF-β1 is a critical cytokine for neurogenesis and inflammation. The results suggest the 

therapeutic potential of LFMS for cognitive remediation in MS patients. In addition, it provides a 

non-invasive and affordable approach to increase TGF-β1 in the brain for neuroprotection and 

neurogenesis.  
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CHAPTER 1. BACKGROUND AND LITERATURE REVIEW 

Introduction  

Multiple Sclerosis (MS) is the most common cause of demyelination in the central 

nervous system (CNS) in humans and Cognitive Impairment (CI) is one of the most debilitating 

primary neuropsychiatric symptoms that often co-occur with pure neurologic symptoms, 

affecting up to 70% of MS patients (Beck, Metz, Svenson, & Patten, 2005; Davids, Hartwig, & 

Gastpar, 2004; Flensner, Landtblom, Soderhamn, & Ek, 2013; Hussain & Belderbos, 2008; 

Poppe, Wolfson, & Zhu, 2008; Rao, Leo, Ellington, et al., 1991; Reimer, Aderhold, Lambert, & 

Haasen, 2006). There are no approved treatments for CI in MS. While depression is treatable, it 

is under-managed due to decreased tolerance of side effects in MS patients. Untreated depression 

worsens CI, and CI decreases treatment response of depression in MS patients, a fact that 

highlights the need for finding an effective and available treatment for CI in MS. 

Repetitive transcranial magnetic stimulation (rTMS) is a well-known form of non-

invasive brain stimulation and is widely used for managing depression. This method has also 

been shown to reduce anxiety, spasticity, and depressive symptoms in MS, but the effects of 

rTMS on CI and MS progress is inconclusive. Low-field magnetic stimulation (LFMS) is a 

variation of the rTMS, and works by conveying low-intensity magnetic stimulation to various 

cortical and subcortical areas.  Clinical studies reported rapid mood-elevating effects of LFMS in 

depressed patients or those with bipolar disorder, and animal studies documented improvement 
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of CI after gamma-band (gamma-LFMS) treatment in some non-MS models (Zhang Y. et. al., 

2014; Zhen J. et. al., 2017) 

 In the current study, we examined the effects of gamma-LFMS on CI and the potential 

mechanisms related to those effects. 

Cognitive impairment in MS  

As one of the leading causes of disability in MS, CI greatly decreases quality of life and 

is associated with unemployment and social isolation (Beck, Metz, Svenson, & Patten, 2005; 

Davids, Hartwig, & Gastpar, 2004; Flensner, Landtblom, Soderhamn, & Ek, 2013; Hussain & 

Belderbos, 2008; Poppe, Wolfson, & Zhu, 2008; Rao, Leo, Ellington, et al., 1991; Reimer, 

Aderhold, Lambert, & Haasen, 2006). The most common affected domains of cognition in MS 

are attention, information processing speed, and memory. Social cognition and vasomotor skills 

are also widely impaired in MS patients (Chalah & Ayache, 2017; Chiaravalloti & DeLuca, 

2008; Cotter et al., 2016). Although CI can start at any stage of MS, it is mostly found in 

progressive forms of MS (Benedict et al., 2006; Rao, Leo, Bernardin, & Unverzagt, 1991). Once 

CI occurs, it rarely improves. The severity of CI is associated with patient’s cognitive function 

before MS and the age at which the disease starts (Chiaravalloti & DeLuca, 2008; Ekmekci, 

2017). Disease activity (e.g. MS relapse) can worsen cognitive function temporarily but is not 

associated with the progress of CI (Duque et al., 2008). Up to this point, there are no established 

treatments for CI management in MS. Disease-modifying therapies (DMTS), memory-enhancing 

agents, physical exercises and other options including cognitive retraining demonstrated limited 

and inconclusive cognitive benefits in MS (Feinstein, Freeman, & Lo, 2015; Sumowski et al., 

2018).  
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Cognitive impairment and MS brain pathologies  

The origin of CI in MS is elusive. White matter (WM) and gray matter (GM) pathologies, 

including neuronal and oligodendrocyte (OL) loss, myelin damage and disrupted repair, and 

microglial activation have shown to be involved in CI in MS (DeLuca, Yates, Beale, & Morrow, 

2015; Miller & Raison, 2016; Rimkus et al., 2018). Neuronal and OL loss could result from 

glutamate-mediated excitotoxicity, oxidative injury or mitochondrial failure (Haider et al., 2011; 

D. Mahad, Ziabreva, Lassmann, & Turnbull, 2008; D. H. Mahad, Trapp, & Lassmann, 2015).  

Recently, a selective loss of GABAergic parvalbumin-positive (PV+) interneurons has 

been documented in both animal models (Falco, Pennucci, Brambilla, & de Curtis, 2014; Lapato 

et al., 2017; Potter et al., 2016) and post-mortem studies (Clements, McDonough, & Freeman, 

2008; Gray, Thomas, Betmouni, Scolding, & Love, 2008). PV+ interneurons are responsible for 

generating gamma band oscillations (GBOs, 30–120 Hz) via synchronized inhibition of large 

pyramidal cell clusters (Cardin et al., 2009; Sohal, Zhang, Yizhar, & Deisseroth, 2009). GBOs 

(especially 40 Hz) are major role players in retaining synaptic plasticity and cognition (Buzsáki 

& Wang, 2012). PV+ interneurons have extensive myelination compared to other types of 

neurons (Hendry, Houser, Jones, & Vaughn, 1983), which enables PV+ neurons to provide 

metabolic and trophic support to PV interneurons (Inan et al., 2016; Kann, Papageorgiou, & 

Draguhn, 2014). PV+ neurons also facilitate GBOs (Inan et al., 2016; Kann et al., 2014; Kim et 

al., 2015). Abnormal GBOs are shown to be strongly related to CI in autism, schizophrenia and 

Alzheimer’s disease (Brambilla & Tansella, 2007; Kochunov & Hong, 2014; Wheeler & 

Voineskos, 2014). Entraining gamma stimulation at 40 Hz to the brain is demonstrated to have 

potential anti-inflammatory and neuroprotective effects in an animal model of Alzheimer's, 
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evidence for possible therapeutic value in using this approach to treating neurodegeneration and 

immunomodulation (Iaccarino et al., 2016).   

Based on various studies on animals and post-mortem brain tissues, data indicates that 

excitotoxicity is a major contributor to demyelination, OL death, and tissue damage in MS 

(Gonsette, 2008). Demyelinated axons are exposed to neurotoxic insults, oxidative stress, and 

energy deficiency; thus, they are vulnerable to more insult. This eventually results in irreversible 

axonal damage (Irvine & Blakemore, 2006). Remyelination is a natural regenerative process to 

restore myelin sheaths on demyelinated axons (Franklin, 2002; Patani, Balaratnam, Vora, & 

Reynolds, 2007; Patrikios et al., 2006). However, remyelination is compromised in chronic MS 

lesions (Barkhof et al., 2003). Myelin debris should be cleared by microglia in order for 

oligodendrocyte progenitor cells (OPCs) to be recruited for remyelination (Kuhlmann et al., 

2008). Reduction in myelin debris clearance and impaired remyelination are documented to be 

partially due to non-efficient microglial function (Lampron et al., 2015).  

Cognitive impairment and microglia function in MS 

 Although studying the microglia is not a primary objective of the current study, it is still 

essential to review the function of microglia here, for two reasons. First, microglia plays a more 

prominent role than T-cells in the pathology of progressive MS. The same pattern is respectively 

observed when Cuprizone model is compared to other animal models of MS which are based 

upon autoimmunity. Second, we aim to study the effects of Transforming Growth Factor Beta1 

(TGF- β1), which has been documented to be involved in microglia polarization. The following 

paragraph will briefly summarize what is currently known about microglia as their function 

pertains to this study. 
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 Cortical lesions have shown a paucity of T and B lymphocyte infiltrations, which 

suggests a “closed” blood brain barrier (BBB) in progressive MS (Kutzelnigg et al., 2007). 

Microglia are thought to have an important role in immune regulation without BBB disruption. 

When activated, microglia phenotype changes into M1 or M2, a phenomenon called polarization 

(Mori et al., 2017). M1 is the neurotoxic form due to release of excessive glutamate, nitric oxide 

(NO) and pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-

1 β, IL-6 (Ceulemans et al., 2010; Domercq et al., 2007; Gregersen, Lambertsen, & Finsen, 

2000). Reduction in M1 microglia were shown to protect both GM and WM in animal models of 

MS (Faissner et al., 2017; Heppner et al., 2005). However, M2 plays a neuroprotective and anti-

inflammatory role via removing axonal and myelin debris and producing anti-inflammatory 

factors (Jin & Yamashita, 2016; Karamita et al., 2017; Neumann, Kotter, & Franklin, 2009; 

Rawji & Yong, 2013). In cases of decreased M2 microglia, remyelination has shown to be 

inhibited (Kotter, Li, Zhao, & Franklin, 2006; Miron et al., 2013). Moreover, M2 malfunction is 

shown to be related to cognitive and emotional disturbances in other neuropsychiatric diseases 

including Alzheimer’s disease, stroke, and major depression (Miller, 2009; Nakagawa & Chiba, 

2014; O'Connor et al., 2009; Sarlus & Heneka, 2017). Recently, activated microglia has 

demonstrated the ability to regulate PV+ neuronal synapses; thus increasing the synchronized 

GBOs. This in turn increases the expression of anti-apoptotic and neurotrophic molecules and 

decreases cortical neuronal apoptosis after injury (Chen et al., 2014). Entraining gamma-

stimulation at 40 Hz to the brain has demonstrated possible anti-inflammatory and 

neuroprotective effects in an animal model of Alzheimer's disease through microglia modulation 

(Iaccarino et al., 2016). These findings suggest that GBO entrainment can modulate microglia 

function and may improve cognitive functions (Burke, Kerr, Moriarty, Finn, & Roche, 2014; 
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Iaccarino et al., 2016; McGeer & McGeer, 2015). 

Cognitive impairment in cuprizone demyelination model  

CPZ is a well-known copper chelator commonly used to generate CNS demyelination 

(Suzuki & Kikkawa, 1969). Adding CPZ to young adult mice diet over a six week period leads 

to demyelination, OPC proliferation, and activation of microglia in specific areas of the brain 

including the prefrontal cortex, hippocampus, cerebellar peduncles, and corpus callosum 

(Torkildsen, Brunborg, Myhr, & Bo, 2008). CPZ can induce diffused lesions in both GM and 

WM areas which is similar to periventricular normal-appearing white matter (NAWM) damage 

(Goldberg, Clarner, Beyer, & Kipp, 2015). When CPZ is removed from the animal’s diet, 

spontaneous and complete remyelination is observed within six weeks (G. G. K. Matsushima & 

P. P. Morell, 2001). However, in case of longer exposure to CPZ (12 week) chronic 

demyelination will happen , which is also accompanied by PV+ interneuron loss, cortical 

atrophy, incomplete remyelination and chronic microglia activation (Zendedel, Beyer, & Kipp, 

2013). The pathological events observed in chronic CPZ demyelination model is quite 

comparable to some important aspects of CI in MS (see details in 2.2 and 2.3).  

The mechanism through which CPZ-induced demyelination happens is still elusive. It has 

been suggested that CPZ ingestion might lead to a state of copper deficiency which could cause 

mitochondrial dysfunction, oxidative stress, and OL death (Hiremath et al., 1998). It is also 

known that CPZ triggers microglia activation leading to release of proinflammatory cytokines. 

The latter phenomenon is suggested to be the cause of OL and PV+ interneuron loss (G. G. K. 

Matsushima & P. P. Morell, 2001). Recently, it has been shown that a disruption in microglia 

polarization in chronic CPZ demyelination model might be the reason behind impaired 
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remyelination (Berghoff et al., 2017; Clarner et al., 2012). The CPZ model has previously been 

shown to induce CI and depressive-like symptoms without significant motor function deficits 

which are commonly observed in other MS models (Xiao et al., 2008; Zhang et al., 2007; Y. 

Zhang et al., 2008). This provides us with an opportunity to focus on the psychiatric aspect of 

CPZ model demyelination and possible means of treating them (Xu, Yang, McConomy, 

Browning, & Li, 2010). In this study, we used the acute CPZ model to study the therapeutic 

effects of LFMS on CI, as well as related brain pathologies and subsequently check the possible 

mechanisms of those findings. 

Transforming Growth Factor Beta and MS 

Transforming Growth Factor Beta1 (TGF- β1) is a cytokine which has been shown to be helpful 

in remyelination and lowering inflammation in MS (Xie et al., 2018). This has specifically been 

studied in progressive MS (Nataf, Barritault, & Pays, 2017). The role of TGF- β1 in elevating the 

immunomodulatory ability of neural stem cells has also been recently studied (Xie et al., 2018). 

The exact action mechanism of TGF- β1 is still elusive. However, so far we know that TGF- β1 

is involved in regulating the CNS myelination timing (Palazuelos, Klingener, & Aguirre, 2014) 

and excitatory/inhibitory synaptic input which involves dopaminergic and GABAergic neurons, 

a quality that supports the potential role of TGF- β1 in neuropsychiatric disorders (Luo et al., 

2016). In addition, TGF- β1 has been shown to be involved in regulation of cellular proliferation, 

cell differentiation, and cell survival. While TGF- β1 is found exclusively within choroid plexus 

epithelial and meningeal cells, it has been demonstrated to be increased in amount and spread as 

a response to stresses like ischemia (Pal, Lovas, & Dobolyi, 2014). Yet, TGF- β1 has failed to be 

considered as a marker for inflammation (Masuda et al., 2017). Microglia polarization, from M1 
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to M2 is another quality of TGF- β1 that has recently been studied (Xie et al., 2018).   

Low Field Magnetic Stimulation (LFMS), a novel approach 

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation 

method widely used in treating major depression and other neuropsychiatric disorders (Brunoni 

et al., 2017). rTMS is documented to alleviate symptoms like spasticity and depression in MS, 

but the effects of this brain stimulation on CI is far from clear (Amatya, Khan, La Mantia, 

Demetrios, & Wade, 2013; Palm, Ayache, Padberg, & Lefaucheur, 2014).  

 

 

 

 

 

 

Figure 1.1 Illustration of LFMS device and parameters 

A                                                                        B 
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Figure 1.1 A. Illustration of DMS. B. Illustration of treatment position. C. Magnetic field 

cluster. D. Magnetic field distribution. 

C 
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Figure 1.2. The schematic diagram of low-field magnetic stimulation (LFMS) 

 

 

 

 

Figure 1.2. The schematic diagram of low-field magnetic stimulation (LFMS). A. magnetic 

field distribution. Every 2 min the magnetic field is switched between uniform and linear gradient distri-

bution. B. Magnetic pulses. Every 2 seconds output is followed by 8 seconds resting interval. C. In each 

2-second stimulation is composed of rhythmical trains spiking 6 ms pulses with intervals of 19 ms and 

constitutes the intermittent gamma burst stimulation at 40 Hz rhythm. D. Magnetic flux density.  
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LFMS is a non-invasive magnetic stimulation device. It works through producing diffuse 

and low-intensity magnetic stimuli to multiple cortical areas (with a magnetic flux density of 

Max (B) < 5mT, induced electric field Max E < 0.5 V/m) (Shafi, Stern, & Pascual-Leone, 2014) 

(Figure 1). This magnetic field is less than what is required for inducing neuronal depolarization; 

however, it is sufficient to induce membrane changes in the cortical and subcortical areas (Shafi 

et al., 2014). From a clinical aspect, LFMS was shown to be beneficial in treating mood 

disorders, namely bipolar depression and major depressive disorders, with few treatment-

emergent adverse events (Carlezon et al., 2005; Rohan et al., 2014). In animal studies, treatment 

with gamma band (gamma-LFMS) at 40 Hz showed improvement in depressive symptoms and 

CI (Yan Zhang et al., 2014; Zhen et al., 2017). It is still unclear how LFMS induces these effects. 

Gamma-LFMS, similar to other forms of gamma stimulations, applies strong neuroprotective 

effects by restoring excitatory/inhibitory balance. It also regulates neurogenesis and microglia 

activation (Yan Zhang et al., 2014; Zhen et al., 2017). Moreover, LFMS may also affect 

migration and proliferation of oligodendrocyte precursor cells (OPC), which is thought to be 

regulated through glutamate (Gautier et al., 2015) and GABAergic pathways (Zonouzi et al., 

2015)  
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CHAPTER 2. STUDY DESIGN AND METHODOLOGY 

Animal model  

Cuprizone (CPZ) is a Copper Chelator which has long been used to induce demyelination 

(Jelle Praet et.al. 2014) When CPZ is mixed with the animal chow, demyelination will happen in 

specific areas of the brain, namely, the corpus callosum, frontal cortex, hippocampus, and 

cerebellum. Acute CPZ demyelination models of MS was used to examine the impacts of 

gamma-LFMS on 1) CI symptoms associated with demyelination; 2) demyelination and neuronal 

death; 3) Study the possible role of TGF-β1 in LFMS mechanism of action. To test these 

hypotheses, C57BL/6 mice (7 weeks old) were purchased from Charles River (Montreal, 

Canada) and after one week of acclimatization were randomly assigned into 1 of 4 groups in a 2 

X 2 experimental design, consisting of CPZ-treated mice receiving either sham treatment (CPZ) 

or gamma-LFMS treatment (CUPT), and healthy mice with a normal diet who received either 

sham treatment (CTL) or gamma-LFMS treatment (LFMS) (total N=120). Cuprizone (CPZ, 

Sigma-Aldrich, St. Louis, MO, USA) was mixed into the milled Lab Diet rodent chow (PMI 

Nutrition International LLC, Brentwood, MO, USA) with a final concentration of 0.2% (w/w). 

Food was dispensed between animals twice a week ad libitum because we did not intend to add 

food restriction to our model as an additional stressor factor. Animals were weighed at the 

beginning of the experiment to provide us with a baseline weight and then weighed weekly. The 

weight records were afterwards used for two main reasons. First, weight was used as a general 

indicator of the animals’ condition, since a dramatic decline in weight could be a sign of 

impending deterioration of health status. Second, CPZ is notorious for causing weight loss in 

C57BL/6 mice, although weight will start to be regained after the CPZ diet is switched to normal 
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diet (Praet, Guglielmetti, Berneman, Van der Linden, & Ponsaerts, 2014). All CPZ mice were 

fed with chow including 0.2% CPZ for up to 6 weeks to induce acute demyelination. At the end 

of week 3 and week 6, half of the mice from each group underwent behavioural tests followed by 

euthanasia and pathological studies. The reason behind this time point selection was our aim to 

study the effects of LFMS on our demyelination model at two different situations, namely: After 

3 weeks of CPZ diet which marks the peak of inflammation in the brain and at the end of 6 

weeks which is the established complete demyelination. We assumed that comparing the efficacy 

of LFMS at these time points could provide us with a clue as to the optimum time of the LFMS 

intervention. 

 LFMS treatment  

Mice in their (non-metal) cages were put on the LFMS device and received 20-min sham or 

LFMS treatment from day one of the experiment, on a daily basis (excluding the weekends), 

until the last day that the mice were in the experiment. The device is made of two 360 mm- 

diameter-coils and a control centre that generates intermittent gamma band stimulations (Figure 

2). The settings of the machine were based on previous studies (Yan Zhang et al., 2014; Zhen et 

al., 2017). In brief, the magnetic field alters every 2 min between approximate and linear 

gradients. The alternation cycles include 2 seconds (sec) on and 8 sec off and the treatment was 

applied for 20-mins. Every 2-second-output is made of 80 trains of LFMS, which forms a 40-Hz 

rhythm. There are 6 pulses in each train at 1000 Hz frequency and 19 msec intervals. The 

Maximal magnetic flux density (BMax) is less than 2 mT, with peak induced electric field (EMax) 

of less than 0.5 V/m (Figure 3). The mice in the sham group followed the same treatment routine 

except for receiving no magnetic stimulation.   
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Behavioural tests  

Motor function 

 In order to make sure that the results of the behavioural tests are a true reflection of the 

cognitive state of the animals, the animal movements in Open Field Test (OFT) and Y-maze 

were recorded and analyzed (please see the details below). 

Open field test  

The anxiety-like behaviour of mice was assessed in an OFT for 5 min (He, Xu, Yang, 

Zhang, & Li, 2005). The OFT was performed using a roofless cubical (50x50x40 cm) made of 

white hard plastic sheets located in a well-lit silent room (Figure 3). The surface of the box floor 

was divided into five equal squares and the outer row of these squares was determined as the 

peripheral area and the rest of the nine squares in the middle were appointed as the central area 

(Michael L. Seibenhener et. al. 2015).  For each animal to be in one of these areas, more than 90 

percent of the animals’ body must have been inside that area. The OFT works based on the 

mouse’s constant struggle between the urge to explore new areas and their paucity of 

assertiveness as small rodents. The conflict between the desire to explore and the desire to avoid 

the anxiogenic stimuli of open and high spaces in rodents is a useful tool to distinguish whether 

an animal’s level of anxiety has reached a point that leads to a significantly less exploratory 

behaviour (Sumnall, O'Shea, Marsden, & Cole, 2004). The mice were placed at the center of the 

box and left free to explore the area for 5 min and their movements were recorded during the test 

time. The time that the animal spent in the center of the box during the test was used as an index 

of the anxiety level of the animals. Moreover, the distance travelled by each mouse and the lines 
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they crossed were also calculated using ANYMAZE software and used as a measure of the 

animal’s gross motor function. 

Y-Maze 

The Y-Maze is a gross test for spatial memory (Lamberty Y, 1992). It is a well-known 

test which is usually used for two different aspects of the cognition: spatial working memory and 

recognition memory.  It consists of a Y formed apparatus with three equal arms each 120˚ apart 

from each other and 40 cm in length, 5cm wide and 10 cm in height. To measure the animals’ 

intermediate to long term recognition memory, a two-trial mode of Y-maze (also called forced 

alternation test) is performed, (A Comprehensive Behavioral Test Battery to Assess Learning 

and Memory in 129S6/Tg2576 Mice, Andrea Wolf et. al. 2016) meaning that at first the animal 

is trained to roam the maze while one of the arms is blocked with an object inside and after a few 

training sessions, the closed arm is opened, and the mouse is allowed to explore the whole maze. 

It is expected that the animal dedicates more time to visiting the newly opened arm which was 

previously closed. However, what we measured in our animals was spatial working memory 

which is usually assessed by checking the percentage of complete spontaneous alternations.   

Each mouse was place at the end of an arm and in order to preserve the consistency of the test, 

arm “A” was chosen as the start point of the Y-maze to begin with and mice were allowed to 

explore all three arms freely. Each time that a mouse completes a set of three non-repeating 

entries to the maze’s arms was calculated as one alternation and the whole test was recorded for 

5 mins (Joyce L. W. Yau et. al. 2007 & Mehrdad Faizi et. al. 2011).  This Y-maze test assesses 

the ability of the mouse to remember which arm they entered last and pick a different one for 

their next arm entry, a value that is calculated as the percentage of the spontaneous alternations 
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completed during the test period. The number of entries to each arm was also calculated and used 

as a measure of the animals’ mobility. The total number of entries minus 2 was determined as the 

maximum potential number of alternations. Then the real occurred alternations were calculated 

and normalized as the percentage of total possible alternations. The criteria for the animal entry 

to be considered as a real entry into the arm was when the whole animal’s body (including at 

least two thirds of the tail) was inside the arm. If an animal had less than eight entries during the 

whole course of the test, that animal was excluded from the group. If a mouse re-entered an arm 

right after exiting it but before entering another arm, it was not counted as a separate entry and 

was not included in calculation formula for the total possible number of alternations of the 

animal.  

Forced-swimming test (FST) 

This test induces a "behavioural despair" that comes from being in an unescapable 

situation. The FST is used as a predictive tool to posit the probability of a therapeutic 

intervention efficacy for anti-depressant treatments. The cumulated time that the mouse is not 

actively attempting to escape during the test indicates “behavioural despair” and is calculated as 

total immobility time. The time that it takes for the animal to actually show the first sign of 

despair, which is when is starts to float with no struggle in the test jar, is recorded as “The 

latency to the first immobility” (Steru, Chermat, Thierry, & Simon, 1985). In FST, the mice will 

be placed in a Plexiglas cylinder (10 cm internal diameter, 20 cm high) filled with 10 cm deep 

25–26 °C water. The duration of the experiment is 6 min, and the immobility of mice will be 

counted during the last 5 min (Porsolt, Le Pichon, & Jalfre, 1977). We did repeated FSTs to 

check the ability of the mice to habituate. This marks a basic form of learning in animals, on the 
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theory that animals with a normal cognitive state should be able to adapt to new conditions faster 

than those who suffer from cognitive impairment. When exposed to a stressful, yet non-fatal 

situation, we expected the mice in the CTL group to show signs of adaptability earlier than those 

with CI, as it has previously been documented that normal mice tend to do so (Mul, Zheng, & 

Goodyear, 2016).  

Brain histology and immunostaining  

Euthanasia and tissue preparation 

Following each of the behavioural test batteries, half of the mice from each group were 

randomly selected for euthanasia and tissue harvest. Animals were anesthetized in Isoflurane 

chamber and then perfused transcardially while still under the influence of Isoflurane. In brief, 

the animal’s thoracic cavity was exposed and using a sharp pointed pair of scissors, a nick was 

made in the right atrium. Then 2-4% Phosphate Buffer Saline (PBS) was slowly perfused into the 

left ventricle. The animal liver’s color was used as an index of perfusion success and when the 

liver color became significantly pale, 4% Paraformaldehyde (made from scratch using Cold 

Spring Harbor Protocol) was perfused to fix the brain. (Tissue designated for Western Blot 

samples were harvested without PFA perfusion) The brains were then carefully extracted and 

dissected into different areas namely, prefrontal cortex, middle cortex, rest of the cortex, 

striatum, cerebellum, and hippocampus. Brain areas were cut in part by using a Plexiglas brain 

matrix and according to Allen Brain Atlas. Western blot samples were kept in 2mm tubes in -

80˚C and samples meant for IHC and IFF were kept in 4% PFA until after 24 hours, when they 

were rinsed using 2-4% PBS and kept in PBS until the day they were used.  
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Myelin pathology 

Imaging analysis Pic Integrated density of myelin basic protein (MBP) immunostaining 

in unified areas of the brain sections was used to identify cortical and hippocampal myelin tracts 

and GM demyelination (Mei et al., 2012; Y. Zhang et al., 2008). Pictures were selected and 

uploaded into Image j software. Before starting the quantification, the software was calibrated 

using an optical density step tablet downloaded from Stoufer industries as per Image J 

recommendation in the online tutorial (https://imagej.nih.gov/ij/docs/examples/calibration/). 

Then the picture type was changed into 8 bit in order to provide us with a black and white image, 

which was then edited using the threshold option. Threshold for the color density was set on auto 

in order to minimize the researcher bias. Areas from the pictures were selected (the same surface 

from each picture was selected) and the integrated density of the image was calculated and used 

as the value for comparing the accumulated density of myelin fibers in the selected areas.  

Western blot 

Western blot was used in order to study the levels of different proteins in the brain 

samples (McLean & Verge, 2016). In brief, after the removal of the brain, one hemisphere from 

randomly selected mice in each group was dissected into the prefrontal cortex, rest of the cortex, 

striatum, cerebellum, and hippocampus, to be frozen and stored at −80 °C until further use.  For 

Western blot procedure, the brain samples were homogenized and then centrifuged for 10 

minutes at 4˚C and 1500 RPM. The supernatant was separated and pipetted into 2 ml tubes and 

stored at −80 °C. Bradford assay was used to quantify the protein amount in each sample and 

then X4 loading buffer was added to the samples. At this point, each sample tube was boiled for 

5 minutes and afterwards stored at −80 °C for future use in blotting assay. Bio-Rad TGX 

https://imagej.nih.gov/ij/docs/examples/calibration/
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miniprotean pre-cast gels were used for Western blot procedure. Gels were placed inside the 

running tanks (Bio Rad) and loaded with the unified amount of prepared samples. (A total of 30 

µg of protein was loaded into each well. The gels were run with 120 V of current (90V at the 

beginning, which was increased to 120 as soon as the ladder colors started to separate). After 60 

minutes the gels were collected and used to make sandwiches for the transfer procedure. Each 

sandwich was made using the following order of the material: sponge, filter paper, gel, 

membrane, filter paper, sponge and the tank was filled with transfer buffer (1/10 of 10X transfer 

buffer + 8/10 DD water+ 1/10 Methanol) and transferred with 100 V for 75 minutes at room 

temperature. The membranes were then taken out and washed with Double Distilled (dd) water. 

Next, the membranes were blocked using 5% milk for one hour and then washed with TBST 

three times, each time for 5 minutes. Primary antibody was diluted in 5% BSA and left at the 

cold room (4˚C) overnight for incubation. The next day, membranes were taken to the room 

temperature and washed for three times, each time for 5 minutes. Afterwards, the secondary 

antibody was incubated and after 1 hour the membranes were washed and proteins were 

visualized with enhanced chemiluminescence using the Bio Rad imaging machine.  Different 

antibodies were chosen to examine the proteins of interest, namely, MBP to check the myelin 

expression in brain samples, Glial Fibrillary Acidic Protein (GFAP) which is commonly used as 

a general marker of Astrogliosis and inflammation and finally TGF-β1 as our protein of interest 

based on our hypothesis. Beta Actin was used as the loading control protein and all membranes 

were analyzed based on their relative measurement to beta actin.  

Statistical analysis 

One or two-way ANOVAs were used based on the experimental design, which was 
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followed by Tukey’s post hoc test or two-tailed Student’s t-test for comparing individual means 

of behavioural and pathological data between different groups in the experiment and the control. 

The behavioural and pathological data were assessed in two different time points of the 

experiment (after the completion of week 3 and week 6). The statistical significance was set at 

p< 0.05.  

Ethical approval 

This study used a well-established animal model. There were no human participants in 

the project. The gamma-LFMS treatment by itself does not cause any potential risk or distress for 

the animal. Animal use protocol (AUP20160103) has already been approved by the University 

Animal Care Committee (UACC) of University of Saskatchewan according to the Guidelines of 

the Canadian Council on Animal Care (CCAC). 
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CHAPTER 3. RESULTS 

No differences in motor function tests throughout acute CPZ model  

Distance travelled by the animals in OFT results yielded no significant difference 

between groups either at 3 weeks or at 6 weeks of the study (Figure 3) (P>0.05 in two way 

ANOVA analysis followed by serial T-tests). Distance travelled during the Y-maze was also not 

significantly different between groups at the same time points (Figure 7) (P>0.05 in two way 

ANOVA analysis followed by serial T-tests). In addition line crossing in OFT and Y-maze 

showed no significant changes between groups (figures 5 & 8). Total time immobile during OFT 

was also not significantly different among study groups in both time points (Figure 6). In Y-

maze, mean speed of the mice was also calculated by the software and did not show any 

significant differences between groups at any time during the study (Figure 10).  

OFT revealed different time spent in the center among groups 

After 3 weeks of the experiment the (Figure 4), –CPZ/+LFMS group showed a 

significantly longer time spent at the central area of the box when compared to the CTL group 

(P<0.05). At the same time both other groups namely, +CPZ/-LFMS and +CPZ/+LFMS also 

spent a significantly longer time at the center. (P<0.05) and there were no significant differences 

between the two latter groups (P>0.05). When the mice were tested after 6 weeks, the CPZ fed 

groups still showed a significantly longer time at the center (P<0.05 and P<0.005 for +CPZ/-

LFMS and +CPZ/+LFMS respectively), while the –CPZ/+LFMS group demonstrated a 

dramatic decline in the time spent in the central area, although significantly less than CTL 

(P<0.05).   
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More significant drop in spontaneous alternations after 3 weeks than 6 

weeks of CPZ diet  

Y-maze results (Figure 7) at the end of the 3 weeks showed a significantly lower 

percentage for spontaneous alternations of the +CPZ/-LFMS mice compared to CTL (P< 

0.0001). Animals that received CPZ diet but no LFMS (+CPZ/- LFMS) showed more dramatic 

changes in their alternation percentage after 3 weeks than 6 weeks of CPZ diet (P<0.0001 vs. 

CTL after 3 weeks compared to P<0.05 vs. CTL after 6 weeks).  

LFMS improved the Y-maze findings both after 3 weeks and 6 weeks in 

C57/bl6 mice 

The mice who received LFMS treatment along with the CPZ diet manifested less 

significant drop in their spontaneous alternations after 3 weeks of CPZ when compared to 

+CPZ/-LFMS group at the end of the third week. (P<0.0001 for +CPZ/-LFMS and P<0.05 for 

+CPZ/+LFMS) Yet, the +CPZ/+LFMS group was not significantly different when compared 

with the +CPZ/-LFMS group at this point (P=0.0773). When tested after 6 weeks, not only did 

the +CPZ/+LFMS group show significantly higher results in spontaneous alternation compared 

to +CPZ/-LFMS (P<0.05), but their score was not significantly different from the CTL 

(P=0.173). Among all the Y-maze sets of results, there was no significant difference between 

CTL/Sham and CTL/LFMS groups (P=0.153 after 3 weeks and P=0.421 after 6 weeks) (Figure 

7). 
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LFMS altered the results of Forced Swim Test (FST) for the naïve mice 

in CPZ model  

During a standard Forced Swim Test (FST) after the first three weeks of the experiment 

(Figure 11A), the +CPZ/-LFMS group demonstrated a significantly longer total immobility time 

compared to CTL (P<0.01). At the same time, the +CPZ/+LFMS results were not significantly 

different from the CTL group (P=0.354) and were significantly different from +CPZ/-LFMS 

(P<0.05). Moreover, when the latency to the first immobility was recorded, +CPZ/-LFMS group 

were significantly different from the CTL (P<0.01). While +CPZ/+LFMS mice were not 

different from CTL (P=0.421), they showed a significantly different result than those who were 

not treated with LFMS (P=0.037). (Figure 14) 

Multiple FST revealed a specific behavioral pattern in CPZ model 

During the second FST (after 24 hrs from the first one), the CTL showed an increase 

(although not significant, P=0.18) in their total immobility time, while the +CPZ/-LFMS group 

demonstrated a significant lower immobility time than the first FST (P=0.0005) (Figures 11-B, 

12, and 13). When the animals in +CPZ/-LFMS group were re-tested after 3 more weeks of 

CPZ diet (Figures 11-C, 12, 13) , their total immobility time was even significantly less than 

what it was before (P=0.0319). In contrast, the CTL group had significantly higher immobility 

time (P=0.024). The results of the last day of FST did not show any significant changes in any of 

the groups except for +CPZ/+LFMS (P=0.0282). The figure for the latency to the first 

immobility episode also revealed interesting results (Figure 14). When retested after 24 hrs from 

the first FST, all groups had significantly lower latency times compared to the first day; 
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however, +CPZ/-LFMS group had a significantly higher value compared to the CTL (P=0.037).  

The same pattern was observed during the third FST for CPZ fed mice who received no LFMS 

(P=0.032). It was only in the fourth FST that the +CPZ/-LFMS group finally showed a latency 

time that was not significantly higher than other groups.  

LFMS altered the behavioral response of the mice on CPZ diet during 

multiple FSTs 

During the first FST retest, +CPZ/+LFMS group did not show a significant drop in total 

immobility time (P=0.155), unlike the +CPZ/-LFMS group (P=0.0005) (Figure 11-A). After 3 

more weeks, although the treated group was significantly different from the CTL group 

(P<0.0001) (Figure 11-C) they showed significantly better results than +CPZ/-LFMS group 

(P=0.022). At the last round of FST (Figures 11-D, 12, and 13) the only group that showed a 

significant increase in total immobility time was the +CPZ/+LFMS (0.0282) group. In terms of 

latency to the first immobility episode, the +CPZ/+LFMS group showed no significant 

differences from the CTL group in the second round of FST (P=0.395) (Figure 14) and had 

significantly better results than +CPZ/-LFMS group (P=0.0371). The LFMS treated mice also 

showed no significant difference from the CTL (P=0.084) in latency time when tested after 3 

more weeks. 

LFMS Changed the demyelination state in CPZ model 

The Immunohistochemistry results of myelin basic protein (MBP) staining revealed 

demyelination in frontal cortex and hippocampus areas in CPZ fed mice in both time points. 

After 3 weeks, the +CPZ/-LFMS and +CPZ/+LFMS groups both showed significantly lower 
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integrated density of MBP staining in frontal cortex compared to CTL. (P<0.0001 and P<0.001 

respectively) (Figure 18). However, the +CPZ/+LFMS group showed significantly higher 

density compared to the non-treated group +CPZ/-LFMS (P<0.05). In the hippocampus area the 

significant difference between both groups with CPZ diet and CTL was similar (P<0.0001), 

while no significant difference was found between +CPZ/-LFMS and +CPZ/+LFMS (Figure 

19). Based on the findings from the same immunostaining methodology after 6 weeks (Figure 

20) the +CPZ/-LFMS mice were significantly demyelinated in the frontal cortex area compared 

to the CTL (P<0.0001); whereas, the +CPZ/+LFMS group showed less significant 

demyelination when compared with CTL (P<0.044) and interestingly, significantly different 

when compared to +CPZ/-LFMS (P=0.019). The results for hippocampus area after 6 weeks 

(Figure 21) showed a significant difference between both +CPZ/-LFMS and +CPZ/+LFMS 

groups compared to CTL (P<0.0001) and there was no difference between the two groups who 

had received CPZ diet. Based on the IHC results the most significant difference between the CPZ 

fed mice who did not receive LFMS treatment and those who did was observed in the frontal 

cortex area at the end of the 6 weeks (Figure 22). This observation was also double checked by 

Western blot as another semi-quantitative method (Figure 16). The results showed that 

+CPZ/+LFMS group had significantly higher expression of MBP compared to +CPZ/-LFMS 

(P<0.05), although both groups were significantly lower than CTL (P<0.0001). Using the same 

methodology, the expression of GFAP was measured in the brains that were collected after 6 

weeks of CPZ model. There was a significant difference between the two groups of mice with 

normal chow compared to the mice who were fed with CPZ. (P<0.0005) (Figure 17).  
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CPZ significantly decreased the animal weight. 

Animals’ weight was monitored and measured at the end of each week. At the end of the fourth 

week there was a significant decline in the animals’ weight in CPZ fed groups and the mice that 

had received LFMS treatment were not significantly different from the other animals who had 

normal chow.   

LFMS significantly increased TGB-β1 in the mouse brain 

Western blot results showed a significant difference between the TGB-β1 expressions in 

brain tissue of the groups that received LFMS treatment compared to those who received sham 

treatment. (Figure 17). Two-way ANOVA found a significant difference between the untreated 

groups and the groups that did not receive LFMS treatment in samples from hippocampus 

(P=0.0118). The same trend was found between the means of groups in the results from frontal 

cortex after the completion of six weeks of CPZ model, while no significant difference was 

noticed between groups.  
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Figures 

 

 

 

Figure 3.1: Distance travelled by mice during Open Field Test in two time points 
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Figure 3.1: Distance travelled by mice during Open Field Test in two time points. (A) After 3 weeks of experi-

ment and (B) after 6 weeks of experiment. Values are in meter. Data is presented as means± SEM (n=10-15 per 

group).  
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Figure 3.2: Time spent in the center during Open Field Test in two time points. (A) After 3 

weeks of experiment and (B) after 6 weeks of experiment. Values are in meter. Data is 

presented as means ± SEM (n=10-15 per group). (* p<0.05 VS CTL) (** p<0.005 VS CTL) 
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Figure 3.2: Time spent in the central zone during OFT in two time points 
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Figure 3.3: Line crossing during OFT in two time points 
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A                                                        B 

Figure 3.3: line crossing by mice during Open Field Test in two time points. (A) After 3 weeks of 

experiment and (B) after 6 weeks of experiment. Values are in meter. Data is presented as means± 

SEM (n=10-15 per group).  
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Figure 3.4: Total time immobile during OFT in two time lines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

I

C
T
L

L
F
M

S

C
P
Z

C
U

P
T

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

6 W  C P Z

A                                                        B 

C
T
L

L
F
M

S

C
P
Z

C
U
P
T

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0 3 W  C P Z

T
o

t
a

l
 
t
i
m

e
 
i
m

m
o

b
i
l
e

 
(
S

)

Figure 3.4: Total time immobile for mice during Open Field Test in two time points. (A) After 3 

weeks of experiment and (B) after 6 weeks of experiment. Values are in meter. Data is presented as 

means± SEM (n=10-15 per group).  
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Figure 3.5:  Spontaneous alternation during Y-maze in two time points 
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Figure 3.5: Proportion of spontaneous alternations in Y-maze for two time points. (A)  

Shows the results after 3 weeks of experiment and (B) represents the results after 6 weeks. 

Data is presented as means± SEM (n=10-15 per group). *p<0.05 vs. CTL, *** p<0.0001 

vs. CTL, and #p<0.05 vs. CPZ.  
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Figure 3.6: Lines crossed during Y-maze in two time points 

      

  

Figure 3.6: Line crossing by mice during Y-maze Test in two time points. (A) After 3 

weeks of experiment and (B) after 6 weeks of experiment. Values are in meter. Data is 

presented as means± SEM (n=10-15 per group).  
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Figure 3.7: Distance travelled by during Y-maze in two time points 
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Figure 3.7: Distance travelled by mice during Y-maze Test in two time points. (A) After 3 

weeks of experiment and (B) after 6 weeks of experiment. Values are in meter. Data is pre-

sented as means± SEM (n=10-15 per group).  
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Figure 3.8: Mean speed of the mice during Y-maze in two time points 
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Figure 3.8: Mean speed of the mice during Y-maze Test in two time points. (A) After 3 weeks 

of experiment and (B) after 6 weeks of experiment. Values are in meter. Data is presented as 

means± SEM (n=10-15 per group). (p<0.05)  
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Figure 3.9: Total immobility time compared during the four sessions of FST 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Total Immobility time [in seconds] during 5 minutes of Forced Swim Test 

(FST) in the following 4 time points. (A) Shows the results for the first day [first exposure] after 

3 weeks of the experiment. (B) Shows the results of the second FST during the fourth week of 

the experiment. (C) Represents the results for the third FST after 6 weeks of the experiment. (D) 

Shows the results for the fourth FST performed before brain collection. Data is expressed as 

means± SEM (n=10-15 per group). *p<0.05 vs. CTL, **p < 0.01 vs. CTL, ***p = 0.001 vs. CTL, 

****p<0.0001vs. CTL, and #p<0.05 vs. CPZ.  
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Figure 3.10: Total immobility time compared with the previous session of FST 

through four sessions of FST during 6 weeks of experiment. 
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Figure 3.10: Total immobility time in FST through the experiment timeline. Data is ex-

pressed as means± SEM (n=10-15 per group). *p<0.05 vs.1st FST, ### < 0.001 vs. 1st FST, # 

<0.05 vs. 2nd FST, $ p<0.05 vs. 2nd FST, and ♦ p<0.05 vs. 3rd FST.  
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Figure 3.11: Latency to the first immobility episode through time 
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Figure 3.11: Latency until the first immobility period as a result of FST in the following 4 time 

points: (A) the first FST at the end of the 3 weeks after the start of the experiment. (B) Second FST done 

in the fourth week. (C) Shows the results of the third FST performed after 6 weeks of experiment. (D) 

Represents the last FST before brain tissue collection. Data is presented as means± SEM (n=10-15 per 

group). *p<0.05 vs. CTL, **p <0.01 vs. CTL, and #p<0.05 vs. CPZ. 
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Figure 3.12: Latency to the first immobility episode compared to previous episodes of FST 

through 6weeks of the experiment. 
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Figure 3.12: Latency until the first immobility period compared by sessions: Data is 

presented as means± SEM (n=10-15 per group). ■■■■ p<0.0001 vs. 1st CTL, **p 

<0.005 vs. 1st CPZ, ####p<0.0001 vs. 1st LFMS, and $$$$ p<0.0001 vs. 1st CUPT.   
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Figure 3.13: Western blot of Myelin Basic protein after 6 weeks of acute demyelination.  
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Figure 3.13: (A) Expression level of Myelin 
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Figure 3.14: Western blot of GFAP after 6 weeks of acute CPZ demyelination 
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Figure 3.15: Western blot of TGF-β1 after 6 weeks of CPZ and LFMS in prefrontal cortex 

and hippocampus areas.  
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Figure 3.15: (A) Transforming Growth Factor Beta1 (TGF-β1) was detected by Western Blotting. β – actin was  

used as a loading control, samples are from Hippocampus of the animals after 6 weeks of CPZ model. (B) Rela-

tive TGF-β1/ β – actin ratio for samples from Hippocampus. Data is presented as means± SEM (n=3-4 per 

group). *p<0.005 vs. Sham Treatment with no CPZ, # p<0.005 vs. Sham Treatment on CPZ diet. (C) Relative 

TGF-β1/ β – actin ratio for samples from frontal cortex after completion of 6 weeks of CPZ model. 
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Figure 3.16: Pathology of MBP in frontal cortex after 3 weeks of CPZ diet and LFMS 
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Figure 3.16: (A) Partial Illustration of Immunohistochemistry (IHC) for MBP in sections from Frontal Cor-

tex after three weeks of CPZ diet [I: CTL, II: LFMS, III: CPZ, IV: CUPT], the scale bar represents 200µm. 

(B) Shows the quantification results of (IHC). Data is presented as means± SEM for Integrated density 

(n=4-8 per group), *** p<0.001 vs. CTL, ****p<0.0001 vs CTL. # p<0.05 vs. CPZ 
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Figure 3.17: Pathology of MBP in hippocampus after 3weeks of CPZ diet and LFMS 
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Figure 3.17: (A) Partial Illustration of Immunohistochemistry (IHC) for MBP in sections from Hippo-

campus after 3 weeks of CPZ diet [I: CTL, II: LFMS, III: CPZ, IV: CUPT], the scale bar represents 

200µm. (B) Shows the quantification results of (IHC). Data is presented as means± SEM for Integrated 

density (n=4-6 per group), *** p<0.0001 vs. CTL.  
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Figure 3.18: Pathology of MBP in Frontal cortex after 6 weeks of CPZ and LFMS 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 3.18: (A) Partial Illustration of Immunohistochemistry (IHC) for MBP in sections 

from Frontal Cortex after 6 weeks of experiment [I: CTL, II: LFMS, III: CPZ, IV: CUPT] the 

scale bar represents 200µm. (B) Shows the quantification results of (IHC). Data is presented 

as means± SEM for Integrated density (n=4-6 per group), **** p<0.0001 vs. CTL. *p<0.05 

vs. CTL, # p<0.5 vs. CPZ 
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Figure 3.19: Pathology of MBP in hippocampus after 6 weeks of CPZ and LFMS 
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Figure 3.19: (A) Partial Illustration of Immunohistochemistry (IHC) for MBP in sections from 

Hippocampus after 6 weeks of experiment [I: CTL, II: LFMS, III: CPZ, IV: CUPT] the scale bar 

represents 200µm. (B) Shows the quantification results of (IHC). Data is presented as means± 

SEM for Integrated density (n=4-6 per group), **** p<0.0001 vs. CTL  
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Figure 3.20:  Comparison of weight change among groups after 6 weeks of CPZ and LFMS
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Figure 3.20: Comparison of weight change between groups at the end of 6 weeks of 

CPZ model.  ** p<0.005 vs. CTL  
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Figure 3.21: weight change in the first four weeks of the experiment within groups 
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CHAPTER 3. DISCUSSION  

OFT revealed no motor deficit, while LFMS helped with impulsivity 

Unlike the experimental autoimmune encephalomyelitis (EAE) model of 

demyelination/MS, which is notorious for induction of motor deficit in mice, the CPZ model 

rarely causes problem with the motor system (Xiao et al., 2008; Yanbo Zhang et al., 2007; Y. 

Zhang et al., 2008). The paucity of motor impairment was one of the features of the CPZ model 

which encouraged us to employ it for studying cognitive status. Yet, since the possibility of 

developing motor deficit could not be completely ruled out (Mohamed et al., 2019), we decided 

to check the mice for motor function. This was done by measuring the distance that the animals 

travelled and the lines that they crossed during OFT and Y-maze (Li et al., 2014; Seibenhener & 

Wooten, 2015; Y. Zhang et al., 2012). These tests were performed at the beginning of the 

behavioral test battery both after 3 weeks and 6 weeks of CPZ diet. Distance travelled by the 

animal and line crossing are both indicators of motor function and mobility, although line 

crossing is the older, more crude way of measuring the mobility of the animal. Although we had 

the measures for the former from the software, we calculated the values for the latter as a way to 

back up the results of the distance travelled. Based on the results, we noticed little difference 

between the groups, neither for the first behavioral test battery nor during the second time. The 

immobility time and mean speed of the mice were also measured as additional values to compare 

the motor function of the animals. This made us confident that any differences in other parts of 

the behavioral tests are exclusively attributed to cognitive and emotional status of the animal in 

this specific study. Needless to say there are other well established tests to assess the motor 

coordination and balance in rodents, namely, rotarod test and beam crossing test; nevertheless, 
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the data that we have from OFT and Y-maze serve our purpose to compare the gross movements 

of our subjects and make sure that no group is limited in ability to move around.  

It has previously been shown that mice under the effect of CPZ demonstrate significantly 

more travels to the center of the OFT when tested after 3 weeks and 6 weeks of the model 

(Franco-Pons, Torrente, Colomina, & Vilella, 2007) and this phenomenon has been attributed to 

developing impulsive behavior in CPZ model. The reason behind the mice being incapable of 

controlling their impulses has been described as a result of white matter deficit (Silveri et al., 

2006). Our mice showed the exact pattern after 3 weeks of CPZ diet. However, when tested after 

3 more weeks, the +CPZ/+LFMS group showed a decline in the average of their central time, a 

behavior pattern closer to the CTL group. We still have no explanations as to why the 

CPZ/+LFMS mice showed significantly more exploratory behavior during the first OFT. Further 

investigation, especially more anxiety oriented tests like elevated plus maze could be helpful to 

shed more light on our findings.   

Acute CPZ model of demyelination induces short term memory loss  

Y-maze results confirmed the ability of CPZ to induce deficit in short term memory 

(interchangeably used as working memory) (Cowan, 2008), which was depicted as a lower 

percentage of spontaneous alternations among the mice who were on CPZ diet compared to the 

CTL (Cowan, 2008). In other words, CPZ caused the mice to have more trouble remembering 

which arm of the Y-maze they visited last. Animals that received CPZ diet but no LFMS 

(+CPZ/- LFMS) showed more significant short term memory loss after completing 3 weeks as 

opposed to 6 weeks of CPZ diet ( P<0.0001 after 3weeks compared to P<0.05 after 6weeks). It 

was previously shown that the features of cognitive impairment, namely the severity of short 
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term memory deficit, is alleviated once the CPZ diet is cut at the end of the acute model of CPZ 

and 2-3 weeks have passed (Xu, Yang, Rose, & Li, 2011). It has been shown that spontaneous 

remyelination starts after the third week of CPZ diet and becomes prominent during the sixth 

week (Praet et al., 2014).  Our results are in line with these findings, considering the fact that 

severity of short term memory loss in this model is significantly higher compared to CTL when 

inflammation and demyelination are documented to be at their peak. This memory deficit is 

present but less significant when the animals were tested at the end of the standard 6 weeks of 

acute demyelination of CPZ.  

LFMS has protective effect on C57/bl6 mice against short term memory loss  

It is well documented that week 4 and 5 of the CPZ model is the peak time of 

inflammation/demyelination (G. K. Matsushima & P. Morell, 2001; Praet et al., 2014; 

Skripuletz, Gudi, Hackstette, & Stangel, 2011; Yu et al., 2017). It is also essential to consider the 

fact that remyelination starts at the very basic level during the same time but it takes about two 

more weeks for remyelination to become prominent (Praet et al., 2014). From this moment, the 

two opposing phenomena enter a combat in which demyelination predominates unless the CPZ is 

cut from the diet. It is only logical to infer that any intervention that could alleviate the 

symptoms caused by demyelination, while the mice are still on CPZ diet, could be considered to 

have potential for protective effects against demyelination. In our study, while both groups of 

mice on CPZ diet showed signs of short term memory loss after 3 weeks of the experiment, the 

severity of this deficit was less significant in those who had received LFMS treatment; thus, 

LFMS appears to have had protective effects against the memory loss caused by CPZ. The 

timing of the first behavioral test battery was concurrent with the period which resembles the 
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highest inflammation and demyelination and far from any prominent touch of remyelination; 

thus, it sounds plausible to assume that LFMS conveyed those protective effects partially, if not 

entirely, by a different mechanism other than enhanced remyelination. A possible rationale is 

altered inflammatory status of the brain tissue; therefore, future studies of inflammatory elements 

like M1 and M2 microglia and/or inflammatory cytokines including TNF-α and Interferon- γ 

might be a good start to achieve a more conclusive set of results to explain the mechanism 

behind the effects of LFMS.  

When the subjects were tested after 3 more weeks of experiment the +CPZ/+LFMS group 

did not show any sign of significant memory loss, while those animals who did not receive 

LFMS were still struggling with CI. At this point the former group showed even significantly 

better results than the latter. Since week 6 is marked as the time that remyelination occurs, and 

our behavioral test was performed a week later, the significant difference between the two CPZ 

fed groups might very well be due to enhanced remyelination. Besides, what we assess through a 

one trial form of Y-maze, is by nature independent from the memories that the animal carries; 

therefore, a battery of cognitive state after the end of week 3 cannot be considered as an 

advantage for a later test of the same nature (Voikar, Vasar, & Rauvala, 2004), meaning that, 

better results among LFMS treated mice after week 6 should be regarded as a sign of continuous 

effective treatment. 

 LFMS had protective effect against depressive-like symptoms in classic FST 

model  

FST, as a tool to predict the probability of anti-depressant treatment success, is done 

merely once for the mice who are naïve to the test [105]. To the best of our knowledge, there has 
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been only one study which was carried out by our lab and checked the depressive-like symptoms 

in the CPZ model using FST (Y. Zhang et al., 2019). In the previous study, FST was carried out 

during the fifth week of the study, while in the current study we did the FST after the completion 

of the third week. While no significant differences were found between groups in the previous 

study, here we found that the +CPZ/-LFMS group demonstrated the classical sign of despair, 

that is to say a significantly longer total immobility time compared to CTL. At the same time, 

+CPZ/+LFMS mice were not significantly different from the CTL group and were significantly 

different from +CPZ/-LFMS. In other words, the mice who received CPZ and were treated with 

LFMS dealt with a desperate situation the same way that normal mice do and spent the same 

portion of their time on actively trying to escape from the unescapable situation. In terms of the 

latency to the first immobility, +CPZ/-LFMS group were also abnormal. It took these mice a 

significantly shorter time to show the signs of despair, which in this scenario, is indicated by the 

mouse giving up trying to escape. At the same time the CPZ fed mice who had received LFMS, 

were not significantly different from their normal peers, and coped significantly better with the 

stressful situation than those who were not treated. Choosing further time points to do the FST 

during the CPZ model might be helpful to assess the effect of LFMS in different conditions than 

the ones we studied. Furthermore, other behavioral tests such as “Sucrose preference test”, which 

are designed to target and evaluate depressive-like symptoms in the rodents could be useful to 

generate further supporting data.  

Serial FSTs as a tool for evaluating cognitive impairment  

FST was originally designed as a model to induce depressive-like symptoms and test the 

efficacy of antidepressant interventions. Yet, two more categories of data interpretation have 
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long been known for FST. In the mid 1980s, the papers that described using FST as a method to 

assess depressive-like behavior were equal in number to the papers that described using FST as a 

tool to evaluate other aspects of behavior like memory and learning (de Kloet & Molendijk, 

2016). Recent findings have provided us with additional insight regarding the use of serial FSTs 

in cognitive assessment (Mul et al., 2016). In brief, it has been documented that even a single 

exposure to FST increases the total immobility time during a next day FST and if retesting 

continues, the immobility time will also increase accordingly. Some studies considered this 

increased immobility as a sign of increased despair (Alcaro, Cabib, Ventura, & Puglisi-Allegra, 

2002). These studies explained this higher immobility time with “learned helplessness” and even 

attributed it to a higher vulnerability to depressive-like symptoms. Nevertheless, we tend to side 

with the other perspective that perceives the increased immobility time, in repeated FST, as a 

part of the animals’ coping mechanism (de Kloet & Molendijk, 2016) (Han & Nestler, 2017) to a 

stressful situation, an adaptive and learning behavior. In other words this is an evolutionary 

mechanism leading to less stressed behavior, energy expenditure and eventually better chance of 

survival. Coping mechanisms are either active or passive and decreased escape attempts in this 

case is documented to be part of extinction-associate inhibitory learning which involves different 

parts of the brain, namely, prefrontal cortex and hippocampus (de Kloet & Molendijk, 2016). It 

is also a complex of cognitive elements like short term and long term memory, information 

processing and executive function. 

 In addition to total immobility time, the period between the start of the test and the 

moment that the animal becomes immobile for the first time is also measured and used as a quite 

sensitive tool to check the level of despair in standard FST. We also checked this measure to 

observe the possible changes in our animals. In the standard FST, the sooner the first immobility 
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happens, the more severe depressive-like symptoms of the mice are. Although to our knowledge 

this parameter has not been checked in previous serial FSTs, we expected it to be affected by the 

memory of the original stressful situation (first time FST). 

 Another term which might be appropriate to mention is “habituation”. Habituation is 

termed as “the simplest form of learning” and is defined as “when repeated application of a 

stimulus results in a progressive decrease in some parameter of a response to an asymptotic level 

(Rankin et al., 2009). This change may include decreases in frequency and/or magnitude of the 

response.”  In our case, re-exposing the mouse to a stimulus (FST) leads to progressive decline in 

the time that the mouse spends on actively trying to escape, which is manifested as increased 

immobility time.  

Here we designed a test battery of serial FSTs. The first two FSTs were done after the 

completion of the third week of the experiment 24 hrs apart from each other. This set of FST 

aimed to test the long term memory when inflammation and demyelination are at their peak. The 

next two FSTs were run after the completion of the 6th week of the experiment and were 24 hrs 

apart from each other. The second pair of FSTs were used to evaluate the effects of CPZ and 

LFMS on long term memory retention right after the standard time for the acute CPZ 

demyelination had elapsed. It has been documented that a normal mouse brain is capable of 

retaining the memory of a stressful event even after ten weeks from a test battery (Nishida et al., 

1997) and use that memory to act accordingly. Moreover, the passive coping mechanism in serial 

FSTs is documented to last for 4 weeks after the last FST (de Kloet & Molendijk, 2016); thus, a 

gap of 3 weeks between the two sets of FST sounds practical enough to serve our purpose.  
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Impaired coping mechanism in CPZ model implicates cognitive deficit 

As expected, we noticed that the CTL mice demonstrated a longer immobility time 

during the second FST (de Kloet & Molendijk, 2016) (Alcaro et al., 2002) (Voikar et al., 2004). 

Treating the mice on normal diet with LFMS had similar results except for their increase in 

immobility time was significantly higher than the CTL group, which does not raise much 

concern for three reasons. First, previous studies showed that this increase in the first retest could 

be significant in CTL groups as well (Mul et al., 2016); therefore, our different results could be 

attributed to possible varieties in performance details and in the mice’s behavior. Second, 

difference in the behavioral change is not different in trend but in amplitude which could be 

negligible if it is congruent with other elements of the animals behavior. Third, if the same 

results are obtained in future studies and is supported by other extensive behavioral tests, it could 

be regarded as the potential of LFMS to enhance habituation in normal mice.  

No coping failure in LFMS treated mice  

Those animals who were on CPZ diet, but also received LFMS, did not show any 

increase in their total immobility time compared to their first FST which statistically was not 

significantly different from the CTL group. On the contrary, CPZ diet without LFMS apparently 

disrupted the animals’ coping process. This increased activity time, compared to what was 

expected as in our CTL, could be described as a sign of failure to cope with the stressful situation 

or habituation; thus, it could be crudely marked as a deficit in learning, memory, information 

processing and executive function because all these elements are required for a healthy coping 

mechanism to happen. Since this decline in the total immobility time (in other words time that 

the mice spent on actively trying to escape) cannot be taken as a sign of alleviated depressive 
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symptoms (Mul et al., 2016)(de Kloet & Molendijk, 2016), we tend to interpret it as a possible 

sign of increased anxiety, in other words, a manifestation of panic.  

When the animals in +CPZ/-LFMS group were re-tested after 3 more weeks of CPZ diet, 

their total immobility time was even significantly less than at the previous testing time. This 

could be the result of an impaired cognition at the time accumulated with the paucity of proper 

memories in order to help them with coping. In contrast, our CTL mice showed significantly 

higher immobility time as expected. The same value was not significant for the normal diet mice 

who received LFMS. At this point we have no explanation for this difference between our two 

normal diet groups. The results from the last FST did not show any significant changes in any of 

the groups except for +CPZ/+LFMS. This is where the added FST results differ in nature with 

Y-maze as a mouse requires the memories from the previous tests if they want to manifest a 

proper coping mechanism, and unlike Y-maze the results from the secondary tests cannot be 

interpreted independently (Voikar et al., 2004).  Based on this statement we could infer that since 

LFMS was given from day one of the experiment and our results show that it was successful in 

preventing the +CPZ/+LFMS mice from having a dramatic deficit after week 3, part of the 

significantly promising results for these treated mice at the very last round of FST could be 

attributed to their better preserved memory in early stages of the experiment.  

Interpretation of the figures for the latency to the first immobility episode leads to the 

same conclusions. During the first retest, only the +CPZ/-LFMS group had a significantly 

higher value compared to the CTL. That is to say, only those mice who were on CPZ but did not 

receive LFMS failed to cope with the stress of the second test. Based on the results of the last 

round of FST, it took them a total of four exposures to finally demonstrate a coping response that 
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other groups showed after one exposure, while LFMS treatment was successful in preventing this 

scenario in the first place for the treatment group. 

         LFMS protected the frontal cortex from demyelination but not the 

hippocampus 

Our IHC results demonstrate a trend in demyelination in accordance to previous similar 

studies (Steelman Andrew J. et. al., 2012). In order to answer our objective questions, we started 

the first set of data gathering after 3 weeks of CPZ diet, and the brains were harvested after the 

behavioral test batteries were done. This provided us with the opportunity to check the animals’ 

cognition and emotional state at the peak of demyelination/inflammation as the IHC results 

indicate. While both CPZ fed groups were severely demyelinated, the LFMS treated mice 

showed a less significant demyelination status in their frontal cortex compared to the CTL. At 

the same time, LFMS did not show any protective effects on the hippocampus, an observation 

which cannot be yet explained. A better understanding about the mechanism behind the LFMS 

effect on the brain might be helpful in terms of finding a rationale for this result. So far, we know 

that in CPZ model, the hippocampus area has a slower remyelination rate compared to the other 

areas of the brain (Steelman Andrew J. et. al., 2012). Yet, further investigation is needed to 

determine whether LFMS has the ability to accelerate the remyelination in the hippocampus. 

Having a comprehensive comparison between the two groups with CPZ diet in more time points 

during the remyelination phase might be helpful. Based on previous studies we know that 

although remyelination starts during the third week of the experiment, there are no obvious 

behavioral effects at this point (Praet et al., 2014). Therefore, it is not unreasonable to assume 

that LFMS had a protective effect against demyelination rather than augmenting the 
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remyelination process. However, in order to make such a claim it is necessary to compare the 

remyelination process at the same timeline, something that is yet to be done with specific 

methods that evaluate remyelination, namely using the 5 bromodeoxyurine (BrdU assay). 

After completing 6 weeks of CPZ diet the brain sections showed a milder demyelination. 

At this point, the severity of demyelination in frontal cortex was even less in the +CPZ/+LFMS 

group compared to the untreated ones to the point that it was statistically significant. We used 

Western blotting in order to double check this significant change and the results supported the 

IHC findings. At the same time, LFMS seemed to have been unable to make any changes in the 

hippocampus area.  

Further investigation is required to give us a clearer picture of myelin status after LFMS 

treatment in various areas of the brain in different time points. Since extensive remyelination has 

been shown to occur by week 6 of the CPZ model (Praet et al., 2014), a comparison of the 

remyelination state between the two CPZ fed groups, using the 5 bromodeoxyurine (BrdU 

assay), could be helpful in researching the possibility of LFMS being capable of enhancing 

remyelination in CPZ model. 

LFMS treatment increased TGF-β1 in the brain tissue 

We chose to check TGF- β1 in the mice brains as a possible mechanism for several 

reasons. First, TGF- β1 has been documented to be a major role player in regulating 

inflammation in the human body (Xie et al., 2018) and inflammation plays an enormous role in 

the pathology of demyelination in MS and CPZ model. Second, we noticed an overall 

improvement in myelination status in our treatment groups and TGF- β1 has been shown to be 
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involved in regulating myelination (Xie et al., 2018). Finally, TGF- β1 is increasingly being 

considered as a possible option in MS treatment (Xie et al., 2018)(Nishida et al., 1997) for 

reasons ranging from its general regulatory role in autoimmune phenomena to its more specific 

ability to affect microglia polarization. 

Our data from Western blot assay shows that LFMS treated groups, regardless of their 

diet, had significantly increased TGF- β1 in their frontal cortex and hippocampus. Comparison of 

TGF- β1expression between groups in different areas show that while the trend of change is the 

same, the results were only significant in the hippocampus. Aside from the possibility of 

different responses to the same treatment among different areas of the brain, this finding could be 

due to the fact that at the time of our sample collection (after 6 weeks of CPZ followed by one 

more week for behavioral tests) the frontal cortex showed a significantly alleviated myelination 

state, while the hippocampus was still struggling to recover. This could be caused by different 

rates of expression of TGF-β1 in different areas of the brain (Nishida et al., 1997).  Further 

investigations of these findings by both repeating the same method and employment of even 

more comprehensive techniques are needed to reach more conclusive results, but we find this 

data worthy enough to be reported. Further investigation is needed to locate the exact brain areas 

that bear TGF- β1 while CPZ and LFMS are administered for the animals e.g. 

Immunofluorescence and Reverse Transcription Polymerase Chain Reaction (RT-PCR). 

Moreover, the mechanism(s) by which LFMS increases TGF- β1 might be studied by checking 

the elements in TGF- β1 signaling pathway, namely SMAD protein (Araujo Ana P.B. et. al., 

2016). 
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CHAPTER 4. CONCLUSION  

Psychiatric conditions in the course of MS are not being addressed as they should be. We 

suggest LFMS as a novel intervention to deal with these symptoms. Availability and 

affordability are the key positive aspects of this intervention. We designed an experiment to 

study the effects of LFMS on cognitive symptoms and depressive–like behavior of C57/bl6 mice 

in a CPZ model of demyelination/MS. We used various behavioral tests and lab techniques to 

tackle our objectives. Our results from the behavioral tests, immunohistochemistry and Western 

blotting supports our hypothesis. We used serial FST to assess the long-term memory and coping 

mechanism of the mice. To our knowledge this is the first time that the effects of CPZ on 

cognition have been studied with this test battery. Our data shows that CPZ induces a similar 

pattern of learning deficit as MS in C57/bl6 mice and LFMS showed potential protective effects 

against this cognitive impairment. LFMS was also revealed to be helpful in protecting the mice 

against deficit in short term memory (working memory). The antidepressant effect of LFMS has 

also proven to be a promising one. Our findings in behavioral tests are supported by pathological 

study of the mice’s brains and biochemical quantification of myelin basic protein in the frontal 

cortex. However, LFMS fails to show similar ameliorating effects in the hippocampus area, a 

finding contradictory to some previous studies.  

We studied the general presence of TGF- β1 in our subjects’ brains, which revealed a 

significant increase in LFMS treated groups. As consistent as the latter finding is with our other 

results, we strongly encourage further more comprehensive assessment of TGF- β1 in LFMS 

related studies. If a positive conclusive result is achieved in this matter, the translational impacts 

could be greatly beneficial as TGF- β1 is increasingly being considered as an option in treating 
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MS. Yet some caution is warranted. First, TGF- β1 as a pharmaceutical product is not the 

cheapest option. Second, administering TGF- β1 as a medication comes with the routine risk of 

allergy which in turn adds to the overall risk of administration. Finally, administered TGF- β1 

needs to pass the Brain Blood Barrier (BBB) in order to reach the brain as the target organ. If 

LFMS has the ability to increase TGF- β1 either by increased production or any other facilitating 

pathway, the benefits of this treatment should be assessed in clinical studies in order to get a 

better picture of how LFMS could be used to help MS patients with their imminent risk of 

cognitive loss.  
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