Browsing by Author "Pietroniro, Alain"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Impacts of climate change on water-related mosquito-borne diseases in temperate regions: A systematic review of literature and meta-analysis(Elsevier, 2024-07-14) Gizaw, Zemichael; Salubi, Eunice; Pietroniro, Alain; Schuster Wallace, CorinneMosquito-borne diseases are a known tropical phenomenon. This review was conducted to assess the mecha-nisms through which climate change impacts mosquito-borne diseases in temperate regions. Articles were searched from PubMed, Scopus, Web of Science, and Embase databases. Identification criteria were scope (climate change and mosquito-borne diseases), region (temperate), article type (peer-reviewed), publication language (English), and publication years (since 2015). The WWH (who, what, how) framework was applied to develop the research question and thematic analyses identified the mechanisms through which climate change affects mosquito-borne diseases. While temperature ranges for disease transmission vary per mosquito species, all are viable for temperate regions, particularly given projected temperature increases. Zika, chikungunya, and dengue transmission occurs between 18–34 °C (peak at 26–29 °C). West Nile virus establishment occurs at monthly average temperatures between 14–34.3 °C (peak at 23.7–25 °C). Malaria establishment occurs when the consecutive average daily temperatures are above 16 °C until the sum is above 210 °C. The identified mechanisms through which climate change affects the transmission of mosquito-borne diseases in temperate regions include: changes in the development of vectors and pathogens; changes in mosquito habitats; extended transmission seasons; changes in geographic spread; changes in abundance and behaviors of hosts; reduced abundance of mosquito predators; interruptions to control operations; and influence on other non-climate factors. Process and stochastic approaches as well as dynamic and spatial models exist to predict mosquito population dynamics, disease transmission, and climate favorability. Future projections based on the observed relations between climate factors and mosquito-borne diseases suggest that mosquito-borne disease expansion is likely to occur in temperate regions due to climate change. While West Nile virus is already established in some temperate regions, Zika, dengue, chikungunya, and malaria are also likely to become established over time. Moving forward, more research is required to model future risks by incorporating climate, environmental, sociodemographic, and mosquito-related factors under changing climates.Item Physically based cold regions river flood prediction in data-sparse regions: The Yukon River Basin flow forecasting system(Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd., 2022) Elshamy, Mohamed; Loukili, Youssef; Pomeroy, John; Pietroniro, Alain; Richard, Dominique; Princz, DanielThe Yukon River Basin (YRB) is one of the most important river networks shared between Canada and The United States, and is one of the largest river basins in the subarctic region of North America. The Canadian part of the YRB is characterized by steeply sloped, partly glaciated mountain headwaters that generate considerable runoff during melt of glaciers and seasonal snow-cover. Snow redistribution, snowmelt, glacier melt and freezing–thawing soil processes in winter and spring along with summertime rainfall-runoff and evapotranspiration processes are thus key components of streamflow generation in the basin, making conceptual rainfall-runoff models unsuitable for this cold region. Due to the remote high latitudes and high altitudes of the basin, there is a paucity of observational data, making heavily calibrated conceptual modeling approaches infeasible. At the request of the Yukon Government, this project developed and operationalized a streamflow forecasting system for the Yukon River and several of its tributary rivers using a distributed land surface modeling approach developed for large-scale implementation in cold regions. This represents a substantial advance in bringing operational hydrological forecasting to the Canadian subarctic for the first time. This experience will inform future research to operation improvements as Canada develops a nationally coordinated flood forecast system.Item Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology(Copernicus Publications on behalf of the European Geosciences Union, 2021) DeBeer, Chris; wheater, howard; Pomeroy, John; Barr, Alan; Baltzer, Jennifer; Johnstone, Jill; Turetsky, Merritt; Stewart, Ronald; Hayashi, Masaki; van der Kamp, Garth; Marshall, Shawn; Campbell, Elizabeth; Marsh, Philip; Carey, Sean; Quinton, William L.; Li, Yanping; Razavi, Saman; Berg, Aaron; Mcdonnell, Jeffrey; Spence, Christopher; Helgason, Warren D.; Ireson, Andrew; Black, T. Black; Elshamy, Mohamed; Yassin, Dr. Fuad; Davison, Bruce; Howard, Allan; Thériault, Julie M.; Shook, Kevin; Demuth, Michael N.; Pietroniro, AlainThe interior of western Canada, like many similar cold mid- to high-latitude regions worldwide, is undergoing extensive and rapid climate and environmental change, which may accelerate in the coming decades. Understanding and predicting changes in coupled climate–land– hydrological systems are crucial to society yet limited by lack of understanding of changes in cold-region process responses and interactions, along with their representation in most current-generation land-surface and hydrological models. It is essential to consider the underlying processes and base predictive models on the proper physics, especially under conditions of non-stationarity where the past is no longer a reliable guide to the future and system trajectories can be unexpected. These challenges were forefront in the recently completed Changing Cold Regions Network (CCRN), which assembled and focused a wide range of multi-disciplinary expertise to improve the understanding, diagnosis, and prediction of change over the cold interior of western Canada. CCRN advanced knowledge of fundamental cold-region ecological and hydrological processes through observation and experimentation across a network of highly instrumented research basins and other sites. Significant efforts were made to improve the functionality and process representation, based on this improved understanding, within the fine-scale Cold Regions Hydrological Modelling (CRHM) platform and the large-scale Modélisation Environmentale Communautaire (MEC) – Surface and Hydrology (MESH) model. These models were, and continue to be, applied under past and projected future climates and under current and expected future land and vegetation cover configurations to diagnose historical change and predict possible future hydrological responses. This second of two articles synthesizes the nature and understanding of cold-region processes and Earth system responses to future climate, as advanced by CCRN. These include changing precipitation and moisture feedbacks to the atmosphere; altered snow regimes, changing balance of snowfall and rainfall, and glacier loss; vegetation responses to climate and the loss of ecosystem resilience to wildfire and disturbance; thawing permafrost and its influence on landscapes and hydrology; groundwater storage and cycling and its connections to surface water; and stream and river discharge as influenced by the various drivers of hydrological change. Collective insights, expert elicitation, and model application are used to provide a synthesis of this change over the CCRN region for the late 21st century.Item Towards a coherent flood forecasting framework for Canada: Local to global implications(Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd., 2023) Arnal, Louise; Pietroniro, Alain; Pomeroy, John; Fortin, Vincent; Casson, David; Stadnyk, Tricia; Rokaya, Prabin; Durnford, Dorothy; Friesenhan, Evan; Clark, Martyn P.Operational flood forecasting in Canada is a provincial responsibility that is carried out by several entities across the country. However, the increasing costs and impacts of floods require better and nationally coordinated flood prediction systems. A more coherent flood forecasting framework for Canada can enable implementing advanced prediction capabilities across the different entities with responsibility for flood forecasting. Recently, the Canadian meteorological and hydrological services were tasked to develop a national flow guidance system. Alongside this initiative, the Global Water Futures program has been advancing cold regions process understanding, hydrological modeling, and forecasting. A community of practice was established for industry, academia, and decision-makers to share viewpoints on hydrological challenges. Taken together, these initiatives are paving the way towards a national flood forecasting framework. In this article, forecasting challenges are identified (with a focus on cold regions), and recommendations are made to promote the creation of this framework. These include the need for cooperation, well-defined governance, and better knowledge mobilization. Opportunities and challenges posed by the increasing data availability globally are also highlighted. Advances in each of these areas are positioning Canada as a major contributor to the international operational flood forecasting landscape. This article highlights a route towards the deployment of capacities across large geographical domains.Item Yukon River Basin Streamflow Forecasting System - Advancing, Calibrating, Demonstrating Snow Assimilation and Estimating Ungauged Basin Flow: The Vector-Based MESH Model of the Yukon River Basin(Centre for Hydrology, University Saskatchewan, Saskatoon, Saskatchewan, 2023) Elshamy, Mohamed; Pomeroy, John; Pietroniro, AlainThe Yukon River Basin the second largest river in the Arctic region of North America and is shared between Canada and the US. The Canadian part covers almost half of the Yukon Territory in addition to a small portion of the province of British Columbia, while the US part falls totally within the state of Alaska. This study is concerned with Canadian part of the Yukon River with its outlet at Eagle, Alaska - just downstream of the international boundary (288,000 km2). The southern part of the Yukon River basin is characterized by extensive icefields and snowfields at high elevations (up to 4700 m above sea level) with steep slopes, and thus generates considerable runoff. There are also mountain ranges on the eastern and northern boundaries of the basin, while the western areas are milder in slope and partially forested. Snow redistribution by wind, snowmelt, glacier melt and frozen soil processes in winter and spring along with summertime rainfall-runoff and evapotranspiration processes are thus key to the simulation of streamflow in the basin. This supplement shows further development of a vector-based MESH setup for the Canadian portion of the Yukon River Basin down to Eagle, Alaska. For operational forecasting, MESH is driven by the Environment and Climate Change Canada Global Multiscale Model (GEM) weather model forecasts with precipitation replaced with the Canadian Precipitation Analysis (CaPA) which assimilates local precipitation observations where they exist, collectively referred to as GEM-CaPA. Additionally, the newly developed Regional Deterministic Reforecast System v2.1 (RDRS v2.1) forcing has been extended to span the period 1980-2018 enabling long-term assessments of hydrology. The revised vector-based model was calibrated for operational use based on the GEM-CaPA forcing dataset, and for performing historical simulations based on the RDRS v2.1 forcing dataset, using the period 2004-2011 in both cases. Performance was compared to the previously generated grid-based MESH model whose development was documented in Centre for Hydrology Report #16. A long-term historical simulation was then performed using RDRS v2.1 from which streamflow exceedance return periods for 15 important stations were calculated and presented in this supplement. Calibration has generally improved the performance of the vector-based setup compared to the previous simulations presented in supplement #1 of report #16. Parameter sets are slightly different when the model is calibrated to RDRS v2.1 compared to GEM-CaPA due to differences between the two datasets. A pilot study of the potential benefits of snow data assimilation into the existing MESH forecast system was conducted using historical data and the gridded MESH product that is used operationally by Yukon Environment. This test showed benefits to assimilating surface snowpack observations into MESH to correct winter precipitation. Outputs with assimilation showed improved snowpack simulations and improved streamflow forecasts.Item Yukon River Basin Streamflow Forecasting System - Vector-Based MESH Model Setup for Yukon River Basin(Centre for Hydrology, University Saskatchewan, Saskatoon, Saskatchewan, 2022) Aygun, Okan; Elshamy, Mohamed; Pietroniro, Alain; Pomeroy, JohnThe Yukon River Basin the second largest river in the Arctic region of North America and is shared between Canada and the US. The Canadian part covers almost half of the Yukon Territory in addition to a small portion of the province of British Columbia, while the US part falls totally within the state of Alaska. This study is concerned with Canadian part of the Yukon River with its outlet at Eagle, Alaska - just downstream of the international boundary (288,000 km2). The southern part of the Yukon River basin is characterized by extensive icefields and snowfields at high elevations (up to 4700 m above sea level) with steep slopes, and thus generates considerable runoff. There are also mountain ranges on the eastern and northern boundaries of the basin, while the western areas are milder in slope and partially forested. Snow redistribution by wind, snowmelt, glacier melt and frozen soil processes in winter and spring along with summertime rainfall-runoff and evapotranspiration processes are thus key to the simulation of streamflow in the basin. This supplement shows the development of a vector-based MESH setup for the Canadian portion of the Yukon River Basin at Eagle. Without additional calibration, the vector-based model performance was compared to the previously generated grid-based MESH model whose development was documented in Centre for Hydrology Report #16. MESH was driven by the Environment and Climate Change Canada Global Multiscale Model (GEM) weather model forecasts with precipitation replaced with the Canadian Precipitation Analysis (CaPA) which assimilates local precipitation observations where they exist, collectively referred to as GEM-CaPA. Additionally, the models were run, without additional calibration using the newly developed Regional Deterministic Reforecast System v2 (RDRS v2) forcing. RDRS v2 forcing is being extended as a hindcast by ECCC to approx. 1980 and so will permit 40 year runs of MESH from which streamflow exceedance return periods can be calculated. Model performance was slightly inferior for the vector-based setup compared to the original grid-based one. This may be due to the full calibration applied to the grid-based model and parameter transfer to the vector-based model without recalibration. Model performance also deteriorated when the RDRS v2 was used as forcing data, as the model was originally calibrated to GEM-CaPA. It is expected that model performance will improve once it is fully calibrated using the RDRS v2 forcing data.