Repository logo
 

Animating jellyfish through numerical simulation and symmetry exploitation

dc.contributor.advisorMould, Daviden_US
dc.contributor.committeeMemberSpiteri, Raymond J.en_US
dc.contributor.committeeMemberNeufeld, Ericen_US
dc.contributor.committeeMemberFotouhi, Rezaen_US
dc.creatorRudolf, David Timothyen_US
dc.date.accessioned2007-08-24T14:25:31Zen_US
dc.date.accessioned2013-01-04T04:54:17Z
dc.date.available2008-08-25T08:00:00Zen_US
dc.date.available2013-01-04T04:54:17Z
dc.date.created2007en_US
dc.date.issued2007en_US
dc.date.submitted2007en_US
dc.description.abstractThis thesis presents an automatic animation system for jellyfish that is based on a physical simulation of the organism and its surrounding fluid. Our goal is to explore the unusual style of locomotion, namely jet propulsion, which is utilized by jellyfish. The organism achieves this propulsion by contracting its body, expelling water, and propelling itself forward. The organism then expands again to refill itself with water for a subsequent stroke. We endeavor to model the thrust achieved by the jellyfish, and also the evolution of the organism's geometric configuration. We restrict our discussion of locomotion to fully grown adult jellyfish, and we restrict our study of locomotion to the resonant gait, which is the organism's most active mode of locomotion, and is characterized by a regular contraction rate that is near one of the creature's resonant frequencies. We also consider only species that are axially symmetric, and thus are able to reduce the dimensionality of our model. We can approximate the full 3D geometry of a jellyfish by simulating a 2D slice of the organism. This model reduction yields plausible results at a lower computational cost. From the 2D simulation, we extrapolate to a full 3D model. To prevent our extrapolated model from being artificially smooth, we give the final shape more variation by adding noise to the 3D geometry. This noise is inspired by empirical data of real jellyfish, and also by work with continuous noise functions from the graphics community. Our 2D simulations are done numerically with ideas from the field of computational fluid dynamics. Specifically, we simulate the elastic volume of the jellyfish with a spring-mass system, and we simulate the surrounding fluid using the semi-Lagrangian method. To couple the particle-based elastic representation with the grid-based fluid representation, we use the immersed boundary method. We find this combination of methods to be a very efficient means of simulating the 2D slice with a minimal compromise in physical accuracy.en_US
dc.identifier.urihttp://hdl.handle.net/10388/etd-08242007-142531en_US
dc.language.isoen_USen_US
dc.subjectimmersed boundary methoden_US
dc.subjectinvertibrate sea lifeen_US
dc.subjectelastic body simulationen_US
dc.subjectsemi-Lagrangian fluid simulationen_US
dc.subjectnumerical integrationen_US
dc.subjectphysically-based animationen_US
dc.subjectjellyfishen_US
dc.titleAnimating jellyfish through numerical simulation and symmetry exploitationen_US
dc.type.genreThesisen_US
dc.type.materialtexten_US
thesis.degree.departmentComputer Scienceen_US
thesis.degree.disciplineComputer Scienceen_US
thesis.degree.grantorUniversity of Saskatchewanen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Science (M.Sc.)en_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis_final.pdf
Size:
42.25 MB
Format:
Adobe Portable Document Format