A Modular Data Analytic Pipeline for Feature Selection in High Dimensional Microbial Data Sets
Date
2021-03-16
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
ORCID
0000-0003-1431-5516
Type
Thesis
Degree Level
Masters
Abstract
The demand on the global food supply is ever increasing. With a finite amount of land to grow crops, soil health is crucial to ensuring a continued reliable food supply. Understanding how soil microbiomes affect plant growth has proven difficult in part because of the sheer number of microbes per gram of soil. This challenge is akin to the “large p, small n” problem in statistics. We have proposed a pipeline to analyze data of this nature with the help of network analysis. Networks, which are commonly referred to in computer science as graphs, are sets of nodes and edges. For the experiments in this thesis, the nodes represent microbes and edges represent their relationships with one another. These relationships are determined by calculating pairwise correlations on the data set. The data used to test the pipeline is an Operational Taxonomic Unit (OTU) abundance table, where columns are OTUs and rows are the samples. Four types of network centralities have been implemented and are used to measure the “importance” of a microbe. Each of these centralities have different interpretations for how to quantify importance.
A sensitivity analysis was performed on a smooth brome invasion dataset using the pipeline. This analysis explored the implications of varying the pipeline parameters, with respect to performance and result consistency. The trade-offs of the parameters are discussed as it is recognized that different users may value different features. This pipeline has been used as part of an application that successfully detected microbes that responded to externalities regardless of abundance.
Description
Keywords
feature selection, data analysis, microbial data sets
Citation
Degree
Master of Science (M.Sc.)
Department
Computer Science
Program
Computer Science