Repository logo
 

DETAILED RELIABILITY MODELS OF INTEGRATED SOLAR POWER TECHNOLOGIES IN ELECTRIC POWER SYSTEMS

Date

2018-08-17

Journal Title

Journal ISSN

Volume Title

Publisher

ORCID

Type

Thesis

Degree Level

Doctoral

Abstract

The contribution of solar power in electric power system has been growing rapidly due to the significant negative impact of carbon emissions generated by conventional power sources. Large scale photovoltaic (PV) and concentrated solar power (CSP) have been installed around the world. However, these technologies involve major concerns regarding the reliability of system generation. The output power generation from solar technologies acts quite differently from that of conventional generation. The PV and CSP are composed of major components that have different failure characteristics. The interactions of the different component topologies in various commercially available PV system configurations will significantly influence the reliability of a PV system. Moreover, the output power of PV and CSP are highly variable and depend on the solar irradiation resulting in discontinuous and variable electricity generation. All these factors have a direct impact on the overall generation system adequacy. It is, therefore, vital to incorporate these factors in the reliability modeling of PV and CSP systems. An analytical probabilistic technique is employed in this thesis to develop detailed reliability models of PV and CSP systems. This thesis investigates the impact of PV/CSP system components on the reliability performance of PV/CSP systems. Different studies were conducted on test systems in this thesis considering system load variation, growth in solar capacity, geographical location, and seasonal effects. These analyses have been expanded to quantify the comparative reliability of a generation system with large scale PV and CSP. The power output of PV is also affected by dust accumulation on PV panel surfaces. The deposition of dust on PV panels will reduce the net solar irradiation absorbed by the solar panel, and lower the solar panel efficiency. This project is extended to incorporate the cumulative dust in the reliability model of the PV system. A regression model is adopted to develop a probabilistic model of PV power reduction caused by cumulative dust. This work also investigates the impact of a dust-removal strategy on the overall system adequacy. The concept and methodology discussed in this thesis can be used effectively by system planners and electric utilities to evaluate the reliability benefit of utilizing solar power in existing generation systems.

Description

Keywords

(LOEE) Loss of Energy Expectation (LOLE) Loss of Load Expectation

Citation

Degree

Doctor of Philosophy (Ph.D.)

Department

Electrical and Computer Engineering

Program

Electrical Engineering

Advisor

Part Of

item.page.relation.ispartofseries

DOI

item.page.identifier.pmid

item.page.identifier.pmcid