Centre for Hydrology
Permanent URI for this community
The Centre for Hydrology provides a focus and catalyst for hydrological research at the University of Saskatchewan. The Centre is an interdisciplinary University research cluster designed to bring together and coordinate academic, graduate student, postdoctoral and allied government research staff for research, training and outreach on hydrological issues of local and global importance and to coordinate the University presence in hydrology. It focusses on advancing the theory and practice of hydrology as a physical environmental science, and emphasizes research and training related to improving descriptions and explanations of the natural and human factors which control the quantity and quality of water resources. This mission is carried on from the former Division of Hydrology (1962-2001) which conducted and coordinated some of the earliest Canadian hydrology research. The Centre contributes to the Global Institute for Water Security and the Global Water Futures programme.
Browse
Browsing Centre for Hydrology by Title
Now showing 1 - 20 of 66
Results Per Page
Sort Options
Item An integrated assessment of impacts to ecosystem services associated with prairie pothole wetland drainage quantifying wide-ranging losses(Canadian Science Publishing, 2024-06-20) Whitfield, Colin; Cavaliere, Emily; Baulch, Helen; Clark, Robert; Spence, Christopher; Shook, Kevin; He, Zhihua; Pomeroy, John W.; Wolfe, JaredIn many regions, a tradeoff exists between draining wetlands to support the expansion of agricultural land, and conserving wetlands to maintain their valuable ecosystem services. Decisions about wetland drainage are often made without identifying the impacts on the services these systems provide. We address this gap through a novel assessment of impacts on ecosystem services via wetland drainage in the Canadian prairie landscape. Draining pothole wetlands has large impacts, but sensitivity varies among the indicators considered. Loss of water storage increased the magnitude of median annual flows, but absolute increases with drainage were higher for larger, less frequent events. Total phosphorus exports increased in concert with streamflow. Our analysis suggested disproportionate riparian habitat losses with the first 30% of wetland area drained. Dabbling ducks and wetland-associated bird abundances respond strongly to the loss of small wetland ponds; abundances were predicted to decrease by half with the loss of only 20%–40% of wetland area. This approach to evaluating changes to key wetland ecosystem services in a large region where wetland drainage is ongoing can be used with an economic valuation of the drainage impacts, which should be weighed against the benefits associated with agricultural expansion.Item Assessing hydrological sensitivity of grassland basins in the Canadian Prairies to climate using a basin classification-based virtual modelling approach(Copernicus Publications on behalf of the European Geosciences Union, 2022) Spence, Christopher; He, Zhihua; Shook, Kevin R.; Mekonnen, Balew A.; Pomeroy, John; Whitfield, Colin; Wolfe, JaredSignificant challenges from changes in climate and land use face sustainable water use in the Canadian Prairies ecozone. The region has experienced significant warming since the mid-20th century, and continued warming of an additional 2 _C by 2050 is expected. This paper aims to enhance understanding of climate controls on Prairie basin hydrology through numerical model experiments. It approaches this by developing a basin-classification-based virtual modelling framework for a portion of the Prairie region and applying the modelling framework to investigate the hydrological sensitivity of one Prairie basin class (High Elevation Grasslands) to changes in climate. High Elevation Grasslands dominate much of central and southern Alberta and parts of south-western Saskatchewan, with outliers in eastern Saskatchewan and western Manitoba. The experiments revealed that High Elevation Grassland snowpacks are highly sensitive to changes in climate but that this varies geographically. Spring maximum snow water equivalent in grasslands decreases 8% °C-1 of warming. Climate scenario simulations indicated that a 2 °C increase in temperature requires at least an increase of 20% in mean annual precipitation for there to be enough additional snowfall to compensate for enhanced melt losses. The sensitivity in runoff is less linear and varies substantially across the study domain: simulations using 6 °C of warming, and a 30% increase in mean annual precipitation yields simulated decreases in annual runoff of 40%in climates of the western Prairie but 55% increases in climates of eastern portions. These results can be used to identify those areas of the region that are most sensitive to climate change and highlight focus areas for monitoring and adaptation. The results also demonstrate how a basin classification based virtual modelling framework can be applied to evaluate regional-scale impacts of climate change with relatively high spatial resolution in a robust, effective and efficient manner.Item Assessing runoff sensitivity of North American Prairie Pothole Region basins to wetland drainage using a basin classification-based virtual modelling approach(Copernicus Publications on behalf of the European Geosciences Union, 2022) Spence, Christopher; He, Zhihua; Shook, Kevin R.; Pomeroy, John; Whitfield, Colin; Wolfe, JaredWetland drainage has been pervasive in the North American Prairie Pothole Region. There is strong evidence that this drainage increases the hydrological connectivity of previously isolated wetlands and, in turn, runoff response to snowmelt and rainfall. It can be hard to disentangle the role of climate from the influence of wetland drainage in observed records. In this study, a basin-classification-based virtual modelling approach is described that can isolate these effects on runoff regimes. The basin class which was examined, entitled Pothole Till, extends throughout much of Canada’s portion of the Prairie Pothole Region. Three knowledge gaps were addressed. First, it was determined that the spatial pattern in which wetlands are drained has little influence on how much the runoff regime was altered. Second, no threshold could be identified below which wetland drainage has no effect on the runoff regime, with drainage thresholds as low as 10 % in the area being evaluated. Third, wetter regions were less sensitive to drainage as they tend to be better hydrologically connected, even in the absence of drainage. Low flows were the least affected by drainage. Conversely, during extremely wet years, runoff depths could double as the result of complete wetland removal. Simulated median annual runoff depths were the most responsive, potentially tripling under typical conditions with high degrees of wet- land drainage. As storage capacity is removed from the landscape through wetland drainage, the size of the storage deficit of median years begins to decrease and to converge on those of the extreme wet years. Model simulations of flood frequency suggest that, because of these changes in antecedent conditions, precipitation that once could generate a median event with wetland drainage can generate what would have been a maximum event without wetland drainage. The advantage of the basin-classification-based virtual modelling approach employed here is that it simulated a long period that included a wide variety of precipitation and antecedent storage conditions across a diversity of wetland complexes. This has allowed seemingly disparate results of past research to be put into context and finds that conflicting results are often only because of differences in spatial scale and temporal scope of investigation. A conceptual framework is provided that shows, in general, how annual runoff in different climatic and drainage situations will likely respond to wetland drainage in the Prairie Pothole Region.Item Changes in the frequency of global high mountain rain-on-snow events due to climate warming(IOP Publishing Ltd, 2021) López-Moreno, Juan Ignacio; Pomeroy, John; Morán-Tejeda, Enrique; Revuelto, Jesús; Navarro-Serrano, Francisco; Vidaller, Ixeia; Alonso González, EstebanRain-on-snow (ROS) events can trigger severe floods in mountain regions. There is high uncertainty about how the frequency of ROS events (ROS) and associated floods will change as climate warms. Previous research has found considerable spatial variability in ROS responses to climate change. Detailed global assessments have not been conducted. Here, atmospheric reanalysis data was used to drive a physically based snow hydrology model to simulate the snowpack and the streamflow response to climate warming of a 5.25 km2 virtual basin (VB) applied to different high mountain climates around the world. Results confirm that the sensitivity of ROS to climate warming is highly variable among sites, and also with different elevations, aspects and slopes in each basin. The hydrological model predicts a decrease in the frequency of ROS with warming in 30 out 40 of the VBs analyzed; the rest have increasing ROS. The dominant phase of precipitation, duration of snow cover and average temperature of each basin are the main factors that explain this variation in the sensitivity of ROS to climate warming. Within each basin, the largest decreases in ROS were predicted to be at lower elevations and on slopes with sunward aspects. Although the overall frequency of ROS drops, the hydrological importance of ROS is not expected to decline. Peak streamflows due to ROS are predicted to increase due to more rapid melting from enhanced energy inputs, and warmer snowpacks during future ROS.Item The Changing Hydrology of Lhù’ààn Mǟn - Kluane Lake - under Past and Future Climates and Glacial Retreat(Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, 2018) Loukili, Youssef; Pomeroy, John W.The goal of this report is to estimate the variability and changes in the lake levels of Kluane Lake over the historical period and into the future climates of the 21st C, with and without the Kaskawulsh Glacier contribution. The study diagnoses the causes of variability of lake levels in the past and evaluates the impact of deglaciation on lake levels in the future in the context of climate change. The methods use a combination of weather data from observations and global climate models to drive a detailed glacio-hydrological prediction model, which calculates streamflows in the Slims River and other inflows to Kluane Lake, lake evaporation and outflows and then the lake level. Historical Kluane Lake levels during the 20th C and future lake levels under global warming projections for the rest of the 21st C were predicted - with and without the Kaskawulsh Glacier contribution to the Slims River. The Canadian glacio-hydrological water prediction model MESH, which couples the Canadian Land Surface Scheme with both surface and subsurface runoff on slopes and river routing, was used to model the hydrology of the Kluane Lake Basin for these predictions. The adjacent gauged Duke River Basin was also included in the model to provide opportunities to evaluate the model performance in this region against gauged streamflows. Model parameterisations of topography, land cover, glacier cover, soil type and runoff directions were made and used to set up the model on various sub-basins flowing into Kluane Lake, including the Slims River Basin. The results drawn from this study are intended to answer important questions posed by Kluane First Nation of Burwash Landing, residents of Destruction Bay and surrounding areas and Yukon Government on the history and the future of Kluane Lake levels. Furthermore, the study will help inform water management and infrastructure design around Kluane Lake, and other environmental and aquatic conservation and adaptation efforts in the region. While the models employed here represent the “state-of-the-art”, there is uncertainty in the predictions. This uncertainty could be reduced in future prediction efforts by resuming Kluane River discharge measurements, which were discontinued in 1994.Item Climate Change in Canadian Floodplain Mapping Assessments(Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, 2020) Rajulapati, Chandra Rupa; Tesemma, Zelalem; Shook, Kevin; Papalexiou, Simon Michael; Pomeroy, John W.In the recent decades, precipitation patterns and corresponding streamflow responses in many cold regions catchments have changed considerably due to warming. Understanding historical changes and predicting future responses are of great importance for planning and management of water resources systems. Regional climate simulations using convention- permitting models are helpful in representing the fine-scale cloud and mesoscale processes, which are critical for understanding the physical mechanisms that cause in convective precipitation. From a hydrological perspective, these fine resolution simulations are helpful in understanding the runoff generation mechanisms, particularly for mountainous watersheds, which have high spatial variation in precipitation due to large differences in elevation over small distances. The sister-study of this report, the Bow River Basin Study (BRBS), used a physically based hydrological land surface scheme along with a water management model, coupled with a high resolution convention- permitting atmospheric regional model (Weather Research and Forecasting, WRF) to understand the streamflow generating mechanisms and identify the changes in streamflow responses of the Bow and Elbow River Basins. The coupled model appears to provide a large improvement in predictability, with minimal calibration of parameters and without bias correction of forcing from the atmospheric model. The model4 was able to provide reliable estimates of streamflows, despite the complex topography in the catchment. Using the WRF Pseudo Global Warming (PGW) scenario, estimated future streamflows simulated were then used to develop projected flow exceedance curves. The uncertainty in the simulations is extremely helpful in the risk assessment for downstream flood inundations. However, the uncertainty in streamflows cannot be assessed as the WRF- PGW dataset was only available for a single realization, because of the high computational cost. The research presented in this report focusses instead on using the highly efficient hydrological model developed and verified in BRBS whilst assessing uncertainty using another regional climate model, the CanRCM4, where many realizations are available for different boundary conditions. Since the CanRCM4 simulations have a relatively low resolution, a novel methodology was developed to adjust regional climate model outputs using the WRF-PGW data. An ensemble of 15 CanRCM4 simulations was used to force the Bow River basin model to determine a measure of the uncertainty in the simulated streamflows, and the projected streamflow exceedance probability curves. These curves are extremely useful for risk assessment for downstream flood inundations. Given the importance of understanding how much extreme precipitation will change in urban areas of the basin, where short duration high intensity events cause flash flooding, frequency analysis of these events was carried out for Calgary and Intensity Duration Frequency (IDF) curves were developed. A ready-to-use empirical form of IDF curve has been proposed from this analysis for the City of Calgary. The results from the WRF-PGW modelling indicated that future high flow, low frequency (exceedances less than 10%) streamflow events will decrease compared to those under the current climate condition by 4, 9 and 1.6 m3/s for the Bow River at Banff and Calgary and Elbow River at Sarcee Bridge respectively. The average of the 15 new CanRCM4-WRF-PGW results supports the above result with some greater decreases in streamflow of 9, 16 and 4 m3/s for Bow River at Banff and Calgary and Elbow River at Sarcee Bridge respectively. However, there were some CanRCM4-WRF-PGW realisations that suggested substantial increases in future low frequency streamflow from those indicated by the average CanRCM4- WRF-PGW-drive MESH model. The below average, high frequency (exceedances greater than 30%) future streamflows will increase modestly in all gauging locations by from 1 to 12.5 m3/s. The results of the extreme precipitation analysis at Calgary indicated an increase in future extreme precipitation events of all duration and return periods. On an average an increase of 1.5 times is noted for short return periods (=2, 5), and an increase of 4 times for long return periods (=500, 1000).Item The cold regions hydrological modelling platform for hydrological diagnosis and prediction based on process understanding(Elsevier B.V., 2022) Pomeroy, John; Brown, Tom; Fang, Xing; Shook, Kevin R.; Pradhananga, Dhiraj; Armstrong, Robert; Harder, Phillip; Marsh, Christopher; Costa, Diogo; Krogh, Sebastian; Aubry-Wake, Caroline; Annand, Holly; Lawford, Peter; He, Zhihua; Kompanizare, Mazda; Lopez-Moreno, IgnacioCold regions involve hydrological processes that are not often addressed appropriately in hydrological models. The Cold Regions Hydrological Modelling platform (CRHM) was initially developed in 1998 to assemble and explore the hydrological understanding developed from a series of research basins spanning Canada and international cold regions. Hydrological processes and basin response in cold regions are simulated in a flexible, modular, object-oriented, multiphysics platform. The CRHM platform allows for multiple representations of forcing data interpolation and extrapolation, hydrological model spatial and physical process structures, and parameter values. It is well suited for model falsification, algorithm intercomparison and benchmarking, and has been deployed for basin hydrology diagnosis, prediction, land use change and water quality analysis, climate impact analysis and flood forecasting around the world. This paper describes CRHM’s capabilities, and the insights derived by applying the model in concert with process hydrology research and using the combined information and understanding from research basins to predict hydrological variables, diagnose hydrological change and determine the appropriateness of model structure and parameterisations.Item Crop water use efficiency from eddy covariance methods in cold(Agricultural and Forest Meteorology, 2023-08) Harder, Phillip; Helgason, Warren; Johnson, Bruce; Pomeroy, JohnCrop–water interactions define productivity in water-limited dryland agricultural production systems in cold regions. Despite the agronomic and economic importance of this relationship there are challenges in quantifying crop water use efficiency (WUE). To understand dynamics driving crop water use and agricultural productivity in these environments, observations of evapotranspiration, carbon assimilation, meteorology, and crop growth were collected over 17 site-years at 5 agricultural sites in the sub-humid continental Canadian Prairies. Eddy-covariance (EC) derived water and carbon fluxes provided a means to comprehensively assess the WUE of current agricultural practices by both physiological (WUEP: g C kg−1 H2O) and agronomic (WUEY): kg yield mm H2O−1 hectare−1) approaches. Mean field scale WUEY for grain yields were 10.4 (Barley), 10.2 (Wheat), 6.0 (Canola), 19.3 (Peas), 12.2 (Lentils) and for silage/forage crops were 23.0 (Barley), 11.9 (Forage), and 20.7 (Corn) (kg yield mm H2O−1 hectare−1). An assessment of environmental factors and their covariance with WUE, utilising a conditional inference tree approach, demonstrated that WUE decreased when crops were under greater evapotranspiration demands. EC-based areal WUE approaches, measuring fluxes over footprints of hundreds of square metres, were compared with more commonly reported point-scale water balance residual approaches (WUEWB) and demonstrated consistently smaller magnitudes. WUEWB was greater than EC-estimated WUEY by an average of 52% and 65% for grain and forage/silage crops respectively. WUEWB also had greater variability than EC estimates, with standard deviations 188% and 128% greater than Barley and Wheat crops, respectively. This comparison highlights the scale dependency of WUE estimation methods, demonstrates considerable uncertainty in point scale water balance approaches due to spatial variability in crop–water interactions, and shows how this variability can be accounted for by EC observations. This improves the understanding of WUE and quantifies its variability in cold continental water-limited climates and provides a means to diagnose improved agricultural water management.Item Developing a tile drainage module for the Cold Regions Hydrological Model: lessons from a farm in southern Ontario, Canada(European Geosciences Union, 2024-07-04) Kompanizare, Mazda; Costa, Diogo; Macrae, Merrin; Pomeroy, John W.; Petrone, RichardSystematic tile drainage is used extensively in poorly drained agricultural lands to remove excess water and improve crop growth; however, tiles can also transfer nutrients from farmlands to downstream surface water bodies, leading to water quality problems. Thus, there is a need to simulate the hydrological behaviour of tile drains to understand the impacts of climate or land management change on agricultural surface and subsurface runoff. The Cold Regions Hydrological Model (CRHM) is a physically based, modular modelling system developed for cold regions. Here, a tile drainage module is developed for CRHM. A multi-variable, multi-criteria model performance evaluation strategy was deployed to examine the ability of the module to capture tile discharge under both winter and summer conditions (NSE > 0.29, RSR < 0.84 and PBias < 20 for tile flow and saturated storage simulations). Initial model simulations run at a 15 min interval did not satisfactorily represent tile discharge; however, model simulations improved when the time step was lengthened to hourly but also with the explicit representation of capillary rise for moisture interactions between the rooting zone and groundwater, demonstrating the significance of capillary rise above the saturated storage layer in the hydrology of tile drains in loam soils. Novel aspects of this module include the sub-daily time step, which is shorter than most existing models, and the use of field capacity and its corresponding pressure head to provide estimates of drainable water and the thickness of the capillary fringe, rather than using detailed soil retention curves that may not always be available. An additional novel aspect is the demonstration that flows in some tile drain systems can be better represented and simulated when related to shallow saturated storage dynamics.Item Development of a Snowmelt Runoff Model for the Lower Smoky River(Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, 2013) Pomeroy, John W.; Shook, Kevin; Fang, Xing; Brown, Tom; Marsh, ChristopherThe Smoky River tributary of the Peace River has an ungauged (in real-time) basin area of 23,769 km2, corresponding to 46% of its basin area of 51,839 km2 . The purpose of this study was to develop a model to simulate the daily spring ungauged flows of the Smoky River and its main tributary, the Little Smoky River for recent periods using measured meteorological data and forecast periods using the outputs of a numerical weather forecast model. A physically-based model of the ungauged local flows contributing to the Smoky River at Watino and the Little Smoky River at Guy, the Lower Smoky River Model (LSRM), was developed using the CRHM platform. The model was deployed to 26 ungauged sub-basins, from which discharges were routed and accumulated to produce the ungauged discharges at Guy and Watino. The LSRM modelled discharge was evaluated to estimate the discharge of the Smoky River and Little Smoky River in an operational setting with measured meteorological observations. Results from this comparison were very good with a high degree of hydrograph predictability, small bias in flow estimation, and very good prediction of peak daily discharge and excellent prediction of the timing of peak daily discharge. The results were somewhat better for the Smoky River than for the Little Smoky River, showing the effect of increasing basin size in compensating for inadequate precipitation observation density and/or errors in model structure or parameterization. The model has not yet been tested in an operational setting during a spring snowmelt event and its full capabilities and usefulness cannot be assessed until it has been tested in such a setting.Item Diagnosis of Historical and Future Flow Regimes of the Bow River at Calgary Using a Dynamically Downscaled Climate Model and a Physically Based Land Surface Hydrological Model : Final Report(Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, 2020) Tesemma, Zelalem; Shook, Kevin; Princz, Daniel; Razavi, Saman; Davison, Bruce; Li, Yanping; Pietroniro, Alain; Pomeroy, John W.; wheater, howardThis report assesses the impacts of projected climate change on the hydrology, including the flood frequencies, of the Bow and Elbow Rivers above Calgary, Alberta. It reports on investigations of the effects of projected climate change on the runoff mechanisms for the Bow and Elbow River basins, which are important mountain headwaters in Alberta, Canada. The study developed a methodology and applied a case study for incorporating climate change into flood frequency estimates that can be applied to a variety of river basins across Canada.Item Fire and Ice: The Impact of Wildfire-Affected Albedo and Irradiance on Glacier Melt(Wiley Open Access [Commercial Publisher], American Geophysical Union [Society Publisher], 2022) Aubry-Wake, Caroline; Bertoncini, André; Pomeroy, JohnWildfire occurrence and severity is predicted to increase in the upcoming decades with severe negative impacts on human societies. The impacts of upwind wildfire activity on glacier melt, a critical source of freshwater for downstream environments, were investigated through analysis of field and remote sensing observations and modeling experiments for the 2015–2020 melt seasons at the well-instrumented Athabasca Glacier in the Canadian Rockies. Upwind wildfire activity influenced surface glacier melt through both a decrease in the surface albedo from deposition of soot on the glacier and through the impact of smoke on atmospheric conditions above the glacier. Athabasca Glacier on-ice weather station observations show days with dense smoke were warmer than clear, non-smoky days, and sustained a reduction in surface shortwave irradiance of 103 W m-2 during peak shortwave irradiance and an increase in longwave irradiance of 10 W m-2, producing an average 15 W m-2 decrease in net radiation. Albedo observed on-ice gradually decreased after the wildfires started, from a summer average of 0.29 in 2015 before the wildfires to as low as 0.16 in 2018 after extensive wildfires and remained low for two more melt seasons without substantial upwind wildfires. Reduced all-wave irradiance partly compensated for the increase in melt due to lowered albedo in those seasons when smoke was detected above Athabasca Glacier. In melt seasons without smoke, the suppressed albedo increased melt by slightly more than 10% compared to the simulations without fire-impacted albedo, increasing melt by 0.42 m. w.e. in 2019 and 0.37 m. w.e. in 2020.Item Global Water Futures Observatories : a solutions oriented network of world class observation sites and laboratories(2024-03) DeBeer, ChrisGlobal Water Futures Observatories vision, principles of operation, and Priority Research Support Directions 2023-2029.Item High-Resolution Large-Eddy Simulations of Flow in the Complex Terrain of the Canadian Rockies(Earth and Space Science, 10/25/2023) Rohanizadegan, Mina; Petrone, Richard; Pomeroy, John W.; Kosovic, Branko; Muñoz-Esparza, Domingo; Helgason, WarrenImproving the calculation of land-atmosphere fluxes of heat and water vapor in mountain terrain requires better resolution of thermally driven diurnal winds (i.e., valley, slope winds) due to differential heating by terrain and radiative fluxes. In this study, the Weather Research and Forecasting model is used to simulate flow in large-eddy simulation (LES) mode over the complex terrain of the Fortress Mountain and Marmot Creek research basins, Kananaskis Valley, Canadian Rockies, Alberta in mid-summer. The model was used to examine the temporal and spatial evolution of local winds and near-surface boundary layer processes with variability in topography and elevation. Numerically resolving complex terrain wind flow effects require smaller grid cell size. However, the use of terrain-following coordinates in most numerical weather prediction models results in large numerical errors when flow over steep terrain is simulated. These errors propagate through the domain and can result in numerical instability. To avoid this issue when simulating flow over steep terrain a local smoothing approach was used, where smoothing is applied only where slope exceeds some predetermined threshold. LES results from local smoothing were compared with a mesoscale model and LES with global smoothing. Simulations are evaluated using sounding data and meteorological stations. The differences in flow patterns and reversals in two mountain basins suggest that valley geometry and volume is relevant to the break up of inversion layers, removal of cold-air pools, and strength of thermally driven winds.Item Hydrology and Water Resources of Saskatchewan(Centre for Hydrology, University Saskatchewan, Saskatoon, Saskatchewan, 2005) Pomeroy, John; de Boer, Dirk; Martz, Lawrence W.There is little in the natural environment, economy and society of Saskatchewan that is not intimately tied to and sustained by the flow and storage of water. Nowhere else in Canada does the lack or excess of water cause such widespread concern, nor are there many Canadian environments subject to greater seasonal change in precipitation and surface-water storage. Most major landforms of Saskatchewan were created by the deposition and erosion of sediments and rock by water and ice during the glacial and immediate postglacial periods. Saskatchewan’s contemporary hydrology determines the type and location of natural vegetation, soils, agriculture, communities and commerce. However, the scarcity, seasonality and unpredictability of the province’s water resources have proved critical impediments to the productivity of natural ecosystems and to sustainable settlement and economic activity. The hydrology of Saskatchewan is marked by several distinctive characteristics that govern the behaviour of water as a resource in the province (Gray, 1970): i) The extreme variability of precipitation and runoff results in frequent water shortages and excesses with respect to natural and human storage capacities and demand. ii) The seasonality of water supply is manifest in fall and winter by the storage of water as snow, and lake and ground ice, in early spring by rapid snowmelt resulting in most runoff, and in late spring and early summer by much of the annual rainfall. iii) The aridity and gentle topography result in poorly developed, disconnected and sparse drainage systems, and surface runoff that is both infrequent and spatially restricted. iv) The land cover and soils exert an inordinate control on hydrological processes because of small precipitation inputs and limited energy for evaporation and snowmelt. v) The flows in the major rivers of the southern half of the province are largely derived from the foothills and mountains in Alberta. In dry years, arable agriculture can fail over large parts of the province, whilst in wet years, flooding has caused widespread damage to rural and urban infrastructure. Climate change may increase the incidence of both drought and flooding, with earlier spring thaws and increased interannual and interseasonal variability of temperature and precipitation (Covich et al., 1997; Cutforth et al., 1999, Herrington et al., 1997). Changes to the seasonal timing of precipitation can have very severe effects on agriculture and ecosystems; runoff to water bodies and replenishment of groundwater are primarily supplied by spring snowmelt, growth of cereal grains is related to the quantity of rainfall falling between May and early July, maturing and timely harvesting of crops are dependent upon warm dry weather in mid to late summer, and spring runoff is governed by soil moisture reserves in the preceding fall and snowfall the preceding winter (de Jong and Kachanoski, 1987). Saskatchewan’s water resources are vulnerable, as there is little local runoff to the single greatest water resource of the southern prairies, the South Saskatchewan River, which derives overwhelmingly from the Rocky Mountains. Water supplies in the Alberta portion of the South Saskatchewan River system are approaching full apportionment in dry years and the uncertainty imposed by climate change impacts on runoff generation in the mountains makes managing the river increasing difficult. Local water bodies (streams, sloughs, dugouts) are fed by groundwater or small surface drainages, and little runoff is provided by most land surfaces within the ‘topographic catchment’. The effect of soils and vegetation on Saskatchewan hydrology is profound because of the interaction of snow, evaporation and vegetation. In the southern Prairies, water applied from rain or snowmelt to summer-fallowed fields contributes inordinately to runoff, whereas continuously cropped fields, grasses and trees undergo greater infiltration to soils and hence greater evaporation. In the North, evergreen forest canopy and root structures promote infiltration of rainfall or snowmelt to soils and subsequent evaporation. There is much greater runoff and streamflow in boreal forest drainage basins with large cleared areas. This chapter will discuss the key physical aspects of Saskatchewan’s hydrology and water resources, focussing on its drainage basins and the contribution of runoff to streams and lakes within them, its major rivers and their flows, water supply pipelines and river diversions, prairie hydrology, boreal forest hydrology, groundwater and an assessment of the future. Because of its sub-humid, cold region hydrology and low population, water quality concerns in Saskatchewan are primarily related to algal growth in dugouts, and a few cases of contaminated groundwater or immediate downstream effects from sewage outflows, rather than widespread diffuse-source pollution; this chapter will therefore focus on water quantity rather than quality.Item Hydrometeorological data from Marmot Creek Research Basin, Canadian Rockies(Copernicus Publications, 2019) Fang, Xing; Pomeroy, John; DeBeer, Chris; Harder, Philip; Siemens, EvanMeteorological, snow survey, streamflow, and groundwater data are presented from Marmot Creek Research Basin, Alberta, Canada. The basin is a 9.4 km2, alpine–montane forest headwater catchment of the Saskatchewan River basin that provides vital water supplies to the Prairie Provinces of Canada. It was heavily instrumented, experimented upon, and operated by several federal government agencies between 1962 and 1986, during which time its main and sub-basin streams were gauged, automated meteorological stations at multiple elevations were installed, groundwater observation wells were dug and automated, and frequent manual measurements of snow accumulation and ablation and other weather and water variables were made. Over this period, mature evergreen forests were harvested in two sub-basins, leaving large clear cuts in one basin and a “honeycomb” of small forest clearings in another basin. Whilst meteorological measurements and sub-basin streamflow discharge weirs in the basin were removed in the late 1980s, the federal government maintained the outlet streamflow discharge measurements and a nearby high-elevation meteorological station, and the Alberta provincial government maintained observation wells and a nearby fire weather station. Marmot Creek Research Basin was intensively re-instrumented with 12 automated meteorological stations, four sub-basin hydrometric sites, and seven snow survey transects starting in 2004 by the University of Saskatchewan Centre for Hydrology. The observations provide detailed information on meteorology, precipitation, soil moisture, snowpack, streamflow, and groundwater during the historical period from 1962 to 1987 and the modern period from 2005 to the present time. These data are ideal for monitoring climate change, developing hydrological process understanding, evaluating process algorithms and hydrological, cryospheric, or atmospheric models, and examining the response of basin hydrological cycling to changes in climate, extreme weather, and land cover through hydrological modelling and statistical analyses. The data presented are publicly available from Federated Research Data Repository (https://doi.org/10.20383/101.09, Fang et al., 2018).Item Hydrometeorological, glaciological and geospatial research data from the Peyto Glacier Research Basin in the Canadian Rockies(Copernicus Publications, 2021) Pradhananga, Dhiraj; Pomeroy, John; Aubry-Wake, Caroline; Munro, D. Scott; Shea, Joseph; Demuth, Michael N.; Kirat, Nammy Hang; Menounos, Brian; Mukherjee, KritiThis paper presents hydrometeorological, glaciological and geospatial data from the Peyto Glacier Research Basin (PGRB) in the Canadian Rockies. Peyto Glacier has been of interest to glaciological and hydrological researchers since the 1960s, when it was chosen as one of five glacier basins in Canada for the study of mass and water balance during the International Hydrological Decade (IHD, 1965–1974). Intensive studies of the glacier and observations of the glacier mass balance continued after the IHD, when the initial seasonal meteorological stations were discontinued, then restarted as continuous stations in the late 1980s. The corresponding hydrometric observations were discontinued in 1977 and restarted in 2013. Datasets presented in this paper include high-resolution, co-registered digital elevation models (DEMs) derived from original air photos and lidar surveys; hourly off-glacier meteorological data recorded from 1987 to the present; precipitation data from the nearby Bow Summit weather station; and long-term hydrological and glaciological model forcing datasets derived from bias-corrected reanalysis products. These data are crucial for studying climate change and variability in the basin and understanding the hydrological responses of the basin to both glacier and climate change. The comprehensive dataset for the PGRB is a valuable and exceptionally long-standing testament to the impacts of climate change on the cryosphere in the high-mountain environment. The dataset is publicly available from Federated Research Data Repository at https://doi.org/10.20383/101.0259 (Pradhananga et al., 2020).Item Icefield Breezes: Mesoscale Diurnal Circulation in the Atmospheric Boundary Layer Over an Outlet of the Columbia Icefield, Canadian Rockies(Wiley [Commercial Publisher]; American Geophysical Union [Society Publisher], 2021) Conway, Jonathan; Helgason, Warren D.; Pomeroy, John; sicart, jeanAtmospheric boundary layer (ABL) dynamics over glaciers mediate the response of glacier mass balance to large-scale climate forcing. Despite this, very few ABL observations are available over mountain glaciers in complex terrain. An intensive field campaign was conducted in June 2015 at the Athabasca Glacier outlet of Columbia Icefield in the Canadian Rockies. Observations of wind and temperature profiles with novel kite and radio-acoustic sounding systems showed a well-defined mesoscale circulation developed between the glacier and snow-free valley in fair weather. The typical vertical ABL structure above the glacier differed from that expected for “glacier winds”; strong daytime down-glacier winds extended through the lowest 200 m with no up-valley return flow aloft. This structure suggests external forcing at mesoscale scales or greater and is provisionally termed an “icefield breeze.” A wind speed maximum near the surface, characteristic of a “glacier wind,” was only observed during nighttime and one afternoon. Lapse rates of air temperature down the glacier centerline show the interaction of down-glacier cooling driven by sensible heat loss into the ice, entrainment and periodic disruption and warming. Down-glacier cooling was weaker in “icefield breeze” conditions, while in “glacier wind” conditions, stronger down-glacier cooling enabled large increases in near-surface temperature on the lower glacier during periods of surface boundary layer (SBL) disruption. These results raise several questions, including the impact of Columbia Icefield on the ABL and melt of Athabasca Glacier. Future work should use these observations as a testbed for modeling spatio-temporal variations in the ABL and SBL within complex glaciated terrain.Item Impacts of Climate Change on Saskatchewan’s Water Resources(Centre for Hydrology, University Saskatchewan, Saskatoon, Saskatchewan, 2009) Pomeroy, John; Fang, Xing; Williams, BrandonThe purposes of this report are two-fold, i) documenting the expected impacts of climate change on Saskatchewan's water resources, ii) outlining the options for adaptation of water resource management practices, policies and infrastructure to minimize the risk associated with the impacts of climate change. Prairie province hydrology is dominated by cold regions processes so that snowmelt is the primary hydrological event of the year for both the major rivers that derive from the Rocky Mountains and small streams and rivers that arise in Saskatchewan. Climate change impacts on water resources are therefore focussed on changes to snow accumulation, snowmelt and infiltration to frozen soils. Climate change scenarios suggest generally warmer and wetter winters for Saskatchewan. Large scale hydrological models that take these scenarios into account suggest changes in the annual streamflow of the South Saskatchewan River ranging from an 8% increase to a 22% decrease, with an 8.5% decrease being an average prediction. Small scale hydrological models for prairie streams suggest a 24% increase in spring runoff by 2050 followed by a 37% decrease by 2080 is possible as the winter snowcover becomes discontinuous. Both model results suggest that there is not a dramatic drying of the prairies to be anticipated under climate change and that in some cases streamflow will increase for certain scenarios and under moderate degrees of climate change. For the major rivers draining from Alberta into Saskatchewan, more efficient water use for irrigation or a reduction in irrigated acreage in Alberta could compensate for the reduced water availability, which is due mainly to reduced mountain snowmelt. Current minimum tillage and continuous cropping systems are resilient for most climate changes to agricultural water resources. Initially there will be increases in prairie runoff but as climate change progresses later in the 21st C there will be dramatic drops in runoff and the flow of small streams to wetlands and depressions and to small prairie rivers. Infrastructure will have difficulty keeping up with this level of change unless agricultural land management is used to compensate for changes in hydrology. New crop varieties and tillage methods which are able to leave some water for runoff to natural ecosystems will need to be devised. Drainage of wetlands may have to be reversed to limit high spring streamflows and wetland/lake levels. Integrated basin management of the South Saskatchewan River across both Alberta and Saskatchewan and for smaller watersheds in Saskatchewan is the preferred adaptation method for dealing with these uncertainties. Integrated basin management plans with apportionment powers, enforceable land use controls and agricultural management incentives will need to be 2 implemented to deal with rapid changes and increased uncertainties in water management designs. In all cases the uncertainties in the model outputs and driving hydrometeorological data for current simulations make recommending adaptation measures very difficult as the range of predictions is from a decrease to an increase in available streamflow compared to current estimates. It is imperative that the scientific basis of these hydrological models be improved so that there is reduced uncertainty in model predictions. The current climate and water resources available in the headwater basins are themselves uncertain and need to be better quantified to permit more reliable comparisons of future climate and water resource predictions with the current situation.Item Implementing a parsimonious variable contributing area algorithm for the prairie pothole region in the HYPE modelling framework(Environmental Modelling and Software, 2023-09) Ahmed, Mohamed Ismaiel; Shook, Kevin; Pietroniro, Alain; Stadnyk, Tricia; Pomeroy, John W.; Pers, Charlotta; Gustafsson, DavidThe North American prairie region is known for its poorly defined drainage system with numerous surface depressions that lead to variable contributing areas for streamflow generation. Current approaches of representing surface depressions are either simplistic or computationally demanding. In this study, a variable contributing area algorithm is implemented in the HYdrological Predictions for the Environment (HYPE) model and evaluated in the Canadian prairies. HYPE's local lake module is replaced with a Hysteretic Depressional Storage (HDS) algorithm to estimate the variable contributing fractions of subbasins. The modified model shows significant improvements in simulating the streamflows of two prairie basins in Saskatchewan, Canada. The modified model can replicate the hysteretic relationships between the water volume and contributing area of the basins. With the inclusion of the HDS algorithm in HYPE, the global HYPE modelling community can now simulate an important hydrological phenomenon, previously unavailable in the model.