University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Optical and thermal properties of samarium-doped fluorophosphate and fluoroaluminate glasses for high-dose, high-resolution dosimetry applications

      Thumbnail
      View/Open
      VAHEDI-DISSERTATION.pdf (4.025Mb)
      Date
      2015-10-23
      Author
      Vahedi, Shahrzad
      Type
      Thesis
      Degree Level
      Doctoral
      Metadata
      Show full item record
      Abstract
      Microbeam radiation therapy (MRT) is an experimental form of radiation treatment which causes less damage to normal tissue in comparison with customary broad-beam radiation treatment. In this method the synchrotron generated X-ray beam is passed through a multislit collimator and applied to the tumor in the form of an array of planar microbeams. MRT dosimetry is an extremely challenging task and no current detector can provide the required wide dynamic rang and high spatial resolution. In this thesis, fluorophosphate (FP) and fluoroaluminate (FA) glass plates doped with trivalent samarium (Sm3+) are characterized towards developing a potential X-ray detector suitable for MRT dosimetry. The detection is based on the difference in the photoluminescence signatures of Sm3+ ions and Sm2+ ions; the latter are formed under X-ray irradiation. This valency conversion is accompanied by the formation of defects including hole centers (HCs) and electron centers (ECs) in the glass structure which absorb light in the UV and visible regions (induced absorbance). Both FP and FA glasses show promising dynamic range for MRT and may be used as a linear sensor up to ~150 Gy and as a nonlinear sensor up to ∼2400 Gy, where saturation is reached. X-ray induced defects saturate at the same dose. The optimum doping concentration is in the 0.001˗ 0.2 at.% range. Doping with higher concentrations will decrease the conversion efficiency. The glass plates also show a very promising spatial resolution (as high as a few microns) for recording the dose profile of microbeams which is readout using a confocal fluorescence microscopy technique. These plates are restorable as well and the response is reproducible. The effects of previous X-ray exposure including samarium valency conversion as well as induced absorbance may be erased by annealing at temperatures exceeding the glass transition temperature Tg while annealing at TA < Tg enhances the response. This enhancement is explained by a thermally stimulated relaxation of host glass ionic matrix surrounding X-ray induced Sm2+ ions. Optical erasure is another practical means to erase the recorded data. Nearly complete Sm2+ to Sm3+ reconversion (erasure) is achieved by intense optical illumination at 405 nm. While, existing X-ray induced bands would be only partially erased. Electron spin resonance (ESR) and optical absorbance spectroscopy are used to investigate the nature of X-ray induced defects and their correlation with Sm valency conversion. A model based on competition between defect center formation and the Sm3+ ⇆ Sm2+ conversion successfully explains the different processes occurring in the glass matrix under X-ray irradiation.
      Degree
      Doctor of Philosophy (Ph.D.)
      Department
      Biomedical Engineering
      Program
      Biomedical Engineering
      Supervisor
      Kasap, Safa; Chapman, Dean
      Committee
      Chen, Li; Zhang, Chris; Bui, Francis; Yang, Qiaoqin
      Copyright Date
      October 2014
      URI
      http://hdl.handle.net/10388/ETD-2014-10-1780
      Subject
      Samarium-doped glass
      Fluorophosphate glass
      Fluoroaluminate glass
      Valency conversion
      Dosimetry
      Microbeam radiation therapy (MRT)
      X-ray induced defects
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy