College of Engineering
Permanent URI for this community
Browse
Browsing College of Engineering by Title
Now showing 1 - 20 of 29
Results Per Page
Sort Options
Item A novel biochar adsorbent for treatment of perfluorooctanoic acid (PFOA) contaminated water: Exploring batch and dynamic adsorption behavior(Journal of Water Process Engineering, 2024-11) Afrooz, Malihe; Zeynali, Rahman; Soltan, Jafar; McPhedran, KerryPerfluoroalkyl substances (PFAS), like perfluorooctanoic acid (PFOA), are of concern worldwide given they are ubiquitous in the environment. In this study, the treatment of PFOA-contaminated water was assessed using biochar adsorbents produced from raw canola straw (RCS) through chemical activation with H3PO4 and ZnCl2 and microwave-assisted pyrolysis (MWP). MWP conditions were evaluated to create optimal H3PO4-treated (PBC) and ZnCl2-treated (ZnBC) biochar adsorbents with treatments determined using a central composite design (CCD) based on the response surface methodology (RSM) considering activator concentration, and microwave heating time and power. The highest PFOA removal efficiency for PBC (3.0 mol/L) was achieved at 92 % (368 μg/g), while for ZnBC (0.55 mol/L) it was 84 % (336 μg/g). In contrast, untreated biochar and RCS had markedly lower PFOA removals of 5 % and 1 %, respectively. Activation of biochar under optimal pyrolysis conditions (6 min at 600 W) led to increased chemical functional groups, porosity, and surface area, as confirmed by FT-IR, XPS, and BET. The kinetic study indicated that chemisorption was the primary PFOA adsorption mechanism, while the Freundlich isotherm model suggested heterogeneous multilayer adsorption for PFOA removal. Further, background salts enhanced PFOA adsorption through divalent bridges and salting-out mechanisms. PBC and ZnBC adsorbents performed well over a broad pH range of 3 to 9. Lastly, Yan and Yoon-Nelson models were used to assess adsorption breakthrough for a model fixed-bed adsorption system. This study exhibits that PBC and ZnBC adsorbents, derived from accessible biomass, offer an environmentally friendly solution to remove PFOA from contaminated water.Item A universal empirical equation to estimate the abundance of carbapenem-resistant genes during aerobic digestion of wastewater sludge(Water Practice & Technology, 2024-11) Poorasgari, Eskandar; Örmeci, BanuCarbapenem-resistant genes (CRGs) exist in wastewater and accumulate in wastewater sludge. Due to the potential threat posed by the CRGs, it is important to quantify CRGs and predict their removal and discharge concentrations during aerobic sludge digestion. Nonetheless, gene quantification is tedious, error-prone and expensive. This study aims to develop multiple regression models to estimate CRGs from sludge parameters that are routinely measured for the monitoring and design of aerobic sludge digesters. Batch reactors were operated at mesophilic and thermophilic temperatures for 20-35 days. Sludge samples were periodically taken during aerobic digestion. Three CRGs (blaGES, blaOXA-48 and blaIMP-27) together with 16S rRNA and integron class 1 genes were quantified. Aerobic digestion reduced the abundance of all target genes. Multiple regression modelling was conducted in linear (LM) and non-linear (NLM) modes. Sums of squared errors of the LM models were 0-0.048, whereas those of the NLM models were 0–0.003. Adjusted R2 ranges of the LM and NLM models were 0.774–0.931 and 0.986–1, respectively. Overall, the NLM models predicted the abundance of target genes more accurately than the LM models. NLM models may be used to modify the design and operational parameters of aerobic sludge digesters.Item Assessment of Rapid and Conventional RT-qPCR-Based Systems for Wastewater Surveillance(ACS Publications, 2024-09-05) Asadi, Mohsen; Hamilton, Daniel; Shomachuk, Corwyn; Oloye, Femi F.; De Lange, Chantel; Liang, Jiaqi; Xia, Pu; Osunla, Charles A.; Cantin, Jenna; Mejia, Edgard M.; Gregorchuk, Branden S. J.; Becker, Michael G.; Mangat, Chand; Brinkmann, Markus; Jones, Paul D.; Giesy, John P.; McPhedran, Kerry M.Conventional wastewater surveillance (WS) relies on highly trained personnel, advanced instrumentation, and significant resources, making the development and use of simple, rapid, and sensitive alternative technologies valuable for reducing costs, time, and labor intensity. For the first time, this study investigated the use of two well-developed rapid systems, including the GeneXpert and LuminUltra, in parallel with a conventional WS reference methodology for the assessment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in three cities: Saskatoon, Prince Albert, and North Battleford, Saskatchewan, Canada. RNA extractions from wastewater samples were carried out for the conventional reference and LuminUltra methods, while GeneXpert was used for both raw and concentrated wastewater samples. Bland–Altman plots showed a combination of systematic bias and random error between these real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR)-based systems. Additionally, results indicated the reasonable performance of GeneXpert in viral detection with a sensitivity rate of >98%, as compared to the conventional reference methodology of 100% and LuminUltra with >65%. A Spearman correlation test showed meaningful relationships between the GeneXpert and conventional reference methodology viral level results across all cities, indicating GeneXpert’s reliability for accurate viral detection and disease prevalence determination, specifically in limited-resource communities, with a shorter processing time and cost-effectiveness in analysis.Item Characterization of the evolution of crystallization fouling in membranes(ACS, 2018-12) Olufade, A.O.; Simonson, C.J.Item A Comprehensive Review of Dehumidifiers and Regenerators for Liquid Desiccant Air Conditioning System(Elsevier, 2021-07) A, Gurubalan; Simonson, Carey JLiquid desiccant air conditioning systems (LDAS) are an energy-efficient and eco-friendly alternative to conventional air conditioning systems. The performance of a LDAS significantly depends on its simultaneous heat and mass transfer components, namely dehumidifier and regenerator. These components are referred to as liquid desiccant energy exchangers (LDEEs) since the working fluids (air and desiccant) exchange both heat and moisture. There has been a lot of research on LDEEs over the last two decades to improve their performance, thereby enhancing the efficiency of the LDAS. The main objective of this comprehensive review paper is to summarize the developments of LDEEs. The desiccant material, and design, operating, and performance parameters of LDEEs are explained in detail. Even though a lot of research has been done on LDEEs, they are not much utilized in the practical heating, ventilation, and air conditioning (HVAC) systems. To address this issue, future research should prioritize its focus on (i) practical problems of LDEEs such as cross contamination, and leakage and blockage of the membrane, (ii) long term performance study in the practical systems, (iii) noncorrosive and inexpensive solution, (iv) compatible material for efficient heat and mass transfer, and (v) generalized design and performance control methodology. The discussions presented in this communication will be useful to ascertain the crucial research gaps that need to be addressed by future research studies.Item Developing a universal equation to estimate the mass of dewatered wastewater sludge during biological digestion at mesophilic and thermophilic temperatures(Water Science & Technology, 2024-11) Poorasgari, Eskandar; Örmeci, BanuA series of dewaterability tests were conducted on various types of sludges to establish a wholistic relationship between sludge water fractions. Sludge samples were obtained from batch and continuous sludge digesters, which were operated anaerobically and aerobically under mesophilic and thermophilic conditions. Dewaterability of the sludge samples and the distribution of water fractions were studied using centrifugation and thermal drying. Thickened waste activated sludge (T-WAS) contained 10-11 g bound water (BW)/g of total solids (TS), and it was more hydrophilic than primary and digested sludges. During anaerobic digestion, BW content fluctuated between 3.2 and 4.2 g BW/g TS. However, aerobic digestion at 55°C reduced the BW content of the mixed T-WAS + primary sludges from 3.7 to 2.1 g BW/g TS. A linear function was developed to correlate supernatant and BW mass fractions (R2 = 0.995). An equation was derived from the linear function to estimate the mass of dewatered sludge based on the TS concentration of the initial wet sludge. The developed expression is applicable to different kinds of wastewater sludges. Such an expression would be helpful for the designers and operators of sludge thickening and dewatering systems that use centrifugal separation.Item Development of a Small-Scale Test Facility for Effectiveness Evaluation of Fixed-Bed Regenerators(Elsevier, 2020-06-25) Krishnan, Easwaran Nampoothiry; Ramin, Hadi; Shakouri, Mohsen; Wilson, Lee D; Simonson, CareyFixed-bed regenerators (FBR) transfer heat (and moisture) between supply and exhaust air streams in heating, ventilating and air conditioning (HVAC) systems to reduce building energy consumption. This paper presents a new small-scale testing facility to evaluate the performance (i.e. sensible effectiveness) of FBRs for HVAC applications. The major contributions of this paper are: development of a new small-scale experimental facility and methodology for testing FBRs, quantification of uncertainties, and verification of small-scale test data over a large range of FBR design conditions. A numerical model and two well-known design correlations are used to verify the results and testing methodology. The advantages of small-scale testing are that it requires low volume of conditioned airflow, has low uncertainty, requires less exchanger material and has a low cost per test. Moreover, the small-scale testing methodology of FBR would benefit heat exchanger manufacturers to perform detailed sensitivity studies and optimize the exchanger performance over a wide range of design and operating parameters prior to the fabrication of full-scale exchangers.Item Effects of Variations in Incident Heat Flux When Using Cone Calorimeter Test Data for Prediction of Full-Scale Heat Release Rates of Polyurethane Foam(Wiley, 2016) Robson, Luke; Torvi, David; Obach, Matthew; Weckman, ElizabethThe development of methods to predict full-scale fire behaviour using small-scale test data is of great interest to the fire community. This study evaluated the ability of one model, originally developed during the European Combustion Behaviour of Upholstered Furniture (CBUF) project, to predict heat release rates. Polyurethane foam specimens were tested in the furniture calorimeter using both centre and edge ignition locations. Input data was obtained using cone calorimeter tests and infrared video-based flame area measurements. Two particular issues were investigated: how variations in incident heat flux in cone calorimeter tests impact heat release rate predictions, and the ability of the model to predict results for different foam thicknesses. Heat release rate predictions showed good agreement with experimental results, particularly during the growth phase of the fire. The model was more successful in predicting results for edge ignition tests than for centre ignition tests, and in predicting results for thinner foams. Results indicated that, due to sensitivity of the burning behaviour to foam specimen geometry and ignition location, a single incident heat flux could not be specified for generating input for the CBUF model. Potential methods to determine appropriate cone calorimeter input for various geometries and ignition locations are discussed.Item Energy recovery ventilators to combat indoor airborne disease transmission: A Sustainable approach(Taylor & Francis, 2024-09-17) Annadurai, Gurubalan; Mathews, Ashwin Joseph; Krishnan, Easwaran Nampoothiry; Gollamudi, Siddhartha; Simonson, CareyVentilation plays a crucial role in preventing indoor airborne disease transmission. Nevertheless, ventilation increases the energy consumption of heating, ventilation, and air conditioning (HVAC) systems. Therefore, energy efficiency measures or alternative methods must be adopted to reduce the energy demand of HVAC systems which is necessary to achieve sustainability in the building sector. The present study proposes a method of utilizing an Energy Recovery Ventilator (ERV) to provide supplementary ventilation to reduce the airborne disease transmission. The proposed method is tested for an office building with one source room (with an infected occupant) and two connected rooms (no infection source). The contributions of the present study are (i) the development and verification of a new supplement ventilation method using ERV to reduce the probability of infection from airborne pathogens and (ii) providing the economic and environmental benefits of the proposed method to promote its adaption by the building managers/HVAC engineers. The results of the present study show that the proposed method can reduce the probability of infection by 10 to 40% and demonstrate that utilizing ERV is the sustainable and economical method to improve ventilation to reduce indoor airborne disease transmission.Item Experimental and Modeling Studies of Torrefaction of Spent Coffee Grounds and Coffee Husk: Effects on Surface Chemistry and Carbon Dioxide Capture Performance(ACS Publications, 2022) Mukherjee, Alivia; OKOLIE, JUDE; Niu, Catherine; Dalai, Ajay K.Torrefaction of biomass is a promising thermochemical pretreatment technique used to upgrade the properties of biomass to produce solid fuel with improved fuel properties. A comparative study of the effects of torrefaction temperatures (200, 250, and 300 °C) and residence times (0.5 and 1 h) on the quality of torrefied biomass samples derived from spent coffee grounds (SCG) and coffee husk (CH) were conducted. An increase in torrefaction temperature (200–300 °C) and residence time (0.5–1 h) for CH led to an improvement in the fixed carbon content (17.9–31.8 wt %), calorific value (18.3–25 MJ/kg), and carbon content (48.5–61.2 wt %). Similarly, the fixed carbon content, calorific value, and carbon content of SCG rose by 14.6–29 wt %, 22.3–30.3 MJ/kg, and 50–69.5 wt %, respectively, with increasing temperature and residence time. Moreover, torrefaction led to an improvement in the hydrophobicity and specific surface area of CH and SCG. The H/C and O/C atomic ratios for both CH- and SCG-derived torrefied biomass samples were in the range of 0.93–1.0 and 0.19–0.20, respectively. Moreover, a significant increase in volatile compound yield was observed at temperatures between 250 and 300 °C. Maximum volatile compound yields of 11.9 and 6.2 wt % were obtained for CH and SCG, respectively. A comprehensive torrefaction model for CH and SCG developed in Aspen Plus provided information on the mass and energy flows and the overall process energy efficiency. Based on the modeling results, it was observed that with increasing torrefaction temperature to 300 °C, the mass and energy yield values of the torrefied biomass samples declined remarkably (97.3% at 250 °C to 67.5% at 300 °C for CH and 96.7% at 250 °C to 75.1% at 300 °C for SCG). The SCG-derived torrefied biomass tested for CO2 adsorption at 25 °C had a comparatively higher adsorption capacity of 0.38 mmol/g owing to its better textural characteristics. SCG would need further thermal treatment or functionalization to tailor the surface properties to attract more CO2 molecules under a typical post-combustion scenario.Item Experimental Investigation on Thermo-Hydraulic Performance of Triangular Cross-Corrugated Flow Passages(Elsevier, 2021-03) Krishnan, Easwaran N; Ramin, Hadi; Guruabalan, A; Simonson, Carey JHeat exchangers made of corrugated flow passages generally have better thermo-hydraulic performance compared to parallel flow passages. The corrugation angle (), corrugation pattern, and the ratio of depth to pitch (hch/Pch) are critical geometrical parameters influencing the heat transfer and pressure drop in corrugated flow passages. This paper experimentally investigates heat transfer and pressure drop characteristics of triangular-shaped cross-corrugated flow passages for the range of 25°<<75° and 0.13Item Highly Stabilized Ni-Rich Cathodes Enabled by Artificially Reversing Naturally-Formed Interface(Advanced Energy Materials, 2024-11) Ma, Jinjin; Sun, Yipeng; Wu, Duojie; Wang, Changhong; Yu, Ruizhi; Duan, Hui; Zheng, Matthew; Ruying, Li; Danny Gu, M; Zhao, Yang; Zhou, Jigang; Sun, XueliangA significant obstacle in the manufacturing and practical application of Ni-rich cathode materials is decreasing the manufacturing cost without sacrificing the cycling stability. Here a high-energy, ultrahigh-Ni, and nearly Co-free cathode with outstanding cycling performance is proposed. This promising cathode is enabled by artificially constructing an “outside-in” interface structure toward LiNi0.94Co0.05Mn0.01O2 (NCM94) cathodes. Combining theoretical prediction and experimental results, it is revealed that high interfacial stability is achieved by a specific surface chemistry with an outside-in structure composed of an inner organic layer and an outer inorganic layer. Benefiting from the protection effect of the robust outside layer and the strain relieve function of the inside layer, the intrinsic challenges of interfacial reactions, transition metal (TM) dissolution, and micro-crack propagation have been mitigated for the Ni-rich cathode. As a result, the “outside-in” strategy enables superior cycling stability with a 92.7% retention after 200 cycles and an excellent rate capability of 149.1 mAh g−1 at 10 C, achieved by adding only 0.5% of the production cost. This study unlocks the possibilities of achieving outstanding performance for ultrahigh Ni cathode by spending minimum cost through the facile surface chemistry method.Item Hydraulic Structures(Saskatoon: Smith, 1995) Smith, C.D.This book presents general information on the form and function of many types of hydraulic structures and to give detailed theory and design procedures on some of the more common ones. The application of principles is intended to be sufficiently rigorous that a student of the subject will gain a working knowledge of the basic procedures used in hydraulic design. While, of necessity, certain design procedures are empirical, this book is not concerned with the "how" aspect of hydraulic design alone. Equal emphasis is placed on the "why" aspect, since it is only through this approach that the engineer can properly assess the merits of a proposed design for a specific application.Item Investigation of the Filling of a Spherical Pore Body with a Nonwetting Fluid: A Modeling Approach and Computational Fluid Dynamics analysis(Springer, 2024-07-23) Salama, Amgad; Kou, Jisheng; Shuyu, Sun; Hefny, MahmoudUnderstanding the dynamics of the filling process of a pore body with a nonwetting fluid is important in the context of dynamic pore network models and others. It can justify many of the assumptions behind the different rules that describe how the network behaves during imbibition and drainage processes. It also provides insight into the different regimes pertinent to this system. The filling process starts with the contact line pinning at the pore entrance. Three regimes can be identified during the filling process that is related to how the contact line advances. In the first two regimes, the contact line pins at the pore entrance while the emerging droplet develops, and in the third one, the contact line departs the entrance of the pore and advances along the pore surface. During the first regime, which is brief, the curvature of the meniscus increases, and likewise, the corresponding capillary pressure, while in the other two regimes, the curvature decreases and so does the capillary pressure. Such behavior results in the rate at which the nonwetting fluid invades the pore to change. It initially decreases, then increases as the meniscus advances. The radius of curvature of the meniscus, eventually, increases to infinity for which the interface assumes a flat configuration. A one-dimensional modeling approach is developed that accounts for all these regimes. The model also considers the two immiscible fluids over a wide spectrum of contrast in viscosity. Information about the mean velocity of the invading fluid, the location of the contact line, the radius of curvature of the meniscus, the volume of the emerging droplet, and several others are among the details that the model provides. A computational fluid dynamics (CFD) simulation has also been considered to confirm the proposed fates of the interface and to provide a framework for comparisons. The results of the validation process show, generally, a very good match between the model and the CFD analysis.Item Low adsorption affinity of athabasca oil sands naphthenic acid fraction compounds to a peat-mineral mixture(Elsevier, 2024-04-24) Meulen, Ian J. Vander; Steiger, Bernd G.K.; Asadi, Mohsen; Peru, Kerry M.; Degenhardt, Dani; McMartin, Dena W.; McPhedran, Kerry M.; Wilson, Lee D.; Headley, John V.Much of the toxicity in oil sands process-affected water in Athabasca oil sands tailings has been attributed to naphthenic acids (NAs) and associated naphthenic acid fraction compounds (NAFCs). Previous work has characterized the environmental behaviour and fate of these compounds, particularly in the context of constructed treatment wetlands. There is evidence that wetlands can attenuate NAFCs in natural and engineered contexts, but relative contributions of chemical, biotic, and physical adsorption with sequestration require deconvolution. In this work, the objective was to evaluate the extent to which prospective wetland substrate material may adsorb NAFCs using a peat-mineral mix (PMM) sourced from the Athabasca Oil Sands Region (AOSR). The PMM and NAFCs were first mixed and then equilibrated across a range of NAFC concentrations (5–500 mg/L) with moderate ionic strength and hardness (∼200 ppm combined Ca2+ and Mg2+) that approximate wetland water chemistry. Under these experimental conditions, low sorption of NAFCs to PMM was observed, where sorbed concentrations of NAFCs were approximately zero mg/kg at equilibrium. When NAFCs and PMM were mixed and equilibrated together at environmentally relevant concentrations, formula diversity increased more than could be explained by combining constituent spectra. The TOC present in this PMM was largely cellulose-derived, with low levels of thermally recalcitrant carbon (e.g., lignin, black carbon). The apparent enhancement of the concentration and diversity of components in PMM/NAFCs mixtures are likely related to aqueous solubility of some PMM-derived organic materials, as post-hoc combination of dissolved components from PMM and NAFCs cannot replicate enhanced complexity observed when the two components are agitated and equilibrated together.Item Low Complexity Lookup Table Aided Soft Output Semidefinite Relaxation based Faster-than-Nyquist Signaling Detector(Institute of Electrical and Electronic Engineers, 2024) Çiçek, Adem; Marsland, Ian; ÇAVUS, ENVER; Bedeer, Ebrahim; Yanikomeroglu, HalimSpectrum scarcity necessitates innovative, spectral- efficient strategies to meet the ever-growing demand for high data rates. Faster-than-Nyquist (FTN) signaling emerges as a compelling spectral-efficient transmission method that pushes transmit data symbols beyond the Nyquist limit, offering en- hanced spectral efficiency (SE). While FTN signaling maintains SE with the same energy and bandwidth as the Nyquist sig- naling, it introduces increased complexity, particularly at higher modulation levels. This complexity predominantly arises from the detection process, which seeks to mitigate the intentional intersymbol interference generated by FTN signaling. Another challenge involves the generation of reliable log-likelihood ratios (LLRs) vital for soft channel decoders. In this study, we introduce a lookup table (LUT) aided soft output semidefinite relaxation (soSDR) based sub-optimal FTN detector, which can be extended to higher modulation levels. This detector possesses polyno- mial computational complexity, given the negligible complexity associated with soft value generation. Our study assesses the performance of this soft output detector against that of the optimal FTN detector, Bahl, Cocke, Jelinek and Raviv (BCJR) algorithm as the benchmark. The likelihood values produced by our LUT aided semidefinite relaxation (SDR) based FTN signaling detector show promising viability in coded scenario.Item Methodology to evaluate design modifications intended to eliminate frosting and high discharge temperatures in air-source heat pumps (ASHPs) in cold climates(Elsevier, 2024-06-01) Gollamudi, Siddhartha; Krishnan, Easwaran N; Fauchoux, Melanie; Ramin, Hadi; Joseph, Albin; Simonson, CareyAir-source heat pumps (ASHPs) operating in cold climates experience problems with frosting and high refrigerant temperatures. These problems increase energy consumption, and their severity depends on the climatic conditions. In the present paper, a methodology for identifying the prevailing problem between frosting and high discharge temperatures is presented. Three performance indices, the frosting index (FI), the discharge index (DI), and the total loss index (TLI), are proposed to quantify the impacts of frosting and high discharge temperatures on the annual performance of ASHPs in different climatic conditions. The FI and DI show which problem (frosting or high discharge temperature) dominates, and the TLI indicates the combined effect of frosting and high discharge temperatures on the performance of an ASHP. A thermodynamic model of an ASHP coupled with the TRNSYS building simulation tool is used to estimate the performance of an ASHP and the proposed loss indices to estimate the impact of both frosting and high discharge temperatures for 45 cities in Canada. The results can be extended to other parts of the world that experience similar climatic conditions The results reveal that in cities in ASHRAE climatic zones 5 and 6 (classified as cold regions) where the ambient air temperatures are predominantly between −15 °C to 6 °C, ASHPs are heavily impacted by frosting. The problem of high discharge temperatures in ASHPs is predominant in cities in climate zones 7 and 8 (classified as very cold and subarctic regions) where the temperatures are frequently below −20 °C in winter. Among the cities considered, St. John, NL has the highest fraction of heating hours experiencing frosting (90 %), where the annual increase in energy consumption due to frosting is 13.5 % of the annual heating energy consumption. The highest annual increase in energy consumption due to high discharge temperatures is in Isachsen, NU (zone 8), where the increase is 30 % of the annual heating energy consumption. Based on the proposed indices, another index called the performance gain index (PGI) is created, which can be used as a first step to assess the energy-saving potential of design modifications applied to ASHPs to solve the problems of frosting and high discharge temperatures. The PGI will aid in developing climate specific ASHPs. One possible design modificationis the use of a two-stage ASHP with an economizer. It is observed that the two-stage ASHP with economizer can mitigate high discharge temperatures and improve performance in very cold and subarctic regions (zones 7 and 8). However, it is not as beneficial in zones 5 and 6, where the impact of high discharge temperatures on performance is minimal and frosting dominates. Finally, a case study, using the PGI to evaluate the economic and environmental effectiveness of a two-stage ASHP with economizer is presented for the city of Saskatoon.Item A New Dataset of Leaf Optical Traits to Include Biophysical Parameters in Addition to Spectral and Biochemical Assessment(2022) Peters, Reisha; Noble, ScottTo enable future improvement on current leaf optical property models, more data incorporating a larger range of measured properties is needed. To this end, a dataset was collected to associate spectral measurements (ultraviolet, visible, and near infrared) with biochemical and biophysical properties of leaves. The leaves represented in this dataset were selected to provide representation of agricultural species and of leaves with a wide variety of color (pigment) expression, surface characteristics, and age. Data collected for 290 leaf samples studied in this project included multiple spectral measurement geometries and ranges, biochemical assessment of chlorophyll a and b, carotenoids, and anthocyanins, and biophysical assessment of leaf thickness and surface characteristics that has not previously been a focus in other leaf datasets. The methods and results associated with this dataset are described in this work.Item Performance Evaluation and Low-Complexity Detection of the PHY Modulation of LR-FHSS Transmission in IoT Networks(Institute of Electrical and Electronics Engineers (IEEE), 2024-06-24) Maleki, Alireza; Bedeer, Ebrahim; Barton, RobertLong-range frequency-hopping spread spectrum (LR-FHSS) is a new transmission protocol introduced under the long-range wide area network (LoRaWAN) specifications to tackle the issue of extremely long-range and large-scale internet of things (IoT) deployment scenarios. Unlike the other LoRaWanscheme, i.e., the one based on the chirp spread spectrum (CSS) modulation, the physical layer of LR-FHSS exploits a 488 Hz Gaussian minimum shift keying (GMSK) modulation. In this paper, we investigate and model the FHSS-GMSK modulation and evaluate its bit error rate (BER) performance in the LR-FHSS system using simulations. We also propose a low-complexity GMSK signal detection scheme that can be used at the gateway (GW) of an IoT network with a massive number of IoT end devices (EDs). Using computer simulations, we show that our proposed detector can offer a tradeoff between the complexity of the receiver and the bit error rate (BER) performance.Item Predicting Mechanical Strength of In-Use Firefighter Protective Clothing using Near-Infrared Spectroscopy(Springer, 2018) Rezazadeh, Moein; Bespflug, Christopher; Torvi, David; Noble, Scott; Fulton, MackenzieThe exact lifespan of in-use firefighter protective clothing is difficult to predict due to the large variations in use between individual garments. Furthermore, testing methods used to evaluate new protective clothing are destructive in nature and could not be applied to in-use garments. Various non-destructive techniques have been proposed for the evaluation of in-use clothing, each possessing its own advantages and disadvantages. The ability of near-infrared spectroscopy to predict the tensile strength of thermally aged fabrics used in protective clothing for wildland firefighters and other workers is investigated here. Fabrics were exposed to heat fluxes from 10 to 40 kW/m^2 for various durations using the cone calorimeter, after which the tensile strength of the fabrics was measured. Temperatures measured during the exposures and results of thermal gravimetric analysis tests were used to interpret changes in tensile strength. Multivariate linear regression was used to develop correlations between the tensile strength and the reflectance values measured between 1500 and 2500 nm for new and thermally aged fabrics. It was found that models based on reflectance measurements made at as few as three wavelengths could be used to estimate the tensile strength of the thermally aged specimens.