University of SaskatchewanHARVEST
  • Login
  • Submit Your Research
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      DIGITAL ASSETS TRANSMISSION BETWEEN ORGANIZATIONS: MUSIC INDUSTRY CASE

      Thumbnail
      View/Open
      MAIGUATERAN-THESIS-2019.pdf (5.481Mb)
      Presentation Thesis Final Marco Maigua.pptx (2.519Mb)
      Date
      2019-09-23
      Author
      Maigua Teran, Tony
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      This research addresses the following experiences as a contribution to the topic of Blockchain applications. First, the modeling of a Music Industry revenue distribution problem. Second, the Integration of Blockchain platforms and Legacy software. Third, the design of an algorithm that solves the distribution of Digital Assets across organizations within the Music Industry. Ultimately, the analysis of the Performance of Blockchain platforms (Ethereum and Hyperledger) in terms of Latency and Throughput. Additionally, the purpose of the research is to show that the modeling of a Music Industry payment system is possible using Blockchain Technology. Therefore, the old business model of the Music Industry, which possessed flaws and inefficiencies, could potentially change into a trustless environment benefiting all the participants y paying their contributions instantaneously. Moreover, the necessity of a solution is reinforced by an internship experienced in a MITACS project in conjunction with a company called Membran to design and implement a Blockchain solution that shortens the gap between Spotify and the payment to the Labels and Artists. The system distributes value by automatically calculating payments whenever the Digital Assets (Music Tracks revenue) are imported. The application defines specific roles and variables to simulate the Music Industry. For example, Distributors as an entry point and Artists at the end of the chain. Although, any participant within the network can create agreements and benefit from the distribution. The implementation of this research took the Hyperledger Composer framework to use the Hyperledger Fabric Blockchain as the Private Distributed Ledger, and the public Blockchain Ethereum with the Ganache Client for development purposes. Extensive research of the strengths and weaknesses of these technologies included the descriptions of features like the consensus algorithms, modular architectures, and smart contracts. Ultimately, the performance of these technologies compared Hyperledger Composer and Ethereum in terms of Latency and Throughput. The conclusion of this research pointed that Hyperledger Composer with features like the role-based architecture for applications, Programmable ChainCode (Smart Contracts), and Business Network Definitions, is better suitable for modeling customized solutions and outperforms Ethereum in terms of performance when testing the same number of transactions, the same logic of the chain code and the same machine environment.
      Degree
      Master of Science (M.Sc.)
      Department
      Computer Science
      Program
      Computer Science
      Supervisor
      Deters , Ralph
      Committee
      Vassileva, Julita; Scheneider, Kevin; Wahid, Khan
      Copyright Date
      September 2019
      URI
      http://hdl.handle.net/10388/12349
      Subject
      blockchain
      decentralization
      musicIndustry
      hyperledgerFabric
      Ethereum
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy