Repository logo
 

Monte Carlo modeling of the sensitivity of x-ray photoconductors

dc.contributor.advisorKasap, Safa O.en_US
dc.creatorYunus, Mohammaden_US
dc.date.accessioned2005-05-12T15:58:24Zen_US
dc.date.accessioned2013-01-04T04:30:44Z
dc.date.available2005-05-13T08:00:00Zen_US
dc.date.available2013-01-04T04:30:44Z
dc.date.created2005-04en_US
dc.date.issued2005-04-28en_US
dc.date.submittedApril 2005en_US
dc.description.abstractThe sensitivity reduction or ghosting mechanism of x-ray photoconductor is studied based on Monte Carlo simulation techniques. We have calculated the sensitivity reduction for different detector operating conditions (applied electric field, x-ray spectrum and photoconductor thickness) and for different levels of carrier trapping. We have analyzed the effect of photoconductor biasing (positive or negative) on ghosting. The following effects are taken into account in modeling the ghosting phenomena: (i) recombination between trapped and oppositely charged drifting carriers, (ii) trap filling, (iii) nonuniform electric field, (iv) detrapping of trapped holes, and (v) x-ray induced trap generation. Our calculation shows that not only the recombination between trapped and oppositely charged drifting carriers but the x-ray induced trap generation is also responsible for ghosting in photoconductor based x-ray image detectors. Moreover not all the trapped carriers take part in recombination; rather only a fraction of the trapped carriers are involved in recombination. Electric field also plays an important role in ghosting calculations via the electron hole pair generation mechanism. Trap filling has also non trivial effects on ghosting. The simulation results show that the amount of ghosting strongly depends on the applied electric field. Ghosting increases with decreasing applied electric field and vice versa. It is observed that ghosting is higher at high carrier trapping level than at low trapping level. Again ghosting is more pronounced in chest radiographic detector than mammographic detector. In chest radiographic detector, carrier trapping is high due to greater thickness hence recombination and electric field effects are prominent in chest radiographic detector. Biasing dependent ghosting depends on the carrier mobility lifetime product. For positively biased detectors, ghosting is less if the mobility lifetime product of hole is higher than that of electron and vice versa for negatively biased detectors. It also appears that the use of only recombination to calculate ghosting, as believed the primary source of ghosting in some literatures, will lead to significant error in the calculation of ghosting.en_US
dc.identifier.urihttp://hdl.handle.net/10388/etd-05122005-155824en_US
dc.language.isoen_USen_US
dc.subjectMonte Carloen_US
dc.subjectX-ray detectorsen_US
dc.subjectsensivityen_US
dc.titleMonte Carlo modeling of the sensitivity of x-ray photoconductorsen_US
dc.type.genreThesisen_US
dc.type.materialtexten_US
thesis.degree.departmentElectrical Engineeringen_US
thesis.degree.disciplineElectrical Engineeringen_US
thesis.degree.grantorUniversity of Saskatchewanen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Science (M.Sc.)en_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MS_Yunus.pdf
Size:
885.11 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
905 B
Format:
Plain Text
Description: