University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      The Impact of Spatial Resolution and Representation on Human Mobility Predictability

      Thumbnail
      View/Open
      QIAN-THESIS.pdf (4.510Mb)
      Date
      2013-01-11
      Author
      Qian, Weicheng
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      The study of human mobility patterns is important for both understanding human behaviour, a social phenomenon and to simulate infection transmission. Factors such as geometry representation, granularity, missing data and data noise affect the reliability, validity, and credibility of human mobility data, and any models drawn from this data. This thesis discusses the impact of spatial representations of human mobility patterns through a series of analyses using entropy and trip-length distributions as evaluation criteria, Voronoi decomposition and square grid decomposition as alternative geometry representations. I further examine a spectrum of spatial granularity, from dimensions associated with social interaction, to city, and provincial scale, and toggle analysis between raw data and post-processed data to understand the impact of noisy data and missing data influence estimation. A dataset I was involved with collecting – SHED1 – featuring multi-sensor data collection over 5 weeks among 39 participants – has been used for the experiments. An analysis of the results further strengthens the findings of Song et al., and demonstrates comparability in predictability of human mobility through geometric representation between Voronoi decomposition and square grid decompositions, suggesting a scale dependence of human mobility analysis, and demonstrating the value of using missing data analysis throughout the study.
      Degree
      Master of Science (M.Sc.)
      Department
      Computer Science
      Program
      Computer Science
      Supervisor
      Stanley, Kevin G.; Osgood, Nathaniel D.
      Committee
      Eager, Derek L.; Horsch, Michael C.; Guo, Xulin
      Copyright Date
      November 2012
      URI
      http://hdl.handle.net/10388/ETD-2012-11-835
      Subject
      Measurement, Experimentation, Human Factors
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy