Repository logo
 

An investigation of effects of the partial active assistance in a virtual environment based rehabilitation system

Date

2016-08-26

Journal Title

Journal ISSN

Volume Title

Publisher

ORCID

0000-0002-0419-5365

Type

Thesis

Degree Level

Masters

Abstract

This thesis describes a study on a new active assistance in robotic rehabilitation in a haptic virtual environment for post-stroke patients. The novelty of this active assistance system lies in that the assistance is directly rendered on the result of a task performing. Active assistance will generally raise the confidence level of patients in performing a rehabilitation exercise. However, an overly high assistance level may induce cognitive fatigue with patients and thus decreases their motivation of performing a rehabilitation exercise. This thesis hypothesizes that a proper active assistance can improve the performance of a rehabilitation exercise, but will not reduce the motivation of patients in doing rehabilitation exercise. However, due to the difficulty in obtaining a proper number of patients for the experiment, the study turned to healthy people. Accordingly, a revised hypothesis is that active assistance on healthy people does not improve the task performance and not reduces the motivation of healthy people. In this thesis, first, a test-bed with the haptic virtual environment was designed and constructed. The test-bed included a simple task – i.e., following a predefined circle trajectory. Then, a statistical experiment was designed and an experiment was conducted on the test-bed. The experimental results test the hypothesis successfully. The main contributions of this thesis are: (1) the development of a new active assistance system for rehabilitation in a virtual environment and (2) the experimental study on the motivation of healthy people with the developed active assistance system. A care must, however, be taken that the experiment was conducted on healthy people and the conclusion drawn from the study may not be valid on patients.

Description

Keywords

rehabilitation, system design, virtual reality

Citation

Degree

Master of Science (M.Sc.)

Department

Biomedical Engineering

Program

Biomedical Engineering

Citation

Part Of

item.page.relation.ispartofseries

DOI

item.page.identifier.pmid

item.page.identifier.pmcid