Repository logo
 

EPC synthesis of tropane alkaloids via enantioselective deprotonation

dc.contributor.committeeMemberMajewski, Mareken_US
dc.creatorLazny, Ryszarden_US
dc.date.accessioned2004-10-21T00:01:10Zen_US
dc.date.accessioned2013-01-04T05:02:33Z
dc.date.available1996-01-01T08:00:00Zen_US
dc.date.available2013-01-04T05:02:33Z
dc.date.created1996-01en_US
dc.date.issued1996-01-01en_US
dc.date.submittedJanuary 1996en_US
dc.description.abstractThis dissertation deals with the application of enantiotopic group selective reactions to the synthesis of enantiomerically pure compounds (EPC). Deprotonation of tropinone with optically pure, chiral lithium amides was studied. The effects of additives such as lithium chlorids and other lithium salts (LiBr, Lil, LiClO₄) on enantioselectivity of deprotonation of tropinone with chiral lithium amides were investigated. Increased selectivity was observed upon addition of lithium chloride in all tested deprotonation reactions. During these studies enantioselectivity as high as 97% ee was achieved in reactions of tropinone with chiral lithium amides prepared from (S,S)-(−)-N,N-bis(1 phenylethyl)amine hydrochloride and (R)-1-((2,2-dimethylpropyl)amino-2-phenylethyl) piperidine. Two different protocols for the highly enantioselective deprotonation of tropinone were employed in EPC syntheses of tropane alkaloids: chalcostrobamine, darlingine, isobellendine, knightinol, alkaloid KD-B, physoperuvine, 7β-acetoxy-3α-tigloyloxytropane, and 3α,7β-diacetoxytropane. The products were obtained in good overall yields and in high optical purity (91-97%). The presented work shows that the enantioselective deprotonation of cyclic Cs symmetrical ketones is an attractive approach to the synthesis of enantiomerically pure natural products.en_US
dc.identifier.urihttp://hdl.handle.net/10388/etd-10212004-000110en_US
dc.language.isoen_USen_US
dc.titleEPC synthesis of tropane alkaloids via enantioselective deprotonationen_US
dc.type.genreThesisen_US
dc.type.materialtexten_US
thesis.degree.departmentChemistryen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.grantorUniversity of Saskatchewanen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophy (Ph.D.)en_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nq23900.pdf
Size:
6.98 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
905 B
Format:
Plain Text
Description: