University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Dynamic Measures of Arterial Stiffness in a Rodent Model

      Thumbnail
      View/Open
      BOHAYCHUK-THESIS-2016.pdf (1.113Mb)
      Date
      2016-09-21
      Author
      Bohaychuk, Kaylee S 1990-
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Cardiovascular disease is one of the leading causes of death in Canada. Arterial stiffness is an important factor in the pathogenesis of cardiovascular disease. Cardiac failure, hypertension, renal failure, and dementia have all been linked to arterial stiffness. The arterial system is designed to dampen the pulses of blood from the heart's left ventricle and distribute the blood forward as steady flow in the small vessels. The pulse-dampening ability of the arterial system is reduced with age when the elastic fibers in the arterial wall degrade and fracture. The arterial stiffening process can accelerate from deposition of minerals within the arterial wall, such as calcium, from the endothelial layer becoming compromised or from fibrosis secondary to inflammation or turbulence. Arterial stiffness can be assessed post-mortem by microscopic examination of the arterial wall. However, for use in dynamic experiments and for therapeutic intervention, several ante-mortem techniques have been developed: pulse wave velocity (PWV), pulse waveform analysis (PWA), wave separation analysis (WSA), and carotid ultrasonography. Rats are important models for cardiovascular disease, toxicology, and pharmacological studies because of their convenient size and short life cycle. However, PWA and WSA have not been shown to be valid approaches for studying arterial stiffness in rat peripheral arteries. In this thesis, dynamic in vivo methods for PWA and WSA in rat peripheral arteries were developed to provide accurate measures of arterial stiffness. Software specific to the rat vasculature, PWanalyze and WSanalyze, was developed to measure PWA and WSA parameters, respectively. A comparison of these PWA and WSA methods in rat peripheral arteries was performed by creating a range of arterial stiffnesses through acute and chronic experiments. Arterial stiffness was measured in the femoral artery by a novel PWA parameter, the minimum time derivative of blood pressure dp/dt(min), as effectively as the established parameter the maximum time derivative of blood pressure dp/dt(max). A new method of WSA in femoral arteries was developed. Backward wave amplitude measured in the aorta was shown to increase as arteries stiffened and decrease as arteries relaxed with acute vasoactive drug injections. These experiments showed that dp/dt(min) and WSA are valid approaches to use when studying arterial stiffness in rats.
      Degree
      Master of Science (M.Sc.)
      Department
      Veterinary Biomedical Sciences
      Program
      Veterinary Biomedical Sciences
      Supervisor
      Weber, Lynn
      Committee
      Spiteri, Raymond; Honaramooz, Ali; Duke-Novakovski, Tanya; McNair, Erick
      Copyright Date
      September 2016
      URI
      http://hdl.handle.net/10388/7453
      Subject
      arterial stiffness
      WSA
      PWA
      rodent
      rat
      dpdtmin
      wave reflection
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy