Repository logo
 

Generalized Metrics

Date

2016-07-11

Journal Title

Journal ISSN

Volume Title

Publisher

ORCID

Type

Thesis

Degree Level

Doctoral

Abstract

A distance on a set is a comparative function. The smaller the distance between two elements of that set, the closer, or more similar, those elements are. Fr\'echet axiomatized the notion of distance into what is today known as a metric. In this thesis we study several generalizations of Fr\'echet's axioms. These include partial metric, strong partial metric, partial $n-\mathfrak{M}$etric and strong partial $n-\mathfrak{M}$etric. Those generalizations allow for negative distances, non-zero distances between a point and itself and even the comparison of $n-$tuples. We then present the scoring of a DNA sequence, a comparative function that is not a metric but can be modeled as a strong partial metric. \\\indent Using the generalized metrics mentioned above we create topological spaces and investigate convergence, limits and continuity in them. As an application, we discuss contractiveness in the language of our generalized metrics and present Banach-like fixed, common fixed and coincidence point theorems.

Description

Keywords

Partial metric, n-Metric

Citation

Degree

Doctor of Philosophy (Ph.D.)

Department

Mathematics and Statistics

Program

Mathematics

Citation

Part Of

item.page.relation.ispartofseries

DOI

item.page.identifier.pmid

item.page.identifier.pmcid