Chemistry
Permanent URI for this collection
Browse
Browsing Chemistry by Subject "adsorption"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Coal-Based Activated Carbon via Microwave-Assisted ZnCl2 Activation for Methyl Violet 2B Dye Removal: Optimization, Desirability Function, and Adsorption Mechanism(MDPI, 2023) Musa, Salis A.; Abdulhameed, Ahmed Saud; Baharin, Siti Nor Atika ; ALOthman, Zeid; Wilson, Lee; Jawad, Ali H.In this work, activated carbon (referred to as MCAC) was produced by microwave radiation assisted ZnCl2 activation using Malaysian coal (MC) as a precursor. The Brunauer–Emmett–Teller findings indicate that the MCAC has a relatively large surface area (798.18 m2/g) and a mesoporous structure (average pore diameter of 3.67 nm). The removal of Methylene Violet (MV 2B) a cationic dye model, was employed to investigate the adsorption properties of MCAC. A numerical desirability function in the Box–Behnken design (BBD) was employed to optimize the independent crucial adsorption variables as follows: A: MCAC dose (0.02–0.1 g); B: pH (4–10); and C: time (5–25 min). The results of equilibrium and dynamic adsorption showed that the adsorption of MV 2B followed Freundlich and pseudo-second order models, respectively. The maximum amount of MV 2B dye that the MCAC could adsorb (qmax) was 134.1 mg/g. Electrostatic interactions, π-π stacking, H-bonding, and pore diffusion contribute to the adsorption of MV 2B dye onto the MCAC surface. This study demonstrates the potential to utilize MC as a low-cost precursor for the efficient synthesis of MAC and its utility for the removal of pollutants.Item A Fixed-Bed Column with an Agro-Waste Biomass Composite for Controlled Separation of Sulfate from Aqueous Media(MDPI, 2023) Solgi, Mostafa; Steiger, Bernd; Wilson, LeeAn agro-waste composite with a pelletized form was prepared and characterized via IR and 13C solids NMR spectroscopy. Thermal gravimetry analysis (TGA) was used to study the weight loss profiles, while SEM images provided insight on the biocomposite morphology, along with characterization of the sulfate adsorption properties under equilibrium and dynamic conditions. The sulfate monolayer adsorption capacity (qe = 23 mg/g) of the prepared agro-waste pellets was estimated from the adsorption isotherm results by employing the Langmuir model, and comparable fitting results were obtained by the Freundlich model. The dynamic adsorption properties were investigated via adsorption studies with a fixed bed column at pH 5.2. The effects of various parameters, including flow rate, bed height and initial concentrations of sulfate, were evaluated to estimate the optimal conditions for the separation of sulfate. The experimental data of the breakthrough curves were analyzed using the Thomas and Yoon–Nelson models, which provided satisfactory best-fits for the fixed bed kinetic adsorption results. The predicted adsorption capacities for all samples according to the Thomas model concur with the experimental values. The optimum conditions reported herein afford the highest dynamic adsorption capacity (30 mg/g) as follows: 1100 mg/L initial sulfate concentration, 30 cm bed height and 5 mL/min flow rate. The breakthrough time was measured to be 550 min. This study contributes to a strategy for controlled separation of sulfate using a sustainable biocomposite material that is suitable for fixed-bed column point-of-use water treatment systems.Item Hybrid Chitosan Biosorbents: Tunable Adsorption at Surface and Micropore Domains(Biomimetics, 2024-11) Udoetok, Inimfon; Mohamed, Mohamed H.; Wilson, LeeHerein, we report a study that provides new insight on the knowledge gaps that relate to the role of biopolymer structure and adsorption properties for chitosan adsorbents that are cross-linked with glutaraldehyde. The systematic modification of chitosan cross-linked with glutaraldehyde (CG) and its quaternized forms (QCG) was studied in relation to the reaction conditions: mole ratios of reactants and pH conditions. Complementary adsorbent characterization employed 13C NMR/FTIR spectroscopy, TGA and DSC, point-zero-charge (PZC), solvent swelling, and sorption studies using selected dye probes. The spectral and thermal techniques provide complementary evidence that affirm the key role of cross-linker content and quaternization on variation of the physicochemical properties of chitosan. The PZC results reveal a neutral surface charge for the modified materials between pH 6.0 to 6.3 ± 0.3, as compared with pH 8.7 ± 0.4 for pristine chitosan. Solvent swelling in water decreased with greater cross-linking, while the QCG materials had greater swelling over CG materials due to enhanced hydration. The adsorption results reveal variable dye uptake properties according to the cross-linker content. Similarly, surface versus micropore adsorption was demonstrated, according to the nature and ionization state of the dye for the modified adsorbents, where the CG and QCG materials had tunable sorption properties that exceeded that of unmodified chitosan. A key step in tuning the structure and surface chemical properties of cross-linked chitosan involves pH control during synthesis. The facile tunability of the physicochemical properties of the modified biopolymers reported herein means that they possess features of biomimetics that are relevant to advanced drug delivery, antimicrobial materials for wound healing, biosensors, and biosorbents for biomedical applications.Item A pyridinium-modified chitosan-based adsorbent for arsenic removal via a coagulation-like methodology(Royal Society of Chemistry, 2023) Venegas-García, Deysi J.; Steiger, Bernd; Wilson, LeeThe goal of this study was to synthesize a chitosan-derived adsorbent that can be used in a coagulation– flocculation (CF) process for facile integration into existing water treatment processes. Therefore, an insoluble pyridinium-modified chitosan (Chi-Py) was prepared. Structural characterization was achieved with spectroscopy (FT-IR, 13C solids NMR, and X-ray photoelectron) methods and thermogravimetric analysis. Approximately 7% di-nitrobenzene and ca. 30% pyridinium moieties were incorporated into the chitosan framework via an adapted, moderate-temperature, Zincke reaction. The arsenic removal efficiency was evaluated by a coagulation-inspired methodology at pH 7.5, where the results were compared against CF systems such as pristine chitosan, FeCl3 and chitosan–FeCl3. The kinetic and van't Hoff thermodynamic parameters for arsenic removal were calculated. Arsenic adsorption was shown to be a spontaneous and exothermic process (ΔG = −4.7 kJ mol−1; ΔH = −75.6 kJ mol−1) with a 76% arsenic removal efficiency at 23 °C and 96% at 5 °C with a maximum effective adsorbent dosage of Chi- Py of 300 mg L−1. The adsorption process for Chi-Py followed pseudo-first order kinetics, where the pyridinium-modified chitosan adsorbent can be successfully employed similar to coagulant-like systems in conventional water treatment processes. In contrast to conventional adsorbents (1–2 g L−1), a dosage of only 300 mg L−1 was required for Chi-Py that offers greater sustainability and recycling of materials. This is contrasted with single-use conventional coagulants such as FeCl3 or binary FeCl3–chitosan CF systems.Item Surface-Modified Chitosan: An Adsorption Study of a “Tweezer-Like” Biopolymer with Fluorescein(MDPI, 2019-08-18) Vafakish, Bahareh; Wilson, LeeTweezer-like adsorbents with enhanced surface area were synthesized by grafting aniline onto the amine sites of a chitosan biopolymer scaffold. The chemical structure and textural properties of the adsorbents were characterized by thermogravimetric analysis (TGA) and spectral methods, including Fourier transform infrared (FT-IR), nuclear magnetic resonance (1H- and, 13C-NMR) and scanning electron microscopy (SEM). Equilibrium solvent swelling results for the adsorbent materials provided evidence of a more apolar biopolymer surface upon grafting. Equilibrium uptake studies with fluorescein at ambient pH in aqueous media reveal a high monolayer adsorption capacity (Qm) of 61.8 mg·g−1, according to the Langmuir isotherm model. The kinetic adsorption profiles are described by the pseudo-first order kinetic model. 1D NMR and 2D-NOESY NMR spectra were used to confirm the role of π-π interactions between the adsorbent and adsorbate. Surface modification of the adsorbent using monomeric and dimeric cationic surfactants with long hydrocarbon chains altered the hydrophile-lipophile balance (HLB) of the adsorbent surface, which resulted in attenuated uptake of fluorescein by the chitosan molecular tweezers. This research contributes to a first example of the uptake properties for a tweezer-like chitosan adsorbent and the key role of weak cooperative interactions in controlled adsorption of a model anionic dye.