Repository logo
 

Large eddy simulation of mixed convection in a vertical slot and geometrical statistics of wall-bounded thermal flow

dc.contributor.advisorBergstrom, Donald J.en_US
dc.contributor.committeeMemberTorvi, David A.en_US
dc.contributor.committeeMemberLien, Fue-Sangen_US
dc.contributor.committeeMemberEvitts, Richard W.en_US
dc.contributor.committeeMemberBugg, James D.en_US
dc.contributor.committeeMemberWu, Fang-Xiangen_US
dc.creatorYin, Jingen_US
dc.date.accessioned2008-02-28T18:27:34Zen_US
dc.date.accessioned2013-01-04T04:26:00Z
dc.date.available2009-03-10T08:00:00Zen_US
dc.date.available2013-01-04T04:26:00Z
dc.date.created2008en_US
dc.date.issued2008en_US
dc.date.submitted2008en_US
dc.description.abstractBuoyant flows are characterized with unsteady large-scale structures and thus time-dependent large eddy simulation (LES) is generally favored. In this dissertation, to further explore LES for buoyant flow, an LES code based on a collocated grid system is first developed. A multigrid solver using a control strategy is developed for the pressure Poisson equations. The control strategy significantly accelerated the convergence rate. A temperature solver using a fourth-order Runge-Kutta approach is also developed. The LES code is extensively tested before it is applied. Although the collocated grid system will introduce conservation errors, in tests of a steady lid-driven cavity flow and transient start-up flow, the effect of the non-conservation of the collocated grid system was not significant. In LES, the effect of SGS scales is represented by SGS models. A novel dynamic nonlinear model (DNM) for SGS stress is tested using isothermal channel flow at Reynolds number 395. The kinetic energy dissipation and geometrical characteristics of the resolved scale and SGS scale with respect to the DNM are investigated. In general, the DNM is reliable and has relatively realistic geometrical properties in comparison with the conventional dynamic model in the present study. In contrast to a pure advecting velocity field, a scalar (temperature) field displays very different characteristics. The modelling of SGS heat flux has not been as extensively studied as that of SGS stress partly due to the complexity of the scalar transport. In this dissertation, LES for a turbulent combined forced and natural convection is studied. The DNM model and a nonlinear dynamic tensor diffusivity model (DTDM-HF) are applied for the SGS stress and heat flux, respectively. The combined effect of the nonlinear models is compared to that of linear models. Notable differences between the nonlinear and linear SGS models are observed at the subgrid-scale level. At the resolved scale, the difference is smaller but relatively more distinguishable in terms of quantities related to the temperature field. Finally, the geometrical properties of the resolved velocity and temperature fields of the thermal flow are investigated based on the LES prediction. Some universal geometrical patterns have been reproduced, e.g. the positively skewed resolved enstrophy generation and the alignment between the vorticity and vortex stretching vectors. The present research demonstrates that LES is an effective tool for the study of the geometrical properties of a turbulent flow at the resolved-scales. The wall imposed anisotropy on the flow structures and orientation of the SGS heat flux vector are also specifically examined. In contrast to the dynamic eddy diffusivity model, the DTDM-HF successfully predicts the near-wall physics and demonstrates a non-alignment pattern between the SGS heat flux and temperature gradient vector.en_US
dc.identifier.urihttp://hdl.handle.net/10388/etd-02282008-182734en_US
dc.language.isoen_USen_US
dc.subjectLarge eddy simulationen_US
dc.subjectbuoyant flowen_US
dc.subjectturbulence geometrical statisticsen_US
dc.subjectSGS modellingen_US
dc.subjectscalaren_US
dc.titleLarge eddy simulation of mixed convection in a vertical slot and geometrical statistics of wall-bounded thermal flowen_US
dc.type.genreThesisen_US
dc.type.materialtexten_US
thesis.degree.departmentMechanical Engineeringen_US
thesis.degree.disciplineMechanical Engineeringen_US
thesis.degree.grantorUniversity of Saskatchewanen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophy (Ph.D.)en_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhD_Dissertation_JingYin_2008.pdf
Size:
4.05 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
905 B
Format:
Plain Text
Description: