The interactions of tolerogenic dendritic cells, induced regulatory T cells and antigen-specific IgG1-secreting plasma cells in asthma
Date
2015-09-08
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
ORCID
Type
Degree Level
Masters
Abstract
Allergic asthma is a chronic inflammatory airway disease that is dominated by Th2 immune responses, with accumulation of eosinophils, IgE and IgG1 production, and airway hyperresponsiveness. We reported previously that treatment of OVA-asthmatic mice with allergen-presenting IL-10-differentiated dendritic cells (DC) (DC10) leads to progressive and long-lasting full-spectrum asthma tolerance. However, little has been done in investigating a role for antigen-specific B cells in DC10-induced tolerance.
In this study, we characterized the surface markers of DC10 and found that these cells expressed lower levels of CD40, CD80, MHC II, PD-L1 and PD-L2 relative to immunostimulatory LPS-differentiated DCs (DCLPS). Co-culturing DC10 or DC10-induced regulatory T cells (iTreg) with CD4+ Th2 effector T cells from asthmatic mice led to a marked suppression of DCLPS-induced T effector cell proliferation. Moreover, DC10 treatment of asthma phenotype mice down-regulated airway eosinophilic inflammation as determined 48 h after a recall allergen challenge, and reduced pulmonary parenchymal tissue OVA-specific IgG1-secreting (OVA-IgG1) plasma cell numbers. The number of lung OVA-specific IgG1 plasma cells decreased by 46.7% over a 2 week period in the absence of repeated allergen challenge, while the numbers of bone marrow OVA-specific IgG1 plasma cells stayed relatively stable over a 6 week period, as determined 48 h after a single allergen challenge of asthmatic mice. DC10 treatment had a significant impact on the serum of IgG1/IgE response.
To address the question of how DC10 influence OVA-IgG1 plasma cells responses, we co-cultured enzymatically-dispersed lung total cells from asthmatic mice with or without DC10, and found that the DC10 significantly suppressed OVA-IgG1 plasma cell antibody production. To determine whether DC10 required input from T cells to accomplish this, we co-cultured CD4 T cell-depleted, B cell-enriched populations from the lungs of asthmatic mice with or without DC10, and found that DC10 strongly (65.4+/-3.5%) suppressed OVA-IgG1 plasma cells in CD4 T cell-depleted lung cell cultures. To assess whether DC10-induced Treg also suppress IgG1-secretion, we co-cultured lung CD4+ T cells from untreated or DC10-tolerized asthmatic mice with total lung cells from asthmatic donors, and found that the DC10-induced Tregs effectively (52.2+/-8.7%) suppressed OVA-IgG1 plasma cell responses. In summary, DC10 treatment strongly down-regulate OVA-specific IgG1 plasma cell responses of asthmatic mice, both in vivo and in vitro by at least two mechanisms: directly via DC10 as well as indirectly through DC10-induced Tregs.
Description
Keywords
Tolerogenic dendritic cells, Induced regulatory T cells, Antigen-specific IgG1-secreting plasma cells, Asthma
Citation
Degree
Master of Science (M.Sc.)
Department
Medicine
Program
Health Sciences