Repository logo
 

DEVELOPMENT OF NANOPARTICLE RATE-MODULATING AND SYNCHROTRON PHASE CONTRAST-BASED ASSESSMENT TECHNIQUES FOR CARDIAC TISSUE ENGINEERING

Date

2016-09-26

Journal Title

Journal ISSN

Volume Title

Publisher

ORCID

Type

Thesis

Degree Level

Doctoral

Abstract

Myocardial infarction (MI) is the most common cause of heart failure. Despite advancements in cardiovascular treatments and interventions, current therapies can only slow down the progression of heart failure, but not tackle the progressive loss of cardiomyocytes after MI. One aim of cardiac tissue engineering is to develop implantable constructs (e.g. cardiac patches) that provide physical and biochemical cues for myocardium regeneration. To this end, vascularization in these constructs is of great importance and one key issue involved is the spatiotemporal control of growth-factor (GF)-release profiles. The other key issue is to non-invasively quantitatively monitor the success of these constructs in-situ, which will be essential for longitudinal assessments as studies are advanced from ex-vivo to animal models and human patients. To address these issues, the present research aims to develop nanoparticles to modulate the temporal control of GF release in cardiac patches, and to develop synchrotron X-ray phase contrast tomography for visualization and quantitative assessment of 3D-printed cardiac patch implanted in a rat MI model, with four specific objectives presented below. The first research objective is to optimize nanoparticle-fabrication process in terms of particle size, polydispersity, loading capacity, zeta potential and morphology. To achieve this objective, a comprehensive experimental study was performed to examine various process parameters used in the fabrication of poly(lactide-co-glycolide) (PLGA) nanoparticles, along with the development of a novel computational approach for the nanoparticle-fabrication optimization. Results show that among various process parameters examined, the polymer and the external aqueous phase concentrations are the most significant ones to affect the nanoparticle physical and release characteristics. Also, the limitations of PLGA nanoparticles such as initial burst effect and the lack of time-delayed release patterns are identified. The second research objective is to develop bi-layer nanoparticles to achieve the controllable release of GFs, meanwhile overcoming the above identified limitations of PLGA nanoparticles. The bi-layer nanoparticle is composed of protein-encapsulating PLGA core and poly(L-lactide) (PLLA)-rate regulating shell, thus allowing for low burst effect, protein structural integrity and time-delayed release patterns. The bi-layer nanoparticles, along with PLGA ones, were successfully fabricated and then used to regulate simultaneous and/or sequential release of multiple angiogenic factors with the results demonstrating that they are effective to promote angiogenesis in fibrin matrix. The third objective is to develop novel mathematical models to represent the controlled-release of bioactive agents from nanoparticles. For this, two models, namely the mechanistic model and geno-mechanistic model, were developed based on the local and global volume averaging approaches, respectively, and then validated with experiments on both single- and bi-layer nanoparticles, by which the ovalbumin was used as a protein model for the release examination. The results illustrates the developed models are able to provide insight on the release mechanism and to predict nanoparticle transport and degradation properties of nanoparticles, thus providing a means to regulate and control the release of bioactive agents from the nanoparticles for tissue engineering applications. The fourth objective of this research is to develop a synchrotron-based phase contrast non-invasive imaging technique for visualization and quantitative assessment of cardiac patch implanted in a rat MI model. To this end, the patches were created from alginate strands using the three-dimensional (3D) printing technique and then surgically implanted on rat hearts for the assessment based on phase contrast tomography. The imaging of samples was performed at various sample-to-detector distances, CT-scan time, and areas of the region of interest (ROI) to examine their effects on imaging quality. Phase-retrieved images depict visible and quantifiable structural details of the patch at low radiation dose, which, however, are not seen from the images by means of dual absorption-phase and a 3T clinical magnetic resonance imaging. Taken together, this research represents a significant advance in cardiac tissue engineering by developing novel nano-guided approaches for vascularization in myocardium regeneration as well as non-invasive and quantitative monitoring techniques for longitudinal studies on the cardiac patch implanted in animal model and eventually in human patients.

Description

Keywords

Cardiac Tissue Engineering, Regenerative Medicine, Myocardial Infarction Repair, Nanoparticles, Controlled Release, Biomedical Imaging, Synchrotron X-ray Imaging

Citation

Degree

Doctor of Philosophy (Ph.D.)

Department

Biomedical Engineering

Program

Biomedical Engineering

Citation

Part Of

item.page.relation.ispartofseries

DOI

item.page.identifier.pmid

item.page.identifier.pmcid