Evaluation of metals release from oil sands coke : an ecotoxicological assessment of risk and hazard to aquatic invertebrates
Date
2011
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
ORCID
Type
Degree Level
Doctoral
Abstract
The oil sands operations in northeast Alberta, Canada, employ unconventional processes to produce synthetic crude oil (SCO). Because the extracted bitumen, ¡®the form of oil in oil sands¡¯, is highly viscous, it requires thermal upgrading to produce SCO. Coking technology is used to convert heavy bitumen fractions to lighter volatile fractions. During this process, an enormous volume of solid coke is produced and the metal impurities (e.g. Al, Fe, Mn, Ni, Ti and V) present in bitumen fractions end-up in the coke particles. As coke demands significant space for storage, oil sands companies are exploring options for placing coke into reclamation landscapes for long term storage and recovery. However, coke holds appreciable amounts of potentially leachable metals that may impede the performance of reclamation landscapes. Although two previous coke leaching studies had showed that coke released metals into water at concentrations exceeding the Canadian guidelines for the protection of aquatic life, the ecotoxicological hazard and risk of these metals were not well characterized. Therefore, the overall goal of this research was to characterize the fate and toxicity of metals associated with coke.
In this research, the toxicity of coke leachates collected from oil sands field sites and those artificially generated in the laboratory were evaluated using a standard three-brood Ceriodaphnia dubia tests. Coke leachates (CLs) collected over a period of 20 months from two field lysimeters were found to be acutely toxic to C. dubia. Vanadium concentrations were significantly higher (p¡Ü0.05) than concentrations of all other metals in CLs from both lysimeters, and also in leachates from a laboratory batch renewal leaching study. Furthermore, toxic unit (TU) calculations suggested that Ni and V were likely the cause of CL toxicity, but this was not explicitly proven. Therefore, a chronic toxicity identification and evaluation (TIE) approach was adopted to identify and confirm the cause(s) of CL toxicity. Coke was subjected to a 15 day batch leaching process in the laboratory at pH 5.5 and 9.5 in order to characterize the effect of pH on metals release from coke, and to generate CLs for use in TIE tests. The 7-day LC50 estimates for C. dubia survival were 6.3% and 28.7% (v/v) for CLs generated at pH 5.5 and 9.5, respectively. The dissolved concentrations of Mn, Ni and Zn were high (p¡Ü0.05) in pH 5.5 CL, whereas Al, Mo and V were high (p¡Ü0.05) in pH 9.5 CL. Evidence gathered from a series of chronic TIE tests revealed that Ni and V were the cause of toxicity in pH 5.5 CL, whereas V was the primary cause of toxicity in pH 9.5 CL. Further, the influence of bicarbonate, chloride and sulfate ions on metals release, speciation and Ni and V toxicity was investigated. The type and amount of metals released from coke was significantly influenced by the ion type elevated in the leaching solution. Specifically, sulfate influenced mobilization of Ni, Fe, Mn and Zn from coke, whereas bicarbonate enhanced Al, Mo and V releases from coke. With respect to toxicity, increasing bicarbonate decreased the 7-day Ni2+ IC50 from 6.3 to 2.3 ¦Ìg Ni2+/L suggesting enhanced Ni toxicity at high pH or alkalinity. Conversely, sulfate showed a protective effect against V toxicity to C. dubia.
The research presented in this thesis suggests that coke will not be inert when stored in reclamation landscapes and that metals, particularly Ni and V, could reach ecotoxicologically relevant levels in surface waters or substrate porewaters, under favourable leaching conditions. Operationally, efforts should focus on remediation and monitoring of metals released from coke, particularly Ni and V, in impacted wetlands, especially before discharging water into natural wetlands and/or local streams and rivers.
Description
Keywords
oil sands, coke, vanadium, toxicity, nickel, speciation, metals release
Citation
Degree
Doctor of Philosophy (Ph.D.)
Department
Toxicology
Program
Toxicology