Demonstration and Testing of the Improved Shelterbelt Component in the Holos Model
Date
2020
Authors
Kröbel, Roland
Moore, Julius
Ni, Yu Zhao
McPherson, Aaron
Poppy, Laura
Soolanayakanahally, Raju Y.
Amichev, Beyhan Y.
Ward, Tricia
Laroque, Colin
Rees, Ken C. J. Van
Journal Title
Journal ISSN
Volume Title
Publisher
Frontiers Media SA
ORCID
Type
Article
Degree Level
Abstract
The shelterbelt component of Canada’s whole-farm model Holos was upgraded from an age-determined to a circumference-determined (at breast height) calculation using a multi-stem averaging approach. The model interface was developed around the idea that a shelterbelt could have multiple rows, and a variable species composition within each row. With this, the model calculates the accumulated aboveground carbon in the standing biomass and a lookup table of modeled tree growth is used to add estimates of the belowground carbon. Going from an initial interface that asks for the current state, the model also incorporates an option of past and future shelterbelt plantings. In order to test the model’s suitability, we measured diverse shelterbelts (evergreen, deciduous, shrub type) in southern Saskatchewan, Canada representing commonly planted woody species. By making use of Caragana, Green Ash, Colorado Spruce, Siberian Elm, and a mixed Caragana/Green Ash tree row, we tested how many tree circumference measurements would be required to yield a representative average. Later, these results were incorporated in the Holos model to estimate the accumulated above-and below-ground carbon in each shelterbelt type.
Description
Copyright © 2020 Kröbel, Moore, Ni, McPherson, Poppy, Soolanayakanahally, Amichev, Ward, Laroque, Van Rees and Akhter. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Keywords
shelterbelts, agroforestry, Holos model, carbon sequestration, allometric modeling of carbon
Citation
Kröbel R, Moore J, Ni YZ, McPherson A, Poppy L, Soolanayakanahally RY, Amichev BY, Ward T, Laroque CP, Van Rees KCJ and Akhter F (2020) Demonstration and Testing of the Improved Shelterbelt Component in the Holos Model. Front. Environ. Sci. 8:149. doi: 10.3389/fenvs.2020.00149
Degree
Department
Program
Advisor
Committee
Part Of
item.page.relation.ispartofseries
DOI
10.3389/fenvs.2020.00149