Repository logo

Game theoretic and machine learning techniques for balancing games

dc.contributor.advisorHorsch, Michael C.en_US
dc.creatorLong, Jeffrey Richarden_US 2006en_US
dc.description.abstractGame balance is the problem of determining the fairness of actions or sets of actions in competitive, multiplayer games. This problem primarily arises in the context of designing board and video games. Traditionally, balance has been achieved through large amounts of play-testing and trial-and-error on the part of the designers. In this thesis, it is our intent to lay down the beginnings of a framework for a formal and analytical solution to this problem, combining techniques from game theory and machine learning. We first develop a set of game-theoretic definitions for different forms of balance, and then introduce the concept of a strategic abstraction. We show how machine classification techniques can be used to identify high-level player strategy in games, using the two principal methods of sequence alignment and Naive Bayes classification. Bioinformatics sequence alignment, when combined with a 3-nearest neighbor classification approach, can, with only 3 exemplars of each strategy, correctly identify the strategy used in 55\% of cases using all data, and 77\% of cases on data that experts indicated actually had a strategic class. Naive Bayes classification achieves similar results, with 65\% accuracy on all data and 75\% accuracy on data rated to have an actual class. We then show how these game theoretic and machine learning techniques can be combined to automatically build matrices that can be used to analyze game balance properties.en_US
dc.subjectgame balanceen_US
dc.subjectmachine learningen_US
dc.subjectsequence alignmenten_US
dc.subjectgame theoryen_US
dc.subjectnaive bayesen_US
dc.titleGame theoretic and machine learning techniques for balancing gamesen_US
dc.type.materialtexten_US Scienceen_US Scienceen_US of Saskatchewanen_US of Science (M.Sc.)en_US


Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
416.37 KB
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
905 B
Plain Text