University of SaskatchewanHARVEST
  • Login
  • Submit Your Research
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Improving Human-Machine Interaction

      Thumbnail
      View/Open
      MODI-THESIS.pdf (4.624Mb)
      Date
      2011-09-23
      Author
      Modi, Shrey
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      This thesis studies human and machine interaction. For better interaction between humans and machines, this thesis aims to address three issues that remain unanswered in literature. Three objectives are proposed in this thesis to address the three issues, and the objectives are: (i) identification of the core capabilities of a Human Assistance System (HAS) and study of implementation strategy of the core capabilities; (ii) development of a framework for improving the accuracy of human mind state inference; (iii) study of the effect of representation of the machine’s state (which is represented in a “natural” way) on the user’s actions. By a natural way, it is meant a way that contains emotions known to be always present in humans (or human emotions in short). The study includes theoretical development, experimentation, and prototype implementation. This thesis has concluded: (1) the core capabilities to be addressed in designing a HAS are transparency, communication, rationale, cognition and task-sharing and they can be implemented with the existing technologies including fuzzy logics, Petri Net and ACT-R (Adaptive Control of Thought-Rational); (2) expert opinion elicitation technique is a promising method to construct a more general framework for integrating various algorithms on human state inference; (3) there is a significant effect of the representation of the machine’s state on the user’s actions. The main contributions of this thesis are: (1) provision of a case study for the proof-of-concept of HAS in the area of Computer Aided Design (CAD); (2) provision of an integrated framework for fatigue inference for improved accuracy, being readily generalized to inference of other mind states; (3) generation of a new knowledge regarding the effect of the natural representation of a machine’s states on the user’s actions. These contributions are significant in human-machine science and technology. The first contribution may lead to the development of a new generation CAD system in the near future. The second contribution provides a much powerful technology for human mind inference, which is a key capability in HAS, and the third contribution enriches the science of human-machine interaction and will give impact to the field of Artificial Intelligence (AI) as well. The application of the result of this thesis is rehabilitation, machine learning, etc.
      Degree
      Master of Science (M.Sc.)
      Department
      Mechanical Engineering
      Program
      Mechanical Engineering
      Supervisor
      Zhang, W. J. (Chris)
      Committee
      Burton, Richard; Chen, Daniel
      Copyright Date
      August 2011
      URI
      http://hdl.handle.net/10388/ETD-2011-08-62
      Subject
      human-machine interaction
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy