Repository logo
 

The role and mechanism of action of BRK in breast cancer progression

dc.contributor.committeeMemberLukong, Kiven E.en_US
dc.contributor.committeeMemberRoesler, Billen_US
dc.contributor.committeeMemberWu, Yuliangen_US
dc.contributor.committeeMemberKulyk, Williamen_US
dc.contributor.committeeMemberKhandelwal, Ramjien_US
dc.creatorMiah, Md Sayemen_US
dc.date.accessioned2015-12-22T12:00:17Z
dc.date.available2015-12-22T12:00:17Z
dc.date.created2015-11en_US
dc.date.issued2015-12-21en_US
dc.date.submittedNovember 2015en_US
dc.description.abstractBreast cancer is unanimously considered a highly heterogeneous disease due to its diverse molecular features. Breast tumor kinase (BRK), also known as protein tyrosine kinase 6 (PTK6), is a non-receptor tyrosine kinase that is highly expressed in over 80% of breast carcinomas. The role and mechanism of action of enzymatically activated BRK in breast pathology are unclear. The objectives of this project were to reveal the effect of BRK activation on cell migration, proliferation and tumorigenesis. We also aimed to determine the mechanism of action of BRK in the promotion of cell proliferation. We used BRK-negative cells (MCF10A, MDA-MB-231 and HEK293) to generate three sets of stable cell lines that stably expressed GFP alone, GFP-BRK-WT or GFP-BRK-Y447F (constitutively active) by retroviral infections. We also stably knocked down BRK from BRK-positive cells BT20 and SKBR3 by RNA interference using shRNAs against BRK. Western blotting, immunoprecipitation and qPCR studies were conducted to evaluate protein expression, protein-protein interaction and mRNA expression, respectively. Both sets of cell lines were used to determine the effect of BRK on cell proliferation (automated cell counter), cell migration (transwell and wound healing assay), transformation (colony formation assay) and tumor formation (mouse Xenograft assay). To investigate the mechanism of action of BRK, we validated downstream of tyrosine kinases 1 (Dok1), a tumor suppressor, as a BRK substrate. Deletion or site-directed mutagenesis was performed to map BRK-targeted tyrosines in Dok1 protein. Results obtained from this research project showed that stable expression of the constitutively active mutant of BRK (BRK-Y447F) in MDA-MB-231 cells led to a significant increase in the cell proliferation, migration rate and promoted colony formation and drastically enhanced tumor formation in athymic nude mice in comparison to control cells. Additionally, depletion of BRK abrogated the migration of BT20 and SKBR3 cells. Furthermore, we showed that BRK interacts with and phosphorylates Dok1, inducing Dok1 downregulation via a ubiquitin-proteasome-mediated mechanism. Together, our results show that the activation of BRK is essential for mammary gland tumorigenesis and suggest that targeting of Dok1 for degradation is a novel mechanism of action of BRK in the promotion of cell proliferation, migration and tumor formation.en_US
dc.identifier.urihttp://hdl.handle.net/10388/ETD-2015-11-2310en_US
dc.language.isoengen_US
dc.subjectBreast cancer, BRK and DOK1en_US
dc.titleThe role and mechanism of action of BRK in breast cancer progressionen_US
dc.type.genreThesisen_US
dc.type.materialtexten_US
thesis.degree.departmentBiochemistryen_US
thesis.degree.disciplineBiochemistryen_US
thesis.degree.grantorUniversity of Saskatchewanen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophy (Ph.D.)en_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MIAH-DISSERTATION.pdf
Size:
4.55 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.21 KB
Format:
Plain Text
Description: