Repository logo
 

Surface reconstruction using variational interpolation

Date

2005-10-07

Journal Title

Journal ISSN

Volume Title

Publisher

ORCID

Type

Degree Level

Masters

Abstract

Surface reconstruction of anatomical structures is an integral part of medical modeling. Contour information is extracted from serial cross-sections of tissue data and is stored as "slice" files. Although there are several reasonably efficient triangulation algorithms that reconstruct surfaces from slice data, the models generated from them have a jagged or faceted appearance due to the large inter-slice distance created by the sectioning process. Moreover, inconsistencies in user input aggravate the problem. So, we created a method that reduces inter-slice distance, as well as ignores the inconsistencies in the user input. Our method called the piecewise weighted implicit functions, is based on the approach of weighting smaller implicit functions. It takes only a few slices at a time to construct the implicit function. This method is based on a technique called variational interpolation. Other approaches based on variational interpolation have the disadvantage of becoming unstable when the model is quite large with more than a few thousand constraint points. Furthermore, tracing the intermediate contours becomes expensive for large models. Even though some fast fitting methods handle such instability problems, there is no apparent improvement in contour tracing time, because, the value of each data point on the contour boundary is evaluated using a single large implicit function that essentially uses all constraint points. Our method handles both these problems using a sliding window approach. As our method uses only a local domain to construct each implicit function, it achieves a considerable run-time saving over the other methods. The resulting software produces interpolated models from large data sets in a few minutes on an ordinary desktop computer.

Description

Keywords

implicit functions, inter-slice distance, surface reconstruction, contours, variational interpolation, triangulation, radial basis functions

Citation

Degree

Master of Science (M.Sc.)

Department

Computer Science

Program

Computer Science

Citation

Part Of

item.page.relation.ispartofseries

DOI

item.page.identifier.pmid

item.page.identifier.pmcid