Repository logo
 

Synbiot encapsulation employing a pea protein-alginate matrix

dc.contributor.advisorNickerson, Micheal T.en_US
dc.contributor.advisorLow, Nicholas H.en_US
dc.creatorKlemmer, Karla Jennaen_US
dc.date.accessioned2011-03-22T11:30:52Zen_US
dc.date.accessioned2013-01-04T04:27:09Z
dc.date.available2012-03-29T08:00:00Zen_US
dc.date.available2013-01-04T04:27:09Z
dc.date.created2011-02en_US
dc.date.issued2011-02en_US
dc.date.submittedFebruary 2011en_US
dc.description.abstractProbiotics and prebiotic are becoming increasingly important to consumers to alleviate issues surrounding gut health, despite the lack of definitive efficacy studies to support health claims. The addition of both probiotics and prebiotics to foods is challenging due to the harsh environmental conditions within the food itself and during transit through the gastrointestinal (GI) tract. To circumvent these challenges encapsulation technology is being explored to protect sensitive ingredients and to control their release within the lower intestines thereby maximizing the health benefiting effects. The overall goal of this research was to design a protein delivery capsule using phase separated pea protein isolate (PPI)-alginate (AL) mixtures for the entrapment of the synbiot which includes the probiotics, Bifidobacterium adolescentis, and the prebiotic, fructooligosaccharides (FOS), such that the capsule design provides highly effective protection and release within the GI tract. Research was carried out in three studies. In study 1, PPIn (native isolate) and AL interactions were studied in dilute aqueous solutions as a function of pH and biopolymer mixing ratio. Turbidimetric analysis and electrophoretic mobility during an acid titration was used to determine conditions where phase separation occurred. Critical structure forming events associated with the formation of soluble and insoluble complexes in a 1:1 PPIn-AL mixture were found to occur at pH 5.00 and 2.98, respectively, with optimal interactions occurring at pH 2.10. As the PPIn-AL ratio increased, critical pH values shifted towards higher pH until a mixing ratio between 4:1 and 8:1was reached, above which structure formation became independent of the ratios through to ratios of 20:1. Electrophoretic mobility measurements showed a similar trend, where the isoelectric point (pI) shifted from pH 4.00 (homogeneous PPIn) to pH 1.55 (1:1 PPIn-AL). As the ratio increased towards 8:1 PPIn-AL, net neutrality values shifted to higher pHs (~3.80) before becoming constant at higher ratios. Maximum coacervate formation occurred at a mixing ratio of 4:1. Based on these findings, capsule design by segregative phase separation was only used in future studies, due to the acidic nature associated with associative phase separation. In study 2, capsule formation using a native and commercial PPI was studied, and showed no difference between the two formulations during challenge experiments in simulated gastric juice (SGJ). As a result study 3 focused on optimization and characterization of capsules prepared using the commercial PPI. Capsule designs were investigated as a function of protein concentration, prebiotic level, and extrusion conditions (20 vs. 27 G needle) in order to determine protective ability for B. adolescentis within SGJ. Capsule designs were also measured in terms of protein and prebiotic retention during the encapsulation process, geometric mean diameter and size distribution, swelling behaviour and release characteristics within simulated intestinal fluids (SIF). All capsules provided adequate protection over the 2 h duration within SGJ. Capsule breakdown and release was similar for all designs within SIF, with a release mechanism believed to be tied to enzymatic degradation of the PPI material within the wall matrix and/or the amount of excessive Na+ present in the SIF. Capsule size was found to be dependent only on the needle gauge used in the extrusion process. Swelling behaviour of the capsules with SGJ was also found to be dependent only on the protein concentration, where capsules shrank once immersed in SGJ. A 2.0% PPI-0.5% AL capsule without FOS and extruded through a 20 G needle represents the best and most cost effective design for entrapping, protecting and delivering probiotic bacteria. Future work to establish the role FOS could play post-release as the entrapping probiotics colonize the GI tract, and the protective effect of the capsules wall on FOS structure during transit is recommended.en_US
dc.identifier.urihttp://hdl.handle.net/10388/etd-03222011-113052en_US
dc.language.isoen_USen_US
dc.subjectzeta potentialen_US
dc.subjectencapsulationen_US
dc.subjectprebioticen_US
dc.subjectcoacervationen_US
dc.subjectpea proteinen_US
dc.subjectalginateen_US
dc.subjectsynbioten_US
dc.subjectBifidobacterium adolescentisen_US
dc.subjectprobioticen_US
dc.subjectphase separationen_US
dc.titleSynbiot encapsulation employing a pea protein-alginate matrixen_US
dc.type.genreThesisen_US
dc.type.materialtexten_US
thesis.degree.departmentApplied Microbiology and Food Scienceen_US
thesis.degree.disciplineApplied Microbiology and Food Scienceen_US
thesis.degree.grantorUniversity of Saskatchewanen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Science (M.Sc.)en_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
KarlaKlemmerThesis.pdf
Size:
2.01 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
905 B
Format:
Plain Text
Description: