University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Diamagnetic flux measurements on the STOR-M tokamak

      Thumbnail
      View/Open
      thesis.pdf (9.050Mb)
      Date
      2009
      Author
      Trembach, Dallas John
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Diamagnetic measurements of poloidal beta have been performed in the STOR-M tokamak by a flux loop placed exterior to the vacuum chamber. Poloidal beta is defined as the ratio of plasma kinetic pressure to poloidal magentic field pressure. Compensation for the vacuum toroidal field has been performed using a non-enclosing co-planar coil, and vibrational compensation from auxiliary coils. It was found that in STOR-M conditions (20% toroidal magnetic field decay over discharge) there is significant influence on the diamagnetic flux measurements from strong residual signals, presumably from image currents being induced by the toroidal field coils, requiring further compensation. A blank (non-plasma) shot is used specifically to eliminate the residual component which is not proportional to the toroidal magnetic field. Data from normal ohmic discharge operation is presented and calculations of poloidal beta from coil data (βθ ≃ 0.5) is found to be in reasonable agreement with the values of poloidal beta obtained from measurements of electron density and Spitzer temperature with neoclassical corrections for trapped electrons. Contributions present in the blank shot (residual) signal and the limitations of this method are discussed. A pulse with Compact Toroid Injection was examined and compared to a normal ohmic discharge, and one where the Compact Toroid Injector was used to supply the tokamak with neutral gas. Soft X-Ray (SXR) measurements were taken and compared. There is a strong agreement between the profiles of the poloidal beta and the SXR measurements. The bulk plasma thermal energy was measured and found to increase by 5.6 J following the injection of a CT. The diamagnetic measurements appear to be affected by image currents induced in the chamber walls by the plasma current, and also by plasma position fluctuations. Future work outlining the possibilty of compensating these currents and improving the measurements is presented.
      Degree
      Master of Science (M.Sc.)
      Department
      Physics and Engineering Physics
      Program
      Physics and Engineering Physics
      Supervisor
      Hirose, Akira
      Committee
      Merriam, James B.; Koustov, Alexandre V. (Sasha); Bradley, Michael P.; Tse, John S.; Xiao, Chijin
      Copyright Date
      2009
      URI
      http://hdl.handle.net/10388/etd-04222009-142139
      Subject
      poloidal beta
      tokamak
      plasma
      diamagnetic
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy